1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 struct mptcp_skb_cb { 40 u64 map_seq; 41 u64 end_seq; 42 u32 offset; 43 u8 has_rxtstamp:1; 44 }; 45 46 #define MPTCP_SKB_CB(__skb) ((struct mptcp_skb_cb *)&((__skb)->cb[0])) 47 48 enum { 49 MPTCP_CMSG_TS = BIT(0), 50 MPTCP_CMSG_INQ = BIT(1), 51 }; 52 53 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 54 55 static void __mptcp_destroy_sock(struct sock *sk); 56 static void __mptcp_check_send_data_fin(struct sock *sk); 57 58 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 59 static struct net_device mptcp_napi_dev; 60 61 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not 62 * completed yet or has failed, return the subflow socket. 63 * Otherwise return NULL. 64 */ 65 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk) 66 { 67 if (!msk->subflow || READ_ONCE(msk->can_ack)) 68 return NULL; 69 70 return msk->subflow; 71 } 72 73 /* Returns end sequence number of the receiver's advertised window */ 74 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 75 { 76 return READ_ONCE(msk->wnd_end); 77 } 78 79 static bool mptcp_is_tcpsk(struct sock *sk) 80 { 81 struct socket *sock = sk->sk_socket; 82 83 if (unlikely(sk->sk_prot == &tcp_prot)) { 84 /* we are being invoked after mptcp_accept() has 85 * accepted a non-mp-capable flow: sk is a tcp_sk, 86 * not an mptcp one. 87 * 88 * Hand the socket over to tcp so all further socket ops 89 * bypass mptcp. 90 */ 91 sock->ops = &inet_stream_ops; 92 return true; 93 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 94 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { 95 sock->ops = &inet6_stream_ops; 96 return true; 97 #endif 98 } 99 100 return false; 101 } 102 103 static int __mptcp_socket_create(struct mptcp_sock *msk) 104 { 105 struct mptcp_subflow_context *subflow; 106 struct sock *sk = (struct sock *)msk; 107 struct socket *ssock; 108 int err; 109 110 err = mptcp_subflow_create_socket(sk, &ssock); 111 if (err) 112 return err; 113 114 msk->first = ssock->sk; 115 msk->subflow = ssock; 116 subflow = mptcp_subflow_ctx(ssock->sk); 117 list_add(&subflow->node, &msk->conn_list); 118 sock_hold(ssock->sk); 119 subflow->request_mptcp = 1; 120 121 /* This is the first subflow, always with id 0 */ 122 subflow->local_id_valid = 1; 123 mptcp_sock_graft(msk->first, sk->sk_socket); 124 125 return 0; 126 } 127 128 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 129 { 130 sk_drops_add(sk, skb); 131 __kfree_skb(skb); 132 } 133 134 static void mptcp_rmem_charge(struct sock *sk, int size) 135 { 136 mptcp_sk(sk)->rmem_fwd_alloc -= size; 137 } 138 139 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 140 struct sk_buff *from) 141 { 142 bool fragstolen; 143 int delta; 144 145 if (MPTCP_SKB_CB(from)->offset || 146 !skb_try_coalesce(to, from, &fragstolen, &delta)) 147 return false; 148 149 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 150 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 151 to->len, MPTCP_SKB_CB(from)->end_seq); 152 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 153 154 /* note the fwd memory can reach a negative value after accounting 155 * for the delta, but the later skb free will restore a non 156 * negative one 157 */ 158 atomic_add(delta, &sk->sk_rmem_alloc); 159 mptcp_rmem_charge(sk, delta); 160 kfree_skb_partial(from, fragstolen); 161 162 return true; 163 } 164 165 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 166 struct sk_buff *from) 167 { 168 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 169 return false; 170 171 return mptcp_try_coalesce((struct sock *)msk, to, from); 172 } 173 174 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 175 { 176 amount >>= PAGE_SHIFT; 177 mptcp_sk(sk)->rmem_fwd_alloc -= amount << PAGE_SHIFT; 178 __sk_mem_reduce_allocated(sk, amount); 179 } 180 181 static void mptcp_rmem_uncharge(struct sock *sk, int size) 182 { 183 struct mptcp_sock *msk = mptcp_sk(sk); 184 int reclaimable; 185 186 msk->rmem_fwd_alloc += size; 187 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 188 189 /* see sk_mem_uncharge() for the rationale behind the following schema */ 190 if (unlikely(reclaimable >= PAGE_SIZE)) 191 __mptcp_rmem_reclaim(sk, reclaimable); 192 } 193 194 static void mptcp_rfree(struct sk_buff *skb) 195 { 196 unsigned int len = skb->truesize; 197 struct sock *sk = skb->sk; 198 199 atomic_sub(len, &sk->sk_rmem_alloc); 200 mptcp_rmem_uncharge(sk, len); 201 } 202 203 static void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 204 { 205 skb_orphan(skb); 206 skb->sk = sk; 207 skb->destructor = mptcp_rfree; 208 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 209 mptcp_rmem_charge(sk, skb->truesize); 210 } 211 212 /* "inspired" by tcp_data_queue_ofo(), main differences: 213 * - use mptcp seqs 214 * - don't cope with sacks 215 */ 216 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 217 { 218 struct sock *sk = (struct sock *)msk; 219 struct rb_node **p, *parent; 220 u64 seq, end_seq, max_seq; 221 struct sk_buff *skb1; 222 223 seq = MPTCP_SKB_CB(skb)->map_seq; 224 end_seq = MPTCP_SKB_CB(skb)->end_seq; 225 max_seq = atomic64_read(&msk->rcv_wnd_sent); 226 227 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 228 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 229 if (after64(end_seq, max_seq)) { 230 /* out of window */ 231 mptcp_drop(sk, skb); 232 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 233 (unsigned long long)end_seq - (unsigned long)max_seq, 234 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 235 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 236 return; 237 } 238 239 p = &msk->out_of_order_queue.rb_node; 240 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 241 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 242 rb_link_node(&skb->rbnode, NULL, p); 243 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 244 msk->ooo_last_skb = skb; 245 goto end; 246 } 247 248 /* with 2 subflows, adding at end of ooo queue is quite likely 249 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 250 */ 251 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 252 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 253 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 254 return; 255 } 256 257 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 258 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 259 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 260 parent = &msk->ooo_last_skb->rbnode; 261 p = &parent->rb_right; 262 goto insert; 263 } 264 265 /* Find place to insert this segment. Handle overlaps on the way. */ 266 parent = NULL; 267 while (*p) { 268 parent = *p; 269 skb1 = rb_to_skb(parent); 270 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 271 p = &parent->rb_left; 272 continue; 273 } 274 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 275 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 276 /* All the bits are present. Drop. */ 277 mptcp_drop(sk, skb); 278 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 279 return; 280 } 281 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 282 /* partial overlap: 283 * | skb | 284 * | skb1 | 285 * continue traversing 286 */ 287 } else { 288 /* skb's seq == skb1's seq and skb covers skb1. 289 * Replace skb1 with skb. 290 */ 291 rb_replace_node(&skb1->rbnode, &skb->rbnode, 292 &msk->out_of_order_queue); 293 mptcp_drop(sk, skb1); 294 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 295 goto merge_right; 296 } 297 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 298 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 299 return; 300 } 301 p = &parent->rb_right; 302 } 303 304 insert: 305 /* Insert segment into RB tree. */ 306 rb_link_node(&skb->rbnode, parent, p); 307 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 308 309 merge_right: 310 /* Remove other segments covered by skb. */ 311 while ((skb1 = skb_rb_next(skb)) != NULL) { 312 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 313 break; 314 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 315 mptcp_drop(sk, skb1); 316 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 317 } 318 /* If there is no skb after us, we are the last_skb ! */ 319 if (!skb1) 320 msk->ooo_last_skb = skb; 321 322 end: 323 skb_condense(skb); 324 mptcp_set_owner_r(skb, sk); 325 } 326 327 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 328 { 329 struct mptcp_sock *msk = mptcp_sk(sk); 330 int amt, amount; 331 332 if (size <= msk->rmem_fwd_alloc) 333 return true; 334 335 size -= msk->rmem_fwd_alloc; 336 amt = sk_mem_pages(size); 337 amount = amt << PAGE_SHIFT; 338 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 339 return false; 340 341 msk->rmem_fwd_alloc += amount; 342 return true; 343 } 344 345 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 346 struct sk_buff *skb, unsigned int offset, 347 size_t copy_len) 348 { 349 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 350 struct sock *sk = (struct sock *)msk; 351 struct sk_buff *tail; 352 bool has_rxtstamp; 353 354 __skb_unlink(skb, &ssk->sk_receive_queue); 355 356 skb_ext_reset(skb); 357 skb_orphan(skb); 358 359 /* try to fetch required memory from subflow */ 360 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 361 goto drop; 362 363 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 364 365 /* the skb map_seq accounts for the skb offset: 366 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 367 * value 368 */ 369 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 370 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 371 MPTCP_SKB_CB(skb)->offset = offset; 372 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 373 374 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 375 /* in sequence */ 376 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 377 tail = skb_peek_tail(&sk->sk_receive_queue); 378 if (tail && mptcp_try_coalesce(sk, tail, skb)) 379 return true; 380 381 mptcp_set_owner_r(skb, sk); 382 __skb_queue_tail(&sk->sk_receive_queue, skb); 383 return true; 384 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 385 mptcp_data_queue_ofo(msk, skb); 386 return false; 387 } 388 389 /* old data, keep it simple and drop the whole pkt, sender 390 * will retransmit as needed, if needed. 391 */ 392 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 393 drop: 394 mptcp_drop(sk, skb); 395 return false; 396 } 397 398 static void mptcp_stop_timer(struct sock *sk) 399 { 400 struct inet_connection_sock *icsk = inet_csk(sk); 401 402 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 403 mptcp_sk(sk)->timer_ival = 0; 404 } 405 406 static void mptcp_close_wake_up(struct sock *sk) 407 { 408 if (sock_flag(sk, SOCK_DEAD)) 409 return; 410 411 sk->sk_state_change(sk); 412 if (sk->sk_shutdown == SHUTDOWN_MASK || 413 sk->sk_state == TCP_CLOSE) 414 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 415 else 416 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 417 } 418 419 static bool mptcp_pending_data_fin_ack(struct sock *sk) 420 { 421 struct mptcp_sock *msk = mptcp_sk(sk); 422 423 return !__mptcp_check_fallback(msk) && 424 ((1 << sk->sk_state) & 425 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 426 msk->write_seq == READ_ONCE(msk->snd_una); 427 } 428 429 static void mptcp_check_data_fin_ack(struct sock *sk) 430 { 431 struct mptcp_sock *msk = mptcp_sk(sk); 432 433 /* Look for an acknowledged DATA_FIN */ 434 if (mptcp_pending_data_fin_ack(sk)) { 435 WRITE_ONCE(msk->snd_data_fin_enable, 0); 436 437 switch (sk->sk_state) { 438 case TCP_FIN_WAIT1: 439 inet_sk_state_store(sk, TCP_FIN_WAIT2); 440 break; 441 case TCP_CLOSING: 442 case TCP_LAST_ACK: 443 inet_sk_state_store(sk, TCP_CLOSE); 444 break; 445 } 446 447 mptcp_close_wake_up(sk); 448 } 449 } 450 451 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 452 { 453 struct mptcp_sock *msk = mptcp_sk(sk); 454 455 if (READ_ONCE(msk->rcv_data_fin) && 456 ((1 << sk->sk_state) & 457 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 458 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 459 460 if (msk->ack_seq == rcv_data_fin_seq) { 461 if (seq) 462 *seq = rcv_data_fin_seq; 463 464 return true; 465 } 466 } 467 468 return false; 469 } 470 471 static void mptcp_set_datafin_timeout(const struct sock *sk) 472 { 473 struct inet_connection_sock *icsk = inet_csk(sk); 474 u32 retransmits; 475 476 retransmits = min_t(u32, icsk->icsk_retransmits, 477 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 478 479 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 480 } 481 482 static void __mptcp_set_timeout(struct sock *sk, long tout) 483 { 484 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 485 } 486 487 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 488 { 489 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 490 491 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 492 inet_csk(ssk)->icsk_timeout - jiffies : 0; 493 } 494 495 static void mptcp_set_timeout(struct sock *sk) 496 { 497 struct mptcp_subflow_context *subflow; 498 long tout = 0; 499 500 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 501 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 502 __mptcp_set_timeout(sk, tout); 503 } 504 505 static inline bool tcp_can_send_ack(const struct sock *ssk) 506 { 507 return !((1 << inet_sk_state_load(ssk)) & 508 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 509 } 510 511 void __mptcp_subflow_send_ack(struct sock *ssk) 512 { 513 if (tcp_can_send_ack(ssk)) 514 tcp_send_ack(ssk); 515 } 516 517 static void mptcp_subflow_send_ack(struct sock *ssk) 518 { 519 bool slow; 520 521 slow = lock_sock_fast(ssk); 522 __mptcp_subflow_send_ack(ssk); 523 unlock_sock_fast(ssk, slow); 524 } 525 526 static void mptcp_send_ack(struct mptcp_sock *msk) 527 { 528 struct mptcp_subflow_context *subflow; 529 530 mptcp_for_each_subflow(msk, subflow) 531 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 532 } 533 534 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 535 { 536 bool slow; 537 538 slow = lock_sock_fast(ssk); 539 if (tcp_can_send_ack(ssk)) 540 tcp_cleanup_rbuf(ssk, 1); 541 unlock_sock_fast(ssk, slow); 542 } 543 544 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 545 { 546 const struct inet_connection_sock *icsk = inet_csk(ssk); 547 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 548 const struct tcp_sock *tp = tcp_sk(ssk); 549 550 return (ack_pending & ICSK_ACK_SCHED) && 551 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 552 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 553 (rx_empty && ack_pending & 554 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 555 } 556 557 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 558 { 559 int old_space = READ_ONCE(msk->old_wspace); 560 struct mptcp_subflow_context *subflow; 561 struct sock *sk = (struct sock *)msk; 562 int space = __mptcp_space(sk); 563 bool cleanup, rx_empty; 564 565 cleanup = (space > 0) && (space >= (old_space << 1)); 566 rx_empty = !__mptcp_rmem(sk); 567 568 mptcp_for_each_subflow(msk, subflow) { 569 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 570 571 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 572 mptcp_subflow_cleanup_rbuf(ssk); 573 } 574 } 575 576 static bool mptcp_check_data_fin(struct sock *sk) 577 { 578 struct mptcp_sock *msk = mptcp_sk(sk); 579 u64 rcv_data_fin_seq; 580 bool ret = false; 581 582 if (__mptcp_check_fallback(msk)) 583 return ret; 584 585 /* Need to ack a DATA_FIN received from a peer while this side 586 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 587 * msk->rcv_data_fin was set when parsing the incoming options 588 * at the subflow level and the msk lock was not held, so this 589 * is the first opportunity to act on the DATA_FIN and change 590 * the msk state. 591 * 592 * If we are caught up to the sequence number of the incoming 593 * DATA_FIN, send the DATA_ACK now and do state transition. If 594 * not caught up, do nothing and let the recv code send DATA_ACK 595 * when catching up. 596 */ 597 598 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 599 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 600 WRITE_ONCE(msk->rcv_data_fin, 0); 601 602 sk->sk_shutdown |= RCV_SHUTDOWN; 603 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 604 605 switch (sk->sk_state) { 606 case TCP_ESTABLISHED: 607 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 608 break; 609 case TCP_FIN_WAIT1: 610 inet_sk_state_store(sk, TCP_CLOSING); 611 break; 612 case TCP_FIN_WAIT2: 613 inet_sk_state_store(sk, TCP_CLOSE); 614 break; 615 default: 616 /* Other states not expected */ 617 WARN_ON_ONCE(1); 618 break; 619 } 620 621 ret = true; 622 mptcp_send_ack(msk); 623 mptcp_close_wake_up(sk); 624 } 625 return ret; 626 } 627 628 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 629 struct sock *ssk, 630 unsigned int *bytes) 631 { 632 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 633 struct sock *sk = (struct sock *)msk; 634 unsigned int moved = 0; 635 bool more_data_avail; 636 struct tcp_sock *tp; 637 bool done = false; 638 int sk_rbuf; 639 640 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 641 642 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 643 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 644 645 if (unlikely(ssk_rbuf > sk_rbuf)) { 646 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 647 sk_rbuf = ssk_rbuf; 648 } 649 } 650 651 pr_debug("msk=%p ssk=%p", msk, ssk); 652 tp = tcp_sk(ssk); 653 do { 654 u32 map_remaining, offset; 655 u32 seq = tp->copied_seq; 656 struct sk_buff *skb; 657 bool fin; 658 659 /* try to move as much data as available */ 660 map_remaining = subflow->map_data_len - 661 mptcp_subflow_get_map_offset(subflow); 662 663 skb = skb_peek(&ssk->sk_receive_queue); 664 if (!skb) { 665 /* if no data is found, a racing workqueue/recvmsg 666 * already processed the new data, stop here or we 667 * can enter an infinite loop 668 */ 669 if (!moved) 670 done = true; 671 break; 672 } 673 674 if (__mptcp_check_fallback(msk)) { 675 /* if we are running under the workqueue, TCP could have 676 * collapsed skbs between dummy map creation and now 677 * be sure to adjust the size 678 */ 679 map_remaining = skb->len; 680 subflow->map_data_len = skb->len; 681 } 682 683 offset = seq - TCP_SKB_CB(skb)->seq; 684 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 685 if (fin) { 686 done = true; 687 seq++; 688 } 689 690 if (offset < skb->len) { 691 size_t len = skb->len - offset; 692 693 if (tp->urg_data) 694 done = true; 695 696 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 697 moved += len; 698 seq += len; 699 700 if (WARN_ON_ONCE(map_remaining < len)) 701 break; 702 } else { 703 WARN_ON_ONCE(!fin); 704 sk_eat_skb(ssk, skb); 705 done = true; 706 } 707 708 WRITE_ONCE(tp->copied_seq, seq); 709 more_data_avail = mptcp_subflow_data_available(ssk); 710 711 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 712 done = true; 713 break; 714 } 715 } while (more_data_avail); 716 717 *bytes += moved; 718 return done; 719 } 720 721 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 722 { 723 struct sock *sk = (struct sock *)msk; 724 struct sk_buff *skb, *tail; 725 bool moved = false; 726 struct rb_node *p; 727 u64 end_seq; 728 729 p = rb_first(&msk->out_of_order_queue); 730 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 731 while (p) { 732 skb = rb_to_skb(p); 733 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 734 break; 735 736 p = rb_next(p); 737 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 738 739 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 740 msk->ack_seq))) { 741 mptcp_drop(sk, skb); 742 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 743 continue; 744 } 745 746 end_seq = MPTCP_SKB_CB(skb)->end_seq; 747 tail = skb_peek_tail(&sk->sk_receive_queue); 748 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 749 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 750 751 /* skip overlapping data, if any */ 752 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 753 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 754 delta); 755 MPTCP_SKB_CB(skb)->offset += delta; 756 MPTCP_SKB_CB(skb)->map_seq += delta; 757 __skb_queue_tail(&sk->sk_receive_queue, skb); 758 } 759 msk->ack_seq = end_seq; 760 moved = true; 761 } 762 return moved; 763 } 764 765 /* In most cases we will be able to lock the mptcp socket. If its already 766 * owned, we need to defer to the work queue to avoid ABBA deadlock. 767 */ 768 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 769 { 770 struct sock *sk = (struct sock *)msk; 771 unsigned int moved = 0; 772 773 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 774 __mptcp_ofo_queue(msk); 775 if (unlikely(ssk->sk_err)) { 776 if (!sock_owned_by_user(sk)) 777 __mptcp_error_report(sk); 778 else 779 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 780 } 781 782 /* If the moves have caught up with the DATA_FIN sequence number 783 * it's time to ack the DATA_FIN and change socket state, but 784 * this is not a good place to change state. Let the workqueue 785 * do it. 786 */ 787 if (mptcp_pending_data_fin(sk, NULL)) 788 mptcp_schedule_work(sk); 789 return moved > 0; 790 } 791 792 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 793 { 794 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 795 struct mptcp_sock *msk = mptcp_sk(sk); 796 int sk_rbuf, ssk_rbuf; 797 798 /* The peer can send data while we are shutting down this 799 * subflow at msk destruction time, but we must avoid enqueuing 800 * more data to the msk receive queue 801 */ 802 if (unlikely(subflow->disposable)) 803 return; 804 805 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 806 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 807 if (unlikely(ssk_rbuf > sk_rbuf)) 808 sk_rbuf = ssk_rbuf; 809 810 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 811 if (__mptcp_rmem(sk) > sk_rbuf) { 812 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 813 return; 814 } 815 816 /* Wake-up the reader only for in-sequence data */ 817 mptcp_data_lock(sk); 818 if (move_skbs_to_msk(msk, ssk)) 819 sk->sk_data_ready(sk); 820 821 mptcp_data_unlock(sk); 822 } 823 824 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 825 { 826 struct sock *sk = (struct sock *)msk; 827 828 if (sk->sk_state != TCP_ESTABLISHED) 829 return false; 830 831 /* attach to msk socket only after we are sure we will deal with it 832 * at close time 833 */ 834 if (sk->sk_socket && !ssk->sk_socket) 835 mptcp_sock_graft(ssk, sk->sk_socket); 836 837 mptcp_propagate_sndbuf((struct sock *)msk, ssk); 838 mptcp_sockopt_sync_locked(msk, ssk); 839 return true; 840 } 841 842 static void __mptcp_flush_join_list(struct sock *sk) 843 { 844 struct mptcp_subflow_context *tmp, *subflow; 845 struct mptcp_sock *msk = mptcp_sk(sk); 846 847 list_for_each_entry_safe(subflow, tmp, &msk->join_list, node) { 848 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 849 bool slow = lock_sock_fast(ssk); 850 851 list_move_tail(&subflow->node, &msk->conn_list); 852 if (!__mptcp_finish_join(msk, ssk)) 853 mptcp_subflow_reset(ssk); 854 unlock_sock_fast(ssk, slow); 855 } 856 } 857 858 static bool mptcp_timer_pending(struct sock *sk) 859 { 860 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 861 } 862 863 static void mptcp_reset_timer(struct sock *sk) 864 { 865 struct inet_connection_sock *icsk = inet_csk(sk); 866 unsigned long tout; 867 868 /* prevent rescheduling on close */ 869 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 870 return; 871 872 tout = mptcp_sk(sk)->timer_ival; 873 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 874 } 875 876 bool mptcp_schedule_work(struct sock *sk) 877 { 878 if (inet_sk_state_load(sk) != TCP_CLOSE && 879 schedule_work(&mptcp_sk(sk)->work)) { 880 /* each subflow already holds a reference to the sk, and the 881 * workqueue is invoked by a subflow, so sk can't go away here. 882 */ 883 sock_hold(sk); 884 return true; 885 } 886 return false; 887 } 888 889 void mptcp_subflow_eof(struct sock *sk) 890 { 891 if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags)) 892 mptcp_schedule_work(sk); 893 } 894 895 static void mptcp_check_for_eof(struct mptcp_sock *msk) 896 { 897 struct mptcp_subflow_context *subflow; 898 struct sock *sk = (struct sock *)msk; 899 int receivers = 0; 900 901 mptcp_for_each_subflow(msk, subflow) 902 receivers += !subflow->rx_eof; 903 if (receivers) 904 return; 905 906 if (!(sk->sk_shutdown & RCV_SHUTDOWN)) { 907 /* hopefully temporary hack: propagate shutdown status 908 * to msk, when all subflows agree on it 909 */ 910 sk->sk_shutdown |= RCV_SHUTDOWN; 911 912 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 913 sk->sk_data_ready(sk); 914 } 915 916 switch (sk->sk_state) { 917 case TCP_ESTABLISHED: 918 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 919 break; 920 case TCP_FIN_WAIT1: 921 inet_sk_state_store(sk, TCP_CLOSING); 922 break; 923 case TCP_FIN_WAIT2: 924 inet_sk_state_store(sk, TCP_CLOSE); 925 break; 926 default: 927 return; 928 } 929 mptcp_close_wake_up(sk); 930 } 931 932 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 933 { 934 struct mptcp_subflow_context *subflow; 935 struct sock *sk = (struct sock *)msk; 936 937 sock_owned_by_me(sk); 938 939 mptcp_for_each_subflow(msk, subflow) { 940 if (READ_ONCE(subflow->data_avail)) 941 return mptcp_subflow_tcp_sock(subflow); 942 } 943 944 return NULL; 945 } 946 947 static bool mptcp_skb_can_collapse_to(u64 write_seq, 948 const struct sk_buff *skb, 949 const struct mptcp_ext *mpext) 950 { 951 if (!tcp_skb_can_collapse_to(skb)) 952 return false; 953 954 /* can collapse only if MPTCP level sequence is in order and this 955 * mapping has not been xmitted yet 956 */ 957 return mpext && mpext->data_seq + mpext->data_len == write_seq && 958 !mpext->frozen; 959 } 960 961 /* we can append data to the given data frag if: 962 * - there is space available in the backing page_frag 963 * - the data frag tail matches the current page_frag free offset 964 * - the data frag end sequence number matches the current write seq 965 */ 966 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 967 const struct page_frag *pfrag, 968 const struct mptcp_data_frag *df) 969 { 970 return df && pfrag->page == df->page && 971 pfrag->size - pfrag->offset > 0 && 972 pfrag->offset == (df->offset + df->data_len) && 973 df->data_seq + df->data_len == msk->write_seq; 974 } 975 976 static void dfrag_uncharge(struct sock *sk, int len) 977 { 978 sk_mem_uncharge(sk, len); 979 sk_wmem_queued_add(sk, -len); 980 } 981 982 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 983 { 984 int len = dfrag->data_len + dfrag->overhead; 985 986 list_del(&dfrag->list); 987 dfrag_uncharge(sk, len); 988 put_page(dfrag->page); 989 } 990 991 static void __mptcp_clean_una(struct sock *sk) 992 { 993 struct mptcp_sock *msk = mptcp_sk(sk); 994 struct mptcp_data_frag *dtmp, *dfrag; 995 u64 snd_una; 996 997 /* on fallback we just need to ignore snd_una, as this is really 998 * plain TCP 999 */ 1000 if (__mptcp_check_fallback(msk)) 1001 msk->snd_una = READ_ONCE(msk->snd_nxt); 1002 1003 snd_una = msk->snd_una; 1004 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1005 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1006 break; 1007 1008 if (unlikely(dfrag == msk->first_pending)) { 1009 /* in recovery mode can see ack after the current snd head */ 1010 if (WARN_ON_ONCE(!msk->recovery)) 1011 break; 1012 1013 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1014 } 1015 1016 dfrag_clear(sk, dfrag); 1017 } 1018 1019 dfrag = mptcp_rtx_head(sk); 1020 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1021 u64 delta = snd_una - dfrag->data_seq; 1022 1023 /* prevent wrap around in recovery mode */ 1024 if (unlikely(delta > dfrag->already_sent)) { 1025 if (WARN_ON_ONCE(!msk->recovery)) 1026 goto out; 1027 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1028 goto out; 1029 dfrag->already_sent += delta - dfrag->already_sent; 1030 } 1031 1032 dfrag->data_seq += delta; 1033 dfrag->offset += delta; 1034 dfrag->data_len -= delta; 1035 dfrag->already_sent -= delta; 1036 1037 dfrag_uncharge(sk, delta); 1038 } 1039 1040 /* all retransmitted data acked, recovery completed */ 1041 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1042 msk->recovery = false; 1043 1044 out: 1045 if (snd_una == READ_ONCE(msk->snd_nxt) && 1046 snd_una == READ_ONCE(msk->write_seq)) { 1047 if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1048 mptcp_stop_timer(sk); 1049 } else { 1050 mptcp_reset_timer(sk); 1051 } 1052 } 1053 1054 static void __mptcp_clean_una_wakeup(struct sock *sk) 1055 { 1056 lockdep_assert_held_once(&sk->sk_lock.slock); 1057 1058 __mptcp_clean_una(sk); 1059 mptcp_write_space(sk); 1060 } 1061 1062 static void mptcp_clean_una_wakeup(struct sock *sk) 1063 { 1064 mptcp_data_lock(sk); 1065 __mptcp_clean_una_wakeup(sk); 1066 mptcp_data_unlock(sk); 1067 } 1068 1069 static void mptcp_enter_memory_pressure(struct sock *sk) 1070 { 1071 struct mptcp_subflow_context *subflow; 1072 struct mptcp_sock *msk = mptcp_sk(sk); 1073 bool first = true; 1074 1075 sk_stream_moderate_sndbuf(sk); 1076 mptcp_for_each_subflow(msk, subflow) { 1077 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1078 1079 if (first) 1080 tcp_enter_memory_pressure(ssk); 1081 sk_stream_moderate_sndbuf(ssk); 1082 first = false; 1083 } 1084 } 1085 1086 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1087 * data 1088 */ 1089 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1090 { 1091 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1092 pfrag, sk->sk_allocation))) 1093 return true; 1094 1095 mptcp_enter_memory_pressure(sk); 1096 return false; 1097 } 1098 1099 static struct mptcp_data_frag * 1100 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1101 int orig_offset) 1102 { 1103 int offset = ALIGN(orig_offset, sizeof(long)); 1104 struct mptcp_data_frag *dfrag; 1105 1106 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1107 dfrag->data_len = 0; 1108 dfrag->data_seq = msk->write_seq; 1109 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1110 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1111 dfrag->already_sent = 0; 1112 dfrag->page = pfrag->page; 1113 1114 return dfrag; 1115 } 1116 1117 struct mptcp_sendmsg_info { 1118 int mss_now; 1119 int size_goal; 1120 u16 limit; 1121 u16 sent; 1122 unsigned int flags; 1123 bool data_lock_held; 1124 }; 1125 1126 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1127 u64 data_seq, int avail_size) 1128 { 1129 u64 window_end = mptcp_wnd_end(msk); 1130 u64 mptcp_snd_wnd; 1131 1132 if (__mptcp_check_fallback(msk)) 1133 return avail_size; 1134 1135 mptcp_snd_wnd = window_end - data_seq; 1136 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1137 1138 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1139 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1140 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1141 } 1142 1143 return avail_size; 1144 } 1145 1146 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1147 { 1148 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1149 1150 if (!mpext) 1151 return false; 1152 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1153 return true; 1154 } 1155 1156 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1157 { 1158 struct sk_buff *skb; 1159 1160 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1161 if (likely(skb)) { 1162 if (likely(__mptcp_add_ext(skb, gfp))) { 1163 skb_reserve(skb, MAX_TCP_HEADER); 1164 skb->ip_summed = CHECKSUM_PARTIAL; 1165 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1166 return skb; 1167 } 1168 __kfree_skb(skb); 1169 } else { 1170 mptcp_enter_memory_pressure(sk); 1171 } 1172 return NULL; 1173 } 1174 1175 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1176 { 1177 struct sk_buff *skb; 1178 1179 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1180 if (!skb) 1181 return NULL; 1182 1183 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1184 tcp_skb_entail(ssk, skb); 1185 return skb; 1186 } 1187 tcp_skb_tsorted_anchor_cleanup(skb); 1188 kfree_skb(skb); 1189 return NULL; 1190 } 1191 1192 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1193 { 1194 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1195 1196 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1197 } 1198 1199 /* note: this always recompute the csum on the whole skb, even 1200 * if we just appended a single frag. More status info needed 1201 */ 1202 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1203 { 1204 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1205 __wsum csum = ~csum_unfold(mpext->csum); 1206 int offset = skb->len - added; 1207 1208 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1209 } 1210 1211 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1212 struct sock *ssk, 1213 struct mptcp_ext *mpext) 1214 { 1215 if (!mpext) 1216 return; 1217 1218 mpext->infinite_map = 1; 1219 mpext->data_len = 0; 1220 1221 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1222 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1223 pr_fallback(msk); 1224 mptcp_do_fallback(ssk); 1225 } 1226 1227 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1228 struct mptcp_data_frag *dfrag, 1229 struct mptcp_sendmsg_info *info) 1230 { 1231 u64 data_seq = dfrag->data_seq + info->sent; 1232 int offset = dfrag->offset + info->sent; 1233 struct mptcp_sock *msk = mptcp_sk(sk); 1234 bool zero_window_probe = false; 1235 struct mptcp_ext *mpext = NULL; 1236 bool can_coalesce = false; 1237 bool reuse_skb = true; 1238 struct sk_buff *skb; 1239 size_t copy; 1240 int i; 1241 1242 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1243 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1244 1245 if (WARN_ON_ONCE(info->sent > info->limit || 1246 info->limit > dfrag->data_len)) 1247 return 0; 1248 1249 if (unlikely(!__tcp_can_send(ssk))) 1250 return -EAGAIN; 1251 1252 /* compute send limit */ 1253 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1254 copy = info->size_goal; 1255 1256 skb = tcp_write_queue_tail(ssk); 1257 if (skb && copy > skb->len) { 1258 /* Limit the write to the size available in the 1259 * current skb, if any, so that we create at most a new skb. 1260 * Explicitly tells TCP internals to avoid collapsing on later 1261 * queue management operation, to avoid breaking the ext <-> 1262 * SSN association set here 1263 */ 1264 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1265 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1266 TCP_SKB_CB(skb)->eor = 1; 1267 goto alloc_skb; 1268 } 1269 1270 i = skb_shinfo(skb)->nr_frags; 1271 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1272 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1273 tcp_mark_push(tcp_sk(ssk), skb); 1274 goto alloc_skb; 1275 } 1276 1277 copy -= skb->len; 1278 } else { 1279 alloc_skb: 1280 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1281 if (!skb) 1282 return -ENOMEM; 1283 1284 i = skb_shinfo(skb)->nr_frags; 1285 reuse_skb = false; 1286 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1287 } 1288 1289 /* Zero window and all data acked? Probe. */ 1290 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1291 if (copy == 0) { 1292 u64 snd_una = READ_ONCE(msk->snd_una); 1293 1294 if (snd_una != msk->snd_nxt) { 1295 tcp_remove_empty_skb(ssk); 1296 return 0; 1297 } 1298 1299 zero_window_probe = true; 1300 data_seq = snd_una - 1; 1301 copy = 1; 1302 1303 /* all mptcp-level data is acked, no skbs should be present into the 1304 * ssk write queue 1305 */ 1306 WARN_ON_ONCE(reuse_skb); 1307 } 1308 1309 copy = min_t(size_t, copy, info->limit - info->sent); 1310 if (!sk_wmem_schedule(ssk, copy)) { 1311 tcp_remove_empty_skb(ssk); 1312 return -ENOMEM; 1313 } 1314 1315 if (can_coalesce) { 1316 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1317 } else { 1318 get_page(dfrag->page); 1319 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1320 } 1321 1322 skb->len += copy; 1323 skb->data_len += copy; 1324 skb->truesize += copy; 1325 sk_wmem_queued_add(ssk, copy); 1326 sk_mem_charge(ssk, copy); 1327 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1328 TCP_SKB_CB(skb)->end_seq += copy; 1329 tcp_skb_pcount_set(skb, 0); 1330 1331 /* on skb reuse we just need to update the DSS len */ 1332 if (reuse_skb) { 1333 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1334 mpext->data_len += copy; 1335 WARN_ON_ONCE(zero_window_probe); 1336 goto out; 1337 } 1338 1339 memset(mpext, 0, sizeof(*mpext)); 1340 mpext->data_seq = data_seq; 1341 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1342 mpext->data_len = copy; 1343 mpext->use_map = 1; 1344 mpext->dsn64 = 1; 1345 1346 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1347 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1348 mpext->dsn64); 1349 1350 if (zero_window_probe) { 1351 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1352 mpext->frozen = 1; 1353 if (READ_ONCE(msk->csum_enabled)) 1354 mptcp_update_data_checksum(skb, copy); 1355 tcp_push_pending_frames(ssk); 1356 return 0; 1357 } 1358 out: 1359 if (READ_ONCE(msk->csum_enabled)) 1360 mptcp_update_data_checksum(skb, copy); 1361 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1362 mptcp_update_infinite_map(msk, ssk, mpext); 1363 trace_mptcp_sendmsg_frag(mpext); 1364 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1365 return copy; 1366 } 1367 1368 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1369 sizeof(struct tcphdr) - \ 1370 MAX_TCP_OPTION_SPACE - \ 1371 sizeof(struct ipv6hdr) - \ 1372 sizeof(struct frag_hdr)) 1373 1374 struct subflow_send_info { 1375 struct sock *ssk; 1376 u64 linger_time; 1377 }; 1378 1379 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1380 { 1381 if (!subflow->stale) 1382 return; 1383 1384 subflow->stale = 0; 1385 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1386 } 1387 1388 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1389 { 1390 if (unlikely(subflow->stale)) { 1391 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1392 1393 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1394 return false; 1395 1396 mptcp_subflow_set_active(subflow); 1397 } 1398 return __mptcp_subflow_active(subflow); 1399 } 1400 1401 #define SSK_MODE_ACTIVE 0 1402 #define SSK_MODE_BACKUP 1 1403 #define SSK_MODE_MAX 2 1404 1405 /* implement the mptcp packet scheduler; 1406 * returns the subflow that will transmit the next DSS 1407 * additionally updates the rtx timeout 1408 */ 1409 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1410 { 1411 struct subflow_send_info send_info[SSK_MODE_MAX]; 1412 struct mptcp_subflow_context *subflow; 1413 struct sock *sk = (struct sock *)msk; 1414 u32 pace, burst, wmem; 1415 int i, nr_active = 0; 1416 struct sock *ssk; 1417 u64 linger_time; 1418 long tout = 0; 1419 1420 sock_owned_by_me(sk); 1421 1422 if (__mptcp_check_fallback(msk)) { 1423 if (!msk->first) 1424 return NULL; 1425 return __tcp_can_send(msk->first) && 1426 sk_stream_memory_free(msk->first) ? msk->first : NULL; 1427 } 1428 1429 /* re-use last subflow, if the burst allow that */ 1430 if (msk->last_snd && msk->snd_burst > 0 && 1431 sk_stream_memory_free(msk->last_snd) && 1432 mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) { 1433 mptcp_set_timeout(sk); 1434 return msk->last_snd; 1435 } 1436 1437 /* pick the subflow with the lower wmem/wspace ratio */ 1438 for (i = 0; i < SSK_MODE_MAX; ++i) { 1439 send_info[i].ssk = NULL; 1440 send_info[i].linger_time = -1; 1441 } 1442 1443 mptcp_for_each_subflow(msk, subflow) { 1444 trace_mptcp_subflow_get_send(subflow); 1445 ssk = mptcp_subflow_tcp_sock(subflow); 1446 if (!mptcp_subflow_active(subflow)) 1447 continue; 1448 1449 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1450 nr_active += !subflow->backup; 1451 pace = subflow->avg_pacing_rate; 1452 if (unlikely(!pace)) { 1453 /* init pacing rate from socket */ 1454 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1455 pace = subflow->avg_pacing_rate; 1456 if (!pace) 1457 continue; 1458 } 1459 1460 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1461 if (linger_time < send_info[subflow->backup].linger_time) { 1462 send_info[subflow->backup].ssk = ssk; 1463 send_info[subflow->backup].linger_time = linger_time; 1464 } 1465 } 1466 __mptcp_set_timeout(sk, tout); 1467 1468 /* pick the best backup if no other subflow is active */ 1469 if (!nr_active) 1470 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1471 1472 /* According to the blest algorithm, to avoid HoL blocking for the 1473 * faster flow, we need to: 1474 * - estimate the faster flow linger time 1475 * - use the above to estimate the amount of byte transferred 1476 * by the faster flow 1477 * - check that the amount of queued data is greter than the above, 1478 * otherwise do not use the picked, slower, subflow 1479 * We select the subflow with the shorter estimated time to flush 1480 * the queued mem, which basically ensure the above. We just need 1481 * to check that subflow has a non empty cwin. 1482 */ 1483 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1484 if (!ssk || !sk_stream_memory_free(ssk)) 1485 return NULL; 1486 1487 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1488 wmem = READ_ONCE(ssk->sk_wmem_queued); 1489 if (!burst) { 1490 msk->last_snd = NULL; 1491 return ssk; 1492 } 1493 1494 subflow = mptcp_subflow_ctx(ssk); 1495 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1496 READ_ONCE(ssk->sk_pacing_rate) * burst, 1497 burst + wmem); 1498 msk->last_snd = ssk; 1499 msk->snd_burst = burst; 1500 return ssk; 1501 } 1502 1503 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1504 { 1505 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1506 release_sock(ssk); 1507 } 1508 1509 static void mptcp_update_post_push(struct mptcp_sock *msk, 1510 struct mptcp_data_frag *dfrag, 1511 u32 sent) 1512 { 1513 u64 snd_nxt_new = dfrag->data_seq; 1514 1515 dfrag->already_sent += sent; 1516 1517 msk->snd_burst -= sent; 1518 1519 snd_nxt_new += dfrag->already_sent; 1520 1521 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1522 * is recovering after a failover. In that event, this re-sends 1523 * old segments. 1524 * 1525 * Thus compute snd_nxt_new candidate based on 1526 * the dfrag->data_seq that was sent and the data 1527 * that has been handed to the subflow for transmission 1528 * and skip update in case it was old dfrag. 1529 */ 1530 if (likely(after64(snd_nxt_new, msk->snd_nxt))) 1531 msk->snd_nxt = snd_nxt_new; 1532 } 1533 1534 void mptcp_check_and_set_pending(struct sock *sk) 1535 { 1536 if (mptcp_send_head(sk)) 1537 mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING); 1538 } 1539 1540 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1541 { 1542 struct sock *prev_ssk = NULL, *ssk = NULL; 1543 struct mptcp_sock *msk = mptcp_sk(sk); 1544 struct mptcp_sendmsg_info info = { 1545 .flags = flags, 1546 }; 1547 bool do_check_data_fin = false; 1548 struct mptcp_data_frag *dfrag; 1549 int len; 1550 1551 while ((dfrag = mptcp_send_head(sk))) { 1552 info.sent = dfrag->already_sent; 1553 info.limit = dfrag->data_len; 1554 len = dfrag->data_len - dfrag->already_sent; 1555 while (len > 0) { 1556 int ret = 0; 1557 1558 prev_ssk = ssk; 1559 ssk = mptcp_subflow_get_send(msk); 1560 1561 /* First check. If the ssk has changed since 1562 * the last round, release prev_ssk 1563 */ 1564 if (ssk != prev_ssk && prev_ssk) 1565 mptcp_push_release(prev_ssk, &info); 1566 if (!ssk) 1567 goto out; 1568 1569 /* Need to lock the new subflow only if different 1570 * from the previous one, otherwise we are still 1571 * helding the relevant lock 1572 */ 1573 if (ssk != prev_ssk) 1574 lock_sock(ssk); 1575 1576 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1577 if (ret <= 0) { 1578 if (ret == -EAGAIN) 1579 continue; 1580 mptcp_push_release(ssk, &info); 1581 goto out; 1582 } 1583 1584 do_check_data_fin = true; 1585 info.sent += ret; 1586 len -= ret; 1587 1588 mptcp_update_post_push(msk, dfrag, ret); 1589 } 1590 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1591 } 1592 1593 /* at this point we held the socket lock for the last subflow we used */ 1594 if (ssk) 1595 mptcp_push_release(ssk, &info); 1596 1597 out: 1598 /* ensure the rtx timer is running */ 1599 if (!mptcp_timer_pending(sk)) 1600 mptcp_reset_timer(sk); 1601 if (do_check_data_fin) 1602 __mptcp_check_send_data_fin(sk); 1603 } 1604 1605 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk) 1606 { 1607 struct mptcp_sock *msk = mptcp_sk(sk); 1608 struct mptcp_sendmsg_info info = { 1609 .data_lock_held = true, 1610 }; 1611 struct mptcp_data_frag *dfrag; 1612 struct sock *xmit_ssk; 1613 int len, copied = 0; 1614 bool first = true; 1615 1616 info.flags = 0; 1617 while ((dfrag = mptcp_send_head(sk))) { 1618 info.sent = dfrag->already_sent; 1619 info.limit = dfrag->data_len; 1620 len = dfrag->data_len - dfrag->already_sent; 1621 while (len > 0) { 1622 int ret = 0; 1623 1624 /* the caller already invoked the packet scheduler, 1625 * check for a different subflow usage only after 1626 * spooling the first chunk of data 1627 */ 1628 xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk)); 1629 if (!xmit_ssk) 1630 goto out; 1631 if (xmit_ssk != ssk) { 1632 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), 1633 MPTCP_DELEGATE_SEND); 1634 goto out; 1635 } 1636 1637 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1638 if (ret <= 0) 1639 goto out; 1640 1641 info.sent += ret; 1642 copied += ret; 1643 len -= ret; 1644 first = false; 1645 1646 mptcp_update_post_push(msk, dfrag, ret); 1647 } 1648 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1649 } 1650 1651 out: 1652 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1653 * not going to flush it via release_sock() 1654 */ 1655 if (copied) { 1656 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1657 info.size_goal); 1658 if (!mptcp_timer_pending(sk)) 1659 mptcp_reset_timer(sk); 1660 1661 if (msk->snd_data_fin_enable && 1662 msk->snd_nxt + 1 == msk->write_seq) 1663 mptcp_schedule_work(sk); 1664 } 1665 } 1666 1667 static void mptcp_set_nospace(struct sock *sk) 1668 { 1669 /* enable autotune */ 1670 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1671 1672 /* will be cleared on avail space */ 1673 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1674 } 1675 1676 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1677 { 1678 struct mptcp_sock *msk = mptcp_sk(sk); 1679 struct page_frag *pfrag; 1680 struct socket *ssock; 1681 size_t copied = 0; 1682 int ret = 0; 1683 long timeo; 1684 1685 /* we don't support FASTOPEN yet */ 1686 if (msg->msg_flags & MSG_FASTOPEN) 1687 return -EOPNOTSUPP; 1688 1689 /* silently ignore everything else */ 1690 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL; 1691 1692 lock_sock(sk); 1693 1694 ssock = __mptcp_nmpc_socket(msk); 1695 if (unlikely(ssock && inet_sk(ssock->sk)->defer_connect)) { 1696 struct sock *ssk = ssock->sk; 1697 int copied_syn = 0; 1698 1699 lock_sock(ssk); 1700 1701 ret = tcp_sendmsg_fastopen(ssk, msg, &copied_syn, len, NULL); 1702 copied += copied_syn; 1703 if (ret == -EINPROGRESS && copied_syn > 0) { 1704 /* reflect the new state on the MPTCP socket */ 1705 inet_sk_state_store(sk, inet_sk_state_load(ssk)); 1706 release_sock(ssk); 1707 goto out; 1708 } else if (ret) { 1709 release_sock(ssk); 1710 goto out; 1711 } 1712 release_sock(ssk); 1713 } 1714 1715 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1716 1717 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1718 ret = sk_stream_wait_connect(sk, &timeo); 1719 if (ret) 1720 goto out; 1721 } 1722 1723 pfrag = sk_page_frag(sk); 1724 1725 while (msg_data_left(msg)) { 1726 int total_ts, frag_truesize = 0; 1727 struct mptcp_data_frag *dfrag; 1728 bool dfrag_collapsed; 1729 size_t psize, offset; 1730 1731 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) { 1732 ret = -EPIPE; 1733 goto out; 1734 } 1735 1736 /* reuse tail pfrag, if possible, or carve a new one from the 1737 * page allocator 1738 */ 1739 dfrag = mptcp_pending_tail(sk); 1740 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1741 if (!dfrag_collapsed) { 1742 if (!sk_stream_memory_free(sk)) 1743 goto wait_for_memory; 1744 1745 if (!mptcp_page_frag_refill(sk, pfrag)) 1746 goto wait_for_memory; 1747 1748 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1749 frag_truesize = dfrag->overhead; 1750 } 1751 1752 /* we do not bound vs wspace, to allow a single packet. 1753 * memory accounting will prevent execessive memory usage 1754 * anyway 1755 */ 1756 offset = dfrag->offset + dfrag->data_len; 1757 psize = pfrag->size - offset; 1758 psize = min_t(size_t, psize, msg_data_left(msg)); 1759 total_ts = psize + frag_truesize; 1760 1761 if (!sk_wmem_schedule(sk, total_ts)) 1762 goto wait_for_memory; 1763 1764 if (copy_page_from_iter(dfrag->page, offset, psize, 1765 &msg->msg_iter) != psize) { 1766 ret = -EFAULT; 1767 goto out; 1768 } 1769 1770 /* data successfully copied into the write queue */ 1771 sk->sk_forward_alloc -= total_ts; 1772 copied += psize; 1773 dfrag->data_len += psize; 1774 frag_truesize += psize; 1775 pfrag->offset += frag_truesize; 1776 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1777 1778 /* charge data on mptcp pending queue to the msk socket 1779 * Note: we charge such data both to sk and ssk 1780 */ 1781 sk_wmem_queued_add(sk, frag_truesize); 1782 if (!dfrag_collapsed) { 1783 get_page(dfrag->page); 1784 list_add_tail(&dfrag->list, &msk->rtx_queue); 1785 if (!msk->first_pending) 1786 WRITE_ONCE(msk->first_pending, dfrag); 1787 } 1788 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1789 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1790 !dfrag_collapsed); 1791 1792 continue; 1793 1794 wait_for_memory: 1795 mptcp_set_nospace(sk); 1796 __mptcp_push_pending(sk, msg->msg_flags); 1797 ret = sk_stream_wait_memory(sk, &timeo); 1798 if (ret) 1799 goto out; 1800 } 1801 1802 if (copied) 1803 __mptcp_push_pending(sk, msg->msg_flags); 1804 1805 out: 1806 release_sock(sk); 1807 return copied ? : ret; 1808 } 1809 1810 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1811 struct msghdr *msg, 1812 size_t len, int flags, 1813 struct scm_timestamping_internal *tss, 1814 int *cmsg_flags) 1815 { 1816 struct sk_buff *skb, *tmp; 1817 int copied = 0; 1818 1819 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1820 u32 offset = MPTCP_SKB_CB(skb)->offset; 1821 u32 data_len = skb->len - offset; 1822 u32 count = min_t(size_t, len - copied, data_len); 1823 int err; 1824 1825 if (!(flags & MSG_TRUNC)) { 1826 err = skb_copy_datagram_msg(skb, offset, msg, count); 1827 if (unlikely(err < 0)) { 1828 if (!copied) 1829 return err; 1830 break; 1831 } 1832 } 1833 1834 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1835 tcp_update_recv_tstamps(skb, tss); 1836 *cmsg_flags |= MPTCP_CMSG_TS; 1837 } 1838 1839 copied += count; 1840 1841 if (count < data_len) { 1842 if (!(flags & MSG_PEEK)) { 1843 MPTCP_SKB_CB(skb)->offset += count; 1844 MPTCP_SKB_CB(skb)->map_seq += count; 1845 } 1846 break; 1847 } 1848 1849 if (!(flags & MSG_PEEK)) { 1850 /* we will bulk release the skb memory later */ 1851 skb->destructor = NULL; 1852 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1853 __skb_unlink(skb, &msk->receive_queue); 1854 __kfree_skb(skb); 1855 } 1856 1857 if (copied >= len) 1858 break; 1859 } 1860 1861 return copied; 1862 } 1863 1864 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1865 * 1866 * Only difference: Use highest rtt estimate of the subflows in use. 1867 */ 1868 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1869 { 1870 struct mptcp_subflow_context *subflow; 1871 struct sock *sk = (struct sock *)msk; 1872 u32 time, advmss = 1; 1873 u64 rtt_us, mstamp; 1874 1875 sock_owned_by_me(sk); 1876 1877 if (copied <= 0) 1878 return; 1879 1880 msk->rcvq_space.copied += copied; 1881 1882 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1883 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1884 1885 rtt_us = msk->rcvq_space.rtt_us; 1886 if (rtt_us && time < (rtt_us >> 3)) 1887 return; 1888 1889 rtt_us = 0; 1890 mptcp_for_each_subflow(msk, subflow) { 1891 const struct tcp_sock *tp; 1892 u64 sf_rtt_us; 1893 u32 sf_advmss; 1894 1895 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1896 1897 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1898 sf_advmss = READ_ONCE(tp->advmss); 1899 1900 rtt_us = max(sf_rtt_us, rtt_us); 1901 advmss = max(sf_advmss, advmss); 1902 } 1903 1904 msk->rcvq_space.rtt_us = rtt_us; 1905 if (time < (rtt_us >> 3) || rtt_us == 0) 1906 return; 1907 1908 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1909 goto new_measure; 1910 1911 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 1912 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1913 int rcvmem, rcvbuf; 1914 u64 rcvwin, grow; 1915 1916 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1917 1918 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1919 1920 do_div(grow, msk->rcvq_space.space); 1921 rcvwin += (grow << 1); 1922 1923 rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER); 1924 while (tcp_win_from_space(sk, rcvmem) < advmss) 1925 rcvmem += 128; 1926 1927 do_div(rcvwin, advmss); 1928 rcvbuf = min_t(u64, rcvwin * rcvmem, 1929 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 1930 1931 if (rcvbuf > sk->sk_rcvbuf) { 1932 u32 window_clamp; 1933 1934 window_clamp = tcp_win_from_space(sk, rcvbuf); 1935 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 1936 1937 /* Make subflows follow along. If we do not do this, we 1938 * get drops at subflow level if skbs can't be moved to 1939 * the mptcp rx queue fast enough (announced rcv_win can 1940 * exceed ssk->sk_rcvbuf). 1941 */ 1942 mptcp_for_each_subflow(msk, subflow) { 1943 struct sock *ssk; 1944 bool slow; 1945 1946 ssk = mptcp_subflow_tcp_sock(subflow); 1947 slow = lock_sock_fast(ssk); 1948 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 1949 tcp_sk(ssk)->window_clamp = window_clamp; 1950 tcp_cleanup_rbuf(ssk, 1); 1951 unlock_sock_fast(ssk, slow); 1952 } 1953 } 1954 } 1955 1956 msk->rcvq_space.space = msk->rcvq_space.copied; 1957 new_measure: 1958 msk->rcvq_space.copied = 0; 1959 msk->rcvq_space.time = mstamp; 1960 } 1961 1962 static void __mptcp_update_rmem(struct sock *sk) 1963 { 1964 struct mptcp_sock *msk = mptcp_sk(sk); 1965 1966 if (!msk->rmem_released) 1967 return; 1968 1969 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 1970 mptcp_rmem_uncharge(sk, msk->rmem_released); 1971 WRITE_ONCE(msk->rmem_released, 0); 1972 } 1973 1974 static void __mptcp_splice_receive_queue(struct sock *sk) 1975 { 1976 struct mptcp_sock *msk = mptcp_sk(sk); 1977 1978 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 1979 } 1980 1981 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 1982 { 1983 struct sock *sk = (struct sock *)msk; 1984 unsigned int moved = 0; 1985 bool ret, done; 1986 1987 do { 1988 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 1989 bool slowpath; 1990 1991 /* we can have data pending in the subflows only if the msk 1992 * receive buffer was full at subflow_data_ready() time, 1993 * that is an unlikely slow path. 1994 */ 1995 if (likely(!ssk)) 1996 break; 1997 1998 slowpath = lock_sock_fast(ssk); 1999 mptcp_data_lock(sk); 2000 __mptcp_update_rmem(sk); 2001 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 2002 mptcp_data_unlock(sk); 2003 2004 if (unlikely(ssk->sk_err)) 2005 __mptcp_error_report(sk); 2006 unlock_sock_fast(ssk, slowpath); 2007 } while (!done); 2008 2009 /* acquire the data lock only if some input data is pending */ 2010 ret = moved > 0; 2011 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 2012 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2013 mptcp_data_lock(sk); 2014 __mptcp_update_rmem(sk); 2015 ret |= __mptcp_ofo_queue(msk); 2016 __mptcp_splice_receive_queue(sk); 2017 mptcp_data_unlock(sk); 2018 } 2019 if (ret) 2020 mptcp_check_data_fin((struct sock *)msk); 2021 return !skb_queue_empty(&msk->receive_queue); 2022 } 2023 2024 static unsigned int mptcp_inq_hint(const struct sock *sk) 2025 { 2026 const struct mptcp_sock *msk = mptcp_sk(sk); 2027 const struct sk_buff *skb; 2028 2029 skb = skb_peek(&msk->receive_queue); 2030 if (skb) { 2031 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 2032 2033 if (hint_val >= INT_MAX) 2034 return INT_MAX; 2035 2036 return (unsigned int)hint_val; 2037 } 2038 2039 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2040 return 1; 2041 2042 return 0; 2043 } 2044 2045 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2046 int flags, int *addr_len) 2047 { 2048 struct mptcp_sock *msk = mptcp_sk(sk); 2049 struct scm_timestamping_internal tss; 2050 int copied = 0, cmsg_flags = 0; 2051 int target; 2052 long timeo; 2053 2054 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2055 if (unlikely(flags & MSG_ERRQUEUE)) 2056 return inet_recv_error(sk, msg, len, addr_len); 2057 2058 lock_sock(sk); 2059 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2060 copied = -ENOTCONN; 2061 goto out_err; 2062 } 2063 2064 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2065 2066 len = min_t(size_t, len, INT_MAX); 2067 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2068 2069 if (unlikely(msk->recvmsg_inq)) 2070 cmsg_flags = MPTCP_CMSG_INQ; 2071 2072 while (copied < len) { 2073 int bytes_read; 2074 2075 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2076 if (unlikely(bytes_read < 0)) { 2077 if (!copied) 2078 copied = bytes_read; 2079 goto out_err; 2080 } 2081 2082 copied += bytes_read; 2083 2084 /* be sure to advertise window change */ 2085 mptcp_cleanup_rbuf(msk); 2086 2087 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2088 continue; 2089 2090 /* only the master socket status is relevant here. The exit 2091 * conditions mirror closely tcp_recvmsg() 2092 */ 2093 if (copied >= target) 2094 break; 2095 2096 if (copied) { 2097 if (sk->sk_err || 2098 sk->sk_state == TCP_CLOSE || 2099 (sk->sk_shutdown & RCV_SHUTDOWN) || 2100 !timeo || 2101 signal_pending(current)) 2102 break; 2103 } else { 2104 if (sk->sk_err) { 2105 copied = sock_error(sk); 2106 break; 2107 } 2108 2109 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2110 mptcp_check_for_eof(msk); 2111 2112 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2113 /* race breaker: the shutdown could be after the 2114 * previous receive queue check 2115 */ 2116 if (__mptcp_move_skbs(msk)) 2117 continue; 2118 break; 2119 } 2120 2121 if (sk->sk_state == TCP_CLOSE) { 2122 copied = -ENOTCONN; 2123 break; 2124 } 2125 2126 if (!timeo) { 2127 copied = -EAGAIN; 2128 break; 2129 } 2130 2131 if (signal_pending(current)) { 2132 copied = sock_intr_errno(timeo); 2133 break; 2134 } 2135 } 2136 2137 pr_debug("block timeout %ld", timeo); 2138 sk_wait_data(sk, &timeo, NULL); 2139 } 2140 2141 out_err: 2142 if (cmsg_flags && copied >= 0) { 2143 if (cmsg_flags & MPTCP_CMSG_TS) 2144 tcp_recv_timestamp(msg, sk, &tss); 2145 2146 if (cmsg_flags & MPTCP_CMSG_INQ) { 2147 unsigned int inq = mptcp_inq_hint(sk); 2148 2149 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2150 } 2151 } 2152 2153 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2154 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2155 skb_queue_empty(&msk->receive_queue), copied); 2156 if (!(flags & MSG_PEEK)) 2157 mptcp_rcv_space_adjust(msk, copied); 2158 2159 release_sock(sk); 2160 return copied; 2161 } 2162 2163 static void mptcp_retransmit_timer(struct timer_list *t) 2164 { 2165 struct inet_connection_sock *icsk = from_timer(icsk, t, 2166 icsk_retransmit_timer); 2167 struct sock *sk = &icsk->icsk_inet.sk; 2168 struct mptcp_sock *msk = mptcp_sk(sk); 2169 2170 bh_lock_sock(sk); 2171 if (!sock_owned_by_user(sk)) { 2172 /* we need a process context to retransmit */ 2173 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2174 mptcp_schedule_work(sk); 2175 } else { 2176 /* delegate our work to tcp_release_cb() */ 2177 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2178 } 2179 bh_unlock_sock(sk); 2180 sock_put(sk); 2181 } 2182 2183 static void mptcp_timeout_timer(struct timer_list *t) 2184 { 2185 struct sock *sk = from_timer(sk, t, sk_timer); 2186 2187 mptcp_schedule_work(sk); 2188 sock_put(sk); 2189 } 2190 2191 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2192 * level. 2193 * 2194 * A backup subflow is returned only if that is the only kind available. 2195 */ 2196 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2197 { 2198 struct sock *backup = NULL, *pick = NULL; 2199 struct mptcp_subflow_context *subflow; 2200 int min_stale_count = INT_MAX; 2201 2202 sock_owned_by_me((const struct sock *)msk); 2203 2204 if (__mptcp_check_fallback(msk)) 2205 return NULL; 2206 2207 mptcp_for_each_subflow(msk, subflow) { 2208 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2209 2210 if (!__mptcp_subflow_active(subflow)) 2211 continue; 2212 2213 /* still data outstanding at TCP level? skip this */ 2214 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2215 mptcp_pm_subflow_chk_stale(msk, ssk); 2216 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2217 continue; 2218 } 2219 2220 if (subflow->backup) { 2221 if (!backup) 2222 backup = ssk; 2223 continue; 2224 } 2225 2226 if (!pick) 2227 pick = ssk; 2228 } 2229 2230 if (pick) 2231 return pick; 2232 2233 /* use backup only if there are no progresses anywhere */ 2234 return min_stale_count > 1 ? backup : NULL; 2235 } 2236 2237 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk) 2238 { 2239 if (msk->subflow) { 2240 iput(SOCK_INODE(msk->subflow)); 2241 msk->subflow = NULL; 2242 } 2243 } 2244 2245 bool __mptcp_retransmit_pending_data(struct sock *sk) 2246 { 2247 struct mptcp_data_frag *cur, *rtx_head; 2248 struct mptcp_sock *msk = mptcp_sk(sk); 2249 2250 if (__mptcp_check_fallback(mptcp_sk(sk))) 2251 return false; 2252 2253 if (tcp_rtx_and_write_queues_empty(sk)) 2254 return false; 2255 2256 /* the closing socket has some data untransmitted and/or unacked: 2257 * some data in the mptcp rtx queue has not really xmitted yet. 2258 * keep it simple and re-inject the whole mptcp level rtx queue 2259 */ 2260 mptcp_data_lock(sk); 2261 __mptcp_clean_una_wakeup(sk); 2262 rtx_head = mptcp_rtx_head(sk); 2263 if (!rtx_head) { 2264 mptcp_data_unlock(sk); 2265 return false; 2266 } 2267 2268 msk->recovery_snd_nxt = msk->snd_nxt; 2269 msk->recovery = true; 2270 mptcp_data_unlock(sk); 2271 2272 msk->first_pending = rtx_head; 2273 msk->snd_burst = 0; 2274 2275 /* be sure to clear the "sent status" on all re-injected fragments */ 2276 list_for_each_entry(cur, &msk->rtx_queue, list) { 2277 if (!cur->already_sent) 2278 break; 2279 cur->already_sent = 0; 2280 } 2281 2282 return true; 2283 } 2284 2285 /* flags for __mptcp_close_ssk() */ 2286 #define MPTCP_CF_PUSH BIT(1) 2287 #define MPTCP_CF_FASTCLOSE BIT(2) 2288 2289 /* subflow sockets can be either outgoing (connect) or incoming 2290 * (accept). 2291 * 2292 * Outgoing subflows use in-kernel sockets. 2293 * Incoming subflows do not have their own 'struct socket' allocated, 2294 * so we need to use tcp_close() after detaching them from the mptcp 2295 * parent socket. 2296 */ 2297 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2298 struct mptcp_subflow_context *subflow, 2299 unsigned int flags) 2300 { 2301 struct mptcp_sock *msk = mptcp_sk(sk); 2302 bool need_push, dispose_it; 2303 2304 dispose_it = !msk->subflow || ssk != msk->subflow->sk; 2305 if (dispose_it) 2306 list_del(&subflow->node); 2307 2308 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2309 2310 if (flags & MPTCP_CF_FASTCLOSE) 2311 subflow->send_fastclose = 1; 2312 2313 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2314 if (!dispose_it) { 2315 tcp_disconnect(ssk, 0); 2316 msk->subflow->state = SS_UNCONNECTED; 2317 mptcp_subflow_ctx_reset(subflow); 2318 release_sock(ssk); 2319 2320 goto out; 2321 } 2322 2323 /* if we are invoked by the msk cleanup code, the subflow is 2324 * already orphaned 2325 */ 2326 if (ssk->sk_socket) 2327 sock_orphan(ssk); 2328 2329 subflow->disposable = 1; 2330 2331 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2332 * the ssk has been already destroyed, we just need to release the 2333 * reference owned by msk; 2334 */ 2335 if (!inet_csk(ssk)->icsk_ulp_ops) { 2336 kfree_rcu(subflow, rcu); 2337 } else { 2338 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2339 if (ssk->sk_state == TCP_LISTEN) { 2340 tcp_set_state(ssk, TCP_CLOSE); 2341 mptcp_subflow_queue_clean(ssk); 2342 inet_csk_listen_stop(ssk); 2343 } 2344 __tcp_close(ssk, 0); 2345 2346 /* close acquired an extra ref */ 2347 __sock_put(ssk); 2348 } 2349 release_sock(ssk); 2350 2351 sock_put(ssk); 2352 2353 if (ssk == msk->first) 2354 msk->first = NULL; 2355 2356 out: 2357 if (ssk == msk->last_snd) 2358 msk->last_snd = NULL; 2359 2360 if (need_push) 2361 __mptcp_push_pending(sk, 0); 2362 } 2363 2364 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2365 struct mptcp_subflow_context *subflow) 2366 { 2367 if (sk->sk_state == TCP_ESTABLISHED) 2368 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2369 2370 /* subflow aborted before reaching the fully_established status 2371 * attempt the creation of the next subflow 2372 */ 2373 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow); 2374 2375 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2376 } 2377 2378 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2379 { 2380 return 0; 2381 } 2382 2383 static void __mptcp_close_subflow(struct mptcp_sock *msk) 2384 { 2385 struct mptcp_subflow_context *subflow, *tmp; 2386 2387 might_sleep(); 2388 2389 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2390 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2391 2392 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2393 continue; 2394 2395 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2396 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2397 continue; 2398 2399 mptcp_close_ssk((struct sock *)msk, ssk, subflow); 2400 } 2401 } 2402 2403 static bool mptcp_check_close_timeout(const struct sock *sk) 2404 { 2405 s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp; 2406 struct mptcp_subflow_context *subflow; 2407 2408 if (delta >= TCP_TIMEWAIT_LEN) 2409 return true; 2410 2411 /* if all subflows are in closed status don't bother with additional 2412 * timeout 2413 */ 2414 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2415 if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) != 2416 TCP_CLOSE) 2417 return false; 2418 } 2419 return true; 2420 } 2421 2422 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2423 { 2424 struct mptcp_subflow_context *subflow, *tmp; 2425 struct sock *sk = &msk->sk.icsk_inet.sk; 2426 2427 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2428 return; 2429 2430 mptcp_token_destroy(msk); 2431 2432 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2433 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2434 bool slow; 2435 2436 slow = lock_sock_fast(tcp_sk); 2437 if (tcp_sk->sk_state != TCP_CLOSE) { 2438 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2439 tcp_set_state(tcp_sk, TCP_CLOSE); 2440 } 2441 unlock_sock_fast(tcp_sk, slow); 2442 } 2443 2444 inet_sk_state_store(sk, TCP_CLOSE); 2445 sk->sk_shutdown = SHUTDOWN_MASK; 2446 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2447 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2448 2449 mptcp_close_wake_up(sk); 2450 } 2451 2452 static void __mptcp_retrans(struct sock *sk) 2453 { 2454 struct mptcp_sock *msk = mptcp_sk(sk); 2455 struct mptcp_sendmsg_info info = {}; 2456 struct mptcp_data_frag *dfrag; 2457 size_t copied = 0; 2458 struct sock *ssk; 2459 int ret; 2460 2461 mptcp_clean_una_wakeup(sk); 2462 2463 /* first check ssk: need to kick "stale" logic */ 2464 ssk = mptcp_subflow_get_retrans(msk); 2465 dfrag = mptcp_rtx_head(sk); 2466 if (!dfrag) { 2467 if (mptcp_data_fin_enabled(msk)) { 2468 struct inet_connection_sock *icsk = inet_csk(sk); 2469 2470 icsk->icsk_retransmits++; 2471 mptcp_set_datafin_timeout(sk); 2472 mptcp_send_ack(msk); 2473 2474 goto reset_timer; 2475 } 2476 2477 if (!mptcp_send_head(sk)) 2478 return; 2479 2480 goto reset_timer; 2481 } 2482 2483 if (!ssk) 2484 goto reset_timer; 2485 2486 lock_sock(ssk); 2487 2488 /* limit retransmission to the bytes already sent on some subflows */ 2489 info.sent = 0; 2490 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent; 2491 while (info.sent < info.limit) { 2492 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2493 if (ret <= 0) 2494 break; 2495 2496 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2497 copied += ret; 2498 info.sent += ret; 2499 } 2500 if (copied) { 2501 dfrag->already_sent = max(dfrag->already_sent, info.sent); 2502 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2503 info.size_goal); 2504 WRITE_ONCE(msk->allow_infinite_fallback, false); 2505 } 2506 2507 release_sock(ssk); 2508 2509 reset_timer: 2510 mptcp_check_and_set_pending(sk); 2511 2512 if (!mptcp_timer_pending(sk)) 2513 mptcp_reset_timer(sk); 2514 } 2515 2516 /* schedule the timeout timer for the relevant event: either close timeout 2517 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2518 */ 2519 void mptcp_reset_timeout(struct mptcp_sock *msk, unsigned long fail_tout) 2520 { 2521 struct sock *sk = (struct sock *)msk; 2522 unsigned long timeout, close_timeout; 2523 2524 if (!fail_tout && !sock_flag(sk, SOCK_DEAD)) 2525 return; 2526 2527 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + TCP_TIMEWAIT_LEN; 2528 2529 /* the close timeout takes precedence on the fail one, and here at least one of 2530 * them is active 2531 */ 2532 timeout = sock_flag(sk, SOCK_DEAD) ? close_timeout : fail_tout; 2533 2534 sk_reset_timer(sk, &sk->sk_timer, timeout); 2535 } 2536 2537 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2538 { 2539 struct sock *ssk = msk->first; 2540 bool slow; 2541 2542 if (!ssk) 2543 return; 2544 2545 pr_debug("MP_FAIL doesn't respond, reset the subflow"); 2546 2547 slow = lock_sock_fast(ssk); 2548 mptcp_subflow_reset(ssk); 2549 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2550 unlock_sock_fast(ssk, slow); 2551 2552 mptcp_reset_timeout(msk, 0); 2553 } 2554 2555 static void mptcp_worker(struct work_struct *work) 2556 { 2557 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2558 struct sock *sk = &msk->sk.icsk_inet.sk; 2559 unsigned long fail_tout; 2560 int state; 2561 2562 lock_sock(sk); 2563 state = sk->sk_state; 2564 if (unlikely(state == TCP_CLOSE)) 2565 goto unlock; 2566 2567 mptcp_check_data_fin_ack(sk); 2568 2569 mptcp_check_fastclose(msk); 2570 2571 mptcp_pm_nl_work(msk); 2572 2573 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2574 mptcp_check_for_eof(msk); 2575 2576 __mptcp_check_send_data_fin(sk); 2577 mptcp_check_data_fin(sk); 2578 2579 /* There is no point in keeping around an orphaned sk timedout or 2580 * closed, but we need the msk around to reply to incoming DATA_FIN, 2581 * even if it is orphaned and in FIN_WAIT2 state 2582 */ 2583 if (sock_flag(sk, SOCK_DEAD) && 2584 (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) { 2585 inet_sk_state_store(sk, TCP_CLOSE); 2586 __mptcp_destroy_sock(sk); 2587 goto unlock; 2588 } 2589 2590 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2591 __mptcp_close_subflow(msk); 2592 2593 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2594 __mptcp_retrans(sk); 2595 2596 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2597 if (fail_tout && time_after(jiffies, fail_tout)) 2598 mptcp_mp_fail_no_response(msk); 2599 2600 unlock: 2601 release_sock(sk); 2602 sock_put(sk); 2603 } 2604 2605 static int __mptcp_init_sock(struct sock *sk) 2606 { 2607 struct mptcp_sock *msk = mptcp_sk(sk); 2608 2609 INIT_LIST_HEAD(&msk->conn_list); 2610 INIT_LIST_HEAD(&msk->join_list); 2611 INIT_LIST_HEAD(&msk->rtx_queue); 2612 INIT_WORK(&msk->work, mptcp_worker); 2613 __skb_queue_head_init(&msk->receive_queue); 2614 msk->out_of_order_queue = RB_ROOT; 2615 msk->first_pending = NULL; 2616 msk->rmem_fwd_alloc = 0; 2617 WRITE_ONCE(msk->rmem_released, 0); 2618 msk->timer_ival = TCP_RTO_MIN; 2619 2620 msk->first = NULL; 2621 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2622 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2623 WRITE_ONCE(msk->allow_infinite_fallback, true); 2624 msk->recovery = false; 2625 2626 mptcp_pm_data_init(msk); 2627 2628 /* re-use the csk retrans timer for MPTCP-level retrans */ 2629 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2630 timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0); 2631 2632 return 0; 2633 } 2634 2635 static void mptcp_ca_reset(struct sock *sk) 2636 { 2637 struct inet_connection_sock *icsk = inet_csk(sk); 2638 2639 tcp_assign_congestion_control(sk); 2640 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2641 2642 /* no need to keep a reference to the ops, the name will suffice */ 2643 tcp_cleanup_congestion_control(sk); 2644 icsk->icsk_ca_ops = NULL; 2645 } 2646 2647 static int mptcp_init_sock(struct sock *sk) 2648 { 2649 struct net *net = sock_net(sk); 2650 int ret; 2651 2652 ret = __mptcp_init_sock(sk); 2653 if (ret) 2654 return ret; 2655 2656 if (!mptcp_is_enabled(net)) 2657 return -ENOPROTOOPT; 2658 2659 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2660 return -ENOMEM; 2661 2662 ret = __mptcp_socket_create(mptcp_sk(sk)); 2663 if (ret) 2664 return ret; 2665 2666 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2667 * propagate the correct value 2668 */ 2669 mptcp_ca_reset(sk); 2670 2671 sk_sockets_allocated_inc(sk); 2672 sk->sk_rcvbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 2673 sk->sk_sndbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 2674 2675 return 0; 2676 } 2677 2678 static void __mptcp_clear_xmit(struct sock *sk) 2679 { 2680 struct mptcp_sock *msk = mptcp_sk(sk); 2681 struct mptcp_data_frag *dtmp, *dfrag; 2682 2683 WRITE_ONCE(msk->first_pending, NULL); 2684 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2685 dfrag_clear(sk, dfrag); 2686 } 2687 2688 void mptcp_cancel_work(struct sock *sk) 2689 { 2690 struct mptcp_sock *msk = mptcp_sk(sk); 2691 2692 if (cancel_work_sync(&msk->work)) 2693 __sock_put(sk); 2694 } 2695 2696 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2697 { 2698 lock_sock(ssk); 2699 2700 switch (ssk->sk_state) { 2701 case TCP_LISTEN: 2702 if (!(how & RCV_SHUTDOWN)) 2703 break; 2704 fallthrough; 2705 case TCP_SYN_SENT: 2706 tcp_disconnect(ssk, O_NONBLOCK); 2707 break; 2708 default: 2709 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2710 pr_debug("Fallback"); 2711 ssk->sk_shutdown |= how; 2712 tcp_shutdown(ssk, how); 2713 } else { 2714 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2715 tcp_send_ack(ssk); 2716 if (!mptcp_timer_pending(sk)) 2717 mptcp_reset_timer(sk); 2718 } 2719 break; 2720 } 2721 2722 release_sock(ssk); 2723 } 2724 2725 static const unsigned char new_state[16] = { 2726 /* current state: new state: action: */ 2727 [0 /* (Invalid) */] = TCP_CLOSE, 2728 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2729 [TCP_SYN_SENT] = TCP_CLOSE, 2730 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2731 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2732 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2733 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2734 [TCP_CLOSE] = TCP_CLOSE, 2735 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2736 [TCP_LAST_ACK] = TCP_LAST_ACK, 2737 [TCP_LISTEN] = TCP_CLOSE, 2738 [TCP_CLOSING] = TCP_CLOSING, 2739 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2740 }; 2741 2742 static int mptcp_close_state(struct sock *sk) 2743 { 2744 int next = (int)new_state[sk->sk_state]; 2745 int ns = next & TCP_STATE_MASK; 2746 2747 inet_sk_state_store(sk, ns); 2748 2749 return next & TCP_ACTION_FIN; 2750 } 2751 2752 static void __mptcp_check_send_data_fin(struct sock *sk) 2753 { 2754 struct mptcp_subflow_context *subflow; 2755 struct mptcp_sock *msk = mptcp_sk(sk); 2756 2757 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2758 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2759 msk->snd_nxt, msk->write_seq); 2760 2761 /* we still need to enqueue subflows or not really shutting down, 2762 * skip this 2763 */ 2764 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2765 mptcp_send_head(sk)) 2766 return; 2767 2768 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2769 2770 /* fallback socket will not get data_fin/ack, can move to the next 2771 * state now 2772 */ 2773 if (__mptcp_check_fallback(msk)) { 2774 WRITE_ONCE(msk->snd_una, msk->write_seq); 2775 if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { 2776 inet_sk_state_store(sk, TCP_CLOSE); 2777 mptcp_close_wake_up(sk); 2778 } else if (sk->sk_state == TCP_FIN_WAIT1) { 2779 inet_sk_state_store(sk, TCP_FIN_WAIT2); 2780 } 2781 } 2782 2783 mptcp_for_each_subflow(msk, subflow) { 2784 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2785 2786 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2787 } 2788 } 2789 2790 static void __mptcp_wr_shutdown(struct sock *sk) 2791 { 2792 struct mptcp_sock *msk = mptcp_sk(sk); 2793 2794 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2795 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2796 !!mptcp_send_head(sk)); 2797 2798 /* will be ignored by fallback sockets */ 2799 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2800 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2801 2802 __mptcp_check_send_data_fin(sk); 2803 } 2804 2805 static void __mptcp_destroy_sock(struct sock *sk) 2806 { 2807 struct mptcp_sock *msk = mptcp_sk(sk); 2808 2809 pr_debug("msk=%p", msk); 2810 2811 might_sleep(); 2812 2813 mptcp_stop_timer(sk); 2814 sk_stop_timer(sk, &sk->sk_timer); 2815 msk->pm.status = 0; 2816 2817 sk->sk_prot->destroy(sk); 2818 2819 WARN_ON_ONCE(msk->rmem_fwd_alloc); 2820 WARN_ON_ONCE(msk->rmem_released); 2821 sk_stream_kill_queues(sk); 2822 xfrm_sk_free_policy(sk); 2823 2824 sk_refcnt_debug_release(sk); 2825 sock_put(sk); 2826 } 2827 2828 bool __mptcp_close(struct sock *sk, long timeout) 2829 { 2830 struct mptcp_subflow_context *subflow; 2831 struct mptcp_sock *msk = mptcp_sk(sk); 2832 bool do_cancel_work = false; 2833 2834 sk->sk_shutdown = SHUTDOWN_MASK; 2835 2836 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 2837 inet_sk_state_store(sk, TCP_CLOSE); 2838 goto cleanup; 2839 } 2840 2841 if (mptcp_close_state(sk)) 2842 __mptcp_wr_shutdown(sk); 2843 2844 sk_stream_wait_close(sk, timeout); 2845 2846 cleanup: 2847 /* orphan all the subflows */ 2848 inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32; 2849 mptcp_for_each_subflow(msk, subflow) { 2850 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2851 bool slow = lock_sock_fast_nested(ssk); 2852 2853 /* since the close timeout takes precedence on the fail one, 2854 * cancel the latter 2855 */ 2856 if (ssk == msk->first) 2857 subflow->fail_tout = 0; 2858 2859 sock_orphan(ssk); 2860 unlock_sock_fast(ssk, slow); 2861 } 2862 sock_orphan(sk); 2863 2864 sock_hold(sk); 2865 pr_debug("msk=%p state=%d", sk, sk->sk_state); 2866 if (mptcp_sk(sk)->token) 2867 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 2868 2869 if (sk->sk_state == TCP_CLOSE) { 2870 __mptcp_destroy_sock(sk); 2871 do_cancel_work = true; 2872 } else { 2873 mptcp_reset_timeout(msk, 0); 2874 } 2875 2876 return do_cancel_work; 2877 } 2878 2879 static void mptcp_close(struct sock *sk, long timeout) 2880 { 2881 bool do_cancel_work; 2882 2883 lock_sock(sk); 2884 2885 do_cancel_work = __mptcp_close(sk, timeout); 2886 release_sock(sk); 2887 if (do_cancel_work) 2888 mptcp_cancel_work(sk); 2889 2890 sock_put(sk); 2891 } 2892 2893 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 2894 { 2895 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2896 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 2897 struct ipv6_pinfo *msk6 = inet6_sk(msk); 2898 2899 msk->sk_v6_daddr = ssk->sk_v6_daddr; 2900 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 2901 2902 if (msk6 && ssk6) { 2903 msk6->saddr = ssk6->saddr; 2904 msk6->flow_label = ssk6->flow_label; 2905 } 2906 #endif 2907 2908 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 2909 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 2910 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 2911 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 2912 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 2913 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 2914 } 2915 2916 static int mptcp_disconnect(struct sock *sk, int flags) 2917 { 2918 struct mptcp_sock *msk = mptcp_sk(sk); 2919 2920 inet_sk_state_store(sk, TCP_CLOSE); 2921 2922 mptcp_stop_timer(sk); 2923 sk_stop_timer(sk, &sk->sk_timer); 2924 2925 if (mptcp_sk(sk)->token) 2926 mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL); 2927 2928 /* msk->subflow is still intact, the following will not free the first 2929 * subflow 2930 */ 2931 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 2932 msk->last_snd = NULL; 2933 WRITE_ONCE(msk->flags, 0); 2934 msk->cb_flags = 0; 2935 msk->push_pending = 0; 2936 msk->recovery = false; 2937 msk->can_ack = false; 2938 msk->fully_established = false; 2939 msk->rcv_data_fin = false; 2940 msk->snd_data_fin_enable = false; 2941 msk->rcv_fastclose = false; 2942 msk->use_64bit_ack = false; 2943 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2944 mptcp_pm_data_reset(msk); 2945 mptcp_ca_reset(sk); 2946 2947 sk->sk_shutdown = 0; 2948 sk_error_report(sk); 2949 return 0; 2950 } 2951 2952 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2953 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 2954 { 2955 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 2956 2957 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 2958 } 2959 #endif 2960 2961 struct sock *mptcp_sk_clone(const struct sock *sk, 2962 const struct mptcp_options_received *mp_opt, 2963 struct request_sock *req) 2964 { 2965 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 2966 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 2967 struct mptcp_sock *msk; 2968 u64 ack_seq; 2969 2970 if (!nsk) 2971 return NULL; 2972 2973 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2974 if (nsk->sk_family == AF_INET6) 2975 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 2976 #endif 2977 2978 __mptcp_init_sock(nsk); 2979 2980 msk = mptcp_sk(nsk); 2981 msk->local_key = subflow_req->local_key; 2982 msk->token = subflow_req->token; 2983 msk->subflow = NULL; 2984 WRITE_ONCE(msk->fully_established, false); 2985 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 2986 WRITE_ONCE(msk->csum_enabled, true); 2987 2988 msk->write_seq = subflow_req->idsn + 1; 2989 msk->snd_nxt = msk->write_seq; 2990 msk->snd_una = msk->write_seq; 2991 msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd; 2992 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 2993 2994 if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) { 2995 msk->can_ack = true; 2996 msk->remote_key = mp_opt->sndr_key; 2997 mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq); 2998 ack_seq++; 2999 WRITE_ONCE(msk->ack_seq, ack_seq); 3000 atomic64_set(&msk->rcv_wnd_sent, ack_seq); 3001 } 3002 3003 sock_reset_flag(nsk, SOCK_RCU_FREE); 3004 /* will be fully established after successful MPC subflow creation */ 3005 inet_sk_state_store(nsk, TCP_SYN_RECV); 3006 3007 security_inet_csk_clone(nsk, req); 3008 bh_unlock_sock(nsk); 3009 3010 /* keep a single reference */ 3011 __sock_put(nsk); 3012 return nsk; 3013 } 3014 3015 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3016 { 3017 const struct tcp_sock *tp = tcp_sk(ssk); 3018 3019 msk->rcvq_space.copied = 0; 3020 msk->rcvq_space.rtt_us = 0; 3021 3022 msk->rcvq_space.time = tp->tcp_mstamp; 3023 3024 /* initial rcv_space offering made to peer */ 3025 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3026 TCP_INIT_CWND * tp->advmss); 3027 if (msk->rcvq_space.space == 0) 3028 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3029 3030 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3031 } 3032 3033 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err, 3034 bool kern) 3035 { 3036 struct mptcp_sock *msk = mptcp_sk(sk); 3037 struct socket *listener; 3038 struct sock *newsk; 3039 3040 listener = __mptcp_nmpc_socket(msk); 3041 if (WARN_ON_ONCE(!listener)) { 3042 *err = -EINVAL; 3043 return NULL; 3044 } 3045 3046 pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk)); 3047 newsk = inet_csk_accept(listener->sk, flags, err, kern); 3048 if (!newsk) 3049 return NULL; 3050 3051 pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk)); 3052 if (sk_is_mptcp(newsk)) { 3053 struct mptcp_subflow_context *subflow; 3054 struct sock *new_mptcp_sock; 3055 3056 subflow = mptcp_subflow_ctx(newsk); 3057 new_mptcp_sock = subflow->conn; 3058 3059 /* is_mptcp should be false if subflow->conn is missing, see 3060 * subflow_syn_recv_sock() 3061 */ 3062 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3063 tcp_sk(newsk)->is_mptcp = 0; 3064 goto out; 3065 } 3066 3067 /* acquire the 2nd reference for the owning socket */ 3068 sock_hold(new_mptcp_sock); 3069 newsk = new_mptcp_sock; 3070 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3071 } else { 3072 MPTCP_INC_STATS(sock_net(sk), 3073 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 3074 } 3075 3076 out: 3077 newsk->sk_kern_sock = kern; 3078 return newsk; 3079 } 3080 3081 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3082 { 3083 struct mptcp_subflow_context *subflow, *tmp; 3084 struct sock *sk = (struct sock *)msk; 3085 3086 __mptcp_clear_xmit(sk); 3087 3088 /* join list will be eventually flushed (with rst) at sock lock release time */ 3089 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3090 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3091 3092 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3093 mptcp_data_lock(sk); 3094 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3095 __skb_queue_purge(&sk->sk_receive_queue); 3096 skb_rbtree_purge(&msk->out_of_order_queue); 3097 mptcp_data_unlock(sk); 3098 3099 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3100 * inet_sock_destruct() will dispose it 3101 */ 3102 sk->sk_forward_alloc += msk->rmem_fwd_alloc; 3103 msk->rmem_fwd_alloc = 0; 3104 mptcp_token_destroy(msk); 3105 mptcp_pm_free_anno_list(msk); 3106 mptcp_free_local_addr_list(msk); 3107 } 3108 3109 static void mptcp_destroy(struct sock *sk) 3110 { 3111 struct mptcp_sock *msk = mptcp_sk(sk); 3112 3113 /* clears msk->subflow, allowing the following to close 3114 * even the initial subflow 3115 */ 3116 mptcp_dispose_initial_subflow(msk); 3117 mptcp_destroy_common(msk, 0); 3118 sk_sockets_allocated_dec(sk); 3119 } 3120 3121 void __mptcp_data_acked(struct sock *sk) 3122 { 3123 if (!sock_owned_by_user(sk)) 3124 __mptcp_clean_una(sk); 3125 else 3126 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3127 3128 if (mptcp_pending_data_fin_ack(sk)) 3129 mptcp_schedule_work(sk); 3130 } 3131 3132 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3133 { 3134 if (!mptcp_send_head(sk)) 3135 return; 3136 3137 if (!sock_owned_by_user(sk)) { 3138 struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk)); 3139 3140 if (xmit_ssk == ssk) 3141 __mptcp_subflow_push_pending(sk, ssk); 3142 else if (xmit_ssk) 3143 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), MPTCP_DELEGATE_SEND); 3144 } else { 3145 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3146 } 3147 } 3148 3149 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3150 BIT(MPTCP_RETRANSMIT) | \ 3151 BIT(MPTCP_FLUSH_JOIN_LIST)) 3152 3153 /* processes deferred events and flush wmem */ 3154 static void mptcp_release_cb(struct sock *sk) 3155 __must_hold(&sk->sk_lock.slock) 3156 { 3157 struct mptcp_sock *msk = mptcp_sk(sk); 3158 3159 for (;;) { 3160 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) | 3161 msk->push_pending; 3162 if (!flags) 3163 break; 3164 3165 /* the following actions acquire the subflow socket lock 3166 * 3167 * 1) can't be invoked in atomic scope 3168 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3169 * datapath acquires the msk socket spinlock while helding 3170 * the subflow socket lock 3171 */ 3172 msk->push_pending = 0; 3173 msk->cb_flags &= ~flags; 3174 spin_unlock_bh(&sk->sk_lock.slock); 3175 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3176 __mptcp_flush_join_list(sk); 3177 if (flags & BIT(MPTCP_PUSH_PENDING)) 3178 __mptcp_push_pending(sk, 0); 3179 if (flags & BIT(MPTCP_RETRANSMIT)) 3180 __mptcp_retrans(sk); 3181 3182 cond_resched(); 3183 spin_lock_bh(&sk->sk_lock.slock); 3184 } 3185 3186 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3187 __mptcp_clean_una_wakeup(sk); 3188 if (unlikely(&msk->cb_flags)) { 3189 /* be sure to set the current sk state before tacking actions 3190 * depending on sk_state, that is processing MPTCP_ERROR_REPORT 3191 */ 3192 if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags)) 3193 __mptcp_set_connected(sk); 3194 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3195 __mptcp_error_report(sk); 3196 if (__test_and_clear_bit(MPTCP_RESET_SCHEDULER, &msk->cb_flags)) 3197 msk->last_snd = NULL; 3198 } 3199 3200 __mptcp_update_rmem(sk); 3201 } 3202 3203 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3204 * TCP can't schedule delack timer before the subflow is fully established. 3205 * MPTCP uses the delack timer to do 3rd ack retransmissions 3206 */ 3207 static void schedule_3rdack_retransmission(struct sock *ssk) 3208 { 3209 struct inet_connection_sock *icsk = inet_csk(ssk); 3210 struct tcp_sock *tp = tcp_sk(ssk); 3211 unsigned long timeout; 3212 3213 if (mptcp_subflow_ctx(ssk)->fully_established) 3214 return; 3215 3216 /* reschedule with a timeout above RTT, as we must look only for drop */ 3217 if (tp->srtt_us) 3218 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3219 else 3220 timeout = TCP_TIMEOUT_INIT; 3221 timeout += jiffies; 3222 3223 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3224 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3225 icsk->icsk_ack.timeout = timeout; 3226 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3227 } 3228 3229 void mptcp_subflow_process_delegated(struct sock *ssk) 3230 { 3231 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3232 struct sock *sk = subflow->conn; 3233 3234 if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) { 3235 mptcp_data_lock(sk); 3236 if (!sock_owned_by_user(sk)) 3237 __mptcp_subflow_push_pending(sk, ssk); 3238 else 3239 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3240 mptcp_data_unlock(sk); 3241 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND); 3242 } 3243 if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) { 3244 schedule_3rdack_retransmission(ssk); 3245 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK); 3246 } 3247 } 3248 3249 static int mptcp_hash(struct sock *sk) 3250 { 3251 /* should never be called, 3252 * we hash the TCP subflows not the master socket 3253 */ 3254 WARN_ON_ONCE(1); 3255 return 0; 3256 } 3257 3258 static void mptcp_unhash(struct sock *sk) 3259 { 3260 /* called from sk_common_release(), but nothing to do here */ 3261 } 3262 3263 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3264 { 3265 struct mptcp_sock *msk = mptcp_sk(sk); 3266 struct socket *ssock; 3267 3268 ssock = __mptcp_nmpc_socket(msk); 3269 pr_debug("msk=%p, subflow=%p", msk, ssock); 3270 if (WARN_ON_ONCE(!ssock)) 3271 return -EINVAL; 3272 3273 return inet_csk_get_port(ssock->sk, snum); 3274 } 3275 3276 void mptcp_finish_connect(struct sock *ssk) 3277 { 3278 struct mptcp_subflow_context *subflow; 3279 struct mptcp_sock *msk; 3280 struct sock *sk; 3281 u64 ack_seq; 3282 3283 subflow = mptcp_subflow_ctx(ssk); 3284 sk = subflow->conn; 3285 msk = mptcp_sk(sk); 3286 3287 pr_debug("msk=%p, token=%u", sk, subflow->token); 3288 3289 mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq); 3290 ack_seq++; 3291 subflow->map_seq = ack_seq; 3292 subflow->map_subflow_seq = 1; 3293 3294 /* the socket is not connected yet, no msk/subflow ops can access/race 3295 * accessing the field below 3296 */ 3297 WRITE_ONCE(msk->remote_key, subflow->remote_key); 3298 WRITE_ONCE(msk->local_key, subflow->local_key); 3299 WRITE_ONCE(msk->write_seq, subflow->idsn + 1); 3300 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3301 WRITE_ONCE(msk->ack_seq, ack_seq); 3302 WRITE_ONCE(msk->can_ack, 1); 3303 WRITE_ONCE(msk->snd_una, msk->write_seq); 3304 atomic64_set(&msk->rcv_wnd_sent, ack_seq); 3305 3306 mptcp_pm_new_connection(msk, ssk, 0); 3307 3308 mptcp_rcv_space_init(msk, ssk); 3309 } 3310 3311 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3312 { 3313 write_lock_bh(&sk->sk_callback_lock); 3314 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3315 sk_set_socket(sk, parent); 3316 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3317 write_unlock_bh(&sk->sk_callback_lock); 3318 } 3319 3320 bool mptcp_finish_join(struct sock *ssk) 3321 { 3322 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3323 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3324 struct sock *parent = (void *)msk; 3325 bool ret = true; 3326 3327 pr_debug("msk=%p, subflow=%p", msk, subflow); 3328 3329 /* mptcp socket already closing? */ 3330 if (!mptcp_is_fully_established(parent)) { 3331 subflow->reset_reason = MPTCP_RST_EMPTCP; 3332 return false; 3333 } 3334 3335 if (!list_empty(&subflow->node)) 3336 goto out; 3337 3338 if (!mptcp_pm_allow_new_subflow(msk)) 3339 goto err_prohibited; 3340 3341 /* active connections are already on conn_list. 3342 * If we can't acquire msk socket lock here, let the release callback 3343 * handle it 3344 */ 3345 mptcp_data_lock(parent); 3346 if (!sock_owned_by_user(parent)) { 3347 ret = __mptcp_finish_join(msk, ssk); 3348 if (ret) { 3349 sock_hold(ssk); 3350 list_add_tail(&subflow->node, &msk->conn_list); 3351 } 3352 } else { 3353 sock_hold(ssk); 3354 list_add_tail(&subflow->node, &msk->join_list); 3355 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3356 } 3357 mptcp_data_unlock(parent); 3358 3359 if (!ret) { 3360 err_prohibited: 3361 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3362 return false; 3363 } 3364 3365 subflow->map_seq = READ_ONCE(msk->ack_seq); 3366 WRITE_ONCE(msk->allow_infinite_fallback, false); 3367 3368 out: 3369 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 3370 return true; 3371 } 3372 3373 static void mptcp_shutdown(struct sock *sk, int how) 3374 { 3375 pr_debug("sk=%p, how=%d", sk, how); 3376 3377 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3378 __mptcp_wr_shutdown(sk); 3379 } 3380 3381 static int mptcp_forward_alloc_get(const struct sock *sk) 3382 { 3383 return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc; 3384 } 3385 3386 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3387 { 3388 const struct sock *sk = (void *)msk; 3389 u64 delta; 3390 3391 if (sk->sk_state == TCP_LISTEN) 3392 return -EINVAL; 3393 3394 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3395 return 0; 3396 3397 delta = msk->write_seq - v; 3398 if (__mptcp_check_fallback(msk) && msk->first) { 3399 struct tcp_sock *tp = tcp_sk(msk->first); 3400 3401 /* the first subflow is disconnected after close - see 3402 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3403 * so ignore that status, too. 3404 */ 3405 if (!((1 << msk->first->sk_state) & 3406 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3407 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3408 } 3409 if (delta > INT_MAX) 3410 delta = INT_MAX; 3411 3412 return (int)delta; 3413 } 3414 3415 static int mptcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3416 { 3417 struct mptcp_sock *msk = mptcp_sk(sk); 3418 bool slow; 3419 int answ; 3420 3421 switch (cmd) { 3422 case SIOCINQ: 3423 if (sk->sk_state == TCP_LISTEN) 3424 return -EINVAL; 3425 3426 lock_sock(sk); 3427 __mptcp_move_skbs(msk); 3428 answ = mptcp_inq_hint(sk); 3429 release_sock(sk); 3430 break; 3431 case SIOCOUTQ: 3432 slow = lock_sock_fast(sk); 3433 answ = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3434 unlock_sock_fast(sk, slow); 3435 break; 3436 case SIOCOUTQNSD: 3437 slow = lock_sock_fast(sk); 3438 answ = mptcp_ioctl_outq(msk, msk->snd_nxt); 3439 unlock_sock_fast(sk, slow); 3440 break; 3441 default: 3442 return -ENOIOCTLCMD; 3443 } 3444 3445 return put_user(answ, (int __user *)arg); 3446 } 3447 3448 static struct proto mptcp_prot = { 3449 .name = "MPTCP", 3450 .owner = THIS_MODULE, 3451 .init = mptcp_init_sock, 3452 .disconnect = mptcp_disconnect, 3453 .close = mptcp_close, 3454 .accept = mptcp_accept, 3455 .setsockopt = mptcp_setsockopt, 3456 .getsockopt = mptcp_getsockopt, 3457 .shutdown = mptcp_shutdown, 3458 .destroy = mptcp_destroy, 3459 .sendmsg = mptcp_sendmsg, 3460 .ioctl = mptcp_ioctl, 3461 .recvmsg = mptcp_recvmsg, 3462 .release_cb = mptcp_release_cb, 3463 .hash = mptcp_hash, 3464 .unhash = mptcp_unhash, 3465 .get_port = mptcp_get_port, 3466 .forward_alloc_get = mptcp_forward_alloc_get, 3467 .sockets_allocated = &mptcp_sockets_allocated, 3468 3469 .memory_allocated = &tcp_memory_allocated, 3470 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3471 3472 .memory_pressure = &tcp_memory_pressure, 3473 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3474 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3475 .sysctl_mem = sysctl_tcp_mem, 3476 .obj_size = sizeof(struct mptcp_sock), 3477 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3478 .no_autobind = true, 3479 }; 3480 3481 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3482 { 3483 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3484 struct socket *ssock; 3485 int err; 3486 3487 lock_sock(sock->sk); 3488 ssock = __mptcp_nmpc_socket(msk); 3489 if (!ssock) { 3490 err = -EINVAL; 3491 goto unlock; 3492 } 3493 3494 err = ssock->ops->bind(ssock, uaddr, addr_len); 3495 if (!err) 3496 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3497 3498 unlock: 3499 release_sock(sock->sk); 3500 return err; 3501 } 3502 3503 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3504 struct mptcp_subflow_context *subflow) 3505 { 3506 subflow->request_mptcp = 0; 3507 __mptcp_do_fallback(msk); 3508 } 3509 3510 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr, 3511 int addr_len, int flags) 3512 { 3513 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3514 struct mptcp_subflow_context *subflow; 3515 struct socket *ssock; 3516 int err = -EINVAL; 3517 3518 lock_sock(sock->sk); 3519 if (uaddr) { 3520 if (addr_len < sizeof(uaddr->sa_family)) 3521 goto unlock; 3522 3523 if (uaddr->sa_family == AF_UNSPEC) { 3524 err = mptcp_disconnect(sock->sk, flags); 3525 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 3526 goto unlock; 3527 } 3528 } 3529 3530 if (sock->state != SS_UNCONNECTED && msk->subflow) { 3531 /* pending connection or invalid state, let existing subflow 3532 * cope with that 3533 */ 3534 ssock = msk->subflow; 3535 goto do_connect; 3536 } 3537 3538 ssock = __mptcp_nmpc_socket(msk); 3539 if (!ssock) 3540 goto unlock; 3541 3542 mptcp_token_destroy(msk); 3543 inet_sk_state_store(sock->sk, TCP_SYN_SENT); 3544 subflow = mptcp_subflow_ctx(ssock->sk); 3545 #ifdef CONFIG_TCP_MD5SIG 3546 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3547 * TCP option space. 3548 */ 3549 if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info)) 3550 mptcp_subflow_early_fallback(msk, subflow); 3551 #endif 3552 if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) { 3553 MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT); 3554 mptcp_subflow_early_fallback(msk, subflow); 3555 } 3556 if (likely(!__mptcp_check_fallback(msk))) 3557 MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE); 3558 3559 do_connect: 3560 err = ssock->ops->connect(ssock, uaddr, addr_len, flags); 3561 inet_sk(sock->sk)->defer_connect = inet_sk(ssock->sk)->defer_connect; 3562 sock->state = ssock->state; 3563 3564 /* on successful connect, the msk state will be moved to established by 3565 * subflow_finish_connect() 3566 */ 3567 if (!err || err == -EINPROGRESS) 3568 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3569 else 3570 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 3571 3572 unlock: 3573 release_sock(sock->sk); 3574 return err; 3575 } 3576 3577 static int mptcp_listen(struct socket *sock, int backlog) 3578 { 3579 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3580 struct socket *ssock; 3581 int err; 3582 3583 pr_debug("msk=%p", msk); 3584 3585 lock_sock(sock->sk); 3586 ssock = __mptcp_nmpc_socket(msk); 3587 if (!ssock) { 3588 err = -EINVAL; 3589 goto unlock; 3590 } 3591 3592 mptcp_token_destroy(msk); 3593 inet_sk_state_store(sock->sk, TCP_LISTEN); 3594 sock_set_flag(sock->sk, SOCK_RCU_FREE); 3595 3596 err = ssock->ops->listen(ssock, backlog); 3597 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 3598 if (!err) 3599 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3600 3601 unlock: 3602 release_sock(sock->sk); 3603 return err; 3604 } 3605 3606 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3607 int flags, bool kern) 3608 { 3609 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3610 struct socket *ssock; 3611 int err; 3612 3613 pr_debug("msk=%p", msk); 3614 3615 ssock = __mptcp_nmpc_socket(msk); 3616 if (!ssock) 3617 return -EINVAL; 3618 3619 err = ssock->ops->accept(sock, newsock, flags, kern); 3620 if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) { 3621 struct mptcp_sock *msk = mptcp_sk(newsock->sk); 3622 struct mptcp_subflow_context *subflow; 3623 struct sock *newsk = newsock->sk; 3624 3625 lock_sock(newsk); 3626 3627 /* PM/worker can now acquire the first subflow socket 3628 * lock without racing with listener queue cleanup, 3629 * we can notify it, if needed. 3630 * 3631 * Even if remote has reset the initial subflow by now 3632 * the refcnt is still at least one. 3633 */ 3634 subflow = mptcp_subflow_ctx(msk->first); 3635 list_add(&subflow->node, &msk->conn_list); 3636 sock_hold(msk->first); 3637 if (mptcp_is_fully_established(newsk)) 3638 mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL); 3639 3640 mptcp_copy_inaddrs(newsk, msk->first); 3641 mptcp_rcv_space_init(msk, msk->first); 3642 mptcp_propagate_sndbuf(newsk, msk->first); 3643 3644 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3645 * This is needed so NOSPACE flag can be set from tcp stack. 3646 */ 3647 mptcp_for_each_subflow(msk, subflow) { 3648 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3649 3650 if (!ssk->sk_socket) 3651 mptcp_sock_graft(ssk, newsock); 3652 } 3653 release_sock(newsk); 3654 } 3655 3656 return err; 3657 } 3658 3659 static __poll_t mptcp_check_readable(struct mptcp_sock *msk) 3660 { 3661 /* Concurrent splices from sk_receive_queue into receive_queue will 3662 * always show at least one non-empty queue when checked in this order. 3663 */ 3664 if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) && 3665 skb_queue_empty_lockless(&msk->receive_queue)) 3666 return 0; 3667 3668 return EPOLLIN | EPOLLRDNORM; 3669 } 3670 3671 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3672 { 3673 struct sock *sk = (struct sock *)msk; 3674 3675 if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN)) 3676 return EPOLLOUT | EPOLLWRNORM; 3677 3678 if (sk_stream_is_writeable(sk)) 3679 return EPOLLOUT | EPOLLWRNORM; 3680 3681 mptcp_set_nospace(sk); 3682 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3683 if (sk_stream_is_writeable(sk)) 3684 return EPOLLOUT | EPOLLWRNORM; 3685 3686 return 0; 3687 } 3688 3689 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3690 struct poll_table_struct *wait) 3691 { 3692 struct sock *sk = sock->sk; 3693 struct mptcp_sock *msk; 3694 __poll_t mask = 0; 3695 int state; 3696 3697 msk = mptcp_sk(sk); 3698 sock_poll_wait(file, sock, wait); 3699 3700 state = inet_sk_state_load(sk); 3701 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3702 if (state == TCP_LISTEN) { 3703 if (WARN_ON_ONCE(!msk->subflow || !msk->subflow->sk)) 3704 return 0; 3705 3706 return inet_csk_listen_poll(msk->subflow->sk); 3707 } 3708 3709 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3710 mask |= mptcp_check_readable(msk); 3711 mask |= mptcp_check_writeable(msk); 3712 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 3713 /* cf tcp_poll() note about TFO */ 3714 mask |= EPOLLOUT | EPOLLWRNORM; 3715 } 3716 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3717 mask |= EPOLLHUP; 3718 if (sk->sk_shutdown & RCV_SHUTDOWN) 3719 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3720 3721 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 3722 smp_rmb(); 3723 if (sk->sk_err) 3724 mask |= EPOLLERR; 3725 3726 return mask; 3727 } 3728 3729 static const struct proto_ops mptcp_stream_ops = { 3730 .family = PF_INET, 3731 .owner = THIS_MODULE, 3732 .release = inet_release, 3733 .bind = mptcp_bind, 3734 .connect = mptcp_stream_connect, 3735 .socketpair = sock_no_socketpair, 3736 .accept = mptcp_stream_accept, 3737 .getname = inet_getname, 3738 .poll = mptcp_poll, 3739 .ioctl = inet_ioctl, 3740 .gettstamp = sock_gettstamp, 3741 .listen = mptcp_listen, 3742 .shutdown = inet_shutdown, 3743 .setsockopt = sock_common_setsockopt, 3744 .getsockopt = sock_common_getsockopt, 3745 .sendmsg = inet_sendmsg, 3746 .recvmsg = inet_recvmsg, 3747 .mmap = sock_no_mmap, 3748 .sendpage = inet_sendpage, 3749 }; 3750 3751 static struct inet_protosw mptcp_protosw = { 3752 .type = SOCK_STREAM, 3753 .protocol = IPPROTO_MPTCP, 3754 .prot = &mptcp_prot, 3755 .ops = &mptcp_stream_ops, 3756 .flags = INET_PROTOSW_ICSK, 3757 }; 3758 3759 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 3760 { 3761 struct mptcp_delegated_action *delegated; 3762 struct mptcp_subflow_context *subflow; 3763 int work_done = 0; 3764 3765 delegated = container_of(napi, struct mptcp_delegated_action, napi); 3766 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 3767 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3768 3769 bh_lock_sock_nested(ssk); 3770 if (!sock_owned_by_user(ssk) && 3771 mptcp_subflow_has_delegated_action(subflow)) 3772 mptcp_subflow_process_delegated(ssk); 3773 /* ... elsewhere tcp_release_cb_override already processed 3774 * the action or will do at next release_sock(). 3775 * In both case must dequeue the subflow here - on the same 3776 * CPU that scheduled it. 3777 */ 3778 bh_unlock_sock(ssk); 3779 sock_put(ssk); 3780 3781 if (++work_done == budget) 3782 return budget; 3783 } 3784 3785 /* always provide a 0 'work_done' argument, so that napi_complete_done 3786 * will not try accessing the NULL napi->dev ptr 3787 */ 3788 napi_complete_done(napi, 0); 3789 return work_done; 3790 } 3791 3792 void __init mptcp_proto_init(void) 3793 { 3794 struct mptcp_delegated_action *delegated; 3795 int cpu; 3796 3797 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 3798 3799 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 3800 panic("Failed to allocate MPTCP pcpu counter\n"); 3801 3802 init_dummy_netdev(&mptcp_napi_dev); 3803 for_each_possible_cpu(cpu) { 3804 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 3805 INIT_LIST_HEAD(&delegated->head); 3806 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 3807 mptcp_napi_poll); 3808 napi_enable(&delegated->napi); 3809 } 3810 3811 mptcp_subflow_init(); 3812 mptcp_pm_init(); 3813 mptcp_token_init(); 3814 3815 if (proto_register(&mptcp_prot, 1) != 0) 3816 panic("Failed to register MPTCP proto.\n"); 3817 3818 inet_register_protosw(&mptcp_protosw); 3819 3820 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 3821 } 3822 3823 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3824 static const struct proto_ops mptcp_v6_stream_ops = { 3825 .family = PF_INET6, 3826 .owner = THIS_MODULE, 3827 .release = inet6_release, 3828 .bind = mptcp_bind, 3829 .connect = mptcp_stream_connect, 3830 .socketpair = sock_no_socketpair, 3831 .accept = mptcp_stream_accept, 3832 .getname = inet6_getname, 3833 .poll = mptcp_poll, 3834 .ioctl = inet6_ioctl, 3835 .gettstamp = sock_gettstamp, 3836 .listen = mptcp_listen, 3837 .shutdown = inet_shutdown, 3838 .setsockopt = sock_common_setsockopt, 3839 .getsockopt = sock_common_getsockopt, 3840 .sendmsg = inet6_sendmsg, 3841 .recvmsg = inet6_recvmsg, 3842 .mmap = sock_no_mmap, 3843 .sendpage = inet_sendpage, 3844 #ifdef CONFIG_COMPAT 3845 .compat_ioctl = inet6_compat_ioctl, 3846 #endif 3847 }; 3848 3849 static struct proto mptcp_v6_prot; 3850 3851 static void mptcp_v6_destroy(struct sock *sk) 3852 { 3853 mptcp_destroy(sk); 3854 inet6_destroy_sock(sk); 3855 } 3856 3857 static struct inet_protosw mptcp_v6_protosw = { 3858 .type = SOCK_STREAM, 3859 .protocol = IPPROTO_MPTCP, 3860 .prot = &mptcp_v6_prot, 3861 .ops = &mptcp_v6_stream_ops, 3862 .flags = INET_PROTOSW_ICSK, 3863 }; 3864 3865 int __init mptcp_proto_v6_init(void) 3866 { 3867 int err; 3868 3869 mptcp_v6_prot = mptcp_prot; 3870 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 3871 mptcp_v6_prot.slab = NULL; 3872 mptcp_v6_prot.destroy = mptcp_v6_destroy; 3873 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 3874 3875 err = proto_register(&mptcp_v6_prot, 1); 3876 if (err) 3877 return err; 3878 3879 err = inet6_register_protosw(&mptcp_v6_protosw); 3880 if (err) 3881 proto_unregister(&mptcp_v6_prot); 3882 3883 return err; 3884 } 3885 #endif 3886