1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include "protocol.h" 25 #include "mib.h" 26 27 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 28 struct mptcp6_sock { 29 struct mptcp_sock msk; 30 struct ipv6_pinfo np; 31 }; 32 #endif 33 34 struct mptcp_skb_cb { 35 u64 map_seq; 36 u64 end_seq; 37 u32 offset; 38 }; 39 40 #define MPTCP_SKB_CB(__skb) ((struct mptcp_skb_cb *)&((__skb)->cb[0])) 41 42 static struct percpu_counter mptcp_sockets_allocated; 43 44 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not 45 * completed yet or has failed, return the subflow socket. 46 * Otherwise return NULL. 47 */ 48 static struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk) 49 { 50 if (!msk->subflow || READ_ONCE(msk->can_ack)) 51 return NULL; 52 53 return msk->subflow; 54 } 55 56 static bool mptcp_is_tcpsk(struct sock *sk) 57 { 58 struct socket *sock = sk->sk_socket; 59 60 if (unlikely(sk->sk_prot == &tcp_prot)) { 61 /* we are being invoked after mptcp_accept() has 62 * accepted a non-mp-capable flow: sk is a tcp_sk, 63 * not an mptcp one. 64 * 65 * Hand the socket over to tcp so all further socket ops 66 * bypass mptcp. 67 */ 68 sock->ops = &inet_stream_ops; 69 return true; 70 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 71 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { 72 sock->ops = &inet6_stream_ops; 73 return true; 74 #endif 75 } 76 77 return false; 78 } 79 80 static struct sock *__mptcp_tcp_fallback(struct mptcp_sock *msk) 81 { 82 sock_owned_by_me((const struct sock *)msk); 83 84 if (likely(!__mptcp_check_fallback(msk))) 85 return NULL; 86 87 return msk->first; 88 } 89 90 static int __mptcp_socket_create(struct mptcp_sock *msk) 91 { 92 struct mptcp_subflow_context *subflow; 93 struct sock *sk = (struct sock *)msk; 94 struct socket *ssock; 95 int err; 96 97 err = mptcp_subflow_create_socket(sk, &ssock); 98 if (err) 99 return err; 100 101 msk->first = ssock->sk; 102 msk->subflow = ssock; 103 subflow = mptcp_subflow_ctx(ssock->sk); 104 list_add(&subflow->node, &msk->conn_list); 105 subflow->request_mptcp = 1; 106 107 /* accept() will wait on first subflow sk_wq, and we always wakes up 108 * via msk->sk_socket 109 */ 110 RCU_INIT_POINTER(msk->first->sk_wq, &sk->sk_socket->wq); 111 112 return 0; 113 } 114 115 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 116 { 117 sk_drops_add(sk, skb); 118 __kfree_skb(skb); 119 } 120 121 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 122 struct sk_buff *from) 123 { 124 bool fragstolen; 125 int delta; 126 127 if (MPTCP_SKB_CB(from)->offset || 128 !skb_try_coalesce(to, from, &fragstolen, &delta)) 129 return false; 130 131 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 132 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 133 to->len, MPTCP_SKB_CB(from)->end_seq); 134 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 135 kfree_skb_partial(from, fragstolen); 136 atomic_add(delta, &sk->sk_rmem_alloc); 137 sk_mem_charge(sk, delta); 138 return true; 139 } 140 141 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 142 struct sk_buff *from) 143 { 144 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 145 return false; 146 147 return mptcp_try_coalesce((struct sock *)msk, to, from); 148 } 149 150 /* "inspired" by tcp_data_queue_ofo(), main differences: 151 * - use mptcp seqs 152 * - don't cope with sacks 153 */ 154 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 155 { 156 struct sock *sk = (struct sock *)msk; 157 struct rb_node **p, *parent; 158 u64 seq, end_seq, max_seq; 159 struct sk_buff *skb1; 160 int space; 161 162 seq = MPTCP_SKB_CB(skb)->map_seq; 163 end_seq = MPTCP_SKB_CB(skb)->end_seq; 164 space = tcp_space(sk); 165 max_seq = space > 0 ? space + msk->ack_seq : msk->ack_seq; 166 167 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 168 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 169 if (after64(seq, max_seq)) { 170 /* out of window */ 171 mptcp_drop(sk, skb); 172 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 173 return; 174 } 175 176 p = &msk->out_of_order_queue.rb_node; 177 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 178 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 179 rb_link_node(&skb->rbnode, NULL, p); 180 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 181 msk->ooo_last_skb = skb; 182 goto end; 183 } 184 185 /* with 2 subflows, adding at end of ooo queue is quite likely 186 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 187 */ 188 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 189 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 190 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 191 return; 192 } 193 194 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 195 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 196 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 197 parent = &msk->ooo_last_skb->rbnode; 198 p = &parent->rb_right; 199 goto insert; 200 } 201 202 /* Find place to insert this segment. Handle overlaps on the way. */ 203 parent = NULL; 204 while (*p) { 205 parent = *p; 206 skb1 = rb_to_skb(parent); 207 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 208 p = &parent->rb_left; 209 continue; 210 } 211 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 212 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 213 /* All the bits are present. Drop. */ 214 mptcp_drop(sk, skb); 215 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 216 return; 217 } 218 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 219 /* partial overlap: 220 * | skb | 221 * | skb1 | 222 * continue traversing 223 */ 224 } else { 225 /* skb's seq == skb1's seq and skb covers skb1. 226 * Replace skb1 with skb. 227 */ 228 rb_replace_node(&skb1->rbnode, &skb->rbnode, 229 &msk->out_of_order_queue); 230 mptcp_drop(sk, skb1); 231 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 232 goto merge_right; 233 } 234 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 235 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 236 return; 237 } 238 p = &parent->rb_right; 239 } 240 241 insert: 242 /* Insert segment into RB tree. */ 243 rb_link_node(&skb->rbnode, parent, p); 244 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 245 246 merge_right: 247 /* Remove other segments covered by skb. */ 248 while ((skb1 = skb_rb_next(skb)) != NULL) { 249 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 250 break; 251 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 252 mptcp_drop(sk, skb1); 253 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 254 } 255 /* If there is no skb after us, we are the last_skb ! */ 256 if (!skb1) 257 msk->ooo_last_skb = skb; 258 259 end: 260 skb_condense(skb); 261 skb_set_owner_r(skb, sk); 262 } 263 264 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 265 struct sk_buff *skb, unsigned int offset, 266 size_t copy_len) 267 { 268 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 269 struct sock *sk = (struct sock *)msk; 270 struct sk_buff *tail; 271 272 __skb_unlink(skb, &ssk->sk_receive_queue); 273 274 skb_ext_reset(skb); 275 skb_orphan(skb); 276 277 /* the skb map_seq accounts for the skb offset: 278 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 279 * value 280 */ 281 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 282 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 283 MPTCP_SKB_CB(skb)->offset = offset; 284 285 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 286 /* in sequence */ 287 msk->ack_seq += copy_len; 288 tail = skb_peek_tail(&sk->sk_receive_queue); 289 if (tail && mptcp_try_coalesce(sk, tail, skb)) 290 return true; 291 292 skb_set_owner_r(skb, sk); 293 __skb_queue_tail(&sk->sk_receive_queue, skb); 294 return true; 295 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 296 mptcp_data_queue_ofo(msk, skb); 297 return false; 298 } 299 300 /* old data, keep it simple and drop the whole pkt, sender 301 * will retransmit as needed, if needed. 302 */ 303 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 304 mptcp_drop(sk, skb); 305 return false; 306 } 307 308 static void mptcp_stop_timer(struct sock *sk) 309 { 310 struct inet_connection_sock *icsk = inet_csk(sk); 311 312 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 313 mptcp_sk(sk)->timer_ival = 0; 314 } 315 316 static void mptcp_check_data_fin_ack(struct sock *sk) 317 { 318 struct mptcp_sock *msk = mptcp_sk(sk); 319 320 if (__mptcp_check_fallback(msk)) 321 return; 322 323 /* Look for an acknowledged DATA_FIN */ 324 if (((1 << sk->sk_state) & 325 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 326 msk->write_seq == atomic64_read(&msk->snd_una)) { 327 mptcp_stop_timer(sk); 328 329 WRITE_ONCE(msk->snd_data_fin_enable, 0); 330 331 switch (sk->sk_state) { 332 case TCP_FIN_WAIT1: 333 inet_sk_state_store(sk, TCP_FIN_WAIT2); 334 sk->sk_state_change(sk); 335 break; 336 case TCP_CLOSING: 337 case TCP_LAST_ACK: 338 inet_sk_state_store(sk, TCP_CLOSE); 339 sk->sk_state_change(sk); 340 break; 341 } 342 343 if (sk->sk_shutdown == SHUTDOWN_MASK || 344 sk->sk_state == TCP_CLOSE) 345 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 346 else 347 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 348 } 349 } 350 351 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 352 { 353 struct mptcp_sock *msk = mptcp_sk(sk); 354 355 if (READ_ONCE(msk->rcv_data_fin) && 356 ((1 << sk->sk_state) & 357 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 358 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 359 360 if (msk->ack_seq == rcv_data_fin_seq) { 361 if (seq) 362 *seq = rcv_data_fin_seq; 363 364 return true; 365 } 366 } 367 368 return false; 369 } 370 371 static void mptcp_set_timeout(const struct sock *sk, const struct sock *ssk) 372 { 373 long tout = ssk && inet_csk(ssk)->icsk_pending ? 374 inet_csk(ssk)->icsk_timeout - jiffies : 0; 375 376 if (tout <= 0) 377 tout = mptcp_sk(sk)->timer_ival; 378 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 379 } 380 381 static void mptcp_check_data_fin(struct sock *sk) 382 { 383 struct mptcp_sock *msk = mptcp_sk(sk); 384 u64 rcv_data_fin_seq; 385 386 if (__mptcp_check_fallback(msk) || !msk->first) 387 return; 388 389 /* Need to ack a DATA_FIN received from a peer while this side 390 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 391 * msk->rcv_data_fin was set when parsing the incoming options 392 * at the subflow level and the msk lock was not held, so this 393 * is the first opportunity to act on the DATA_FIN and change 394 * the msk state. 395 * 396 * If we are caught up to the sequence number of the incoming 397 * DATA_FIN, send the DATA_ACK now and do state transition. If 398 * not caught up, do nothing and let the recv code send DATA_ACK 399 * when catching up. 400 */ 401 402 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 403 struct mptcp_subflow_context *subflow; 404 405 msk->ack_seq++; 406 WRITE_ONCE(msk->rcv_data_fin, 0); 407 408 sk->sk_shutdown |= RCV_SHUTDOWN; 409 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 410 set_bit(MPTCP_DATA_READY, &msk->flags); 411 412 switch (sk->sk_state) { 413 case TCP_ESTABLISHED: 414 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 415 break; 416 case TCP_FIN_WAIT1: 417 inet_sk_state_store(sk, TCP_CLOSING); 418 break; 419 case TCP_FIN_WAIT2: 420 inet_sk_state_store(sk, TCP_CLOSE); 421 // @@ Close subflows now? 422 break; 423 default: 424 /* Other states not expected */ 425 WARN_ON_ONCE(1); 426 break; 427 } 428 429 mptcp_set_timeout(sk, NULL); 430 mptcp_for_each_subflow(msk, subflow) { 431 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 432 433 lock_sock(ssk); 434 tcp_send_ack(ssk); 435 release_sock(ssk); 436 } 437 438 sk->sk_state_change(sk); 439 440 if (sk->sk_shutdown == SHUTDOWN_MASK || 441 sk->sk_state == TCP_CLOSE) 442 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 443 else 444 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 445 } 446 } 447 448 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 449 struct sock *ssk, 450 unsigned int *bytes) 451 { 452 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 453 struct sock *sk = (struct sock *)msk; 454 unsigned int moved = 0; 455 bool more_data_avail; 456 struct tcp_sock *tp; 457 bool done = false; 458 459 pr_debug("msk=%p ssk=%p", msk, ssk); 460 tp = tcp_sk(ssk); 461 do { 462 u32 map_remaining, offset; 463 u32 seq = tp->copied_seq; 464 struct sk_buff *skb; 465 bool fin; 466 467 /* try to move as much data as available */ 468 map_remaining = subflow->map_data_len - 469 mptcp_subflow_get_map_offset(subflow); 470 471 skb = skb_peek(&ssk->sk_receive_queue); 472 if (!skb) 473 break; 474 475 if (__mptcp_check_fallback(msk)) { 476 /* if we are running under the workqueue, TCP could have 477 * collapsed skbs between dummy map creation and now 478 * be sure to adjust the size 479 */ 480 map_remaining = skb->len; 481 subflow->map_data_len = skb->len; 482 } 483 484 offset = seq - TCP_SKB_CB(skb)->seq; 485 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 486 if (fin) { 487 done = true; 488 seq++; 489 } 490 491 if (offset < skb->len) { 492 size_t len = skb->len - offset; 493 494 if (tp->urg_data) 495 done = true; 496 497 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 498 moved += len; 499 seq += len; 500 501 if (WARN_ON_ONCE(map_remaining < len)) 502 break; 503 } else { 504 WARN_ON_ONCE(!fin); 505 sk_eat_skb(ssk, skb); 506 done = true; 507 } 508 509 WRITE_ONCE(tp->copied_seq, seq); 510 more_data_avail = mptcp_subflow_data_available(ssk); 511 512 if (atomic_read(&sk->sk_rmem_alloc) > READ_ONCE(sk->sk_rcvbuf)) { 513 done = true; 514 break; 515 } 516 } while (more_data_avail); 517 518 *bytes += moved; 519 if (moved) 520 tcp_cleanup_rbuf(ssk, moved); 521 522 return done; 523 } 524 525 static bool mptcp_ofo_queue(struct mptcp_sock *msk) 526 { 527 struct sock *sk = (struct sock *)msk; 528 struct sk_buff *skb, *tail; 529 bool moved = false; 530 struct rb_node *p; 531 u64 end_seq; 532 533 p = rb_first(&msk->out_of_order_queue); 534 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 535 while (p) { 536 skb = rb_to_skb(p); 537 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 538 break; 539 540 p = rb_next(p); 541 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 542 543 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 544 msk->ack_seq))) { 545 mptcp_drop(sk, skb); 546 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 547 continue; 548 } 549 550 end_seq = MPTCP_SKB_CB(skb)->end_seq; 551 tail = skb_peek_tail(&sk->sk_receive_queue); 552 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 553 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 554 555 /* skip overlapping data, if any */ 556 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 557 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 558 delta); 559 MPTCP_SKB_CB(skb)->offset += delta; 560 __skb_queue_tail(&sk->sk_receive_queue, skb); 561 } 562 msk->ack_seq = end_seq; 563 moved = true; 564 } 565 return moved; 566 } 567 568 /* In most cases we will be able to lock the mptcp socket. If its already 569 * owned, we need to defer to the work queue to avoid ABBA deadlock. 570 */ 571 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 572 { 573 struct sock *sk = (struct sock *)msk; 574 unsigned int moved = 0; 575 576 if (READ_ONCE(sk->sk_lock.owned)) 577 return false; 578 579 if (unlikely(!spin_trylock_bh(&sk->sk_lock.slock))) 580 return false; 581 582 /* must re-check after taking the lock */ 583 if (!READ_ONCE(sk->sk_lock.owned)) { 584 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 585 mptcp_ofo_queue(msk); 586 587 /* If the moves have caught up with the DATA_FIN sequence number 588 * it's time to ack the DATA_FIN and change socket state, but 589 * this is not a good place to change state. Let the workqueue 590 * do it. 591 */ 592 if (mptcp_pending_data_fin(sk, NULL) && 593 schedule_work(&msk->work)) 594 sock_hold(sk); 595 } 596 597 spin_unlock_bh(&sk->sk_lock.slock); 598 599 return moved > 0; 600 } 601 602 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 603 { 604 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 605 struct mptcp_sock *msk = mptcp_sk(sk); 606 bool wake; 607 608 /* move_skbs_to_msk below can legitly clear the data_avail flag, 609 * but we will need later to properly woke the reader, cache its 610 * value 611 */ 612 wake = subflow->data_avail == MPTCP_SUBFLOW_DATA_AVAIL; 613 if (wake) 614 set_bit(MPTCP_DATA_READY, &msk->flags); 615 616 if (atomic_read(&sk->sk_rmem_alloc) < READ_ONCE(sk->sk_rcvbuf) && 617 move_skbs_to_msk(msk, ssk)) 618 goto wake; 619 620 /* don't schedule if mptcp sk is (still) over limit */ 621 if (atomic_read(&sk->sk_rmem_alloc) > READ_ONCE(sk->sk_rcvbuf)) 622 goto wake; 623 624 /* mptcp socket is owned, release_cb should retry */ 625 if (!test_and_set_bit(TCP_DELACK_TIMER_DEFERRED, 626 &sk->sk_tsq_flags)) { 627 sock_hold(sk); 628 629 /* need to try again, its possible release_cb() has already 630 * been called after the test_and_set_bit() above. 631 */ 632 move_skbs_to_msk(msk, ssk); 633 } 634 wake: 635 if (wake) 636 sk->sk_data_ready(sk); 637 } 638 639 static void __mptcp_flush_join_list(struct mptcp_sock *msk) 640 { 641 if (likely(list_empty(&msk->join_list))) 642 return; 643 644 spin_lock_bh(&msk->join_list_lock); 645 list_splice_tail_init(&msk->join_list, &msk->conn_list); 646 spin_unlock_bh(&msk->join_list_lock); 647 } 648 649 static bool mptcp_timer_pending(struct sock *sk) 650 { 651 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 652 } 653 654 static void mptcp_reset_timer(struct sock *sk) 655 { 656 struct inet_connection_sock *icsk = inet_csk(sk); 657 unsigned long tout; 658 659 /* should never be called with mptcp level timer cleared */ 660 tout = READ_ONCE(mptcp_sk(sk)->timer_ival); 661 if (WARN_ON_ONCE(!tout)) 662 tout = TCP_RTO_MIN; 663 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 664 } 665 666 void mptcp_data_acked(struct sock *sk) 667 { 668 mptcp_reset_timer(sk); 669 670 if ((!test_bit(MPTCP_SEND_SPACE, &mptcp_sk(sk)->flags) || 671 (inet_sk_state_load(sk) != TCP_ESTABLISHED)) && 672 schedule_work(&mptcp_sk(sk)->work)) 673 sock_hold(sk); 674 } 675 676 void mptcp_subflow_eof(struct sock *sk) 677 { 678 struct mptcp_sock *msk = mptcp_sk(sk); 679 680 if (!test_and_set_bit(MPTCP_WORK_EOF, &msk->flags) && 681 schedule_work(&msk->work)) 682 sock_hold(sk); 683 } 684 685 static void mptcp_check_for_eof(struct mptcp_sock *msk) 686 { 687 struct mptcp_subflow_context *subflow; 688 struct sock *sk = (struct sock *)msk; 689 int receivers = 0; 690 691 mptcp_for_each_subflow(msk, subflow) 692 receivers += !subflow->rx_eof; 693 694 if (!receivers && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 695 /* hopefully temporary hack: propagate shutdown status 696 * to msk, when all subflows agree on it 697 */ 698 sk->sk_shutdown |= RCV_SHUTDOWN; 699 700 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 701 set_bit(MPTCP_DATA_READY, &msk->flags); 702 sk->sk_data_ready(sk); 703 } 704 } 705 706 static bool mptcp_ext_cache_refill(struct mptcp_sock *msk) 707 { 708 const struct sock *sk = (const struct sock *)msk; 709 710 if (!msk->cached_ext) 711 msk->cached_ext = __skb_ext_alloc(sk->sk_allocation); 712 713 return !!msk->cached_ext; 714 } 715 716 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 717 { 718 struct mptcp_subflow_context *subflow; 719 struct sock *sk = (struct sock *)msk; 720 721 sock_owned_by_me(sk); 722 723 mptcp_for_each_subflow(msk, subflow) { 724 if (subflow->data_avail) 725 return mptcp_subflow_tcp_sock(subflow); 726 } 727 728 return NULL; 729 } 730 731 static bool mptcp_skb_can_collapse_to(u64 write_seq, 732 const struct sk_buff *skb, 733 const struct mptcp_ext *mpext) 734 { 735 if (!tcp_skb_can_collapse_to(skb)) 736 return false; 737 738 /* can collapse only if MPTCP level sequence is in order */ 739 return mpext && mpext->data_seq + mpext->data_len == write_seq; 740 } 741 742 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 743 const struct page_frag *pfrag, 744 const struct mptcp_data_frag *df) 745 { 746 return df && pfrag->page == df->page && 747 df->data_seq + df->data_len == msk->write_seq; 748 } 749 750 static void dfrag_uncharge(struct sock *sk, int len) 751 { 752 sk_mem_uncharge(sk, len); 753 sk_wmem_queued_add(sk, -len); 754 } 755 756 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 757 { 758 int len = dfrag->data_len + dfrag->overhead; 759 760 list_del(&dfrag->list); 761 dfrag_uncharge(sk, len); 762 put_page(dfrag->page); 763 } 764 765 static bool mptcp_is_writeable(struct mptcp_sock *msk) 766 { 767 struct mptcp_subflow_context *subflow; 768 769 if (!sk_stream_is_writeable((struct sock *)msk)) 770 return false; 771 772 mptcp_for_each_subflow(msk, subflow) { 773 if (sk_stream_is_writeable(subflow->tcp_sock)) 774 return true; 775 } 776 return false; 777 } 778 779 static void mptcp_clean_una(struct sock *sk) 780 { 781 struct mptcp_sock *msk = mptcp_sk(sk); 782 struct mptcp_data_frag *dtmp, *dfrag; 783 bool cleaned = false; 784 u64 snd_una; 785 786 /* on fallback we just need to ignore snd_una, as this is really 787 * plain TCP 788 */ 789 if (__mptcp_check_fallback(msk)) 790 atomic64_set(&msk->snd_una, msk->write_seq); 791 snd_una = atomic64_read(&msk->snd_una); 792 793 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 794 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 795 break; 796 797 dfrag_clear(sk, dfrag); 798 cleaned = true; 799 } 800 801 dfrag = mptcp_rtx_head(sk); 802 if (dfrag && after64(snd_una, dfrag->data_seq)) { 803 u64 delta = snd_una - dfrag->data_seq; 804 805 if (WARN_ON_ONCE(delta > dfrag->data_len)) 806 goto out; 807 808 dfrag->data_seq += delta; 809 dfrag->offset += delta; 810 dfrag->data_len -= delta; 811 812 dfrag_uncharge(sk, delta); 813 cleaned = true; 814 } 815 816 out: 817 if (cleaned) { 818 sk_mem_reclaim_partial(sk); 819 820 /* Only wake up writers if a subflow is ready */ 821 if (mptcp_is_writeable(msk)) { 822 set_bit(MPTCP_SEND_SPACE, &mptcp_sk(sk)->flags); 823 smp_mb__after_atomic(); 824 825 /* set SEND_SPACE before sk_stream_write_space clears 826 * NOSPACE 827 */ 828 sk_stream_write_space(sk); 829 } 830 } 831 } 832 833 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 834 * data 835 */ 836 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 837 { 838 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 839 pfrag, sk->sk_allocation))) 840 return true; 841 842 sk->sk_prot->enter_memory_pressure(sk); 843 sk_stream_moderate_sndbuf(sk); 844 return false; 845 } 846 847 static struct mptcp_data_frag * 848 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 849 int orig_offset) 850 { 851 int offset = ALIGN(orig_offset, sizeof(long)); 852 struct mptcp_data_frag *dfrag; 853 854 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 855 dfrag->data_len = 0; 856 dfrag->data_seq = msk->write_seq; 857 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 858 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 859 dfrag->page = pfrag->page; 860 861 return dfrag; 862 } 863 864 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 865 struct msghdr *msg, struct mptcp_data_frag *dfrag, 866 long *timeo, int *pmss_now, 867 int *ps_goal) 868 { 869 int mss_now, avail_size, size_goal, offset, ret, frag_truesize = 0; 870 bool dfrag_collapsed, can_collapse = false; 871 struct mptcp_sock *msk = mptcp_sk(sk); 872 struct mptcp_ext *mpext = NULL; 873 bool retransmission = !!dfrag; 874 struct sk_buff *skb, *tail; 875 struct page_frag *pfrag; 876 struct page *page; 877 u64 *write_seq; 878 size_t psize; 879 880 /* use the mptcp page cache so that we can easily move the data 881 * from one substream to another, but do per subflow memory accounting 882 * Note: pfrag is used only !retransmission, but the compiler if 883 * fooled into a warning if we don't init here 884 */ 885 pfrag = sk_page_frag(sk); 886 if (!retransmission) { 887 write_seq = &msk->write_seq; 888 page = pfrag->page; 889 } else { 890 write_seq = &dfrag->data_seq; 891 page = dfrag->page; 892 } 893 894 /* compute copy limit */ 895 mss_now = tcp_send_mss(ssk, &size_goal, msg->msg_flags); 896 *pmss_now = mss_now; 897 *ps_goal = size_goal; 898 avail_size = size_goal; 899 skb = tcp_write_queue_tail(ssk); 900 if (skb) { 901 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 902 903 /* Limit the write to the size available in the 904 * current skb, if any, so that we create at most a new skb. 905 * Explicitly tells TCP internals to avoid collapsing on later 906 * queue management operation, to avoid breaking the ext <-> 907 * SSN association set here 908 */ 909 can_collapse = (size_goal - skb->len > 0) && 910 mptcp_skb_can_collapse_to(*write_seq, skb, mpext); 911 if (!can_collapse) 912 TCP_SKB_CB(skb)->eor = 1; 913 else 914 avail_size = size_goal - skb->len; 915 } 916 917 if (!retransmission) { 918 /* reuse tail pfrag, if possible, or carve a new one from the 919 * page allocator 920 */ 921 dfrag = mptcp_rtx_tail(sk); 922 offset = pfrag->offset; 923 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 924 if (!dfrag_collapsed) { 925 dfrag = mptcp_carve_data_frag(msk, pfrag, offset); 926 offset = dfrag->offset; 927 frag_truesize = dfrag->overhead; 928 } 929 psize = min_t(size_t, pfrag->size - offset, avail_size); 930 931 /* Copy to page */ 932 pr_debug("left=%zu", msg_data_left(msg)); 933 psize = copy_page_from_iter(pfrag->page, offset, 934 min_t(size_t, msg_data_left(msg), 935 psize), 936 &msg->msg_iter); 937 pr_debug("left=%zu", msg_data_left(msg)); 938 if (!psize) 939 return -EINVAL; 940 941 if (!sk_wmem_schedule(sk, psize + dfrag->overhead)) { 942 iov_iter_revert(&msg->msg_iter, psize); 943 return -ENOMEM; 944 } 945 } else { 946 offset = dfrag->offset; 947 psize = min_t(size_t, dfrag->data_len, avail_size); 948 } 949 950 /* tell the TCP stack to delay the push so that we can safely 951 * access the skb after the sendpages call 952 */ 953 ret = do_tcp_sendpages(ssk, page, offset, psize, 954 msg->msg_flags | MSG_SENDPAGE_NOTLAST | MSG_DONTWAIT); 955 if (ret <= 0) { 956 if (!retransmission) 957 iov_iter_revert(&msg->msg_iter, psize); 958 return ret; 959 } 960 961 frag_truesize += ret; 962 if (!retransmission) { 963 if (unlikely(ret < psize)) 964 iov_iter_revert(&msg->msg_iter, psize - ret); 965 966 /* send successful, keep track of sent data for mptcp-level 967 * retransmission 968 */ 969 dfrag->data_len += ret; 970 if (!dfrag_collapsed) { 971 get_page(dfrag->page); 972 list_add_tail(&dfrag->list, &msk->rtx_queue); 973 sk_wmem_queued_add(sk, frag_truesize); 974 } else { 975 sk_wmem_queued_add(sk, ret); 976 } 977 978 /* charge data on mptcp rtx queue to the master socket 979 * Note: we charge such data both to sk and ssk 980 */ 981 sk->sk_forward_alloc -= frag_truesize; 982 } 983 984 /* if the tail skb extension is still the cached one, collapsing 985 * really happened. Note: we can't check for 'same skb' as the sk_buff 986 * hdr on tail can be transmitted, freed and re-allocated by the 987 * do_tcp_sendpages() call 988 */ 989 tail = tcp_write_queue_tail(ssk); 990 if (mpext && tail && mpext == skb_ext_find(tail, SKB_EXT_MPTCP)) { 991 WARN_ON_ONCE(!can_collapse); 992 mpext->data_len += ret; 993 goto out; 994 } 995 996 skb = tcp_write_queue_tail(ssk); 997 mpext = __skb_ext_set(skb, SKB_EXT_MPTCP, msk->cached_ext); 998 msk->cached_ext = NULL; 999 1000 memset(mpext, 0, sizeof(*mpext)); 1001 mpext->data_seq = *write_seq; 1002 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1003 mpext->data_len = ret; 1004 mpext->use_map = 1; 1005 mpext->dsn64 = 1; 1006 1007 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1008 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1009 mpext->dsn64); 1010 1011 out: 1012 if (!retransmission) 1013 pfrag->offset += frag_truesize; 1014 WRITE_ONCE(*write_seq, *write_seq + ret); 1015 mptcp_subflow_ctx(ssk)->rel_write_seq += ret; 1016 1017 return ret; 1018 } 1019 1020 static void mptcp_nospace(struct mptcp_sock *msk) 1021 { 1022 struct mptcp_subflow_context *subflow; 1023 1024 clear_bit(MPTCP_SEND_SPACE, &msk->flags); 1025 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 1026 1027 mptcp_for_each_subflow(msk, subflow) { 1028 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1029 struct socket *sock = READ_ONCE(ssk->sk_socket); 1030 1031 /* enables ssk->write_space() callbacks */ 1032 if (sock) 1033 set_bit(SOCK_NOSPACE, &sock->flags); 1034 } 1035 } 1036 1037 static bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1038 { 1039 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1040 1041 /* can't send if JOIN hasn't completed yet (i.e. is usable for mptcp) */ 1042 if (subflow->request_join && !subflow->fully_established) 1043 return false; 1044 1045 /* only send if our side has not closed yet */ 1046 return ((1 << ssk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)); 1047 } 1048 1049 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1050 sizeof(struct tcphdr) - \ 1051 MAX_TCP_OPTION_SPACE - \ 1052 sizeof(struct ipv6hdr) - \ 1053 sizeof(struct frag_hdr)) 1054 1055 struct subflow_send_info { 1056 struct sock *ssk; 1057 u64 ratio; 1058 }; 1059 1060 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk, 1061 u32 *sndbuf) 1062 { 1063 struct subflow_send_info send_info[2]; 1064 struct mptcp_subflow_context *subflow; 1065 int i, nr_active = 0; 1066 struct sock *ssk; 1067 u64 ratio; 1068 u32 pace; 1069 1070 sock_owned_by_me((struct sock *)msk); 1071 1072 *sndbuf = 0; 1073 if (!mptcp_ext_cache_refill(msk)) 1074 return NULL; 1075 1076 if (__mptcp_check_fallback(msk)) { 1077 if (!msk->first) 1078 return NULL; 1079 *sndbuf = msk->first->sk_sndbuf; 1080 return sk_stream_memory_free(msk->first) ? msk->first : NULL; 1081 } 1082 1083 /* re-use last subflow, if the burst allow that */ 1084 if (msk->last_snd && msk->snd_burst > 0 && 1085 sk_stream_memory_free(msk->last_snd) && 1086 mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) { 1087 mptcp_for_each_subflow(msk, subflow) { 1088 ssk = mptcp_subflow_tcp_sock(subflow); 1089 *sndbuf = max(tcp_sk(ssk)->snd_wnd, *sndbuf); 1090 } 1091 return msk->last_snd; 1092 } 1093 1094 /* pick the subflow with the lower wmem/wspace ratio */ 1095 for (i = 0; i < 2; ++i) { 1096 send_info[i].ssk = NULL; 1097 send_info[i].ratio = -1; 1098 } 1099 mptcp_for_each_subflow(msk, subflow) { 1100 ssk = mptcp_subflow_tcp_sock(subflow); 1101 if (!mptcp_subflow_active(subflow)) 1102 continue; 1103 1104 nr_active += !subflow->backup; 1105 *sndbuf = max(tcp_sk(ssk)->snd_wnd, *sndbuf); 1106 if (!sk_stream_memory_free(subflow->tcp_sock)) 1107 continue; 1108 1109 pace = READ_ONCE(ssk->sk_pacing_rate); 1110 if (!pace) 1111 continue; 1112 1113 ratio = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, 1114 pace); 1115 if (ratio < send_info[subflow->backup].ratio) { 1116 send_info[subflow->backup].ssk = ssk; 1117 send_info[subflow->backup].ratio = ratio; 1118 } 1119 } 1120 1121 pr_debug("msk=%p nr_active=%d ssk=%p:%lld backup=%p:%lld", 1122 msk, nr_active, send_info[0].ssk, send_info[0].ratio, 1123 send_info[1].ssk, send_info[1].ratio); 1124 1125 /* pick the best backup if no other subflow is active */ 1126 if (!nr_active) 1127 send_info[0].ssk = send_info[1].ssk; 1128 1129 if (send_info[0].ssk) { 1130 msk->last_snd = send_info[0].ssk; 1131 msk->snd_burst = min_t(int, MPTCP_SEND_BURST_SIZE, 1132 sk_stream_wspace(msk->last_snd)); 1133 return msk->last_snd; 1134 } 1135 return NULL; 1136 } 1137 1138 static void ssk_check_wmem(struct mptcp_sock *msk) 1139 { 1140 if (unlikely(!mptcp_is_writeable(msk))) 1141 mptcp_nospace(msk); 1142 } 1143 1144 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1145 { 1146 int mss_now = 0, size_goal = 0, ret = 0; 1147 struct mptcp_sock *msk = mptcp_sk(sk); 1148 struct page_frag *pfrag; 1149 size_t copied = 0; 1150 struct sock *ssk; 1151 u32 sndbuf; 1152 bool tx_ok; 1153 long timeo; 1154 1155 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) 1156 return -EOPNOTSUPP; 1157 1158 lock_sock(sk); 1159 1160 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1161 1162 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1163 ret = sk_stream_wait_connect(sk, &timeo); 1164 if (ret) 1165 goto out; 1166 } 1167 1168 pfrag = sk_page_frag(sk); 1169 restart: 1170 mptcp_clean_una(sk); 1171 1172 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) { 1173 ret = -EPIPE; 1174 goto out; 1175 } 1176 1177 __mptcp_flush_join_list(msk); 1178 ssk = mptcp_subflow_get_send(msk, &sndbuf); 1179 while (!sk_stream_memory_free(sk) || 1180 !ssk || 1181 !mptcp_page_frag_refill(ssk, pfrag)) { 1182 if (ssk) { 1183 /* make sure retransmit timer is 1184 * running before we wait for memory. 1185 * 1186 * The retransmit timer might be needed 1187 * to make the peer send an up-to-date 1188 * MPTCP Ack. 1189 */ 1190 mptcp_set_timeout(sk, ssk); 1191 if (!mptcp_timer_pending(sk)) 1192 mptcp_reset_timer(sk); 1193 } 1194 1195 mptcp_nospace(msk); 1196 ret = sk_stream_wait_memory(sk, &timeo); 1197 if (ret) 1198 goto out; 1199 1200 mptcp_clean_una(sk); 1201 1202 ssk = mptcp_subflow_get_send(msk, &sndbuf); 1203 if (list_empty(&msk->conn_list)) { 1204 ret = -ENOTCONN; 1205 goto out; 1206 } 1207 } 1208 1209 /* do auto tuning */ 1210 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK) && 1211 sndbuf > READ_ONCE(sk->sk_sndbuf)) 1212 WRITE_ONCE(sk->sk_sndbuf, sndbuf); 1213 1214 pr_debug("conn_list->subflow=%p", ssk); 1215 1216 lock_sock(ssk); 1217 tx_ok = msg_data_left(msg); 1218 while (tx_ok) { 1219 ret = mptcp_sendmsg_frag(sk, ssk, msg, NULL, &timeo, &mss_now, 1220 &size_goal); 1221 if (ret < 0) { 1222 if (ret == -EAGAIN && timeo > 0) { 1223 mptcp_set_timeout(sk, ssk); 1224 release_sock(ssk); 1225 goto restart; 1226 } 1227 break; 1228 } 1229 1230 /* burst can be negative, we will try move to the next subflow 1231 * at selection time, if possible. 1232 */ 1233 msk->snd_burst -= ret; 1234 copied += ret; 1235 1236 tx_ok = msg_data_left(msg); 1237 if (!tx_ok) 1238 break; 1239 1240 if (!sk_stream_memory_free(ssk) || 1241 !mptcp_page_frag_refill(ssk, pfrag) || 1242 !mptcp_ext_cache_refill(msk)) { 1243 tcp_push(ssk, msg->msg_flags, mss_now, 1244 tcp_sk(ssk)->nonagle, size_goal); 1245 mptcp_set_timeout(sk, ssk); 1246 release_sock(ssk); 1247 goto restart; 1248 } 1249 1250 /* memory is charged to mptcp level socket as well, i.e. 1251 * if msg is very large, mptcp socket may run out of buffer 1252 * space. mptcp_clean_una() will release data that has 1253 * been acked at mptcp level in the mean time, so there is 1254 * a good chance we can continue sending data right away. 1255 * 1256 * Normally, when the tcp subflow can accept more data, then 1257 * so can the MPTCP socket. However, we need to cope with 1258 * peers that might lag behind in their MPTCP-level 1259 * acknowledgements, i.e. data might have been acked at 1260 * tcp level only. So, we must also check the MPTCP socket 1261 * limits before we send more data. 1262 */ 1263 if (unlikely(!sk_stream_memory_free(sk))) { 1264 tcp_push(ssk, msg->msg_flags, mss_now, 1265 tcp_sk(ssk)->nonagle, size_goal); 1266 mptcp_clean_una(sk); 1267 if (!sk_stream_memory_free(sk)) { 1268 /* can't send more for now, need to wait for 1269 * MPTCP-level ACKs from peer. 1270 * 1271 * Wakeup will happen via mptcp_clean_una(). 1272 */ 1273 mptcp_set_timeout(sk, ssk); 1274 release_sock(ssk); 1275 goto restart; 1276 } 1277 } 1278 } 1279 1280 mptcp_set_timeout(sk, ssk); 1281 if (copied) { 1282 tcp_push(ssk, msg->msg_flags, mss_now, tcp_sk(ssk)->nonagle, 1283 size_goal); 1284 1285 /* start the timer, if it's not pending */ 1286 if (!mptcp_timer_pending(sk)) 1287 mptcp_reset_timer(sk); 1288 } 1289 1290 release_sock(ssk); 1291 out: 1292 ssk_check_wmem(msk); 1293 release_sock(sk); 1294 return copied ? : ret; 1295 } 1296 1297 static void mptcp_wait_data(struct sock *sk, long *timeo) 1298 { 1299 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1300 struct mptcp_sock *msk = mptcp_sk(sk); 1301 1302 add_wait_queue(sk_sleep(sk), &wait); 1303 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1304 1305 sk_wait_event(sk, timeo, 1306 test_and_clear_bit(MPTCP_DATA_READY, &msk->flags), &wait); 1307 1308 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1309 remove_wait_queue(sk_sleep(sk), &wait); 1310 } 1311 1312 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1313 struct msghdr *msg, 1314 size_t len) 1315 { 1316 struct sock *sk = (struct sock *)msk; 1317 struct sk_buff *skb; 1318 int copied = 0; 1319 1320 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1321 u32 offset = MPTCP_SKB_CB(skb)->offset; 1322 u32 data_len = skb->len - offset; 1323 u32 count = min_t(size_t, len - copied, data_len); 1324 int err; 1325 1326 err = skb_copy_datagram_msg(skb, offset, msg, count); 1327 if (unlikely(err < 0)) { 1328 if (!copied) 1329 return err; 1330 break; 1331 } 1332 1333 copied += count; 1334 1335 if (count < data_len) { 1336 MPTCP_SKB_CB(skb)->offset += count; 1337 break; 1338 } 1339 1340 __skb_unlink(skb, &sk->sk_receive_queue); 1341 __kfree_skb(skb); 1342 1343 if (copied >= len) 1344 break; 1345 } 1346 1347 return copied; 1348 } 1349 1350 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1351 * 1352 * Only difference: Use highest rtt estimate of the subflows in use. 1353 */ 1354 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1355 { 1356 struct mptcp_subflow_context *subflow; 1357 struct sock *sk = (struct sock *)msk; 1358 u32 time, advmss = 1; 1359 u64 rtt_us, mstamp; 1360 1361 sock_owned_by_me(sk); 1362 1363 if (copied <= 0) 1364 return; 1365 1366 msk->rcvq_space.copied += copied; 1367 1368 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1369 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1370 1371 rtt_us = msk->rcvq_space.rtt_us; 1372 if (rtt_us && time < (rtt_us >> 3)) 1373 return; 1374 1375 rtt_us = 0; 1376 mptcp_for_each_subflow(msk, subflow) { 1377 const struct tcp_sock *tp; 1378 u64 sf_rtt_us; 1379 u32 sf_advmss; 1380 1381 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1382 1383 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1384 sf_advmss = READ_ONCE(tp->advmss); 1385 1386 rtt_us = max(sf_rtt_us, rtt_us); 1387 advmss = max(sf_advmss, advmss); 1388 } 1389 1390 msk->rcvq_space.rtt_us = rtt_us; 1391 if (time < (rtt_us >> 3) || rtt_us == 0) 1392 return; 1393 1394 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1395 goto new_measure; 1396 1397 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 1398 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1399 int rcvmem, rcvbuf; 1400 u64 rcvwin, grow; 1401 1402 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1403 1404 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1405 1406 do_div(grow, msk->rcvq_space.space); 1407 rcvwin += (grow << 1); 1408 1409 rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER); 1410 while (tcp_win_from_space(sk, rcvmem) < advmss) 1411 rcvmem += 128; 1412 1413 do_div(rcvwin, advmss); 1414 rcvbuf = min_t(u64, rcvwin * rcvmem, 1415 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 1416 1417 if (rcvbuf > sk->sk_rcvbuf) { 1418 u32 window_clamp; 1419 1420 window_clamp = tcp_win_from_space(sk, rcvbuf); 1421 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 1422 1423 /* Make subflows follow along. If we do not do this, we 1424 * get drops at subflow level if skbs can't be moved to 1425 * the mptcp rx queue fast enough (announced rcv_win can 1426 * exceed ssk->sk_rcvbuf). 1427 */ 1428 mptcp_for_each_subflow(msk, subflow) { 1429 struct sock *ssk; 1430 bool slow; 1431 1432 ssk = mptcp_subflow_tcp_sock(subflow); 1433 slow = lock_sock_fast(ssk); 1434 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 1435 tcp_sk(ssk)->window_clamp = window_clamp; 1436 tcp_cleanup_rbuf(ssk, 1); 1437 unlock_sock_fast(ssk, slow); 1438 } 1439 } 1440 } 1441 1442 msk->rcvq_space.space = msk->rcvq_space.copied; 1443 new_measure: 1444 msk->rcvq_space.copied = 0; 1445 msk->rcvq_space.time = mstamp; 1446 } 1447 1448 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 1449 { 1450 unsigned int moved = 0; 1451 bool done; 1452 1453 /* avoid looping forever below on racing close */ 1454 if (((struct sock *)msk)->sk_state == TCP_CLOSE) 1455 return false; 1456 1457 __mptcp_flush_join_list(msk); 1458 do { 1459 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 1460 1461 if (!ssk) 1462 break; 1463 1464 lock_sock(ssk); 1465 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 1466 release_sock(ssk); 1467 } while (!done); 1468 1469 if (mptcp_ofo_queue(msk) || moved > 0) { 1470 mptcp_check_data_fin((struct sock *)msk); 1471 return true; 1472 } 1473 return false; 1474 } 1475 1476 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 1477 int nonblock, int flags, int *addr_len) 1478 { 1479 struct mptcp_sock *msk = mptcp_sk(sk); 1480 int copied = 0; 1481 int target; 1482 long timeo; 1483 1484 if (msg->msg_flags & ~(MSG_WAITALL | MSG_DONTWAIT)) 1485 return -EOPNOTSUPP; 1486 1487 lock_sock(sk); 1488 timeo = sock_rcvtimeo(sk, nonblock); 1489 1490 len = min_t(size_t, len, INT_MAX); 1491 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1492 __mptcp_flush_join_list(msk); 1493 1494 while (len > (size_t)copied) { 1495 int bytes_read; 1496 1497 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied); 1498 if (unlikely(bytes_read < 0)) { 1499 if (!copied) 1500 copied = bytes_read; 1501 goto out_err; 1502 } 1503 1504 copied += bytes_read; 1505 1506 if (skb_queue_empty(&sk->sk_receive_queue) && 1507 __mptcp_move_skbs(msk)) 1508 continue; 1509 1510 /* only the master socket status is relevant here. The exit 1511 * conditions mirror closely tcp_recvmsg() 1512 */ 1513 if (copied >= target) 1514 break; 1515 1516 if (copied) { 1517 if (sk->sk_err || 1518 sk->sk_state == TCP_CLOSE || 1519 (sk->sk_shutdown & RCV_SHUTDOWN) || 1520 !timeo || 1521 signal_pending(current)) 1522 break; 1523 } else { 1524 if (sk->sk_err) { 1525 copied = sock_error(sk); 1526 break; 1527 } 1528 1529 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 1530 mptcp_check_for_eof(msk); 1531 1532 if (sk->sk_shutdown & RCV_SHUTDOWN) 1533 break; 1534 1535 if (sk->sk_state == TCP_CLOSE) { 1536 copied = -ENOTCONN; 1537 break; 1538 } 1539 1540 if (!timeo) { 1541 copied = -EAGAIN; 1542 break; 1543 } 1544 1545 if (signal_pending(current)) { 1546 copied = sock_intr_errno(timeo); 1547 break; 1548 } 1549 } 1550 1551 pr_debug("block timeout %ld", timeo); 1552 mptcp_wait_data(sk, &timeo); 1553 } 1554 1555 if (skb_queue_empty(&sk->sk_receive_queue)) { 1556 /* entire backlog drained, clear DATA_READY. */ 1557 clear_bit(MPTCP_DATA_READY, &msk->flags); 1558 1559 /* .. race-breaker: ssk might have gotten new data 1560 * after last __mptcp_move_skbs() returned false. 1561 */ 1562 if (unlikely(__mptcp_move_skbs(msk))) 1563 set_bit(MPTCP_DATA_READY, &msk->flags); 1564 } else if (unlikely(!test_bit(MPTCP_DATA_READY, &msk->flags))) { 1565 /* data to read but mptcp_wait_data() cleared DATA_READY */ 1566 set_bit(MPTCP_DATA_READY, &msk->flags); 1567 } 1568 out_err: 1569 pr_debug("msk=%p data_ready=%d rx queue empty=%d copied=%d", 1570 msk, test_bit(MPTCP_DATA_READY, &msk->flags), 1571 skb_queue_empty(&sk->sk_receive_queue), copied); 1572 mptcp_rcv_space_adjust(msk, copied); 1573 1574 release_sock(sk); 1575 return copied; 1576 } 1577 1578 static void mptcp_retransmit_handler(struct sock *sk) 1579 { 1580 struct mptcp_sock *msk = mptcp_sk(sk); 1581 1582 if (atomic64_read(&msk->snd_una) == READ_ONCE(msk->write_seq)) { 1583 mptcp_stop_timer(sk); 1584 } else { 1585 set_bit(MPTCP_WORK_RTX, &msk->flags); 1586 if (schedule_work(&msk->work)) 1587 sock_hold(sk); 1588 } 1589 } 1590 1591 static void mptcp_retransmit_timer(struct timer_list *t) 1592 { 1593 struct inet_connection_sock *icsk = from_timer(icsk, t, 1594 icsk_retransmit_timer); 1595 struct sock *sk = &icsk->icsk_inet.sk; 1596 1597 bh_lock_sock(sk); 1598 if (!sock_owned_by_user(sk)) { 1599 mptcp_retransmit_handler(sk); 1600 } else { 1601 /* delegate our work to tcp_release_cb() */ 1602 if (!test_and_set_bit(TCP_WRITE_TIMER_DEFERRED, 1603 &sk->sk_tsq_flags)) 1604 sock_hold(sk); 1605 } 1606 bh_unlock_sock(sk); 1607 sock_put(sk); 1608 } 1609 1610 /* Find an idle subflow. Return NULL if there is unacked data at tcp 1611 * level. 1612 * 1613 * A backup subflow is returned only if that is the only kind available. 1614 */ 1615 static struct sock *mptcp_subflow_get_retrans(const struct mptcp_sock *msk) 1616 { 1617 struct mptcp_subflow_context *subflow; 1618 struct sock *backup = NULL; 1619 1620 sock_owned_by_me((const struct sock *)msk); 1621 1622 if (__mptcp_check_fallback(msk)) 1623 return msk->first; 1624 1625 mptcp_for_each_subflow(msk, subflow) { 1626 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1627 1628 if (!mptcp_subflow_active(subflow)) 1629 continue; 1630 1631 /* still data outstanding at TCP level? Don't retransmit. */ 1632 if (!tcp_write_queue_empty(ssk)) 1633 return NULL; 1634 1635 if (subflow->backup) { 1636 if (!backup) 1637 backup = ssk; 1638 continue; 1639 } 1640 1641 return ssk; 1642 } 1643 1644 return backup; 1645 } 1646 1647 /* subflow sockets can be either outgoing (connect) or incoming 1648 * (accept). 1649 * 1650 * Outgoing subflows use in-kernel sockets. 1651 * Incoming subflows do not have their own 'struct socket' allocated, 1652 * so we need to use tcp_close() after detaching them from the mptcp 1653 * parent socket. 1654 */ 1655 void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 1656 struct mptcp_subflow_context *subflow, 1657 long timeout) 1658 { 1659 struct socket *sock = READ_ONCE(ssk->sk_socket); 1660 1661 list_del(&subflow->node); 1662 1663 if (sock && sock != sk->sk_socket) { 1664 /* outgoing subflow */ 1665 sock_release(sock); 1666 } else { 1667 /* incoming subflow */ 1668 tcp_close(ssk, timeout); 1669 } 1670 } 1671 1672 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 1673 { 1674 return 0; 1675 } 1676 1677 static void pm_work(struct mptcp_sock *msk) 1678 { 1679 struct mptcp_pm_data *pm = &msk->pm; 1680 1681 spin_lock_bh(&msk->pm.lock); 1682 1683 pr_debug("msk=%p status=%x", msk, pm->status); 1684 if (pm->status & BIT(MPTCP_PM_ADD_ADDR_RECEIVED)) { 1685 pm->status &= ~BIT(MPTCP_PM_ADD_ADDR_RECEIVED); 1686 mptcp_pm_nl_add_addr_received(msk); 1687 } 1688 if (pm->status & BIT(MPTCP_PM_RM_ADDR_RECEIVED)) { 1689 pm->status &= ~BIT(MPTCP_PM_RM_ADDR_RECEIVED); 1690 mptcp_pm_nl_rm_addr_received(msk); 1691 } 1692 if (pm->status & BIT(MPTCP_PM_ESTABLISHED)) { 1693 pm->status &= ~BIT(MPTCP_PM_ESTABLISHED); 1694 mptcp_pm_nl_fully_established(msk); 1695 } 1696 if (pm->status & BIT(MPTCP_PM_SUBFLOW_ESTABLISHED)) { 1697 pm->status &= ~BIT(MPTCP_PM_SUBFLOW_ESTABLISHED); 1698 mptcp_pm_nl_subflow_established(msk); 1699 } 1700 1701 spin_unlock_bh(&msk->pm.lock); 1702 } 1703 1704 static void mptcp_worker(struct work_struct *work) 1705 { 1706 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 1707 struct sock *ssk, *sk = &msk->sk.icsk_inet.sk; 1708 int orig_len, orig_offset, mss_now = 0, size_goal = 0; 1709 struct mptcp_data_frag *dfrag; 1710 u64 orig_write_seq; 1711 size_t copied = 0; 1712 struct msghdr msg = { 1713 .msg_flags = MSG_DONTWAIT, 1714 }; 1715 long timeo = 0; 1716 1717 lock_sock(sk); 1718 mptcp_clean_una(sk); 1719 mptcp_check_data_fin_ack(sk); 1720 __mptcp_flush_join_list(msk); 1721 __mptcp_move_skbs(msk); 1722 1723 if (msk->pm.status) 1724 pm_work(msk); 1725 1726 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 1727 mptcp_check_for_eof(msk); 1728 1729 mptcp_check_data_fin(sk); 1730 1731 if (!test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 1732 goto unlock; 1733 1734 dfrag = mptcp_rtx_head(sk); 1735 if (!dfrag) 1736 goto unlock; 1737 1738 if (!mptcp_ext_cache_refill(msk)) 1739 goto reset_unlock; 1740 1741 ssk = mptcp_subflow_get_retrans(msk); 1742 if (!ssk) 1743 goto reset_unlock; 1744 1745 lock_sock(ssk); 1746 1747 orig_len = dfrag->data_len; 1748 orig_offset = dfrag->offset; 1749 orig_write_seq = dfrag->data_seq; 1750 while (dfrag->data_len > 0) { 1751 int ret = mptcp_sendmsg_frag(sk, ssk, &msg, dfrag, &timeo, 1752 &mss_now, &size_goal); 1753 if (ret < 0) 1754 break; 1755 1756 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 1757 copied += ret; 1758 dfrag->data_len -= ret; 1759 dfrag->offset += ret; 1760 1761 if (!mptcp_ext_cache_refill(msk)) 1762 break; 1763 } 1764 if (copied) 1765 tcp_push(ssk, msg.msg_flags, mss_now, tcp_sk(ssk)->nonagle, 1766 size_goal); 1767 1768 dfrag->data_seq = orig_write_seq; 1769 dfrag->offset = orig_offset; 1770 dfrag->data_len = orig_len; 1771 1772 mptcp_set_timeout(sk, ssk); 1773 release_sock(ssk); 1774 1775 reset_unlock: 1776 if (!mptcp_timer_pending(sk)) 1777 mptcp_reset_timer(sk); 1778 1779 unlock: 1780 release_sock(sk); 1781 sock_put(sk); 1782 } 1783 1784 static int __mptcp_init_sock(struct sock *sk) 1785 { 1786 struct mptcp_sock *msk = mptcp_sk(sk); 1787 1788 spin_lock_init(&msk->join_list_lock); 1789 1790 INIT_LIST_HEAD(&msk->conn_list); 1791 INIT_LIST_HEAD(&msk->join_list); 1792 INIT_LIST_HEAD(&msk->rtx_queue); 1793 __set_bit(MPTCP_SEND_SPACE, &msk->flags); 1794 INIT_WORK(&msk->work, mptcp_worker); 1795 msk->out_of_order_queue = RB_ROOT; 1796 1797 msk->first = NULL; 1798 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 1799 1800 mptcp_pm_data_init(msk); 1801 1802 /* re-use the csk retrans timer for MPTCP-level retrans */ 1803 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 1804 1805 return 0; 1806 } 1807 1808 static int mptcp_init_sock(struct sock *sk) 1809 { 1810 struct net *net = sock_net(sk); 1811 int ret; 1812 1813 ret = __mptcp_init_sock(sk); 1814 if (ret) 1815 return ret; 1816 1817 if (!mptcp_is_enabled(net)) 1818 return -ENOPROTOOPT; 1819 1820 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 1821 return -ENOMEM; 1822 1823 ret = __mptcp_socket_create(mptcp_sk(sk)); 1824 if (ret) 1825 return ret; 1826 1827 sk_sockets_allocated_inc(sk); 1828 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 1829 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 1830 1831 return 0; 1832 } 1833 1834 static void __mptcp_clear_xmit(struct sock *sk) 1835 { 1836 struct mptcp_sock *msk = mptcp_sk(sk); 1837 struct mptcp_data_frag *dtmp, *dfrag; 1838 1839 sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer); 1840 1841 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 1842 dfrag_clear(sk, dfrag); 1843 } 1844 1845 static void mptcp_cancel_work(struct sock *sk) 1846 { 1847 struct mptcp_sock *msk = mptcp_sk(sk); 1848 1849 if (cancel_work_sync(&msk->work)) 1850 sock_put(sk); 1851 } 1852 1853 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 1854 { 1855 lock_sock(ssk); 1856 1857 switch (ssk->sk_state) { 1858 case TCP_LISTEN: 1859 if (!(how & RCV_SHUTDOWN)) 1860 break; 1861 fallthrough; 1862 case TCP_SYN_SENT: 1863 tcp_disconnect(ssk, O_NONBLOCK); 1864 break; 1865 default: 1866 if (__mptcp_check_fallback(mptcp_sk(sk))) { 1867 pr_debug("Fallback"); 1868 ssk->sk_shutdown |= how; 1869 tcp_shutdown(ssk, how); 1870 } else { 1871 pr_debug("Sending DATA_FIN on subflow %p", ssk); 1872 mptcp_set_timeout(sk, ssk); 1873 tcp_send_ack(ssk); 1874 } 1875 break; 1876 } 1877 1878 release_sock(ssk); 1879 } 1880 1881 static const unsigned char new_state[16] = { 1882 /* current state: new state: action: */ 1883 [0 /* (Invalid) */] = TCP_CLOSE, 1884 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1885 [TCP_SYN_SENT] = TCP_CLOSE, 1886 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1887 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 1888 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 1889 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 1890 [TCP_CLOSE] = TCP_CLOSE, 1891 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 1892 [TCP_LAST_ACK] = TCP_LAST_ACK, 1893 [TCP_LISTEN] = TCP_CLOSE, 1894 [TCP_CLOSING] = TCP_CLOSING, 1895 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 1896 }; 1897 1898 static int mptcp_close_state(struct sock *sk) 1899 { 1900 int next = (int)new_state[sk->sk_state]; 1901 int ns = next & TCP_STATE_MASK; 1902 1903 inet_sk_state_store(sk, ns); 1904 1905 return next & TCP_ACTION_FIN; 1906 } 1907 1908 static void mptcp_close(struct sock *sk, long timeout) 1909 { 1910 struct mptcp_subflow_context *subflow, *tmp; 1911 struct mptcp_sock *msk = mptcp_sk(sk); 1912 LIST_HEAD(conn_list); 1913 1914 lock_sock(sk); 1915 sk->sk_shutdown = SHUTDOWN_MASK; 1916 1917 if (sk->sk_state == TCP_LISTEN) { 1918 inet_sk_state_store(sk, TCP_CLOSE); 1919 goto cleanup; 1920 } else if (sk->sk_state == TCP_CLOSE) { 1921 goto cleanup; 1922 } 1923 1924 if (__mptcp_check_fallback(msk)) { 1925 goto update_state; 1926 } else if (mptcp_close_state(sk)) { 1927 pr_debug("Sending DATA_FIN sk=%p", sk); 1928 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 1929 WRITE_ONCE(msk->snd_data_fin_enable, 1); 1930 1931 mptcp_for_each_subflow(msk, subflow) { 1932 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 1933 1934 mptcp_subflow_shutdown(sk, tcp_sk, SHUTDOWN_MASK); 1935 } 1936 } 1937 1938 sk_stream_wait_close(sk, timeout); 1939 1940 update_state: 1941 inet_sk_state_store(sk, TCP_CLOSE); 1942 1943 cleanup: 1944 /* be sure to always acquire the join list lock, to sync vs 1945 * mptcp_finish_join(). 1946 */ 1947 spin_lock_bh(&msk->join_list_lock); 1948 list_splice_tail_init(&msk->join_list, &msk->conn_list); 1949 spin_unlock_bh(&msk->join_list_lock); 1950 list_splice_init(&msk->conn_list, &conn_list); 1951 1952 __mptcp_clear_xmit(sk); 1953 1954 release_sock(sk); 1955 1956 list_for_each_entry_safe(subflow, tmp, &conn_list, node) { 1957 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1958 __mptcp_close_ssk(sk, ssk, subflow, timeout); 1959 } 1960 1961 mptcp_cancel_work(sk); 1962 1963 __skb_queue_purge(&sk->sk_receive_queue); 1964 1965 sk_common_release(sk); 1966 } 1967 1968 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 1969 { 1970 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 1971 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 1972 struct ipv6_pinfo *msk6 = inet6_sk(msk); 1973 1974 msk->sk_v6_daddr = ssk->sk_v6_daddr; 1975 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 1976 1977 if (msk6 && ssk6) { 1978 msk6->saddr = ssk6->saddr; 1979 msk6->flow_label = ssk6->flow_label; 1980 } 1981 #endif 1982 1983 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 1984 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 1985 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 1986 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 1987 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 1988 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 1989 } 1990 1991 static int mptcp_disconnect(struct sock *sk, int flags) 1992 { 1993 /* Should never be called. 1994 * inet_stream_connect() calls ->disconnect, but that 1995 * refers to the subflow socket, not the mptcp one. 1996 */ 1997 WARN_ON_ONCE(1); 1998 return 0; 1999 } 2000 2001 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2002 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 2003 { 2004 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 2005 2006 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 2007 } 2008 #endif 2009 2010 struct sock *mptcp_sk_clone(const struct sock *sk, 2011 const struct mptcp_options_received *mp_opt, 2012 struct request_sock *req) 2013 { 2014 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 2015 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 2016 struct mptcp_sock *msk; 2017 u64 ack_seq; 2018 2019 if (!nsk) 2020 return NULL; 2021 2022 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2023 if (nsk->sk_family == AF_INET6) 2024 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 2025 #endif 2026 2027 __mptcp_init_sock(nsk); 2028 2029 msk = mptcp_sk(nsk); 2030 msk->local_key = subflow_req->local_key; 2031 msk->token = subflow_req->token; 2032 msk->subflow = NULL; 2033 WRITE_ONCE(msk->fully_established, false); 2034 2035 msk->write_seq = subflow_req->idsn + 1; 2036 atomic64_set(&msk->snd_una, msk->write_seq); 2037 if (mp_opt->mp_capable) { 2038 msk->can_ack = true; 2039 msk->remote_key = mp_opt->sndr_key; 2040 mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq); 2041 ack_seq++; 2042 msk->ack_seq = ack_seq; 2043 } 2044 2045 sock_reset_flag(nsk, SOCK_RCU_FREE); 2046 /* will be fully established after successful MPC subflow creation */ 2047 inet_sk_state_store(nsk, TCP_SYN_RECV); 2048 bh_unlock_sock(nsk); 2049 2050 /* keep a single reference */ 2051 __sock_put(nsk); 2052 return nsk; 2053 } 2054 2055 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 2056 { 2057 const struct tcp_sock *tp = tcp_sk(ssk); 2058 2059 msk->rcvq_space.copied = 0; 2060 msk->rcvq_space.rtt_us = 0; 2061 2062 msk->rcvq_space.time = tp->tcp_mstamp; 2063 2064 /* initial rcv_space offering made to peer */ 2065 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 2066 TCP_INIT_CWND * tp->advmss); 2067 if (msk->rcvq_space.space == 0) 2068 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 2069 } 2070 2071 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err, 2072 bool kern) 2073 { 2074 struct mptcp_sock *msk = mptcp_sk(sk); 2075 struct socket *listener; 2076 struct sock *newsk; 2077 2078 listener = __mptcp_nmpc_socket(msk); 2079 if (WARN_ON_ONCE(!listener)) { 2080 *err = -EINVAL; 2081 return NULL; 2082 } 2083 2084 pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk)); 2085 newsk = inet_csk_accept(listener->sk, flags, err, kern); 2086 if (!newsk) 2087 return NULL; 2088 2089 pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk)); 2090 if (sk_is_mptcp(newsk)) { 2091 struct mptcp_subflow_context *subflow; 2092 struct sock *new_mptcp_sock; 2093 struct sock *ssk = newsk; 2094 2095 subflow = mptcp_subflow_ctx(newsk); 2096 new_mptcp_sock = subflow->conn; 2097 2098 /* is_mptcp should be false if subflow->conn is missing, see 2099 * subflow_syn_recv_sock() 2100 */ 2101 if (WARN_ON_ONCE(!new_mptcp_sock)) { 2102 tcp_sk(newsk)->is_mptcp = 0; 2103 return newsk; 2104 } 2105 2106 /* acquire the 2nd reference for the owning socket */ 2107 sock_hold(new_mptcp_sock); 2108 2109 local_bh_disable(); 2110 bh_lock_sock(new_mptcp_sock); 2111 msk = mptcp_sk(new_mptcp_sock); 2112 msk->first = newsk; 2113 2114 newsk = new_mptcp_sock; 2115 mptcp_copy_inaddrs(newsk, ssk); 2116 list_add(&subflow->node, &msk->conn_list); 2117 2118 mptcp_rcv_space_init(msk, ssk); 2119 bh_unlock_sock(new_mptcp_sock); 2120 2121 __MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 2122 local_bh_enable(); 2123 } else { 2124 MPTCP_INC_STATS(sock_net(sk), 2125 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 2126 } 2127 2128 return newsk; 2129 } 2130 2131 void mptcp_destroy_common(struct mptcp_sock *msk) 2132 { 2133 skb_rbtree_purge(&msk->out_of_order_queue); 2134 mptcp_token_destroy(msk); 2135 mptcp_pm_free_anno_list(msk); 2136 } 2137 2138 static void mptcp_destroy(struct sock *sk) 2139 { 2140 struct mptcp_sock *msk = mptcp_sk(sk); 2141 2142 if (msk->cached_ext) 2143 __skb_ext_put(msk->cached_ext); 2144 2145 mptcp_destroy_common(msk); 2146 sk_sockets_allocated_dec(sk); 2147 } 2148 2149 static int mptcp_setsockopt_sol_socket(struct mptcp_sock *msk, int optname, 2150 sockptr_t optval, unsigned int optlen) 2151 { 2152 struct sock *sk = (struct sock *)msk; 2153 struct socket *ssock; 2154 int ret; 2155 2156 switch (optname) { 2157 case SO_REUSEPORT: 2158 case SO_REUSEADDR: 2159 lock_sock(sk); 2160 ssock = __mptcp_nmpc_socket(msk); 2161 if (!ssock) { 2162 release_sock(sk); 2163 return -EINVAL; 2164 } 2165 2166 ret = sock_setsockopt(ssock, SOL_SOCKET, optname, optval, optlen); 2167 if (ret == 0) { 2168 if (optname == SO_REUSEPORT) 2169 sk->sk_reuseport = ssock->sk->sk_reuseport; 2170 else if (optname == SO_REUSEADDR) 2171 sk->sk_reuse = ssock->sk->sk_reuse; 2172 } 2173 release_sock(sk); 2174 return ret; 2175 } 2176 2177 return sock_setsockopt(sk->sk_socket, SOL_SOCKET, optname, optval, optlen); 2178 } 2179 2180 static int mptcp_setsockopt_v6(struct mptcp_sock *msk, int optname, 2181 sockptr_t optval, unsigned int optlen) 2182 { 2183 struct sock *sk = (struct sock *)msk; 2184 int ret = -EOPNOTSUPP; 2185 struct socket *ssock; 2186 2187 switch (optname) { 2188 case IPV6_V6ONLY: 2189 lock_sock(sk); 2190 ssock = __mptcp_nmpc_socket(msk); 2191 if (!ssock) { 2192 release_sock(sk); 2193 return -EINVAL; 2194 } 2195 2196 ret = tcp_setsockopt(ssock->sk, SOL_IPV6, optname, optval, optlen); 2197 if (ret == 0) 2198 sk->sk_ipv6only = ssock->sk->sk_ipv6only; 2199 2200 release_sock(sk); 2201 break; 2202 } 2203 2204 return ret; 2205 } 2206 2207 static int mptcp_setsockopt(struct sock *sk, int level, int optname, 2208 sockptr_t optval, unsigned int optlen) 2209 { 2210 struct mptcp_sock *msk = mptcp_sk(sk); 2211 struct sock *ssk; 2212 2213 pr_debug("msk=%p", msk); 2214 2215 if (level == SOL_SOCKET) 2216 return mptcp_setsockopt_sol_socket(msk, optname, optval, optlen); 2217 2218 /* @@ the meaning of setsockopt() when the socket is connected and 2219 * there are multiple subflows is not yet defined. It is up to the 2220 * MPTCP-level socket to configure the subflows until the subflow 2221 * is in TCP fallback, when TCP socket options are passed through 2222 * to the one remaining subflow. 2223 */ 2224 lock_sock(sk); 2225 ssk = __mptcp_tcp_fallback(msk); 2226 release_sock(sk); 2227 if (ssk) 2228 return tcp_setsockopt(ssk, level, optname, optval, optlen); 2229 2230 if (level == SOL_IPV6) 2231 return mptcp_setsockopt_v6(msk, optname, optval, optlen); 2232 2233 return -EOPNOTSUPP; 2234 } 2235 2236 static int mptcp_getsockopt(struct sock *sk, int level, int optname, 2237 char __user *optval, int __user *option) 2238 { 2239 struct mptcp_sock *msk = mptcp_sk(sk); 2240 struct sock *ssk; 2241 2242 pr_debug("msk=%p", msk); 2243 2244 /* @@ the meaning of setsockopt() when the socket is connected and 2245 * there are multiple subflows is not yet defined. It is up to the 2246 * MPTCP-level socket to configure the subflows until the subflow 2247 * is in TCP fallback, when socket options are passed through 2248 * to the one remaining subflow. 2249 */ 2250 lock_sock(sk); 2251 ssk = __mptcp_tcp_fallback(msk); 2252 release_sock(sk); 2253 if (ssk) 2254 return tcp_getsockopt(ssk, level, optname, optval, option); 2255 2256 return -EOPNOTSUPP; 2257 } 2258 2259 #define MPTCP_DEFERRED_ALL (TCPF_DELACK_TIMER_DEFERRED | \ 2260 TCPF_WRITE_TIMER_DEFERRED) 2261 2262 /* this is very alike tcp_release_cb() but we must handle differently a 2263 * different set of events 2264 */ 2265 static void mptcp_release_cb(struct sock *sk) 2266 { 2267 unsigned long flags, nflags; 2268 2269 do { 2270 flags = sk->sk_tsq_flags; 2271 if (!(flags & MPTCP_DEFERRED_ALL)) 2272 return; 2273 nflags = flags & ~MPTCP_DEFERRED_ALL; 2274 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 2275 2276 sock_release_ownership(sk); 2277 2278 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 2279 struct mptcp_sock *msk = mptcp_sk(sk); 2280 struct sock *ssk; 2281 2282 ssk = mptcp_subflow_recv_lookup(msk); 2283 if (!ssk || !schedule_work(&msk->work)) 2284 __sock_put(sk); 2285 } 2286 2287 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 2288 mptcp_retransmit_handler(sk); 2289 __sock_put(sk); 2290 } 2291 } 2292 2293 static int mptcp_hash(struct sock *sk) 2294 { 2295 /* should never be called, 2296 * we hash the TCP subflows not the master socket 2297 */ 2298 WARN_ON_ONCE(1); 2299 return 0; 2300 } 2301 2302 static void mptcp_unhash(struct sock *sk) 2303 { 2304 /* called from sk_common_release(), but nothing to do here */ 2305 } 2306 2307 static int mptcp_get_port(struct sock *sk, unsigned short snum) 2308 { 2309 struct mptcp_sock *msk = mptcp_sk(sk); 2310 struct socket *ssock; 2311 2312 ssock = __mptcp_nmpc_socket(msk); 2313 pr_debug("msk=%p, subflow=%p", msk, ssock); 2314 if (WARN_ON_ONCE(!ssock)) 2315 return -EINVAL; 2316 2317 return inet_csk_get_port(ssock->sk, snum); 2318 } 2319 2320 void mptcp_finish_connect(struct sock *ssk) 2321 { 2322 struct mptcp_subflow_context *subflow; 2323 struct mptcp_sock *msk; 2324 struct sock *sk; 2325 u64 ack_seq; 2326 2327 subflow = mptcp_subflow_ctx(ssk); 2328 sk = subflow->conn; 2329 msk = mptcp_sk(sk); 2330 2331 pr_debug("msk=%p, token=%u", sk, subflow->token); 2332 2333 mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq); 2334 ack_seq++; 2335 subflow->map_seq = ack_seq; 2336 subflow->map_subflow_seq = 1; 2337 2338 /* the socket is not connected yet, no msk/subflow ops can access/race 2339 * accessing the field below 2340 */ 2341 WRITE_ONCE(msk->remote_key, subflow->remote_key); 2342 WRITE_ONCE(msk->local_key, subflow->local_key); 2343 WRITE_ONCE(msk->write_seq, subflow->idsn + 1); 2344 WRITE_ONCE(msk->ack_seq, ack_seq); 2345 WRITE_ONCE(msk->can_ack, 1); 2346 atomic64_set(&msk->snd_una, msk->write_seq); 2347 2348 mptcp_pm_new_connection(msk, 0); 2349 2350 mptcp_rcv_space_init(msk, ssk); 2351 } 2352 2353 static void mptcp_sock_graft(struct sock *sk, struct socket *parent) 2354 { 2355 write_lock_bh(&sk->sk_callback_lock); 2356 rcu_assign_pointer(sk->sk_wq, &parent->wq); 2357 sk_set_socket(sk, parent); 2358 sk->sk_uid = SOCK_INODE(parent)->i_uid; 2359 write_unlock_bh(&sk->sk_callback_lock); 2360 } 2361 2362 bool mptcp_finish_join(struct sock *sk) 2363 { 2364 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); 2365 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 2366 struct sock *parent = (void *)msk; 2367 struct socket *parent_sock; 2368 bool ret; 2369 2370 pr_debug("msk=%p, subflow=%p", msk, subflow); 2371 2372 /* mptcp socket already closing? */ 2373 if (!mptcp_is_fully_established(parent)) 2374 return false; 2375 2376 if (!msk->pm.server_side) 2377 return true; 2378 2379 if (!mptcp_pm_allow_new_subflow(msk)) 2380 return false; 2381 2382 /* active connections are already on conn_list, and we can't acquire 2383 * msk lock here. 2384 * use the join list lock as synchronization point and double-check 2385 * msk status to avoid racing with mptcp_close() 2386 */ 2387 spin_lock_bh(&msk->join_list_lock); 2388 ret = inet_sk_state_load(parent) == TCP_ESTABLISHED; 2389 if (ret && !WARN_ON_ONCE(!list_empty(&subflow->node))) 2390 list_add_tail(&subflow->node, &msk->join_list); 2391 spin_unlock_bh(&msk->join_list_lock); 2392 if (!ret) 2393 return false; 2394 2395 /* attach to msk socket only after we are sure he will deal with us 2396 * at close time 2397 */ 2398 parent_sock = READ_ONCE(parent->sk_socket); 2399 if (parent_sock && !sk->sk_socket) 2400 mptcp_sock_graft(sk, parent_sock); 2401 subflow->map_seq = msk->ack_seq; 2402 return true; 2403 } 2404 2405 static bool mptcp_memory_free(const struct sock *sk, int wake) 2406 { 2407 struct mptcp_sock *msk = mptcp_sk(sk); 2408 2409 return wake ? test_bit(MPTCP_SEND_SPACE, &msk->flags) : true; 2410 } 2411 2412 static struct proto mptcp_prot = { 2413 .name = "MPTCP", 2414 .owner = THIS_MODULE, 2415 .init = mptcp_init_sock, 2416 .disconnect = mptcp_disconnect, 2417 .close = mptcp_close, 2418 .accept = mptcp_accept, 2419 .setsockopt = mptcp_setsockopt, 2420 .getsockopt = mptcp_getsockopt, 2421 .shutdown = tcp_shutdown, 2422 .destroy = mptcp_destroy, 2423 .sendmsg = mptcp_sendmsg, 2424 .recvmsg = mptcp_recvmsg, 2425 .release_cb = mptcp_release_cb, 2426 .hash = mptcp_hash, 2427 .unhash = mptcp_unhash, 2428 .get_port = mptcp_get_port, 2429 .sockets_allocated = &mptcp_sockets_allocated, 2430 .memory_allocated = &tcp_memory_allocated, 2431 .memory_pressure = &tcp_memory_pressure, 2432 .stream_memory_free = mptcp_memory_free, 2433 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 2434 .sysctl_mem = sysctl_tcp_mem, 2435 .obj_size = sizeof(struct mptcp_sock), 2436 .slab_flags = SLAB_TYPESAFE_BY_RCU, 2437 .no_autobind = true, 2438 }; 2439 2440 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 2441 { 2442 struct mptcp_sock *msk = mptcp_sk(sock->sk); 2443 struct socket *ssock; 2444 int err; 2445 2446 lock_sock(sock->sk); 2447 ssock = __mptcp_nmpc_socket(msk); 2448 if (!ssock) { 2449 err = -EINVAL; 2450 goto unlock; 2451 } 2452 2453 err = ssock->ops->bind(ssock, uaddr, addr_len); 2454 if (!err) 2455 mptcp_copy_inaddrs(sock->sk, ssock->sk); 2456 2457 unlock: 2458 release_sock(sock->sk); 2459 return err; 2460 } 2461 2462 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 2463 struct mptcp_subflow_context *subflow) 2464 { 2465 subflow->request_mptcp = 0; 2466 __mptcp_do_fallback(msk); 2467 } 2468 2469 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr, 2470 int addr_len, int flags) 2471 { 2472 struct mptcp_sock *msk = mptcp_sk(sock->sk); 2473 struct mptcp_subflow_context *subflow; 2474 struct socket *ssock; 2475 int err; 2476 2477 lock_sock(sock->sk); 2478 if (sock->state != SS_UNCONNECTED && msk->subflow) { 2479 /* pending connection or invalid state, let existing subflow 2480 * cope with that 2481 */ 2482 ssock = msk->subflow; 2483 goto do_connect; 2484 } 2485 2486 ssock = __mptcp_nmpc_socket(msk); 2487 if (!ssock) { 2488 err = -EINVAL; 2489 goto unlock; 2490 } 2491 2492 mptcp_token_destroy(msk); 2493 inet_sk_state_store(sock->sk, TCP_SYN_SENT); 2494 subflow = mptcp_subflow_ctx(ssock->sk); 2495 #ifdef CONFIG_TCP_MD5SIG 2496 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 2497 * TCP option space. 2498 */ 2499 if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info)) 2500 mptcp_subflow_early_fallback(msk, subflow); 2501 #endif 2502 if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) 2503 mptcp_subflow_early_fallback(msk, subflow); 2504 2505 do_connect: 2506 err = ssock->ops->connect(ssock, uaddr, addr_len, flags); 2507 sock->state = ssock->state; 2508 2509 /* on successful connect, the msk state will be moved to established by 2510 * subflow_finish_connect() 2511 */ 2512 if (!err || err == -EINPROGRESS) 2513 mptcp_copy_inaddrs(sock->sk, ssock->sk); 2514 else 2515 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 2516 2517 unlock: 2518 release_sock(sock->sk); 2519 return err; 2520 } 2521 2522 static int mptcp_listen(struct socket *sock, int backlog) 2523 { 2524 struct mptcp_sock *msk = mptcp_sk(sock->sk); 2525 struct socket *ssock; 2526 int err; 2527 2528 pr_debug("msk=%p", msk); 2529 2530 lock_sock(sock->sk); 2531 ssock = __mptcp_nmpc_socket(msk); 2532 if (!ssock) { 2533 err = -EINVAL; 2534 goto unlock; 2535 } 2536 2537 mptcp_token_destroy(msk); 2538 inet_sk_state_store(sock->sk, TCP_LISTEN); 2539 sock_set_flag(sock->sk, SOCK_RCU_FREE); 2540 2541 err = ssock->ops->listen(ssock, backlog); 2542 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 2543 if (!err) 2544 mptcp_copy_inaddrs(sock->sk, ssock->sk); 2545 2546 unlock: 2547 release_sock(sock->sk); 2548 return err; 2549 } 2550 2551 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 2552 int flags, bool kern) 2553 { 2554 struct mptcp_sock *msk = mptcp_sk(sock->sk); 2555 struct socket *ssock; 2556 int err; 2557 2558 pr_debug("msk=%p", msk); 2559 2560 lock_sock(sock->sk); 2561 if (sock->sk->sk_state != TCP_LISTEN) 2562 goto unlock_fail; 2563 2564 ssock = __mptcp_nmpc_socket(msk); 2565 if (!ssock) 2566 goto unlock_fail; 2567 2568 clear_bit(MPTCP_DATA_READY, &msk->flags); 2569 sock_hold(ssock->sk); 2570 release_sock(sock->sk); 2571 2572 err = ssock->ops->accept(sock, newsock, flags, kern); 2573 if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) { 2574 struct mptcp_sock *msk = mptcp_sk(newsock->sk); 2575 struct mptcp_subflow_context *subflow; 2576 2577 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 2578 * This is needed so NOSPACE flag can be set from tcp stack. 2579 */ 2580 __mptcp_flush_join_list(msk); 2581 mptcp_for_each_subflow(msk, subflow) { 2582 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2583 2584 if (!ssk->sk_socket) 2585 mptcp_sock_graft(ssk, newsock); 2586 } 2587 } 2588 2589 if (inet_csk_listen_poll(ssock->sk)) 2590 set_bit(MPTCP_DATA_READY, &msk->flags); 2591 sock_put(ssock->sk); 2592 return err; 2593 2594 unlock_fail: 2595 release_sock(sock->sk); 2596 return -EINVAL; 2597 } 2598 2599 static __poll_t mptcp_check_readable(struct mptcp_sock *msk) 2600 { 2601 return test_bit(MPTCP_DATA_READY, &msk->flags) ? EPOLLIN | EPOLLRDNORM : 2602 0; 2603 } 2604 2605 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 2606 struct poll_table_struct *wait) 2607 { 2608 struct sock *sk = sock->sk; 2609 struct mptcp_sock *msk; 2610 __poll_t mask = 0; 2611 int state; 2612 2613 msk = mptcp_sk(sk); 2614 sock_poll_wait(file, sock, wait); 2615 2616 state = inet_sk_state_load(sk); 2617 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 2618 if (state == TCP_LISTEN) 2619 return mptcp_check_readable(msk); 2620 2621 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 2622 mask |= mptcp_check_readable(msk); 2623 if (test_bit(MPTCP_SEND_SPACE, &msk->flags)) 2624 mask |= EPOLLOUT | EPOLLWRNORM; 2625 } 2626 if (sk->sk_shutdown & RCV_SHUTDOWN) 2627 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 2628 2629 return mask; 2630 } 2631 2632 static int mptcp_shutdown(struct socket *sock, int how) 2633 { 2634 struct mptcp_sock *msk = mptcp_sk(sock->sk); 2635 struct mptcp_subflow_context *subflow; 2636 int ret = 0; 2637 2638 pr_debug("sk=%p, how=%d", msk, how); 2639 2640 lock_sock(sock->sk); 2641 2642 how++; 2643 if ((how & ~SHUTDOWN_MASK) || !how) { 2644 ret = -EINVAL; 2645 goto out_unlock; 2646 } 2647 2648 if (sock->state == SS_CONNECTING) { 2649 if ((1 << sock->sk->sk_state) & 2650 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) 2651 sock->state = SS_DISCONNECTING; 2652 else 2653 sock->state = SS_CONNECTED; 2654 } 2655 2656 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2657 if (__mptcp_check_fallback(msk)) { 2658 if (how == SHUT_WR || how == SHUT_RDWR) 2659 inet_sk_state_store(sock->sk, TCP_FIN_WAIT1); 2660 2661 mptcp_for_each_subflow(msk, subflow) { 2662 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2663 2664 mptcp_subflow_shutdown(sock->sk, tcp_sk, how); 2665 } 2666 } else if ((how & SEND_SHUTDOWN) && 2667 ((1 << sock->sk->sk_state) & 2668 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2669 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) && 2670 mptcp_close_state(sock->sk)) { 2671 __mptcp_flush_join_list(msk); 2672 2673 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2674 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2675 2676 mptcp_for_each_subflow(msk, subflow) { 2677 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2678 2679 mptcp_subflow_shutdown(sock->sk, tcp_sk, how); 2680 } 2681 } 2682 2683 /* Wake up anyone sleeping in poll. */ 2684 sock->sk->sk_state_change(sock->sk); 2685 2686 out_unlock: 2687 release_sock(sock->sk); 2688 2689 return ret; 2690 } 2691 2692 static const struct proto_ops mptcp_stream_ops = { 2693 .family = PF_INET, 2694 .owner = THIS_MODULE, 2695 .release = inet_release, 2696 .bind = mptcp_bind, 2697 .connect = mptcp_stream_connect, 2698 .socketpair = sock_no_socketpair, 2699 .accept = mptcp_stream_accept, 2700 .getname = inet_getname, 2701 .poll = mptcp_poll, 2702 .ioctl = inet_ioctl, 2703 .gettstamp = sock_gettstamp, 2704 .listen = mptcp_listen, 2705 .shutdown = mptcp_shutdown, 2706 .setsockopt = sock_common_setsockopt, 2707 .getsockopt = sock_common_getsockopt, 2708 .sendmsg = inet_sendmsg, 2709 .recvmsg = inet_recvmsg, 2710 .mmap = sock_no_mmap, 2711 .sendpage = inet_sendpage, 2712 }; 2713 2714 static struct inet_protosw mptcp_protosw = { 2715 .type = SOCK_STREAM, 2716 .protocol = IPPROTO_MPTCP, 2717 .prot = &mptcp_prot, 2718 .ops = &mptcp_stream_ops, 2719 .flags = INET_PROTOSW_ICSK, 2720 }; 2721 2722 void __init mptcp_proto_init(void) 2723 { 2724 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 2725 2726 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 2727 panic("Failed to allocate MPTCP pcpu counter\n"); 2728 2729 mptcp_subflow_init(); 2730 mptcp_pm_init(); 2731 mptcp_token_init(); 2732 2733 if (proto_register(&mptcp_prot, 1) != 0) 2734 panic("Failed to register MPTCP proto.\n"); 2735 2736 inet_register_protosw(&mptcp_protosw); 2737 2738 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 2739 } 2740 2741 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2742 static const struct proto_ops mptcp_v6_stream_ops = { 2743 .family = PF_INET6, 2744 .owner = THIS_MODULE, 2745 .release = inet6_release, 2746 .bind = mptcp_bind, 2747 .connect = mptcp_stream_connect, 2748 .socketpair = sock_no_socketpair, 2749 .accept = mptcp_stream_accept, 2750 .getname = inet6_getname, 2751 .poll = mptcp_poll, 2752 .ioctl = inet6_ioctl, 2753 .gettstamp = sock_gettstamp, 2754 .listen = mptcp_listen, 2755 .shutdown = mptcp_shutdown, 2756 .setsockopt = sock_common_setsockopt, 2757 .getsockopt = sock_common_getsockopt, 2758 .sendmsg = inet6_sendmsg, 2759 .recvmsg = inet6_recvmsg, 2760 .mmap = sock_no_mmap, 2761 .sendpage = inet_sendpage, 2762 #ifdef CONFIG_COMPAT 2763 .compat_ioctl = inet6_compat_ioctl, 2764 #endif 2765 }; 2766 2767 static struct proto mptcp_v6_prot; 2768 2769 static void mptcp_v6_destroy(struct sock *sk) 2770 { 2771 mptcp_destroy(sk); 2772 inet6_destroy_sock(sk); 2773 } 2774 2775 static struct inet_protosw mptcp_v6_protosw = { 2776 .type = SOCK_STREAM, 2777 .protocol = IPPROTO_MPTCP, 2778 .prot = &mptcp_v6_prot, 2779 .ops = &mptcp_v6_stream_ops, 2780 .flags = INET_PROTOSW_ICSK, 2781 }; 2782 2783 int __init mptcp_proto_v6_init(void) 2784 { 2785 int err; 2786 2787 mptcp_v6_prot = mptcp_prot; 2788 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 2789 mptcp_v6_prot.slab = NULL; 2790 mptcp_v6_prot.destroy = mptcp_v6_destroy; 2791 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 2792 2793 err = proto_register(&mptcp_v6_prot, 1); 2794 if (err) 2795 return err; 2796 2797 err = inet6_register_protosw(&mptcp_v6_protosw); 2798 if (err) 2799 proto_unregister(&mptcp_v6_prot); 2800 2801 return err; 2802 } 2803 #endif 2804