xref: /openbmc/linux/net/mptcp/protocol.c (revision b003fb5c9df8a8923bf46e0c00cc54edcfb0fbe3)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31 
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 	struct mptcp_sock msk;
35 	struct ipv6_pinfo np;
36 };
37 #endif
38 
39 enum {
40 	MPTCP_CMSG_TS = BIT(0),
41 	MPTCP_CMSG_INQ = BIT(1),
42 };
43 
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45 
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void __mptcp_check_send_data_fin(struct sock *sk);
48 
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
50 static struct net_device mptcp_napi_dev;
51 
52 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
53  * completed yet or has failed, return the subflow socket.
54  * Otherwise return NULL.
55  */
56 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
57 {
58 	if (!msk->subflow || READ_ONCE(msk->can_ack))
59 		return NULL;
60 
61 	return msk->subflow;
62 }
63 
64 /* Returns end sequence number of the receiver's advertised window */
65 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
66 {
67 	return READ_ONCE(msk->wnd_end);
68 }
69 
70 static bool mptcp_is_tcpsk(struct sock *sk)
71 {
72 	struct socket *sock = sk->sk_socket;
73 
74 	if (unlikely(sk->sk_prot == &tcp_prot)) {
75 		/* we are being invoked after mptcp_accept() has
76 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
77 		 * not an mptcp one.
78 		 *
79 		 * Hand the socket over to tcp so all further socket ops
80 		 * bypass mptcp.
81 		 */
82 		sock->ops = &inet_stream_ops;
83 		return true;
84 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
85 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
86 		sock->ops = &inet6_stream_ops;
87 		return true;
88 #endif
89 	}
90 
91 	return false;
92 }
93 
94 static int __mptcp_socket_create(struct mptcp_sock *msk)
95 {
96 	struct mptcp_subflow_context *subflow;
97 	struct sock *sk = (struct sock *)msk;
98 	struct socket *ssock;
99 	int err;
100 
101 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
102 	if (err)
103 		return err;
104 
105 	msk->first = ssock->sk;
106 	msk->subflow = ssock;
107 	subflow = mptcp_subflow_ctx(ssock->sk);
108 	list_add(&subflow->node, &msk->conn_list);
109 	sock_hold(ssock->sk);
110 	subflow->request_mptcp = 1;
111 
112 	/* This is the first subflow, always with id 0 */
113 	subflow->local_id_valid = 1;
114 	mptcp_sock_graft(msk->first, sk->sk_socket);
115 
116 	return 0;
117 }
118 
119 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
120 {
121 	sk_drops_add(sk, skb);
122 	__kfree_skb(skb);
123 }
124 
125 static void mptcp_rmem_charge(struct sock *sk, int size)
126 {
127 	mptcp_sk(sk)->rmem_fwd_alloc -= size;
128 }
129 
130 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
131 			       struct sk_buff *from)
132 {
133 	bool fragstolen;
134 	int delta;
135 
136 	if (MPTCP_SKB_CB(from)->offset ||
137 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
138 		return false;
139 
140 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
141 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
142 		 to->len, MPTCP_SKB_CB(from)->end_seq);
143 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
144 
145 	/* note the fwd memory can reach a negative value after accounting
146 	 * for the delta, but the later skb free will restore a non
147 	 * negative one
148 	 */
149 	atomic_add(delta, &sk->sk_rmem_alloc);
150 	mptcp_rmem_charge(sk, delta);
151 	kfree_skb_partial(from, fragstolen);
152 
153 	return true;
154 }
155 
156 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
157 				   struct sk_buff *from)
158 {
159 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
160 		return false;
161 
162 	return mptcp_try_coalesce((struct sock *)msk, to, from);
163 }
164 
165 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
166 {
167 	amount >>= PAGE_SHIFT;
168 	mptcp_sk(sk)->rmem_fwd_alloc -= amount << PAGE_SHIFT;
169 	__sk_mem_reduce_allocated(sk, amount);
170 }
171 
172 static void mptcp_rmem_uncharge(struct sock *sk, int size)
173 {
174 	struct mptcp_sock *msk = mptcp_sk(sk);
175 	int reclaimable;
176 
177 	msk->rmem_fwd_alloc += size;
178 	reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
179 
180 	/* see sk_mem_uncharge() for the rationale behind the following schema */
181 	if (unlikely(reclaimable >= PAGE_SIZE))
182 		__mptcp_rmem_reclaim(sk, reclaimable);
183 }
184 
185 static void mptcp_rfree(struct sk_buff *skb)
186 {
187 	unsigned int len = skb->truesize;
188 	struct sock *sk = skb->sk;
189 
190 	atomic_sub(len, &sk->sk_rmem_alloc);
191 	mptcp_rmem_uncharge(sk, len);
192 }
193 
194 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
195 {
196 	skb_orphan(skb);
197 	skb->sk = sk;
198 	skb->destructor = mptcp_rfree;
199 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
200 	mptcp_rmem_charge(sk, skb->truesize);
201 }
202 
203 /* "inspired" by tcp_data_queue_ofo(), main differences:
204  * - use mptcp seqs
205  * - don't cope with sacks
206  */
207 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
208 {
209 	struct sock *sk = (struct sock *)msk;
210 	struct rb_node **p, *parent;
211 	u64 seq, end_seq, max_seq;
212 	struct sk_buff *skb1;
213 
214 	seq = MPTCP_SKB_CB(skb)->map_seq;
215 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
216 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
217 
218 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
219 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
220 	if (after64(end_seq, max_seq)) {
221 		/* out of window */
222 		mptcp_drop(sk, skb);
223 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
224 			 (unsigned long long)end_seq - (unsigned long)max_seq,
225 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
226 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
227 		return;
228 	}
229 
230 	p = &msk->out_of_order_queue.rb_node;
231 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
232 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
233 		rb_link_node(&skb->rbnode, NULL, p);
234 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
235 		msk->ooo_last_skb = skb;
236 		goto end;
237 	}
238 
239 	/* with 2 subflows, adding at end of ooo queue is quite likely
240 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
241 	 */
242 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
243 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
244 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
245 		return;
246 	}
247 
248 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
249 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
250 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
251 		parent = &msk->ooo_last_skb->rbnode;
252 		p = &parent->rb_right;
253 		goto insert;
254 	}
255 
256 	/* Find place to insert this segment. Handle overlaps on the way. */
257 	parent = NULL;
258 	while (*p) {
259 		parent = *p;
260 		skb1 = rb_to_skb(parent);
261 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
262 			p = &parent->rb_left;
263 			continue;
264 		}
265 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
266 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
267 				/* All the bits are present. Drop. */
268 				mptcp_drop(sk, skb);
269 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
270 				return;
271 			}
272 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
273 				/* partial overlap:
274 				 *     |     skb      |
275 				 *  |     skb1    |
276 				 * continue traversing
277 				 */
278 			} else {
279 				/* skb's seq == skb1's seq and skb covers skb1.
280 				 * Replace skb1 with skb.
281 				 */
282 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
283 						&msk->out_of_order_queue);
284 				mptcp_drop(sk, skb1);
285 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
286 				goto merge_right;
287 			}
288 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
289 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
290 			return;
291 		}
292 		p = &parent->rb_right;
293 	}
294 
295 insert:
296 	/* Insert segment into RB tree. */
297 	rb_link_node(&skb->rbnode, parent, p);
298 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
299 
300 merge_right:
301 	/* Remove other segments covered by skb. */
302 	while ((skb1 = skb_rb_next(skb)) != NULL) {
303 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
304 			break;
305 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
306 		mptcp_drop(sk, skb1);
307 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
308 	}
309 	/* If there is no skb after us, we are the last_skb ! */
310 	if (!skb1)
311 		msk->ooo_last_skb = skb;
312 
313 end:
314 	skb_condense(skb);
315 	mptcp_set_owner_r(skb, sk);
316 }
317 
318 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
319 {
320 	struct mptcp_sock *msk = mptcp_sk(sk);
321 	int amt, amount;
322 
323 	if (size <= msk->rmem_fwd_alloc)
324 		return true;
325 
326 	size -= msk->rmem_fwd_alloc;
327 	amt = sk_mem_pages(size);
328 	amount = amt << PAGE_SHIFT;
329 	if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
330 		return false;
331 
332 	msk->rmem_fwd_alloc += amount;
333 	return true;
334 }
335 
336 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
337 			     struct sk_buff *skb, unsigned int offset,
338 			     size_t copy_len)
339 {
340 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
341 	struct sock *sk = (struct sock *)msk;
342 	struct sk_buff *tail;
343 	bool has_rxtstamp;
344 
345 	__skb_unlink(skb, &ssk->sk_receive_queue);
346 
347 	skb_ext_reset(skb);
348 	skb_orphan(skb);
349 
350 	/* try to fetch required memory from subflow */
351 	if (!mptcp_rmem_schedule(sk, ssk, skb->truesize))
352 		goto drop;
353 
354 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
355 
356 	/* the skb map_seq accounts for the skb offset:
357 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
358 	 * value
359 	 */
360 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
361 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
362 	MPTCP_SKB_CB(skb)->offset = offset;
363 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
364 
365 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
366 		/* in sequence */
367 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
368 		tail = skb_peek_tail(&sk->sk_receive_queue);
369 		if (tail && mptcp_try_coalesce(sk, tail, skb))
370 			return true;
371 
372 		mptcp_set_owner_r(skb, sk);
373 		__skb_queue_tail(&sk->sk_receive_queue, skb);
374 		return true;
375 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
376 		mptcp_data_queue_ofo(msk, skb);
377 		return false;
378 	}
379 
380 	/* old data, keep it simple and drop the whole pkt, sender
381 	 * will retransmit as needed, if needed.
382 	 */
383 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
384 drop:
385 	mptcp_drop(sk, skb);
386 	return false;
387 }
388 
389 static void mptcp_stop_timer(struct sock *sk)
390 {
391 	struct inet_connection_sock *icsk = inet_csk(sk);
392 
393 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
394 	mptcp_sk(sk)->timer_ival = 0;
395 }
396 
397 static void mptcp_close_wake_up(struct sock *sk)
398 {
399 	if (sock_flag(sk, SOCK_DEAD))
400 		return;
401 
402 	sk->sk_state_change(sk);
403 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
404 	    sk->sk_state == TCP_CLOSE)
405 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
406 	else
407 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
408 }
409 
410 static bool mptcp_pending_data_fin_ack(struct sock *sk)
411 {
412 	struct mptcp_sock *msk = mptcp_sk(sk);
413 
414 	return !__mptcp_check_fallback(msk) &&
415 	       ((1 << sk->sk_state) &
416 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
417 	       msk->write_seq == READ_ONCE(msk->snd_una);
418 }
419 
420 static void mptcp_check_data_fin_ack(struct sock *sk)
421 {
422 	struct mptcp_sock *msk = mptcp_sk(sk);
423 
424 	/* Look for an acknowledged DATA_FIN */
425 	if (mptcp_pending_data_fin_ack(sk)) {
426 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
427 
428 		switch (sk->sk_state) {
429 		case TCP_FIN_WAIT1:
430 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
431 			break;
432 		case TCP_CLOSING:
433 		case TCP_LAST_ACK:
434 			inet_sk_state_store(sk, TCP_CLOSE);
435 			break;
436 		}
437 
438 		mptcp_close_wake_up(sk);
439 	}
440 }
441 
442 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
443 {
444 	struct mptcp_sock *msk = mptcp_sk(sk);
445 
446 	if (READ_ONCE(msk->rcv_data_fin) &&
447 	    ((1 << sk->sk_state) &
448 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
449 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
450 
451 		if (msk->ack_seq == rcv_data_fin_seq) {
452 			if (seq)
453 				*seq = rcv_data_fin_seq;
454 
455 			return true;
456 		}
457 	}
458 
459 	return false;
460 }
461 
462 static void mptcp_set_datafin_timeout(const struct sock *sk)
463 {
464 	struct inet_connection_sock *icsk = inet_csk(sk);
465 	u32 retransmits;
466 
467 	retransmits = min_t(u32, icsk->icsk_retransmits,
468 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
469 
470 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
471 }
472 
473 static void __mptcp_set_timeout(struct sock *sk, long tout)
474 {
475 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
476 }
477 
478 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
479 {
480 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
481 
482 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
483 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
484 }
485 
486 static void mptcp_set_timeout(struct sock *sk)
487 {
488 	struct mptcp_subflow_context *subflow;
489 	long tout = 0;
490 
491 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
492 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
493 	__mptcp_set_timeout(sk, tout);
494 }
495 
496 static inline bool tcp_can_send_ack(const struct sock *ssk)
497 {
498 	return !((1 << inet_sk_state_load(ssk)) &
499 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
500 }
501 
502 void __mptcp_subflow_send_ack(struct sock *ssk)
503 {
504 	if (tcp_can_send_ack(ssk))
505 		tcp_send_ack(ssk);
506 }
507 
508 static void mptcp_subflow_send_ack(struct sock *ssk)
509 {
510 	bool slow;
511 
512 	slow = lock_sock_fast(ssk);
513 	__mptcp_subflow_send_ack(ssk);
514 	unlock_sock_fast(ssk, slow);
515 }
516 
517 static void mptcp_send_ack(struct mptcp_sock *msk)
518 {
519 	struct mptcp_subflow_context *subflow;
520 
521 	mptcp_for_each_subflow(msk, subflow)
522 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
523 }
524 
525 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
526 {
527 	bool slow;
528 
529 	slow = lock_sock_fast(ssk);
530 	if (tcp_can_send_ack(ssk))
531 		tcp_cleanup_rbuf(ssk, 1);
532 	unlock_sock_fast(ssk, slow);
533 }
534 
535 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
536 {
537 	const struct inet_connection_sock *icsk = inet_csk(ssk);
538 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
539 	const struct tcp_sock *tp = tcp_sk(ssk);
540 
541 	return (ack_pending & ICSK_ACK_SCHED) &&
542 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
543 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
544 		 (rx_empty && ack_pending &
545 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
546 }
547 
548 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
549 {
550 	int old_space = READ_ONCE(msk->old_wspace);
551 	struct mptcp_subflow_context *subflow;
552 	struct sock *sk = (struct sock *)msk;
553 	int space =  __mptcp_space(sk);
554 	bool cleanup, rx_empty;
555 
556 	cleanup = (space > 0) && (space >= (old_space << 1));
557 	rx_empty = !__mptcp_rmem(sk);
558 
559 	mptcp_for_each_subflow(msk, subflow) {
560 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
561 
562 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
563 			mptcp_subflow_cleanup_rbuf(ssk);
564 	}
565 }
566 
567 static bool mptcp_check_data_fin(struct sock *sk)
568 {
569 	struct mptcp_sock *msk = mptcp_sk(sk);
570 	u64 rcv_data_fin_seq;
571 	bool ret = false;
572 
573 	if (__mptcp_check_fallback(msk))
574 		return ret;
575 
576 	/* Need to ack a DATA_FIN received from a peer while this side
577 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
578 	 * msk->rcv_data_fin was set when parsing the incoming options
579 	 * at the subflow level and the msk lock was not held, so this
580 	 * is the first opportunity to act on the DATA_FIN and change
581 	 * the msk state.
582 	 *
583 	 * If we are caught up to the sequence number of the incoming
584 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
585 	 * not caught up, do nothing and let the recv code send DATA_ACK
586 	 * when catching up.
587 	 */
588 
589 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
590 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
591 		WRITE_ONCE(msk->rcv_data_fin, 0);
592 
593 		sk->sk_shutdown |= RCV_SHUTDOWN;
594 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
595 
596 		switch (sk->sk_state) {
597 		case TCP_ESTABLISHED:
598 			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
599 			break;
600 		case TCP_FIN_WAIT1:
601 			inet_sk_state_store(sk, TCP_CLOSING);
602 			break;
603 		case TCP_FIN_WAIT2:
604 			inet_sk_state_store(sk, TCP_CLOSE);
605 			break;
606 		default:
607 			/* Other states not expected */
608 			WARN_ON_ONCE(1);
609 			break;
610 		}
611 
612 		ret = true;
613 		mptcp_send_ack(msk);
614 		mptcp_close_wake_up(sk);
615 	}
616 	return ret;
617 }
618 
619 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
620 					   struct sock *ssk,
621 					   unsigned int *bytes)
622 {
623 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
624 	struct sock *sk = (struct sock *)msk;
625 	unsigned int moved = 0;
626 	bool more_data_avail;
627 	struct tcp_sock *tp;
628 	bool done = false;
629 	int sk_rbuf;
630 
631 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
632 
633 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
634 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
635 
636 		if (unlikely(ssk_rbuf > sk_rbuf)) {
637 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
638 			sk_rbuf = ssk_rbuf;
639 		}
640 	}
641 
642 	pr_debug("msk=%p ssk=%p", msk, ssk);
643 	tp = tcp_sk(ssk);
644 	do {
645 		u32 map_remaining, offset;
646 		u32 seq = tp->copied_seq;
647 		struct sk_buff *skb;
648 		bool fin;
649 
650 		/* try to move as much data as available */
651 		map_remaining = subflow->map_data_len -
652 				mptcp_subflow_get_map_offset(subflow);
653 
654 		skb = skb_peek(&ssk->sk_receive_queue);
655 		if (!skb) {
656 			/* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
657 			 * a different CPU can have already processed the pending
658 			 * data, stop here or we can enter an infinite loop
659 			 */
660 			if (!moved)
661 				done = true;
662 			break;
663 		}
664 
665 		if (__mptcp_check_fallback(msk)) {
666 			/* Under fallback skbs have no MPTCP extension and TCP could
667 			 * collapse them between the dummy map creation and the
668 			 * current dequeue. Be sure to adjust the map size.
669 			 */
670 			map_remaining = skb->len;
671 			subflow->map_data_len = skb->len;
672 		}
673 
674 		offset = seq - TCP_SKB_CB(skb)->seq;
675 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
676 		if (fin) {
677 			done = true;
678 			seq++;
679 		}
680 
681 		if (offset < skb->len) {
682 			size_t len = skb->len - offset;
683 
684 			if (tp->urg_data)
685 				done = true;
686 
687 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
688 				moved += len;
689 			seq += len;
690 
691 			if (WARN_ON_ONCE(map_remaining < len))
692 				break;
693 		} else {
694 			WARN_ON_ONCE(!fin);
695 			sk_eat_skb(ssk, skb);
696 			done = true;
697 		}
698 
699 		WRITE_ONCE(tp->copied_seq, seq);
700 		more_data_avail = mptcp_subflow_data_available(ssk);
701 
702 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
703 			done = true;
704 			break;
705 		}
706 	} while (more_data_avail);
707 
708 	*bytes += moved;
709 	return done;
710 }
711 
712 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
713 {
714 	struct sock *sk = (struct sock *)msk;
715 	struct sk_buff *skb, *tail;
716 	bool moved = false;
717 	struct rb_node *p;
718 	u64 end_seq;
719 
720 	p = rb_first(&msk->out_of_order_queue);
721 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
722 	while (p) {
723 		skb = rb_to_skb(p);
724 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
725 			break;
726 
727 		p = rb_next(p);
728 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
729 
730 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
731 				      msk->ack_seq))) {
732 			mptcp_drop(sk, skb);
733 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
734 			continue;
735 		}
736 
737 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
738 		tail = skb_peek_tail(&sk->sk_receive_queue);
739 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
740 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
741 
742 			/* skip overlapping data, if any */
743 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
744 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
745 				 delta);
746 			MPTCP_SKB_CB(skb)->offset += delta;
747 			MPTCP_SKB_CB(skb)->map_seq += delta;
748 			__skb_queue_tail(&sk->sk_receive_queue, skb);
749 		}
750 		msk->ack_seq = end_seq;
751 		moved = true;
752 	}
753 	return moved;
754 }
755 
756 /* In most cases we will be able to lock the mptcp socket.  If its already
757  * owned, we need to defer to the work queue to avoid ABBA deadlock.
758  */
759 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
760 {
761 	struct sock *sk = (struct sock *)msk;
762 	unsigned int moved = 0;
763 
764 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
765 	__mptcp_ofo_queue(msk);
766 	if (unlikely(ssk->sk_err)) {
767 		if (!sock_owned_by_user(sk))
768 			__mptcp_error_report(sk);
769 		else
770 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
771 	}
772 
773 	/* If the moves have caught up with the DATA_FIN sequence number
774 	 * it's time to ack the DATA_FIN and change socket state, but
775 	 * this is not a good place to change state. Let the workqueue
776 	 * do it.
777 	 */
778 	if (mptcp_pending_data_fin(sk, NULL))
779 		mptcp_schedule_work(sk);
780 	return moved > 0;
781 }
782 
783 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
784 {
785 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
786 	struct mptcp_sock *msk = mptcp_sk(sk);
787 	int sk_rbuf, ssk_rbuf;
788 
789 	/* The peer can send data while we are shutting down this
790 	 * subflow at msk destruction time, but we must avoid enqueuing
791 	 * more data to the msk receive queue
792 	 */
793 	if (unlikely(subflow->disposable))
794 		return;
795 
796 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
797 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
798 	if (unlikely(ssk_rbuf > sk_rbuf))
799 		sk_rbuf = ssk_rbuf;
800 
801 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
802 	if (__mptcp_rmem(sk) > sk_rbuf) {
803 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
804 		return;
805 	}
806 
807 	/* Wake-up the reader only for in-sequence data */
808 	mptcp_data_lock(sk);
809 	if (move_skbs_to_msk(msk, ssk))
810 		sk->sk_data_ready(sk);
811 
812 	mptcp_data_unlock(sk);
813 }
814 
815 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
816 {
817 	struct sock *sk = (struct sock *)msk;
818 
819 	if (sk->sk_state != TCP_ESTABLISHED)
820 		return false;
821 
822 	/* attach to msk socket only after we are sure we will deal with it
823 	 * at close time
824 	 */
825 	if (sk->sk_socket && !ssk->sk_socket)
826 		mptcp_sock_graft(ssk, sk->sk_socket);
827 
828 	mptcp_propagate_sndbuf((struct sock *)msk, ssk);
829 	mptcp_sockopt_sync_locked(msk, ssk);
830 	return true;
831 }
832 
833 static void __mptcp_flush_join_list(struct sock *sk)
834 {
835 	struct mptcp_subflow_context *tmp, *subflow;
836 	struct mptcp_sock *msk = mptcp_sk(sk);
837 
838 	list_for_each_entry_safe(subflow, tmp, &msk->join_list, node) {
839 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
840 		bool slow = lock_sock_fast(ssk);
841 
842 		list_move_tail(&subflow->node, &msk->conn_list);
843 		if (!__mptcp_finish_join(msk, ssk))
844 			mptcp_subflow_reset(ssk);
845 		unlock_sock_fast(ssk, slow);
846 	}
847 }
848 
849 static bool mptcp_timer_pending(struct sock *sk)
850 {
851 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
852 }
853 
854 static void mptcp_reset_timer(struct sock *sk)
855 {
856 	struct inet_connection_sock *icsk = inet_csk(sk);
857 	unsigned long tout;
858 
859 	/* prevent rescheduling on close */
860 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
861 		return;
862 
863 	tout = mptcp_sk(sk)->timer_ival;
864 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
865 }
866 
867 bool mptcp_schedule_work(struct sock *sk)
868 {
869 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
870 	    schedule_work(&mptcp_sk(sk)->work)) {
871 		/* each subflow already holds a reference to the sk, and the
872 		 * workqueue is invoked by a subflow, so sk can't go away here.
873 		 */
874 		sock_hold(sk);
875 		return true;
876 	}
877 	return false;
878 }
879 
880 void mptcp_subflow_eof(struct sock *sk)
881 {
882 	if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags))
883 		mptcp_schedule_work(sk);
884 }
885 
886 static void mptcp_check_for_eof(struct mptcp_sock *msk)
887 {
888 	struct mptcp_subflow_context *subflow;
889 	struct sock *sk = (struct sock *)msk;
890 	int receivers = 0;
891 
892 	mptcp_for_each_subflow(msk, subflow)
893 		receivers += !subflow->rx_eof;
894 	if (receivers)
895 		return;
896 
897 	if (!(sk->sk_shutdown & RCV_SHUTDOWN)) {
898 		/* hopefully temporary hack: propagate shutdown status
899 		 * to msk, when all subflows agree on it
900 		 */
901 		sk->sk_shutdown |= RCV_SHUTDOWN;
902 
903 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
904 		sk->sk_data_ready(sk);
905 	}
906 
907 	switch (sk->sk_state) {
908 	case TCP_ESTABLISHED:
909 		inet_sk_state_store(sk, TCP_CLOSE_WAIT);
910 		break;
911 	case TCP_FIN_WAIT1:
912 		inet_sk_state_store(sk, TCP_CLOSING);
913 		break;
914 	case TCP_FIN_WAIT2:
915 		inet_sk_state_store(sk, TCP_CLOSE);
916 		break;
917 	default:
918 		return;
919 	}
920 	mptcp_close_wake_up(sk);
921 }
922 
923 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
924 {
925 	struct mptcp_subflow_context *subflow;
926 
927 	msk_owned_by_me(msk);
928 
929 	mptcp_for_each_subflow(msk, subflow) {
930 		if (READ_ONCE(subflow->data_avail))
931 			return mptcp_subflow_tcp_sock(subflow);
932 	}
933 
934 	return NULL;
935 }
936 
937 static bool mptcp_skb_can_collapse_to(u64 write_seq,
938 				      const struct sk_buff *skb,
939 				      const struct mptcp_ext *mpext)
940 {
941 	if (!tcp_skb_can_collapse_to(skb))
942 		return false;
943 
944 	/* can collapse only if MPTCP level sequence is in order and this
945 	 * mapping has not been xmitted yet
946 	 */
947 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
948 	       !mpext->frozen;
949 }
950 
951 /* we can append data to the given data frag if:
952  * - there is space available in the backing page_frag
953  * - the data frag tail matches the current page_frag free offset
954  * - the data frag end sequence number matches the current write seq
955  */
956 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
957 				       const struct page_frag *pfrag,
958 				       const struct mptcp_data_frag *df)
959 {
960 	return df && pfrag->page == df->page &&
961 		pfrag->size - pfrag->offset > 0 &&
962 		pfrag->offset == (df->offset + df->data_len) &&
963 		df->data_seq + df->data_len == msk->write_seq;
964 }
965 
966 static void dfrag_uncharge(struct sock *sk, int len)
967 {
968 	sk_mem_uncharge(sk, len);
969 	sk_wmem_queued_add(sk, -len);
970 }
971 
972 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
973 {
974 	int len = dfrag->data_len + dfrag->overhead;
975 
976 	list_del(&dfrag->list);
977 	dfrag_uncharge(sk, len);
978 	put_page(dfrag->page);
979 }
980 
981 static void __mptcp_clean_una(struct sock *sk)
982 {
983 	struct mptcp_sock *msk = mptcp_sk(sk);
984 	struct mptcp_data_frag *dtmp, *dfrag;
985 	u64 snd_una;
986 
987 	/* on fallback we just need to ignore snd_una, as this is really
988 	 * plain TCP
989 	 */
990 	if (__mptcp_check_fallback(msk))
991 		msk->snd_una = READ_ONCE(msk->snd_nxt);
992 
993 	snd_una = msk->snd_una;
994 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
995 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
996 			break;
997 
998 		if (unlikely(dfrag == msk->first_pending)) {
999 			/* in recovery mode can see ack after the current snd head */
1000 			if (WARN_ON_ONCE(!msk->recovery))
1001 				break;
1002 
1003 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1004 		}
1005 
1006 		dfrag_clear(sk, dfrag);
1007 	}
1008 
1009 	dfrag = mptcp_rtx_head(sk);
1010 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1011 		u64 delta = snd_una - dfrag->data_seq;
1012 
1013 		/* prevent wrap around in recovery mode */
1014 		if (unlikely(delta > dfrag->already_sent)) {
1015 			if (WARN_ON_ONCE(!msk->recovery))
1016 				goto out;
1017 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1018 				goto out;
1019 			dfrag->already_sent += delta - dfrag->already_sent;
1020 		}
1021 
1022 		dfrag->data_seq += delta;
1023 		dfrag->offset += delta;
1024 		dfrag->data_len -= delta;
1025 		dfrag->already_sent -= delta;
1026 
1027 		dfrag_uncharge(sk, delta);
1028 	}
1029 
1030 	/* all retransmitted data acked, recovery completed */
1031 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1032 		msk->recovery = false;
1033 
1034 out:
1035 	if (snd_una == READ_ONCE(msk->snd_nxt) &&
1036 	    snd_una == READ_ONCE(msk->write_seq)) {
1037 		if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1038 			mptcp_stop_timer(sk);
1039 	} else {
1040 		mptcp_reset_timer(sk);
1041 	}
1042 }
1043 
1044 static void __mptcp_clean_una_wakeup(struct sock *sk)
1045 {
1046 	lockdep_assert_held_once(&sk->sk_lock.slock);
1047 
1048 	__mptcp_clean_una(sk);
1049 	mptcp_write_space(sk);
1050 }
1051 
1052 static void mptcp_clean_una_wakeup(struct sock *sk)
1053 {
1054 	mptcp_data_lock(sk);
1055 	__mptcp_clean_una_wakeup(sk);
1056 	mptcp_data_unlock(sk);
1057 }
1058 
1059 static void mptcp_enter_memory_pressure(struct sock *sk)
1060 {
1061 	struct mptcp_subflow_context *subflow;
1062 	struct mptcp_sock *msk = mptcp_sk(sk);
1063 	bool first = true;
1064 
1065 	sk_stream_moderate_sndbuf(sk);
1066 	mptcp_for_each_subflow(msk, subflow) {
1067 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1068 
1069 		if (first)
1070 			tcp_enter_memory_pressure(ssk);
1071 		sk_stream_moderate_sndbuf(ssk);
1072 		first = false;
1073 	}
1074 }
1075 
1076 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1077  * data
1078  */
1079 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1080 {
1081 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1082 					pfrag, sk->sk_allocation)))
1083 		return true;
1084 
1085 	mptcp_enter_memory_pressure(sk);
1086 	return false;
1087 }
1088 
1089 static struct mptcp_data_frag *
1090 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1091 		      int orig_offset)
1092 {
1093 	int offset = ALIGN(orig_offset, sizeof(long));
1094 	struct mptcp_data_frag *dfrag;
1095 
1096 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1097 	dfrag->data_len = 0;
1098 	dfrag->data_seq = msk->write_seq;
1099 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1100 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1101 	dfrag->already_sent = 0;
1102 	dfrag->page = pfrag->page;
1103 
1104 	return dfrag;
1105 }
1106 
1107 struct mptcp_sendmsg_info {
1108 	int mss_now;
1109 	int size_goal;
1110 	u16 limit;
1111 	u16 sent;
1112 	unsigned int flags;
1113 	bool data_lock_held;
1114 };
1115 
1116 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1117 				    u64 data_seq, int avail_size)
1118 {
1119 	u64 window_end = mptcp_wnd_end(msk);
1120 	u64 mptcp_snd_wnd;
1121 
1122 	if (__mptcp_check_fallback(msk))
1123 		return avail_size;
1124 
1125 	mptcp_snd_wnd = window_end - data_seq;
1126 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1127 
1128 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1129 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1130 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1131 	}
1132 
1133 	return avail_size;
1134 }
1135 
1136 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1137 {
1138 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1139 
1140 	if (!mpext)
1141 		return false;
1142 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1143 	return true;
1144 }
1145 
1146 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1147 {
1148 	struct sk_buff *skb;
1149 
1150 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1151 	if (likely(skb)) {
1152 		if (likely(__mptcp_add_ext(skb, gfp))) {
1153 			skb_reserve(skb, MAX_TCP_HEADER);
1154 			skb->ip_summed = CHECKSUM_PARTIAL;
1155 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1156 			return skb;
1157 		}
1158 		__kfree_skb(skb);
1159 	} else {
1160 		mptcp_enter_memory_pressure(sk);
1161 	}
1162 	return NULL;
1163 }
1164 
1165 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1166 {
1167 	struct sk_buff *skb;
1168 
1169 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1170 	if (!skb)
1171 		return NULL;
1172 
1173 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1174 		tcp_skb_entail(ssk, skb);
1175 		return skb;
1176 	}
1177 	tcp_skb_tsorted_anchor_cleanup(skb);
1178 	kfree_skb(skb);
1179 	return NULL;
1180 }
1181 
1182 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1183 {
1184 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1185 
1186 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1187 }
1188 
1189 /* note: this always recompute the csum on the whole skb, even
1190  * if we just appended a single frag. More status info needed
1191  */
1192 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1193 {
1194 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1195 	__wsum csum = ~csum_unfold(mpext->csum);
1196 	int offset = skb->len - added;
1197 
1198 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1199 }
1200 
1201 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1202 				      struct sock *ssk,
1203 				      struct mptcp_ext *mpext)
1204 {
1205 	if (!mpext)
1206 		return;
1207 
1208 	mpext->infinite_map = 1;
1209 	mpext->data_len = 0;
1210 
1211 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1212 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1213 	pr_fallback(msk);
1214 	mptcp_do_fallback(ssk);
1215 }
1216 
1217 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1218 			      struct mptcp_data_frag *dfrag,
1219 			      struct mptcp_sendmsg_info *info)
1220 {
1221 	u64 data_seq = dfrag->data_seq + info->sent;
1222 	int offset = dfrag->offset + info->sent;
1223 	struct mptcp_sock *msk = mptcp_sk(sk);
1224 	bool zero_window_probe = false;
1225 	struct mptcp_ext *mpext = NULL;
1226 	bool can_coalesce = false;
1227 	bool reuse_skb = true;
1228 	struct sk_buff *skb;
1229 	size_t copy;
1230 	int i;
1231 
1232 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1233 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1234 
1235 	if (WARN_ON_ONCE(info->sent > info->limit ||
1236 			 info->limit > dfrag->data_len))
1237 		return 0;
1238 
1239 	if (unlikely(!__tcp_can_send(ssk)))
1240 		return -EAGAIN;
1241 
1242 	/* compute send limit */
1243 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1244 	copy = info->size_goal;
1245 
1246 	skb = tcp_write_queue_tail(ssk);
1247 	if (skb && copy > skb->len) {
1248 		/* Limit the write to the size available in the
1249 		 * current skb, if any, so that we create at most a new skb.
1250 		 * Explicitly tells TCP internals to avoid collapsing on later
1251 		 * queue management operation, to avoid breaking the ext <->
1252 		 * SSN association set here
1253 		 */
1254 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1255 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1256 			TCP_SKB_CB(skb)->eor = 1;
1257 			goto alloc_skb;
1258 		}
1259 
1260 		i = skb_shinfo(skb)->nr_frags;
1261 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1262 		if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1263 			tcp_mark_push(tcp_sk(ssk), skb);
1264 			goto alloc_skb;
1265 		}
1266 
1267 		copy -= skb->len;
1268 	} else {
1269 alloc_skb:
1270 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1271 		if (!skb)
1272 			return -ENOMEM;
1273 
1274 		i = skb_shinfo(skb)->nr_frags;
1275 		reuse_skb = false;
1276 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1277 	}
1278 
1279 	/* Zero window and all data acked? Probe. */
1280 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1281 	if (copy == 0) {
1282 		u64 snd_una = READ_ONCE(msk->snd_una);
1283 
1284 		if (snd_una != msk->snd_nxt) {
1285 			tcp_remove_empty_skb(ssk);
1286 			return 0;
1287 		}
1288 
1289 		zero_window_probe = true;
1290 		data_seq = snd_una - 1;
1291 		copy = 1;
1292 
1293 		/* all mptcp-level data is acked, no skbs should be present into the
1294 		 * ssk write queue
1295 		 */
1296 		WARN_ON_ONCE(reuse_skb);
1297 	}
1298 
1299 	copy = min_t(size_t, copy, info->limit - info->sent);
1300 	if (!sk_wmem_schedule(ssk, copy)) {
1301 		tcp_remove_empty_skb(ssk);
1302 		return -ENOMEM;
1303 	}
1304 
1305 	if (can_coalesce) {
1306 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1307 	} else {
1308 		get_page(dfrag->page);
1309 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1310 	}
1311 
1312 	skb->len += copy;
1313 	skb->data_len += copy;
1314 	skb->truesize += copy;
1315 	sk_wmem_queued_add(ssk, copy);
1316 	sk_mem_charge(ssk, copy);
1317 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1318 	TCP_SKB_CB(skb)->end_seq += copy;
1319 	tcp_skb_pcount_set(skb, 0);
1320 
1321 	/* on skb reuse we just need to update the DSS len */
1322 	if (reuse_skb) {
1323 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1324 		mpext->data_len += copy;
1325 		WARN_ON_ONCE(zero_window_probe);
1326 		goto out;
1327 	}
1328 
1329 	memset(mpext, 0, sizeof(*mpext));
1330 	mpext->data_seq = data_seq;
1331 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1332 	mpext->data_len = copy;
1333 	mpext->use_map = 1;
1334 	mpext->dsn64 = 1;
1335 
1336 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1337 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1338 		 mpext->dsn64);
1339 
1340 	if (zero_window_probe) {
1341 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1342 		mpext->frozen = 1;
1343 		if (READ_ONCE(msk->csum_enabled))
1344 			mptcp_update_data_checksum(skb, copy);
1345 		tcp_push_pending_frames(ssk);
1346 		return 0;
1347 	}
1348 out:
1349 	if (READ_ONCE(msk->csum_enabled))
1350 		mptcp_update_data_checksum(skb, copy);
1351 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1352 		mptcp_update_infinite_map(msk, ssk, mpext);
1353 	trace_mptcp_sendmsg_frag(mpext);
1354 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1355 	return copy;
1356 }
1357 
1358 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1359 					 sizeof(struct tcphdr) - \
1360 					 MAX_TCP_OPTION_SPACE - \
1361 					 sizeof(struct ipv6hdr) - \
1362 					 sizeof(struct frag_hdr))
1363 
1364 struct subflow_send_info {
1365 	struct sock *ssk;
1366 	u64 linger_time;
1367 };
1368 
1369 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1370 {
1371 	if (!subflow->stale)
1372 		return;
1373 
1374 	subflow->stale = 0;
1375 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1376 }
1377 
1378 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1379 {
1380 	if (unlikely(subflow->stale)) {
1381 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1382 
1383 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1384 			return false;
1385 
1386 		mptcp_subflow_set_active(subflow);
1387 	}
1388 	return __mptcp_subflow_active(subflow);
1389 }
1390 
1391 #define SSK_MODE_ACTIVE	0
1392 #define SSK_MODE_BACKUP	1
1393 #define SSK_MODE_MAX	2
1394 
1395 /* implement the mptcp packet scheduler;
1396  * returns the subflow that will transmit the next DSS
1397  * additionally updates the rtx timeout
1398  */
1399 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1400 {
1401 	struct subflow_send_info send_info[SSK_MODE_MAX];
1402 	struct mptcp_subflow_context *subflow;
1403 	struct sock *sk = (struct sock *)msk;
1404 	u32 pace, burst, wmem;
1405 	int i, nr_active = 0;
1406 	struct sock *ssk;
1407 	u64 linger_time;
1408 	long tout = 0;
1409 
1410 	msk_owned_by_me(msk);
1411 
1412 	if (__mptcp_check_fallback(msk)) {
1413 		if (!msk->first)
1414 			return NULL;
1415 		return __tcp_can_send(msk->first) &&
1416 		       sk_stream_memory_free(msk->first) ? msk->first : NULL;
1417 	}
1418 
1419 	/* re-use last subflow, if the burst allow that */
1420 	if (msk->last_snd && msk->snd_burst > 0 &&
1421 	    sk_stream_memory_free(msk->last_snd) &&
1422 	    mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) {
1423 		mptcp_set_timeout(sk);
1424 		return msk->last_snd;
1425 	}
1426 
1427 	/* pick the subflow with the lower wmem/wspace ratio */
1428 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1429 		send_info[i].ssk = NULL;
1430 		send_info[i].linger_time = -1;
1431 	}
1432 
1433 	mptcp_for_each_subflow(msk, subflow) {
1434 		trace_mptcp_subflow_get_send(subflow);
1435 		ssk =  mptcp_subflow_tcp_sock(subflow);
1436 		if (!mptcp_subflow_active(subflow))
1437 			continue;
1438 
1439 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1440 		nr_active += !subflow->backup;
1441 		pace = subflow->avg_pacing_rate;
1442 		if (unlikely(!pace)) {
1443 			/* init pacing rate from socket */
1444 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1445 			pace = subflow->avg_pacing_rate;
1446 			if (!pace)
1447 				continue;
1448 		}
1449 
1450 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1451 		if (linger_time < send_info[subflow->backup].linger_time) {
1452 			send_info[subflow->backup].ssk = ssk;
1453 			send_info[subflow->backup].linger_time = linger_time;
1454 		}
1455 	}
1456 	__mptcp_set_timeout(sk, tout);
1457 
1458 	/* pick the best backup if no other subflow is active */
1459 	if (!nr_active)
1460 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1461 
1462 	/* According to the blest algorithm, to avoid HoL blocking for the
1463 	 * faster flow, we need to:
1464 	 * - estimate the faster flow linger time
1465 	 * - use the above to estimate the amount of byte transferred
1466 	 *   by the faster flow
1467 	 * - check that the amount of queued data is greter than the above,
1468 	 *   otherwise do not use the picked, slower, subflow
1469 	 * We select the subflow with the shorter estimated time to flush
1470 	 * the queued mem, which basically ensure the above. We just need
1471 	 * to check that subflow has a non empty cwin.
1472 	 */
1473 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1474 	if (!ssk || !sk_stream_memory_free(ssk))
1475 		return NULL;
1476 
1477 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1478 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1479 	if (!burst) {
1480 		msk->last_snd = NULL;
1481 		return ssk;
1482 	}
1483 
1484 	subflow = mptcp_subflow_ctx(ssk);
1485 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1486 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1487 					   burst + wmem);
1488 	msk->last_snd = ssk;
1489 	msk->snd_burst = burst;
1490 	return ssk;
1491 }
1492 
1493 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1494 {
1495 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1496 	release_sock(ssk);
1497 }
1498 
1499 static void mptcp_update_post_push(struct mptcp_sock *msk,
1500 				   struct mptcp_data_frag *dfrag,
1501 				   u32 sent)
1502 {
1503 	u64 snd_nxt_new = dfrag->data_seq;
1504 
1505 	dfrag->already_sent += sent;
1506 
1507 	msk->snd_burst -= sent;
1508 
1509 	snd_nxt_new += dfrag->already_sent;
1510 
1511 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1512 	 * is recovering after a failover. In that event, this re-sends
1513 	 * old segments.
1514 	 *
1515 	 * Thus compute snd_nxt_new candidate based on
1516 	 * the dfrag->data_seq that was sent and the data
1517 	 * that has been handed to the subflow for transmission
1518 	 * and skip update in case it was old dfrag.
1519 	 */
1520 	if (likely(after64(snd_nxt_new, msk->snd_nxt)))
1521 		msk->snd_nxt = snd_nxt_new;
1522 }
1523 
1524 void mptcp_check_and_set_pending(struct sock *sk)
1525 {
1526 	if (mptcp_send_head(sk))
1527 		mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING);
1528 }
1529 
1530 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1531 {
1532 	struct sock *prev_ssk = NULL, *ssk = NULL;
1533 	struct mptcp_sock *msk = mptcp_sk(sk);
1534 	struct mptcp_sendmsg_info info = {
1535 				.flags = flags,
1536 	};
1537 	bool do_check_data_fin = false;
1538 	struct mptcp_data_frag *dfrag;
1539 	int len;
1540 
1541 	while ((dfrag = mptcp_send_head(sk))) {
1542 		info.sent = dfrag->already_sent;
1543 		info.limit = dfrag->data_len;
1544 		len = dfrag->data_len - dfrag->already_sent;
1545 		while (len > 0) {
1546 			int ret = 0;
1547 
1548 			prev_ssk = ssk;
1549 			ssk = mptcp_subflow_get_send(msk);
1550 
1551 			/* First check. If the ssk has changed since
1552 			 * the last round, release prev_ssk
1553 			 */
1554 			if (ssk != prev_ssk && prev_ssk)
1555 				mptcp_push_release(prev_ssk, &info);
1556 			if (!ssk)
1557 				goto out;
1558 
1559 			/* Need to lock the new subflow only if different
1560 			 * from the previous one, otherwise we are still
1561 			 * helding the relevant lock
1562 			 */
1563 			if (ssk != prev_ssk)
1564 				lock_sock(ssk);
1565 
1566 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1567 			if (ret <= 0) {
1568 				if (ret == -EAGAIN)
1569 					continue;
1570 				mptcp_push_release(ssk, &info);
1571 				goto out;
1572 			}
1573 
1574 			do_check_data_fin = true;
1575 			info.sent += ret;
1576 			len -= ret;
1577 
1578 			mptcp_update_post_push(msk, dfrag, ret);
1579 		}
1580 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1581 	}
1582 
1583 	/* at this point we held the socket lock for the last subflow we used */
1584 	if (ssk)
1585 		mptcp_push_release(ssk, &info);
1586 
1587 out:
1588 	/* ensure the rtx timer is running */
1589 	if (!mptcp_timer_pending(sk))
1590 		mptcp_reset_timer(sk);
1591 	if (do_check_data_fin)
1592 		__mptcp_check_send_data_fin(sk);
1593 }
1594 
1595 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1596 {
1597 	struct mptcp_sock *msk = mptcp_sk(sk);
1598 	struct mptcp_sendmsg_info info = {
1599 		.data_lock_held = true,
1600 	};
1601 	struct mptcp_data_frag *dfrag;
1602 	struct sock *xmit_ssk;
1603 	int len, copied = 0;
1604 
1605 	info.flags = 0;
1606 	while ((dfrag = mptcp_send_head(sk))) {
1607 		info.sent = dfrag->already_sent;
1608 		info.limit = dfrag->data_len;
1609 		len = dfrag->data_len - dfrag->already_sent;
1610 		while (len > 0) {
1611 			int ret = 0;
1612 
1613 			/* check for a different subflow usage only after
1614 			 * spooling the first chunk of data
1615 			 */
1616 			xmit_ssk = first ? ssk : mptcp_subflow_get_send(msk);
1617 			if (!xmit_ssk)
1618 				goto out;
1619 			if (xmit_ssk != ssk) {
1620 				mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk),
1621 						       MPTCP_DELEGATE_SEND);
1622 				goto out;
1623 			}
1624 
1625 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1626 			if (ret <= 0)
1627 				goto out;
1628 
1629 			info.sent += ret;
1630 			copied += ret;
1631 			len -= ret;
1632 			first = false;
1633 
1634 			mptcp_update_post_push(msk, dfrag, ret);
1635 		}
1636 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1637 	}
1638 
1639 out:
1640 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1641 	 * not going to flush it via release_sock()
1642 	 */
1643 	if (copied) {
1644 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1645 			 info.size_goal);
1646 		if (!mptcp_timer_pending(sk))
1647 			mptcp_reset_timer(sk);
1648 
1649 		if (msk->snd_data_fin_enable &&
1650 		    msk->snd_nxt + 1 == msk->write_seq)
1651 			mptcp_schedule_work(sk);
1652 	}
1653 }
1654 
1655 static void mptcp_set_nospace(struct sock *sk)
1656 {
1657 	/* enable autotune */
1658 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1659 
1660 	/* will be cleared on avail space */
1661 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1662 }
1663 
1664 static int mptcp_disconnect(struct sock *sk, int flags);
1665 
1666 static int mptcp_sendmsg_fastopen(struct sock *sk, struct sock *ssk, struct msghdr *msg,
1667 				  size_t len, int *copied_syn)
1668 {
1669 	unsigned int saved_flags = msg->msg_flags;
1670 	struct mptcp_sock *msk = mptcp_sk(sk);
1671 	int ret;
1672 
1673 	lock_sock(ssk);
1674 	msg->msg_flags |= MSG_DONTWAIT;
1675 	msk->connect_flags = O_NONBLOCK;
1676 	msk->fastopening = 1;
1677 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1678 	msk->fastopening = 0;
1679 	msg->msg_flags = saved_flags;
1680 	release_sock(ssk);
1681 
1682 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1683 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1684 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1685 					    msg->msg_namelen, msg->msg_flags, 1);
1686 
1687 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1688 		 * case of any error, except timeout or signal
1689 		 */
1690 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1691 			*copied_syn = 0;
1692 	} else if (ret && ret != -EINPROGRESS) {
1693 		mptcp_disconnect(sk, 0);
1694 	}
1695 
1696 	return ret;
1697 }
1698 
1699 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1700 {
1701 	struct mptcp_sock *msk = mptcp_sk(sk);
1702 	struct page_frag *pfrag;
1703 	struct socket *ssock;
1704 	size_t copied = 0;
1705 	int ret = 0;
1706 	long timeo;
1707 
1708 	/* silently ignore everything else */
1709 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1710 
1711 	lock_sock(sk);
1712 
1713 	ssock = __mptcp_nmpc_socket(msk);
1714 	if (unlikely(ssock && (inet_sk(ssock->sk)->defer_connect ||
1715 			       msg->msg_flags & MSG_FASTOPEN))) {
1716 		int copied_syn = 0;
1717 
1718 		ret = mptcp_sendmsg_fastopen(sk, ssock->sk, msg, len, &copied_syn);
1719 		copied += copied_syn;
1720 		if (ret == -EINPROGRESS && copied_syn > 0)
1721 			goto out;
1722 		else if (ret)
1723 			goto do_error;
1724 	}
1725 
1726 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1727 
1728 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1729 		ret = sk_stream_wait_connect(sk, &timeo);
1730 		if (ret)
1731 			goto do_error;
1732 	}
1733 
1734 	ret = -EPIPE;
1735 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1736 		goto do_error;
1737 
1738 	pfrag = sk_page_frag(sk);
1739 
1740 	while (msg_data_left(msg)) {
1741 		int total_ts, frag_truesize = 0;
1742 		struct mptcp_data_frag *dfrag;
1743 		bool dfrag_collapsed;
1744 		size_t psize, offset;
1745 
1746 		/* reuse tail pfrag, if possible, or carve a new one from the
1747 		 * page allocator
1748 		 */
1749 		dfrag = mptcp_pending_tail(sk);
1750 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1751 		if (!dfrag_collapsed) {
1752 			if (!sk_stream_memory_free(sk))
1753 				goto wait_for_memory;
1754 
1755 			if (!mptcp_page_frag_refill(sk, pfrag))
1756 				goto wait_for_memory;
1757 
1758 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1759 			frag_truesize = dfrag->overhead;
1760 		}
1761 
1762 		/* we do not bound vs wspace, to allow a single packet.
1763 		 * memory accounting will prevent execessive memory usage
1764 		 * anyway
1765 		 */
1766 		offset = dfrag->offset + dfrag->data_len;
1767 		psize = pfrag->size - offset;
1768 		psize = min_t(size_t, psize, msg_data_left(msg));
1769 		total_ts = psize + frag_truesize;
1770 
1771 		if (!sk_wmem_schedule(sk, total_ts))
1772 			goto wait_for_memory;
1773 
1774 		if (copy_page_from_iter(dfrag->page, offset, psize,
1775 					&msg->msg_iter) != psize) {
1776 			ret = -EFAULT;
1777 			goto do_error;
1778 		}
1779 
1780 		/* data successfully copied into the write queue */
1781 		sk->sk_forward_alloc -= total_ts;
1782 		copied += psize;
1783 		dfrag->data_len += psize;
1784 		frag_truesize += psize;
1785 		pfrag->offset += frag_truesize;
1786 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1787 
1788 		/* charge data on mptcp pending queue to the msk socket
1789 		 * Note: we charge such data both to sk and ssk
1790 		 */
1791 		sk_wmem_queued_add(sk, frag_truesize);
1792 		if (!dfrag_collapsed) {
1793 			get_page(dfrag->page);
1794 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1795 			if (!msk->first_pending)
1796 				WRITE_ONCE(msk->first_pending, dfrag);
1797 		}
1798 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1799 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1800 			 !dfrag_collapsed);
1801 
1802 		continue;
1803 
1804 wait_for_memory:
1805 		mptcp_set_nospace(sk);
1806 		__mptcp_push_pending(sk, msg->msg_flags);
1807 		ret = sk_stream_wait_memory(sk, &timeo);
1808 		if (ret)
1809 			goto do_error;
1810 	}
1811 
1812 	if (copied)
1813 		__mptcp_push_pending(sk, msg->msg_flags);
1814 
1815 out:
1816 	release_sock(sk);
1817 	return copied;
1818 
1819 do_error:
1820 	if (copied)
1821 		goto out;
1822 
1823 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1824 	goto out;
1825 }
1826 
1827 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1828 				struct msghdr *msg,
1829 				size_t len, int flags,
1830 				struct scm_timestamping_internal *tss,
1831 				int *cmsg_flags)
1832 {
1833 	struct sk_buff *skb, *tmp;
1834 	int copied = 0;
1835 
1836 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1837 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1838 		u32 data_len = skb->len - offset;
1839 		u32 count = min_t(size_t, len - copied, data_len);
1840 		int err;
1841 
1842 		if (!(flags & MSG_TRUNC)) {
1843 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1844 			if (unlikely(err < 0)) {
1845 				if (!copied)
1846 					return err;
1847 				break;
1848 			}
1849 		}
1850 
1851 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1852 			tcp_update_recv_tstamps(skb, tss);
1853 			*cmsg_flags |= MPTCP_CMSG_TS;
1854 		}
1855 
1856 		copied += count;
1857 
1858 		if (count < data_len) {
1859 			if (!(flags & MSG_PEEK)) {
1860 				MPTCP_SKB_CB(skb)->offset += count;
1861 				MPTCP_SKB_CB(skb)->map_seq += count;
1862 			}
1863 			break;
1864 		}
1865 
1866 		if (!(flags & MSG_PEEK)) {
1867 			/* we will bulk release the skb memory later */
1868 			skb->destructor = NULL;
1869 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1870 			__skb_unlink(skb, &msk->receive_queue);
1871 			__kfree_skb(skb);
1872 		}
1873 
1874 		if (copied >= len)
1875 			break;
1876 	}
1877 
1878 	return copied;
1879 }
1880 
1881 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1882  *
1883  * Only difference: Use highest rtt estimate of the subflows in use.
1884  */
1885 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1886 {
1887 	struct mptcp_subflow_context *subflow;
1888 	struct sock *sk = (struct sock *)msk;
1889 	u32 time, advmss = 1;
1890 	u64 rtt_us, mstamp;
1891 
1892 	msk_owned_by_me(msk);
1893 
1894 	if (copied <= 0)
1895 		return;
1896 
1897 	msk->rcvq_space.copied += copied;
1898 
1899 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1900 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1901 
1902 	rtt_us = msk->rcvq_space.rtt_us;
1903 	if (rtt_us && time < (rtt_us >> 3))
1904 		return;
1905 
1906 	rtt_us = 0;
1907 	mptcp_for_each_subflow(msk, subflow) {
1908 		const struct tcp_sock *tp;
1909 		u64 sf_rtt_us;
1910 		u32 sf_advmss;
1911 
1912 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1913 
1914 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1915 		sf_advmss = READ_ONCE(tp->advmss);
1916 
1917 		rtt_us = max(sf_rtt_us, rtt_us);
1918 		advmss = max(sf_advmss, advmss);
1919 	}
1920 
1921 	msk->rcvq_space.rtt_us = rtt_us;
1922 	if (time < (rtt_us >> 3) || rtt_us == 0)
1923 		return;
1924 
1925 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1926 		goto new_measure;
1927 
1928 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
1929 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1930 		int rcvmem, rcvbuf;
1931 		u64 rcvwin, grow;
1932 
1933 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1934 
1935 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1936 
1937 		do_div(grow, msk->rcvq_space.space);
1938 		rcvwin += (grow << 1);
1939 
1940 		rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
1941 		while (tcp_win_from_space(sk, rcvmem) < advmss)
1942 			rcvmem += 128;
1943 
1944 		do_div(rcvwin, advmss);
1945 		rcvbuf = min_t(u64, rcvwin * rcvmem,
1946 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
1947 
1948 		if (rcvbuf > sk->sk_rcvbuf) {
1949 			u32 window_clamp;
1950 
1951 			window_clamp = tcp_win_from_space(sk, rcvbuf);
1952 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1953 
1954 			/* Make subflows follow along.  If we do not do this, we
1955 			 * get drops at subflow level if skbs can't be moved to
1956 			 * the mptcp rx queue fast enough (announced rcv_win can
1957 			 * exceed ssk->sk_rcvbuf).
1958 			 */
1959 			mptcp_for_each_subflow(msk, subflow) {
1960 				struct sock *ssk;
1961 				bool slow;
1962 
1963 				ssk = mptcp_subflow_tcp_sock(subflow);
1964 				slow = lock_sock_fast(ssk);
1965 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1966 				tcp_sk(ssk)->window_clamp = window_clamp;
1967 				tcp_cleanup_rbuf(ssk, 1);
1968 				unlock_sock_fast(ssk, slow);
1969 			}
1970 		}
1971 	}
1972 
1973 	msk->rcvq_space.space = msk->rcvq_space.copied;
1974 new_measure:
1975 	msk->rcvq_space.copied = 0;
1976 	msk->rcvq_space.time = mstamp;
1977 }
1978 
1979 static void __mptcp_update_rmem(struct sock *sk)
1980 {
1981 	struct mptcp_sock *msk = mptcp_sk(sk);
1982 
1983 	if (!msk->rmem_released)
1984 		return;
1985 
1986 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
1987 	mptcp_rmem_uncharge(sk, msk->rmem_released);
1988 	WRITE_ONCE(msk->rmem_released, 0);
1989 }
1990 
1991 static void __mptcp_splice_receive_queue(struct sock *sk)
1992 {
1993 	struct mptcp_sock *msk = mptcp_sk(sk);
1994 
1995 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
1996 }
1997 
1998 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
1999 {
2000 	struct sock *sk = (struct sock *)msk;
2001 	unsigned int moved = 0;
2002 	bool ret, done;
2003 
2004 	do {
2005 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2006 		bool slowpath;
2007 
2008 		/* we can have data pending in the subflows only if the msk
2009 		 * receive buffer was full at subflow_data_ready() time,
2010 		 * that is an unlikely slow path.
2011 		 */
2012 		if (likely(!ssk))
2013 			break;
2014 
2015 		slowpath = lock_sock_fast(ssk);
2016 		mptcp_data_lock(sk);
2017 		__mptcp_update_rmem(sk);
2018 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2019 		mptcp_data_unlock(sk);
2020 
2021 		if (unlikely(ssk->sk_err))
2022 			__mptcp_error_report(sk);
2023 		unlock_sock_fast(ssk, slowpath);
2024 	} while (!done);
2025 
2026 	/* acquire the data lock only if some input data is pending */
2027 	ret = moved > 0;
2028 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2029 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2030 		mptcp_data_lock(sk);
2031 		__mptcp_update_rmem(sk);
2032 		ret |= __mptcp_ofo_queue(msk);
2033 		__mptcp_splice_receive_queue(sk);
2034 		mptcp_data_unlock(sk);
2035 	}
2036 	if (ret)
2037 		mptcp_check_data_fin((struct sock *)msk);
2038 	return !skb_queue_empty(&msk->receive_queue);
2039 }
2040 
2041 static unsigned int mptcp_inq_hint(const struct sock *sk)
2042 {
2043 	const struct mptcp_sock *msk = mptcp_sk(sk);
2044 	const struct sk_buff *skb;
2045 
2046 	skb = skb_peek(&msk->receive_queue);
2047 	if (skb) {
2048 		u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
2049 
2050 		if (hint_val >= INT_MAX)
2051 			return INT_MAX;
2052 
2053 		return (unsigned int)hint_val;
2054 	}
2055 
2056 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2057 		return 1;
2058 
2059 	return 0;
2060 }
2061 
2062 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2063 			 int flags, int *addr_len)
2064 {
2065 	struct mptcp_sock *msk = mptcp_sk(sk);
2066 	struct scm_timestamping_internal tss;
2067 	int copied = 0, cmsg_flags = 0;
2068 	int target;
2069 	long timeo;
2070 
2071 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2072 	if (unlikely(flags & MSG_ERRQUEUE))
2073 		return inet_recv_error(sk, msg, len, addr_len);
2074 
2075 	lock_sock(sk);
2076 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2077 		copied = -ENOTCONN;
2078 		goto out_err;
2079 	}
2080 
2081 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2082 
2083 	len = min_t(size_t, len, INT_MAX);
2084 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2085 
2086 	if (unlikely(msk->recvmsg_inq))
2087 		cmsg_flags = MPTCP_CMSG_INQ;
2088 
2089 	while (copied < len) {
2090 		int bytes_read;
2091 
2092 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2093 		if (unlikely(bytes_read < 0)) {
2094 			if (!copied)
2095 				copied = bytes_read;
2096 			goto out_err;
2097 		}
2098 
2099 		copied += bytes_read;
2100 
2101 		/* be sure to advertise window change */
2102 		mptcp_cleanup_rbuf(msk);
2103 
2104 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2105 			continue;
2106 
2107 		/* only the master socket status is relevant here. The exit
2108 		 * conditions mirror closely tcp_recvmsg()
2109 		 */
2110 		if (copied >= target)
2111 			break;
2112 
2113 		if (copied) {
2114 			if (sk->sk_err ||
2115 			    sk->sk_state == TCP_CLOSE ||
2116 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2117 			    !timeo ||
2118 			    signal_pending(current))
2119 				break;
2120 		} else {
2121 			if (sk->sk_err) {
2122 				copied = sock_error(sk);
2123 				break;
2124 			}
2125 
2126 			if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2127 				mptcp_check_for_eof(msk);
2128 
2129 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2130 				/* race breaker: the shutdown could be after the
2131 				 * previous receive queue check
2132 				 */
2133 				if (__mptcp_move_skbs(msk))
2134 					continue;
2135 				break;
2136 			}
2137 
2138 			if (sk->sk_state == TCP_CLOSE) {
2139 				copied = -ENOTCONN;
2140 				break;
2141 			}
2142 
2143 			if (!timeo) {
2144 				copied = -EAGAIN;
2145 				break;
2146 			}
2147 
2148 			if (signal_pending(current)) {
2149 				copied = sock_intr_errno(timeo);
2150 				break;
2151 			}
2152 		}
2153 
2154 		pr_debug("block timeout %ld", timeo);
2155 		sk_wait_data(sk, &timeo, NULL);
2156 	}
2157 
2158 out_err:
2159 	if (cmsg_flags && copied >= 0) {
2160 		if (cmsg_flags & MPTCP_CMSG_TS)
2161 			tcp_recv_timestamp(msg, sk, &tss);
2162 
2163 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2164 			unsigned int inq = mptcp_inq_hint(sk);
2165 
2166 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2167 		}
2168 	}
2169 
2170 	pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
2171 		 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2172 		 skb_queue_empty(&msk->receive_queue), copied);
2173 	if (!(flags & MSG_PEEK))
2174 		mptcp_rcv_space_adjust(msk, copied);
2175 
2176 	release_sock(sk);
2177 	return copied;
2178 }
2179 
2180 static void mptcp_retransmit_timer(struct timer_list *t)
2181 {
2182 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2183 						       icsk_retransmit_timer);
2184 	struct sock *sk = &icsk->icsk_inet.sk;
2185 	struct mptcp_sock *msk = mptcp_sk(sk);
2186 
2187 	bh_lock_sock(sk);
2188 	if (!sock_owned_by_user(sk)) {
2189 		/* we need a process context to retransmit */
2190 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2191 			mptcp_schedule_work(sk);
2192 	} else {
2193 		/* delegate our work to tcp_release_cb() */
2194 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2195 	}
2196 	bh_unlock_sock(sk);
2197 	sock_put(sk);
2198 }
2199 
2200 static void mptcp_timeout_timer(struct timer_list *t)
2201 {
2202 	struct sock *sk = from_timer(sk, t, sk_timer);
2203 
2204 	mptcp_schedule_work(sk);
2205 	sock_put(sk);
2206 }
2207 
2208 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2209  * level.
2210  *
2211  * A backup subflow is returned only if that is the only kind available.
2212  */
2213 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2214 {
2215 	struct sock *backup = NULL, *pick = NULL;
2216 	struct mptcp_subflow_context *subflow;
2217 	int min_stale_count = INT_MAX;
2218 
2219 	msk_owned_by_me(msk);
2220 
2221 	if (__mptcp_check_fallback(msk))
2222 		return NULL;
2223 
2224 	mptcp_for_each_subflow(msk, subflow) {
2225 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2226 
2227 		if (!__mptcp_subflow_active(subflow))
2228 			continue;
2229 
2230 		/* still data outstanding at TCP level? skip this */
2231 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2232 			mptcp_pm_subflow_chk_stale(msk, ssk);
2233 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2234 			continue;
2235 		}
2236 
2237 		if (subflow->backup) {
2238 			if (!backup)
2239 				backup = ssk;
2240 			continue;
2241 		}
2242 
2243 		if (!pick)
2244 			pick = ssk;
2245 	}
2246 
2247 	if (pick)
2248 		return pick;
2249 
2250 	/* use backup only if there are no progresses anywhere */
2251 	return min_stale_count > 1 ? backup : NULL;
2252 }
2253 
2254 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk)
2255 {
2256 	if (msk->subflow) {
2257 		iput(SOCK_INODE(msk->subflow));
2258 		msk->subflow = NULL;
2259 	}
2260 }
2261 
2262 bool __mptcp_retransmit_pending_data(struct sock *sk)
2263 {
2264 	struct mptcp_data_frag *cur, *rtx_head;
2265 	struct mptcp_sock *msk = mptcp_sk(sk);
2266 
2267 	if (__mptcp_check_fallback(msk))
2268 		return false;
2269 
2270 	if (tcp_rtx_and_write_queues_empty(sk))
2271 		return false;
2272 
2273 	/* the closing socket has some data untransmitted and/or unacked:
2274 	 * some data in the mptcp rtx queue has not really xmitted yet.
2275 	 * keep it simple and re-inject the whole mptcp level rtx queue
2276 	 */
2277 	mptcp_data_lock(sk);
2278 	__mptcp_clean_una_wakeup(sk);
2279 	rtx_head = mptcp_rtx_head(sk);
2280 	if (!rtx_head) {
2281 		mptcp_data_unlock(sk);
2282 		return false;
2283 	}
2284 
2285 	msk->recovery_snd_nxt = msk->snd_nxt;
2286 	msk->recovery = true;
2287 	mptcp_data_unlock(sk);
2288 
2289 	msk->first_pending = rtx_head;
2290 	msk->snd_burst = 0;
2291 
2292 	/* be sure to clear the "sent status" on all re-injected fragments */
2293 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2294 		if (!cur->already_sent)
2295 			break;
2296 		cur->already_sent = 0;
2297 	}
2298 
2299 	return true;
2300 }
2301 
2302 /* flags for __mptcp_close_ssk() */
2303 #define MPTCP_CF_PUSH		BIT(1)
2304 #define MPTCP_CF_FASTCLOSE	BIT(2)
2305 
2306 /* subflow sockets can be either outgoing (connect) or incoming
2307  * (accept).
2308  *
2309  * Outgoing subflows use in-kernel sockets.
2310  * Incoming subflows do not have their own 'struct socket' allocated,
2311  * so we need to use tcp_close() after detaching them from the mptcp
2312  * parent socket.
2313  */
2314 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2315 			      struct mptcp_subflow_context *subflow,
2316 			      unsigned int flags)
2317 {
2318 	struct mptcp_sock *msk = mptcp_sk(sk);
2319 	bool need_push, dispose_it;
2320 
2321 	dispose_it = !msk->subflow || ssk != msk->subflow->sk;
2322 	if (dispose_it)
2323 		list_del(&subflow->node);
2324 
2325 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2326 
2327 	if (flags & MPTCP_CF_FASTCLOSE) {
2328 		/* be sure to force the tcp_disconnect() path,
2329 		 * to generate the egress reset
2330 		 */
2331 		ssk->sk_lingertime = 0;
2332 		sock_set_flag(ssk, SOCK_LINGER);
2333 		subflow->send_fastclose = 1;
2334 	}
2335 
2336 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2337 	if (!dispose_it) {
2338 		tcp_disconnect(ssk, 0);
2339 		msk->subflow->state = SS_UNCONNECTED;
2340 		mptcp_subflow_ctx_reset(subflow);
2341 		release_sock(ssk);
2342 
2343 		goto out;
2344 	}
2345 
2346 	sock_orphan(ssk);
2347 	subflow->disposable = 1;
2348 
2349 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2350 	 * the ssk has been already destroyed, we just need to release the
2351 	 * reference owned by msk;
2352 	 */
2353 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2354 		kfree_rcu(subflow, rcu);
2355 	} else {
2356 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2357 		if (ssk->sk_state == TCP_LISTEN) {
2358 			tcp_set_state(ssk, TCP_CLOSE);
2359 			mptcp_subflow_queue_clean(sk, ssk);
2360 			inet_csk_listen_stop(ssk);
2361 			mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
2362 		}
2363 		__tcp_close(ssk, 0);
2364 
2365 		/* close acquired an extra ref */
2366 		__sock_put(ssk);
2367 	}
2368 	release_sock(ssk);
2369 
2370 	sock_put(ssk);
2371 
2372 	if (ssk == msk->first)
2373 		msk->first = NULL;
2374 
2375 out:
2376 	if (ssk == msk->last_snd)
2377 		msk->last_snd = NULL;
2378 
2379 	if (need_push)
2380 		__mptcp_push_pending(sk, 0);
2381 }
2382 
2383 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2384 		     struct mptcp_subflow_context *subflow)
2385 {
2386 	if (sk->sk_state == TCP_ESTABLISHED)
2387 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2388 
2389 	/* subflow aborted before reaching the fully_established status
2390 	 * attempt the creation of the next subflow
2391 	 */
2392 	mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow);
2393 
2394 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2395 }
2396 
2397 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2398 {
2399 	return 0;
2400 }
2401 
2402 static void __mptcp_close_subflow(struct mptcp_sock *msk)
2403 {
2404 	struct mptcp_subflow_context *subflow, *tmp;
2405 
2406 	might_sleep();
2407 
2408 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2409 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2410 
2411 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2412 			continue;
2413 
2414 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2415 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2416 			continue;
2417 
2418 		mptcp_close_ssk((struct sock *)msk, ssk, subflow);
2419 	}
2420 }
2421 
2422 static bool mptcp_check_close_timeout(const struct sock *sk)
2423 {
2424 	s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp;
2425 	struct mptcp_subflow_context *subflow;
2426 
2427 	if (delta >= TCP_TIMEWAIT_LEN)
2428 		return true;
2429 
2430 	/* if all subflows are in closed status don't bother with additional
2431 	 * timeout
2432 	 */
2433 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2434 		if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) !=
2435 		    TCP_CLOSE)
2436 			return false;
2437 	}
2438 	return true;
2439 }
2440 
2441 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2442 {
2443 	struct mptcp_subflow_context *subflow, *tmp;
2444 	struct sock *sk = (struct sock *)msk;
2445 
2446 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2447 		return;
2448 
2449 	mptcp_token_destroy(msk);
2450 
2451 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2452 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2453 		bool slow;
2454 
2455 		slow = lock_sock_fast(tcp_sk);
2456 		if (tcp_sk->sk_state != TCP_CLOSE) {
2457 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2458 			tcp_set_state(tcp_sk, TCP_CLOSE);
2459 		}
2460 		unlock_sock_fast(tcp_sk, slow);
2461 	}
2462 
2463 	/* Mirror the tcp_reset() error propagation */
2464 	switch (sk->sk_state) {
2465 	case TCP_SYN_SENT:
2466 		sk->sk_err = ECONNREFUSED;
2467 		break;
2468 	case TCP_CLOSE_WAIT:
2469 		sk->sk_err = EPIPE;
2470 		break;
2471 	case TCP_CLOSE:
2472 		return;
2473 	default:
2474 		sk->sk_err = ECONNRESET;
2475 	}
2476 
2477 	inet_sk_state_store(sk, TCP_CLOSE);
2478 	sk->sk_shutdown = SHUTDOWN_MASK;
2479 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2480 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2481 
2482 	/* the calling mptcp_worker will properly destroy the socket */
2483 	if (sock_flag(sk, SOCK_DEAD))
2484 		return;
2485 
2486 	sk->sk_state_change(sk);
2487 	sk_error_report(sk);
2488 }
2489 
2490 static void __mptcp_retrans(struct sock *sk)
2491 {
2492 	struct mptcp_sock *msk = mptcp_sk(sk);
2493 	struct mptcp_sendmsg_info info = {};
2494 	struct mptcp_data_frag *dfrag;
2495 	size_t copied = 0;
2496 	struct sock *ssk;
2497 	int ret;
2498 
2499 	mptcp_clean_una_wakeup(sk);
2500 
2501 	/* first check ssk: need to kick "stale" logic */
2502 	ssk = mptcp_subflow_get_retrans(msk);
2503 	dfrag = mptcp_rtx_head(sk);
2504 	if (!dfrag) {
2505 		if (mptcp_data_fin_enabled(msk)) {
2506 			struct inet_connection_sock *icsk = inet_csk(sk);
2507 
2508 			icsk->icsk_retransmits++;
2509 			mptcp_set_datafin_timeout(sk);
2510 			mptcp_send_ack(msk);
2511 
2512 			goto reset_timer;
2513 		}
2514 
2515 		if (!mptcp_send_head(sk))
2516 			return;
2517 
2518 		goto reset_timer;
2519 	}
2520 
2521 	if (!ssk)
2522 		goto reset_timer;
2523 
2524 	lock_sock(ssk);
2525 
2526 	/* limit retransmission to the bytes already sent on some subflows */
2527 	info.sent = 0;
2528 	info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent;
2529 	while (info.sent < info.limit) {
2530 		ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2531 		if (ret <= 0)
2532 			break;
2533 
2534 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2535 		copied += ret;
2536 		info.sent += ret;
2537 	}
2538 	if (copied) {
2539 		dfrag->already_sent = max(dfrag->already_sent, info.sent);
2540 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2541 			 info.size_goal);
2542 		WRITE_ONCE(msk->allow_infinite_fallback, false);
2543 	}
2544 
2545 	release_sock(ssk);
2546 
2547 reset_timer:
2548 	mptcp_check_and_set_pending(sk);
2549 
2550 	if (!mptcp_timer_pending(sk))
2551 		mptcp_reset_timer(sk);
2552 }
2553 
2554 /* schedule the timeout timer for the relevant event: either close timeout
2555  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2556  */
2557 void mptcp_reset_timeout(struct mptcp_sock *msk, unsigned long fail_tout)
2558 {
2559 	struct sock *sk = (struct sock *)msk;
2560 	unsigned long timeout, close_timeout;
2561 
2562 	if (!fail_tout && !sock_flag(sk, SOCK_DEAD))
2563 		return;
2564 
2565 	close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + TCP_TIMEWAIT_LEN;
2566 
2567 	/* the close timeout takes precedence on the fail one, and here at least one of
2568 	 * them is active
2569 	 */
2570 	timeout = sock_flag(sk, SOCK_DEAD) ? close_timeout : fail_tout;
2571 
2572 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2573 }
2574 
2575 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2576 {
2577 	struct sock *ssk = msk->first;
2578 	bool slow;
2579 
2580 	if (!ssk)
2581 		return;
2582 
2583 	pr_debug("MP_FAIL doesn't respond, reset the subflow");
2584 
2585 	slow = lock_sock_fast(ssk);
2586 	mptcp_subflow_reset(ssk);
2587 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2588 	unlock_sock_fast(ssk, slow);
2589 
2590 	mptcp_reset_timeout(msk, 0);
2591 }
2592 
2593 static void mptcp_do_fastclose(struct sock *sk)
2594 {
2595 	struct mptcp_subflow_context *subflow, *tmp;
2596 	struct mptcp_sock *msk = mptcp_sk(sk);
2597 
2598 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2599 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2600 				  subflow, MPTCP_CF_FASTCLOSE);
2601 }
2602 
2603 static void mptcp_worker(struct work_struct *work)
2604 {
2605 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2606 	struct sock *sk = (struct sock *)msk;
2607 	unsigned long fail_tout;
2608 	int state;
2609 
2610 	lock_sock(sk);
2611 	state = sk->sk_state;
2612 	if (unlikely(state == TCP_CLOSE))
2613 		goto unlock;
2614 
2615 	mptcp_check_data_fin_ack(sk);
2616 
2617 	mptcp_check_fastclose(msk);
2618 
2619 	mptcp_pm_nl_work(msk);
2620 
2621 	if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2622 		mptcp_check_for_eof(msk);
2623 
2624 	__mptcp_check_send_data_fin(sk);
2625 	mptcp_check_data_fin(sk);
2626 
2627 	/* There is no point in keeping around an orphaned sk timedout or
2628 	 * closed, but we need the msk around to reply to incoming DATA_FIN,
2629 	 * even if it is orphaned and in FIN_WAIT2 state
2630 	 */
2631 	if (sock_flag(sk, SOCK_DEAD)) {
2632 		if (mptcp_check_close_timeout(sk)) {
2633 			inet_sk_state_store(sk, TCP_CLOSE);
2634 			mptcp_do_fastclose(sk);
2635 		}
2636 		if (sk->sk_state == TCP_CLOSE) {
2637 			__mptcp_destroy_sock(sk);
2638 			goto unlock;
2639 		}
2640 	}
2641 
2642 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2643 		__mptcp_close_subflow(msk);
2644 
2645 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2646 		__mptcp_retrans(sk);
2647 
2648 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2649 	if (fail_tout && time_after(jiffies, fail_tout))
2650 		mptcp_mp_fail_no_response(msk);
2651 
2652 unlock:
2653 	release_sock(sk);
2654 	sock_put(sk);
2655 }
2656 
2657 static int __mptcp_init_sock(struct sock *sk)
2658 {
2659 	struct mptcp_sock *msk = mptcp_sk(sk);
2660 
2661 	INIT_LIST_HEAD(&msk->conn_list);
2662 	INIT_LIST_HEAD(&msk->join_list);
2663 	INIT_LIST_HEAD(&msk->rtx_queue);
2664 	INIT_WORK(&msk->work, mptcp_worker);
2665 	__skb_queue_head_init(&msk->receive_queue);
2666 	msk->out_of_order_queue = RB_ROOT;
2667 	msk->first_pending = NULL;
2668 	msk->rmem_fwd_alloc = 0;
2669 	WRITE_ONCE(msk->rmem_released, 0);
2670 	msk->timer_ival = TCP_RTO_MIN;
2671 
2672 	msk->first = NULL;
2673 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2674 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2675 	WRITE_ONCE(msk->allow_infinite_fallback, true);
2676 	msk->recovery = false;
2677 
2678 	mptcp_pm_data_init(msk);
2679 
2680 	/* re-use the csk retrans timer for MPTCP-level retrans */
2681 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2682 	timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0);
2683 
2684 	return 0;
2685 }
2686 
2687 static void mptcp_ca_reset(struct sock *sk)
2688 {
2689 	struct inet_connection_sock *icsk = inet_csk(sk);
2690 
2691 	tcp_assign_congestion_control(sk);
2692 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2693 
2694 	/* no need to keep a reference to the ops, the name will suffice */
2695 	tcp_cleanup_congestion_control(sk);
2696 	icsk->icsk_ca_ops = NULL;
2697 }
2698 
2699 static int mptcp_init_sock(struct sock *sk)
2700 {
2701 	struct net *net = sock_net(sk);
2702 	int ret;
2703 
2704 	ret = __mptcp_init_sock(sk);
2705 	if (ret)
2706 		return ret;
2707 
2708 	if (!mptcp_is_enabled(net))
2709 		return -ENOPROTOOPT;
2710 
2711 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2712 		return -ENOMEM;
2713 
2714 	ret = __mptcp_socket_create(mptcp_sk(sk));
2715 	if (ret)
2716 		return ret;
2717 
2718 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2719 
2720 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2721 	 * propagate the correct value
2722 	 */
2723 	mptcp_ca_reset(sk);
2724 
2725 	sk_sockets_allocated_inc(sk);
2726 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2727 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2728 
2729 	return 0;
2730 }
2731 
2732 static void __mptcp_clear_xmit(struct sock *sk)
2733 {
2734 	struct mptcp_sock *msk = mptcp_sk(sk);
2735 	struct mptcp_data_frag *dtmp, *dfrag;
2736 
2737 	WRITE_ONCE(msk->first_pending, NULL);
2738 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2739 		dfrag_clear(sk, dfrag);
2740 }
2741 
2742 void mptcp_cancel_work(struct sock *sk)
2743 {
2744 	struct mptcp_sock *msk = mptcp_sk(sk);
2745 
2746 	if (cancel_work_sync(&msk->work))
2747 		__sock_put(sk);
2748 }
2749 
2750 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2751 {
2752 	lock_sock(ssk);
2753 
2754 	switch (ssk->sk_state) {
2755 	case TCP_LISTEN:
2756 		if (!(how & RCV_SHUTDOWN))
2757 			break;
2758 		fallthrough;
2759 	case TCP_SYN_SENT:
2760 		tcp_disconnect(ssk, O_NONBLOCK);
2761 		break;
2762 	default:
2763 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2764 			pr_debug("Fallback");
2765 			ssk->sk_shutdown |= how;
2766 			tcp_shutdown(ssk, how);
2767 		} else {
2768 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2769 			tcp_send_ack(ssk);
2770 			if (!mptcp_timer_pending(sk))
2771 				mptcp_reset_timer(sk);
2772 		}
2773 		break;
2774 	}
2775 
2776 	release_sock(ssk);
2777 }
2778 
2779 static const unsigned char new_state[16] = {
2780 	/* current state:     new state:      action:	*/
2781 	[0 /* (Invalid) */] = TCP_CLOSE,
2782 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2783 	[TCP_SYN_SENT]      = TCP_CLOSE,
2784 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2785 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2786 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2787 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2788 	[TCP_CLOSE]         = TCP_CLOSE,
2789 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2790 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2791 	[TCP_LISTEN]        = TCP_CLOSE,
2792 	[TCP_CLOSING]       = TCP_CLOSING,
2793 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2794 };
2795 
2796 static int mptcp_close_state(struct sock *sk)
2797 {
2798 	int next = (int)new_state[sk->sk_state];
2799 	int ns = next & TCP_STATE_MASK;
2800 
2801 	inet_sk_state_store(sk, ns);
2802 
2803 	return next & TCP_ACTION_FIN;
2804 }
2805 
2806 static void __mptcp_check_send_data_fin(struct sock *sk)
2807 {
2808 	struct mptcp_subflow_context *subflow;
2809 	struct mptcp_sock *msk = mptcp_sk(sk);
2810 
2811 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2812 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2813 		 msk->snd_nxt, msk->write_seq);
2814 
2815 	/* we still need to enqueue subflows or not really shutting down,
2816 	 * skip this
2817 	 */
2818 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2819 	    mptcp_send_head(sk))
2820 		return;
2821 
2822 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2823 
2824 	/* fallback socket will not get data_fin/ack, can move to the next
2825 	 * state now
2826 	 */
2827 	if (__mptcp_check_fallback(msk)) {
2828 		WRITE_ONCE(msk->snd_una, msk->write_seq);
2829 		if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
2830 			inet_sk_state_store(sk, TCP_CLOSE);
2831 			mptcp_close_wake_up(sk);
2832 		} else if (sk->sk_state == TCP_FIN_WAIT1) {
2833 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
2834 		}
2835 	}
2836 
2837 	mptcp_for_each_subflow(msk, subflow) {
2838 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2839 
2840 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2841 	}
2842 }
2843 
2844 static void __mptcp_wr_shutdown(struct sock *sk)
2845 {
2846 	struct mptcp_sock *msk = mptcp_sk(sk);
2847 
2848 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2849 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2850 		 !!mptcp_send_head(sk));
2851 
2852 	/* will be ignored by fallback sockets */
2853 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2854 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2855 
2856 	__mptcp_check_send_data_fin(sk);
2857 }
2858 
2859 static void __mptcp_destroy_sock(struct sock *sk)
2860 {
2861 	struct mptcp_sock *msk = mptcp_sk(sk);
2862 
2863 	pr_debug("msk=%p", msk);
2864 
2865 	might_sleep();
2866 
2867 	mptcp_stop_timer(sk);
2868 	sk_stop_timer(sk, &sk->sk_timer);
2869 	msk->pm.status = 0;
2870 
2871 	sk->sk_prot->destroy(sk);
2872 
2873 	WARN_ON_ONCE(msk->rmem_fwd_alloc);
2874 	WARN_ON_ONCE(msk->rmem_released);
2875 	sk_stream_kill_queues(sk);
2876 	xfrm_sk_free_policy(sk);
2877 
2878 	sock_put(sk);
2879 }
2880 
2881 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
2882 {
2883 	/* Concurrent splices from sk_receive_queue into receive_queue will
2884 	 * always show at least one non-empty queue when checked in this order.
2885 	 */
2886 	if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) &&
2887 	    skb_queue_empty_lockless(&msk->receive_queue))
2888 		return 0;
2889 
2890 	return EPOLLIN | EPOLLRDNORM;
2891 }
2892 
2893 static void mptcp_listen_inuse_dec(struct sock *sk)
2894 {
2895 	if (inet_sk_state_load(sk) == TCP_LISTEN)
2896 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2897 }
2898 
2899 bool __mptcp_close(struct sock *sk, long timeout)
2900 {
2901 	struct mptcp_subflow_context *subflow;
2902 	struct mptcp_sock *msk = mptcp_sk(sk);
2903 	bool do_cancel_work = false;
2904 	int subflows_alive = 0;
2905 
2906 	sk->sk_shutdown = SHUTDOWN_MASK;
2907 
2908 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
2909 		mptcp_listen_inuse_dec(sk);
2910 		inet_sk_state_store(sk, TCP_CLOSE);
2911 		goto cleanup;
2912 	}
2913 
2914 	if (mptcp_check_readable(msk)) {
2915 		/* the msk has read data, do the MPTCP equivalent of TCP reset */
2916 		inet_sk_state_store(sk, TCP_CLOSE);
2917 		mptcp_do_fastclose(sk);
2918 	} else if (mptcp_close_state(sk)) {
2919 		__mptcp_wr_shutdown(sk);
2920 	}
2921 
2922 	sk_stream_wait_close(sk, timeout);
2923 
2924 cleanup:
2925 	/* orphan all the subflows */
2926 	inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32;
2927 	mptcp_for_each_subflow(msk, subflow) {
2928 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2929 		bool slow = lock_sock_fast_nested(ssk);
2930 
2931 		subflows_alive += ssk->sk_state != TCP_CLOSE;
2932 
2933 		/* since the close timeout takes precedence on the fail one,
2934 		 * cancel the latter
2935 		 */
2936 		if (ssk == msk->first)
2937 			subflow->fail_tout = 0;
2938 
2939 		/* detach from the parent socket, but allow data_ready to
2940 		 * push incoming data into the mptcp stack, to properly ack it
2941 		 */
2942 		ssk->sk_socket = NULL;
2943 		ssk->sk_wq = NULL;
2944 		unlock_sock_fast(ssk, slow);
2945 	}
2946 	sock_orphan(sk);
2947 
2948 	/* all the subflows are closed, only timeout can change the msk
2949 	 * state, let's not keep resources busy for no reasons
2950 	 */
2951 	if (subflows_alive == 0)
2952 		inet_sk_state_store(sk, TCP_CLOSE);
2953 
2954 	sock_hold(sk);
2955 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
2956 	if (msk->token)
2957 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
2958 
2959 	if (sk->sk_state == TCP_CLOSE) {
2960 		__mptcp_destroy_sock(sk);
2961 		do_cancel_work = true;
2962 	} else {
2963 		mptcp_reset_timeout(msk, 0);
2964 	}
2965 
2966 	return do_cancel_work;
2967 }
2968 
2969 static void mptcp_close(struct sock *sk, long timeout)
2970 {
2971 	bool do_cancel_work;
2972 
2973 	lock_sock(sk);
2974 
2975 	do_cancel_work = __mptcp_close(sk, timeout);
2976 	release_sock(sk);
2977 	if (do_cancel_work)
2978 		mptcp_cancel_work(sk);
2979 
2980 	sock_put(sk);
2981 }
2982 
2983 void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
2984 {
2985 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2986 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
2987 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
2988 
2989 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
2990 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
2991 
2992 	if (msk6 && ssk6) {
2993 		msk6->saddr = ssk6->saddr;
2994 		msk6->flow_label = ssk6->flow_label;
2995 	}
2996 #endif
2997 
2998 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
2999 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3000 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3001 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3002 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3003 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3004 }
3005 
3006 static int mptcp_disconnect(struct sock *sk, int flags)
3007 {
3008 	struct mptcp_sock *msk = mptcp_sk(sk);
3009 
3010 	/* We are on the fastopen error path. We can't call straight into the
3011 	 * subflows cleanup code due to lock nesting (we are already under
3012 	 * msk->firstsocket lock). Do nothing and leave the cleanup to the
3013 	 * caller.
3014 	 */
3015 	if (msk->fastopening)
3016 		return 0;
3017 
3018 	mptcp_listen_inuse_dec(sk);
3019 	inet_sk_state_store(sk, TCP_CLOSE);
3020 
3021 	mptcp_stop_timer(sk);
3022 	sk_stop_timer(sk, &sk->sk_timer);
3023 
3024 	if (msk->token)
3025 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3026 
3027 	/* msk->subflow is still intact, the following will not free the first
3028 	 * subflow
3029 	 */
3030 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3031 	msk->last_snd = NULL;
3032 	WRITE_ONCE(msk->flags, 0);
3033 	msk->cb_flags = 0;
3034 	msk->push_pending = 0;
3035 	msk->recovery = false;
3036 	msk->can_ack = false;
3037 	msk->fully_established = false;
3038 	msk->rcv_data_fin = false;
3039 	msk->snd_data_fin_enable = false;
3040 	msk->rcv_fastclose = false;
3041 	msk->use_64bit_ack = false;
3042 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3043 	mptcp_pm_data_reset(msk);
3044 	mptcp_ca_reset(sk);
3045 
3046 	sk->sk_shutdown = 0;
3047 	sk_error_report(sk);
3048 	return 0;
3049 }
3050 
3051 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3052 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3053 {
3054 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3055 
3056 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3057 }
3058 #endif
3059 
3060 struct sock *mptcp_sk_clone(const struct sock *sk,
3061 			    const struct mptcp_options_received *mp_opt,
3062 			    struct request_sock *req)
3063 {
3064 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3065 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3066 	struct mptcp_sock *msk;
3067 
3068 	if (!nsk)
3069 		return NULL;
3070 
3071 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3072 	if (nsk->sk_family == AF_INET6)
3073 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3074 #endif
3075 
3076 	__mptcp_init_sock(nsk);
3077 
3078 	msk = mptcp_sk(nsk);
3079 	msk->local_key = subflow_req->local_key;
3080 	msk->token = subflow_req->token;
3081 	msk->subflow = NULL;
3082 	WRITE_ONCE(msk->fully_established, false);
3083 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3084 		WRITE_ONCE(msk->csum_enabled, true);
3085 
3086 	msk->write_seq = subflow_req->idsn + 1;
3087 	msk->snd_nxt = msk->write_seq;
3088 	msk->snd_una = msk->write_seq;
3089 	msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
3090 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3091 
3092 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3093 	/* will be fully established after successful MPC subflow creation */
3094 	inet_sk_state_store(nsk, TCP_SYN_RECV);
3095 
3096 	security_inet_csk_clone(nsk, req);
3097 	bh_unlock_sock(nsk);
3098 
3099 	/* keep a single reference */
3100 	__sock_put(nsk);
3101 	return nsk;
3102 }
3103 
3104 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3105 {
3106 	const struct tcp_sock *tp = tcp_sk(ssk);
3107 
3108 	msk->rcvq_space.copied = 0;
3109 	msk->rcvq_space.rtt_us = 0;
3110 
3111 	msk->rcvq_space.time = tp->tcp_mstamp;
3112 
3113 	/* initial rcv_space offering made to peer */
3114 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3115 				      TCP_INIT_CWND * tp->advmss);
3116 	if (msk->rcvq_space.space == 0)
3117 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3118 
3119 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3120 }
3121 
3122 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
3123 				 bool kern)
3124 {
3125 	struct mptcp_sock *msk = mptcp_sk(sk);
3126 	struct socket *listener;
3127 	struct sock *newsk;
3128 
3129 	listener = __mptcp_nmpc_socket(msk);
3130 	if (WARN_ON_ONCE(!listener)) {
3131 		*err = -EINVAL;
3132 		return NULL;
3133 	}
3134 
3135 	pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
3136 	newsk = inet_csk_accept(listener->sk, flags, err, kern);
3137 	if (!newsk)
3138 		return NULL;
3139 
3140 	pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
3141 	if (sk_is_mptcp(newsk)) {
3142 		struct mptcp_subflow_context *subflow;
3143 		struct sock *new_mptcp_sock;
3144 
3145 		subflow = mptcp_subflow_ctx(newsk);
3146 		new_mptcp_sock = subflow->conn;
3147 
3148 		/* is_mptcp should be false if subflow->conn is missing, see
3149 		 * subflow_syn_recv_sock()
3150 		 */
3151 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3152 			tcp_sk(newsk)->is_mptcp = 0;
3153 			goto out;
3154 		}
3155 
3156 		/* acquire the 2nd reference for the owning socket */
3157 		sock_hold(new_mptcp_sock);
3158 		newsk = new_mptcp_sock;
3159 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3160 	} else {
3161 		MPTCP_INC_STATS(sock_net(sk),
3162 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
3163 	}
3164 
3165 out:
3166 	newsk->sk_kern_sock = kern;
3167 	return newsk;
3168 }
3169 
3170 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3171 {
3172 	struct mptcp_subflow_context *subflow, *tmp;
3173 	struct sock *sk = (struct sock *)msk;
3174 
3175 	__mptcp_clear_xmit(sk);
3176 
3177 	/* join list will be eventually flushed (with rst) at sock lock release time */
3178 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3179 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3180 
3181 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3182 	mptcp_data_lock(sk);
3183 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3184 	__skb_queue_purge(&sk->sk_receive_queue);
3185 	skb_rbtree_purge(&msk->out_of_order_queue);
3186 	mptcp_data_unlock(sk);
3187 
3188 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3189 	 * inet_sock_destruct() will dispose it
3190 	 */
3191 	sk->sk_forward_alloc += msk->rmem_fwd_alloc;
3192 	msk->rmem_fwd_alloc = 0;
3193 	mptcp_token_destroy(msk);
3194 	mptcp_pm_free_anno_list(msk);
3195 	mptcp_free_local_addr_list(msk);
3196 }
3197 
3198 static void mptcp_destroy(struct sock *sk)
3199 {
3200 	struct mptcp_sock *msk = mptcp_sk(sk);
3201 
3202 	/* clears msk->subflow, allowing the following to close
3203 	 * even the initial subflow
3204 	 */
3205 	mptcp_dispose_initial_subflow(msk);
3206 	mptcp_destroy_common(msk, 0);
3207 	sk_sockets_allocated_dec(sk);
3208 }
3209 
3210 void __mptcp_data_acked(struct sock *sk)
3211 {
3212 	if (!sock_owned_by_user(sk))
3213 		__mptcp_clean_una(sk);
3214 	else
3215 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3216 
3217 	if (mptcp_pending_data_fin_ack(sk))
3218 		mptcp_schedule_work(sk);
3219 }
3220 
3221 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3222 {
3223 	if (!mptcp_send_head(sk))
3224 		return;
3225 
3226 	if (!sock_owned_by_user(sk))
3227 		__mptcp_subflow_push_pending(sk, ssk, false);
3228 	else
3229 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3230 }
3231 
3232 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3233 				      BIT(MPTCP_RETRANSMIT) | \
3234 				      BIT(MPTCP_FLUSH_JOIN_LIST))
3235 
3236 /* processes deferred events and flush wmem */
3237 static void mptcp_release_cb(struct sock *sk)
3238 	__must_hold(&sk->sk_lock.slock)
3239 {
3240 	struct mptcp_sock *msk = mptcp_sk(sk);
3241 
3242 	for (;;) {
3243 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) |
3244 				      msk->push_pending;
3245 		if (!flags)
3246 			break;
3247 
3248 		/* the following actions acquire the subflow socket lock
3249 		 *
3250 		 * 1) can't be invoked in atomic scope
3251 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3252 		 *    datapath acquires the msk socket spinlock while helding
3253 		 *    the subflow socket lock
3254 		 */
3255 		msk->push_pending = 0;
3256 		msk->cb_flags &= ~flags;
3257 		spin_unlock_bh(&sk->sk_lock.slock);
3258 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3259 			__mptcp_flush_join_list(sk);
3260 		if (flags & BIT(MPTCP_PUSH_PENDING))
3261 			__mptcp_push_pending(sk, 0);
3262 		if (flags & BIT(MPTCP_RETRANSMIT))
3263 			__mptcp_retrans(sk);
3264 
3265 		cond_resched();
3266 		spin_lock_bh(&sk->sk_lock.slock);
3267 	}
3268 
3269 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3270 		__mptcp_clean_una_wakeup(sk);
3271 	if (unlikely(&msk->cb_flags)) {
3272 		/* be sure to set the current sk state before tacking actions
3273 		 * depending on sk_state, that is processing MPTCP_ERROR_REPORT
3274 		 */
3275 		if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags))
3276 			__mptcp_set_connected(sk);
3277 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3278 			__mptcp_error_report(sk);
3279 		if (__test_and_clear_bit(MPTCP_RESET_SCHEDULER, &msk->cb_flags))
3280 			msk->last_snd = NULL;
3281 	}
3282 
3283 	__mptcp_update_rmem(sk);
3284 }
3285 
3286 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3287  * TCP can't schedule delack timer before the subflow is fully established.
3288  * MPTCP uses the delack timer to do 3rd ack retransmissions
3289  */
3290 static void schedule_3rdack_retransmission(struct sock *ssk)
3291 {
3292 	struct inet_connection_sock *icsk = inet_csk(ssk);
3293 	struct tcp_sock *tp = tcp_sk(ssk);
3294 	unsigned long timeout;
3295 
3296 	if (mptcp_subflow_ctx(ssk)->fully_established)
3297 		return;
3298 
3299 	/* reschedule with a timeout above RTT, as we must look only for drop */
3300 	if (tp->srtt_us)
3301 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3302 	else
3303 		timeout = TCP_TIMEOUT_INIT;
3304 	timeout += jiffies;
3305 
3306 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3307 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3308 	icsk->icsk_ack.timeout = timeout;
3309 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3310 }
3311 
3312 void mptcp_subflow_process_delegated(struct sock *ssk)
3313 {
3314 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3315 	struct sock *sk = subflow->conn;
3316 
3317 	if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) {
3318 		mptcp_data_lock(sk);
3319 		if (!sock_owned_by_user(sk))
3320 			__mptcp_subflow_push_pending(sk, ssk, true);
3321 		else
3322 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3323 		mptcp_data_unlock(sk);
3324 		mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND);
3325 	}
3326 	if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) {
3327 		schedule_3rdack_retransmission(ssk);
3328 		mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK);
3329 	}
3330 }
3331 
3332 static int mptcp_hash(struct sock *sk)
3333 {
3334 	/* should never be called,
3335 	 * we hash the TCP subflows not the master socket
3336 	 */
3337 	WARN_ON_ONCE(1);
3338 	return 0;
3339 }
3340 
3341 static void mptcp_unhash(struct sock *sk)
3342 {
3343 	/* called from sk_common_release(), but nothing to do here */
3344 }
3345 
3346 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3347 {
3348 	struct mptcp_sock *msk = mptcp_sk(sk);
3349 	struct socket *ssock;
3350 
3351 	ssock = __mptcp_nmpc_socket(msk);
3352 	pr_debug("msk=%p, subflow=%p", msk, ssock);
3353 	if (WARN_ON_ONCE(!ssock))
3354 		return -EINVAL;
3355 
3356 	return inet_csk_get_port(ssock->sk, snum);
3357 }
3358 
3359 void mptcp_finish_connect(struct sock *ssk)
3360 {
3361 	struct mptcp_subflow_context *subflow;
3362 	struct mptcp_sock *msk;
3363 	struct sock *sk;
3364 
3365 	subflow = mptcp_subflow_ctx(ssk);
3366 	sk = subflow->conn;
3367 	msk = mptcp_sk(sk);
3368 
3369 	pr_debug("msk=%p, token=%u", sk, subflow->token);
3370 
3371 	subflow->map_seq = subflow->iasn;
3372 	subflow->map_subflow_seq = 1;
3373 
3374 	/* the socket is not connected yet, no msk/subflow ops can access/race
3375 	 * accessing the field below
3376 	 */
3377 	WRITE_ONCE(msk->local_key, subflow->local_key);
3378 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
3379 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3380 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3381 
3382 	mptcp_pm_new_connection(msk, ssk, 0);
3383 
3384 	mptcp_rcv_space_init(msk, ssk);
3385 }
3386 
3387 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3388 {
3389 	write_lock_bh(&sk->sk_callback_lock);
3390 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3391 	sk_set_socket(sk, parent);
3392 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3393 	write_unlock_bh(&sk->sk_callback_lock);
3394 }
3395 
3396 bool mptcp_finish_join(struct sock *ssk)
3397 {
3398 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3399 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3400 	struct sock *parent = (void *)msk;
3401 	bool ret = true;
3402 
3403 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3404 
3405 	/* mptcp socket already closing? */
3406 	if (!mptcp_is_fully_established(parent)) {
3407 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3408 		return false;
3409 	}
3410 
3411 	if (!list_empty(&subflow->node))
3412 		goto out;
3413 
3414 	if (!mptcp_pm_allow_new_subflow(msk))
3415 		goto err_prohibited;
3416 
3417 	/* active connections are already on conn_list.
3418 	 * If we can't acquire msk socket lock here, let the release callback
3419 	 * handle it
3420 	 */
3421 	mptcp_data_lock(parent);
3422 	if (!sock_owned_by_user(parent)) {
3423 		ret = __mptcp_finish_join(msk, ssk);
3424 		if (ret) {
3425 			sock_hold(ssk);
3426 			list_add_tail(&subflow->node, &msk->conn_list);
3427 		}
3428 	} else {
3429 		sock_hold(ssk);
3430 		list_add_tail(&subflow->node, &msk->join_list);
3431 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3432 	}
3433 	mptcp_data_unlock(parent);
3434 
3435 	if (!ret) {
3436 err_prohibited:
3437 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3438 		return false;
3439 	}
3440 
3441 	subflow->map_seq = READ_ONCE(msk->ack_seq);
3442 	WRITE_ONCE(msk->allow_infinite_fallback, false);
3443 
3444 out:
3445 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
3446 	return true;
3447 }
3448 
3449 static void mptcp_shutdown(struct sock *sk, int how)
3450 {
3451 	pr_debug("sk=%p, how=%d", sk, how);
3452 
3453 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3454 		__mptcp_wr_shutdown(sk);
3455 }
3456 
3457 static int mptcp_forward_alloc_get(const struct sock *sk)
3458 {
3459 	return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc;
3460 }
3461 
3462 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3463 {
3464 	const struct sock *sk = (void *)msk;
3465 	u64 delta;
3466 
3467 	if (sk->sk_state == TCP_LISTEN)
3468 		return -EINVAL;
3469 
3470 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3471 		return 0;
3472 
3473 	delta = msk->write_seq - v;
3474 	if (__mptcp_check_fallback(msk) && msk->first) {
3475 		struct tcp_sock *tp = tcp_sk(msk->first);
3476 
3477 		/* the first subflow is disconnected after close - see
3478 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3479 		 * so ignore that status, too.
3480 		 */
3481 		if (!((1 << msk->first->sk_state) &
3482 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3483 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3484 	}
3485 	if (delta > INT_MAX)
3486 		delta = INT_MAX;
3487 
3488 	return (int)delta;
3489 }
3490 
3491 static int mptcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3492 {
3493 	struct mptcp_sock *msk = mptcp_sk(sk);
3494 	bool slow;
3495 	int answ;
3496 
3497 	switch (cmd) {
3498 	case SIOCINQ:
3499 		if (sk->sk_state == TCP_LISTEN)
3500 			return -EINVAL;
3501 
3502 		lock_sock(sk);
3503 		__mptcp_move_skbs(msk);
3504 		answ = mptcp_inq_hint(sk);
3505 		release_sock(sk);
3506 		break;
3507 	case SIOCOUTQ:
3508 		slow = lock_sock_fast(sk);
3509 		answ = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3510 		unlock_sock_fast(sk, slow);
3511 		break;
3512 	case SIOCOUTQNSD:
3513 		slow = lock_sock_fast(sk);
3514 		answ = mptcp_ioctl_outq(msk, msk->snd_nxt);
3515 		unlock_sock_fast(sk, slow);
3516 		break;
3517 	default:
3518 		return -ENOIOCTLCMD;
3519 	}
3520 
3521 	return put_user(answ, (int __user *)arg);
3522 }
3523 
3524 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3525 					 struct mptcp_subflow_context *subflow)
3526 {
3527 	subflow->request_mptcp = 0;
3528 	__mptcp_do_fallback(msk);
3529 }
3530 
3531 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3532 {
3533 	struct mptcp_subflow_context *subflow;
3534 	struct mptcp_sock *msk = mptcp_sk(sk);
3535 	struct socket *ssock;
3536 	int err = -EINVAL;
3537 
3538 	ssock = __mptcp_nmpc_socket(msk);
3539 	if (!ssock)
3540 		return -EINVAL;
3541 
3542 	mptcp_token_destroy(msk);
3543 	inet_sk_state_store(sk, TCP_SYN_SENT);
3544 	subflow = mptcp_subflow_ctx(ssock->sk);
3545 #ifdef CONFIG_TCP_MD5SIG
3546 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3547 	 * TCP option space.
3548 	 */
3549 	if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
3550 		mptcp_subflow_early_fallback(msk, subflow);
3551 #endif
3552 	if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) {
3553 		MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT);
3554 		mptcp_subflow_early_fallback(msk, subflow);
3555 	}
3556 	if (likely(!__mptcp_check_fallback(msk)))
3557 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3558 
3559 	/* if reaching here via the fastopen/sendmsg path, the caller already
3560 	 * acquired the subflow socket lock, too.
3561 	 */
3562 	if (msk->fastopening)
3563 		err = __inet_stream_connect(ssock, uaddr, addr_len, msk->connect_flags, 1);
3564 	else
3565 		err = inet_stream_connect(ssock, uaddr, addr_len, msk->connect_flags);
3566 	inet_sk(sk)->defer_connect = inet_sk(ssock->sk)->defer_connect;
3567 
3568 	/* on successful connect, the msk state will be moved to established by
3569 	 * subflow_finish_connect()
3570 	 */
3571 	if (unlikely(err && err != -EINPROGRESS)) {
3572 		inet_sk_state_store(sk, inet_sk_state_load(ssock->sk));
3573 		return err;
3574 	}
3575 
3576 	mptcp_copy_inaddrs(sk, ssock->sk);
3577 
3578 	/* unblocking connect, mptcp-level inet_stream_connect will error out
3579 	 * without changing the socket state, update it here.
3580 	 */
3581 	if (err == -EINPROGRESS)
3582 		sk->sk_socket->state = ssock->state;
3583 	return err;
3584 }
3585 
3586 static struct proto mptcp_prot = {
3587 	.name		= "MPTCP",
3588 	.owner		= THIS_MODULE,
3589 	.init		= mptcp_init_sock,
3590 	.connect	= mptcp_connect,
3591 	.disconnect	= mptcp_disconnect,
3592 	.close		= mptcp_close,
3593 	.accept		= mptcp_accept,
3594 	.setsockopt	= mptcp_setsockopt,
3595 	.getsockopt	= mptcp_getsockopt,
3596 	.shutdown	= mptcp_shutdown,
3597 	.destroy	= mptcp_destroy,
3598 	.sendmsg	= mptcp_sendmsg,
3599 	.ioctl		= mptcp_ioctl,
3600 	.recvmsg	= mptcp_recvmsg,
3601 	.release_cb	= mptcp_release_cb,
3602 	.hash		= mptcp_hash,
3603 	.unhash		= mptcp_unhash,
3604 	.get_port	= mptcp_get_port,
3605 	.forward_alloc_get	= mptcp_forward_alloc_get,
3606 	.sockets_allocated	= &mptcp_sockets_allocated,
3607 
3608 	.memory_allocated	= &tcp_memory_allocated,
3609 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3610 
3611 	.memory_pressure	= &tcp_memory_pressure,
3612 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3613 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3614 	.sysctl_mem	= sysctl_tcp_mem,
3615 	.obj_size	= sizeof(struct mptcp_sock),
3616 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3617 	.no_autobind	= true,
3618 };
3619 
3620 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3621 {
3622 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3623 	struct socket *ssock;
3624 	int err;
3625 
3626 	lock_sock(sock->sk);
3627 	ssock = __mptcp_nmpc_socket(msk);
3628 	if (!ssock) {
3629 		err = -EINVAL;
3630 		goto unlock;
3631 	}
3632 
3633 	err = ssock->ops->bind(ssock, uaddr, addr_len);
3634 	if (!err)
3635 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3636 
3637 unlock:
3638 	release_sock(sock->sk);
3639 	return err;
3640 }
3641 
3642 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
3643 				int addr_len, int flags)
3644 {
3645 	int ret;
3646 
3647 	lock_sock(sock->sk);
3648 	mptcp_sk(sock->sk)->connect_flags = flags;
3649 	ret = __inet_stream_connect(sock, uaddr, addr_len, flags, 0);
3650 	release_sock(sock->sk);
3651 	return ret;
3652 }
3653 
3654 static int mptcp_listen(struct socket *sock, int backlog)
3655 {
3656 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3657 	struct sock *sk = sock->sk;
3658 	struct socket *ssock;
3659 	int err;
3660 
3661 	pr_debug("msk=%p", msk);
3662 
3663 	lock_sock(sk);
3664 	ssock = __mptcp_nmpc_socket(msk);
3665 	if (!ssock) {
3666 		err = -EINVAL;
3667 		goto unlock;
3668 	}
3669 
3670 	mptcp_token_destroy(msk);
3671 	inet_sk_state_store(sk, TCP_LISTEN);
3672 	sock_set_flag(sk, SOCK_RCU_FREE);
3673 
3674 	err = ssock->ops->listen(ssock, backlog);
3675 	inet_sk_state_store(sk, inet_sk_state_load(ssock->sk));
3676 	if (!err) {
3677 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3678 		mptcp_copy_inaddrs(sk, ssock->sk);
3679 	}
3680 
3681 	mptcp_event_pm_listener(ssock->sk, MPTCP_EVENT_LISTENER_CREATED);
3682 
3683 unlock:
3684 	release_sock(sk);
3685 	return err;
3686 }
3687 
3688 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3689 			       int flags, bool kern)
3690 {
3691 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3692 	struct socket *ssock;
3693 	int err;
3694 
3695 	pr_debug("msk=%p", msk);
3696 
3697 	ssock = __mptcp_nmpc_socket(msk);
3698 	if (!ssock)
3699 		return -EINVAL;
3700 
3701 	err = ssock->ops->accept(sock, newsock, flags, kern);
3702 	if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
3703 		struct mptcp_sock *msk = mptcp_sk(newsock->sk);
3704 		struct mptcp_subflow_context *subflow;
3705 		struct sock *newsk = newsock->sk;
3706 
3707 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3708 
3709 		lock_sock(newsk);
3710 
3711 		/* PM/worker can now acquire the first subflow socket
3712 		 * lock without racing with listener queue cleanup,
3713 		 * we can notify it, if needed.
3714 		 *
3715 		 * Even if remote has reset the initial subflow by now
3716 		 * the refcnt is still at least one.
3717 		 */
3718 		subflow = mptcp_subflow_ctx(msk->first);
3719 		list_add(&subflow->node, &msk->conn_list);
3720 		sock_hold(msk->first);
3721 		if (mptcp_is_fully_established(newsk))
3722 			mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL);
3723 
3724 		mptcp_rcv_space_init(msk, msk->first);
3725 		mptcp_propagate_sndbuf(newsk, msk->first);
3726 
3727 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3728 		 * This is needed so NOSPACE flag can be set from tcp stack.
3729 		 */
3730 		mptcp_for_each_subflow(msk, subflow) {
3731 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3732 
3733 			if (!ssk->sk_socket)
3734 				mptcp_sock_graft(ssk, newsock);
3735 		}
3736 		release_sock(newsk);
3737 	}
3738 
3739 	return err;
3740 }
3741 
3742 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3743 {
3744 	struct sock *sk = (struct sock *)msk;
3745 
3746 	if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN))
3747 		return EPOLLOUT | EPOLLWRNORM;
3748 
3749 	if (sk_stream_is_writeable(sk))
3750 		return EPOLLOUT | EPOLLWRNORM;
3751 
3752 	mptcp_set_nospace(sk);
3753 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3754 	if (sk_stream_is_writeable(sk))
3755 		return EPOLLOUT | EPOLLWRNORM;
3756 
3757 	return 0;
3758 }
3759 
3760 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3761 			   struct poll_table_struct *wait)
3762 {
3763 	struct sock *sk = sock->sk;
3764 	struct mptcp_sock *msk;
3765 	__poll_t mask = 0;
3766 	int state;
3767 
3768 	msk = mptcp_sk(sk);
3769 	sock_poll_wait(file, sock, wait);
3770 
3771 	state = inet_sk_state_load(sk);
3772 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3773 	if (state == TCP_LISTEN) {
3774 		if (WARN_ON_ONCE(!msk->subflow || !msk->subflow->sk))
3775 			return 0;
3776 
3777 		return inet_csk_listen_poll(msk->subflow->sk);
3778 	}
3779 
3780 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3781 		mask |= mptcp_check_readable(msk);
3782 		mask |= mptcp_check_writeable(msk);
3783 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
3784 		/* cf tcp_poll() note about TFO */
3785 		mask |= EPOLLOUT | EPOLLWRNORM;
3786 	}
3787 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3788 		mask |= EPOLLHUP;
3789 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3790 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3791 
3792 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
3793 	smp_rmb();
3794 	if (sk->sk_err)
3795 		mask |= EPOLLERR;
3796 
3797 	return mask;
3798 }
3799 
3800 static const struct proto_ops mptcp_stream_ops = {
3801 	.family		   = PF_INET,
3802 	.owner		   = THIS_MODULE,
3803 	.release	   = inet_release,
3804 	.bind		   = mptcp_bind,
3805 	.connect	   = mptcp_stream_connect,
3806 	.socketpair	   = sock_no_socketpair,
3807 	.accept		   = mptcp_stream_accept,
3808 	.getname	   = inet_getname,
3809 	.poll		   = mptcp_poll,
3810 	.ioctl		   = inet_ioctl,
3811 	.gettstamp	   = sock_gettstamp,
3812 	.listen		   = mptcp_listen,
3813 	.shutdown	   = inet_shutdown,
3814 	.setsockopt	   = sock_common_setsockopt,
3815 	.getsockopt	   = sock_common_getsockopt,
3816 	.sendmsg	   = inet_sendmsg,
3817 	.recvmsg	   = inet_recvmsg,
3818 	.mmap		   = sock_no_mmap,
3819 	.sendpage	   = inet_sendpage,
3820 };
3821 
3822 static struct inet_protosw mptcp_protosw = {
3823 	.type		= SOCK_STREAM,
3824 	.protocol	= IPPROTO_MPTCP,
3825 	.prot		= &mptcp_prot,
3826 	.ops		= &mptcp_stream_ops,
3827 	.flags		= INET_PROTOSW_ICSK,
3828 };
3829 
3830 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3831 {
3832 	struct mptcp_delegated_action *delegated;
3833 	struct mptcp_subflow_context *subflow;
3834 	int work_done = 0;
3835 
3836 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3837 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3838 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3839 
3840 		bh_lock_sock_nested(ssk);
3841 		if (!sock_owned_by_user(ssk) &&
3842 		    mptcp_subflow_has_delegated_action(subflow))
3843 			mptcp_subflow_process_delegated(ssk);
3844 		/* ... elsewhere tcp_release_cb_override already processed
3845 		 * the action or will do at next release_sock().
3846 		 * In both case must dequeue the subflow here - on the same
3847 		 * CPU that scheduled it.
3848 		 */
3849 		bh_unlock_sock(ssk);
3850 		sock_put(ssk);
3851 
3852 		if (++work_done == budget)
3853 			return budget;
3854 	}
3855 
3856 	/* always provide a 0 'work_done' argument, so that napi_complete_done
3857 	 * will not try accessing the NULL napi->dev ptr
3858 	 */
3859 	napi_complete_done(napi, 0);
3860 	return work_done;
3861 }
3862 
3863 void __init mptcp_proto_init(void)
3864 {
3865 	struct mptcp_delegated_action *delegated;
3866 	int cpu;
3867 
3868 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
3869 
3870 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
3871 		panic("Failed to allocate MPTCP pcpu counter\n");
3872 
3873 	init_dummy_netdev(&mptcp_napi_dev);
3874 	for_each_possible_cpu(cpu) {
3875 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
3876 		INIT_LIST_HEAD(&delegated->head);
3877 		netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
3878 				  mptcp_napi_poll);
3879 		napi_enable(&delegated->napi);
3880 	}
3881 
3882 	mptcp_subflow_init();
3883 	mptcp_pm_init();
3884 	mptcp_token_init();
3885 
3886 	if (proto_register(&mptcp_prot, 1) != 0)
3887 		panic("Failed to register MPTCP proto.\n");
3888 
3889 	inet_register_protosw(&mptcp_protosw);
3890 
3891 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
3892 }
3893 
3894 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3895 static const struct proto_ops mptcp_v6_stream_ops = {
3896 	.family		   = PF_INET6,
3897 	.owner		   = THIS_MODULE,
3898 	.release	   = inet6_release,
3899 	.bind		   = mptcp_bind,
3900 	.connect	   = mptcp_stream_connect,
3901 	.socketpair	   = sock_no_socketpair,
3902 	.accept		   = mptcp_stream_accept,
3903 	.getname	   = inet6_getname,
3904 	.poll		   = mptcp_poll,
3905 	.ioctl		   = inet6_ioctl,
3906 	.gettstamp	   = sock_gettstamp,
3907 	.listen		   = mptcp_listen,
3908 	.shutdown	   = inet_shutdown,
3909 	.setsockopt	   = sock_common_setsockopt,
3910 	.getsockopt	   = sock_common_getsockopt,
3911 	.sendmsg	   = inet6_sendmsg,
3912 	.recvmsg	   = inet6_recvmsg,
3913 	.mmap		   = sock_no_mmap,
3914 	.sendpage	   = inet_sendpage,
3915 #ifdef CONFIG_COMPAT
3916 	.compat_ioctl	   = inet6_compat_ioctl,
3917 #endif
3918 };
3919 
3920 static struct proto mptcp_v6_prot;
3921 
3922 static struct inet_protosw mptcp_v6_protosw = {
3923 	.type		= SOCK_STREAM,
3924 	.protocol	= IPPROTO_MPTCP,
3925 	.prot		= &mptcp_v6_prot,
3926 	.ops		= &mptcp_v6_stream_ops,
3927 	.flags		= INET_PROTOSW_ICSK,
3928 };
3929 
3930 int __init mptcp_proto_v6_init(void)
3931 {
3932 	int err;
3933 
3934 	mptcp_v6_prot = mptcp_prot;
3935 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
3936 	mptcp_v6_prot.slab = NULL;
3937 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
3938 
3939 	err = proto_register(&mptcp_v6_prot, 1);
3940 	if (err)
3941 		return err;
3942 
3943 	err = inet6_register_protosw(&mptcp_v6_protosw);
3944 	if (err)
3945 		proto_unregister(&mptcp_v6_prot);
3946 
3947 	return err;
3948 }
3949 #endif
3950