1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 enum { 40 MPTCP_CMSG_TS = BIT(0), 41 MPTCP_CMSG_INQ = BIT(1), 42 }; 43 44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 45 46 static void __mptcp_destroy_sock(struct sock *sk); 47 static void mptcp_check_send_data_fin(struct sock *sk); 48 49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 50 static struct net_device mptcp_napi_dev; 51 52 /* Returns end sequence number of the receiver's advertised window */ 53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 54 { 55 return READ_ONCE(msk->wnd_end); 56 } 57 58 static bool mptcp_is_tcpsk(struct sock *sk) 59 { 60 struct socket *sock = sk->sk_socket; 61 62 if (unlikely(sk->sk_prot == &tcp_prot)) { 63 /* we are being invoked after mptcp_accept() has 64 * accepted a non-mp-capable flow: sk is a tcp_sk, 65 * not an mptcp one. 66 * 67 * Hand the socket over to tcp so all further socket ops 68 * bypass mptcp. 69 */ 70 sock->ops = &inet_stream_ops; 71 return true; 72 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 73 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { 74 sock->ops = &inet6_stream_ops; 75 return true; 76 #endif 77 } 78 79 return false; 80 } 81 82 static int __mptcp_socket_create(struct mptcp_sock *msk) 83 { 84 struct mptcp_subflow_context *subflow; 85 struct sock *sk = (struct sock *)msk; 86 struct socket *ssock; 87 int err; 88 89 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 90 if (err) 91 return err; 92 93 WRITE_ONCE(msk->first, ssock->sk); 94 WRITE_ONCE(msk->subflow, ssock); 95 subflow = mptcp_subflow_ctx(ssock->sk); 96 list_add(&subflow->node, &msk->conn_list); 97 sock_hold(ssock->sk); 98 subflow->request_mptcp = 1; 99 subflow->subflow_id = msk->subflow_id++; 100 101 /* This is the first subflow, always with id 0 */ 102 subflow->local_id_valid = 1; 103 mptcp_sock_graft(msk->first, sk->sk_socket); 104 105 return 0; 106 } 107 108 /* If the MPC handshake is not started, returns the first subflow, 109 * eventually allocating it. 110 */ 111 struct socket *__mptcp_nmpc_socket(struct mptcp_sock *msk) 112 { 113 struct sock *sk = (struct sock *)msk; 114 int ret; 115 116 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 117 return ERR_PTR(-EINVAL); 118 119 if (!msk->subflow) { 120 if (msk->first) 121 return ERR_PTR(-EINVAL); 122 123 ret = __mptcp_socket_create(msk); 124 if (ret) 125 return ERR_PTR(ret); 126 127 mptcp_sockopt_sync(msk, msk->first); 128 } 129 130 return msk->subflow; 131 } 132 133 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 134 { 135 sk_drops_add(sk, skb); 136 __kfree_skb(skb); 137 } 138 139 static void mptcp_rmem_charge(struct sock *sk, int size) 140 { 141 mptcp_sk(sk)->rmem_fwd_alloc -= size; 142 } 143 144 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 145 struct sk_buff *from) 146 { 147 bool fragstolen; 148 int delta; 149 150 if (MPTCP_SKB_CB(from)->offset || 151 !skb_try_coalesce(to, from, &fragstolen, &delta)) 152 return false; 153 154 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 155 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 156 to->len, MPTCP_SKB_CB(from)->end_seq); 157 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 158 159 /* note the fwd memory can reach a negative value after accounting 160 * for the delta, but the later skb free will restore a non 161 * negative one 162 */ 163 atomic_add(delta, &sk->sk_rmem_alloc); 164 mptcp_rmem_charge(sk, delta); 165 kfree_skb_partial(from, fragstolen); 166 167 return true; 168 } 169 170 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 171 struct sk_buff *from) 172 { 173 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 174 return false; 175 176 return mptcp_try_coalesce((struct sock *)msk, to, from); 177 } 178 179 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 180 { 181 amount >>= PAGE_SHIFT; 182 mptcp_sk(sk)->rmem_fwd_alloc -= amount << PAGE_SHIFT; 183 __sk_mem_reduce_allocated(sk, amount); 184 } 185 186 static void mptcp_rmem_uncharge(struct sock *sk, int size) 187 { 188 struct mptcp_sock *msk = mptcp_sk(sk); 189 int reclaimable; 190 191 msk->rmem_fwd_alloc += size; 192 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 193 194 /* see sk_mem_uncharge() for the rationale behind the following schema */ 195 if (unlikely(reclaimable >= PAGE_SIZE)) 196 __mptcp_rmem_reclaim(sk, reclaimable); 197 } 198 199 static void mptcp_rfree(struct sk_buff *skb) 200 { 201 unsigned int len = skb->truesize; 202 struct sock *sk = skb->sk; 203 204 atomic_sub(len, &sk->sk_rmem_alloc); 205 mptcp_rmem_uncharge(sk, len); 206 } 207 208 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 209 { 210 skb_orphan(skb); 211 skb->sk = sk; 212 skb->destructor = mptcp_rfree; 213 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 214 mptcp_rmem_charge(sk, skb->truesize); 215 } 216 217 /* "inspired" by tcp_data_queue_ofo(), main differences: 218 * - use mptcp seqs 219 * - don't cope with sacks 220 */ 221 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 222 { 223 struct sock *sk = (struct sock *)msk; 224 struct rb_node **p, *parent; 225 u64 seq, end_seq, max_seq; 226 struct sk_buff *skb1; 227 228 seq = MPTCP_SKB_CB(skb)->map_seq; 229 end_seq = MPTCP_SKB_CB(skb)->end_seq; 230 max_seq = atomic64_read(&msk->rcv_wnd_sent); 231 232 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 233 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 234 if (after64(end_seq, max_seq)) { 235 /* out of window */ 236 mptcp_drop(sk, skb); 237 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 238 (unsigned long long)end_seq - (unsigned long)max_seq, 239 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 240 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 241 return; 242 } 243 244 p = &msk->out_of_order_queue.rb_node; 245 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 246 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 247 rb_link_node(&skb->rbnode, NULL, p); 248 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 249 msk->ooo_last_skb = skb; 250 goto end; 251 } 252 253 /* with 2 subflows, adding at end of ooo queue is quite likely 254 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 255 */ 256 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 257 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 258 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 259 return; 260 } 261 262 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 263 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 264 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 265 parent = &msk->ooo_last_skb->rbnode; 266 p = &parent->rb_right; 267 goto insert; 268 } 269 270 /* Find place to insert this segment. Handle overlaps on the way. */ 271 parent = NULL; 272 while (*p) { 273 parent = *p; 274 skb1 = rb_to_skb(parent); 275 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 276 p = &parent->rb_left; 277 continue; 278 } 279 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 280 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 281 /* All the bits are present. Drop. */ 282 mptcp_drop(sk, skb); 283 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 284 return; 285 } 286 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 287 /* partial overlap: 288 * | skb | 289 * | skb1 | 290 * continue traversing 291 */ 292 } else { 293 /* skb's seq == skb1's seq and skb covers skb1. 294 * Replace skb1 with skb. 295 */ 296 rb_replace_node(&skb1->rbnode, &skb->rbnode, 297 &msk->out_of_order_queue); 298 mptcp_drop(sk, skb1); 299 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 300 goto merge_right; 301 } 302 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 303 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 304 return; 305 } 306 p = &parent->rb_right; 307 } 308 309 insert: 310 /* Insert segment into RB tree. */ 311 rb_link_node(&skb->rbnode, parent, p); 312 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 313 314 merge_right: 315 /* Remove other segments covered by skb. */ 316 while ((skb1 = skb_rb_next(skb)) != NULL) { 317 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 318 break; 319 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 320 mptcp_drop(sk, skb1); 321 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 322 } 323 /* If there is no skb after us, we are the last_skb ! */ 324 if (!skb1) 325 msk->ooo_last_skb = skb; 326 327 end: 328 skb_condense(skb); 329 mptcp_set_owner_r(skb, sk); 330 } 331 332 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 333 { 334 struct mptcp_sock *msk = mptcp_sk(sk); 335 int amt, amount; 336 337 if (size <= msk->rmem_fwd_alloc) 338 return true; 339 340 size -= msk->rmem_fwd_alloc; 341 amt = sk_mem_pages(size); 342 amount = amt << PAGE_SHIFT; 343 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 344 return false; 345 346 msk->rmem_fwd_alloc += amount; 347 return true; 348 } 349 350 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 351 struct sk_buff *skb, unsigned int offset, 352 size_t copy_len) 353 { 354 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 355 struct sock *sk = (struct sock *)msk; 356 struct sk_buff *tail; 357 bool has_rxtstamp; 358 359 __skb_unlink(skb, &ssk->sk_receive_queue); 360 361 skb_ext_reset(skb); 362 skb_orphan(skb); 363 364 /* try to fetch required memory from subflow */ 365 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 366 goto drop; 367 368 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 369 370 /* the skb map_seq accounts for the skb offset: 371 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 372 * value 373 */ 374 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 375 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 376 MPTCP_SKB_CB(skb)->offset = offset; 377 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 378 379 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 380 /* in sequence */ 381 msk->bytes_received += copy_len; 382 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 383 tail = skb_peek_tail(&sk->sk_receive_queue); 384 if (tail && mptcp_try_coalesce(sk, tail, skb)) 385 return true; 386 387 mptcp_set_owner_r(skb, sk); 388 __skb_queue_tail(&sk->sk_receive_queue, skb); 389 return true; 390 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 391 mptcp_data_queue_ofo(msk, skb); 392 return false; 393 } 394 395 /* old data, keep it simple and drop the whole pkt, sender 396 * will retransmit as needed, if needed. 397 */ 398 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 399 drop: 400 mptcp_drop(sk, skb); 401 return false; 402 } 403 404 static void mptcp_stop_timer(struct sock *sk) 405 { 406 struct inet_connection_sock *icsk = inet_csk(sk); 407 408 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 409 mptcp_sk(sk)->timer_ival = 0; 410 } 411 412 static void mptcp_close_wake_up(struct sock *sk) 413 { 414 if (sock_flag(sk, SOCK_DEAD)) 415 return; 416 417 sk->sk_state_change(sk); 418 if (sk->sk_shutdown == SHUTDOWN_MASK || 419 sk->sk_state == TCP_CLOSE) 420 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 421 else 422 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 423 } 424 425 static bool mptcp_pending_data_fin_ack(struct sock *sk) 426 { 427 struct mptcp_sock *msk = mptcp_sk(sk); 428 429 return ((1 << sk->sk_state) & 430 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 431 msk->write_seq == READ_ONCE(msk->snd_una); 432 } 433 434 static void mptcp_check_data_fin_ack(struct sock *sk) 435 { 436 struct mptcp_sock *msk = mptcp_sk(sk); 437 438 /* Look for an acknowledged DATA_FIN */ 439 if (mptcp_pending_data_fin_ack(sk)) { 440 WRITE_ONCE(msk->snd_data_fin_enable, 0); 441 442 switch (sk->sk_state) { 443 case TCP_FIN_WAIT1: 444 inet_sk_state_store(sk, TCP_FIN_WAIT2); 445 break; 446 case TCP_CLOSING: 447 case TCP_LAST_ACK: 448 inet_sk_state_store(sk, TCP_CLOSE); 449 break; 450 } 451 452 mptcp_close_wake_up(sk); 453 } 454 } 455 456 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 457 { 458 struct mptcp_sock *msk = mptcp_sk(sk); 459 460 if (READ_ONCE(msk->rcv_data_fin) && 461 ((1 << sk->sk_state) & 462 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 463 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 464 465 if (msk->ack_seq == rcv_data_fin_seq) { 466 if (seq) 467 *seq = rcv_data_fin_seq; 468 469 return true; 470 } 471 } 472 473 return false; 474 } 475 476 static void mptcp_set_datafin_timeout(struct sock *sk) 477 { 478 struct inet_connection_sock *icsk = inet_csk(sk); 479 u32 retransmits; 480 481 retransmits = min_t(u32, icsk->icsk_retransmits, 482 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 483 484 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 485 } 486 487 static void __mptcp_set_timeout(struct sock *sk, long tout) 488 { 489 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 490 } 491 492 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 493 { 494 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 495 496 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 497 inet_csk(ssk)->icsk_timeout - jiffies : 0; 498 } 499 500 static void mptcp_set_timeout(struct sock *sk) 501 { 502 struct mptcp_subflow_context *subflow; 503 long tout = 0; 504 505 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 506 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 507 __mptcp_set_timeout(sk, tout); 508 } 509 510 static inline bool tcp_can_send_ack(const struct sock *ssk) 511 { 512 return !((1 << inet_sk_state_load(ssk)) & 513 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 514 } 515 516 void __mptcp_subflow_send_ack(struct sock *ssk) 517 { 518 if (tcp_can_send_ack(ssk)) 519 tcp_send_ack(ssk); 520 } 521 522 static void mptcp_subflow_send_ack(struct sock *ssk) 523 { 524 bool slow; 525 526 slow = lock_sock_fast(ssk); 527 __mptcp_subflow_send_ack(ssk); 528 unlock_sock_fast(ssk, slow); 529 } 530 531 static void mptcp_send_ack(struct mptcp_sock *msk) 532 { 533 struct mptcp_subflow_context *subflow; 534 535 mptcp_for_each_subflow(msk, subflow) 536 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 537 } 538 539 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 540 { 541 bool slow; 542 543 slow = lock_sock_fast(ssk); 544 if (tcp_can_send_ack(ssk)) 545 tcp_cleanup_rbuf(ssk, 1); 546 unlock_sock_fast(ssk, slow); 547 } 548 549 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 550 { 551 const struct inet_connection_sock *icsk = inet_csk(ssk); 552 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 553 const struct tcp_sock *tp = tcp_sk(ssk); 554 555 return (ack_pending & ICSK_ACK_SCHED) && 556 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 557 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 558 (rx_empty && ack_pending & 559 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 560 } 561 562 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 563 { 564 int old_space = READ_ONCE(msk->old_wspace); 565 struct mptcp_subflow_context *subflow; 566 struct sock *sk = (struct sock *)msk; 567 int space = __mptcp_space(sk); 568 bool cleanup, rx_empty; 569 570 cleanup = (space > 0) && (space >= (old_space << 1)); 571 rx_empty = !__mptcp_rmem(sk); 572 573 mptcp_for_each_subflow(msk, subflow) { 574 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 575 576 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 577 mptcp_subflow_cleanup_rbuf(ssk); 578 } 579 } 580 581 static bool mptcp_check_data_fin(struct sock *sk) 582 { 583 struct mptcp_sock *msk = mptcp_sk(sk); 584 u64 rcv_data_fin_seq; 585 bool ret = false; 586 587 /* Need to ack a DATA_FIN received from a peer while this side 588 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 589 * msk->rcv_data_fin was set when parsing the incoming options 590 * at the subflow level and the msk lock was not held, so this 591 * is the first opportunity to act on the DATA_FIN and change 592 * the msk state. 593 * 594 * If we are caught up to the sequence number of the incoming 595 * DATA_FIN, send the DATA_ACK now and do state transition. If 596 * not caught up, do nothing and let the recv code send DATA_ACK 597 * when catching up. 598 */ 599 600 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 601 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 602 WRITE_ONCE(msk->rcv_data_fin, 0); 603 604 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 605 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 606 607 switch (sk->sk_state) { 608 case TCP_ESTABLISHED: 609 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 610 break; 611 case TCP_FIN_WAIT1: 612 inet_sk_state_store(sk, TCP_CLOSING); 613 break; 614 case TCP_FIN_WAIT2: 615 inet_sk_state_store(sk, TCP_CLOSE); 616 break; 617 default: 618 /* Other states not expected */ 619 WARN_ON_ONCE(1); 620 break; 621 } 622 623 ret = true; 624 if (!__mptcp_check_fallback(msk)) 625 mptcp_send_ack(msk); 626 mptcp_close_wake_up(sk); 627 } 628 return ret; 629 } 630 631 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 632 struct sock *ssk, 633 unsigned int *bytes) 634 { 635 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 636 struct sock *sk = (struct sock *)msk; 637 unsigned int moved = 0; 638 bool more_data_avail; 639 struct tcp_sock *tp; 640 bool done = false; 641 int sk_rbuf; 642 643 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 644 645 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 646 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 647 648 if (unlikely(ssk_rbuf > sk_rbuf)) { 649 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 650 sk_rbuf = ssk_rbuf; 651 } 652 } 653 654 pr_debug("msk=%p ssk=%p", msk, ssk); 655 tp = tcp_sk(ssk); 656 do { 657 u32 map_remaining, offset; 658 u32 seq = tp->copied_seq; 659 struct sk_buff *skb; 660 bool fin; 661 662 /* try to move as much data as available */ 663 map_remaining = subflow->map_data_len - 664 mptcp_subflow_get_map_offset(subflow); 665 666 skb = skb_peek(&ssk->sk_receive_queue); 667 if (!skb) { 668 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(), 669 * a different CPU can have already processed the pending 670 * data, stop here or we can enter an infinite loop 671 */ 672 if (!moved) 673 done = true; 674 break; 675 } 676 677 if (__mptcp_check_fallback(msk)) { 678 /* Under fallback skbs have no MPTCP extension and TCP could 679 * collapse them between the dummy map creation and the 680 * current dequeue. Be sure to adjust the map size. 681 */ 682 map_remaining = skb->len; 683 subflow->map_data_len = skb->len; 684 } 685 686 offset = seq - TCP_SKB_CB(skb)->seq; 687 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 688 if (fin) { 689 done = true; 690 seq++; 691 } 692 693 if (offset < skb->len) { 694 size_t len = skb->len - offset; 695 696 if (tp->urg_data) 697 done = true; 698 699 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 700 moved += len; 701 seq += len; 702 703 if (WARN_ON_ONCE(map_remaining < len)) 704 break; 705 } else { 706 WARN_ON_ONCE(!fin); 707 sk_eat_skb(ssk, skb); 708 done = true; 709 } 710 711 WRITE_ONCE(tp->copied_seq, seq); 712 more_data_avail = mptcp_subflow_data_available(ssk); 713 714 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 715 done = true; 716 break; 717 } 718 } while (more_data_avail); 719 720 *bytes += moved; 721 return done; 722 } 723 724 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 725 { 726 struct sock *sk = (struct sock *)msk; 727 struct sk_buff *skb, *tail; 728 bool moved = false; 729 struct rb_node *p; 730 u64 end_seq; 731 732 p = rb_first(&msk->out_of_order_queue); 733 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 734 while (p) { 735 skb = rb_to_skb(p); 736 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 737 break; 738 739 p = rb_next(p); 740 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 741 742 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 743 msk->ack_seq))) { 744 mptcp_drop(sk, skb); 745 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 746 continue; 747 } 748 749 end_seq = MPTCP_SKB_CB(skb)->end_seq; 750 tail = skb_peek_tail(&sk->sk_receive_queue); 751 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 752 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 753 754 /* skip overlapping data, if any */ 755 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 756 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 757 delta); 758 MPTCP_SKB_CB(skb)->offset += delta; 759 MPTCP_SKB_CB(skb)->map_seq += delta; 760 __skb_queue_tail(&sk->sk_receive_queue, skb); 761 } 762 msk->bytes_received += end_seq - msk->ack_seq; 763 msk->ack_seq = end_seq; 764 moved = true; 765 } 766 return moved; 767 } 768 769 /* In most cases we will be able to lock the mptcp socket. If its already 770 * owned, we need to defer to the work queue to avoid ABBA deadlock. 771 */ 772 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 773 { 774 struct sock *sk = (struct sock *)msk; 775 unsigned int moved = 0; 776 777 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 778 __mptcp_ofo_queue(msk); 779 if (unlikely(ssk->sk_err)) { 780 if (!sock_owned_by_user(sk)) 781 __mptcp_error_report(sk); 782 else 783 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 784 } 785 786 /* If the moves have caught up with the DATA_FIN sequence number 787 * it's time to ack the DATA_FIN and change socket state, but 788 * this is not a good place to change state. Let the workqueue 789 * do it. 790 */ 791 if (mptcp_pending_data_fin(sk, NULL)) 792 mptcp_schedule_work(sk); 793 return moved > 0; 794 } 795 796 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 797 { 798 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 799 struct mptcp_sock *msk = mptcp_sk(sk); 800 int sk_rbuf, ssk_rbuf; 801 802 /* The peer can send data while we are shutting down this 803 * subflow at msk destruction time, but we must avoid enqueuing 804 * more data to the msk receive queue 805 */ 806 if (unlikely(subflow->disposable)) 807 return; 808 809 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 810 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 811 if (unlikely(ssk_rbuf > sk_rbuf)) 812 sk_rbuf = ssk_rbuf; 813 814 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 815 if (__mptcp_rmem(sk) > sk_rbuf) { 816 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 817 return; 818 } 819 820 /* Wake-up the reader only for in-sequence data */ 821 mptcp_data_lock(sk); 822 if (move_skbs_to_msk(msk, ssk)) 823 sk->sk_data_ready(sk); 824 825 mptcp_data_unlock(sk); 826 } 827 828 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 829 { 830 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 831 WRITE_ONCE(msk->allow_infinite_fallback, false); 832 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 833 } 834 835 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 836 { 837 struct sock *sk = (struct sock *)msk; 838 839 if (sk->sk_state != TCP_ESTABLISHED) 840 return false; 841 842 /* attach to msk socket only after we are sure we will deal with it 843 * at close time 844 */ 845 if (sk->sk_socket && !ssk->sk_socket) 846 mptcp_sock_graft(ssk, sk->sk_socket); 847 848 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 849 mptcp_sockopt_sync_locked(msk, ssk); 850 mptcp_subflow_joined(msk, ssk); 851 return true; 852 } 853 854 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 855 { 856 struct mptcp_subflow_context *tmp, *subflow; 857 struct mptcp_sock *msk = mptcp_sk(sk); 858 859 list_for_each_entry_safe(subflow, tmp, join_list, node) { 860 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 861 bool slow = lock_sock_fast(ssk); 862 863 list_move_tail(&subflow->node, &msk->conn_list); 864 if (!__mptcp_finish_join(msk, ssk)) 865 mptcp_subflow_reset(ssk); 866 unlock_sock_fast(ssk, slow); 867 } 868 } 869 870 static bool mptcp_timer_pending(struct sock *sk) 871 { 872 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 873 } 874 875 static void mptcp_reset_timer(struct sock *sk) 876 { 877 struct inet_connection_sock *icsk = inet_csk(sk); 878 unsigned long tout; 879 880 /* prevent rescheduling on close */ 881 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 882 return; 883 884 tout = mptcp_sk(sk)->timer_ival; 885 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 886 } 887 888 bool mptcp_schedule_work(struct sock *sk) 889 { 890 if (inet_sk_state_load(sk) != TCP_CLOSE && 891 schedule_work(&mptcp_sk(sk)->work)) { 892 /* each subflow already holds a reference to the sk, and the 893 * workqueue is invoked by a subflow, so sk can't go away here. 894 */ 895 sock_hold(sk); 896 return true; 897 } 898 return false; 899 } 900 901 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 902 { 903 struct mptcp_subflow_context *subflow; 904 905 msk_owned_by_me(msk); 906 907 mptcp_for_each_subflow(msk, subflow) { 908 if (READ_ONCE(subflow->data_avail)) 909 return mptcp_subflow_tcp_sock(subflow); 910 } 911 912 return NULL; 913 } 914 915 static bool mptcp_skb_can_collapse_to(u64 write_seq, 916 const struct sk_buff *skb, 917 const struct mptcp_ext *mpext) 918 { 919 if (!tcp_skb_can_collapse_to(skb)) 920 return false; 921 922 /* can collapse only if MPTCP level sequence is in order and this 923 * mapping has not been xmitted yet 924 */ 925 return mpext && mpext->data_seq + mpext->data_len == write_seq && 926 !mpext->frozen; 927 } 928 929 /* we can append data to the given data frag if: 930 * - there is space available in the backing page_frag 931 * - the data frag tail matches the current page_frag free offset 932 * - the data frag end sequence number matches the current write seq 933 */ 934 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 935 const struct page_frag *pfrag, 936 const struct mptcp_data_frag *df) 937 { 938 return df && pfrag->page == df->page && 939 pfrag->size - pfrag->offset > 0 && 940 pfrag->offset == (df->offset + df->data_len) && 941 df->data_seq + df->data_len == msk->write_seq; 942 } 943 944 static void dfrag_uncharge(struct sock *sk, int len) 945 { 946 sk_mem_uncharge(sk, len); 947 sk_wmem_queued_add(sk, -len); 948 } 949 950 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 951 { 952 int len = dfrag->data_len + dfrag->overhead; 953 954 list_del(&dfrag->list); 955 dfrag_uncharge(sk, len); 956 put_page(dfrag->page); 957 } 958 959 static void __mptcp_clean_una(struct sock *sk) 960 { 961 struct mptcp_sock *msk = mptcp_sk(sk); 962 struct mptcp_data_frag *dtmp, *dfrag; 963 u64 snd_una; 964 965 snd_una = msk->snd_una; 966 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 967 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 968 break; 969 970 if (unlikely(dfrag == msk->first_pending)) { 971 /* in recovery mode can see ack after the current snd head */ 972 if (WARN_ON_ONCE(!msk->recovery)) 973 break; 974 975 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 976 } 977 978 dfrag_clear(sk, dfrag); 979 } 980 981 dfrag = mptcp_rtx_head(sk); 982 if (dfrag && after64(snd_una, dfrag->data_seq)) { 983 u64 delta = snd_una - dfrag->data_seq; 984 985 /* prevent wrap around in recovery mode */ 986 if (unlikely(delta > dfrag->already_sent)) { 987 if (WARN_ON_ONCE(!msk->recovery)) 988 goto out; 989 if (WARN_ON_ONCE(delta > dfrag->data_len)) 990 goto out; 991 dfrag->already_sent += delta - dfrag->already_sent; 992 } 993 994 dfrag->data_seq += delta; 995 dfrag->offset += delta; 996 dfrag->data_len -= delta; 997 dfrag->already_sent -= delta; 998 999 dfrag_uncharge(sk, delta); 1000 } 1001 1002 /* all retransmitted data acked, recovery completed */ 1003 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1004 msk->recovery = false; 1005 1006 out: 1007 if (snd_una == READ_ONCE(msk->snd_nxt) && 1008 snd_una == READ_ONCE(msk->write_seq)) { 1009 if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1010 mptcp_stop_timer(sk); 1011 } else { 1012 mptcp_reset_timer(sk); 1013 } 1014 } 1015 1016 static void __mptcp_clean_una_wakeup(struct sock *sk) 1017 { 1018 lockdep_assert_held_once(&sk->sk_lock.slock); 1019 1020 __mptcp_clean_una(sk); 1021 mptcp_write_space(sk); 1022 } 1023 1024 static void mptcp_clean_una_wakeup(struct sock *sk) 1025 { 1026 mptcp_data_lock(sk); 1027 __mptcp_clean_una_wakeup(sk); 1028 mptcp_data_unlock(sk); 1029 } 1030 1031 static void mptcp_enter_memory_pressure(struct sock *sk) 1032 { 1033 struct mptcp_subflow_context *subflow; 1034 struct mptcp_sock *msk = mptcp_sk(sk); 1035 bool first = true; 1036 1037 sk_stream_moderate_sndbuf(sk); 1038 mptcp_for_each_subflow(msk, subflow) { 1039 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1040 1041 if (first) 1042 tcp_enter_memory_pressure(ssk); 1043 sk_stream_moderate_sndbuf(ssk); 1044 first = false; 1045 } 1046 } 1047 1048 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1049 * data 1050 */ 1051 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1052 { 1053 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1054 pfrag, sk->sk_allocation))) 1055 return true; 1056 1057 mptcp_enter_memory_pressure(sk); 1058 return false; 1059 } 1060 1061 static struct mptcp_data_frag * 1062 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1063 int orig_offset) 1064 { 1065 int offset = ALIGN(orig_offset, sizeof(long)); 1066 struct mptcp_data_frag *dfrag; 1067 1068 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1069 dfrag->data_len = 0; 1070 dfrag->data_seq = msk->write_seq; 1071 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1072 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1073 dfrag->already_sent = 0; 1074 dfrag->page = pfrag->page; 1075 1076 return dfrag; 1077 } 1078 1079 struct mptcp_sendmsg_info { 1080 int mss_now; 1081 int size_goal; 1082 u16 limit; 1083 u16 sent; 1084 unsigned int flags; 1085 bool data_lock_held; 1086 }; 1087 1088 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1089 u64 data_seq, int avail_size) 1090 { 1091 u64 window_end = mptcp_wnd_end(msk); 1092 u64 mptcp_snd_wnd; 1093 1094 if (__mptcp_check_fallback(msk)) 1095 return avail_size; 1096 1097 mptcp_snd_wnd = window_end - data_seq; 1098 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1099 1100 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1101 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1102 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1103 } 1104 1105 return avail_size; 1106 } 1107 1108 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1109 { 1110 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1111 1112 if (!mpext) 1113 return false; 1114 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1115 return true; 1116 } 1117 1118 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1119 { 1120 struct sk_buff *skb; 1121 1122 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1123 if (likely(skb)) { 1124 if (likely(__mptcp_add_ext(skb, gfp))) { 1125 skb_reserve(skb, MAX_TCP_HEADER); 1126 skb->ip_summed = CHECKSUM_PARTIAL; 1127 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1128 return skb; 1129 } 1130 __kfree_skb(skb); 1131 } else { 1132 mptcp_enter_memory_pressure(sk); 1133 } 1134 return NULL; 1135 } 1136 1137 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1138 { 1139 struct sk_buff *skb; 1140 1141 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1142 if (!skb) 1143 return NULL; 1144 1145 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1146 tcp_skb_entail(ssk, skb); 1147 return skb; 1148 } 1149 tcp_skb_tsorted_anchor_cleanup(skb); 1150 kfree_skb(skb); 1151 return NULL; 1152 } 1153 1154 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1155 { 1156 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1157 1158 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1159 } 1160 1161 /* note: this always recompute the csum on the whole skb, even 1162 * if we just appended a single frag. More status info needed 1163 */ 1164 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1165 { 1166 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1167 __wsum csum = ~csum_unfold(mpext->csum); 1168 int offset = skb->len - added; 1169 1170 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1171 } 1172 1173 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1174 struct sock *ssk, 1175 struct mptcp_ext *mpext) 1176 { 1177 if (!mpext) 1178 return; 1179 1180 mpext->infinite_map = 1; 1181 mpext->data_len = 0; 1182 1183 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1184 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1185 pr_fallback(msk); 1186 mptcp_do_fallback(ssk); 1187 } 1188 1189 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1190 struct mptcp_data_frag *dfrag, 1191 struct mptcp_sendmsg_info *info) 1192 { 1193 u64 data_seq = dfrag->data_seq + info->sent; 1194 int offset = dfrag->offset + info->sent; 1195 struct mptcp_sock *msk = mptcp_sk(sk); 1196 bool zero_window_probe = false; 1197 struct mptcp_ext *mpext = NULL; 1198 bool can_coalesce = false; 1199 bool reuse_skb = true; 1200 struct sk_buff *skb; 1201 size_t copy; 1202 int i; 1203 1204 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1205 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1206 1207 if (WARN_ON_ONCE(info->sent > info->limit || 1208 info->limit > dfrag->data_len)) 1209 return 0; 1210 1211 if (unlikely(!__tcp_can_send(ssk))) 1212 return -EAGAIN; 1213 1214 /* compute send limit */ 1215 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1216 copy = info->size_goal; 1217 1218 skb = tcp_write_queue_tail(ssk); 1219 if (skb && copy > skb->len) { 1220 /* Limit the write to the size available in the 1221 * current skb, if any, so that we create at most a new skb. 1222 * Explicitly tells TCP internals to avoid collapsing on later 1223 * queue management operation, to avoid breaking the ext <-> 1224 * SSN association set here 1225 */ 1226 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1227 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1228 TCP_SKB_CB(skb)->eor = 1; 1229 goto alloc_skb; 1230 } 1231 1232 i = skb_shinfo(skb)->nr_frags; 1233 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1234 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1235 tcp_mark_push(tcp_sk(ssk), skb); 1236 goto alloc_skb; 1237 } 1238 1239 copy -= skb->len; 1240 } else { 1241 alloc_skb: 1242 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1243 if (!skb) 1244 return -ENOMEM; 1245 1246 i = skb_shinfo(skb)->nr_frags; 1247 reuse_skb = false; 1248 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1249 } 1250 1251 /* Zero window and all data acked? Probe. */ 1252 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1253 if (copy == 0) { 1254 u64 snd_una = READ_ONCE(msk->snd_una); 1255 1256 if (snd_una != msk->snd_nxt) { 1257 tcp_remove_empty_skb(ssk); 1258 return 0; 1259 } 1260 1261 zero_window_probe = true; 1262 data_seq = snd_una - 1; 1263 copy = 1; 1264 1265 /* all mptcp-level data is acked, no skbs should be present into the 1266 * ssk write queue 1267 */ 1268 WARN_ON_ONCE(reuse_skb); 1269 } 1270 1271 copy = min_t(size_t, copy, info->limit - info->sent); 1272 if (!sk_wmem_schedule(ssk, copy)) { 1273 tcp_remove_empty_skb(ssk); 1274 return -ENOMEM; 1275 } 1276 1277 if (can_coalesce) { 1278 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1279 } else { 1280 get_page(dfrag->page); 1281 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1282 } 1283 1284 skb->len += copy; 1285 skb->data_len += copy; 1286 skb->truesize += copy; 1287 sk_wmem_queued_add(ssk, copy); 1288 sk_mem_charge(ssk, copy); 1289 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1290 TCP_SKB_CB(skb)->end_seq += copy; 1291 tcp_skb_pcount_set(skb, 0); 1292 1293 /* on skb reuse we just need to update the DSS len */ 1294 if (reuse_skb) { 1295 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1296 mpext->data_len += copy; 1297 WARN_ON_ONCE(zero_window_probe); 1298 goto out; 1299 } 1300 1301 memset(mpext, 0, sizeof(*mpext)); 1302 mpext->data_seq = data_seq; 1303 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1304 mpext->data_len = copy; 1305 mpext->use_map = 1; 1306 mpext->dsn64 = 1; 1307 1308 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1309 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1310 mpext->dsn64); 1311 1312 if (zero_window_probe) { 1313 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1314 mpext->frozen = 1; 1315 if (READ_ONCE(msk->csum_enabled)) 1316 mptcp_update_data_checksum(skb, copy); 1317 tcp_push_pending_frames(ssk); 1318 return 0; 1319 } 1320 out: 1321 if (READ_ONCE(msk->csum_enabled)) 1322 mptcp_update_data_checksum(skb, copy); 1323 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1324 mptcp_update_infinite_map(msk, ssk, mpext); 1325 trace_mptcp_sendmsg_frag(mpext); 1326 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1327 return copy; 1328 } 1329 1330 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1331 sizeof(struct tcphdr) - \ 1332 MAX_TCP_OPTION_SPACE - \ 1333 sizeof(struct ipv6hdr) - \ 1334 sizeof(struct frag_hdr)) 1335 1336 struct subflow_send_info { 1337 struct sock *ssk; 1338 u64 linger_time; 1339 }; 1340 1341 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1342 { 1343 if (!subflow->stale) 1344 return; 1345 1346 subflow->stale = 0; 1347 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1348 } 1349 1350 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1351 { 1352 if (unlikely(subflow->stale)) { 1353 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1354 1355 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1356 return false; 1357 1358 mptcp_subflow_set_active(subflow); 1359 } 1360 return __mptcp_subflow_active(subflow); 1361 } 1362 1363 #define SSK_MODE_ACTIVE 0 1364 #define SSK_MODE_BACKUP 1 1365 #define SSK_MODE_MAX 2 1366 1367 /* implement the mptcp packet scheduler; 1368 * returns the subflow that will transmit the next DSS 1369 * additionally updates the rtx timeout 1370 */ 1371 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1372 { 1373 struct subflow_send_info send_info[SSK_MODE_MAX]; 1374 struct mptcp_subflow_context *subflow; 1375 struct sock *sk = (struct sock *)msk; 1376 u32 pace, burst, wmem; 1377 int i, nr_active = 0; 1378 struct sock *ssk; 1379 u64 linger_time; 1380 long tout = 0; 1381 1382 msk_owned_by_me(msk); 1383 1384 if (__mptcp_check_fallback(msk)) { 1385 if (!msk->first) 1386 return NULL; 1387 return __tcp_can_send(msk->first) && 1388 sk_stream_memory_free(msk->first) ? msk->first : NULL; 1389 } 1390 1391 /* re-use last subflow, if the burst allow that */ 1392 if (msk->last_snd && msk->snd_burst > 0 && 1393 sk_stream_memory_free(msk->last_snd) && 1394 mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) { 1395 mptcp_set_timeout(sk); 1396 return msk->last_snd; 1397 } 1398 1399 /* pick the subflow with the lower wmem/wspace ratio */ 1400 for (i = 0; i < SSK_MODE_MAX; ++i) { 1401 send_info[i].ssk = NULL; 1402 send_info[i].linger_time = -1; 1403 } 1404 1405 mptcp_for_each_subflow(msk, subflow) { 1406 trace_mptcp_subflow_get_send(subflow); 1407 ssk = mptcp_subflow_tcp_sock(subflow); 1408 if (!mptcp_subflow_active(subflow)) 1409 continue; 1410 1411 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1412 nr_active += !subflow->backup; 1413 pace = subflow->avg_pacing_rate; 1414 if (unlikely(!pace)) { 1415 /* init pacing rate from socket */ 1416 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1417 pace = subflow->avg_pacing_rate; 1418 if (!pace) 1419 continue; 1420 } 1421 1422 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1423 if (linger_time < send_info[subflow->backup].linger_time) { 1424 send_info[subflow->backup].ssk = ssk; 1425 send_info[subflow->backup].linger_time = linger_time; 1426 } 1427 } 1428 __mptcp_set_timeout(sk, tout); 1429 1430 /* pick the best backup if no other subflow is active */ 1431 if (!nr_active) 1432 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1433 1434 /* According to the blest algorithm, to avoid HoL blocking for the 1435 * faster flow, we need to: 1436 * - estimate the faster flow linger time 1437 * - use the above to estimate the amount of byte transferred 1438 * by the faster flow 1439 * - check that the amount of queued data is greter than the above, 1440 * otherwise do not use the picked, slower, subflow 1441 * We select the subflow with the shorter estimated time to flush 1442 * the queued mem, which basically ensure the above. We just need 1443 * to check that subflow has a non empty cwin. 1444 */ 1445 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1446 if (!ssk || !sk_stream_memory_free(ssk)) 1447 return NULL; 1448 1449 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1450 wmem = READ_ONCE(ssk->sk_wmem_queued); 1451 if (!burst) { 1452 msk->last_snd = NULL; 1453 return ssk; 1454 } 1455 1456 subflow = mptcp_subflow_ctx(ssk); 1457 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1458 READ_ONCE(ssk->sk_pacing_rate) * burst, 1459 burst + wmem); 1460 msk->last_snd = ssk; 1461 msk->snd_burst = burst; 1462 return ssk; 1463 } 1464 1465 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1466 { 1467 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1468 release_sock(ssk); 1469 } 1470 1471 static void mptcp_update_post_push(struct mptcp_sock *msk, 1472 struct mptcp_data_frag *dfrag, 1473 u32 sent) 1474 { 1475 u64 snd_nxt_new = dfrag->data_seq; 1476 1477 dfrag->already_sent += sent; 1478 1479 msk->snd_burst -= sent; 1480 1481 snd_nxt_new += dfrag->already_sent; 1482 1483 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1484 * is recovering after a failover. In that event, this re-sends 1485 * old segments. 1486 * 1487 * Thus compute snd_nxt_new candidate based on 1488 * the dfrag->data_seq that was sent and the data 1489 * that has been handed to the subflow for transmission 1490 * and skip update in case it was old dfrag. 1491 */ 1492 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1493 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1494 msk->snd_nxt = snd_nxt_new; 1495 } 1496 } 1497 1498 void mptcp_check_and_set_pending(struct sock *sk) 1499 { 1500 if (mptcp_send_head(sk)) 1501 mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING); 1502 } 1503 1504 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1505 { 1506 struct sock *prev_ssk = NULL, *ssk = NULL; 1507 struct mptcp_sock *msk = mptcp_sk(sk); 1508 struct mptcp_sendmsg_info info = { 1509 .flags = flags, 1510 }; 1511 bool do_check_data_fin = false; 1512 struct mptcp_data_frag *dfrag; 1513 int len; 1514 1515 while ((dfrag = mptcp_send_head(sk))) { 1516 info.sent = dfrag->already_sent; 1517 info.limit = dfrag->data_len; 1518 len = dfrag->data_len - dfrag->already_sent; 1519 while (len > 0) { 1520 int ret = 0; 1521 1522 prev_ssk = ssk; 1523 ssk = mptcp_subflow_get_send(msk); 1524 1525 /* First check. If the ssk has changed since 1526 * the last round, release prev_ssk 1527 */ 1528 if (ssk != prev_ssk && prev_ssk) 1529 mptcp_push_release(prev_ssk, &info); 1530 if (!ssk) 1531 goto out; 1532 1533 /* Need to lock the new subflow only if different 1534 * from the previous one, otherwise we are still 1535 * helding the relevant lock 1536 */ 1537 if (ssk != prev_ssk) 1538 lock_sock(ssk); 1539 1540 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1541 if (ret <= 0) { 1542 if (ret == -EAGAIN) 1543 continue; 1544 mptcp_push_release(ssk, &info); 1545 goto out; 1546 } 1547 1548 do_check_data_fin = true; 1549 info.sent += ret; 1550 len -= ret; 1551 1552 mptcp_update_post_push(msk, dfrag, ret); 1553 } 1554 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1555 } 1556 1557 /* at this point we held the socket lock for the last subflow we used */ 1558 if (ssk) 1559 mptcp_push_release(ssk, &info); 1560 1561 out: 1562 /* ensure the rtx timer is running */ 1563 if (!mptcp_timer_pending(sk)) 1564 mptcp_reset_timer(sk); 1565 if (do_check_data_fin) 1566 mptcp_check_send_data_fin(sk); 1567 } 1568 1569 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1570 { 1571 struct mptcp_sock *msk = mptcp_sk(sk); 1572 struct mptcp_sendmsg_info info = { 1573 .data_lock_held = true, 1574 }; 1575 struct mptcp_data_frag *dfrag; 1576 struct sock *xmit_ssk; 1577 int len, copied = 0; 1578 1579 info.flags = 0; 1580 while ((dfrag = mptcp_send_head(sk))) { 1581 info.sent = dfrag->already_sent; 1582 info.limit = dfrag->data_len; 1583 len = dfrag->data_len - dfrag->already_sent; 1584 while (len > 0) { 1585 int ret = 0; 1586 1587 /* check for a different subflow usage only after 1588 * spooling the first chunk of data 1589 */ 1590 xmit_ssk = first ? ssk : mptcp_subflow_get_send(msk); 1591 if (!xmit_ssk) 1592 goto out; 1593 if (xmit_ssk != ssk) { 1594 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), 1595 MPTCP_DELEGATE_SEND); 1596 goto out; 1597 } 1598 1599 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1600 if (ret <= 0) 1601 goto out; 1602 1603 info.sent += ret; 1604 copied += ret; 1605 len -= ret; 1606 first = false; 1607 1608 mptcp_update_post_push(msk, dfrag, ret); 1609 } 1610 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1611 } 1612 1613 out: 1614 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1615 * not going to flush it via release_sock() 1616 */ 1617 if (copied) { 1618 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1619 info.size_goal); 1620 if (!mptcp_timer_pending(sk)) 1621 mptcp_reset_timer(sk); 1622 1623 if (msk->snd_data_fin_enable && 1624 msk->snd_nxt + 1 == msk->write_seq) 1625 mptcp_schedule_work(sk); 1626 } 1627 } 1628 1629 static void mptcp_set_nospace(struct sock *sk) 1630 { 1631 /* enable autotune */ 1632 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1633 1634 /* will be cleared on avail space */ 1635 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1636 } 1637 1638 static int mptcp_disconnect(struct sock *sk, int flags); 1639 1640 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1641 size_t len, int *copied_syn) 1642 { 1643 unsigned int saved_flags = msg->msg_flags; 1644 struct mptcp_sock *msk = mptcp_sk(sk); 1645 struct socket *ssock; 1646 struct sock *ssk; 1647 int ret; 1648 1649 /* on flags based fastopen the mptcp is supposed to create the 1650 * first subflow right now. Otherwise we are in the defer_connect 1651 * path, and the first subflow must be already present. 1652 * Since the defer_connect flag is cleared after the first succsful 1653 * fastopen attempt, no need to check for additional subflow status. 1654 */ 1655 if (msg->msg_flags & MSG_FASTOPEN) { 1656 ssock = __mptcp_nmpc_socket(msk); 1657 if (IS_ERR(ssock)) 1658 return PTR_ERR(ssock); 1659 } 1660 if (!msk->first) 1661 return -EINVAL; 1662 1663 ssk = msk->first; 1664 1665 lock_sock(ssk); 1666 msg->msg_flags |= MSG_DONTWAIT; 1667 msk->fastopening = 1; 1668 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1669 msk->fastopening = 0; 1670 msg->msg_flags = saved_flags; 1671 release_sock(ssk); 1672 1673 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1674 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1675 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1676 msg->msg_namelen, msg->msg_flags, 1); 1677 1678 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1679 * case of any error, except timeout or signal 1680 */ 1681 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1682 *copied_syn = 0; 1683 } else if (ret && ret != -EINPROGRESS) { 1684 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1685 * __inet_stream_connect() can fail, due to looking check, 1686 * see mptcp_disconnect(). 1687 * Attempt it again outside the problematic scope. 1688 */ 1689 if (!mptcp_disconnect(sk, 0)) 1690 sk->sk_socket->state = SS_UNCONNECTED; 1691 } 1692 inet_sk(sk)->defer_connect = 0; 1693 1694 return ret; 1695 } 1696 1697 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1698 { 1699 struct mptcp_sock *msk = mptcp_sk(sk); 1700 struct page_frag *pfrag; 1701 size_t copied = 0; 1702 int ret = 0; 1703 long timeo; 1704 1705 /* silently ignore everything else */ 1706 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1707 1708 lock_sock(sk); 1709 1710 if (unlikely(inet_sk(sk)->defer_connect || msg->msg_flags & MSG_FASTOPEN)) { 1711 int copied_syn = 0; 1712 1713 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1714 copied += copied_syn; 1715 if (ret == -EINPROGRESS && copied_syn > 0) 1716 goto out; 1717 else if (ret) 1718 goto do_error; 1719 } 1720 1721 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1722 1723 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1724 ret = sk_stream_wait_connect(sk, &timeo); 1725 if (ret) 1726 goto do_error; 1727 } 1728 1729 ret = -EPIPE; 1730 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1731 goto do_error; 1732 1733 pfrag = sk_page_frag(sk); 1734 1735 while (msg_data_left(msg)) { 1736 int total_ts, frag_truesize = 0; 1737 struct mptcp_data_frag *dfrag; 1738 bool dfrag_collapsed; 1739 size_t psize, offset; 1740 1741 /* reuse tail pfrag, if possible, or carve a new one from the 1742 * page allocator 1743 */ 1744 dfrag = mptcp_pending_tail(sk); 1745 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1746 if (!dfrag_collapsed) { 1747 if (!sk_stream_memory_free(sk)) 1748 goto wait_for_memory; 1749 1750 if (!mptcp_page_frag_refill(sk, pfrag)) 1751 goto wait_for_memory; 1752 1753 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1754 frag_truesize = dfrag->overhead; 1755 } 1756 1757 /* we do not bound vs wspace, to allow a single packet. 1758 * memory accounting will prevent execessive memory usage 1759 * anyway 1760 */ 1761 offset = dfrag->offset + dfrag->data_len; 1762 psize = pfrag->size - offset; 1763 psize = min_t(size_t, psize, msg_data_left(msg)); 1764 total_ts = psize + frag_truesize; 1765 1766 if (!sk_wmem_schedule(sk, total_ts)) 1767 goto wait_for_memory; 1768 1769 if (copy_page_from_iter(dfrag->page, offset, psize, 1770 &msg->msg_iter) != psize) { 1771 ret = -EFAULT; 1772 goto do_error; 1773 } 1774 1775 /* data successfully copied into the write queue */ 1776 sk->sk_forward_alloc -= total_ts; 1777 copied += psize; 1778 dfrag->data_len += psize; 1779 frag_truesize += psize; 1780 pfrag->offset += frag_truesize; 1781 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1782 1783 /* charge data on mptcp pending queue to the msk socket 1784 * Note: we charge such data both to sk and ssk 1785 */ 1786 sk_wmem_queued_add(sk, frag_truesize); 1787 if (!dfrag_collapsed) { 1788 get_page(dfrag->page); 1789 list_add_tail(&dfrag->list, &msk->rtx_queue); 1790 if (!msk->first_pending) 1791 WRITE_ONCE(msk->first_pending, dfrag); 1792 } 1793 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1794 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1795 !dfrag_collapsed); 1796 1797 continue; 1798 1799 wait_for_memory: 1800 mptcp_set_nospace(sk); 1801 __mptcp_push_pending(sk, msg->msg_flags); 1802 ret = sk_stream_wait_memory(sk, &timeo); 1803 if (ret) 1804 goto do_error; 1805 } 1806 1807 if (copied) 1808 __mptcp_push_pending(sk, msg->msg_flags); 1809 1810 out: 1811 release_sock(sk); 1812 return copied; 1813 1814 do_error: 1815 if (copied) 1816 goto out; 1817 1818 copied = sk_stream_error(sk, msg->msg_flags, ret); 1819 goto out; 1820 } 1821 1822 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1823 struct msghdr *msg, 1824 size_t len, int flags, 1825 struct scm_timestamping_internal *tss, 1826 int *cmsg_flags) 1827 { 1828 struct sk_buff *skb, *tmp; 1829 int copied = 0; 1830 1831 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1832 u32 offset = MPTCP_SKB_CB(skb)->offset; 1833 u32 data_len = skb->len - offset; 1834 u32 count = min_t(size_t, len - copied, data_len); 1835 int err; 1836 1837 if (!(flags & MSG_TRUNC)) { 1838 err = skb_copy_datagram_msg(skb, offset, msg, count); 1839 if (unlikely(err < 0)) { 1840 if (!copied) 1841 return err; 1842 break; 1843 } 1844 } 1845 1846 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1847 tcp_update_recv_tstamps(skb, tss); 1848 *cmsg_flags |= MPTCP_CMSG_TS; 1849 } 1850 1851 copied += count; 1852 1853 if (count < data_len) { 1854 if (!(flags & MSG_PEEK)) { 1855 MPTCP_SKB_CB(skb)->offset += count; 1856 MPTCP_SKB_CB(skb)->map_seq += count; 1857 } 1858 break; 1859 } 1860 1861 if (!(flags & MSG_PEEK)) { 1862 /* we will bulk release the skb memory later */ 1863 skb->destructor = NULL; 1864 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1865 __skb_unlink(skb, &msk->receive_queue); 1866 __kfree_skb(skb); 1867 } 1868 1869 if (copied >= len) 1870 break; 1871 } 1872 1873 return copied; 1874 } 1875 1876 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1877 * 1878 * Only difference: Use highest rtt estimate of the subflows in use. 1879 */ 1880 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1881 { 1882 struct mptcp_subflow_context *subflow; 1883 struct sock *sk = (struct sock *)msk; 1884 u32 time, advmss = 1; 1885 u64 rtt_us, mstamp; 1886 1887 msk_owned_by_me(msk); 1888 1889 if (copied <= 0) 1890 return; 1891 1892 msk->rcvq_space.copied += copied; 1893 1894 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1895 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1896 1897 rtt_us = msk->rcvq_space.rtt_us; 1898 if (rtt_us && time < (rtt_us >> 3)) 1899 return; 1900 1901 rtt_us = 0; 1902 mptcp_for_each_subflow(msk, subflow) { 1903 const struct tcp_sock *tp; 1904 u64 sf_rtt_us; 1905 u32 sf_advmss; 1906 1907 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1908 1909 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1910 sf_advmss = READ_ONCE(tp->advmss); 1911 1912 rtt_us = max(sf_rtt_us, rtt_us); 1913 advmss = max(sf_advmss, advmss); 1914 } 1915 1916 msk->rcvq_space.rtt_us = rtt_us; 1917 if (time < (rtt_us >> 3) || rtt_us == 0) 1918 return; 1919 1920 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1921 goto new_measure; 1922 1923 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 1924 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1925 int rcvmem, rcvbuf; 1926 u64 rcvwin, grow; 1927 1928 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1929 1930 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1931 1932 do_div(grow, msk->rcvq_space.space); 1933 rcvwin += (grow << 1); 1934 1935 rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER); 1936 while (tcp_win_from_space(sk, rcvmem) < advmss) 1937 rcvmem += 128; 1938 1939 do_div(rcvwin, advmss); 1940 rcvbuf = min_t(u64, rcvwin * rcvmem, 1941 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 1942 1943 if (rcvbuf > sk->sk_rcvbuf) { 1944 u32 window_clamp; 1945 1946 window_clamp = tcp_win_from_space(sk, rcvbuf); 1947 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 1948 1949 /* Make subflows follow along. If we do not do this, we 1950 * get drops at subflow level if skbs can't be moved to 1951 * the mptcp rx queue fast enough (announced rcv_win can 1952 * exceed ssk->sk_rcvbuf). 1953 */ 1954 mptcp_for_each_subflow(msk, subflow) { 1955 struct sock *ssk; 1956 bool slow; 1957 1958 ssk = mptcp_subflow_tcp_sock(subflow); 1959 slow = lock_sock_fast(ssk); 1960 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 1961 tcp_sk(ssk)->window_clamp = window_clamp; 1962 tcp_cleanup_rbuf(ssk, 1); 1963 unlock_sock_fast(ssk, slow); 1964 } 1965 } 1966 } 1967 1968 msk->rcvq_space.space = msk->rcvq_space.copied; 1969 new_measure: 1970 msk->rcvq_space.copied = 0; 1971 msk->rcvq_space.time = mstamp; 1972 } 1973 1974 static void __mptcp_update_rmem(struct sock *sk) 1975 { 1976 struct mptcp_sock *msk = mptcp_sk(sk); 1977 1978 if (!msk->rmem_released) 1979 return; 1980 1981 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 1982 mptcp_rmem_uncharge(sk, msk->rmem_released); 1983 WRITE_ONCE(msk->rmem_released, 0); 1984 } 1985 1986 static void __mptcp_splice_receive_queue(struct sock *sk) 1987 { 1988 struct mptcp_sock *msk = mptcp_sk(sk); 1989 1990 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 1991 } 1992 1993 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 1994 { 1995 struct sock *sk = (struct sock *)msk; 1996 unsigned int moved = 0; 1997 bool ret, done; 1998 1999 do { 2000 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 2001 bool slowpath; 2002 2003 /* we can have data pending in the subflows only if the msk 2004 * receive buffer was full at subflow_data_ready() time, 2005 * that is an unlikely slow path. 2006 */ 2007 if (likely(!ssk)) 2008 break; 2009 2010 slowpath = lock_sock_fast(ssk); 2011 mptcp_data_lock(sk); 2012 __mptcp_update_rmem(sk); 2013 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 2014 mptcp_data_unlock(sk); 2015 2016 if (unlikely(ssk->sk_err)) 2017 __mptcp_error_report(sk); 2018 unlock_sock_fast(ssk, slowpath); 2019 } while (!done); 2020 2021 /* acquire the data lock only if some input data is pending */ 2022 ret = moved > 0; 2023 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 2024 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2025 mptcp_data_lock(sk); 2026 __mptcp_update_rmem(sk); 2027 ret |= __mptcp_ofo_queue(msk); 2028 __mptcp_splice_receive_queue(sk); 2029 mptcp_data_unlock(sk); 2030 } 2031 if (ret) 2032 mptcp_check_data_fin((struct sock *)msk); 2033 return !skb_queue_empty(&msk->receive_queue); 2034 } 2035 2036 static unsigned int mptcp_inq_hint(const struct sock *sk) 2037 { 2038 const struct mptcp_sock *msk = mptcp_sk(sk); 2039 const struct sk_buff *skb; 2040 2041 skb = skb_peek(&msk->receive_queue); 2042 if (skb) { 2043 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 2044 2045 if (hint_val >= INT_MAX) 2046 return INT_MAX; 2047 2048 return (unsigned int)hint_val; 2049 } 2050 2051 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2052 return 1; 2053 2054 return 0; 2055 } 2056 2057 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2058 int flags, int *addr_len) 2059 { 2060 struct mptcp_sock *msk = mptcp_sk(sk); 2061 struct scm_timestamping_internal tss; 2062 int copied = 0, cmsg_flags = 0; 2063 int target; 2064 long timeo; 2065 2066 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2067 if (unlikely(flags & MSG_ERRQUEUE)) 2068 return inet_recv_error(sk, msg, len, addr_len); 2069 2070 lock_sock(sk); 2071 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2072 copied = -ENOTCONN; 2073 goto out_err; 2074 } 2075 2076 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2077 2078 len = min_t(size_t, len, INT_MAX); 2079 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2080 2081 if (unlikely(msk->recvmsg_inq)) 2082 cmsg_flags = MPTCP_CMSG_INQ; 2083 2084 while (copied < len) { 2085 int bytes_read; 2086 2087 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2088 if (unlikely(bytes_read < 0)) { 2089 if (!copied) 2090 copied = bytes_read; 2091 goto out_err; 2092 } 2093 2094 copied += bytes_read; 2095 2096 /* be sure to advertise window change */ 2097 mptcp_cleanup_rbuf(msk); 2098 2099 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2100 continue; 2101 2102 /* only the master socket status is relevant here. The exit 2103 * conditions mirror closely tcp_recvmsg() 2104 */ 2105 if (copied >= target) 2106 break; 2107 2108 if (copied) { 2109 if (sk->sk_err || 2110 sk->sk_state == TCP_CLOSE || 2111 (sk->sk_shutdown & RCV_SHUTDOWN) || 2112 !timeo || 2113 signal_pending(current)) 2114 break; 2115 } else { 2116 if (sk->sk_err) { 2117 copied = sock_error(sk); 2118 break; 2119 } 2120 2121 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2122 /* race breaker: the shutdown could be after the 2123 * previous receive queue check 2124 */ 2125 if (__mptcp_move_skbs(msk)) 2126 continue; 2127 break; 2128 } 2129 2130 if (sk->sk_state == TCP_CLOSE) { 2131 copied = -ENOTCONN; 2132 break; 2133 } 2134 2135 if (!timeo) { 2136 copied = -EAGAIN; 2137 break; 2138 } 2139 2140 if (signal_pending(current)) { 2141 copied = sock_intr_errno(timeo); 2142 break; 2143 } 2144 } 2145 2146 pr_debug("block timeout %ld", timeo); 2147 sk_wait_data(sk, &timeo, NULL); 2148 } 2149 2150 out_err: 2151 if (cmsg_flags && copied >= 0) { 2152 if (cmsg_flags & MPTCP_CMSG_TS) 2153 tcp_recv_timestamp(msg, sk, &tss); 2154 2155 if (cmsg_flags & MPTCP_CMSG_INQ) { 2156 unsigned int inq = mptcp_inq_hint(sk); 2157 2158 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2159 } 2160 } 2161 2162 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2163 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2164 skb_queue_empty(&msk->receive_queue), copied); 2165 if (!(flags & MSG_PEEK)) 2166 mptcp_rcv_space_adjust(msk, copied); 2167 2168 release_sock(sk); 2169 return copied; 2170 } 2171 2172 static void mptcp_retransmit_timer(struct timer_list *t) 2173 { 2174 struct inet_connection_sock *icsk = from_timer(icsk, t, 2175 icsk_retransmit_timer); 2176 struct sock *sk = &icsk->icsk_inet.sk; 2177 struct mptcp_sock *msk = mptcp_sk(sk); 2178 2179 bh_lock_sock(sk); 2180 if (!sock_owned_by_user(sk)) { 2181 /* we need a process context to retransmit */ 2182 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2183 mptcp_schedule_work(sk); 2184 } else { 2185 /* delegate our work to tcp_release_cb() */ 2186 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2187 } 2188 bh_unlock_sock(sk); 2189 sock_put(sk); 2190 } 2191 2192 static void mptcp_timeout_timer(struct timer_list *t) 2193 { 2194 struct sock *sk = from_timer(sk, t, sk_timer); 2195 2196 mptcp_schedule_work(sk); 2197 sock_put(sk); 2198 } 2199 2200 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2201 * level. 2202 * 2203 * A backup subflow is returned only if that is the only kind available. 2204 */ 2205 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2206 { 2207 struct sock *backup = NULL, *pick = NULL; 2208 struct mptcp_subflow_context *subflow; 2209 int min_stale_count = INT_MAX; 2210 2211 msk_owned_by_me(msk); 2212 2213 if (__mptcp_check_fallback(msk)) 2214 return NULL; 2215 2216 mptcp_for_each_subflow(msk, subflow) { 2217 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2218 2219 if (!__mptcp_subflow_active(subflow)) 2220 continue; 2221 2222 /* still data outstanding at TCP level? skip this */ 2223 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2224 mptcp_pm_subflow_chk_stale(msk, ssk); 2225 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2226 continue; 2227 } 2228 2229 if (subflow->backup) { 2230 if (!backup) 2231 backup = ssk; 2232 continue; 2233 } 2234 2235 if (!pick) 2236 pick = ssk; 2237 } 2238 2239 if (pick) 2240 return pick; 2241 2242 /* use backup only if there are no progresses anywhere */ 2243 return min_stale_count > 1 ? backup : NULL; 2244 } 2245 2246 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk) 2247 { 2248 if (msk->subflow) { 2249 iput(SOCK_INODE(msk->subflow)); 2250 WRITE_ONCE(msk->subflow, NULL); 2251 } 2252 } 2253 2254 bool __mptcp_retransmit_pending_data(struct sock *sk) 2255 { 2256 struct mptcp_data_frag *cur, *rtx_head; 2257 struct mptcp_sock *msk = mptcp_sk(sk); 2258 2259 if (__mptcp_check_fallback(msk)) 2260 return false; 2261 2262 if (tcp_rtx_and_write_queues_empty(sk)) 2263 return false; 2264 2265 /* the closing socket has some data untransmitted and/or unacked: 2266 * some data in the mptcp rtx queue has not really xmitted yet. 2267 * keep it simple and re-inject the whole mptcp level rtx queue 2268 */ 2269 mptcp_data_lock(sk); 2270 __mptcp_clean_una_wakeup(sk); 2271 rtx_head = mptcp_rtx_head(sk); 2272 if (!rtx_head) { 2273 mptcp_data_unlock(sk); 2274 return false; 2275 } 2276 2277 msk->recovery_snd_nxt = msk->snd_nxt; 2278 msk->recovery = true; 2279 mptcp_data_unlock(sk); 2280 2281 msk->first_pending = rtx_head; 2282 msk->snd_burst = 0; 2283 2284 /* be sure to clear the "sent status" on all re-injected fragments */ 2285 list_for_each_entry(cur, &msk->rtx_queue, list) { 2286 if (!cur->already_sent) 2287 break; 2288 cur->already_sent = 0; 2289 } 2290 2291 return true; 2292 } 2293 2294 /* flags for __mptcp_close_ssk() */ 2295 #define MPTCP_CF_PUSH BIT(1) 2296 #define MPTCP_CF_FASTCLOSE BIT(2) 2297 2298 /* subflow sockets can be either outgoing (connect) or incoming 2299 * (accept). 2300 * 2301 * Outgoing subflows use in-kernel sockets. 2302 * Incoming subflows do not have their own 'struct socket' allocated, 2303 * so we need to use tcp_close() after detaching them from the mptcp 2304 * parent socket. 2305 */ 2306 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2307 struct mptcp_subflow_context *subflow, 2308 unsigned int flags) 2309 { 2310 struct mptcp_sock *msk = mptcp_sk(sk); 2311 bool dispose_it, need_push = false; 2312 2313 /* If the first subflow moved to a close state before accept, e.g. due 2314 * to an incoming reset, mptcp either: 2315 * - if either the subflow or the msk are dead, destroy the context 2316 * (the subflow socket is deleted by inet_child_forget) and the msk 2317 * - otherwise do nothing at the moment and take action at accept and/or 2318 * listener shutdown - user-space must be able to accept() the closed 2319 * socket. 2320 */ 2321 if (msk->in_accept_queue && msk->first == ssk) { 2322 if (!sock_flag(sk, SOCK_DEAD) && !sock_flag(ssk, SOCK_DEAD)) 2323 return; 2324 2325 /* ensure later check in mptcp_worker() will dispose the msk */ 2326 sock_set_flag(sk, SOCK_DEAD); 2327 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2328 mptcp_subflow_drop_ctx(ssk); 2329 goto out_release; 2330 } 2331 2332 dispose_it = !msk->subflow || ssk != msk->subflow->sk; 2333 if (dispose_it) 2334 list_del(&subflow->node); 2335 2336 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2337 2338 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2339 /* be sure to force the tcp_disconnect() path, 2340 * to generate the egress reset 2341 */ 2342 ssk->sk_lingertime = 0; 2343 sock_set_flag(ssk, SOCK_LINGER); 2344 subflow->send_fastclose = 1; 2345 } 2346 2347 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2348 if (!dispose_it) { 2349 /* The MPTCP code never wait on the subflow sockets, TCP-level 2350 * disconnect should never fail 2351 */ 2352 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2353 msk->subflow->state = SS_UNCONNECTED; 2354 mptcp_subflow_ctx_reset(subflow); 2355 release_sock(ssk); 2356 2357 goto out; 2358 } 2359 2360 subflow->disposable = 1; 2361 2362 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2363 * the ssk has been already destroyed, we just need to release the 2364 * reference owned by msk; 2365 */ 2366 if (!inet_csk(ssk)->icsk_ulp_ops) { 2367 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2368 kfree_rcu(subflow, rcu); 2369 } else { 2370 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2371 __tcp_close(ssk, 0); 2372 2373 /* close acquired an extra ref */ 2374 __sock_put(ssk); 2375 } 2376 2377 out_release: 2378 release_sock(ssk); 2379 2380 sock_put(ssk); 2381 2382 if (ssk == msk->first) 2383 WRITE_ONCE(msk->first, NULL); 2384 2385 out: 2386 if (ssk == msk->last_snd) 2387 msk->last_snd = NULL; 2388 2389 if (need_push) 2390 __mptcp_push_pending(sk, 0); 2391 } 2392 2393 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2394 struct mptcp_subflow_context *subflow) 2395 { 2396 if (sk->sk_state == TCP_ESTABLISHED) 2397 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2398 2399 /* subflow aborted before reaching the fully_established status 2400 * attempt the creation of the next subflow 2401 */ 2402 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow); 2403 2404 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2405 } 2406 2407 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2408 { 2409 return 0; 2410 } 2411 2412 static void __mptcp_close_subflow(struct sock *sk) 2413 { 2414 struct mptcp_subflow_context *subflow, *tmp; 2415 struct mptcp_sock *msk = mptcp_sk(sk); 2416 2417 might_sleep(); 2418 2419 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2420 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2421 2422 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2423 continue; 2424 2425 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2426 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2427 continue; 2428 2429 mptcp_close_ssk(sk, ssk, subflow); 2430 } 2431 2432 } 2433 2434 static bool mptcp_should_close(const struct sock *sk) 2435 { 2436 s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp; 2437 struct mptcp_subflow_context *subflow; 2438 2439 if (delta >= TCP_TIMEWAIT_LEN || mptcp_sk(sk)->in_accept_queue) 2440 return true; 2441 2442 /* if all subflows are in closed status don't bother with additional 2443 * timeout 2444 */ 2445 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2446 if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) != 2447 TCP_CLOSE) 2448 return false; 2449 } 2450 return true; 2451 } 2452 2453 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2454 { 2455 struct mptcp_subflow_context *subflow, *tmp; 2456 struct sock *sk = (struct sock *)msk; 2457 2458 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2459 return; 2460 2461 mptcp_token_destroy(msk); 2462 2463 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2464 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2465 bool slow; 2466 2467 slow = lock_sock_fast(tcp_sk); 2468 if (tcp_sk->sk_state != TCP_CLOSE) { 2469 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2470 tcp_set_state(tcp_sk, TCP_CLOSE); 2471 } 2472 unlock_sock_fast(tcp_sk, slow); 2473 } 2474 2475 /* Mirror the tcp_reset() error propagation */ 2476 switch (sk->sk_state) { 2477 case TCP_SYN_SENT: 2478 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2479 break; 2480 case TCP_CLOSE_WAIT: 2481 WRITE_ONCE(sk->sk_err, EPIPE); 2482 break; 2483 case TCP_CLOSE: 2484 return; 2485 default: 2486 WRITE_ONCE(sk->sk_err, ECONNRESET); 2487 } 2488 2489 inet_sk_state_store(sk, TCP_CLOSE); 2490 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2491 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2492 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2493 2494 /* the calling mptcp_worker will properly destroy the socket */ 2495 if (sock_flag(sk, SOCK_DEAD)) 2496 return; 2497 2498 sk->sk_state_change(sk); 2499 sk_error_report(sk); 2500 } 2501 2502 static void __mptcp_retrans(struct sock *sk) 2503 { 2504 struct mptcp_sock *msk = mptcp_sk(sk); 2505 struct mptcp_sendmsg_info info = {}; 2506 struct mptcp_data_frag *dfrag; 2507 size_t copied = 0; 2508 struct sock *ssk; 2509 int ret; 2510 2511 mptcp_clean_una_wakeup(sk); 2512 2513 /* first check ssk: need to kick "stale" logic */ 2514 ssk = mptcp_subflow_get_retrans(msk); 2515 dfrag = mptcp_rtx_head(sk); 2516 if (!dfrag) { 2517 if (mptcp_data_fin_enabled(msk)) { 2518 struct inet_connection_sock *icsk = inet_csk(sk); 2519 2520 icsk->icsk_retransmits++; 2521 mptcp_set_datafin_timeout(sk); 2522 mptcp_send_ack(msk); 2523 2524 goto reset_timer; 2525 } 2526 2527 if (!mptcp_send_head(sk)) 2528 return; 2529 2530 goto reset_timer; 2531 } 2532 2533 if (!ssk) 2534 goto reset_timer; 2535 2536 lock_sock(ssk); 2537 2538 /* limit retransmission to the bytes already sent on some subflows */ 2539 info.sent = 0; 2540 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent; 2541 while (info.sent < info.limit) { 2542 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2543 if (ret <= 0) 2544 break; 2545 2546 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2547 copied += ret; 2548 info.sent += ret; 2549 } 2550 if (copied) { 2551 dfrag->already_sent = max(dfrag->already_sent, info.sent); 2552 msk->bytes_retrans += copied; 2553 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2554 info.size_goal); 2555 WRITE_ONCE(msk->allow_infinite_fallback, false); 2556 } 2557 2558 release_sock(ssk); 2559 2560 reset_timer: 2561 mptcp_check_and_set_pending(sk); 2562 2563 if (!mptcp_timer_pending(sk)) 2564 mptcp_reset_timer(sk); 2565 } 2566 2567 /* schedule the timeout timer for the relevant event: either close timeout 2568 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2569 */ 2570 void mptcp_reset_timeout(struct mptcp_sock *msk, unsigned long fail_tout) 2571 { 2572 struct sock *sk = (struct sock *)msk; 2573 unsigned long timeout, close_timeout; 2574 2575 if (!fail_tout && !sock_flag(sk, SOCK_DEAD)) 2576 return; 2577 2578 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + TCP_TIMEWAIT_LEN; 2579 2580 /* the close timeout takes precedence on the fail one, and here at least one of 2581 * them is active 2582 */ 2583 timeout = sock_flag(sk, SOCK_DEAD) ? close_timeout : fail_tout; 2584 2585 sk_reset_timer(sk, &sk->sk_timer, timeout); 2586 } 2587 2588 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2589 { 2590 struct sock *ssk = msk->first; 2591 bool slow; 2592 2593 if (!ssk) 2594 return; 2595 2596 pr_debug("MP_FAIL doesn't respond, reset the subflow"); 2597 2598 slow = lock_sock_fast(ssk); 2599 mptcp_subflow_reset(ssk); 2600 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2601 unlock_sock_fast(ssk, slow); 2602 2603 mptcp_reset_timeout(msk, 0); 2604 } 2605 2606 static void mptcp_do_fastclose(struct sock *sk) 2607 { 2608 struct mptcp_subflow_context *subflow, *tmp; 2609 struct mptcp_sock *msk = mptcp_sk(sk); 2610 2611 inet_sk_state_store(sk, TCP_CLOSE); 2612 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2613 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2614 subflow, MPTCP_CF_FASTCLOSE); 2615 } 2616 2617 static void mptcp_worker(struct work_struct *work) 2618 { 2619 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2620 struct sock *sk = (struct sock *)msk; 2621 unsigned long fail_tout; 2622 int state; 2623 2624 lock_sock(sk); 2625 state = sk->sk_state; 2626 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2627 goto unlock; 2628 2629 mptcp_check_fastclose(msk); 2630 2631 mptcp_pm_nl_work(msk); 2632 2633 mptcp_check_send_data_fin(sk); 2634 mptcp_check_data_fin_ack(sk); 2635 mptcp_check_data_fin(sk); 2636 2637 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2638 __mptcp_close_subflow(sk); 2639 2640 /* There is no point in keeping around an orphaned sk timedout or 2641 * closed, but we need the msk around to reply to incoming DATA_FIN, 2642 * even if it is orphaned and in FIN_WAIT2 state 2643 */ 2644 if (sock_flag(sk, SOCK_DEAD)) { 2645 if (mptcp_should_close(sk)) 2646 mptcp_do_fastclose(sk); 2647 2648 if (sk->sk_state == TCP_CLOSE) { 2649 __mptcp_destroy_sock(sk); 2650 goto unlock; 2651 } 2652 } 2653 2654 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2655 __mptcp_retrans(sk); 2656 2657 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2658 if (fail_tout && time_after(jiffies, fail_tout)) 2659 mptcp_mp_fail_no_response(msk); 2660 2661 unlock: 2662 release_sock(sk); 2663 sock_put(sk); 2664 } 2665 2666 static int __mptcp_init_sock(struct sock *sk) 2667 { 2668 struct mptcp_sock *msk = mptcp_sk(sk); 2669 2670 INIT_LIST_HEAD(&msk->conn_list); 2671 INIT_LIST_HEAD(&msk->join_list); 2672 INIT_LIST_HEAD(&msk->rtx_queue); 2673 INIT_WORK(&msk->work, mptcp_worker); 2674 __skb_queue_head_init(&msk->receive_queue); 2675 msk->out_of_order_queue = RB_ROOT; 2676 msk->first_pending = NULL; 2677 msk->rmem_fwd_alloc = 0; 2678 WRITE_ONCE(msk->rmem_released, 0); 2679 msk->timer_ival = TCP_RTO_MIN; 2680 2681 WRITE_ONCE(msk->first, NULL); 2682 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2683 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2684 WRITE_ONCE(msk->allow_infinite_fallback, true); 2685 msk->recovery = false; 2686 msk->subflow_id = 1; 2687 2688 mptcp_pm_data_init(msk); 2689 2690 /* re-use the csk retrans timer for MPTCP-level retrans */ 2691 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2692 timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0); 2693 2694 return 0; 2695 } 2696 2697 static void mptcp_ca_reset(struct sock *sk) 2698 { 2699 struct inet_connection_sock *icsk = inet_csk(sk); 2700 2701 tcp_assign_congestion_control(sk); 2702 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2703 2704 /* no need to keep a reference to the ops, the name will suffice */ 2705 tcp_cleanup_congestion_control(sk); 2706 icsk->icsk_ca_ops = NULL; 2707 } 2708 2709 static int mptcp_init_sock(struct sock *sk) 2710 { 2711 struct net *net = sock_net(sk); 2712 int ret; 2713 2714 ret = __mptcp_init_sock(sk); 2715 if (ret) 2716 return ret; 2717 2718 if (!mptcp_is_enabled(net)) 2719 return -ENOPROTOOPT; 2720 2721 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2722 return -ENOMEM; 2723 2724 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2725 2726 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2727 * propagate the correct value 2728 */ 2729 mptcp_ca_reset(sk); 2730 2731 sk_sockets_allocated_inc(sk); 2732 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2733 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2734 2735 return 0; 2736 } 2737 2738 static void __mptcp_clear_xmit(struct sock *sk) 2739 { 2740 struct mptcp_sock *msk = mptcp_sk(sk); 2741 struct mptcp_data_frag *dtmp, *dfrag; 2742 2743 WRITE_ONCE(msk->first_pending, NULL); 2744 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2745 dfrag_clear(sk, dfrag); 2746 } 2747 2748 void mptcp_cancel_work(struct sock *sk) 2749 { 2750 struct mptcp_sock *msk = mptcp_sk(sk); 2751 2752 if (cancel_work_sync(&msk->work)) 2753 __sock_put(sk); 2754 } 2755 2756 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2757 { 2758 lock_sock(ssk); 2759 2760 switch (ssk->sk_state) { 2761 case TCP_LISTEN: 2762 if (!(how & RCV_SHUTDOWN)) 2763 break; 2764 fallthrough; 2765 case TCP_SYN_SENT: 2766 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2767 break; 2768 default: 2769 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2770 pr_debug("Fallback"); 2771 ssk->sk_shutdown |= how; 2772 tcp_shutdown(ssk, how); 2773 2774 /* simulate the data_fin ack reception to let the state 2775 * machine move forward 2776 */ 2777 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2778 mptcp_schedule_work(sk); 2779 } else { 2780 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2781 tcp_send_ack(ssk); 2782 if (!mptcp_timer_pending(sk)) 2783 mptcp_reset_timer(sk); 2784 } 2785 break; 2786 } 2787 2788 release_sock(ssk); 2789 } 2790 2791 static const unsigned char new_state[16] = { 2792 /* current state: new state: action: */ 2793 [0 /* (Invalid) */] = TCP_CLOSE, 2794 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2795 [TCP_SYN_SENT] = TCP_CLOSE, 2796 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2797 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2798 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2799 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2800 [TCP_CLOSE] = TCP_CLOSE, 2801 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2802 [TCP_LAST_ACK] = TCP_LAST_ACK, 2803 [TCP_LISTEN] = TCP_CLOSE, 2804 [TCP_CLOSING] = TCP_CLOSING, 2805 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2806 }; 2807 2808 static int mptcp_close_state(struct sock *sk) 2809 { 2810 int next = (int)new_state[sk->sk_state]; 2811 int ns = next & TCP_STATE_MASK; 2812 2813 inet_sk_state_store(sk, ns); 2814 2815 return next & TCP_ACTION_FIN; 2816 } 2817 2818 static void mptcp_check_send_data_fin(struct sock *sk) 2819 { 2820 struct mptcp_subflow_context *subflow; 2821 struct mptcp_sock *msk = mptcp_sk(sk); 2822 2823 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2824 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2825 msk->snd_nxt, msk->write_seq); 2826 2827 /* we still need to enqueue subflows or not really shutting down, 2828 * skip this 2829 */ 2830 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2831 mptcp_send_head(sk)) 2832 return; 2833 2834 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2835 2836 mptcp_for_each_subflow(msk, subflow) { 2837 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2838 2839 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2840 } 2841 } 2842 2843 static void __mptcp_wr_shutdown(struct sock *sk) 2844 { 2845 struct mptcp_sock *msk = mptcp_sk(sk); 2846 2847 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2848 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2849 !!mptcp_send_head(sk)); 2850 2851 /* will be ignored by fallback sockets */ 2852 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2853 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2854 2855 mptcp_check_send_data_fin(sk); 2856 } 2857 2858 static void __mptcp_destroy_sock(struct sock *sk) 2859 { 2860 struct mptcp_sock *msk = mptcp_sk(sk); 2861 2862 pr_debug("msk=%p", msk); 2863 2864 might_sleep(); 2865 2866 mptcp_stop_timer(sk); 2867 sk_stop_timer(sk, &sk->sk_timer); 2868 msk->pm.status = 0; 2869 2870 sk->sk_prot->destroy(sk); 2871 2872 WARN_ON_ONCE(msk->rmem_fwd_alloc); 2873 WARN_ON_ONCE(msk->rmem_released); 2874 sk_stream_kill_queues(sk); 2875 xfrm_sk_free_policy(sk); 2876 2877 sock_put(sk); 2878 } 2879 2880 void __mptcp_unaccepted_force_close(struct sock *sk) 2881 { 2882 sock_set_flag(sk, SOCK_DEAD); 2883 mptcp_do_fastclose(sk); 2884 __mptcp_destroy_sock(sk); 2885 } 2886 2887 static __poll_t mptcp_check_readable(struct mptcp_sock *msk) 2888 { 2889 /* Concurrent splices from sk_receive_queue into receive_queue will 2890 * always show at least one non-empty queue when checked in this order. 2891 */ 2892 if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) && 2893 skb_queue_empty_lockless(&msk->receive_queue)) 2894 return 0; 2895 2896 return EPOLLIN | EPOLLRDNORM; 2897 } 2898 2899 static void mptcp_check_listen_stop(struct sock *sk) 2900 { 2901 struct sock *ssk; 2902 2903 if (inet_sk_state_load(sk) != TCP_LISTEN) 2904 return; 2905 2906 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 2907 ssk = mptcp_sk(sk)->first; 2908 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 2909 return; 2910 2911 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2912 tcp_set_state(ssk, TCP_CLOSE); 2913 mptcp_subflow_queue_clean(sk, ssk); 2914 inet_csk_listen_stop(ssk); 2915 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 2916 release_sock(ssk); 2917 } 2918 2919 bool __mptcp_close(struct sock *sk, long timeout) 2920 { 2921 struct mptcp_subflow_context *subflow; 2922 struct mptcp_sock *msk = mptcp_sk(sk); 2923 bool do_cancel_work = false; 2924 int subflows_alive = 0; 2925 2926 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2927 2928 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 2929 mptcp_check_listen_stop(sk); 2930 inet_sk_state_store(sk, TCP_CLOSE); 2931 goto cleanup; 2932 } 2933 2934 if (mptcp_check_readable(msk) || timeout < 0) { 2935 /* If the msk has read data, or the caller explicitly ask it, 2936 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 2937 */ 2938 mptcp_do_fastclose(sk); 2939 timeout = 0; 2940 } else if (mptcp_close_state(sk)) { 2941 __mptcp_wr_shutdown(sk); 2942 } 2943 2944 sk_stream_wait_close(sk, timeout); 2945 2946 cleanup: 2947 /* orphan all the subflows */ 2948 inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32; 2949 mptcp_for_each_subflow(msk, subflow) { 2950 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2951 bool slow = lock_sock_fast_nested(ssk); 2952 2953 subflows_alive += ssk->sk_state != TCP_CLOSE; 2954 2955 /* since the close timeout takes precedence on the fail one, 2956 * cancel the latter 2957 */ 2958 if (ssk == msk->first) 2959 subflow->fail_tout = 0; 2960 2961 /* detach from the parent socket, but allow data_ready to 2962 * push incoming data into the mptcp stack, to properly ack it 2963 */ 2964 ssk->sk_socket = NULL; 2965 ssk->sk_wq = NULL; 2966 unlock_sock_fast(ssk, slow); 2967 } 2968 sock_orphan(sk); 2969 2970 /* all the subflows are closed, only timeout can change the msk 2971 * state, let's not keep resources busy for no reasons 2972 */ 2973 if (subflows_alive == 0) 2974 inet_sk_state_store(sk, TCP_CLOSE); 2975 2976 sock_hold(sk); 2977 pr_debug("msk=%p state=%d", sk, sk->sk_state); 2978 if (msk->token) 2979 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 2980 2981 if (sk->sk_state == TCP_CLOSE) { 2982 __mptcp_destroy_sock(sk); 2983 do_cancel_work = true; 2984 } else { 2985 mptcp_reset_timeout(msk, 0); 2986 } 2987 2988 return do_cancel_work; 2989 } 2990 2991 static void mptcp_close(struct sock *sk, long timeout) 2992 { 2993 bool do_cancel_work; 2994 2995 lock_sock(sk); 2996 2997 do_cancel_work = __mptcp_close(sk, timeout); 2998 release_sock(sk); 2999 if (do_cancel_work) 3000 mptcp_cancel_work(sk); 3001 3002 sock_put(sk); 3003 } 3004 3005 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3006 { 3007 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3008 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3009 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3010 3011 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3012 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3013 3014 if (msk6 && ssk6) { 3015 msk6->saddr = ssk6->saddr; 3016 msk6->flow_label = ssk6->flow_label; 3017 } 3018 #endif 3019 3020 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3021 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3022 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3023 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3024 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3025 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3026 } 3027 3028 static int mptcp_disconnect(struct sock *sk, int flags) 3029 { 3030 struct mptcp_sock *msk = mptcp_sk(sk); 3031 3032 /* Deny disconnect if other threads are blocked in sk_wait_event() 3033 * or inet_wait_for_connect(). 3034 */ 3035 if (sk->sk_wait_pending) 3036 return -EBUSY; 3037 3038 /* We are on the fastopen error path. We can't call straight into the 3039 * subflows cleanup code due to lock nesting (we are already under 3040 * msk->firstsocket lock). 3041 */ 3042 if (msk->fastopening) 3043 return -EBUSY; 3044 3045 mptcp_check_listen_stop(sk); 3046 inet_sk_state_store(sk, TCP_CLOSE); 3047 3048 mptcp_stop_timer(sk); 3049 sk_stop_timer(sk, &sk->sk_timer); 3050 3051 if (msk->token) 3052 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3053 3054 /* msk->subflow is still intact, the following will not free the first 3055 * subflow 3056 */ 3057 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3058 msk->last_snd = NULL; 3059 WRITE_ONCE(msk->flags, 0); 3060 msk->cb_flags = 0; 3061 msk->push_pending = 0; 3062 msk->recovery = false; 3063 msk->can_ack = false; 3064 msk->fully_established = false; 3065 msk->rcv_data_fin = false; 3066 msk->snd_data_fin_enable = false; 3067 msk->rcv_fastclose = false; 3068 msk->use_64bit_ack = false; 3069 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3070 mptcp_pm_data_reset(msk); 3071 mptcp_ca_reset(sk); 3072 msk->bytes_acked = 0; 3073 msk->bytes_received = 0; 3074 msk->bytes_sent = 0; 3075 msk->bytes_retrans = 0; 3076 3077 WRITE_ONCE(sk->sk_shutdown, 0); 3078 sk_error_report(sk); 3079 return 0; 3080 } 3081 3082 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3083 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3084 { 3085 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 3086 3087 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 3088 } 3089 #endif 3090 3091 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3092 const struct mptcp_options_received *mp_opt, 3093 struct sock *ssk, 3094 struct request_sock *req) 3095 { 3096 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3097 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3098 struct mptcp_sock *msk; 3099 3100 if (!nsk) 3101 return NULL; 3102 3103 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3104 if (nsk->sk_family == AF_INET6) 3105 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3106 #endif 3107 3108 nsk->sk_wait_pending = 0; 3109 __mptcp_init_sock(nsk); 3110 3111 msk = mptcp_sk(nsk); 3112 msk->local_key = subflow_req->local_key; 3113 msk->token = subflow_req->token; 3114 WRITE_ONCE(msk->subflow, NULL); 3115 msk->in_accept_queue = 1; 3116 WRITE_ONCE(msk->fully_established, false); 3117 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3118 WRITE_ONCE(msk->csum_enabled, true); 3119 3120 msk->write_seq = subflow_req->idsn + 1; 3121 msk->snd_nxt = msk->write_seq; 3122 msk->snd_una = msk->write_seq; 3123 msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd; 3124 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3125 3126 /* passive msk is created after the first/MPC subflow */ 3127 msk->subflow_id = 2; 3128 3129 sock_reset_flag(nsk, SOCK_RCU_FREE); 3130 security_inet_csk_clone(nsk, req); 3131 3132 /* this can't race with mptcp_close(), as the msk is 3133 * not yet exposted to user-space 3134 */ 3135 inet_sk_state_store(nsk, TCP_ESTABLISHED); 3136 3137 /* The msk maintain a ref to each subflow in the connections list */ 3138 WRITE_ONCE(msk->first, ssk); 3139 list_add(&mptcp_subflow_ctx(ssk)->node, &msk->conn_list); 3140 sock_hold(ssk); 3141 3142 /* new mpc subflow takes ownership of the newly 3143 * created mptcp socket 3144 */ 3145 mptcp_token_accept(subflow_req, msk); 3146 3147 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3148 * uses the correct data 3149 */ 3150 mptcp_copy_inaddrs(nsk, ssk); 3151 mptcp_propagate_sndbuf(nsk, ssk); 3152 3153 mptcp_rcv_space_init(msk, ssk); 3154 bh_unlock_sock(nsk); 3155 3156 /* note: the newly allocated socket refcount is 2 now */ 3157 return nsk; 3158 } 3159 3160 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3161 { 3162 const struct tcp_sock *tp = tcp_sk(ssk); 3163 3164 msk->rcvq_space.copied = 0; 3165 msk->rcvq_space.rtt_us = 0; 3166 3167 msk->rcvq_space.time = tp->tcp_mstamp; 3168 3169 /* initial rcv_space offering made to peer */ 3170 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3171 TCP_INIT_CWND * tp->advmss); 3172 if (msk->rcvq_space.space == 0) 3173 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3174 3175 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3176 } 3177 3178 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err, 3179 bool kern) 3180 { 3181 struct mptcp_sock *msk = mptcp_sk(sk); 3182 struct socket *listener; 3183 struct sock *newsk; 3184 3185 listener = READ_ONCE(msk->subflow); 3186 if (WARN_ON_ONCE(!listener)) { 3187 *err = -EINVAL; 3188 return NULL; 3189 } 3190 3191 pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk)); 3192 newsk = inet_csk_accept(listener->sk, flags, err, kern); 3193 if (!newsk) 3194 return NULL; 3195 3196 pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk)); 3197 if (sk_is_mptcp(newsk)) { 3198 struct mptcp_subflow_context *subflow; 3199 struct sock *new_mptcp_sock; 3200 3201 subflow = mptcp_subflow_ctx(newsk); 3202 new_mptcp_sock = subflow->conn; 3203 3204 /* is_mptcp should be false if subflow->conn is missing, see 3205 * subflow_syn_recv_sock() 3206 */ 3207 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3208 tcp_sk(newsk)->is_mptcp = 0; 3209 goto out; 3210 } 3211 3212 newsk = new_mptcp_sock; 3213 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3214 } else { 3215 MPTCP_INC_STATS(sock_net(sk), 3216 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 3217 } 3218 3219 out: 3220 newsk->sk_kern_sock = kern; 3221 return newsk; 3222 } 3223 3224 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3225 { 3226 struct mptcp_subflow_context *subflow, *tmp; 3227 struct sock *sk = (struct sock *)msk; 3228 3229 __mptcp_clear_xmit(sk); 3230 3231 /* join list will be eventually flushed (with rst) at sock lock release time */ 3232 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3233 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3234 3235 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3236 mptcp_data_lock(sk); 3237 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3238 __skb_queue_purge(&sk->sk_receive_queue); 3239 skb_rbtree_purge(&msk->out_of_order_queue); 3240 mptcp_data_unlock(sk); 3241 3242 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3243 * inet_sock_destruct() will dispose it 3244 */ 3245 sk->sk_forward_alloc += msk->rmem_fwd_alloc; 3246 msk->rmem_fwd_alloc = 0; 3247 mptcp_token_destroy(msk); 3248 mptcp_pm_free_anno_list(msk); 3249 mptcp_free_local_addr_list(msk); 3250 } 3251 3252 static void mptcp_destroy(struct sock *sk) 3253 { 3254 struct mptcp_sock *msk = mptcp_sk(sk); 3255 3256 /* clears msk->subflow, allowing the following to close 3257 * even the initial subflow 3258 */ 3259 mptcp_dispose_initial_subflow(msk); 3260 mptcp_destroy_common(msk, 0); 3261 sk_sockets_allocated_dec(sk); 3262 } 3263 3264 void __mptcp_data_acked(struct sock *sk) 3265 { 3266 if (!sock_owned_by_user(sk)) 3267 __mptcp_clean_una(sk); 3268 else 3269 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3270 3271 if (mptcp_pending_data_fin_ack(sk)) 3272 mptcp_schedule_work(sk); 3273 } 3274 3275 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3276 { 3277 if (!mptcp_send_head(sk)) 3278 return; 3279 3280 if (!sock_owned_by_user(sk)) 3281 __mptcp_subflow_push_pending(sk, ssk, false); 3282 else 3283 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3284 } 3285 3286 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3287 BIT(MPTCP_RETRANSMIT) | \ 3288 BIT(MPTCP_FLUSH_JOIN_LIST)) 3289 3290 /* processes deferred events and flush wmem */ 3291 static void mptcp_release_cb(struct sock *sk) 3292 __must_hold(&sk->sk_lock.slock) 3293 { 3294 struct mptcp_sock *msk = mptcp_sk(sk); 3295 3296 for (;;) { 3297 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) | 3298 msk->push_pending; 3299 struct list_head join_list; 3300 3301 if (!flags) 3302 break; 3303 3304 INIT_LIST_HEAD(&join_list); 3305 list_splice_init(&msk->join_list, &join_list); 3306 3307 /* the following actions acquire the subflow socket lock 3308 * 3309 * 1) can't be invoked in atomic scope 3310 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3311 * datapath acquires the msk socket spinlock while helding 3312 * the subflow socket lock 3313 */ 3314 msk->push_pending = 0; 3315 msk->cb_flags &= ~flags; 3316 spin_unlock_bh(&sk->sk_lock.slock); 3317 3318 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3319 __mptcp_flush_join_list(sk, &join_list); 3320 if (flags & BIT(MPTCP_PUSH_PENDING)) 3321 __mptcp_push_pending(sk, 0); 3322 if (flags & BIT(MPTCP_RETRANSMIT)) 3323 __mptcp_retrans(sk); 3324 3325 cond_resched(); 3326 spin_lock_bh(&sk->sk_lock.slock); 3327 } 3328 3329 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3330 __mptcp_clean_una_wakeup(sk); 3331 if (unlikely(msk->cb_flags)) { 3332 /* be sure to set the current sk state before tacking actions 3333 * depending on sk_state, that is processing MPTCP_ERROR_REPORT 3334 */ 3335 if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags)) 3336 __mptcp_set_connected(sk); 3337 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3338 __mptcp_error_report(sk); 3339 if (__test_and_clear_bit(MPTCP_RESET_SCHEDULER, &msk->cb_flags)) 3340 msk->last_snd = NULL; 3341 } 3342 3343 __mptcp_update_rmem(sk); 3344 } 3345 3346 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3347 * TCP can't schedule delack timer before the subflow is fully established. 3348 * MPTCP uses the delack timer to do 3rd ack retransmissions 3349 */ 3350 static void schedule_3rdack_retransmission(struct sock *ssk) 3351 { 3352 struct inet_connection_sock *icsk = inet_csk(ssk); 3353 struct tcp_sock *tp = tcp_sk(ssk); 3354 unsigned long timeout; 3355 3356 if (mptcp_subflow_ctx(ssk)->fully_established) 3357 return; 3358 3359 /* reschedule with a timeout above RTT, as we must look only for drop */ 3360 if (tp->srtt_us) 3361 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3362 else 3363 timeout = TCP_TIMEOUT_INIT; 3364 timeout += jiffies; 3365 3366 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3367 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3368 icsk->icsk_ack.timeout = timeout; 3369 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3370 } 3371 3372 void mptcp_subflow_process_delegated(struct sock *ssk) 3373 { 3374 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3375 struct sock *sk = subflow->conn; 3376 3377 if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) { 3378 mptcp_data_lock(sk); 3379 if (!sock_owned_by_user(sk)) 3380 __mptcp_subflow_push_pending(sk, ssk, true); 3381 else 3382 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3383 mptcp_data_unlock(sk); 3384 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND); 3385 } 3386 if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) { 3387 schedule_3rdack_retransmission(ssk); 3388 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK); 3389 } 3390 } 3391 3392 static int mptcp_hash(struct sock *sk) 3393 { 3394 /* should never be called, 3395 * we hash the TCP subflows not the master socket 3396 */ 3397 WARN_ON_ONCE(1); 3398 return 0; 3399 } 3400 3401 static void mptcp_unhash(struct sock *sk) 3402 { 3403 /* called from sk_common_release(), but nothing to do here */ 3404 } 3405 3406 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3407 { 3408 struct mptcp_sock *msk = mptcp_sk(sk); 3409 struct socket *ssock; 3410 3411 ssock = msk->subflow; 3412 pr_debug("msk=%p, subflow=%p", msk, ssock); 3413 if (WARN_ON_ONCE(!ssock)) 3414 return -EINVAL; 3415 3416 return inet_csk_get_port(ssock->sk, snum); 3417 } 3418 3419 void mptcp_finish_connect(struct sock *ssk) 3420 { 3421 struct mptcp_subflow_context *subflow; 3422 struct mptcp_sock *msk; 3423 struct sock *sk; 3424 3425 subflow = mptcp_subflow_ctx(ssk); 3426 sk = subflow->conn; 3427 msk = mptcp_sk(sk); 3428 3429 pr_debug("msk=%p, token=%u", sk, subflow->token); 3430 3431 subflow->map_seq = subflow->iasn; 3432 subflow->map_subflow_seq = 1; 3433 3434 /* the socket is not connected yet, no msk/subflow ops can access/race 3435 * accessing the field below 3436 */ 3437 WRITE_ONCE(msk->local_key, subflow->local_key); 3438 WRITE_ONCE(msk->write_seq, subflow->idsn + 1); 3439 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3440 WRITE_ONCE(msk->snd_una, msk->write_seq); 3441 3442 mptcp_pm_new_connection(msk, ssk, 0); 3443 3444 mptcp_rcv_space_init(msk, ssk); 3445 } 3446 3447 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3448 { 3449 write_lock_bh(&sk->sk_callback_lock); 3450 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3451 sk_set_socket(sk, parent); 3452 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3453 write_unlock_bh(&sk->sk_callback_lock); 3454 } 3455 3456 bool mptcp_finish_join(struct sock *ssk) 3457 { 3458 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3459 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3460 struct sock *parent = (void *)msk; 3461 bool ret = true; 3462 3463 pr_debug("msk=%p, subflow=%p", msk, subflow); 3464 3465 /* mptcp socket already closing? */ 3466 if (!mptcp_is_fully_established(parent)) { 3467 subflow->reset_reason = MPTCP_RST_EMPTCP; 3468 return false; 3469 } 3470 3471 /* active subflow, already present inside the conn_list */ 3472 if (!list_empty(&subflow->node)) { 3473 mptcp_subflow_joined(msk, ssk); 3474 return true; 3475 } 3476 3477 if (!mptcp_pm_allow_new_subflow(msk)) 3478 goto err_prohibited; 3479 3480 /* If we can't acquire msk socket lock here, let the release callback 3481 * handle it 3482 */ 3483 mptcp_data_lock(parent); 3484 if (!sock_owned_by_user(parent)) { 3485 ret = __mptcp_finish_join(msk, ssk); 3486 if (ret) { 3487 sock_hold(ssk); 3488 list_add_tail(&subflow->node, &msk->conn_list); 3489 } 3490 } else { 3491 sock_hold(ssk); 3492 list_add_tail(&subflow->node, &msk->join_list); 3493 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3494 } 3495 mptcp_data_unlock(parent); 3496 3497 if (!ret) { 3498 err_prohibited: 3499 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3500 return false; 3501 } 3502 3503 return true; 3504 } 3505 3506 static void mptcp_shutdown(struct sock *sk, int how) 3507 { 3508 pr_debug("sk=%p, how=%d", sk, how); 3509 3510 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3511 __mptcp_wr_shutdown(sk); 3512 } 3513 3514 static int mptcp_forward_alloc_get(const struct sock *sk) 3515 { 3516 return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc; 3517 } 3518 3519 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3520 { 3521 const struct sock *sk = (void *)msk; 3522 u64 delta; 3523 3524 if (sk->sk_state == TCP_LISTEN) 3525 return -EINVAL; 3526 3527 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3528 return 0; 3529 3530 delta = msk->write_seq - v; 3531 if (__mptcp_check_fallback(msk) && msk->first) { 3532 struct tcp_sock *tp = tcp_sk(msk->first); 3533 3534 /* the first subflow is disconnected after close - see 3535 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3536 * so ignore that status, too. 3537 */ 3538 if (!((1 << msk->first->sk_state) & 3539 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3540 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3541 } 3542 if (delta > INT_MAX) 3543 delta = INT_MAX; 3544 3545 return (int)delta; 3546 } 3547 3548 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3549 { 3550 struct mptcp_sock *msk = mptcp_sk(sk); 3551 bool slow; 3552 3553 switch (cmd) { 3554 case SIOCINQ: 3555 if (sk->sk_state == TCP_LISTEN) 3556 return -EINVAL; 3557 3558 lock_sock(sk); 3559 __mptcp_move_skbs(msk); 3560 *karg = mptcp_inq_hint(sk); 3561 release_sock(sk); 3562 break; 3563 case SIOCOUTQ: 3564 slow = lock_sock_fast(sk); 3565 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3566 unlock_sock_fast(sk, slow); 3567 break; 3568 case SIOCOUTQNSD: 3569 slow = lock_sock_fast(sk); 3570 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3571 unlock_sock_fast(sk, slow); 3572 break; 3573 default: 3574 return -ENOIOCTLCMD; 3575 } 3576 3577 return 0; 3578 } 3579 3580 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3581 struct mptcp_subflow_context *subflow) 3582 { 3583 subflow->request_mptcp = 0; 3584 __mptcp_do_fallback(msk); 3585 } 3586 3587 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3588 { 3589 struct mptcp_subflow_context *subflow; 3590 struct mptcp_sock *msk = mptcp_sk(sk); 3591 struct socket *ssock; 3592 int err = -EINVAL; 3593 3594 ssock = __mptcp_nmpc_socket(msk); 3595 if (IS_ERR(ssock)) 3596 return PTR_ERR(ssock); 3597 3598 mptcp_token_destroy(msk); 3599 inet_sk_state_store(sk, TCP_SYN_SENT); 3600 subflow = mptcp_subflow_ctx(ssock->sk); 3601 #ifdef CONFIG_TCP_MD5SIG 3602 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3603 * TCP option space. 3604 */ 3605 if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info)) 3606 mptcp_subflow_early_fallback(msk, subflow); 3607 #endif 3608 if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) { 3609 MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT); 3610 mptcp_subflow_early_fallback(msk, subflow); 3611 } 3612 if (likely(!__mptcp_check_fallback(msk))) 3613 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3614 3615 /* if reaching here via the fastopen/sendmsg path, the caller already 3616 * acquired the subflow socket lock, too. 3617 */ 3618 if (msk->fastopening) 3619 err = __inet_stream_connect(ssock, uaddr, addr_len, O_NONBLOCK, 1); 3620 else 3621 err = inet_stream_connect(ssock, uaddr, addr_len, O_NONBLOCK); 3622 inet_sk(sk)->defer_connect = inet_sk(ssock->sk)->defer_connect; 3623 3624 /* on successful connect, the msk state will be moved to established by 3625 * subflow_finish_connect() 3626 */ 3627 if (unlikely(err && err != -EINPROGRESS)) { 3628 inet_sk_state_store(sk, inet_sk_state_load(ssock->sk)); 3629 return err; 3630 } 3631 3632 mptcp_copy_inaddrs(sk, ssock->sk); 3633 3634 /* silence EINPROGRESS and let the caller inet_stream_connect 3635 * handle the connection in progress 3636 */ 3637 return 0; 3638 } 3639 3640 static struct proto mptcp_prot = { 3641 .name = "MPTCP", 3642 .owner = THIS_MODULE, 3643 .init = mptcp_init_sock, 3644 .connect = mptcp_connect, 3645 .disconnect = mptcp_disconnect, 3646 .close = mptcp_close, 3647 .accept = mptcp_accept, 3648 .setsockopt = mptcp_setsockopt, 3649 .getsockopt = mptcp_getsockopt, 3650 .shutdown = mptcp_shutdown, 3651 .destroy = mptcp_destroy, 3652 .sendmsg = mptcp_sendmsg, 3653 .ioctl = mptcp_ioctl, 3654 .recvmsg = mptcp_recvmsg, 3655 .release_cb = mptcp_release_cb, 3656 .hash = mptcp_hash, 3657 .unhash = mptcp_unhash, 3658 .get_port = mptcp_get_port, 3659 .forward_alloc_get = mptcp_forward_alloc_get, 3660 .sockets_allocated = &mptcp_sockets_allocated, 3661 3662 .memory_allocated = &tcp_memory_allocated, 3663 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3664 3665 .memory_pressure = &tcp_memory_pressure, 3666 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3667 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3668 .sysctl_mem = sysctl_tcp_mem, 3669 .obj_size = sizeof(struct mptcp_sock), 3670 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3671 .no_autobind = true, 3672 }; 3673 3674 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3675 { 3676 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3677 struct socket *ssock; 3678 int err; 3679 3680 lock_sock(sock->sk); 3681 ssock = __mptcp_nmpc_socket(msk); 3682 if (IS_ERR(ssock)) { 3683 err = PTR_ERR(ssock); 3684 goto unlock; 3685 } 3686 3687 err = ssock->ops->bind(ssock, uaddr, addr_len); 3688 if (!err) 3689 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3690 3691 unlock: 3692 release_sock(sock->sk); 3693 return err; 3694 } 3695 3696 static int mptcp_listen(struct socket *sock, int backlog) 3697 { 3698 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3699 struct sock *sk = sock->sk; 3700 struct socket *ssock; 3701 int err; 3702 3703 pr_debug("msk=%p", msk); 3704 3705 lock_sock(sk); 3706 3707 err = -EINVAL; 3708 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3709 goto unlock; 3710 3711 ssock = __mptcp_nmpc_socket(msk); 3712 if (IS_ERR(ssock)) { 3713 err = PTR_ERR(ssock); 3714 goto unlock; 3715 } 3716 3717 mptcp_token_destroy(msk); 3718 inet_sk_state_store(sk, TCP_LISTEN); 3719 sock_set_flag(sk, SOCK_RCU_FREE); 3720 3721 err = ssock->ops->listen(ssock, backlog); 3722 inet_sk_state_store(sk, inet_sk_state_load(ssock->sk)); 3723 if (!err) { 3724 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3725 mptcp_copy_inaddrs(sk, ssock->sk); 3726 mptcp_event_pm_listener(ssock->sk, MPTCP_EVENT_LISTENER_CREATED); 3727 } 3728 3729 unlock: 3730 release_sock(sk); 3731 return err; 3732 } 3733 3734 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3735 int flags, bool kern) 3736 { 3737 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3738 struct socket *ssock; 3739 struct sock *newsk; 3740 int err; 3741 3742 pr_debug("msk=%p", msk); 3743 3744 /* Buggy applications can call accept on socket states other then LISTEN 3745 * but no need to allocate the first subflow just to error out. 3746 */ 3747 ssock = READ_ONCE(msk->subflow); 3748 if (!ssock) 3749 return -EINVAL; 3750 3751 newsk = mptcp_accept(sock->sk, flags, &err, kern); 3752 if (!newsk) 3753 return err; 3754 3755 lock_sock(newsk); 3756 3757 __inet_accept(sock, newsock, newsk); 3758 if (!mptcp_is_tcpsk(newsock->sk)) { 3759 struct mptcp_sock *msk = mptcp_sk(newsk); 3760 struct mptcp_subflow_context *subflow; 3761 3762 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3763 msk->in_accept_queue = 0; 3764 3765 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3766 * This is needed so NOSPACE flag can be set from tcp stack. 3767 */ 3768 mptcp_for_each_subflow(msk, subflow) { 3769 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3770 3771 if (!ssk->sk_socket) 3772 mptcp_sock_graft(ssk, newsock); 3773 } 3774 3775 /* Do late cleanup for the first subflow as necessary. Also 3776 * deal with bad peers not doing a complete shutdown. 3777 */ 3778 if (msk->first && 3779 unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3780 __mptcp_close_ssk(newsk, msk->first, 3781 mptcp_subflow_ctx(msk->first), 0); 3782 if (unlikely(list_empty(&msk->conn_list))) 3783 inet_sk_state_store(newsk, TCP_CLOSE); 3784 } 3785 } 3786 release_sock(newsk); 3787 3788 return 0; 3789 } 3790 3791 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3792 { 3793 struct sock *sk = (struct sock *)msk; 3794 3795 if (sk_stream_is_writeable(sk)) 3796 return EPOLLOUT | EPOLLWRNORM; 3797 3798 mptcp_set_nospace(sk); 3799 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3800 if (sk_stream_is_writeable(sk)) 3801 return EPOLLOUT | EPOLLWRNORM; 3802 3803 return 0; 3804 } 3805 3806 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3807 struct poll_table_struct *wait) 3808 { 3809 struct sock *sk = sock->sk; 3810 struct mptcp_sock *msk; 3811 __poll_t mask = 0; 3812 u8 shutdown; 3813 int state; 3814 3815 msk = mptcp_sk(sk); 3816 sock_poll_wait(file, sock, wait); 3817 3818 state = inet_sk_state_load(sk); 3819 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3820 if (state == TCP_LISTEN) { 3821 struct socket *ssock = READ_ONCE(msk->subflow); 3822 3823 if (WARN_ON_ONCE(!ssock || !ssock->sk)) 3824 return 0; 3825 3826 return inet_csk_listen_poll(ssock->sk); 3827 } 3828 3829 shutdown = READ_ONCE(sk->sk_shutdown); 3830 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3831 mask |= EPOLLHUP; 3832 if (shutdown & RCV_SHUTDOWN) 3833 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3834 3835 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3836 mask |= mptcp_check_readable(msk); 3837 if (shutdown & SEND_SHUTDOWN) 3838 mask |= EPOLLOUT | EPOLLWRNORM; 3839 else 3840 mask |= mptcp_check_writeable(msk); 3841 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 3842 /* cf tcp_poll() note about TFO */ 3843 mask |= EPOLLOUT | EPOLLWRNORM; 3844 } 3845 3846 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 3847 smp_rmb(); 3848 if (READ_ONCE(sk->sk_err)) 3849 mask |= EPOLLERR; 3850 3851 return mask; 3852 } 3853 3854 static const struct proto_ops mptcp_stream_ops = { 3855 .family = PF_INET, 3856 .owner = THIS_MODULE, 3857 .release = inet_release, 3858 .bind = mptcp_bind, 3859 .connect = inet_stream_connect, 3860 .socketpair = sock_no_socketpair, 3861 .accept = mptcp_stream_accept, 3862 .getname = inet_getname, 3863 .poll = mptcp_poll, 3864 .ioctl = inet_ioctl, 3865 .gettstamp = sock_gettstamp, 3866 .listen = mptcp_listen, 3867 .shutdown = inet_shutdown, 3868 .setsockopt = sock_common_setsockopt, 3869 .getsockopt = sock_common_getsockopt, 3870 .sendmsg = inet_sendmsg, 3871 .recvmsg = inet_recvmsg, 3872 .mmap = sock_no_mmap, 3873 }; 3874 3875 static struct inet_protosw mptcp_protosw = { 3876 .type = SOCK_STREAM, 3877 .protocol = IPPROTO_MPTCP, 3878 .prot = &mptcp_prot, 3879 .ops = &mptcp_stream_ops, 3880 .flags = INET_PROTOSW_ICSK, 3881 }; 3882 3883 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 3884 { 3885 struct mptcp_delegated_action *delegated; 3886 struct mptcp_subflow_context *subflow; 3887 int work_done = 0; 3888 3889 delegated = container_of(napi, struct mptcp_delegated_action, napi); 3890 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 3891 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3892 3893 bh_lock_sock_nested(ssk); 3894 if (!sock_owned_by_user(ssk) && 3895 mptcp_subflow_has_delegated_action(subflow)) 3896 mptcp_subflow_process_delegated(ssk); 3897 /* ... elsewhere tcp_release_cb_override already processed 3898 * the action or will do at next release_sock(). 3899 * In both case must dequeue the subflow here - on the same 3900 * CPU that scheduled it. 3901 */ 3902 bh_unlock_sock(ssk); 3903 sock_put(ssk); 3904 3905 if (++work_done == budget) 3906 return budget; 3907 } 3908 3909 /* always provide a 0 'work_done' argument, so that napi_complete_done 3910 * will not try accessing the NULL napi->dev ptr 3911 */ 3912 napi_complete_done(napi, 0); 3913 return work_done; 3914 } 3915 3916 void __init mptcp_proto_init(void) 3917 { 3918 struct mptcp_delegated_action *delegated; 3919 int cpu; 3920 3921 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 3922 3923 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 3924 panic("Failed to allocate MPTCP pcpu counter\n"); 3925 3926 init_dummy_netdev(&mptcp_napi_dev); 3927 for_each_possible_cpu(cpu) { 3928 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 3929 INIT_LIST_HEAD(&delegated->head); 3930 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 3931 mptcp_napi_poll); 3932 napi_enable(&delegated->napi); 3933 } 3934 3935 mptcp_subflow_init(); 3936 mptcp_pm_init(); 3937 mptcp_token_init(); 3938 3939 if (proto_register(&mptcp_prot, 1) != 0) 3940 panic("Failed to register MPTCP proto.\n"); 3941 3942 inet_register_protosw(&mptcp_protosw); 3943 3944 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 3945 } 3946 3947 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3948 static const struct proto_ops mptcp_v6_stream_ops = { 3949 .family = PF_INET6, 3950 .owner = THIS_MODULE, 3951 .release = inet6_release, 3952 .bind = mptcp_bind, 3953 .connect = inet_stream_connect, 3954 .socketpair = sock_no_socketpair, 3955 .accept = mptcp_stream_accept, 3956 .getname = inet6_getname, 3957 .poll = mptcp_poll, 3958 .ioctl = inet6_ioctl, 3959 .gettstamp = sock_gettstamp, 3960 .listen = mptcp_listen, 3961 .shutdown = inet_shutdown, 3962 .setsockopt = sock_common_setsockopt, 3963 .getsockopt = sock_common_getsockopt, 3964 .sendmsg = inet6_sendmsg, 3965 .recvmsg = inet6_recvmsg, 3966 .mmap = sock_no_mmap, 3967 #ifdef CONFIG_COMPAT 3968 .compat_ioctl = inet6_compat_ioctl, 3969 #endif 3970 }; 3971 3972 static struct proto mptcp_v6_prot; 3973 3974 static struct inet_protosw mptcp_v6_protosw = { 3975 .type = SOCK_STREAM, 3976 .protocol = IPPROTO_MPTCP, 3977 .prot = &mptcp_v6_prot, 3978 .ops = &mptcp_v6_stream_ops, 3979 .flags = INET_PROTOSW_ICSK, 3980 }; 3981 3982 int __init mptcp_proto_v6_init(void) 3983 { 3984 int err; 3985 3986 mptcp_v6_prot = mptcp_prot; 3987 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 3988 mptcp_v6_prot.slab = NULL; 3989 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 3990 3991 err = proto_register(&mptcp_v6_prot, 1); 3992 if (err) 3993 return err; 3994 3995 err = inet6_register_protosw(&mptcp_v6_protosw); 3996 if (err) 3997 proto_unregister(&mptcp_v6_prot); 3998 3999 return err; 4000 } 4001 #endif 4002