1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 struct mptcp_skb_cb { 40 u64 map_seq; 41 u64 end_seq; 42 u32 offset; 43 u8 has_rxtstamp:1; 44 }; 45 46 #define MPTCP_SKB_CB(__skb) ((struct mptcp_skb_cb *)&((__skb)->cb[0])) 47 48 enum { 49 MPTCP_CMSG_TS = BIT(0), 50 MPTCP_CMSG_INQ = BIT(1), 51 }; 52 53 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 54 55 static void __mptcp_destroy_sock(struct sock *sk); 56 static void __mptcp_check_send_data_fin(struct sock *sk); 57 58 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 59 static struct net_device mptcp_napi_dev; 60 61 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not 62 * completed yet or has failed, return the subflow socket. 63 * Otherwise return NULL. 64 */ 65 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk) 66 { 67 if (!msk->subflow || READ_ONCE(msk->can_ack)) 68 return NULL; 69 70 return msk->subflow; 71 } 72 73 /* Returns end sequence number of the receiver's advertised window */ 74 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 75 { 76 return READ_ONCE(msk->wnd_end); 77 } 78 79 static bool mptcp_is_tcpsk(struct sock *sk) 80 { 81 struct socket *sock = sk->sk_socket; 82 83 if (unlikely(sk->sk_prot == &tcp_prot)) { 84 /* we are being invoked after mptcp_accept() has 85 * accepted a non-mp-capable flow: sk is a tcp_sk, 86 * not an mptcp one. 87 * 88 * Hand the socket over to tcp so all further socket ops 89 * bypass mptcp. 90 */ 91 sock->ops = &inet_stream_ops; 92 return true; 93 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 94 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { 95 sock->ops = &inet6_stream_ops; 96 return true; 97 #endif 98 } 99 100 return false; 101 } 102 103 static int __mptcp_socket_create(struct mptcp_sock *msk) 104 { 105 struct mptcp_subflow_context *subflow; 106 struct sock *sk = (struct sock *)msk; 107 struct socket *ssock; 108 int err; 109 110 err = mptcp_subflow_create_socket(sk, &ssock); 111 if (err) 112 return err; 113 114 msk->first = ssock->sk; 115 msk->subflow = ssock; 116 subflow = mptcp_subflow_ctx(ssock->sk); 117 list_add(&subflow->node, &msk->conn_list); 118 sock_hold(ssock->sk); 119 subflow->request_mptcp = 1; 120 121 /* This is the first subflow, always with id 0 */ 122 subflow->local_id_valid = 1; 123 mptcp_sock_graft(msk->first, sk->sk_socket); 124 125 return 0; 126 } 127 128 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 129 { 130 sk_drops_add(sk, skb); 131 __kfree_skb(skb); 132 } 133 134 static void mptcp_rmem_charge(struct sock *sk, int size) 135 { 136 mptcp_sk(sk)->rmem_fwd_alloc -= size; 137 } 138 139 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 140 struct sk_buff *from) 141 { 142 bool fragstolen; 143 int delta; 144 145 if (MPTCP_SKB_CB(from)->offset || 146 !skb_try_coalesce(to, from, &fragstolen, &delta)) 147 return false; 148 149 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 150 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 151 to->len, MPTCP_SKB_CB(from)->end_seq); 152 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 153 kfree_skb_partial(from, fragstolen); 154 atomic_add(delta, &sk->sk_rmem_alloc); 155 mptcp_rmem_charge(sk, delta); 156 return true; 157 } 158 159 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 160 struct sk_buff *from) 161 { 162 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 163 return false; 164 165 return mptcp_try_coalesce((struct sock *)msk, to, from); 166 } 167 168 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 169 { 170 amount >>= SK_MEM_QUANTUM_SHIFT; 171 mptcp_sk(sk)->rmem_fwd_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 172 __sk_mem_reduce_allocated(sk, amount); 173 } 174 175 static void mptcp_rmem_uncharge(struct sock *sk, int size) 176 { 177 struct mptcp_sock *msk = mptcp_sk(sk); 178 int reclaimable; 179 180 msk->rmem_fwd_alloc += size; 181 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 182 183 /* see sk_mem_uncharge() for the rationale behind the following schema */ 184 if (unlikely(reclaimable >= SK_RECLAIM_THRESHOLD)) 185 __mptcp_rmem_reclaim(sk, SK_RECLAIM_CHUNK); 186 } 187 188 static void mptcp_rfree(struct sk_buff *skb) 189 { 190 unsigned int len = skb->truesize; 191 struct sock *sk = skb->sk; 192 193 atomic_sub(len, &sk->sk_rmem_alloc); 194 mptcp_rmem_uncharge(sk, len); 195 } 196 197 static void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 198 { 199 skb_orphan(skb); 200 skb->sk = sk; 201 skb->destructor = mptcp_rfree; 202 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 203 mptcp_rmem_charge(sk, skb->truesize); 204 } 205 206 /* "inspired" by tcp_data_queue_ofo(), main differences: 207 * - use mptcp seqs 208 * - don't cope with sacks 209 */ 210 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 211 { 212 struct sock *sk = (struct sock *)msk; 213 struct rb_node **p, *parent; 214 u64 seq, end_seq, max_seq; 215 struct sk_buff *skb1; 216 217 seq = MPTCP_SKB_CB(skb)->map_seq; 218 end_seq = MPTCP_SKB_CB(skb)->end_seq; 219 max_seq = atomic64_read(&msk->rcv_wnd_sent); 220 221 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 222 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 223 if (after64(end_seq, max_seq)) { 224 /* out of window */ 225 mptcp_drop(sk, skb); 226 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 227 (unsigned long long)end_seq - (unsigned long)max_seq, 228 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 229 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 230 return; 231 } 232 233 p = &msk->out_of_order_queue.rb_node; 234 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 235 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 236 rb_link_node(&skb->rbnode, NULL, p); 237 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 238 msk->ooo_last_skb = skb; 239 goto end; 240 } 241 242 /* with 2 subflows, adding at end of ooo queue is quite likely 243 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 244 */ 245 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 246 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 247 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 248 return; 249 } 250 251 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 252 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 253 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 254 parent = &msk->ooo_last_skb->rbnode; 255 p = &parent->rb_right; 256 goto insert; 257 } 258 259 /* Find place to insert this segment. Handle overlaps on the way. */ 260 parent = NULL; 261 while (*p) { 262 parent = *p; 263 skb1 = rb_to_skb(parent); 264 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 265 p = &parent->rb_left; 266 continue; 267 } 268 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 269 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 270 /* All the bits are present. Drop. */ 271 mptcp_drop(sk, skb); 272 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 273 return; 274 } 275 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 276 /* partial overlap: 277 * | skb | 278 * | skb1 | 279 * continue traversing 280 */ 281 } else { 282 /* skb's seq == skb1's seq and skb covers skb1. 283 * Replace skb1 with skb. 284 */ 285 rb_replace_node(&skb1->rbnode, &skb->rbnode, 286 &msk->out_of_order_queue); 287 mptcp_drop(sk, skb1); 288 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 289 goto merge_right; 290 } 291 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 292 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 293 return; 294 } 295 p = &parent->rb_right; 296 } 297 298 insert: 299 /* Insert segment into RB tree. */ 300 rb_link_node(&skb->rbnode, parent, p); 301 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 302 303 merge_right: 304 /* Remove other segments covered by skb. */ 305 while ((skb1 = skb_rb_next(skb)) != NULL) { 306 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 307 break; 308 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 309 mptcp_drop(sk, skb1); 310 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 311 } 312 /* If there is no skb after us, we are the last_skb ! */ 313 if (!skb1) 314 msk->ooo_last_skb = skb; 315 316 end: 317 skb_condense(skb); 318 mptcp_set_owner_r(skb, sk); 319 } 320 321 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 322 { 323 struct mptcp_sock *msk = mptcp_sk(sk); 324 int amt, amount; 325 326 if (size < msk->rmem_fwd_alloc) 327 return true; 328 329 amt = sk_mem_pages(size); 330 amount = amt << SK_MEM_QUANTUM_SHIFT; 331 msk->rmem_fwd_alloc += amount; 332 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) { 333 if (ssk->sk_forward_alloc < amount) { 334 msk->rmem_fwd_alloc -= amount; 335 return false; 336 } 337 338 ssk->sk_forward_alloc -= amount; 339 } 340 return true; 341 } 342 343 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 344 struct sk_buff *skb, unsigned int offset, 345 size_t copy_len) 346 { 347 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 348 struct sock *sk = (struct sock *)msk; 349 struct sk_buff *tail; 350 bool has_rxtstamp; 351 352 __skb_unlink(skb, &ssk->sk_receive_queue); 353 354 skb_ext_reset(skb); 355 skb_orphan(skb); 356 357 /* try to fetch required memory from subflow */ 358 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 359 goto drop; 360 361 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 362 363 /* the skb map_seq accounts for the skb offset: 364 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 365 * value 366 */ 367 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 368 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 369 MPTCP_SKB_CB(skb)->offset = offset; 370 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 371 372 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 373 /* in sequence */ 374 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 375 tail = skb_peek_tail(&sk->sk_receive_queue); 376 if (tail && mptcp_try_coalesce(sk, tail, skb)) 377 return true; 378 379 mptcp_set_owner_r(skb, sk); 380 __skb_queue_tail(&sk->sk_receive_queue, skb); 381 return true; 382 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 383 mptcp_data_queue_ofo(msk, skb); 384 return false; 385 } 386 387 /* old data, keep it simple and drop the whole pkt, sender 388 * will retransmit as needed, if needed. 389 */ 390 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 391 drop: 392 mptcp_drop(sk, skb); 393 return false; 394 } 395 396 static void mptcp_stop_timer(struct sock *sk) 397 { 398 struct inet_connection_sock *icsk = inet_csk(sk); 399 400 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 401 mptcp_sk(sk)->timer_ival = 0; 402 } 403 404 static void mptcp_close_wake_up(struct sock *sk) 405 { 406 if (sock_flag(sk, SOCK_DEAD)) 407 return; 408 409 sk->sk_state_change(sk); 410 if (sk->sk_shutdown == SHUTDOWN_MASK || 411 sk->sk_state == TCP_CLOSE) 412 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 413 else 414 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 415 } 416 417 static bool mptcp_pending_data_fin_ack(struct sock *sk) 418 { 419 struct mptcp_sock *msk = mptcp_sk(sk); 420 421 return !__mptcp_check_fallback(msk) && 422 ((1 << sk->sk_state) & 423 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 424 msk->write_seq == READ_ONCE(msk->snd_una); 425 } 426 427 static void mptcp_check_data_fin_ack(struct sock *sk) 428 { 429 struct mptcp_sock *msk = mptcp_sk(sk); 430 431 /* Look for an acknowledged DATA_FIN */ 432 if (mptcp_pending_data_fin_ack(sk)) { 433 WRITE_ONCE(msk->snd_data_fin_enable, 0); 434 435 switch (sk->sk_state) { 436 case TCP_FIN_WAIT1: 437 inet_sk_state_store(sk, TCP_FIN_WAIT2); 438 break; 439 case TCP_CLOSING: 440 case TCP_LAST_ACK: 441 inet_sk_state_store(sk, TCP_CLOSE); 442 break; 443 } 444 445 mptcp_close_wake_up(sk); 446 } 447 } 448 449 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 450 { 451 struct mptcp_sock *msk = mptcp_sk(sk); 452 453 if (READ_ONCE(msk->rcv_data_fin) && 454 ((1 << sk->sk_state) & 455 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 456 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 457 458 if (msk->ack_seq == rcv_data_fin_seq) { 459 if (seq) 460 *seq = rcv_data_fin_seq; 461 462 return true; 463 } 464 } 465 466 return false; 467 } 468 469 static void mptcp_set_datafin_timeout(const struct sock *sk) 470 { 471 struct inet_connection_sock *icsk = inet_csk(sk); 472 u32 retransmits; 473 474 retransmits = min_t(u32, icsk->icsk_retransmits, 475 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 476 477 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 478 } 479 480 static void __mptcp_set_timeout(struct sock *sk, long tout) 481 { 482 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 483 } 484 485 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 486 { 487 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 488 489 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 490 inet_csk(ssk)->icsk_timeout - jiffies : 0; 491 } 492 493 static void mptcp_set_timeout(struct sock *sk) 494 { 495 struct mptcp_subflow_context *subflow; 496 long tout = 0; 497 498 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 499 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 500 __mptcp_set_timeout(sk, tout); 501 } 502 503 static bool tcp_can_send_ack(const struct sock *ssk) 504 { 505 return !((1 << inet_sk_state_load(ssk)) & 506 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 507 } 508 509 void mptcp_subflow_send_ack(struct sock *ssk) 510 { 511 bool slow; 512 513 slow = lock_sock_fast(ssk); 514 if (tcp_can_send_ack(ssk)) 515 tcp_send_ack(ssk); 516 unlock_sock_fast(ssk, slow); 517 } 518 519 static void mptcp_send_ack(struct mptcp_sock *msk) 520 { 521 struct mptcp_subflow_context *subflow; 522 523 mptcp_for_each_subflow(msk, subflow) 524 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 525 } 526 527 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 528 { 529 bool slow; 530 531 slow = lock_sock_fast(ssk); 532 if (tcp_can_send_ack(ssk)) 533 tcp_cleanup_rbuf(ssk, 1); 534 unlock_sock_fast(ssk, slow); 535 } 536 537 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 538 { 539 const struct inet_connection_sock *icsk = inet_csk(ssk); 540 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 541 const struct tcp_sock *tp = tcp_sk(ssk); 542 543 return (ack_pending & ICSK_ACK_SCHED) && 544 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 545 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 546 (rx_empty && ack_pending & 547 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 548 } 549 550 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 551 { 552 int old_space = READ_ONCE(msk->old_wspace); 553 struct mptcp_subflow_context *subflow; 554 struct sock *sk = (struct sock *)msk; 555 int space = __mptcp_space(sk); 556 bool cleanup, rx_empty; 557 558 cleanup = (space > 0) && (space >= (old_space << 1)); 559 rx_empty = !__mptcp_rmem(sk); 560 561 mptcp_for_each_subflow(msk, subflow) { 562 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 563 564 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 565 mptcp_subflow_cleanup_rbuf(ssk); 566 } 567 } 568 569 static bool mptcp_check_data_fin(struct sock *sk) 570 { 571 struct mptcp_sock *msk = mptcp_sk(sk); 572 u64 rcv_data_fin_seq; 573 bool ret = false; 574 575 if (__mptcp_check_fallback(msk)) 576 return ret; 577 578 /* Need to ack a DATA_FIN received from a peer while this side 579 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 580 * msk->rcv_data_fin was set when parsing the incoming options 581 * at the subflow level and the msk lock was not held, so this 582 * is the first opportunity to act on the DATA_FIN and change 583 * the msk state. 584 * 585 * If we are caught up to the sequence number of the incoming 586 * DATA_FIN, send the DATA_ACK now and do state transition. If 587 * not caught up, do nothing and let the recv code send DATA_ACK 588 * when catching up. 589 */ 590 591 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 592 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 593 WRITE_ONCE(msk->rcv_data_fin, 0); 594 595 sk->sk_shutdown |= RCV_SHUTDOWN; 596 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 597 598 switch (sk->sk_state) { 599 case TCP_ESTABLISHED: 600 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 601 break; 602 case TCP_FIN_WAIT1: 603 inet_sk_state_store(sk, TCP_CLOSING); 604 break; 605 case TCP_FIN_WAIT2: 606 inet_sk_state_store(sk, TCP_CLOSE); 607 break; 608 default: 609 /* Other states not expected */ 610 WARN_ON_ONCE(1); 611 break; 612 } 613 614 ret = true; 615 mptcp_send_ack(msk); 616 mptcp_close_wake_up(sk); 617 } 618 return ret; 619 } 620 621 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 622 struct sock *ssk, 623 unsigned int *bytes) 624 { 625 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 626 struct sock *sk = (struct sock *)msk; 627 unsigned int moved = 0; 628 bool more_data_avail; 629 struct tcp_sock *tp; 630 bool done = false; 631 int sk_rbuf; 632 633 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 634 635 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 636 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 637 638 if (unlikely(ssk_rbuf > sk_rbuf)) { 639 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 640 sk_rbuf = ssk_rbuf; 641 } 642 } 643 644 pr_debug("msk=%p ssk=%p", msk, ssk); 645 tp = tcp_sk(ssk); 646 do { 647 u32 map_remaining, offset; 648 u32 seq = tp->copied_seq; 649 struct sk_buff *skb; 650 bool fin; 651 652 /* try to move as much data as available */ 653 map_remaining = subflow->map_data_len - 654 mptcp_subflow_get_map_offset(subflow); 655 656 skb = skb_peek(&ssk->sk_receive_queue); 657 if (!skb) { 658 /* if no data is found, a racing workqueue/recvmsg 659 * already processed the new data, stop here or we 660 * can enter an infinite loop 661 */ 662 if (!moved) 663 done = true; 664 break; 665 } 666 667 if (__mptcp_check_fallback(msk)) { 668 /* if we are running under the workqueue, TCP could have 669 * collapsed skbs between dummy map creation and now 670 * be sure to adjust the size 671 */ 672 map_remaining = skb->len; 673 subflow->map_data_len = skb->len; 674 } 675 676 offset = seq - TCP_SKB_CB(skb)->seq; 677 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 678 if (fin) { 679 done = true; 680 seq++; 681 } 682 683 if (offset < skb->len) { 684 size_t len = skb->len - offset; 685 686 if (tp->urg_data) 687 done = true; 688 689 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 690 moved += len; 691 seq += len; 692 693 if (WARN_ON_ONCE(map_remaining < len)) 694 break; 695 } else { 696 WARN_ON_ONCE(!fin); 697 sk_eat_skb(ssk, skb); 698 done = true; 699 } 700 701 WRITE_ONCE(tp->copied_seq, seq); 702 more_data_avail = mptcp_subflow_data_available(ssk); 703 704 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 705 done = true; 706 break; 707 } 708 } while (more_data_avail); 709 710 *bytes += moved; 711 return done; 712 } 713 714 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 715 { 716 struct sock *sk = (struct sock *)msk; 717 struct sk_buff *skb, *tail; 718 bool moved = false; 719 struct rb_node *p; 720 u64 end_seq; 721 722 p = rb_first(&msk->out_of_order_queue); 723 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 724 while (p) { 725 skb = rb_to_skb(p); 726 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 727 break; 728 729 p = rb_next(p); 730 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 731 732 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 733 msk->ack_seq))) { 734 mptcp_drop(sk, skb); 735 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 736 continue; 737 } 738 739 end_seq = MPTCP_SKB_CB(skb)->end_seq; 740 tail = skb_peek_tail(&sk->sk_receive_queue); 741 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 742 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 743 744 /* skip overlapping data, if any */ 745 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 746 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 747 delta); 748 MPTCP_SKB_CB(skb)->offset += delta; 749 MPTCP_SKB_CB(skb)->map_seq += delta; 750 __skb_queue_tail(&sk->sk_receive_queue, skb); 751 } 752 msk->ack_seq = end_seq; 753 moved = true; 754 } 755 return moved; 756 } 757 758 /* In most cases we will be able to lock the mptcp socket. If its already 759 * owned, we need to defer to the work queue to avoid ABBA deadlock. 760 */ 761 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 762 { 763 struct sock *sk = (struct sock *)msk; 764 unsigned int moved = 0; 765 766 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 767 __mptcp_ofo_queue(msk); 768 if (unlikely(ssk->sk_err)) { 769 if (!sock_owned_by_user(sk)) 770 __mptcp_error_report(sk); 771 else 772 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 773 } 774 775 /* If the moves have caught up with the DATA_FIN sequence number 776 * it's time to ack the DATA_FIN and change socket state, but 777 * this is not a good place to change state. Let the workqueue 778 * do it. 779 */ 780 if (mptcp_pending_data_fin(sk, NULL)) 781 mptcp_schedule_work(sk); 782 return moved > 0; 783 } 784 785 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 786 { 787 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 788 struct mptcp_sock *msk = mptcp_sk(sk); 789 int sk_rbuf, ssk_rbuf; 790 791 /* The peer can send data while we are shutting down this 792 * subflow at msk destruction time, but we must avoid enqueuing 793 * more data to the msk receive queue 794 */ 795 if (unlikely(subflow->disposable)) 796 return; 797 798 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 799 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 800 if (unlikely(ssk_rbuf > sk_rbuf)) 801 sk_rbuf = ssk_rbuf; 802 803 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 804 if (__mptcp_rmem(sk) > sk_rbuf) { 805 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 806 return; 807 } 808 809 /* Wake-up the reader only for in-sequence data */ 810 mptcp_data_lock(sk); 811 if (move_skbs_to_msk(msk, ssk)) 812 sk->sk_data_ready(sk); 813 814 mptcp_data_unlock(sk); 815 } 816 817 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 818 { 819 struct sock *sk = (struct sock *)msk; 820 821 if (sk->sk_state != TCP_ESTABLISHED) 822 return false; 823 824 /* attach to msk socket only after we are sure we will deal with it 825 * at close time 826 */ 827 if (sk->sk_socket && !ssk->sk_socket) 828 mptcp_sock_graft(ssk, sk->sk_socket); 829 830 mptcp_propagate_sndbuf((struct sock *)msk, ssk); 831 mptcp_sockopt_sync_locked(msk, ssk); 832 return true; 833 } 834 835 static void __mptcp_flush_join_list(struct sock *sk) 836 { 837 struct mptcp_subflow_context *tmp, *subflow; 838 struct mptcp_sock *msk = mptcp_sk(sk); 839 840 list_for_each_entry_safe(subflow, tmp, &msk->join_list, node) { 841 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 842 bool slow = lock_sock_fast(ssk); 843 844 list_move_tail(&subflow->node, &msk->conn_list); 845 if (!__mptcp_finish_join(msk, ssk)) 846 mptcp_subflow_reset(ssk); 847 unlock_sock_fast(ssk, slow); 848 } 849 } 850 851 static bool mptcp_timer_pending(struct sock *sk) 852 { 853 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 854 } 855 856 static void mptcp_reset_timer(struct sock *sk) 857 { 858 struct inet_connection_sock *icsk = inet_csk(sk); 859 unsigned long tout; 860 861 /* prevent rescheduling on close */ 862 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 863 return; 864 865 tout = mptcp_sk(sk)->timer_ival; 866 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 867 } 868 869 bool mptcp_schedule_work(struct sock *sk) 870 { 871 if (inet_sk_state_load(sk) != TCP_CLOSE && 872 schedule_work(&mptcp_sk(sk)->work)) { 873 /* each subflow already holds a reference to the sk, and the 874 * workqueue is invoked by a subflow, so sk can't go away here. 875 */ 876 sock_hold(sk); 877 return true; 878 } 879 return false; 880 } 881 882 void mptcp_subflow_eof(struct sock *sk) 883 { 884 if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags)) 885 mptcp_schedule_work(sk); 886 } 887 888 static void mptcp_check_for_eof(struct mptcp_sock *msk) 889 { 890 struct mptcp_subflow_context *subflow; 891 struct sock *sk = (struct sock *)msk; 892 int receivers = 0; 893 894 mptcp_for_each_subflow(msk, subflow) 895 receivers += !subflow->rx_eof; 896 if (receivers) 897 return; 898 899 if (!(sk->sk_shutdown & RCV_SHUTDOWN)) { 900 /* hopefully temporary hack: propagate shutdown status 901 * to msk, when all subflows agree on it 902 */ 903 sk->sk_shutdown |= RCV_SHUTDOWN; 904 905 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 906 sk->sk_data_ready(sk); 907 } 908 909 switch (sk->sk_state) { 910 case TCP_ESTABLISHED: 911 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 912 break; 913 case TCP_FIN_WAIT1: 914 inet_sk_state_store(sk, TCP_CLOSING); 915 break; 916 case TCP_FIN_WAIT2: 917 inet_sk_state_store(sk, TCP_CLOSE); 918 break; 919 default: 920 return; 921 } 922 mptcp_close_wake_up(sk); 923 } 924 925 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 926 { 927 struct mptcp_subflow_context *subflow; 928 struct sock *sk = (struct sock *)msk; 929 930 sock_owned_by_me(sk); 931 932 mptcp_for_each_subflow(msk, subflow) { 933 if (READ_ONCE(subflow->data_avail)) 934 return mptcp_subflow_tcp_sock(subflow); 935 } 936 937 return NULL; 938 } 939 940 static bool mptcp_skb_can_collapse_to(u64 write_seq, 941 const struct sk_buff *skb, 942 const struct mptcp_ext *mpext) 943 { 944 if (!tcp_skb_can_collapse_to(skb)) 945 return false; 946 947 /* can collapse only if MPTCP level sequence is in order and this 948 * mapping has not been xmitted yet 949 */ 950 return mpext && mpext->data_seq + mpext->data_len == write_seq && 951 !mpext->frozen; 952 } 953 954 /* we can append data to the given data frag if: 955 * - there is space available in the backing page_frag 956 * - the data frag tail matches the current page_frag free offset 957 * - the data frag end sequence number matches the current write seq 958 */ 959 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 960 const struct page_frag *pfrag, 961 const struct mptcp_data_frag *df) 962 { 963 return df && pfrag->page == df->page && 964 pfrag->size - pfrag->offset > 0 && 965 pfrag->offset == (df->offset + df->data_len) && 966 df->data_seq + df->data_len == msk->write_seq; 967 } 968 969 static void __mptcp_mem_reclaim_partial(struct sock *sk) 970 { 971 int reclaimable = mptcp_sk(sk)->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 972 973 lockdep_assert_held_once(&sk->sk_lock.slock); 974 975 if (reclaimable > SK_MEM_QUANTUM) 976 __mptcp_rmem_reclaim(sk, reclaimable - 1); 977 978 sk_mem_reclaim_partial(sk); 979 } 980 981 static void mptcp_mem_reclaim_partial(struct sock *sk) 982 { 983 mptcp_data_lock(sk); 984 __mptcp_mem_reclaim_partial(sk); 985 mptcp_data_unlock(sk); 986 } 987 988 static void dfrag_uncharge(struct sock *sk, int len) 989 { 990 sk_mem_uncharge(sk, len); 991 sk_wmem_queued_add(sk, -len); 992 } 993 994 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 995 { 996 int len = dfrag->data_len + dfrag->overhead; 997 998 list_del(&dfrag->list); 999 dfrag_uncharge(sk, len); 1000 put_page(dfrag->page); 1001 } 1002 1003 static void __mptcp_clean_una(struct sock *sk) 1004 { 1005 struct mptcp_sock *msk = mptcp_sk(sk); 1006 struct mptcp_data_frag *dtmp, *dfrag; 1007 bool cleaned = false; 1008 u64 snd_una; 1009 1010 /* on fallback we just need to ignore snd_una, as this is really 1011 * plain TCP 1012 */ 1013 if (__mptcp_check_fallback(msk)) 1014 msk->snd_una = READ_ONCE(msk->snd_nxt); 1015 1016 snd_una = msk->snd_una; 1017 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1018 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1019 break; 1020 1021 if (unlikely(dfrag == msk->first_pending)) { 1022 /* in recovery mode can see ack after the current snd head */ 1023 if (WARN_ON_ONCE(!msk->recovery)) 1024 break; 1025 1026 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1027 } 1028 1029 dfrag_clear(sk, dfrag); 1030 cleaned = true; 1031 } 1032 1033 dfrag = mptcp_rtx_head(sk); 1034 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1035 u64 delta = snd_una - dfrag->data_seq; 1036 1037 /* prevent wrap around in recovery mode */ 1038 if (unlikely(delta > dfrag->already_sent)) { 1039 if (WARN_ON_ONCE(!msk->recovery)) 1040 goto out; 1041 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1042 goto out; 1043 dfrag->already_sent += delta - dfrag->already_sent; 1044 } 1045 1046 dfrag->data_seq += delta; 1047 dfrag->offset += delta; 1048 dfrag->data_len -= delta; 1049 dfrag->already_sent -= delta; 1050 1051 dfrag_uncharge(sk, delta); 1052 cleaned = true; 1053 } 1054 1055 /* all retransmitted data acked, recovery completed */ 1056 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1057 msk->recovery = false; 1058 1059 out: 1060 if (cleaned && tcp_under_memory_pressure(sk)) 1061 __mptcp_mem_reclaim_partial(sk); 1062 1063 if (snd_una == READ_ONCE(msk->snd_nxt) && 1064 snd_una == READ_ONCE(msk->write_seq)) { 1065 if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1066 mptcp_stop_timer(sk); 1067 } else { 1068 mptcp_reset_timer(sk); 1069 } 1070 } 1071 1072 static void __mptcp_clean_una_wakeup(struct sock *sk) 1073 { 1074 lockdep_assert_held_once(&sk->sk_lock.slock); 1075 1076 __mptcp_clean_una(sk); 1077 mptcp_write_space(sk); 1078 } 1079 1080 static void mptcp_clean_una_wakeup(struct sock *sk) 1081 { 1082 mptcp_data_lock(sk); 1083 __mptcp_clean_una_wakeup(sk); 1084 mptcp_data_unlock(sk); 1085 } 1086 1087 static void mptcp_enter_memory_pressure(struct sock *sk) 1088 { 1089 struct mptcp_subflow_context *subflow; 1090 struct mptcp_sock *msk = mptcp_sk(sk); 1091 bool first = true; 1092 1093 sk_stream_moderate_sndbuf(sk); 1094 mptcp_for_each_subflow(msk, subflow) { 1095 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1096 1097 if (first) 1098 tcp_enter_memory_pressure(ssk); 1099 sk_stream_moderate_sndbuf(ssk); 1100 first = false; 1101 } 1102 } 1103 1104 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1105 * data 1106 */ 1107 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1108 { 1109 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1110 pfrag, sk->sk_allocation))) 1111 return true; 1112 1113 mptcp_enter_memory_pressure(sk); 1114 return false; 1115 } 1116 1117 static struct mptcp_data_frag * 1118 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1119 int orig_offset) 1120 { 1121 int offset = ALIGN(orig_offset, sizeof(long)); 1122 struct mptcp_data_frag *dfrag; 1123 1124 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1125 dfrag->data_len = 0; 1126 dfrag->data_seq = msk->write_seq; 1127 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1128 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1129 dfrag->already_sent = 0; 1130 dfrag->page = pfrag->page; 1131 1132 return dfrag; 1133 } 1134 1135 struct mptcp_sendmsg_info { 1136 int mss_now; 1137 int size_goal; 1138 u16 limit; 1139 u16 sent; 1140 unsigned int flags; 1141 bool data_lock_held; 1142 }; 1143 1144 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1145 u64 data_seq, int avail_size) 1146 { 1147 u64 window_end = mptcp_wnd_end(msk); 1148 u64 mptcp_snd_wnd; 1149 1150 if (__mptcp_check_fallback(msk)) 1151 return avail_size; 1152 1153 mptcp_snd_wnd = window_end - data_seq; 1154 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1155 1156 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1157 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1158 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1159 } 1160 1161 return avail_size; 1162 } 1163 1164 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1165 { 1166 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1167 1168 if (!mpext) 1169 return false; 1170 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1171 return true; 1172 } 1173 1174 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1175 { 1176 struct sk_buff *skb; 1177 1178 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1179 if (likely(skb)) { 1180 if (likely(__mptcp_add_ext(skb, gfp))) { 1181 skb_reserve(skb, MAX_TCP_HEADER); 1182 skb->ip_summed = CHECKSUM_PARTIAL; 1183 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1184 return skb; 1185 } 1186 __kfree_skb(skb); 1187 } else { 1188 mptcp_enter_memory_pressure(sk); 1189 } 1190 return NULL; 1191 } 1192 1193 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1194 { 1195 struct sk_buff *skb; 1196 1197 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1198 if (!skb) 1199 return NULL; 1200 1201 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1202 tcp_skb_entail(ssk, skb); 1203 return skb; 1204 } 1205 tcp_skb_tsorted_anchor_cleanup(skb); 1206 kfree_skb(skb); 1207 return NULL; 1208 } 1209 1210 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1211 { 1212 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1213 1214 if (unlikely(tcp_under_memory_pressure(sk))) { 1215 if (data_lock_held) 1216 __mptcp_mem_reclaim_partial(sk); 1217 else 1218 mptcp_mem_reclaim_partial(sk); 1219 } 1220 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1221 } 1222 1223 /* note: this always recompute the csum on the whole skb, even 1224 * if we just appended a single frag. More status info needed 1225 */ 1226 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1227 { 1228 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1229 __wsum csum = ~csum_unfold(mpext->csum); 1230 int offset = skb->len - added; 1231 1232 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1233 } 1234 1235 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1236 struct sock *ssk, 1237 struct mptcp_ext *mpext) 1238 { 1239 if (!mpext) 1240 return; 1241 1242 mpext->infinite_map = 1; 1243 mpext->data_len = 0; 1244 1245 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1246 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1247 pr_fallback(msk); 1248 __mptcp_do_fallback(msk); 1249 } 1250 1251 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1252 struct mptcp_data_frag *dfrag, 1253 struct mptcp_sendmsg_info *info) 1254 { 1255 u64 data_seq = dfrag->data_seq + info->sent; 1256 int offset = dfrag->offset + info->sent; 1257 struct mptcp_sock *msk = mptcp_sk(sk); 1258 bool zero_window_probe = false; 1259 struct mptcp_ext *mpext = NULL; 1260 bool can_coalesce = false; 1261 bool reuse_skb = true; 1262 struct sk_buff *skb; 1263 size_t copy; 1264 int i; 1265 1266 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1267 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1268 1269 if (WARN_ON_ONCE(info->sent > info->limit || 1270 info->limit > dfrag->data_len)) 1271 return 0; 1272 1273 /* compute send limit */ 1274 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1275 copy = info->size_goal; 1276 1277 skb = tcp_write_queue_tail(ssk); 1278 if (skb && copy > skb->len) { 1279 /* Limit the write to the size available in the 1280 * current skb, if any, so that we create at most a new skb. 1281 * Explicitly tells TCP internals to avoid collapsing on later 1282 * queue management operation, to avoid breaking the ext <-> 1283 * SSN association set here 1284 */ 1285 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1286 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1287 TCP_SKB_CB(skb)->eor = 1; 1288 goto alloc_skb; 1289 } 1290 1291 i = skb_shinfo(skb)->nr_frags; 1292 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1293 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1294 tcp_mark_push(tcp_sk(ssk), skb); 1295 goto alloc_skb; 1296 } 1297 1298 copy -= skb->len; 1299 } else { 1300 alloc_skb: 1301 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1302 if (!skb) 1303 return -ENOMEM; 1304 1305 i = skb_shinfo(skb)->nr_frags; 1306 reuse_skb = false; 1307 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1308 } 1309 1310 /* Zero window and all data acked? Probe. */ 1311 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1312 if (copy == 0) { 1313 u64 snd_una = READ_ONCE(msk->snd_una); 1314 1315 if (snd_una != msk->snd_nxt) { 1316 tcp_remove_empty_skb(ssk); 1317 return 0; 1318 } 1319 1320 zero_window_probe = true; 1321 data_seq = snd_una - 1; 1322 copy = 1; 1323 1324 /* all mptcp-level data is acked, no skbs should be present into the 1325 * ssk write queue 1326 */ 1327 WARN_ON_ONCE(reuse_skb); 1328 } 1329 1330 copy = min_t(size_t, copy, info->limit - info->sent); 1331 if (!sk_wmem_schedule(ssk, copy)) { 1332 tcp_remove_empty_skb(ssk); 1333 return -ENOMEM; 1334 } 1335 1336 if (can_coalesce) { 1337 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1338 } else { 1339 get_page(dfrag->page); 1340 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1341 } 1342 1343 skb->len += copy; 1344 skb->data_len += copy; 1345 skb->truesize += copy; 1346 sk_wmem_queued_add(ssk, copy); 1347 sk_mem_charge(ssk, copy); 1348 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1349 TCP_SKB_CB(skb)->end_seq += copy; 1350 tcp_skb_pcount_set(skb, 0); 1351 1352 /* on skb reuse we just need to update the DSS len */ 1353 if (reuse_skb) { 1354 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1355 mpext->data_len += copy; 1356 WARN_ON_ONCE(zero_window_probe); 1357 goto out; 1358 } 1359 1360 memset(mpext, 0, sizeof(*mpext)); 1361 mpext->data_seq = data_seq; 1362 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1363 mpext->data_len = copy; 1364 mpext->use_map = 1; 1365 mpext->dsn64 = 1; 1366 1367 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1368 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1369 mpext->dsn64); 1370 1371 if (zero_window_probe) { 1372 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1373 mpext->frozen = 1; 1374 if (READ_ONCE(msk->csum_enabled)) 1375 mptcp_update_data_checksum(skb, copy); 1376 tcp_push_pending_frames(ssk); 1377 return 0; 1378 } 1379 out: 1380 if (READ_ONCE(msk->csum_enabled)) 1381 mptcp_update_data_checksum(skb, copy); 1382 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1383 mptcp_update_infinite_map(msk, ssk, mpext); 1384 trace_mptcp_sendmsg_frag(mpext); 1385 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1386 return copy; 1387 } 1388 1389 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1390 sizeof(struct tcphdr) - \ 1391 MAX_TCP_OPTION_SPACE - \ 1392 sizeof(struct ipv6hdr) - \ 1393 sizeof(struct frag_hdr)) 1394 1395 struct subflow_send_info { 1396 struct sock *ssk; 1397 u64 linger_time; 1398 }; 1399 1400 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1401 { 1402 if (!subflow->stale) 1403 return; 1404 1405 subflow->stale = 0; 1406 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1407 } 1408 1409 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1410 { 1411 if (unlikely(subflow->stale)) { 1412 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1413 1414 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1415 return false; 1416 1417 mptcp_subflow_set_active(subflow); 1418 } 1419 return __mptcp_subflow_active(subflow); 1420 } 1421 1422 #define SSK_MODE_ACTIVE 0 1423 #define SSK_MODE_BACKUP 1 1424 #define SSK_MODE_MAX 2 1425 1426 /* implement the mptcp packet scheduler; 1427 * returns the subflow that will transmit the next DSS 1428 * additionally updates the rtx timeout 1429 */ 1430 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1431 { 1432 struct subflow_send_info send_info[SSK_MODE_MAX]; 1433 struct mptcp_subflow_context *subflow; 1434 struct sock *sk = (struct sock *)msk; 1435 u32 pace, burst, wmem; 1436 int i, nr_active = 0; 1437 struct sock *ssk; 1438 u64 linger_time; 1439 long tout = 0; 1440 1441 sock_owned_by_me(sk); 1442 1443 if (__mptcp_check_fallback(msk)) { 1444 if (!msk->first) 1445 return NULL; 1446 return sk_stream_memory_free(msk->first) ? msk->first : NULL; 1447 } 1448 1449 /* re-use last subflow, if the burst allow that */ 1450 if (msk->last_snd && msk->snd_burst > 0 && 1451 sk_stream_memory_free(msk->last_snd) && 1452 mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) { 1453 mptcp_set_timeout(sk); 1454 return msk->last_snd; 1455 } 1456 1457 /* pick the subflow with the lower wmem/wspace ratio */ 1458 for (i = 0; i < SSK_MODE_MAX; ++i) { 1459 send_info[i].ssk = NULL; 1460 send_info[i].linger_time = -1; 1461 } 1462 1463 mptcp_for_each_subflow(msk, subflow) { 1464 trace_mptcp_subflow_get_send(subflow); 1465 ssk = mptcp_subflow_tcp_sock(subflow); 1466 if (!mptcp_subflow_active(subflow)) 1467 continue; 1468 1469 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1470 nr_active += !subflow->backup; 1471 pace = subflow->avg_pacing_rate; 1472 if (unlikely(!pace)) { 1473 /* init pacing rate from socket */ 1474 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1475 pace = subflow->avg_pacing_rate; 1476 if (!pace) 1477 continue; 1478 } 1479 1480 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1481 if (linger_time < send_info[subflow->backup].linger_time) { 1482 send_info[subflow->backup].ssk = ssk; 1483 send_info[subflow->backup].linger_time = linger_time; 1484 } 1485 } 1486 __mptcp_set_timeout(sk, tout); 1487 1488 /* pick the best backup if no other subflow is active */ 1489 if (!nr_active) 1490 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1491 1492 /* According to the blest algorithm, to avoid HoL blocking for the 1493 * faster flow, we need to: 1494 * - estimate the faster flow linger time 1495 * - use the above to estimate the amount of byte transferred 1496 * by the faster flow 1497 * - check that the amount of queued data is greter than the above, 1498 * otherwise do not use the picked, slower, subflow 1499 * We select the subflow with the shorter estimated time to flush 1500 * the queued mem, which basically ensure the above. We just need 1501 * to check that subflow has a non empty cwin. 1502 */ 1503 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1504 if (!ssk || !sk_stream_memory_free(ssk)) 1505 return NULL; 1506 1507 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1508 wmem = READ_ONCE(ssk->sk_wmem_queued); 1509 if (!burst) { 1510 msk->last_snd = NULL; 1511 return ssk; 1512 } 1513 1514 subflow = mptcp_subflow_ctx(ssk); 1515 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1516 READ_ONCE(ssk->sk_pacing_rate) * burst, 1517 burst + wmem); 1518 msk->last_snd = ssk; 1519 msk->snd_burst = burst; 1520 return ssk; 1521 } 1522 1523 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1524 { 1525 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1526 release_sock(ssk); 1527 } 1528 1529 static void mptcp_update_post_push(struct mptcp_sock *msk, 1530 struct mptcp_data_frag *dfrag, 1531 u32 sent) 1532 { 1533 u64 snd_nxt_new = dfrag->data_seq; 1534 1535 dfrag->already_sent += sent; 1536 1537 msk->snd_burst -= sent; 1538 1539 snd_nxt_new += dfrag->already_sent; 1540 1541 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1542 * is recovering after a failover. In that event, this re-sends 1543 * old segments. 1544 * 1545 * Thus compute snd_nxt_new candidate based on 1546 * the dfrag->data_seq that was sent and the data 1547 * that has been handed to the subflow for transmission 1548 * and skip update in case it was old dfrag. 1549 */ 1550 if (likely(after64(snd_nxt_new, msk->snd_nxt))) 1551 msk->snd_nxt = snd_nxt_new; 1552 } 1553 1554 void mptcp_check_and_set_pending(struct sock *sk) 1555 { 1556 if (mptcp_send_head(sk)) 1557 mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING); 1558 } 1559 1560 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1561 { 1562 struct sock *prev_ssk = NULL, *ssk = NULL; 1563 struct mptcp_sock *msk = mptcp_sk(sk); 1564 struct mptcp_sendmsg_info info = { 1565 .flags = flags, 1566 }; 1567 struct mptcp_data_frag *dfrag; 1568 int len, copied = 0; 1569 1570 while ((dfrag = mptcp_send_head(sk))) { 1571 info.sent = dfrag->already_sent; 1572 info.limit = dfrag->data_len; 1573 len = dfrag->data_len - dfrag->already_sent; 1574 while (len > 0) { 1575 int ret = 0; 1576 1577 prev_ssk = ssk; 1578 ssk = mptcp_subflow_get_send(msk); 1579 1580 /* First check. If the ssk has changed since 1581 * the last round, release prev_ssk 1582 */ 1583 if (ssk != prev_ssk && prev_ssk) 1584 mptcp_push_release(prev_ssk, &info); 1585 if (!ssk) 1586 goto out; 1587 1588 /* Need to lock the new subflow only if different 1589 * from the previous one, otherwise we are still 1590 * helding the relevant lock 1591 */ 1592 if (ssk != prev_ssk) 1593 lock_sock(ssk); 1594 1595 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1596 if (ret <= 0) { 1597 mptcp_push_release(ssk, &info); 1598 goto out; 1599 } 1600 1601 info.sent += ret; 1602 copied += ret; 1603 len -= ret; 1604 1605 mptcp_update_post_push(msk, dfrag, ret); 1606 } 1607 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1608 } 1609 1610 /* at this point we held the socket lock for the last subflow we used */ 1611 if (ssk) 1612 mptcp_push_release(ssk, &info); 1613 1614 out: 1615 /* ensure the rtx timer is running */ 1616 if (!mptcp_timer_pending(sk)) 1617 mptcp_reset_timer(sk); 1618 if (copied) 1619 __mptcp_check_send_data_fin(sk); 1620 } 1621 1622 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk) 1623 { 1624 struct mptcp_sock *msk = mptcp_sk(sk); 1625 struct mptcp_sendmsg_info info = { 1626 .data_lock_held = true, 1627 }; 1628 struct mptcp_data_frag *dfrag; 1629 struct sock *xmit_ssk; 1630 int len, copied = 0; 1631 bool first = true; 1632 1633 info.flags = 0; 1634 while ((dfrag = mptcp_send_head(sk))) { 1635 info.sent = dfrag->already_sent; 1636 info.limit = dfrag->data_len; 1637 len = dfrag->data_len - dfrag->already_sent; 1638 while (len > 0) { 1639 int ret = 0; 1640 1641 /* the caller already invoked the packet scheduler, 1642 * check for a different subflow usage only after 1643 * spooling the first chunk of data 1644 */ 1645 xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk)); 1646 if (!xmit_ssk) 1647 goto out; 1648 if (xmit_ssk != ssk) { 1649 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), 1650 MPTCP_DELEGATE_SEND); 1651 goto out; 1652 } 1653 1654 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1655 if (ret <= 0) 1656 goto out; 1657 1658 info.sent += ret; 1659 copied += ret; 1660 len -= ret; 1661 first = false; 1662 1663 mptcp_update_post_push(msk, dfrag, ret); 1664 } 1665 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1666 } 1667 1668 out: 1669 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1670 * not going to flush it via release_sock() 1671 */ 1672 if (copied) { 1673 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1674 info.size_goal); 1675 if (!mptcp_timer_pending(sk)) 1676 mptcp_reset_timer(sk); 1677 1678 if (msk->snd_data_fin_enable && 1679 msk->snd_nxt + 1 == msk->write_seq) 1680 mptcp_schedule_work(sk); 1681 } 1682 } 1683 1684 static void mptcp_set_nospace(struct sock *sk) 1685 { 1686 /* enable autotune */ 1687 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1688 1689 /* will be cleared on avail space */ 1690 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1691 } 1692 1693 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1694 { 1695 struct mptcp_sock *msk = mptcp_sk(sk); 1696 struct page_frag *pfrag; 1697 size_t copied = 0; 1698 int ret = 0; 1699 long timeo; 1700 1701 /* we don't support FASTOPEN yet */ 1702 if (msg->msg_flags & MSG_FASTOPEN) 1703 return -EOPNOTSUPP; 1704 1705 /* silently ignore everything else */ 1706 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL; 1707 1708 lock_sock(sk); 1709 1710 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1711 1712 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1713 ret = sk_stream_wait_connect(sk, &timeo); 1714 if (ret) 1715 goto out; 1716 } 1717 1718 pfrag = sk_page_frag(sk); 1719 1720 while (msg_data_left(msg)) { 1721 int total_ts, frag_truesize = 0; 1722 struct mptcp_data_frag *dfrag; 1723 bool dfrag_collapsed; 1724 size_t psize, offset; 1725 1726 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) { 1727 ret = -EPIPE; 1728 goto out; 1729 } 1730 1731 /* reuse tail pfrag, if possible, or carve a new one from the 1732 * page allocator 1733 */ 1734 dfrag = mptcp_pending_tail(sk); 1735 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1736 if (!dfrag_collapsed) { 1737 if (!sk_stream_memory_free(sk)) 1738 goto wait_for_memory; 1739 1740 if (!mptcp_page_frag_refill(sk, pfrag)) 1741 goto wait_for_memory; 1742 1743 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1744 frag_truesize = dfrag->overhead; 1745 } 1746 1747 /* we do not bound vs wspace, to allow a single packet. 1748 * memory accounting will prevent execessive memory usage 1749 * anyway 1750 */ 1751 offset = dfrag->offset + dfrag->data_len; 1752 psize = pfrag->size - offset; 1753 psize = min_t(size_t, psize, msg_data_left(msg)); 1754 total_ts = psize + frag_truesize; 1755 1756 if (!sk_wmem_schedule(sk, total_ts)) 1757 goto wait_for_memory; 1758 1759 if (copy_page_from_iter(dfrag->page, offset, psize, 1760 &msg->msg_iter) != psize) { 1761 ret = -EFAULT; 1762 goto out; 1763 } 1764 1765 /* data successfully copied into the write queue */ 1766 sk->sk_forward_alloc -= total_ts; 1767 copied += psize; 1768 dfrag->data_len += psize; 1769 frag_truesize += psize; 1770 pfrag->offset += frag_truesize; 1771 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1772 1773 /* charge data on mptcp pending queue to the msk socket 1774 * Note: we charge such data both to sk and ssk 1775 */ 1776 sk_wmem_queued_add(sk, frag_truesize); 1777 if (!dfrag_collapsed) { 1778 get_page(dfrag->page); 1779 list_add_tail(&dfrag->list, &msk->rtx_queue); 1780 if (!msk->first_pending) 1781 WRITE_ONCE(msk->first_pending, dfrag); 1782 } 1783 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1784 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1785 !dfrag_collapsed); 1786 1787 continue; 1788 1789 wait_for_memory: 1790 mptcp_set_nospace(sk); 1791 __mptcp_push_pending(sk, msg->msg_flags); 1792 ret = sk_stream_wait_memory(sk, &timeo); 1793 if (ret) 1794 goto out; 1795 } 1796 1797 if (copied) 1798 __mptcp_push_pending(sk, msg->msg_flags); 1799 1800 out: 1801 release_sock(sk); 1802 return copied ? : ret; 1803 } 1804 1805 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1806 struct msghdr *msg, 1807 size_t len, int flags, 1808 struct scm_timestamping_internal *tss, 1809 int *cmsg_flags) 1810 { 1811 struct sk_buff *skb, *tmp; 1812 int copied = 0; 1813 1814 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1815 u32 offset = MPTCP_SKB_CB(skb)->offset; 1816 u32 data_len = skb->len - offset; 1817 u32 count = min_t(size_t, len - copied, data_len); 1818 int err; 1819 1820 if (!(flags & MSG_TRUNC)) { 1821 err = skb_copy_datagram_msg(skb, offset, msg, count); 1822 if (unlikely(err < 0)) { 1823 if (!copied) 1824 return err; 1825 break; 1826 } 1827 } 1828 1829 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1830 tcp_update_recv_tstamps(skb, tss); 1831 *cmsg_flags |= MPTCP_CMSG_TS; 1832 } 1833 1834 copied += count; 1835 1836 if (count < data_len) { 1837 if (!(flags & MSG_PEEK)) { 1838 MPTCP_SKB_CB(skb)->offset += count; 1839 MPTCP_SKB_CB(skb)->map_seq += count; 1840 } 1841 break; 1842 } 1843 1844 if (!(flags & MSG_PEEK)) { 1845 /* we will bulk release the skb memory later */ 1846 skb->destructor = NULL; 1847 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1848 __skb_unlink(skb, &msk->receive_queue); 1849 __kfree_skb(skb); 1850 } 1851 1852 if (copied >= len) 1853 break; 1854 } 1855 1856 return copied; 1857 } 1858 1859 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1860 * 1861 * Only difference: Use highest rtt estimate of the subflows in use. 1862 */ 1863 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1864 { 1865 struct mptcp_subflow_context *subflow; 1866 struct sock *sk = (struct sock *)msk; 1867 u32 time, advmss = 1; 1868 u64 rtt_us, mstamp; 1869 1870 sock_owned_by_me(sk); 1871 1872 if (copied <= 0) 1873 return; 1874 1875 msk->rcvq_space.copied += copied; 1876 1877 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1878 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1879 1880 rtt_us = msk->rcvq_space.rtt_us; 1881 if (rtt_us && time < (rtt_us >> 3)) 1882 return; 1883 1884 rtt_us = 0; 1885 mptcp_for_each_subflow(msk, subflow) { 1886 const struct tcp_sock *tp; 1887 u64 sf_rtt_us; 1888 u32 sf_advmss; 1889 1890 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1891 1892 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1893 sf_advmss = READ_ONCE(tp->advmss); 1894 1895 rtt_us = max(sf_rtt_us, rtt_us); 1896 advmss = max(sf_advmss, advmss); 1897 } 1898 1899 msk->rcvq_space.rtt_us = rtt_us; 1900 if (time < (rtt_us >> 3) || rtt_us == 0) 1901 return; 1902 1903 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1904 goto new_measure; 1905 1906 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 1907 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1908 int rcvmem, rcvbuf; 1909 u64 rcvwin, grow; 1910 1911 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1912 1913 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1914 1915 do_div(grow, msk->rcvq_space.space); 1916 rcvwin += (grow << 1); 1917 1918 rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER); 1919 while (tcp_win_from_space(sk, rcvmem) < advmss) 1920 rcvmem += 128; 1921 1922 do_div(rcvwin, advmss); 1923 rcvbuf = min_t(u64, rcvwin * rcvmem, 1924 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 1925 1926 if (rcvbuf > sk->sk_rcvbuf) { 1927 u32 window_clamp; 1928 1929 window_clamp = tcp_win_from_space(sk, rcvbuf); 1930 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 1931 1932 /* Make subflows follow along. If we do not do this, we 1933 * get drops at subflow level if skbs can't be moved to 1934 * the mptcp rx queue fast enough (announced rcv_win can 1935 * exceed ssk->sk_rcvbuf). 1936 */ 1937 mptcp_for_each_subflow(msk, subflow) { 1938 struct sock *ssk; 1939 bool slow; 1940 1941 ssk = mptcp_subflow_tcp_sock(subflow); 1942 slow = lock_sock_fast(ssk); 1943 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 1944 tcp_sk(ssk)->window_clamp = window_clamp; 1945 tcp_cleanup_rbuf(ssk, 1); 1946 unlock_sock_fast(ssk, slow); 1947 } 1948 } 1949 } 1950 1951 msk->rcvq_space.space = msk->rcvq_space.copied; 1952 new_measure: 1953 msk->rcvq_space.copied = 0; 1954 msk->rcvq_space.time = mstamp; 1955 } 1956 1957 static void __mptcp_update_rmem(struct sock *sk) 1958 { 1959 struct mptcp_sock *msk = mptcp_sk(sk); 1960 1961 if (!msk->rmem_released) 1962 return; 1963 1964 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 1965 mptcp_rmem_uncharge(sk, msk->rmem_released); 1966 WRITE_ONCE(msk->rmem_released, 0); 1967 } 1968 1969 static void __mptcp_splice_receive_queue(struct sock *sk) 1970 { 1971 struct mptcp_sock *msk = mptcp_sk(sk); 1972 1973 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 1974 } 1975 1976 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 1977 { 1978 struct sock *sk = (struct sock *)msk; 1979 unsigned int moved = 0; 1980 bool ret, done; 1981 1982 do { 1983 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 1984 bool slowpath; 1985 1986 /* we can have data pending in the subflows only if the msk 1987 * receive buffer was full at subflow_data_ready() time, 1988 * that is an unlikely slow path. 1989 */ 1990 if (likely(!ssk)) 1991 break; 1992 1993 slowpath = lock_sock_fast(ssk); 1994 mptcp_data_lock(sk); 1995 __mptcp_update_rmem(sk); 1996 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 1997 mptcp_data_unlock(sk); 1998 1999 if (unlikely(ssk->sk_err)) 2000 __mptcp_error_report(sk); 2001 unlock_sock_fast(ssk, slowpath); 2002 } while (!done); 2003 2004 /* acquire the data lock only if some input data is pending */ 2005 ret = moved > 0; 2006 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 2007 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2008 mptcp_data_lock(sk); 2009 __mptcp_update_rmem(sk); 2010 ret |= __mptcp_ofo_queue(msk); 2011 __mptcp_splice_receive_queue(sk); 2012 mptcp_data_unlock(sk); 2013 } 2014 if (ret) 2015 mptcp_check_data_fin((struct sock *)msk); 2016 return !skb_queue_empty(&msk->receive_queue); 2017 } 2018 2019 static unsigned int mptcp_inq_hint(const struct sock *sk) 2020 { 2021 const struct mptcp_sock *msk = mptcp_sk(sk); 2022 const struct sk_buff *skb; 2023 2024 skb = skb_peek(&msk->receive_queue); 2025 if (skb) { 2026 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 2027 2028 if (hint_val >= INT_MAX) 2029 return INT_MAX; 2030 2031 return (unsigned int)hint_val; 2032 } 2033 2034 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2035 return 1; 2036 2037 return 0; 2038 } 2039 2040 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2041 int flags, int *addr_len) 2042 { 2043 struct mptcp_sock *msk = mptcp_sk(sk); 2044 struct scm_timestamping_internal tss; 2045 int copied = 0, cmsg_flags = 0; 2046 int target; 2047 long timeo; 2048 2049 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2050 if (unlikely(flags & MSG_ERRQUEUE)) 2051 return inet_recv_error(sk, msg, len, addr_len); 2052 2053 lock_sock(sk); 2054 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2055 copied = -ENOTCONN; 2056 goto out_err; 2057 } 2058 2059 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2060 2061 len = min_t(size_t, len, INT_MAX); 2062 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2063 2064 if (unlikely(msk->recvmsg_inq)) 2065 cmsg_flags = MPTCP_CMSG_INQ; 2066 2067 while (copied < len) { 2068 int bytes_read; 2069 2070 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2071 if (unlikely(bytes_read < 0)) { 2072 if (!copied) 2073 copied = bytes_read; 2074 goto out_err; 2075 } 2076 2077 copied += bytes_read; 2078 2079 /* be sure to advertise window change */ 2080 mptcp_cleanup_rbuf(msk); 2081 2082 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2083 continue; 2084 2085 /* only the master socket status is relevant here. The exit 2086 * conditions mirror closely tcp_recvmsg() 2087 */ 2088 if (copied >= target) 2089 break; 2090 2091 if (copied) { 2092 if (sk->sk_err || 2093 sk->sk_state == TCP_CLOSE || 2094 (sk->sk_shutdown & RCV_SHUTDOWN) || 2095 !timeo || 2096 signal_pending(current)) 2097 break; 2098 } else { 2099 if (sk->sk_err) { 2100 copied = sock_error(sk); 2101 break; 2102 } 2103 2104 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2105 mptcp_check_for_eof(msk); 2106 2107 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2108 /* race breaker: the shutdown could be after the 2109 * previous receive queue check 2110 */ 2111 if (__mptcp_move_skbs(msk)) 2112 continue; 2113 break; 2114 } 2115 2116 if (sk->sk_state == TCP_CLOSE) { 2117 copied = -ENOTCONN; 2118 break; 2119 } 2120 2121 if (!timeo) { 2122 copied = -EAGAIN; 2123 break; 2124 } 2125 2126 if (signal_pending(current)) { 2127 copied = sock_intr_errno(timeo); 2128 break; 2129 } 2130 } 2131 2132 pr_debug("block timeout %ld", timeo); 2133 sk_wait_data(sk, &timeo, NULL); 2134 } 2135 2136 out_err: 2137 if (cmsg_flags && copied >= 0) { 2138 if (cmsg_flags & MPTCP_CMSG_TS) 2139 tcp_recv_timestamp(msg, sk, &tss); 2140 2141 if (cmsg_flags & MPTCP_CMSG_INQ) { 2142 unsigned int inq = mptcp_inq_hint(sk); 2143 2144 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2145 } 2146 } 2147 2148 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2149 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2150 skb_queue_empty(&msk->receive_queue), copied); 2151 if (!(flags & MSG_PEEK)) 2152 mptcp_rcv_space_adjust(msk, copied); 2153 2154 release_sock(sk); 2155 return copied; 2156 } 2157 2158 static void mptcp_retransmit_timer(struct timer_list *t) 2159 { 2160 struct inet_connection_sock *icsk = from_timer(icsk, t, 2161 icsk_retransmit_timer); 2162 struct sock *sk = &icsk->icsk_inet.sk; 2163 struct mptcp_sock *msk = mptcp_sk(sk); 2164 2165 bh_lock_sock(sk); 2166 if (!sock_owned_by_user(sk)) { 2167 /* we need a process context to retransmit */ 2168 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2169 mptcp_schedule_work(sk); 2170 } else { 2171 /* delegate our work to tcp_release_cb() */ 2172 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2173 } 2174 bh_unlock_sock(sk); 2175 sock_put(sk); 2176 } 2177 2178 static struct mptcp_subflow_context * 2179 mp_fail_response_expect_subflow(struct mptcp_sock *msk) 2180 { 2181 struct mptcp_subflow_context *subflow, *ret = NULL; 2182 2183 mptcp_for_each_subflow(msk, subflow) { 2184 if (READ_ONCE(subflow->mp_fail_response_expect)) { 2185 ret = subflow; 2186 break; 2187 } 2188 } 2189 2190 return ret; 2191 } 2192 2193 static void mptcp_timeout_timer(struct timer_list *t) 2194 { 2195 struct sock *sk = from_timer(sk, t, sk_timer); 2196 2197 mptcp_schedule_work(sk); 2198 sock_put(sk); 2199 } 2200 2201 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2202 * level. 2203 * 2204 * A backup subflow is returned only if that is the only kind available. 2205 */ 2206 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2207 { 2208 struct sock *backup = NULL, *pick = NULL; 2209 struct mptcp_subflow_context *subflow; 2210 int min_stale_count = INT_MAX; 2211 2212 sock_owned_by_me((const struct sock *)msk); 2213 2214 if (__mptcp_check_fallback(msk)) 2215 return NULL; 2216 2217 mptcp_for_each_subflow(msk, subflow) { 2218 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2219 2220 if (!__mptcp_subflow_active(subflow)) 2221 continue; 2222 2223 /* still data outstanding at TCP level? skip this */ 2224 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2225 mptcp_pm_subflow_chk_stale(msk, ssk); 2226 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2227 continue; 2228 } 2229 2230 if (subflow->backup) { 2231 if (!backup) 2232 backup = ssk; 2233 continue; 2234 } 2235 2236 if (!pick) 2237 pick = ssk; 2238 } 2239 2240 if (pick) 2241 return pick; 2242 2243 /* use backup only if there are no progresses anywhere */ 2244 return min_stale_count > 1 ? backup : NULL; 2245 } 2246 2247 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk) 2248 { 2249 if (msk->subflow) { 2250 iput(SOCK_INODE(msk->subflow)); 2251 msk->subflow = NULL; 2252 } 2253 } 2254 2255 bool __mptcp_retransmit_pending_data(struct sock *sk) 2256 { 2257 struct mptcp_data_frag *cur, *rtx_head; 2258 struct mptcp_sock *msk = mptcp_sk(sk); 2259 2260 if (__mptcp_check_fallback(mptcp_sk(sk))) 2261 return false; 2262 2263 if (tcp_rtx_and_write_queues_empty(sk)) 2264 return false; 2265 2266 /* the closing socket has some data untransmitted and/or unacked: 2267 * some data in the mptcp rtx queue has not really xmitted yet. 2268 * keep it simple and re-inject the whole mptcp level rtx queue 2269 */ 2270 mptcp_data_lock(sk); 2271 __mptcp_clean_una_wakeup(sk); 2272 rtx_head = mptcp_rtx_head(sk); 2273 if (!rtx_head) { 2274 mptcp_data_unlock(sk); 2275 return false; 2276 } 2277 2278 msk->recovery_snd_nxt = msk->snd_nxt; 2279 msk->recovery = true; 2280 mptcp_data_unlock(sk); 2281 2282 msk->first_pending = rtx_head; 2283 msk->snd_burst = 0; 2284 2285 /* be sure to clear the "sent status" on all re-injected fragments */ 2286 list_for_each_entry(cur, &msk->rtx_queue, list) { 2287 if (!cur->already_sent) 2288 break; 2289 cur->already_sent = 0; 2290 } 2291 2292 return true; 2293 } 2294 2295 /* flags for __mptcp_close_ssk() */ 2296 #define MPTCP_CF_PUSH BIT(1) 2297 #define MPTCP_CF_FASTCLOSE BIT(2) 2298 2299 /* subflow sockets can be either outgoing (connect) or incoming 2300 * (accept). 2301 * 2302 * Outgoing subflows use in-kernel sockets. 2303 * Incoming subflows do not have their own 'struct socket' allocated, 2304 * so we need to use tcp_close() after detaching them from the mptcp 2305 * parent socket. 2306 */ 2307 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2308 struct mptcp_subflow_context *subflow, 2309 unsigned int flags) 2310 { 2311 struct mptcp_sock *msk = mptcp_sk(sk); 2312 bool need_push, dispose_it; 2313 2314 dispose_it = !msk->subflow || ssk != msk->subflow->sk; 2315 if (dispose_it) 2316 list_del(&subflow->node); 2317 2318 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2319 2320 if (flags & MPTCP_CF_FASTCLOSE) 2321 subflow->send_fastclose = 1; 2322 2323 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2324 if (!dispose_it) { 2325 tcp_disconnect(ssk, 0); 2326 msk->subflow->state = SS_UNCONNECTED; 2327 mptcp_subflow_ctx_reset(subflow); 2328 release_sock(ssk); 2329 2330 goto out; 2331 } 2332 2333 /* if we are invoked by the msk cleanup code, the subflow is 2334 * already orphaned 2335 */ 2336 if (ssk->sk_socket) 2337 sock_orphan(ssk); 2338 2339 subflow->disposable = 1; 2340 2341 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2342 * the ssk has been already destroyed, we just need to release the 2343 * reference owned by msk; 2344 */ 2345 if (!inet_csk(ssk)->icsk_ulp_ops) { 2346 kfree_rcu(subflow, rcu); 2347 } else { 2348 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2349 __tcp_close(ssk, 0); 2350 2351 /* close acquired an extra ref */ 2352 __sock_put(ssk); 2353 } 2354 release_sock(ssk); 2355 2356 sock_put(ssk); 2357 2358 if (ssk == msk->first) 2359 msk->first = NULL; 2360 2361 out: 2362 if (ssk == msk->last_snd) 2363 msk->last_snd = NULL; 2364 2365 if (need_push) 2366 __mptcp_push_pending(sk, 0); 2367 } 2368 2369 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2370 struct mptcp_subflow_context *subflow) 2371 { 2372 if (sk->sk_state == TCP_ESTABLISHED) 2373 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2374 2375 /* subflow aborted before reaching the fully_established status 2376 * attempt the creation of the next subflow 2377 */ 2378 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow); 2379 2380 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2381 } 2382 2383 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2384 { 2385 return 0; 2386 } 2387 2388 static void __mptcp_close_subflow(struct mptcp_sock *msk) 2389 { 2390 struct mptcp_subflow_context *subflow, *tmp; 2391 2392 might_sleep(); 2393 2394 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { 2395 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2396 2397 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2398 continue; 2399 2400 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2401 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2402 continue; 2403 2404 mptcp_close_ssk((struct sock *)msk, ssk, subflow); 2405 } 2406 } 2407 2408 static bool mptcp_check_close_timeout(const struct sock *sk) 2409 { 2410 s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp; 2411 struct mptcp_subflow_context *subflow; 2412 2413 if (delta >= TCP_TIMEWAIT_LEN) 2414 return true; 2415 2416 /* if all subflows are in closed status don't bother with additional 2417 * timeout 2418 */ 2419 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2420 if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) != 2421 TCP_CLOSE) 2422 return false; 2423 } 2424 return true; 2425 } 2426 2427 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2428 { 2429 struct mptcp_subflow_context *subflow, *tmp; 2430 struct sock *sk = &msk->sk.icsk_inet.sk; 2431 2432 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2433 return; 2434 2435 mptcp_token_destroy(msk); 2436 2437 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { 2438 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2439 bool slow; 2440 2441 slow = lock_sock_fast(tcp_sk); 2442 if (tcp_sk->sk_state != TCP_CLOSE) { 2443 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2444 tcp_set_state(tcp_sk, TCP_CLOSE); 2445 } 2446 unlock_sock_fast(tcp_sk, slow); 2447 } 2448 2449 inet_sk_state_store(sk, TCP_CLOSE); 2450 sk->sk_shutdown = SHUTDOWN_MASK; 2451 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2452 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2453 2454 mptcp_close_wake_up(sk); 2455 } 2456 2457 static void __mptcp_retrans(struct sock *sk) 2458 { 2459 struct mptcp_sock *msk = mptcp_sk(sk); 2460 struct mptcp_sendmsg_info info = {}; 2461 struct mptcp_data_frag *dfrag; 2462 size_t copied = 0; 2463 struct sock *ssk; 2464 int ret; 2465 2466 mptcp_clean_una_wakeup(sk); 2467 2468 /* first check ssk: need to kick "stale" logic */ 2469 ssk = mptcp_subflow_get_retrans(msk); 2470 dfrag = mptcp_rtx_head(sk); 2471 if (!dfrag) { 2472 if (mptcp_data_fin_enabled(msk)) { 2473 struct inet_connection_sock *icsk = inet_csk(sk); 2474 2475 icsk->icsk_retransmits++; 2476 mptcp_set_datafin_timeout(sk); 2477 mptcp_send_ack(msk); 2478 2479 goto reset_timer; 2480 } 2481 2482 if (!mptcp_send_head(sk)) 2483 return; 2484 2485 goto reset_timer; 2486 } 2487 2488 if (!ssk) 2489 goto reset_timer; 2490 2491 lock_sock(ssk); 2492 2493 /* limit retransmission to the bytes already sent on some subflows */ 2494 info.sent = 0; 2495 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent; 2496 while (info.sent < info.limit) { 2497 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2498 if (ret <= 0) 2499 break; 2500 2501 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2502 copied += ret; 2503 info.sent += ret; 2504 } 2505 if (copied) { 2506 dfrag->already_sent = max(dfrag->already_sent, info.sent); 2507 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2508 info.size_goal); 2509 WRITE_ONCE(msk->allow_infinite_fallback, false); 2510 } 2511 2512 release_sock(ssk); 2513 2514 reset_timer: 2515 mptcp_check_and_set_pending(sk); 2516 2517 if (!mptcp_timer_pending(sk)) 2518 mptcp_reset_timer(sk); 2519 } 2520 2521 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2522 { 2523 struct mptcp_subflow_context *subflow; 2524 struct sock *ssk; 2525 bool slow; 2526 2527 subflow = mp_fail_response_expect_subflow(msk); 2528 if (subflow) { 2529 pr_debug("MP_FAIL doesn't respond, reset the subflow"); 2530 2531 ssk = mptcp_subflow_tcp_sock(subflow); 2532 slow = lock_sock_fast(ssk); 2533 mptcp_subflow_reset(ssk); 2534 unlock_sock_fast(ssk, slow); 2535 } 2536 } 2537 2538 static void mptcp_worker(struct work_struct *work) 2539 { 2540 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2541 struct sock *sk = &msk->sk.icsk_inet.sk; 2542 int state; 2543 2544 lock_sock(sk); 2545 state = sk->sk_state; 2546 if (unlikely(state == TCP_CLOSE)) 2547 goto unlock; 2548 2549 mptcp_check_data_fin_ack(sk); 2550 2551 mptcp_check_fastclose(msk); 2552 2553 mptcp_pm_nl_work(msk); 2554 2555 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2556 mptcp_check_for_eof(msk); 2557 2558 __mptcp_check_send_data_fin(sk); 2559 mptcp_check_data_fin(sk); 2560 2561 /* There is no point in keeping around an orphaned sk timedout or 2562 * closed, but we need the msk around to reply to incoming DATA_FIN, 2563 * even if it is orphaned and in FIN_WAIT2 state 2564 */ 2565 if (sock_flag(sk, SOCK_DEAD) && 2566 (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) { 2567 inet_sk_state_store(sk, TCP_CLOSE); 2568 __mptcp_destroy_sock(sk); 2569 goto unlock; 2570 } 2571 2572 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2573 __mptcp_close_subflow(msk); 2574 2575 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2576 __mptcp_retrans(sk); 2577 2578 mptcp_mp_fail_no_response(msk); 2579 2580 unlock: 2581 release_sock(sk); 2582 sock_put(sk); 2583 } 2584 2585 static int __mptcp_init_sock(struct sock *sk) 2586 { 2587 struct mptcp_sock *msk = mptcp_sk(sk); 2588 2589 INIT_LIST_HEAD(&msk->conn_list); 2590 INIT_LIST_HEAD(&msk->join_list); 2591 INIT_LIST_HEAD(&msk->rtx_queue); 2592 INIT_WORK(&msk->work, mptcp_worker); 2593 __skb_queue_head_init(&msk->receive_queue); 2594 msk->out_of_order_queue = RB_ROOT; 2595 msk->first_pending = NULL; 2596 msk->rmem_fwd_alloc = 0; 2597 WRITE_ONCE(msk->rmem_released, 0); 2598 msk->timer_ival = TCP_RTO_MIN; 2599 2600 msk->first = NULL; 2601 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2602 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2603 WRITE_ONCE(msk->allow_infinite_fallback, true); 2604 msk->recovery = false; 2605 2606 mptcp_pm_data_init(msk); 2607 2608 /* re-use the csk retrans timer for MPTCP-level retrans */ 2609 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2610 timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0); 2611 2612 return 0; 2613 } 2614 2615 static void mptcp_ca_reset(struct sock *sk) 2616 { 2617 struct inet_connection_sock *icsk = inet_csk(sk); 2618 2619 tcp_assign_congestion_control(sk); 2620 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2621 2622 /* no need to keep a reference to the ops, the name will suffice */ 2623 tcp_cleanup_congestion_control(sk); 2624 icsk->icsk_ca_ops = NULL; 2625 } 2626 2627 static int mptcp_init_sock(struct sock *sk) 2628 { 2629 struct net *net = sock_net(sk); 2630 int ret; 2631 2632 ret = __mptcp_init_sock(sk); 2633 if (ret) 2634 return ret; 2635 2636 if (!mptcp_is_enabled(net)) 2637 return -ENOPROTOOPT; 2638 2639 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2640 return -ENOMEM; 2641 2642 ret = __mptcp_socket_create(mptcp_sk(sk)); 2643 if (ret) 2644 return ret; 2645 2646 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2647 * propagate the correct value 2648 */ 2649 mptcp_ca_reset(sk); 2650 2651 sk_sockets_allocated_inc(sk); 2652 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 2653 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 2654 2655 return 0; 2656 } 2657 2658 static void __mptcp_clear_xmit(struct sock *sk) 2659 { 2660 struct mptcp_sock *msk = mptcp_sk(sk); 2661 struct mptcp_data_frag *dtmp, *dfrag; 2662 2663 WRITE_ONCE(msk->first_pending, NULL); 2664 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2665 dfrag_clear(sk, dfrag); 2666 } 2667 2668 static void mptcp_cancel_work(struct sock *sk) 2669 { 2670 struct mptcp_sock *msk = mptcp_sk(sk); 2671 2672 if (cancel_work_sync(&msk->work)) 2673 __sock_put(sk); 2674 } 2675 2676 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2677 { 2678 lock_sock(ssk); 2679 2680 switch (ssk->sk_state) { 2681 case TCP_LISTEN: 2682 if (!(how & RCV_SHUTDOWN)) 2683 break; 2684 fallthrough; 2685 case TCP_SYN_SENT: 2686 tcp_disconnect(ssk, O_NONBLOCK); 2687 break; 2688 default: 2689 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2690 pr_debug("Fallback"); 2691 ssk->sk_shutdown |= how; 2692 tcp_shutdown(ssk, how); 2693 } else { 2694 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2695 tcp_send_ack(ssk); 2696 if (!mptcp_timer_pending(sk)) 2697 mptcp_reset_timer(sk); 2698 } 2699 break; 2700 } 2701 2702 release_sock(ssk); 2703 } 2704 2705 static const unsigned char new_state[16] = { 2706 /* current state: new state: action: */ 2707 [0 /* (Invalid) */] = TCP_CLOSE, 2708 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2709 [TCP_SYN_SENT] = TCP_CLOSE, 2710 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2711 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2712 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2713 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2714 [TCP_CLOSE] = TCP_CLOSE, 2715 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2716 [TCP_LAST_ACK] = TCP_LAST_ACK, 2717 [TCP_LISTEN] = TCP_CLOSE, 2718 [TCP_CLOSING] = TCP_CLOSING, 2719 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2720 }; 2721 2722 static int mptcp_close_state(struct sock *sk) 2723 { 2724 int next = (int)new_state[sk->sk_state]; 2725 int ns = next & TCP_STATE_MASK; 2726 2727 inet_sk_state_store(sk, ns); 2728 2729 return next & TCP_ACTION_FIN; 2730 } 2731 2732 static void __mptcp_check_send_data_fin(struct sock *sk) 2733 { 2734 struct mptcp_subflow_context *subflow; 2735 struct mptcp_sock *msk = mptcp_sk(sk); 2736 2737 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2738 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2739 msk->snd_nxt, msk->write_seq); 2740 2741 /* we still need to enqueue subflows or not really shutting down, 2742 * skip this 2743 */ 2744 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2745 mptcp_send_head(sk)) 2746 return; 2747 2748 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2749 2750 /* fallback socket will not get data_fin/ack, can move to the next 2751 * state now 2752 */ 2753 if (__mptcp_check_fallback(msk)) { 2754 WRITE_ONCE(msk->snd_una, msk->write_seq); 2755 if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { 2756 inet_sk_state_store(sk, TCP_CLOSE); 2757 mptcp_close_wake_up(sk); 2758 } else if (sk->sk_state == TCP_FIN_WAIT1) { 2759 inet_sk_state_store(sk, TCP_FIN_WAIT2); 2760 } 2761 } 2762 2763 mptcp_for_each_subflow(msk, subflow) { 2764 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2765 2766 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2767 } 2768 } 2769 2770 static void __mptcp_wr_shutdown(struct sock *sk) 2771 { 2772 struct mptcp_sock *msk = mptcp_sk(sk); 2773 2774 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2775 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2776 !!mptcp_send_head(sk)); 2777 2778 /* will be ignored by fallback sockets */ 2779 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2780 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2781 2782 __mptcp_check_send_data_fin(sk); 2783 } 2784 2785 static void __mptcp_destroy_sock(struct sock *sk) 2786 { 2787 struct mptcp_subflow_context *subflow, *tmp; 2788 struct mptcp_sock *msk = mptcp_sk(sk); 2789 LIST_HEAD(conn_list); 2790 2791 pr_debug("msk=%p", msk); 2792 2793 might_sleep(); 2794 2795 /* join list will be eventually flushed (with rst) at sock lock release time*/ 2796 list_splice_init(&msk->conn_list, &conn_list); 2797 2798 mptcp_stop_timer(sk); 2799 sk_stop_timer(sk, &sk->sk_timer); 2800 msk->pm.status = 0; 2801 2802 /* clears msk->subflow, allowing the following loop to close 2803 * even the initial subflow 2804 */ 2805 mptcp_dispose_initial_subflow(msk); 2806 list_for_each_entry_safe(subflow, tmp, &conn_list, node) { 2807 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2808 __mptcp_close_ssk(sk, ssk, subflow, 0); 2809 } 2810 2811 sk->sk_prot->destroy(sk); 2812 2813 WARN_ON_ONCE(msk->rmem_fwd_alloc); 2814 WARN_ON_ONCE(msk->rmem_released); 2815 sk_stream_kill_queues(sk); 2816 xfrm_sk_free_policy(sk); 2817 2818 sk_refcnt_debug_release(sk); 2819 sock_put(sk); 2820 } 2821 2822 static void mptcp_close(struct sock *sk, long timeout) 2823 { 2824 struct mptcp_subflow_context *subflow; 2825 bool do_cancel_work = false; 2826 2827 lock_sock(sk); 2828 sk->sk_shutdown = SHUTDOWN_MASK; 2829 2830 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 2831 inet_sk_state_store(sk, TCP_CLOSE); 2832 goto cleanup; 2833 } 2834 2835 if (mptcp_close_state(sk)) 2836 __mptcp_wr_shutdown(sk); 2837 2838 sk_stream_wait_close(sk, timeout); 2839 2840 cleanup: 2841 /* orphan all the subflows */ 2842 inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32; 2843 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2844 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2845 bool slow = lock_sock_fast_nested(ssk); 2846 2847 sock_orphan(ssk); 2848 unlock_sock_fast(ssk, slow); 2849 } 2850 sock_orphan(sk); 2851 2852 sock_hold(sk); 2853 pr_debug("msk=%p state=%d", sk, sk->sk_state); 2854 if (mptcp_sk(sk)->token) 2855 mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL); 2856 2857 if (sk->sk_state == TCP_CLOSE) { 2858 __mptcp_destroy_sock(sk); 2859 do_cancel_work = true; 2860 } else { 2861 sk_reset_timer(sk, &sk->sk_timer, jiffies + TCP_TIMEWAIT_LEN); 2862 } 2863 release_sock(sk); 2864 if (do_cancel_work) 2865 mptcp_cancel_work(sk); 2866 2867 sock_put(sk); 2868 } 2869 2870 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 2871 { 2872 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2873 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 2874 struct ipv6_pinfo *msk6 = inet6_sk(msk); 2875 2876 msk->sk_v6_daddr = ssk->sk_v6_daddr; 2877 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 2878 2879 if (msk6 && ssk6) { 2880 msk6->saddr = ssk6->saddr; 2881 msk6->flow_label = ssk6->flow_label; 2882 } 2883 #endif 2884 2885 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 2886 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 2887 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 2888 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 2889 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 2890 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 2891 } 2892 2893 static int mptcp_disconnect(struct sock *sk, int flags) 2894 { 2895 struct mptcp_subflow_context *subflow; 2896 struct mptcp_sock *msk = mptcp_sk(sk); 2897 2898 inet_sk_state_store(sk, TCP_CLOSE); 2899 2900 mptcp_for_each_subflow(msk, subflow) { 2901 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2902 2903 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_FASTCLOSE); 2904 } 2905 2906 mptcp_stop_timer(sk); 2907 sk_stop_timer(sk, &sk->sk_timer); 2908 2909 if (mptcp_sk(sk)->token) 2910 mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL); 2911 2912 mptcp_destroy_common(msk); 2913 msk->last_snd = NULL; 2914 WRITE_ONCE(msk->flags, 0); 2915 msk->cb_flags = 0; 2916 msk->push_pending = 0; 2917 msk->recovery = false; 2918 msk->can_ack = false; 2919 msk->fully_established = false; 2920 msk->rcv_data_fin = false; 2921 msk->snd_data_fin_enable = false; 2922 msk->rcv_fastclose = false; 2923 msk->use_64bit_ack = false; 2924 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2925 mptcp_pm_data_reset(msk); 2926 mptcp_ca_reset(sk); 2927 2928 sk->sk_shutdown = 0; 2929 sk_error_report(sk); 2930 return 0; 2931 } 2932 2933 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2934 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 2935 { 2936 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 2937 2938 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 2939 } 2940 #endif 2941 2942 struct sock *mptcp_sk_clone(const struct sock *sk, 2943 const struct mptcp_options_received *mp_opt, 2944 struct request_sock *req) 2945 { 2946 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 2947 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 2948 struct mptcp_sock *msk; 2949 u64 ack_seq; 2950 2951 if (!nsk) 2952 return NULL; 2953 2954 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2955 if (nsk->sk_family == AF_INET6) 2956 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 2957 #endif 2958 2959 __mptcp_init_sock(nsk); 2960 2961 msk = mptcp_sk(nsk); 2962 msk->local_key = subflow_req->local_key; 2963 msk->token = subflow_req->token; 2964 msk->subflow = NULL; 2965 WRITE_ONCE(msk->fully_established, false); 2966 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 2967 WRITE_ONCE(msk->csum_enabled, true); 2968 2969 msk->write_seq = subflow_req->idsn + 1; 2970 msk->snd_nxt = msk->write_seq; 2971 msk->snd_una = msk->write_seq; 2972 msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd; 2973 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 2974 2975 if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) { 2976 msk->can_ack = true; 2977 msk->remote_key = mp_opt->sndr_key; 2978 mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq); 2979 ack_seq++; 2980 WRITE_ONCE(msk->ack_seq, ack_seq); 2981 atomic64_set(&msk->rcv_wnd_sent, ack_seq); 2982 } 2983 2984 sock_reset_flag(nsk, SOCK_RCU_FREE); 2985 /* will be fully established after successful MPC subflow creation */ 2986 inet_sk_state_store(nsk, TCP_SYN_RECV); 2987 2988 security_inet_csk_clone(nsk, req); 2989 bh_unlock_sock(nsk); 2990 2991 /* keep a single reference */ 2992 __sock_put(nsk); 2993 return nsk; 2994 } 2995 2996 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 2997 { 2998 const struct tcp_sock *tp = tcp_sk(ssk); 2999 3000 msk->rcvq_space.copied = 0; 3001 msk->rcvq_space.rtt_us = 0; 3002 3003 msk->rcvq_space.time = tp->tcp_mstamp; 3004 3005 /* initial rcv_space offering made to peer */ 3006 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3007 TCP_INIT_CWND * tp->advmss); 3008 if (msk->rcvq_space.space == 0) 3009 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3010 3011 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3012 } 3013 3014 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err, 3015 bool kern) 3016 { 3017 struct mptcp_sock *msk = mptcp_sk(sk); 3018 struct socket *listener; 3019 struct sock *newsk; 3020 3021 listener = __mptcp_nmpc_socket(msk); 3022 if (WARN_ON_ONCE(!listener)) { 3023 *err = -EINVAL; 3024 return NULL; 3025 } 3026 3027 pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk)); 3028 newsk = inet_csk_accept(listener->sk, flags, err, kern); 3029 if (!newsk) 3030 return NULL; 3031 3032 pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk)); 3033 if (sk_is_mptcp(newsk)) { 3034 struct mptcp_subflow_context *subflow; 3035 struct sock *new_mptcp_sock; 3036 3037 subflow = mptcp_subflow_ctx(newsk); 3038 new_mptcp_sock = subflow->conn; 3039 3040 /* is_mptcp should be false if subflow->conn is missing, see 3041 * subflow_syn_recv_sock() 3042 */ 3043 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3044 tcp_sk(newsk)->is_mptcp = 0; 3045 goto out; 3046 } 3047 3048 /* acquire the 2nd reference for the owning socket */ 3049 sock_hold(new_mptcp_sock); 3050 newsk = new_mptcp_sock; 3051 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3052 } else { 3053 MPTCP_INC_STATS(sock_net(sk), 3054 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 3055 } 3056 3057 out: 3058 newsk->sk_kern_sock = kern; 3059 return newsk; 3060 } 3061 3062 void mptcp_destroy_common(struct mptcp_sock *msk) 3063 { 3064 struct sock *sk = (struct sock *)msk; 3065 3066 __mptcp_clear_xmit(sk); 3067 3068 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3069 mptcp_data_lock(sk); 3070 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3071 __skb_queue_purge(&sk->sk_receive_queue); 3072 skb_rbtree_purge(&msk->out_of_order_queue); 3073 mptcp_data_unlock(sk); 3074 3075 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3076 * inet_sock_destruct() will dispose it 3077 */ 3078 sk->sk_forward_alloc += msk->rmem_fwd_alloc; 3079 msk->rmem_fwd_alloc = 0; 3080 mptcp_token_destroy(msk); 3081 mptcp_pm_free_anno_list(msk); 3082 mptcp_free_local_addr_list(msk); 3083 } 3084 3085 static void mptcp_destroy(struct sock *sk) 3086 { 3087 struct mptcp_sock *msk = mptcp_sk(sk); 3088 3089 mptcp_destroy_common(msk); 3090 sk_sockets_allocated_dec(sk); 3091 } 3092 3093 void __mptcp_data_acked(struct sock *sk) 3094 { 3095 if (!sock_owned_by_user(sk)) 3096 __mptcp_clean_una(sk); 3097 else 3098 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3099 3100 if (mptcp_pending_data_fin_ack(sk)) 3101 mptcp_schedule_work(sk); 3102 } 3103 3104 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3105 { 3106 if (!mptcp_send_head(sk)) 3107 return; 3108 3109 if (!sock_owned_by_user(sk)) { 3110 struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk)); 3111 3112 if (xmit_ssk == ssk) 3113 __mptcp_subflow_push_pending(sk, ssk); 3114 else if (xmit_ssk) 3115 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), MPTCP_DELEGATE_SEND); 3116 } else { 3117 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3118 } 3119 } 3120 3121 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3122 BIT(MPTCP_RETRANSMIT) | \ 3123 BIT(MPTCP_FLUSH_JOIN_LIST)) 3124 3125 /* processes deferred events and flush wmem */ 3126 static void mptcp_release_cb(struct sock *sk) 3127 __must_hold(&sk->sk_lock.slock) 3128 { 3129 struct mptcp_sock *msk = mptcp_sk(sk); 3130 3131 for (;;) { 3132 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) | 3133 msk->push_pending; 3134 if (!flags) 3135 break; 3136 3137 /* the following actions acquire the subflow socket lock 3138 * 3139 * 1) can't be invoked in atomic scope 3140 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3141 * datapath acquires the msk socket spinlock while helding 3142 * the subflow socket lock 3143 */ 3144 msk->push_pending = 0; 3145 msk->cb_flags &= ~flags; 3146 spin_unlock_bh(&sk->sk_lock.slock); 3147 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3148 __mptcp_flush_join_list(sk); 3149 if (flags & BIT(MPTCP_PUSH_PENDING)) 3150 __mptcp_push_pending(sk, 0); 3151 if (flags & BIT(MPTCP_RETRANSMIT)) 3152 __mptcp_retrans(sk); 3153 3154 cond_resched(); 3155 spin_lock_bh(&sk->sk_lock.slock); 3156 } 3157 3158 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3159 __mptcp_clean_una_wakeup(sk); 3160 if (unlikely(&msk->cb_flags)) { 3161 /* be sure to set the current sk state before tacking actions 3162 * depending on sk_state, that is processing MPTCP_ERROR_REPORT 3163 */ 3164 if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags)) 3165 __mptcp_set_connected(sk); 3166 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3167 __mptcp_error_report(sk); 3168 if (__test_and_clear_bit(MPTCP_RESET_SCHEDULER, &msk->cb_flags)) 3169 msk->last_snd = NULL; 3170 } 3171 3172 __mptcp_update_rmem(sk); 3173 } 3174 3175 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3176 * TCP can't schedule delack timer before the subflow is fully established. 3177 * MPTCP uses the delack timer to do 3rd ack retransmissions 3178 */ 3179 static void schedule_3rdack_retransmission(struct sock *ssk) 3180 { 3181 struct inet_connection_sock *icsk = inet_csk(ssk); 3182 struct tcp_sock *tp = tcp_sk(ssk); 3183 unsigned long timeout; 3184 3185 if (mptcp_subflow_ctx(ssk)->fully_established) 3186 return; 3187 3188 /* reschedule with a timeout above RTT, as we must look only for drop */ 3189 if (tp->srtt_us) 3190 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3191 else 3192 timeout = TCP_TIMEOUT_INIT; 3193 timeout += jiffies; 3194 3195 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3196 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3197 icsk->icsk_ack.timeout = timeout; 3198 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3199 } 3200 3201 void mptcp_subflow_process_delegated(struct sock *ssk) 3202 { 3203 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3204 struct sock *sk = subflow->conn; 3205 3206 if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) { 3207 mptcp_data_lock(sk); 3208 if (!sock_owned_by_user(sk)) 3209 __mptcp_subflow_push_pending(sk, ssk); 3210 else 3211 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3212 mptcp_data_unlock(sk); 3213 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND); 3214 } 3215 if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) { 3216 schedule_3rdack_retransmission(ssk); 3217 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK); 3218 } 3219 } 3220 3221 static int mptcp_hash(struct sock *sk) 3222 { 3223 /* should never be called, 3224 * we hash the TCP subflows not the master socket 3225 */ 3226 WARN_ON_ONCE(1); 3227 return 0; 3228 } 3229 3230 static void mptcp_unhash(struct sock *sk) 3231 { 3232 /* called from sk_common_release(), but nothing to do here */ 3233 } 3234 3235 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3236 { 3237 struct mptcp_sock *msk = mptcp_sk(sk); 3238 struct socket *ssock; 3239 3240 ssock = __mptcp_nmpc_socket(msk); 3241 pr_debug("msk=%p, subflow=%p", msk, ssock); 3242 if (WARN_ON_ONCE(!ssock)) 3243 return -EINVAL; 3244 3245 return inet_csk_get_port(ssock->sk, snum); 3246 } 3247 3248 void mptcp_finish_connect(struct sock *ssk) 3249 { 3250 struct mptcp_subflow_context *subflow; 3251 struct mptcp_sock *msk; 3252 struct sock *sk; 3253 u64 ack_seq; 3254 3255 subflow = mptcp_subflow_ctx(ssk); 3256 sk = subflow->conn; 3257 msk = mptcp_sk(sk); 3258 3259 pr_debug("msk=%p, token=%u", sk, subflow->token); 3260 3261 mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq); 3262 ack_seq++; 3263 subflow->map_seq = ack_seq; 3264 subflow->map_subflow_seq = 1; 3265 3266 /* the socket is not connected yet, no msk/subflow ops can access/race 3267 * accessing the field below 3268 */ 3269 WRITE_ONCE(msk->remote_key, subflow->remote_key); 3270 WRITE_ONCE(msk->local_key, subflow->local_key); 3271 WRITE_ONCE(msk->write_seq, subflow->idsn + 1); 3272 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3273 WRITE_ONCE(msk->ack_seq, ack_seq); 3274 WRITE_ONCE(msk->can_ack, 1); 3275 WRITE_ONCE(msk->snd_una, msk->write_seq); 3276 atomic64_set(&msk->rcv_wnd_sent, ack_seq); 3277 3278 mptcp_pm_new_connection(msk, ssk, 0); 3279 3280 mptcp_rcv_space_init(msk, ssk); 3281 } 3282 3283 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3284 { 3285 write_lock_bh(&sk->sk_callback_lock); 3286 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3287 sk_set_socket(sk, parent); 3288 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3289 write_unlock_bh(&sk->sk_callback_lock); 3290 } 3291 3292 bool mptcp_finish_join(struct sock *ssk) 3293 { 3294 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3295 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3296 struct sock *parent = (void *)msk; 3297 bool ret = true; 3298 3299 pr_debug("msk=%p, subflow=%p", msk, subflow); 3300 3301 /* mptcp socket already closing? */ 3302 if (!mptcp_is_fully_established(parent)) { 3303 subflow->reset_reason = MPTCP_RST_EMPTCP; 3304 return false; 3305 } 3306 3307 if (!list_empty(&subflow->node)) 3308 goto out; 3309 3310 if (!mptcp_pm_allow_new_subflow(msk)) 3311 goto err_prohibited; 3312 3313 /* active connections are already on conn_list. 3314 * If we can't acquire msk socket lock here, let the release callback 3315 * handle it 3316 */ 3317 mptcp_data_lock(parent); 3318 if (!sock_owned_by_user(parent)) { 3319 ret = __mptcp_finish_join(msk, ssk); 3320 if (ret) { 3321 sock_hold(ssk); 3322 list_add_tail(&subflow->node, &msk->conn_list); 3323 } 3324 } else { 3325 sock_hold(ssk); 3326 list_add_tail(&subflow->node, &msk->join_list); 3327 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3328 } 3329 mptcp_data_unlock(parent); 3330 3331 if (!ret) { 3332 err_prohibited: 3333 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3334 return false; 3335 } 3336 3337 subflow->map_seq = READ_ONCE(msk->ack_seq); 3338 WRITE_ONCE(msk->allow_infinite_fallback, false); 3339 3340 out: 3341 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 3342 return true; 3343 } 3344 3345 static void mptcp_shutdown(struct sock *sk, int how) 3346 { 3347 pr_debug("sk=%p, how=%d", sk, how); 3348 3349 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3350 __mptcp_wr_shutdown(sk); 3351 } 3352 3353 static int mptcp_forward_alloc_get(const struct sock *sk) 3354 { 3355 return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc; 3356 } 3357 3358 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3359 { 3360 const struct sock *sk = (void *)msk; 3361 u64 delta; 3362 3363 if (sk->sk_state == TCP_LISTEN) 3364 return -EINVAL; 3365 3366 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3367 return 0; 3368 3369 delta = msk->write_seq - v; 3370 if (__mptcp_check_fallback(msk) && msk->first) { 3371 struct tcp_sock *tp = tcp_sk(msk->first); 3372 3373 /* the first subflow is disconnected after close - see 3374 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3375 * so ignore that status, too. 3376 */ 3377 if (!((1 << msk->first->sk_state) & 3378 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3379 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3380 } 3381 if (delta > INT_MAX) 3382 delta = INT_MAX; 3383 3384 return (int)delta; 3385 } 3386 3387 static int mptcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3388 { 3389 struct mptcp_sock *msk = mptcp_sk(sk); 3390 bool slow; 3391 int answ; 3392 3393 switch (cmd) { 3394 case SIOCINQ: 3395 if (sk->sk_state == TCP_LISTEN) 3396 return -EINVAL; 3397 3398 lock_sock(sk); 3399 __mptcp_move_skbs(msk); 3400 answ = mptcp_inq_hint(sk); 3401 release_sock(sk); 3402 break; 3403 case SIOCOUTQ: 3404 slow = lock_sock_fast(sk); 3405 answ = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3406 unlock_sock_fast(sk, slow); 3407 break; 3408 case SIOCOUTQNSD: 3409 slow = lock_sock_fast(sk); 3410 answ = mptcp_ioctl_outq(msk, msk->snd_nxt); 3411 unlock_sock_fast(sk, slow); 3412 break; 3413 default: 3414 return -ENOIOCTLCMD; 3415 } 3416 3417 return put_user(answ, (int __user *)arg); 3418 } 3419 3420 static struct proto mptcp_prot = { 3421 .name = "MPTCP", 3422 .owner = THIS_MODULE, 3423 .init = mptcp_init_sock, 3424 .disconnect = mptcp_disconnect, 3425 .close = mptcp_close, 3426 .accept = mptcp_accept, 3427 .setsockopt = mptcp_setsockopt, 3428 .getsockopt = mptcp_getsockopt, 3429 .shutdown = mptcp_shutdown, 3430 .destroy = mptcp_destroy, 3431 .sendmsg = mptcp_sendmsg, 3432 .ioctl = mptcp_ioctl, 3433 .recvmsg = mptcp_recvmsg, 3434 .release_cb = mptcp_release_cb, 3435 .hash = mptcp_hash, 3436 .unhash = mptcp_unhash, 3437 .get_port = mptcp_get_port, 3438 .forward_alloc_get = mptcp_forward_alloc_get, 3439 .sockets_allocated = &mptcp_sockets_allocated, 3440 .memory_allocated = &tcp_memory_allocated, 3441 .memory_pressure = &tcp_memory_pressure, 3442 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3443 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3444 .sysctl_mem = sysctl_tcp_mem, 3445 .obj_size = sizeof(struct mptcp_sock), 3446 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3447 .no_autobind = true, 3448 }; 3449 3450 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3451 { 3452 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3453 struct socket *ssock; 3454 int err; 3455 3456 lock_sock(sock->sk); 3457 ssock = __mptcp_nmpc_socket(msk); 3458 if (!ssock) { 3459 err = -EINVAL; 3460 goto unlock; 3461 } 3462 3463 err = ssock->ops->bind(ssock, uaddr, addr_len); 3464 if (!err) 3465 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3466 3467 unlock: 3468 release_sock(sock->sk); 3469 return err; 3470 } 3471 3472 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3473 struct mptcp_subflow_context *subflow) 3474 { 3475 subflow->request_mptcp = 0; 3476 __mptcp_do_fallback(msk); 3477 } 3478 3479 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr, 3480 int addr_len, int flags) 3481 { 3482 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3483 struct mptcp_subflow_context *subflow; 3484 struct socket *ssock; 3485 int err = -EINVAL; 3486 3487 lock_sock(sock->sk); 3488 if (uaddr) { 3489 if (addr_len < sizeof(uaddr->sa_family)) 3490 goto unlock; 3491 3492 if (uaddr->sa_family == AF_UNSPEC) { 3493 err = mptcp_disconnect(sock->sk, flags); 3494 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 3495 goto unlock; 3496 } 3497 } 3498 3499 if (sock->state != SS_UNCONNECTED && msk->subflow) { 3500 /* pending connection or invalid state, let existing subflow 3501 * cope with that 3502 */ 3503 ssock = msk->subflow; 3504 goto do_connect; 3505 } 3506 3507 ssock = __mptcp_nmpc_socket(msk); 3508 if (!ssock) 3509 goto unlock; 3510 3511 mptcp_token_destroy(msk); 3512 inet_sk_state_store(sock->sk, TCP_SYN_SENT); 3513 subflow = mptcp_subflow_ctx(ssock->sk); 3514 #ifdef CONFIG_TCP_MD5SIG 3515 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3516 * TCP option space. 3517 */ 3518 if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info)) 3519 mptcp_subflow_early_fallback(msk, subflow); 3520 #endif 3521 if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) { 3522 MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT); 3523 mptcp_subflow_early_fallback(msk, subflow); 3524 } 3525 if (likely(!__mptcp_check_fallback(msk))) 3526 MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE); 3527 3528 do_connect: 3529 err = ssock->ops->connect(ssock, uaddr, addr_len, flags); 3530 sock->state = ssock->state; 3531 3532 /* on successful connect, the msk state will be moved to established by 3533 * subflow_finish_connect() 3534 */ 3535 if (!err || err == -EINPROGRESS) 3536 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3537 else 3538 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 3539 3540 unlock: 3541 release_sock(sock->sk); 3542 return err; 3543 } 3544 3545 static int mptcp_listen(struct socket *sock, int backlog) 3546 { 3547 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3548 struct socket *ssock; 3549 int err; 3550 3551 pr_debug("msk=%p", msk); 3552 3553 lock_sock(sock->sk); 3554 ssock = __mptcp_nmpc_socket(msk); 3555 if (!ssock) { 3556 err = -EINVAL; 3557 goto unlock; 3558 } 3559 3560 mptcp_token_destroy(msk); 3561 inet_sk_state_store(sock->sk, TCP_LISTEN); 3562 sock_set_flag(sock->sk, SOCK_RCU_FREE); 3563 3564 err = ssock->ops->listen(ssock, backlog); 3565 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 3566 if (!err) 3567 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3568 3569 unlock: 3570 release_sock(sock->sk); 3571 return err; 3572 } 3573 3574 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3575 int flags, bool kern) 3576 { 3577 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3578 struct socket *ssock; 3579 int err; 3580 3581 pr_debug("msk=%p", msk); 3582 3583 ssock = __mptcp_nmpc_socket(msk); 3584 if (!ssock) 3585 return -EINVAL; 3586 3587 err = ssock->ops->accept(sock, newsock, flags, kern); 3588 if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) { 3589 struct mptcp_sock *msk = mptcp_sk(newsock->sk); 3590 struct mptcp_subflow_context *subflow; 3591 struct sock *newsk = newsock->sk; 3592 3593 lock_sock(newsk); 3594 3595 /* PM/worker can now acquire the first subflow socket 3596 * lock without racing with listener queue cleanup, 3597 * we can notify it, if needed. 3598 * 3599 * Even if remote has reset the initial subflow by now 3600 * the refcnt is still at least one. 3601 */ 3602 subflow = mptcp_subflow_ctx(msk->first); 3603 list_add(&subflow->node, &msk->conn_list); 3604 sock_hold(msk->first); 3605 if (mptcp_is_fully_established(newsk)) 3606 mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL); 3607 3608 mptcp_copy_inaddrs(newsk, msk->first); 3609 mptcp_rcv_space_init(msk, msk->first); 3610 mptcp_propagate_sndbuf(newsk, msk->first); 3611 3612 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3613 * This is needed so NOSPACE flag can be set from tcp stack. 3614 */ 3615 mptcp_for_each_subflow(msk, subflow) { 3616 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3617 3618 if (!ssk->sk_socket) 3619 mptcp_sock_graft(ssk, newsock); 3620 } 3621 release_sock(newsk); 3622 } 3623 3624 return err; 3625 } 3626 3627 static __poll_t mptcp_check_readable(struct mptcp_sock *msk) 3628 { 3629 /* Concurrent splices from sk_receive_queue into receive_queue will 3630 * always show at least one non-empty queue when checked in this order. 3631 */ 3632 if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) && 3633 skb_queue_empty_lockless(&msk->receive_queue)) 3634 return 0; 3635 3636 return EPOLLIN | EPOLLRDNORM; 3637 } 3638 3639 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3640 { 3641 struct sock *sk = (struct sock *)msk; 3642 3643 if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN)) 3644 return EPOLLOUT | EPOLLWRNORM; 3645 3646 if (sk_stream_is_writeable(sk)) 3647 return EPOLLOUT | EPOLLWRNORM; 3648 3649 mptcp_set_nospace(sk); 3650 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3651 if (sk_stream_is_writeable(sk)) 3652 return EPOLLOUT | EPOLLWRNORM; 3653 3654 return 0; 3655 } 3656 3657 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3658 struct poll_table_struct *wait) 3659 { 3660 struct sock *sk = sock->sk; 3661 struct mptcp_sock *msk; 3662 __poll_t mask = 0; 3663 int state; 3664 3665 msk = mptcp_sk(sk); 3666 sock_poll_wait(file, sock, wait); 3667 3668 state = inet_sk_state_load(sk); 3669 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3670 if (state == TCP_LISTEN) { 3671 if (WARN_ON_ONCE(!msk->subflow || !msk->subflow->sk)) 3672 return 0; 3673 3674 return inet_csk_listen_poll(msk->subflow->sk); 3675 } 3676 3677 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3678 mask |= mptcp_check_readable(msk); 3679 mask |= mptcp_check_writeable(msk); 3680 } 3681 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3682 mask |= EPOLLHUP; 3683 if (sk->sk_shutdown & RCV_SHUTDOWN) 3684 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3685 3686 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 3687 smp_rmb(); 3688 if (sk->sk_err) 3689 mask |= EPOLLERR; 3690 3691 return mask; 3692 } 3693 3694 static const struct proto_ops mptcp_stream_ops = { 3695 .family = PF_INET, 3696 .owner = THIS_MODULE, 3697 .release = inet_release, 3698 .bind = mptcp_bind, 3699 .connect = mptcp_stream_connect, 3700 .socketpair = sock_no_socketpair, 3701 .accept = mptcp_stream_accept, 3702 .getname = inet_getname, 3703 .poll = mptcp_poll, 3704 .ioctl = inet_ioctl, 3705 .gettstamp = sock_gettstamp, 3706 .listen = mptcp_listen, 3707 .shutdown = inet_shutdown, 3708 .setsockopt = sock_common_setsockopt, 3709 .getsockopt = sock_common_getsockopt, 3710 .sendmsg = inet_sendmsg, 3711 .recvmsg = inet_recvmsg, 3712 .mmap = sock_no_mmap, 3713 .sendpage = inet_sendpage, 3714 }; 3715 3716 static struct inet_protosw mptcp_protosw = { 3717 .type = SOCK_STREAM, 3718 .protocol = IPPROTO_MPTCP, 3719 .prot = &mptcp_prot, 3720 .ops = &mptcp_stream_ops, 3721 .flags = INET_PROTOSW_ICSK, 3722 }; 3723 3724 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 3725 { 3726 struct mptcp_delegated_action *delegated; 3727 struct mptcp_subflow_context *subflow; 3728 int work_done = 0; 3729 3730 delegated = container_of(napi, struct mptcp_delegated_action, napi); 3731 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 3732 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3733 3734 bh_lock_sock_nested(ssk); 3735 if (!sock_owned_by_user(ssk) && 3736 mptcp_subflow_has_delegated_action(subflow)) 3737 mptcp_subflow_process_delegated(ssk); 3738 /* ... elsewhere tcp_release_cb_override already processed 3739 * the action or will do at next release_sock(). 3740 * In both case must dequeue the subflow here - on the same 3741 * CPU that scheduled it. 3742 */ 3743 bh_unlock_sock(ssk); 3744 sock_put(ssk); 3745 3746 if (++work_done == budget) 3747 return budget; 3748 } 3749 3750 /* always provide a 0 'work_done' argument, so that napi_complete_done 3751 * will not try accessing the NULL napi->dev ptr 3752 */ 3753 napi_complete_done(napi, 0); 3754 return work_done; 3755 } 3756 3757 void __init mptcp_proto_init(void) 3758 { 3759 struct mptcp_delegated_action *delegated; 3760 int cpu; 3761 3762 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 3763 3764 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 3765 panic("Failed to allocate MPTCP pcpu counter\n"); 3766 3767 init_dummy_netdev(&mptcp_napi_dev); 3768 for_each_possible_cpu(cpu) { 3769 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 3770 INIT_LIST_HEAD(&delegated->head); 3771 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 3772 mptcp_napi_poll); 3773 napi_enable(&delegated->napi); 3774 } 3775 3776 mptcp_subflow_init(); 3777 mptcp_pm_init(); 3778 mptcp_token_init(); 3779 3780 if (proto_register(&mptcp_prot, 1) != 0) 3781 panic("Failed to register MPTCP proto.\n"); 3782 3783 inet_register_protosw(&mptcp_protosw); 3784 3785 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 3786 } 3787 3788 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3789 static const struct proto_ops mptcp_v6_stream_ops = { 3790 .family = PF_INET6, 3791 .owner = THIS_MODULE, 3792 .release = inet6_release, 3793 .bind = mptcp_bind, 3794 .connect = mptcp_stream_connect, 3795 .socketpair = sock_no_socketpair, 3796 .accept = mptcp_stream_accept, 3797 .getname = inet6_getname, 3798 .poll = mptcp_poll, 3799 .ioctl = inet6_ioctl, 3800 .gettstamp = sock_gettstamp, 3801 .listen = mptcp_listen, 3802 .shutdown = inet_shutdown, 3803 .setsockopt = sock_common_setsockopt, 3804 .getsockopt = sock_common_getsockopt, 3805 .sendmsg = inet6_sendmsg, 3806 .recvmsg = inet6_recvmsg, 3807 .mmap = sock_no_mmap, 3808 .sendpage = inet_sendpage, 3809 #ifdef CONFIG_COMPAT 3810 .compat_ioctl = inet6_compat_ioctl, 3811 #endif 3812 }; 3813 3814 static struct proto mptcp_v6_prot; 3815 3816 static void mptcp_v6_destroy(struct sock *sk) 3817 { 3818 mptcp_destroy(sk); 3819 inet6_destroy_sock(sk); 3820 } 3821 3822 static struct inet_protosw mptcp_v6_protosw = { 3823 .type = SOCK_STREAM, 3824 .protocol = IPPROTO_MPTCP, 3825 .prot = &mptcp_v6_prot, 3826 .ops = &mptcp_v6_stream_ops, 3827 .flags = INET_PROTOSW_ICSK, 3828 }; 3829 3830 int __init mptcp_proto_v6_init(void) 3831 { 3832 int err; 3833 3834 mptcp_v6_prot = mptcp_prot; 3835 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 3836 mptcp_v6_prot.slab = NULL; 3837 mptcp_v6_prot.destroy = mptcp_v6_destroy; 3838 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 3839 3840 err = proto_register(&mptcp_v6_prot, 1); 3841 if (err) 3842 return err; 3843 3844 err = inet6_register_protosw(&mptcp_v6_protosw); 3845 if (err) 3846 proto_unregister(&mptcp_v6_prot); 3847 3848 return err; 3849 } 3850 #endif 3851