1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 enum { 40 MPTCP_CMSG_TS = BIT(0), 41 MPTCP_CMSG_INQ = BIT(1), 42 }; 43 44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 45 46 static void __mptcp_destroy_sock(struct sock *sk); 47 static void mptcp_check_send_data_fin(struct sock *sk); 48 49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 50 static struct net_device mptcp_napi_dev; 51 52 /* Returns end sequence number of the receiver's advertised window */ 53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 54 { 55 return READ_ONCE(msk->wnd_end); 56 } 57 58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 59 { 60 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 61 if (sk->sk_prot == &tcpv6_prot) 62 return &inet6_stream_ops; 63 #endif 64 WARN_ON_ONCE(sk->sk_prot != &tcp_prot); 65 return &inet_stream_ops; 66 } 67 68 static int __mptcp_socket_create(struct mptcp_sock *msk) 69 { 70 struct mptcp_subflow_context *subflow; 71 struct sock *sk = (struct sock *)msk; 72 struct socket *ssock; 73 int err; 74 75 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 76 if (err) 77 return err; 78 79 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 80 WRITE_ONCE(msk->first, ssock->sk); 81 subflow = mptcp_subflow_ctx(ssock->sk); 82 list_add(&subflow->node, &msk->conn_list); 83 sock_hold(ssock->sk); 84 subflow->request_mptcp = 1; 85 subflow->subflow_id = msk->subflow_id++; 86 87 /* This is the first subflow, always with id 0 */ 88 WRITE_ONCE(subflow->local_id, 0); 89 mptcp_sock_graft(msk->first, sk->sk_socket); 90 iput(SOCK_INODE(ssock)); 91 92 return 0; 93 } 94 95 /* If the MPC handshake is not started, returns the first subflow, 96 * eventually allocating it. 97 */ 98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 99 { 100 struct sock *sk = (struct sock *)msk; 101 int ret; 102 103 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 104 return ERR_PTR(-EINVAL); 105 106 if (!msk->first) { 107 ret = __mptcp_socket_create(msk); 108 if (ret) 109 return ERR_PTR(ret); 110 111 mptcp_sockopt_sync(msk, msk->first); 112 } 113 114 return msk->first; 115 } 116 117 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 118 { 119 sk_drops_add(sk, skb); 120 __kfree_skb(skb); 121 } 122 123 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size) 124 { 125 WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc, 126 mptcp_sk(sk)->rmem_fwd_alloc + size); 127 } 128 129 static void mptcp_rmem_charge(struct sock *sk, int size) 130 { 131 mptcp_rmem_fwd_alloc_add(sk, -size); 132 } 133 134 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 135 struct sk_buff *from) 136 { 137 bool fragstolen; 138 int delta; 139 140 if (MPTCP_SKB_CB(from)->offset || 141 !skb_try_coalesce(to, from, &fragstolen, &delta)) 142 return false; 143 144 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 145 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 146 to->len, MPTCP_SKB_CB(from)->end_seq); 147 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 148 149 /* note the fwd memory can reach a negative value after accounting 150 * for the delta, but the later skb free will restore a non 151 * negative one 152 */ 153 atomic_add(delta, &sk->sk_rmem_alloc); 154 mptcp_rmem_charge(sk, delta); 155 kfree_skb_partial(from, fragstolen); 156 157 return true; 158 } 159 160 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 161 struct sk_buff *from) 162 { 163 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 164 return false; 165 166 return mptcp_try_coalesce((struct sock *)msk, to, from); 167 } 168 169 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 170 { 171 amount >>= PAGE_SHIFT; 172 mptcp_rmem_charge(sk, amount << PAGE_SHIFT); 173 __sk_mem_reduce_allocated(sk, amount); 174 } 175 176 static void mptcp_rmem_uncharge(struct sock *sk, int size) 177 { 178 struct mptcp_sock *msk = mptcp_sk(sk); 179 int reclaimable; 180 181 mptcp_rmem_fwd_alloc_add(sk, size); 182 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 183 184 /* see sk_mem_uncharge() for the rationale behind the following schema */ 185 if (unlikely(reclaimable >= PAGE_SIZE)) 186 __mptcp_rmem_reclaim(sk, reclaimable); 187 } 188 189 static void mptcp_rfree(struct sk_buff *skb) 190 { 191 unsigned int len = skb->truesize; 192 struct sock *sk = skb->sk; 193 194 atomic_sub(len, &sk->sk_rmem_alloc); 195 mptcp_rmem_uncharge(sk, len); 196 } 197 198 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 199 { 200 skb_orphan(skb); 201 skb->sk = sk; 202 skb->destructor = mptcp_rfree; 203 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 204 mptcp_rmem_charge(sk, skb->truesize); 205 } 206 207 /* "inspired" by tcp_data_queue_ofo(), main differences: 208 * - use mptcp seqs 209 * - don't cope with sacks 210 */ 211 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 212 { 213 struct sock *sk = (struct sock *)msk; 214 struct rb_node **p, *parent; 215 u64 seq, end_seq, max_seq; 216 struct sk_buff *skb1; 217 218 seq = MPTCP_SKB_CB(skb)->map_seq; 219 end_seq = MPTCP_SKB_CB(skb)->end_seq; 220 max_seq = atomic64_read(&msk->rcv_wnd_sent); 221 222 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 223 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 224 if (after64(end_seq, max_seq)) { 225 /* out of window */ 226 mptcp_drop(sk, skb); 227 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 228 (unsigned long long)end_seq - (unsigned long)max_seq, 229 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 230 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 231 return; 232 } 233 234 p = &msk->out_of_order_queue.rb_node; 235 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 236 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 237 rb_link_node(&skb->rbnode, NULL, p); 238 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 239 msk->ooo_last_skb = skb; 240 goto end; 241 } 242 243 /* with 2 subflows, adding at end of ooo queue is quite likely 244 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 245 */ 246 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 247 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 248 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 249 return; 250 } 251 252 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 253 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 254 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 255 parent = &msk->ooo_last_skb->rbnode; 256 p = &parent->rb_right; 257 goto insert; 258 } 259 260 /* Find place to insert this segment. Handle overlaps on the way. */ 261 parent = NULL; 262 while (*p) { 263 parent = *p; 264 skb1 = rb_to_skb(parent); 265 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 266 p = &parent->rb_left; 267 continue; 268 } 269 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 270 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 271 /* All the bits are present. Drop. */ 272 mptcp_drop(sk, skb); 273 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 274 return; 275 } 276 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 277 /* partial overlap: 278 * | skb | 279 * | skb1 | 280 * continue traversing 281 */ 282 } else { 283 /* skb's seq == skb1's seq and skb covers skb1. 284 * Replace skb1 with skb. 285 */ 286 rb_replace_node(&skb1->rbnode, &skb->rbnode, 287 &msk->out_of_order_queue); 288 mptcp_drop(sk, skb1); 289 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 290 goto merge_right; 291 } 292 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 293 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 294 return; 295 } 296 p = &parent->rb_right; 297 } 298 299 insert: 300 /* Insert segment into RB tree. */ 301 rb_link_node(&skb->rbnode, parent, p); 302 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 303 304 merge_right: 305 /* Remove other segments covered by skb. */ 306 while ((skb1 = skb_rb_next(skb)) != NULL) { 307 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 308 break; 309 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 310 mptcp_drop(sk, skb1); 311 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 312 } 313 /* If there is no skb after us, we are the last_skb ! */ 314 if (!skb1) 315 msk->ooo_last_skb = skb; 316 317 end: 318 skb_condense(skb); 319 mptcp_set_owner_r(skb, sk); 320 } 321 322 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 323 { 324 struct mptcp_sock *msk = mptcp_sk(sk); 325 int amt, amount; 326 327 if (size <= msk->rmem_fwd_alloc) 328 return true; 329 330 size -= msk->rmem_fwd_alloc; 331 amt = sk_mem_pages(size); 332 amount = amt << PAGE_SHIFT; 333 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 334 return false; 335 336 mptcp_rmem_fwd_alloc_add(sk, amount); 337 return true; 338 } 339 340 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 341 struct sk_buff *skb, unsigned int offset, 342 size_t copy_len) 343 { 344 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 345 struct sock *sk = (struct sock *)msk; 346 struct sk_buff *tail; 347 bool has_rxtstamp; 348 349 __skb_unlink(skb, &ssk->sk_receive_queue); 350 351 skb_ext_reset(skb); 352 skb_orphan(skb); 353 354 /* try to fetch required memory from subflow */ 355 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) { 356 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 357 goto drop; 358 } 359 360 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 361 362 /* the skb map_seq accounts for the skb offset: 363 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 364 * value 365 */ 366 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 367 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 368 MPTCP_SKB_CB(skb)->offset = offset; 369 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 370 371 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 372 /* in sequence */ 373 msk->bytes_received += copy_len; 374 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 375 tail = skb_peek_tail(&sk->sk_receive_queue); 376 if (tail && mptcp_try_coalesce(sk, tail, skb)) 377 return true; 378 379 mptcp_set_owner_r(skb, sk); 380 __skb_queue_tail(&sk->sk_receive_queue, skb); 381 return true; 382 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 383 mptcp_data_queue_ofo(msk, skb); 384 return false; 385 } 386 387 /* old data, keep it simple and drop the whole pkt, sender 388 * will retransmit as needed, if needed. 389 */ 390 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 391 drop: 392 mptcp_drop(sk, skb); 393 return false; 394 } 395 396 static void mptcp_stop_rtx_timer(struct sock *sk) 397 { 398 struct inet_connection_sock *icsk = inet_csk(sk); 399 400 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 401 mptcp_sk(sk)->timer_ival = 0; 402 } 403 404 static void mptcp_close_wake_up(struct sock *sk) 405 { 406 if (sock_flag(sk, SOCK_DEAD)) 407 return; 408 409 sk->sk_state_change(sk); 410 if (sk->sk_shutdown == SHUTDOWN_MASK || 411 sk->sk_state == TCP_CLOSE) 412 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 413 else 414 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 415 } 416 417 static bool mptcp_pending_data_fin_ack(struct sock *sk) 418 { 419 struct mptcp_sock *msk = mptcp_sk(sk); 420 421 return ((1 << sk->sk_state) & 422 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 423 msk->write_seq == READ_ONCE(msk->snd_una); 424 } 425 426 static void mptcp_check_data_fin_ack(struct sock *sk) 427 { 428 struct mptcp_sock *msk = mptcp_sk(sk); 429 430 /* Look for an acknowledged DATA_FIN */ 431 if (mptcp_pending_data_fin_ack(sk)) { 432 WRITE_ONCE(msk->snd_data_fin_enable, 0); 433 434 switch (sk->sk_state) { 435 case TCP_FIN_WAIT1: 436 mptcp_set_state(sk, TCP_FIN_WAIT2); 437 break; 438 case TCP_CLOSING: 439 case TCP_LAST_ACK: 440 mptcp_set_state(sk, TCP_CLOSE); 441 break; 442 } 443 444 mptcp_close_wake_up(sk); 445 } 446 } 447 448 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 449 { 450 struct mptcp_sock *msk = mptcp_sk(sk); 451 452 if (READ_ONCE(msk->rcv_data_fin) && 453 ((1 << sk->sk_state) & 454 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 455 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 456 457 if (msk->ack_seq == rcv_data_fin_seq) { 458 if (seq) 459 *seq = rcv_data_fin_seq; 460 461 return true; 462 } 463 } 464 465 return false; 466 } 467 468 static void mptcp_set_datafin_timeout(struct sock *sk) 469 { 470 struct inet_connection_sock *icsk = inet_csk(sk); 471 u32 retransmits; 472 473 retransmits = min_t(u32, icsk->icsk_retransmits, 474 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 475 476 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 477 } 478 479 static void __mptcp_set_timeout(struct sock *sk, long tout) 480 { 481 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 482 } 483 484 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 485 { 486 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 487 488 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 489 inet_csk(ssk)->icsk_timeout - jiffies : 0; 490 } 491 492 static void mptcp_set_timeout(struct sock *sk) 493 { 494 struct mptcp_subflow_context *subflow; 495 long tout = 0; 496 497 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 498 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 499 __mptcp_set_timeout(sk, tout); 500 } 501 502 static inline bool tcp_can_send_ack(const struct sock *ssk) 503 { 504 return !((1 << inet_sk_state_load(ssk)) & 505 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 506 } 507 508 void __mptcp_subflow_send_ack(struct sock *ssk) 509 { 510 if (tcp_can_send_ack(ssk)) 511 tcp_send_ack(ssk); 512 } 513 514 static void mptcp_subflow_send_ack(struct sock *ssk) 515 { 516 bool slow; 517 518 slow = lock_sock_fast(ssk); 519 __mptcp_subflow_send_ack(ssk); 520 unlock_sock_fast(ssk, slow); 521 } 522 523 static void mptcp_send_ack(struct mptcp_sock *msk) 524 { 525 struct mptcp_subflow_context *subflow; 526 527 mptcp_for_each_subflow(msk, subflow) 528 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 529 } 530 531 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 532 { 533 bool slow; 534 535 slow = lock_sock_fast(ssk); 536 if (tcp_can_send_ack(ssk)) 537 tcp_cleanup_rbuf(ssk, 1); 538 unlock_sock_fast(ssk, slow); 539 } 540 541 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 542 { 543 const struct inet_connection_sock *icsk = inet_csk(ssk); 544 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 545 const struct tcp_sock *tp = tcp_sk(ssk); 546 547 return (ack_pending & ICSK_ACK_SCHED) && 548 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 549 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 550 (rx_empty && ack_pending & 551 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 552 } 553 554 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 555 { 556 int old_space = READ_ONCE(msk->old_wspace); 557 struct mptcp_subflow_context *subflow; 558 struct sock *sk = (struct sock *)msk; 559 int space = __mptcp_space(sk); 560 bool cleanup, rx_empty; 561 562 cleanup = (space > 0) && (space >= (old_space << 1)); 563 rx_empty = !__mptcp_rmem(sk); 564 565 mptcp_for_each_subflow(msk, subflow) { 566 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 567 568 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 569 mptcp_subflow_cleanup_rbuf(ssk); 570 } 571 } 572 573 static bool mptcp_check_data_fin(struct sock *sk) 574 { 575 struct mptcp_sock *msk = mptcp_sk(sk); 576 u64 rcv_data_fin_seq; 577 bool ret = false; 578 579 /* Need to ack a DATA_FIN received from a peer while this side 580 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 581 * msk->rcv_data_fin was set when parsing the incoming options 582 * at the subflow level and the msk lock was not held, so this 583 * is the first opportunity to act on the DATA_FIN and change 584 * the msk state. 585 * 586 * If we are caught up to the sequence number of the incoming 587 * DATA_FIN, send the DATA_ACK now and do state transition. If 588 * not caught up, do nothing and let the recv code send DATA_ACK 589 * when catching up. 590 */ 591 592 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 593 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 594 WRITE_ONCE(msk->rcv_data_fin, 0); 595 596 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 597 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 598 599 switch (sk->sk_state) { 600 case TCP_ESTABLISHED: 601 mptcp_set_state(sk, TCP_CLOSE_WAIT); 602 break; 603 case TCP_FIN_WAIT1: 604 mptcp_set_state(sk, TCP_CLOSING); 605 break; 606 case TCP_FIN_WAIT2: 607 mptcp_set_state(sk, TCP_CLOSE); 608 break; 609 default: 610 /* Other states not expected */ 611 WARN_ON_ONCE(1); 612 break; 613 } 614 615 ret = true; 616 if (!__mptcp_check_fallback(msk)) 617 mptcp_send_ack(msk); 618 mptcp_close_wake_up(sk); 619 } 620 return ret; 621 } 622 623 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 624 struct sock *ssk, 625 unsigned int *bytes) 626 { 627 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 628 struct sock *sk = (struct sock *)msk; 629 unsigned int moved = 0; 630 bool more_data_avail; 631 struct tcp_sock *tp; 632 bool done = false; 633 int sk_rbuf; 634 635 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 636 637 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 638 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 639 640 if (unlikely(ssk_rbuf > sk_rbuf)) { 641 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 642 sk_rbuf = ssk_rbuf; 643 } 644 } 645 646 pr_debug("msk=%p ssk=%p", msk, ssk); 647 tp = tcp_sk(ssk); 648 do { 649 u32 map_remaining, offset; 650 u32 seq = tp->copied_seq; 651 struct sk_buff *skb; 652 bool fin; 653 654 /* try to move as much data as available */ 655 map_remaining = subflow->map_data_len - 656 mptcp_subflow_get_map_offset(subflow); 657 658 skb = skb_peek(&ssk->sk_receive_queue); 659 if (!skb) { 660 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(), 661 * a different CPU can have already processed the pending 662 * data, stop here or we can enter an infinite loop 663 */ 664 if (!moved) 665 done = true; 666 break; 667 } 668 669 if (__mptcp_check_fallback(msk)) { 670 /* Under fallback skbs have no MPTCP extension and TCP could 671 * collapse them between the dummy map creation and the 672 * current dequeue. Be sure to adjust the map size. 673 */ 674 map_remaining = skb->len; 675 subflow->map_data_len = skb->len; 676 } 677 678 offset = seq - TCP_SKB_CB(skb)->seq; 679 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 680 if (fin) { 681 done = true; 682 seq++; 683 } 684 685 if (offset < skb->len) { 686 size_t len = skb->len - offset; 687 688 if (tp->urg_data) 689 done = true; 690 691 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 692 moved += len; 693 seq += len; 694 695 if (WARN_ON_ONCE(map_remaining < len)) 696 break; 697 } else { 698 WARN_ON_ONCE(!fin); 699 sk_eat_skb(ssk, skb); 700 done = true; 701 } 702 703 WRITE_ONCE(tp->copied_seq, seq); 704 more_data_avail = mptcp_subflow_data_available(ssk); 705 706 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 707 done = true; 708 break; 709 } 710 } while (more_data_avail); 711 712 *bytes += moved; 713 return done; 714 } 715 716 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 717 { 718 struct sock *sk = (struct sock *)msk; 719 struct sk_buff *skb, *tail; 720 bool moved = false; 721 struct rb_node *p; 722 u64 end_seq; 723 724 p = rb_first(&msk->out_of_order_queue); 725 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 726 while (p) { 727 skb = rb_to_skb(p); 728 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 729 break; 730 731 p = rb_next(p); 732 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 733 734 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 735 msk->ack_seq))) { 736 mptcp_drop(sk, skb); 737 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 738 continue; 739 } 740 741 end_seq = MPTCP_SKB_CB(skb)->end_seq; 742 tail = skb_peek_tail(&sk->sk_receive_queue); 743 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 744 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 745 746 /* skip overlapping data, if any */ 747 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 748 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 749 delta); 750 MPTCP_SKB_CB(skb)->offset += delta; 751 MPTCP_SKB_CB(skb)->map_seq += delta; 752 __skb_queue_tail(&sk->sk_receive_queue, skb); 753 } 754 msk->bytes_received += end_seq - msk->ack_seq; 755 msk->ack_seq = end_seq; 756 moved = true; 757 } 758 return moved; 759 } 760 761 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 762 { 763 int err = sock_error(ssk); 764 int ssk_state; 765 766 if (!err) 767 return false; 768 769 /* only propagate errors on fallen-back sockets or 770 * on MPC connect 771 */ 772 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 773 return false; 774 775 /* We need to propagate only transition to CLOSE state. 776 * Orphaned socket will see such state change via 777 * subflow_sched_work_if_closed() and that path will properly 778 * destroy the msk as needed. 779 */ 780 ssk_state = inet_sk_state_load(ssk); 781 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 782 mptcp_set_state(sk, ssk_state); 783 WRITE_ONCE(sk->sk_err, -err); 784 785 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 786 smp_wmb(); 787 sk_error_report(sk); 788 return true; 789 } 790 791 void __mptcp_error_report(struct sock *sk) 792 { 793 struct mptcp_subflow_context *subflow; 794 struct mptcp_sock *msk = mptcp_sk(sk); 795 796 mptcp_for_each_subflow(msk, subflow) 797 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 798 break; 799 } 800 801 /* In most cases we will be able to lock the mptcp socket. If its already 802 * owned, we need to defer to the work queue to avoid ABBA deadlock. 803 */ 804 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 805 { 806 struct sock *sk = (struct sock *)msk; 807 unsigned int moved = 0; 808 809 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 810 __mptcp_ofo_queue(msk); 811 if (unlikely(ssk->sk_err)) { 812 if (!sock_owned_by_user(sk)) 813 __mptcp_error_report(sk); 814 else 815 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 816 } 817 818 /* If the moves have caught up with the DATA_FIN sequence number 819 * it's time to ack the DATA_FIN and change socket state, but 820 * this is not a good place to change state. Let the workqueue 821 * do it. 822 */ 823 if (mptcp_pending_data_fin(sk, NULL)) 824 mptcp_schedule_work(sk); 825 return moved > 0; 826 } 827 828 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 829 { 830 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 831 struct mptcp_sock *msk = mptcp_sk(sk); 832 int sk_rbuf, ssk_rbuf; 833 834 /* The peer can send data while we are shutting down this 835 * subflow at msk destruction time, but we must avoid enqueuing 836 * more data to the msk receive queue 837 */ 838 if (unlikely(subflow->disposable)) 839 return; 840 841 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 842 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 843 if (unlikely(ssk_rbuf > sk_rbuf)) 844 sk_rbuf = ssk_rbuf; 845 846 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 847 if (__mptcp_rmem(sk) > sk_rbuf) 848 return; 849 850 /* Wake-up the reader only for in-sequence data */ 851 mptcp_data_lock(sk); 852 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 853 sk->sk_data_ready(sk); 854 mptcp_data_unlock(sk); 855 } 856 857 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 858 { 859 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 860 WRITE_ONCE(msk->allow_infinite_fallback, false); 861 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 862 } 863 864 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 865 { 866 struct sock *sk = (struct sock *)msk; 867 868 if (sk->sk_state != TCP_ESTABLISHED) 869 return false; 870 871 /* attach to msk socket only after we are sure we will deal with it 872 * at close time 873 */ 874 if (sk->sk_socket && !ssk->sk_socket) 875 mptcp_sock_graft(ssk, sk->sk_socket); 876 877 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 878 mptcp_sockopt_sync_locked(msk, ssk); 879 mptcp_subflow_joined(msk, ssk); 880 mptcp_stop_tout_timer(sk); 881 __mptcp_propagate_sndbuf(sk, ssk); 882 return true; 883 } 884 885 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 886 { 887 struct mptcp_subflow_context *tmp, *subflow; 888 struct mptcp_sock *msk = mptcp_sk(sk); 889 890 list_for_each_entry_safe(subflow, tmp, join_list, node) { 891 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 892 bool slow = lock_sock_fast(ssk); 893 894 list_move_tail(&subflow->node, &msk->conn_list); 895 if (!__mptcp_finish_join(msk, ssk)) 896 mptcp_subflow_reset(ssk); 897 unlock_sock_fast(ssk, slow); 898 } 899 } 900 901 static bool mptcp_rtx_timer_pending(struct sock *sk) 902 { 903 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 904 } 905 906 static void mptcp_reset_rtx_timer(struct sock *sk) 907 { 908 struct inet_connection_sock *icsk = inet_csk(sk); 909 unsigned long tout; 910 911 /* prevent rescheduling on close */ 912 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 913 return; 914 915 tout = mptcp_sk(sk)->timer_ival; 916 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 917 } 918 919 bool mptcp_schedule_work(struct sock *sk) 920 { 921 if (inet_sk_state_load(sk) != TCP_CLOSE && 922 schedule_work(&mptcp_sk(sk)->work)) { 923 /* each subflow already holds a reference to the sk, and the 924 * workqueue is invoked by a subflow, so sk can't go away here. 925 */ 926 sock_hold(sk); 927 return true; 928 } 929 return false; 930 } 931 932 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 933 { 934 struct mptcp_subflow_context *subflow; 935 936 msk_owned_by_me(msk); 937 938 mptcp_for_each_subflow(msk, subflow) { 939 if (READ_ONCE(subflow->data_avail)) 940 return mptcp_subflow_tcp_sock(subflow); 941 } 942 943 return NULL; 944 } 945 946 static bool mptcp_skb_can_collapse_to(u64 write_seq, 947 const struct sk_buff *skb, 948 const struct mptcp_ext *mpext) 949 { 950 if (!tcp_skb_can_collapse_to(skb)) 951 return false; 952 953 /* can collapse only if MPTCP level sequence is in order and this 954 * mapping has not been xmitted yet 955 */ 956 return mpext && mpext->data_seq + mpext->data_len == write_seq && 957 !mpext->frozen; 958 } 959 960 /* we can append data to the given data frag if: 961 * - there is space available in the backing page_frag 962 * - the data frag tail matches the current page_frag free offset 963 * - the data frag end sequence number matches the current write seq 964 */ 965 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 966 const struct page_frag *pfrag, 967 const struct mptcp_data_frag *df) 968 { 969 return df && pfrag->page == df->page && 970 pfrag->size - pfrag->offset > 0 && 971 pfrag->offset == (df->offset + df->data_len) && 972 df->data_seq + df->data_len == msk->write_seq; 973 } 974 975 static void dfrag_uncharge(struct sock *sk, int len) 976 { 977 sk_mem_uncharge(sk, len); 978 sk_wmem_queued_add(sk, -len); 979 } 980 981 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 982 { 983 int len = dfrag->data_len + dfrag->overhead; 984 985 list_del(&dfrag->list); 986 dfrag_uncharge(sk, len); 987 put_page(dfrag->page); 988 } 989 990 static void __mptcp_clean_una(struct sock *sk) 991 { 992 struct mptcp_sock *msk = mptcp_sk(sk); 993 struct mptcp_data_frag *dtmp, *dfrag; 994 u64 snd_una; 995 996 snd_una = msk->snd_una; 997 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 998 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 999 break; 1000 1001 if (unlikely(dfrag == msk->first_pending)) { 1002 /* in recovery mode can see ack after the current snd head */ 1003 if (WARN_ON_ONCE(!msk->recovery)) 1004 break; 1005 1006 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1007 } 1008 1009 dfrag_clear(sk, dfrag); 1010 } 1011 1012 dfrag = mptcp_rtx_head(sk); 1013 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1014 u64 delta = snd_una - dfrag->data_seq; 1015 1016 /* prevent wrap around in recovery mode */ 1017 if (unlikely(delta > dfrag->already_sent)) { 1018 if (WARN_ON_ONCE(!msk->recovery)) 1019 goto out; 1020 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1021 goto out; 1022 dfrag->already_sent += delta - dfrag->already_sent; 1023 } 1024 1025 dfrag->data_seq += delta; 1026 dfrag->offset += delta; 1027 dfrag->data_len -= delta; 1028 dfrag->already_sent -= delta; 1029 1030 dfrag_uncharge(sk, delta); 1031 } 1032 1033 /* all retransmitted data acked, recovery completed */ 1034 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1035 msk->recovery = false; 1036 1037 out: 1038 if (snd_una == READ_ONCE(msk->snd_nxt) && 1039 snd_una == READ_ONCE(msk->write_seq)) { 1040 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1041 mptcp_stop_rtx_timer(sk); 1042 } else { 1043 mptcp_reset_rtx_timer(sk); 1044 } 1045 } 1046 1047 static void __mptcp_clean_una_wakeup(struct sock *sk) 1048 { 1049 lockdep_assert_held_once(&sk->sk_lock.slock); 1050 1051 __mptcp_clean_una(sk); 1052 mptcp_write_space(sk); 1053 } 1054 1055 static void mptcp_clean_una_wakeup(struct sock *sk) 1056 { 1057 mptcp_data_lock(sk); 1058 __mptcp_clean_una_wakeup(sk); 1059 mptcp_data_unlock(sk); 1060 } 1061 1062 static void mptcp_enter_memory_pressure(struct sock *sk) 1063 { 1064 struct mptcp_subflow_context *subflow; 1065 struct mptcp_sock *msk = mptcp_sk(sk); 1066 bool first = true; 1067 1068 mptcp_for_each_subflow(msk, subflow) { 1069 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1070 1071 if (first) 1072 tcp_enter_memory_pressure(ssk); 1073 sk_stream_moderate_sndbuf(ssk); 1074 1075 first = false; 1076 } 1077 __mptcp_sync_sndbuf(sk); 1078 } 1079 1080 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1081 * data 1082 */ 1083 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1084 { 1085 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1086 pfrag, sk->sk_allocation))) 1087 return true; 1088 1089 mptcp_enter_memory_pressure(sk); 1090 return false; 1091 } 1092 1093 static struct mptcp_data_frag * 1094 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1095 int orig_offset) 1096 { 1097 int offset = ALIGN(orig_offset, sizeof(long)); 1098 struct mptcp_data_frag *dfrag; 1099 1100 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1101 dfrag->data_len = 0; 1102 dfrag->data_seq = msk->write_seq; 1103 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1104 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1105 dfrag->already_sent = 0; 1106 dfrag->page = pfrag->page; 1107 1108 return dfrag; 1109 } 1110 1111 struct mptcp_sendmsg_info { 1112 int mss_now; 1113 int size_goal; 1114 u16 limit; 1115 u16 sent; 1116 unsigned int flags; 1117 bool data_lock_held; 1118 }; 1119 1120 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1121 u64 data_seq, int avail_size) 1122 { 1123 u64 window_end = mptcp_wnd_end(msk); 1124 u64 mptcp_snd_wnd; 1125 1126 if (__mptcp_check_fallback(msk)) 1127 return avail_size; 1128 1129 mptcp_snd_wnd = window_end - data_seq; 1130 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1131 1132 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1133 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1134 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1135 } 1136 1137 return avail_size; 1138 } 1139 1140 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1141 { 1142 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1143 1144 if (!mpext) 1145 return false; 1146 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1147 return true; 1148 } 1149 1150 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1151 { 1152 struct sk_buff *skb; 1153 1154 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1155 if (likely(skb)) { 1156 if (likely(__mptcp_add_ext(skb, gfp))) { 1157 skb_reserve(skb, MAX_TCP_HEADER); 1158 skb->ip_summed = CHECKSUM_PARTIAL; 1159 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1160 return skb; 1161 } 1162 __kfree_skb(skb); 1163 } else { 1164 mptcp_enter_memory_pressure(sk); 1165 } 1166 return NULL; 1167 } 1168 1169 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1170 { 1171 struct sk_buff *skb; 1172 1173 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1174 if (!skb) 1175 return NULL; 1176 1177 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1178 tcp_skb_entail(ssk, skb); 1179 return skb; 1180 } 1181 tcp_skb_tsorted_anchor_cleanup(skb); 1182 kfree_skb(skb); 1183 return NULL; 1184 } 1185 1186 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1187 { 1188 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1189 1190 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1191 } 1192 1193 /* note: this always recompute the csum on the whole skb, even 1194 * if we just appended a single frag. More status info needed 1195 */ 1196 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1197 { 1198 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1199 __wsum csum = ~csum_unfold(mpext->csum); 1200 int offset = skb->len - added; 1201 1202 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1203 } 1204 1205 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1206 struct sock *ssk, 1207 struct mptcp_ext *mpext) 1208 { 1209 if (!mpext) 1210 return; 1211 1212 mpext->infinite_map = 1; 1213 mpext->data_len = 0; 1214 1215 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1216 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1217 pr_fallback(msk); 1218 mptcp_do_fallback(ssk); 1219 } 1220 1221 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1222 1223 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1224 struct mptcp_data_frag *dfrag, 1225 struct mptcp_sendmsg_info *info) 1226 { 1227 u64 data_seq = dfrag->data_seq + info->sent; 1228 int offset = dfrag->offset + info->sent; 1229 struct mptcp_sock *msk = mptcp_sk(sk); 1230 bool zero_window_probe = false; 1231 struct mptcp_ext *mpext = NULL; 1232 bool can_coalesce = false; 1233 bool reuse_skb = true; 1234 struct sk_buff *skb; 1235 size_t copy; 1236 int i; 1237 1238 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1239 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1240 1241 if (WARN_ON_ONCE(info->sent > info->limit || 1242 info->limit > dfrag->data_len)) 1243 return 0; 1244 1245 if (unlikely(!__tcp_can_send(ssk))) 1246 return -EAGAIN; 1247 1248 /* compute send limit */ 1249 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1250 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1251 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1252 copy = info->size_goal; 1253 1254 skb = tcp_write_queue_tail(ssk); 1255 if (skb && copy > skb->len) { 1256 /* Limit the write to the size available in the 1257 * current skb, if any, so that we create at most a new skb. 1258 * Explicitly tells TCP internals to avoid collapsing on later 1259 * queue management operation, to avoid breaking the ext <-> 1260 * SSN association set here 1261 */ 1262 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1263 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1264 TCP_SKB_CB(skb)->eor = 1; 1265 tcp_mark_push(tcp_sk(ssk), skb); 1266 goto alloc_skb; 1267 } 1268 1269 i = skb_shinfo(skb)->nr_frags; 1270 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1271 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1272 tcp_mark_push(tcp_sk(ssk), skb); 1273 goto alloc_skb; 1274 } 1275 1276 copy -= skb->len; 1277 } else { 1278 alloc_skb: 1279 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1280 if (!skb) 1281 return -ENOMEM; 1282 1283 i = skb_shinfo(skb)->nr_frags; 1284 reuse_skb = false; 1285 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1286 } 1287 1288 /* Zero window and all data acked? Probe. */ 1289 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1290 if (copy == 0) { 1291 u64 snd_una = READ_ONCE(msk->snd_una); 1292 1293 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) { 1294 tcp_remove_empty_skb(ssk); 1295 return 0; 1296 } 1297 1298 zero_window_probe = true; 1299 data_seq = snd_una - 1; 1300 copy = 1; 1301 } 1302 1303 copy = min_t(size_t, copy, info->limit - info->sent); 1304 if (!sk_wmem_schedule(ssk, copy)) { 1305 tcp_remove_empty_skb(ssk); 1306 return -ENOMEM; 1307 } 1308 1309 if (can_coalesce) { 1310 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1311 } else { 1312 get_page(dfrag->page); 1313 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1314 } 1315 1316 skb->len += copy; 1317 skb->data_len += copy; 1318 skb->truesize += copy; 1319 sk_wmem_queued_add(ssk, copy); 1320 sk_mem_charge(ssk, copy); 1321 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1322 TCP_SKB_CB(skb)->end_seq += copy; 1323 tcp_skb_pcount_set(skb, 0); 1324 1325 /* on skb reuse we just need to update the DSS len */ 1326 if (reuse_skb) { 1327 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1328 mpext->data_len += copy; 1329 goto out; 1330 } 1331 1332 memset(mpext, 0, sizeof(*mpext)); 1333 mpext->data_seq = data_seq; 1334 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1335 mpext->data_len = copy; 1336 mpext->use_map = 1; 1337 mpext->dsn64 = 1; 1338 1339 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1340 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1341 mpext->dsn64); 1342 1343 if (zero_window_probe) { 1344 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1345 mpext->frozen = 1; 1346 if (READ_ONCE(msk->csum_enabled)) 1347 mptcp_update_data_checksum(skb, copy); 1348 tcp_push_pending_frames(ssk); 1349 return 0; 1350 } 1351 out: 1352 if (READ_ONCE(msk->csum_enabled)) 1353 mptcp_update_data_checksum(skb, copy); 1354 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1355 mptcp_update_infinite_map(msk, ssk, mpext); 1356 trace_mptcp_sendmsg_frag(mpext); 1357 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1358 return copy; 1359 } 1360 1361 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1362 sizeof(struct tcphdr) - \ 1363 MAX_TCP_OPTION_SPACE - \ 1364 sizeof(struct ipv6hdr) - \ 1365 sizeof(struct frag_hdr)) 1366 1367 struct subflow_send_info { 1368 struct sock *ssk; 1369 u64 linger_time; 1370 }; 1371 1372 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1373 { 1374 if (!subflow->stale) 1375 return; 1376 1377 subflow->stale = 0; 1378 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1379 } 1380 1381 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1382 { 1383 if (unlikely(subflow->stale)) { 1384 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1385 1386 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1387 return false; 1388 1389 mptcp_subflow_set_active(subflow); 1390 } 1391 return __mptcp_subflow_active(subflow); 1392 } 1393 1394 #define SSK_MODE_ACTIVE 0 1395 #define SSK_MODE_BACKUP 1 1396 #define SSK_MODE_MAX 2 1397 1398 /* implement the mptcp packet scheduler; 1399 * returns the subflow that will transmit the next DSS 1400 * additionally updates the rtx timeout 1401 */ 1402 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1403 { 1404 struct subflow_send_info send_info[SSK_MODE_MAX]; 1405 struct mptcp_subflow_context *subflow; 1406 struct sock *sk = (struct sock *)msk; 1407 u32 pace, burst, wmem; 1408 int i, nr_active = 0; 1409 struct sock *ssk; 1410 u64 linger_time; 1411 long tout = 0; 1412 1413 /* pick the subflow with the lower wmem/wspace ratio */ 1414 for (i = 0; i < SSK_MODE_MAX; ++i) { 1415 send_info[i].ssk = NULL; 1416 send_info[i].linger_time = -1; 1417 } 1418 1419 mptcp_for_each_subflow(msk, subflow) { 1420 bool backup = subflow->backup || subflow->request_bkup; 1421 1422 trace_mptcp_subflow_get_send(subflow); 1423 ssk = mptcp_subflow_tcp_sock(subflow); 1424 if (!mptcp_subflow_active(subflow)) 1425 continue; 1426 1427 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1428 nr_active += !backup; 1429 pace = subflow->avg_pacing_rate; 1430 if (unlikely(!pace)) { 1431 /* init pacing rate from socket */ 1432 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1433 pace = subflow->avg_pacing_rate; 1434 if (!pace) 1435 continue; 1436 } 1437 1438 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1439 if (linger_time < send_info[backup].linger_time) { 1440 send_info[backup].ssk = ssk; 1441 send_info[backup].linger_time = linger_time; 1442 } 1443 } 1444 __mptcp_set_timeout(sk, tout); 1445 1446 /* pick the best backup if no other subflow is active */ 1447 if (!nr_active) 1448 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1449 1450 /* According to the blest algorithm, to avoid HoL blocking for the 1451 * faster flow, we need to: 1452 * - estimate the faster flow linger time 1453 * - use the above to estimate the amount of byte transferred 1454 * by the faster flow 1455 * - check that the amount of queued data is greter than the above, 1456 * otherwise do not use the picked, slower, subflow 1457 * We select the subflow with the shorter estimated time to flush 1458 * the queued mem, which basically ensure the above. We just need 1459 * to check that subflow has a non empty cwin. 1460 */ 1461 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1462 if (!ssk || !sk_stream_memory_free(ssk)) 1463 return NULL; 1464 1465 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1466 wmem = READ_ONCE(ssk->sk_wmem_queued); 1467 if (!burst) 1468 return ssk; 1469 1470 subflow = mptcp_subflow_ctx(ssk); 1471 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1472 READ_ONCE(ssk->sk_pacing_rate) * burst, 1473 burst + wmem); 1474 msk->snd_burst = burst; 1475 return ssk; 1476 } 1477 1478 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1479 { 1480 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1481 release_sock(ssk); 1482 } 1483 1484 static void mptcp_update_post_push(struct mptcp_sock *msk, 1485 struct mptcp_data_frag *dfrag, 1486 u32 sent) 1487 { 1488 u64 snd_nxt_new = dfrag->data_seq; 1489 1490 dfrag->already_sent += sent; 1491 1492 msk->snd_burst -= sent; 1493 1494 snd_nxt_new += dfrag->already_sent; 1495 1496 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1497 * is recovering after a failover. In that event, this re-sends 1498 * old segments. 1499 * 1500 * Thus compute snd_nxt_new candidate based on 1501 * the dfrag->data_seq that was sent and the data 1502 * that has been handed to the subflow for transmission 1503 * and skip update in case it was old dfrag. 1504 */ 1505 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1506 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1507 msk->snd_nxt = snd_nxt_new; 1508 } 1509 } 1510 1511 void mptcp_check_and_set_pending(struct sock *sk) 1512 { 1513 if (mptcp_send_head(sk)) { 1514 mptcp_data_lock(sk); 1515 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1516 mptcp_data_unlock(sk); 1517 } 1518 } 1519 1520 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1521 struct mptcp_sendmsg_info *info) 1522 { 1523 struct mptcp_sock *msk = mptcp_sk(sk); 1524 struct mptcp_data_frag *dfrag; 1525 int len, copied = 0, err = 0; 1526 1527 while ((dfrag = mptcp_send_head(sk))) { 1528 info->sent = dfrag->already_sent; 1529 info->limit = dfrag->data_len; 1530 len = dfrag->data_len - dfrag->already_sent; 1531 while (len > 0) { 1532 int ret = 0; 1533 1534 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1535 if (ret <= 0) { 1536 err = copied ? : ret; 1537 goto out; 1538 } 1539 1540 info->sent += ret; 1541 copied += ret; 1542 len -= ret; 1543 1544 mptcp_update_post_push(msk, dfrag, ret); 1545 } 1546 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1547 1548 if (msk->snd_burst <= 0 || 1549 !sk_stream_memory_free(ssk) || 1550 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1551 err = copied; 1552 goto out; 1553 } 1554 mptcp_set_timeout(sk); 1555 } 1556 err = copied; 1557 1558 out: 1559 return err; 1560 } 1561 1562 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1563 { 1564 struct sock *prev_ssk = NULL, *ssk = NULL; 1565 struct mptcp_sock *msk = mptcp_sk(sk); 1566 struct mptcp_sendmsg_info info = { 1567 .flags = flags, 1568 }; 1569 bool do_check_data_fin = false; 1570 int push_count = 1; 1571 1572 while (mptcp_send_head(sk) && (push_count > 0)) { 1573 struct mptcp_subflow_context *subflow; 1574 int ret = 0; 1575 1576 if (mptcp_sched_get_send(msk)) 1577 break; 1578 1579 push_count = 0; 1580 1581 mptcp_for_each_subflow(msk, subflow) { 1582 if (READ_ONCE(subflow->scheduled)) { 1583 mptcp_subflow_set_scheduled(subflow, false); 1584 1585 prev_ssk = ssk; 1586 ssk = mptcp_subflow_tcp_sock(subflow); 1587 if (ssk != prev_ssk) { 1588 /* First check. If the ssk has changed since 1589 * the last round, release prev_ssk 1590 */ 1591 if (prev_ssk) 1592 mptcp_push_release(prev_ssk, &info); 1593 1594 /* Need to lock the new subflow only if different 1595 * from the previous one, otherwise we are still 1596 * helding the relevant lock 1597 */ 1598 lock_sock(ssk); 1599 } 1600 1601 push_count++; 1602 1603 ret = __subflow_push_pending(sk, ssk, &info); 1604 if (ret <= 0) { 1605 if (ret != -EAGAIN || 1606 (1 << ssk->sk_state) & 1607 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1608 push_count--; 1609 continue; 1610 } 1611 do_check_data_fin = true; 1612 } 1613 } 1614 } 1615 1616 /* at this point we held the socket lock for the last subflow we used */ 1617 if (ssk) 1618 mptcp_push_release(ssk, &info); 1619 1620 /* ensure the rtx timer is running */ 1621 if (!mptcp_rtx_timer_pending(sk)) 1622 mptcp_reset_rtx_timer(sk); 1623 if (do_check_data_fin) 1624 mptcp_check_send_data_fin(sk); 1625 } 1626 1627 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1628 { 1629 struct mptcp_sock *msk = mptcp_sk(sk); 1630 struct mptcp_sendmsg_info info = { 1631 .data_lock_held = true, 1632 }; 1633 bool keep_pushing = true; 1634 struct sock *xmit_ssk; 1635 int copied = 0; 1636 1637 info.flags = 0; 1638 while (mptcp_send_head(sk) && keep_pushing) { 1639 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1640 int ret = 0; 1641 1642 /* check for a different subflow usage only after 1643 * spooling the first chunk of data 1644 */ 1645 if (first) { 1646 mptcp_subflow_set_scheduled(subflow, false); 1647 ret = __subflow_push_pending(sk, ssk, &info); 1648 first = false; 1649 if (ret <= 0) 1650 break; 1651 copied += ret; 1652 continue; 1653 } 1654 1655 if (mptcp_sched_get_send(msk)) 1656 goto out; 1657 1658 if (READ_ONCE(subflow->scheduled)) { 1659 mptcp_subflow_set_scheduled(subflow, false); 1660 ret = __subflow_push_pending(sk, ssk, &info); 1661 if (ret <= 0) 1662 keep_pushing = false; 1663 copied += ret; 1664 } 1665 1666 mptcp_for_each_subflow(msk, subflow) { 1667 if (READ_ONCE(subflow->scheduled)) { 1668 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1669 if (xmit_ssk != ssk) { 1670 mptcp_subflow_delegate(subflow, 1671 MPTCP_DELEGATE_SEND); 1672 keep_pushing = false; 1673 } 1674 } 1675 } 1676 } 1677 1678 out: 1679 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1680 * not going to flush it via release_sock() 1681 */ 1682 if (copied) { 1683 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1684 info.size_goal); 1685 if (!mptcp_rtx_timer_pending(sk)) 1686 mptcp_reset_rtx_timer(sk); 1687 1688 if (msk->snd_data_fin_enable && 1689 msk->snd_nxt + 1 == msk->write_seq) 1690 mptcp_schedule_work(sk); 1691 } 1692 } 1693 1694 static void mptcp_set_nospace(struct sock *sk) 1695 { 1696 /* enable autotune */ 1697 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1698 1699 /* will be cleared on avail space */ 1700 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1701 } 1702 1703 static int mptcp_disconnect(struct sock *sk, int flags); 1704 1705 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1706 size_t len, int *copied_syn) 1707 { 1708 unsigned int saved_flags = msg->msg_flags; 1709 struct mptcp_sock *msk = mptcp_sk(sk); 1710 struct sock *ssk; 1711 int ret; 1712 1713 /* on flags based fastopen the mptcp is supposed to create the 1714 * first subflow right now. Otherwise we are in the defer_connect 1715 * path, and the first subflow must be already present. 1716 * Since the defer_connect flag is cleared after the first succsful 1717 * fastopen attempt, no need to check for additional subflow status. 1718 */ 1719 if (msg->msg_flags & MSG_FASTOPEN) { 1720 ssk = __mptcp_nmpc_sk(msk); 1721 if (IS_ERR(ssk)) 1722 return PTR_ERR(ssk); 1723 } 1724 if (!msk->first) 1725 return -EINVAL; 1726 1727 ssk = msk->first; 1728 1729 lock_sock(ssk); 1730 msg->msg_flags |= MSG_DONTWAIT; 1731 msk->fastopening = 1; 1732 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1733 msk->fastopening = 0; 1734 msg->msg_flags = saved_flags; 1735 release_sock(ssk); 1736 1737 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1738 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1739 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1740 msg->msg_namelen, msg->msg_flags, 1); 1741 1742 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1743 * case of any error, except timeout or signal 1744 */ 1745 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1746 *copied_syn = 0; 1747 } else if (ret && ret != -EINPROGRESS) { 1748 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1749 * __inet_stream_connect() can fail, due to looking check, 1750 * see mptcp_disconnect(). 1751 * Attempt it again outside the problematic scope. 1752 */ 1753 if (!mptcp_disconnect(sk, 0)) 1754 sk->sk_socket->state = SS_UNCONNECTED; 1755 } 1756 inet_clear_bit(DEFER_CONNECT, sk); 1757 1758 return ret; 1759 } 1760 1761 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1762 { 1763 struct mptcp_sock *msk = mptcp_sk(sk); 1764 struct page_frag *pfrag; 1765 size_t copied = 0; 1766 int ret = 0; 1767 long timeo; 1768 1769 /* silently ignore everything else */ 1770 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1771 1772 lock_sock(sk); 1773 1774 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1775 msg->msg_flags & MSG_FASTOPEN)) { 1776 int copied_syn = 0; 1777 1778 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1779 copied += copied_syn; 1780 if (ret == -EINPROGRESS && copied_syn > 0) 1781 goto out; 1782 else if (ret) 1783 goto do_error; 1784 } 1785 1786 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1787 1788 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1789 ret = sk_stream_wait_connect(sk, &timeo); 1790 if (ret) 1791 goto do_error; 1792 } 1793 1794 ret = -EPIPE; 1795 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1796 goto do_error; 1797 1798 pfrag = sk_page_frag(sk); 1799 1800 while (msg_data_left(msg)) { 1801 int total_ts, frag_truesize = 0; 1802 struct mptcp_data_frag *dfrag; 1803 bool dfrag_collapsed; 1804 size_t psize, offset; 1805 1806 /* reuse tail pfrag, if possible, or carve a new one from the 1807 * page allocator 1808 */ 1809 dfrag = mptcp_pending_tail(sk); 1810 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1811 if (!dfrag_collapsed) { 1812 if (!sk_stream_memory_free(sk)) 1813 goto wait_for_memory; 1814 1815 if (!mptcp_page_frag_refill(sk, pfrag)) 1816 goto wait_for_memory; 1817 1818 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1819 frag_truesize = dfrag->overhead; 1820 } 1821 1822 /* we do not bound vs wspace, to allow a single packet. 1823 * memory accounting will prevent execessive memory usage 1824 * anyway 1825 */ 1826 offset = dfrag->offset + dfrag->data_len; 1827 psize = pfrag->size - offset; 1828 psize = min_t(size_t, psize, msg_data_left(msg)); 1829 total_ts = psize + frag_truesize; 1830 1831 if (!sk_wmem_schedule(sk, total_ts)) 1832 goto wait_for_memory; 1833 1834 if (copy_page_from_iter(dfrag->page, offset, psize, 1835 &msg->msg_iter) != psize) { 1836 ret = -EFAULT; 1837 goto do_error; 1838 } 1839 1840 /* data successfully copied into the write queue */ 1841 sk_forward_alloc_add(sk, -total_ts); 1842 copied += psize; 1843 dfrag->data_len += psize; 1844 frag_truesize += psize; 1845 pfrag->offset += frag_truesize; 1846 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1847 1848 /* charge data on mptcp pending queue to the msk socket 1849 * Note: we charge such data both to sk and ssk 1850 */ 1851 sk_wmem_queued_add(sk, frag_truesize); 1852 if (!dfrag_collapsed) { 1853 get_page(dfrag->page); 1854 list_add_tail(&dfrag->list, &msk->rtx_queue); 1855 if (!msk->first_pending) 1856 WRITE_ONCE(msk->first_pending, dfrag); 1857 } 1858 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1859 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1860 !dfrag_collapsed); 1861 1862 continue; 1863 1864 wait_for_memory: 1865 mptcp_set_nospace(sk); 1866 __mptcp_push_pending(sk, msg->msg_flags); 1867 ret = sk_stream_wait_memory(sk, &timeo); 1868 if (ret) 1869 goto do_error; 1870 } 1871 1872 if (copied) 1873 __mptcp_push_pending(sk, msg->msg_flags); 1874 1875 out: 1876 release_sock(sk); 1877 return copied; 1878 1879 do_error: 1880 if (copied) 1881 goto out; 1882 1883 copied = sk_stream_error(sk, msg->msg_flags, ret); 1884 goto out; 1885 } 1886 1887 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1888 struct msghdr *msg, 1889 size_t len, int flags, 1890 struct scm_timestamping_internal *tss, 1891 int *cmsg_flags) 1892 { 1893 struct sk_buff *skb, *tmp; 1894 int copied = 0; 1895 1896 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1897 u32 offset = MPTCP_SKB_CB(skb)->offset; 1898 u32 data_len = skb->len - offset; 1899 u32 count = min_t(size_t, len - copied, data_len); 1900 int err; 1901 1902 if (!(flags & MSG_TRUNC)) { 1903 err = skb_copy_datagram_msg(skb, offset, msg, count); 1904 if (unlikely(err < 0)) { 1905 if (!copied) 1906 return err; 1907 break; 1908 } 1909 } 1910 1911 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1912 tcp_update_recv_tstamps(skb, tss); 1913 *cmsg_flags |= MPTCP_CMSG_TS; 1914 } 1915 1916 copied += count; 1917 1918 if (count < data_len) { 1919 if (!(flags & MSG_PEEK)) { 1920 MPTCP_SKB_CB(skb)->offset += count; 1921 MPTCP_SKB_CB(skb)->map_seq += count; 1922 msk->bytes_consumed += count; 1923 } 1924 break; 1925 } 1926 1927 if (!(flags & MSG_PEEK)) { 1928 /* we will bulk release the skb memory later */ 1929 skb->destructor = NULL; 1930 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1931 __skb_unlink(skb, &msk->receive_queue); 1932 __kfree_skb(skb); 1933 msk->bytes_consumed += count; 1934 } 1935 1936 if (copied >= len) 1937 break; 1938 } 1939 1940 return copied; 1941 } 1942 1943 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1944 * 1945 * Only difference: Use highest rtt estimate of the subflows in use. 1946 */ 1947 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1948 { 1949 struct mptcp_subflow_context *subflow; 1950 struct sock *sk = (struct sock *)msk; 1951 u8 scaling_ratio = U8_MAX; 1952 u32 time, advmss = 1; 1953 u64 rtt_us, mstamp; 1954 1955 msk_owned_by_me(msk); 1956 1957 if (copied <= 0) 1958 return; 1959 1960 if (!msk->rcvspace_init) 1961 mptcp_rcv_space_init(msk, msk->first); 1962 1963 msk->rcvq_space.copied += copied; 1964 1965 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1966 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1967 1968 rtt_us = msk->rcvq_space.rtt_us; 1969 if (rtt_us && time < (rtt_us >> 3)) 1970 return; 1971 1972 rtt_us = 0; 1973 mptcp_for_each_subflow(msk, subflow) { 1974 const struct tcp_sock *tp; 1975 u64 sf_rtt_us; 1976 u32 sf_advmss; 1977 1978 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1979 1980 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1981 sf_advmss = READ_ONCE(tp->advmss); 1982 1983 rtt_us = max(sf_rtt_us, rtt_us); 1984 advmss = max(sf_advmss, advmss); 1985 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 1986 } 1987 1988 msk->rcvq_space.rtt_us = rtt_us; 1989 msk->scaling_ratio = scaling_ratio; 1990 if (time < (rtt_us >> 3) || rtt_us == 0) 1991 return; 1992 1993 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1994 goto new_measure; 1995 1996 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 1997 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1998 u64 rcvwin, grow; 1999 int rcvbuf; 2000 2001 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 2002 2003 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 2004 2005 do_div(grow, msk->rcvq_space.space); 2006 rcvwin += (grow << 1); 2007 2008 rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin), 2009 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 2010 2011 if (rcvbuf > sk->sk_rcvbuf) { 2012 u32 window_clamp; 2013 2014 window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf); 2015 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 2016 2017 /* Make subflows follow along. If we do not do this, we 2018 * get drops at subflow level if skbs can't be moved to 2019 * the mptcp rx queue fast enough (announced rcv_win can 2020 * exceed ssk->sk_rcvbuf). 2021 */ 2022 mptcp_for_each_subflow(msk, subflow) { 2023 struct sock *ssk; 2024 bool slow; 2025 2026 ssk = mptcp_subflow_tcp_sock(subflow); 2027 slow = lock_sock_fast(ssk); 2028 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 2029 WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp); 2030 tcp_cleanup_rbuf(ssk, 1); 2031 unlock_sock_fast(ssk, slow); 2032 } 2033 } 2034 } 2035 2036 msk->rcvq_space.space = msk->rcvq_space.copied; 2037 new_measure: 2038 msk->rcvq_space.copied = 0; 2039 msk->rcvq_space.time = mstamp; 2040 } 2041 2042 static void __mptcp_update_rmem(struct sock *sk) 2043 { 2044 struct mptcp_sock *msk = mptcp_sk(sk); 2045 2046 if (!msk->rmem_released) 2047 return; 2048 2049 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 2050 mptcp_rmem_uncharge(sk, msk->rmem_released); 2051 WRITE_ONCE(msk->rmem_released, 0); 2052 } 2053 2054 static void __mptcp_splice_receive_queue(struct sock *sk) 2055 { 2056 struct mptcp_sock *msk = mptcp_sk(sk); 2057 2058 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 2059 } 2060 2061 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 2062 { 2063 struct sock *sk = (struct sock *)msk; 2064 unsigned int moved = 0; 2065 bool ret, done; 2066 2067 do { 2068 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 2069 bool slowpath; 2070 2071 /* we can have data pending in the subflows only if the msk 2072 * receive buffer was full at subflow_data_ready() time, 2073 * that is an unlikely slow path. 2074 */ 2075 if (likely(!ssk)) 2076 break; 2077 2078 slowpath = lock_sock_fast(ssk); 2079 mptcp_data_lock(sk); 2080 __mptcp_update_rmem(sk); 2081 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 2082 mptcp_data_unlock(sk); 2083 2084 if (unlikely(ssk->sk_err)) 2085 __mptcp_error_report(sk); 2086 unlock_sock_fast(ssk, slowpath); 2087 } while (!done); 2088 2089 /* acquire the data lock only if some input data is pending */ 2090 ret = moved > 0; 2091 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 2092 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2093 mptcp_data_lock(sk); 2094 __mptcp_update_rmem(sk); 2095 ret |= __mptcp_ofo_queue(msk); 2096 __mptcp_splice_receive_queue(sk); 2097 mptcp_data_unlock(sk); 2098 } 2099 if (ret) 2100 mptcp_check_data_fin((struct sock *)msk); 2101 return !skb_queue_empty(&msk->receive_queue); 2102 } 2103 2104 static unsigned int mptcp_inq_hint(const struct sock *sk) 2105 { 2106 const struct mptcp_sock *msk = mptcp_sk(sk); 2107 const struct sk_buff *skb; 2108 2109 skb = skb_peek(&msk->receive_queue); 2110 if (skb) { 2111 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 2112 2113 if (hint_val >= INT_MAX) 2114 return INT_MAX; 2115 2116 return (unsigned int)hint_val; 2117 } 2118 2119 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2120 return 1; 2121 2122 return 0; 2123 } 2124 2125 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2126 int flags, int *addr_len) 2127 { 2128 struct mptcp_sock *msk = mptcp_sk(sk); 2129 struct scm_timestamping_internal tss; 2130 int copied = 0, cmsg_flags = 0; 2131 int target; 2132 long timeo; 2133 2134 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2135 if (unlikely(flags & MSG_ERRQUEUE)) 2136 return inet_recv_error(sk, msg, len, addr_len); 2137 2138 lock_sock(sk); 2139 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2140 copied = -ENOTCONN; 2141 goto out_err; 2142 } 2143 2144 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2145 2146 len = min_t(size_t, len, INT_MAX); 2147 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2148 2149 if (unlikely(msk->recvmsg_inq)) 2150 cmsg_flags = MPTCP_CMSG_INQ; 2151 2152 while (copied < len) { 2153 int bytes_read; 2154 2155 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2156 if (unlikely(bytes_read < 0)) { 2157 if (!copied) 2158 copied = bytes_read; 2159 goto out_err; 2160 } 2161 2162 copied += bytes_read; 2163 2164 /* be sure to advertise window change */ 2165 mptcp_cleanup_rbuf(msk); 2166 2167 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2168 continue; 2169 2170 /* only the master socket status is relevant here. The exit 2171 * conditions mirror closely tcp_recvmsg() 2172 */ 2173 if (copied >= target) 2174 break; 2175 2176 if (copied) { 2177 if (sk->sk_err || 2178 sk->sk_state == TCP_CLOSE || 2179 (sk->sk_shutdown & RCV_SHUTDOWN) || 2180 !timeo || 2181 signal_pending(current)) 2182 break; 2183 } else { 2184 if (sk->sk_err) { 2185 copied = sock_error(sk); 2186 break; 2187 } 2188 2189 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2190 /* race breaker: the shutdown could be after the 2191 * previous receive queue check 2192 */ 2193 if (__mptcp_move_skbs(msk)) 2194 continue; 2195 break; 2196 } 2197 2198 if (sk->sk_state == TCP_CLOSE) { 2199 copied = -ENOTCONN; 2200 break; 2201 } 2202 2203 if (!timeo) { 2204 copied = -EAGAIN; 2205 break; 2206 } 2207 2208 if (signal_pending(current)) { 2209 copied = sock_intr_errno(timeo); 2210 break; 2211 } 2212 } 2213 2214 pr_debug("block timeout %ld", timeo); 2215 sk_wait_data(sk, &timeo, NULL); 2216 } 2217 2218 out_err: 2219 if (cmsg_flags && copied >= 0) { 2220 if (cmsg_flags & MPTCP_CMSG_TS) 2221 tcp_recv_timestamp(msg, sk, &tss); 2222 2223 if (cmsg_flags & MPTCP_CMSG_INQ) { 2224 unsigned int inq = mptcp_inq_hint(sk); 2225 2226 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2227 } 2228 } 2229 2230 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2231 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2232 skb_queue_empty(&msk->receive_queue), copied); 2233 if (!(flags & MSG_PEEK)) 2234 mptcp_rcv_space_adjust(msk, copied); 2235 2236 release_sock(sk); 2237 return copied; 2238 } 2239 2240 static void mptcp_retransmit_timer(struct timer_list *t) 2241 { 2242 struct inet_connection_sock *icsk = from_timer(icsk, t, 2243 icsk_retransmit_timer); 2244 struct sock *sk = &icsk->icsk_inet.sk; 2245 struct mptcp_sock *msk = mptcp_sk(sk); 2246 2247 bh_lock_sock(sk); 2248 if (!sock_owned_by_user(sk)) { 2249 /* we need a process context to retransmit */ 2250 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2251 mptcp_schedule_work(sk); 2252 } else { 2253 /* delegate our work to tcp_release_cb() */ 2254 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2255 } 2256 bh_unlock_sock(sk); 2257 sock_put(sk); 2258 } 2259 2260 static void mptcp_tout_timer(struct timer_list *t) 2261 { 2262 struct sock *sk = from_timer(sk, t, sk_timer); 2263 2264 mptcp_schedule_work(sk); 2265 sock_put(sk); 2266 } 2267 2268 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2269 * level. 2270 * 2271 * A backup subflow is returned only if that is the only kind available. 2272 */ 2273 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2274 { 2275 struct sock *backup = NULL, *pick = NULL; 2276 struct mptcp_subflow_context *subflow; 2277 int min_stale_count = INT_MAX; 2278 2279 mptcp_for_each_subflow(msk, subflow) { 2280 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2281 2282 if (!__mptcp_subflow_active(subflow)) 2283 continue; 2284 2285 /* still data outstanding at TCP level? skip this */ 2286 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2287 mptcp_pm_subflow_chk_stale(msk, ssk); 2288 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2289 continue; 2290 } 2291 2292 if (subflow->backup) { 2293 if (!backup) 2294 backup = ssk; 2295 continue; 2296 } 2297 2298 if (!pick) 2299 pick = ssk; 2300 } 2301 2302 if (pick) 2303 return pick; 2304 2305 /* use backup only if there are no progresses anywhere */ 2306 return min_stale_count > 1 ? backup : NULL; 2307 } 2308 2309 bool __mptcp_retransmit_pending_data(struct sock *sk) 2310 { 2311 struct mptcp_data_frag *cur, *rtx_head; 2312 struct mptcp_sock *msk = mptcp_sk(sk); 2313 2314 if (__mptcp_check_fallback(msk)) 2315 return false; 2316 2317 /* the closing socket has some data untransmitted and/or unacked: 2318 * some data in the mptcp rtx queue has not really xmitted yet. 2319 * keep it simple and re-inject the whole mptcp level rtx queue 2320 */ 2321 mptcp_data_lock(sk); 2322 __mptcp_clean_una_wakeup(sk); 2323 rtx_head = mptcp_rtx_head(sk); 2324 if (!rtx_head) { 2325 mptcp_data_unlock(sk); 2326 return false; 2327 } 2328 2329 msk->recovery_snd_nxt = msk->snd_nxt; 2330 msk->recovery = true; 2331 mptcp_data_unlock(sk); 2332 2333 msk->first_pending = rtx_head; 2334 msk->snd_burst = 0; 2335 2336 /* be sure to clear the "sent status" on all re-injected fragments */ 2337 list_for_each_entry(cur, &msk->rtx_queue, list) { 2338 if (!cur->already_sent) 2339 break; 2340 cur->already_sent = 0; 2341 } 2342 2343 return true; 2344 } 2345 2346 /* flags for __mptcp_close_ssk() */ 2347 #define MPTCP_CF_PUSH BIT(1) 2348 #define MPTCP_CF_FASTCLOSE BIT(2) 2349 2350 /* be sure to send a reset only if the caller asked for it, also 2351 * clean completely the subflow status when the subflow reaches 2352 * TCP_CLOSE state 2353 */ 2354 static void __mptcp_subflow_disconnect(struct sock *ssk, 2355 struct mptcp_subflow_context *subflow, 2356 unsigned int flags) 2357 { 2358 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2359 (flags & MPTCP_CF_FASTCLOSE)) { 2360 /* The MPTCP code never wait on the subflow sockets, TCP-level 2361 * disconnect should never fail 2362 */ 2363 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2364 mptcp_subflow_ctx_reset(subflow); 2365 } else { 2366 tcp_shutdown(ssk, SEND_SHUTDOWN); 2367 } 2368 } 2369 2370 /* subflow sockets can be either outgoing (connect) or incoming 2371 * (accept). 2372 * 2373 * Outgoing subflows use in-kernel sockets. 2374 * Incoming subflows do not have their own 'struct socket' allocated, 2375 * so we need to use tcp_close() after detaching them from the mptcp 2376 * parent socket. 2377 */ 2378 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2379 struct mptcp_subflow_context *subflow, 2380 unsigned int flags) 2381 { 2382 struct mptcp_sock *msk = mptcp_sk(sk); 2383 bool dispose_it, need_push = false; 2384 2385 /* If the first subflow moved to a close state before accept, e.g. due 2386 * to an incoming reset or listener shutdown, the subflow socket is 2387 * already deleted by inet_child_forget() and the mptcp socket can't 2388 * survive too. 2389 */ 2390 if (msk->in_accept_queue && msk->first == ssk && 2391 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2392 /* ensure later check in mptcp_worker() will dispose the msk */ 2393 mptcp_set_close_tout(sk, tcp_jiffies32 - (TCP_TIMEWAIT_LEN + 1)); 2394 sock_set_flag(sk, SOCK_DEAD); 2395 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2396 mptcp_subflow_drop_ctx(ssk); 2397 goto out_release; 2398 } 2399 2400 dispose_it = msk->free_first || ssk != msk->first; 2401 if (dispose_it) 2402 list_del(&subflow->node); 2403 2404 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2405 2406 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2407 /* be sure to force the tcp_close path 2408 * to generate the egress reset 2409 */ 2410 ssk->sk_lingertime = 0; 2411 sock_set_flag(ssk, SOCK_LINGER); 2412 subflow->send_fastclose = 1; 2413 } 2414 2415 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2416 if (!dispose_it) { 2417 __mptcp_subflow_disconnect(ssk, subflow, flags); 2418 release_sock(ssk); 2419 2420 goto out; 2421 } 2422 2423 subflow->disposable = 1; 2424 2425 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2426 * the ssk has been already destroyed, we just need to release the 2427 * reference owned by msk; 2428 */ 2429 if (!inet_csk(ssk)->icsk_ulp_ops) { 2430 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2431 kfree_rcu(subflow, rcu); 2432 } else { 2433 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2434 __tcp_close(ssk, 0); 2435 2436 /* close acquired an extra ref */ 2437 __sock_put(ssk); 2438 } 2439 2440 out_release: 2441 __mptcp_subflow_error_report(sk, ssk); 2442 release_sock(ssk); 2443 2444 sock_put(ssk); 2445 2446 if (ssk == msk->first) 2447 WRITE_ONCE(msk->first, NULL); 2448 2449 out: 2450 __mptcp_sync_sndbuf(sk); 2451 if (need_push) 2452 __mptcp_push_pending(sk, 0); 2453 2454 /* Catch every 'all subflows closed' scenario, including peers silently 2455 * closing them, e.g. due to timeout. 2456 * For established sockets, allow an additional timeout before closing, 2457 * as the protocol can still create more subflows. 2458 */ 2459 if (list_is_singular(&msk->conn_list) && msk->first && 2460 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2461 if (sk->sk_state != TCP_ESTABLISHED || 2462 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2463 mptcp_set_state(sk, TCP_CLOSE); 2464 mptcp_close_wake_up(sk); 2465 } else { 2466 mptcp_start_tout_timer(sk); 2467 } 2468 } 2469 } 2470 2471 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2472 struct mptcp_subflow_context *subflow) 2473 { 2474 if (sk->sk_state == TCP_ESTABLISHED) 2475 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2476 2477 /* subflow aborted before reaching the fully_established status 2478 * attempt the creation of the next subflow 2479 */ 2480 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow); 2481 2482 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2483 } 2484 2485 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2486 { 2487 return 0; 2488 } 2489 2490 static void __mptcp_close_subflow(struct sock *sk) 2491 { 2492 struct mptcp_subflow_context *subflow, *tmp; 2493 struct mptcp_sock *msk = mptcp_sk(sk); 2494 2495 might_sleep(); 2496 2497 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2498 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2499 2500 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2501 continue; 2502 2503 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2504 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2505 continue; 2506 2507 mptcp_close_ssk(sk, ssk, subflow); 2508 } 2509 2510 } 2511 2512 static bool mptcp_close_tout_expired(const struct sock *sk) 2513 { 2514 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2515 sk->sk_state == TCP_CLOSE) 2516 return false; 2517 2518 return time_after32(tcp_jiffies32, 2519 inet_csk(sk)->icsk_mtup.probe_timestamp + TCP_TIMEWAIT_LEN); 2520 } 2521 2522 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2523 { 2524 struct mptcp_subflow_context *subflow, *tmp; 2525 struct sock *sk = (struct sock *)msk; 2526 2527 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2528 return; 2529 2530 mptcp_token_destroy(msk); 2531 2532 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2533 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2534 bool slow; 2535 2536 slow = lock_sock_fast(tcp_sk); 2537 if (tcp_sk->sk_state != TCP_CLOSE) { 2538 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2539 tcp_set_state(tcp_sk, TCP_CLOSE); 2540 } 2541 unlock_sock_fast(tcp_sk, slow); 2542 } 2543 2544 /* Mirror the tcp_reset() error propagation */ 2545 switch (sk->sk_state) { 2546 case TCP_SYN_SENT: 2547 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2548 break; 2549 case TCP_CLOSE_WAIT: 2550 WRITE_ONCE(sk->sk_err, EPIPE); 2551 break; 2552 case TCP_CLOSE: 2553 return; 2554 default: 2555 WRITE_ONCE(sk->sk_err, ECONNRESET); 2556 } 2557 2558 mptcp_set_state(sk, TCP_CLOSE); 2559 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2560 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2561 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2562 2563 /* the calling mptcp_worker will properly destroy the socket */ 2564 if (sock_flag(sk, SOCK_DEAD)) 2565 return; 2566 2567 sk->sk_state_change(sk); 2568 sk_error_report(sk); 2569 } 2570 2571 static void __mptcp_retrans(struct sock *sk) 2572 { 2573 struct mptcp_sock *msk = mptcp_sk(sk); 2574 struct mptcp_subflow_context *subflow; 2575 struct mptcp_sendmsg_info info = {}; 2576 struct mptcp_data_frag *dfrag; 2577 struct sock *ssk; 2578 int ret, err; 2579 u16 len = 0; 2580 2581 mptcp_clean_una_wakeup(sk); 2582 2583 /* first check ssk: need to kick "stale" logic */ 2584 err = mptcp_sched_get_retrans(msk); 2585 dfrag = mptcp_rtx_head(sk); 2586 if (!dfrag) { 2587 if (mptcp_data_fin_enabled(msk)) { 2588 struct inet_connection_sock *icsk = inet_csk(sk); 2589 2590 icsk->icsk_retransmits++; 2591 mptcp_set_datafin_timeout(sk); 2592 mptcp_send_ack(msk); 2593 2594 goto reset_timer; 2595 } 2596 2597 if (!mptcp_send_head(sk)) 2598 return; 2599 2600 goto reset_timer; 2601 } 2602 2603 if (err) 2604 goto reset_timer; 2605 2606 mptcp_for_each_subflow(msk, subflow) { 2607 if (READ_ONCE(subflow->scheduled)) { 2608 u16 copied = 0; 2609 2610 mptcp_subflow_set_scheduled(subflow, false); 2611 2612 ssk = mptcp_subflow_tcp_sock(subflow); 2613 2614 lock_sock(ssk); 2615 2616 /* limit retransmission to the bytes already sent on some subflows */ 2617 info.sent = 0; 2618 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2619 dfrag->already_sent; 2620 while (info.sent < info.limit) { 2621 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2622 if (ret <= 0) 2623 break; 2624 2625 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2626 copied += ret; 2627 info.sent += ret; 2628 } 2629 if (copied) { 2630 len = max(copied, len); 2631 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2632 info.size_goal); 2633 WRITE_ONCE(msk->allow_infinite_fallback, false); 2634 } 2635 2636 release_sock(ssk); 2637 } 2638 } 2639 2640 msk->bytes_retrans += len; 2641 dfrag->already_sent = max(dfrag->already_sent, len); 2642 2643 reset_timer: 2644 mptcp_check_and_set_pending(sk); 2645 2646 if (!mptcp_rtx_timer_pending(sk)) 2647 mptcp_reset_rtx_timer(sk); 2648 } 2649 2650 /* schedule the timeout timer for the relevant event: either close timeout 2651 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2652 */ 2653 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2654 { 2655 struct sock *sk = (struct sock *)msk; 2656 unsigned long timeout, close_timeout; 2657 2658 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2659 return; 2660 2661 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + 2662 TCP_TIMEWAIT_LEN; 2663 2664 /* the close timeout takes precedence on the fail one, and here at least one of 2665 * them is active 2666 */ 2667 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2668 2669 sk_reset_timer(sk, &sk->sk_timer, timeout); 2670 } 2671 2672 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2673 { 2674 struct sock *ssk = msk->first; 2675 bool slow; 2676 2677 if (!ssk) 2678 return; 2679 2680 pr_debug("MP_FAIL doesn't respond, reset the subflow"); 2681 2682 slow = lock_sock_fast(ssk); 2683 mptcp_subflow_reset(ssk); 2684 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2685 unlock_sock_fast(ssk, slow); 2686 } 2687 2688 static void mptcp_do_fastclose(struct sock *sk) 2689 { 2690 struct mptcp_subflow_context *subflow, *tmp; 2691 struct mptcp_sock *msk = mptcp_sk(sk); 2692 2693 mptcp_set_state(sk, TCP_CLOSE); 2694 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2695 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2696 subflow, MPTCP_CF_FASTCLOSE); 2697 } 2698 2699 static void mptcp_worker(struct work_struct *work) 2700 { 2701 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2702 struct sock *sk = (struct sock *)msk; 2703 unsigned long fail_tout; 2704 int state; 2705 2706 lock_sock(sk); 2707 state = sk->sk_state; 2708 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2709 goto unlock; 2710 2711 mptcp_check_fastclose(msk); 2712 2713 mptcp_pm_nl_work(msk); 2714 2715 mptcp_check_send_data_fin(sk); 2716 mptcp_check_data_fin_ack(sk); 2717 mptcp_check_data_fin(sk); 2718 2719 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2720 __mptcp_close_subflow(sk); 2721 2722 if (mptcp_close_tout_expired(sk)) { 2723 mptcp_do_fastclose(sk); 2724 mptcp_close_wake_up(sk); 2725 } 2726 2727 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2728 __mptcp_destroy_sock(sk); 2729 goto unlock; 2730 } 2731 2732 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2733 __mptcp_retrans(sk); 2734 2735 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2736 if (fail_tout && time_after(jiffies, fail_tout)) 2737 mptcp_mp_fail_no_response(msk); 2738 2739 unlock: 2740 release_sock(sk); 2741 sock_put(sk); 2742 } 2743 2744 static void __mptcp_init_sock(struct sock *sk) 2745 { 2746 struct mptcp_sock *msk = mptcp_sk(sk); 2747 2748 INIT_LIST_HEAD(&msk->conn_list); 2749 INIT_LIST_HEAD(&msk->join_list); 2750 INIT_LIST_HEAD(&msk->rtx_queue); 2751 INIT_WORK(&msk->work, mptcp_worker); 2752 __skb_queue_head_init(&msk->receive_queue); 2753 msk->out_of_order_queue = RB_ROOT; 2754 msk->first_pending = NULL; 2755 msk->rmem_fwd_alloc = 0; 2756 WRITE_ONCE(msk->rmem_released, 0); 2757 msk->timer_ival = TCP_RTO_MIN; 2758 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2759 2760 WRITE_ONCE(msk->first, NULL); 2761 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2762 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2763 WRITE_ONCE(msk->allow_infinite_fallback, true); 2764 msk->recovery = false; 2765 msk->subflow_id = 1; 2766 2767 mptcp_pm_data_init(msk); 2768 2769 /* re-use the csk retrans timer for MPTCP-level retrans */ 2770 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2771 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2772 } 2773 2774 static void mptcp_ca_reset(struct sock *sk) 2775 { 2776 struct inet_connection_sock *icsk = inet_csk(sk); 2777 2778 tcp_assign_congestion_control(sk); 2779 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2780 2781 /* no need to keep a reference to the ops, the name will suffice */ 2782 tcp_cleanup_congestion_control(sk); 2783 icsk->icsk_ca_ops = NULL; 2784 } 2785 2786 static int mptcp_init_sock(struct sock *sk) 2787 { 2788 struct net *net = sock_net(sk); 2789 int ret; 2790 2791 __mptcp_init_sock(sk); 2792 2793 if (!mptcp_is_enabled(net)) 2794 return -ENOPROTOOPT; 2795 2796 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2797 return -ENOMEM; 2798 2799 ret = mptcp_init_sched(mptcp_sk(sk), 2800 mptcp_sched_find(mptcp_get_scheduler(net))); 2801 if (ret) 2802 return ret; 2803 2804 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2805 2806 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2807 * propagate the correct value 2808 */ 2809 mptcp_ca_reset(sk); 2810 2811 sk_sockets_allocated_inc(sk); 2812 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2813 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2814 2815 return 0; 2816 } 2817 2818 static void __mptcp_clear_xmit(struct sock *sk) 2819 { 2820 struct mptcp_sock *msk = mptcp_sk(sk); 2821 struct mptcp_data_frag *dtmp, *dfrag; 2822 2823 WRITE_ONCE(msk->first_pending, NULL); 2824 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2825 dfrag_clear(sk, dfrag); 2826 } 2827 2828 void mptcp_cancel_work(struct sock *sk) 2829 { 2830 struct mptcp_sock *msk = mptcp_sk(sk); 2831 2832 if (cancel_work_sync(&msk->work)) 2833 __sock_put(sk); 2834 } 2835 2836 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2837 { 2838 lock_sock(ssk); 2839 2840 switch (ssk->sk_state) { 2841 case TCP_LISTEN: 2842 if (!(how & RCV_SHUTDOWN)) 2843 break; 2844 fallthrough; 2845 case TCP_SYN_SENT: 2846 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2847 break; 2848 default: 2849 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2850 pr_debug("Fallback"); 2851 ssk->sk_shutdown |= how; 2852 tcp_shutdown(ssk, how); 2853 2854 /* simulate the data_fin ack reception to let the state 2855 * machine move forward 2856 */ 2857 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2858 mptcp_schedule_work(sk); 2859 } else { 2860 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2861 tcp_send_ack(ssk); 2862 if (!mptcp_rtx_timer_pending(sk)) 2863 mptcp_reset_rtx_timer(sk); 2864 } 2865 break; 2866 } 2867 2868 release_sock(ssk); 2869 } 2870 2871 void mptcp_set_state(struct sock *sk, int state) 2872 { 2873 int oldstate = sk->sk_state; 2874 2875 switch (state) { 2876 case TCP_ESTABLISHED: 2877 if (oldstate != TCP_ESTABLISHED) 2878 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2879 break; 2880 case TCP_CLOSE_WAIT: 2881 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state: 2882 * MPTCP "accepted" sockets will be created later on. So no 2883 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT. 2884 */ 2885 break; 2886 default: 2887 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2888 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2889 } 2890 2891 inet_sk_state_store(sk, state); 2892 } 2893 2894 static const unsigned char new_state[16] = { 2895 /* current state: new state: action: */ 2896 [0 /* (Invalid) */] = TCP_CLOSE, 2897 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2898 [TCP_SYN_SENT] = TCP_CLOSE, 2899 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2900 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2901 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2902 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2903 [TCP_CLOSE] = TCP_CLOSE, 2904 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2905 [TCP_LAST_ACK] = TCP_LAST_ACK, 2906 [TCP_LISTEN] = TCP_CLOSE, 2907 [TCP_CLOSING] = TCP_CLOSING, 2908 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2909 }; 2910 2911 static int mptcp_close_state(struct sock *sk) 2912 { 2913 int next = (int)new_state[sk->sk_state]; 2914 int ns = next & TCP_STATE_MASK; 2915 2916 mptcp_set_state(sk, ns); 2917 2918 return next & TCP_ACTION_FIN; 2919 } 2920 2921 static void mptcp_check_send_data_fin(struct sock *sk) 2922 { 2923 struct mptcp_subflow_context *subflow; 2924 struct mptcp_sock *msk = mptcp_sk(sk); 2925 2926 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2927 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2928 msk->snd_nxt, msk->write_seq); 2929 2930 /* we still need to enqueue subflows or not really shutting down, 2931 * skip this 2932 */ 2933 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2934 mptcp_send_head(sk)) 2935 return; 2936 2937 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2938 2939 mptcp_for_each_subflow(msk, subflow) { 2940 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2941 2942 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2943 } 2944 } 2945 2946 static void __mptcp_wr_shutdown(struct sock *sk) 2947 { 2948 struct mptcp_sock *msk = mptcp_sk(sk); 2949 2950 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2951 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2952 !!mptcp_send_head(sk)); 2953 2954 /* will be ignored by fallback sockets */ 2955 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2956 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2957 2958 mptcp_check_send_data_fin(sk); 2959 } 2960 2961 static void __mptcp_destroy_sock(struct sock *sk) 2962 { 2963 struct mptcp_sock *msk = mptcp_sk(sk); 2964 2965 pr_debug("msk=%p", msk); 2966 2967 might_sleep(); 2968 2969 mptcp_stop_rtx_timer(sk); 2970 sk_stop_timer(sk, &sk->sk_timer); 2971 msk->pm.status = 0; 2972 mptcp_release_sched(msk); 2973 2974 sk->sk_prot->destroy(sk); 2975 2976 WARN_ON_ONCE(msk->rmem_fwd_alloc); 2977 WARN_ON_ONCE(msk->rmem_released); 2978 sk_stream_kill_queues(sk); 2979 xfrm_sk_free_policy(sk); 2980 2981 sock_put(sk); 2982 } 2983 2984 void __mptcp_unaccepted_force_close(struct sock *sk) 2985 { 2986 sock_set_flag(sk, SOCK_DEAD); 2987 mptcp_do_fastclose(sk); 2988 __mptcp_destroy_sock(sk); 2989 } 2990 2991 static __poll_t mptcp_check_readable(struct sock *sk) 2992 { 2993 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 2994 } 2995 2996 static void mptcp_check_listen_stop(struct sock *sk) 2997 { 2998 struct sock *ssk; 2999 3000 if (inet_sk_state_load(sk) != TCP_LISTEN) 3001 return; 3002 3003 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3004 ssk = mptcp_sk(sk)->first; 3005 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3006 return; 3007 3008 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3009 tcp_set_state(ssk, TCP_CLOSE); 3010 mptcp_subflow_queue_clean(sk, ssk); 3011 inet_csk_listen_stop(ssk); 3012 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3013 release_sock(ssk); 3014 } 3015 3016 bool __mptcp_close(struct sock *sk, long timeout) 3017 { 3018 struct mptcp_subflow_context *subflow; 3019 struct mptcp_sock *msk = mptcp_sk(sk); 3020 bool do_cancel_work = false; 3021 int subflows_alive = 0; 3022 3023 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3024 3025 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3026 mptcp_check_listen_stop(sk); 3027 mptcp_set_state(sk, TCP_CLOSE); 3028 goto cleanup; 3029 } 3030 3031 if (mptcp_data_avail(msk) || timeout < 0) { 3032 /* If the msk has read data, or the caller explicitly ask it, 3033 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3034 */ 3035 mptcp_do_fastclose(sk); 3036 timeout = 0; 3037 } else if (mptcp_close_state(sk)) { 3038 __mptcp_wr_shutdown(sk); 3039 } 3040 3041 sk_stream_wait_close(sk, timeout); 3042 3043 cleanup: 3044 /* orphan all the subflows */ 3045 mptcp_for_each_subflow(msk, subflow) { 3046 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3047 bool slow = lock_sock_fast_nested(ssk); 3048 3049 subflows_alive += ssk->sk_state != TCP_CLOSE; 3050 3051 /* since the close timeout takes precedence on the fail one, 3052 * cancel the latter 3053 */ 3054 if (ssk == msk->first) 3055 subflow->fail_tout = 0; 3056 3057 /* detach from the parent socket, but allow data_ready to 3058 * push incoming data into the mptcp stack, to properly ack it 3059 */ 3060 ssk->sk_socket = NULL; 3061 ssk->sk_wq = NULL; 3062 unlock_sock_fast(ssk, slow); 3063 } 3064 sock_orphan(sk); 3065 3066 /* all the subflows are closed, only timeout can change the msk 3067 * state, let's not keep resources busy for no reasons 3068 */ 3069 if (subflows_alive == 0) 3070 mptcp_set_state(sk, TCP_CLOSE); 3071 3072 sock_hold(sk); 3073 pr_debug("msk=%p state=%d", sk, sk->sk_state); 3074 if (msk->token) 3075 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3076 3077 if (sk->sk_state == TCP_CLOSE) { 3078 __mptcp_destroy_sock(sk); 3079 do_cancel_work = true; 3080 } else { 3081 mptcp_start_tout_timer(sk); 3082 } 3083 3084 return do_cancel_work; 3085 } 3086 3087 static void mptcp_close(struct sock *sk, long timeout) 3088 { 3089 bool do_cancel_work; 3090 3091 lock_sock(sk); 3092 3093 do_cancel_work = __mptcp_close(sk, timeout); 3094 release_sock(sk); 3095 if (do_cancel_work) 3096 mptcp_cancel_work(sk); 3097 3098 sock_put(sk); 3099 } 3100 3101 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3102 { 3103 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3104 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3105 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3106 3107 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3108 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3109 3110 if (msk6 && ssk6) { 3111 msk6->saddr = ssk6->saddr; 3112 msk6->flow_label = ssk6->flow_label; 3113 } 3114 #endif 3115 3116 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3117 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3118 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3119 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3120 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3121 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3122 } 3123 3124 static int mptcp_disconnect(struct sock *sk, int flags) 3125 { 3126 struct mptcp_sock *msk = mptcp_sk(sk); 3127 3128 /* We are on the fastopen error path. We can't call straight into the 3129 * subflows cleanup code due to lock nesting (we are already under 3130 * msk->firstsocket lock). 3131 */ 3132 if (msk->fastopening) 3133 return -EBUSY; 3134 3135 mptcp_check_listen_stop(sk); 3136 mptcp_set_state(sk, TCP_CLOSE); 3137 3138 mptcp_stop_rtx_timer(sk); 3139 mptcp_stop_tout_timer(sk); 3140 3141 if (msk->token) 3142 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3143 3144 /* msk->subflow is still intact, the following will not free the first 3145 * subflow 3146 */ 3147 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3148 WRITE_ONCE(msk->flags, 0); 3149 msk->cb_flags = 0; 3150 msk->recovery = false; 3151 msk->can_ack = false; 3152 msk->fully_established = false; 3153 msk->rcv_data_fin = false; 3154 msk->snd_data_fin_enable = false; 3155 msk->rcv_fastclose = false; 3156 msk->use_64bit_ack = false; 3157 msk->bytes_consumed = 0; 3158 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3159 mptcp_pm_data_reset(msk); 3160 mptcp_ca_reset(sk); 3161 msk->bytes_acked = 0; 3162 msk->bytes_received = 0; 3163 msk->bytes_sent = 0; 3164 msk->bytes_retrans = 0; 3165 msk->rcvspace_init = 0; 3166 3167 WRITE_ONCE(sk->sk_shutdown, 0); 3168 sk_error_report(sk); 3169 return 0; 3170 } 3171 3172 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3173 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3174 { 3175 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 3176 3177 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 3178 } 3179 3180 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3181 { 3182 const struct ipv6_pinfo *np = inet6_sk(sk); 3183 struct ipv6_txoptions *opt; 3184 struct ipv6_pinfo *newnp; 3185 3186 newnp = inet6_sk(newsk); 3187 3188 rcu_read_lock(); 3189 opt = rcu_dereference(np->opt); 3190 if (opt) { 3191 opt = ipv6_dup_options(newsk, opt); 3192 if (!opt) 3193 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3194 } 3195 RCU_INIT_POINTER(newnp->opt, opt); 3196 rcu_read_unlock(); 3197 } 3198 #endif 3199 3200 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3201 { 3202 struct ip_options_rcu *inet_opt, *newopt = NULL; 3203 const struct inet_sock *inet = inet_sk(sk); 3204 struct inet_sock *newinet; 3205 3206 newinet = inet_sk(newsk); 3207 3208 rcu_read_lock(); 3209 inet_opt = rcu_dereference(inet->inet_opt); 3210 if (inet_opt) { 3211 newopt = sock_kmalloc(newsk, sizeof(*inet_opt) + 3212 inet_opt->opt.optlen, GFP_ATOMIC); 3213 if (newopt) 3214 memcpy(newopt, inet_opt, sizeof(*inet_opt) + 3215 inet_opt->opt.optlen); 3216 else 3217 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3218 } 3219 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3220 rcu_read_unlock(); 3221 } 3222 3223 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3224 const struct mptcp_options_received *mp_opt, 3225 struct sock *ssk, 3226 struct request_sock *req) 3227 { 3228 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3229 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3230 struct mptcp_subflow_context *subflow; 3231 struct mptcp_sock *msk; 3232 3233 if (!nsk) 3234 return NULL; 3235 3236 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3237 if (nsk->sk_family == AF_INET6) 3238 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3239 #endif 3240 3241 __mptcp_init_sock(nsk); 3242 3243 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3244 if (nsk->sk_family == AF_INET6) 3245 mptcp_copy_ip6_options(nsk, sk); 3246 else 3247 #endif 3248 mptcp_copy_ip_options(nsk, sk); 3249 3250 msk = mptcp_sk(nsk); 3251 msk->local_key = subflow_req->local_key; 3252 msk->token = subflow_req->token; 3253 msk->in_accept_queue = 1; 3254 WRITE_ONCE(msk->fully_established, false); 3255 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3256 WRITE_ONCE(msk->csum_enabled, true); 3257 3258 msk->write_seq = subflow_req->idsn + 1; 3259 msk->snd_nxt = msk->write_seq; 3260 msk->snd_una = msk->write_seq; 3261 msk->wnd_end = msk->snd_nxt + tcp_sk(ssk)->snd_wnd; 3262 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3263 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3264 3265 /* passive msk is created after the first/MPC subflow */ 3266 msk->subflow_id = 2; 3267 3268 sock_reset_flag(nsk, SOCK_RCU_FREE); 3269 security_inet_csk_clone(nsk, req); 3270 3271 /* this can't race with mptcp_close(), as the msk is 3272 * not yet exposted to user-space 3273 */ 3274 mptcp_set_state(nsk, TCP_ESTABLISHED); 3275 3276 /* The msk maintain a ref to each subflow in the connections list */ 3277 WRITE_ONCE(msk->first, ssk); 3278 subflow = mptcp_subflow_ctx(ssk); 3279 list_add(&subflow->node, &msk->conn_list); 3280 sock_hold(ssk); 3281 3282 /* new mpc subflow takes ownership of the newly 3283 * created mptcp socket 3284 */ 3285 mptcp_token_accept(subflow_req, msk); 3286 3287 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3288 * uses the correct data 3289 */ 3290 mptcp_copy_inaddrs(nsk, ssk); 3291 __mptcp_propagate_sndbuf(nsk, ssk); 3292 3293 mptcp_rcv_space_init(msk, ssk); 3294 3295 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3296 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3297 bh_unlock_sock(nsk); 3298 3299 /* note: the newly allocated socket refcount is 2 now */ 3300 return nsk; 3301 } 3302 3303 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3304 { 3305 const struct tcp_sock *tp = tcp_sk(ssk); 3306 3307 msk->rcvspace_init = 1; 3308 msk->rcvq_space.copied = 0; 3309 msk->rcvq_space.rtt_us = 0; 3310 3311 msk->rcvq_space.time = tp->tcp_mstamp; 3312 3313 /* initial rcv_space offering made to peer */ 3314 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3315 TCP_INIT_CWND * tp->advmss); 3316 if (msk->rcvq_space.space == 0) 3317 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3318 } 3319 3320 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3321 { 3322 struct mptcp_subflow_context *subflow, *tmp; 3323 struct sock *sk = (struct sock *)msk; 3324 3325 __mptcp_clear_xmit(sk); 3326 3327 /* join list will be eventually flushed (with rst) at sock lock release time */ 3328 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3329 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3330 3331 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3332 mptcp_data_lock(sk); 3333 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3334 __skb_queue_purge(&sk->sk_receive_queue); 3335 skb_rbtree_purge(&msk->out_of_order_queue); 3336 mptcp_data_unlock(sk); 3337 3338 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3339 * inet_sock_destruct() will dispose it 3340 */ 3341 sk_forward_alloc_add(sk, msk->rmem_fwd_alloc); 3342 WRITE_ONCE(msk->rmem_fwd_alloc, 0); 3343 mptcp_token_destroy(msk); 3344 mptcp_pm_free_anno_list(msk); 3345 mptcp_free_local_addr_list(msk); 3346 } 3347 3348 static void mptcp_destroy(struct sock *sk) 3349 { 3350 struct mptcp_sock *msk = mptcp_sk(sk); 3351 3352 /* allow the following to close even the initial subflow */ 3353 msk->free_first = 1; 3354 mptcp_destroy_common(msk, 0); 3355 sk_sockets_allocated_dec(sk); 3356 } 3357 3358 void __mptcp_data_acked(struct sock *sk) 3359 { 3360 if (!sock_owned_by_user(sk)) 3361 __mptcp_clean_una(sk); 3362 else 3363 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3364 3365 if (mptcp_pending_data_fin_ack(sk)) 3366 mptcp_schedule_work(sk); 3367 } 3368 3369 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3370 { 3371 if (!mptcp_send_head(sk)) 3372 return; 3373 3374 if (!sock_owned_by_user(sk)) 3375 __mptcp_subflow_push_pending(sk, ssk, false); 3376 else 3377 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3378 } 3379 3380 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3381 BIT(MPTCP_RETRANSMIT) | \ 3382 BIT(MPTCP_FLUSH_JOIN_LIST)) 3383 3384 /* processes deferred events and flush wmem */ 3385 static void mptcp_release_cb(struct sock *sk) 3386 __must_hold(&sk->sk_lock.slock) 3387 { 3388 struct mptcp_sock *msk = mptcp_sk(sk); 3389 3390 for (;;) { 3391 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3392 struct list_head join_list; 3393 3394 if (!flags) 3395 break; 3396 3397 INIT_LIST_HEAD(&join_list); 3398 list_splice_init(&msk->join_list, &join_list); 3399 3400 /* the following actions acquire the subflow socket lock 3401 * 3402 * 1) can't be invoked in atomic scope 3403 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3404 * datapath acquires the msk socket spinlock while helding 3405 * the subflow socket lock 3406 */ 3407 msk->cb_flags &= ~flags; 3408 spin_unlock_bh(&sk->sk_lock.slock); 3409 3410 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3411 __mptcp_flush_join_list(sk, &join_list); 3412 if (flags & BIT(MPTCP_PUSH_PENDING)) 3413 __mptcp_push_pending(sk, 0); 3414 if (flags & BIT(MPTCP_RETRANSMIT)) 3415 __mptcp_retrans(sk); 3416 3417 cond_resched(); 3418 spin_lock_bh(&sk->sk_lock.slock); 3419 } 3420 3421 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3422 __mptcp_clean_una_wakeup(sk); 3423 if (unlikely(msk->cb_flags)) { 3424 /* be sure to sync the msk state before taking actions 3425 * depending on sk_state (MPTCP_ERROR_REPORT) 3426 * On sk release avoid actions depending on the first subflow 3427 */ 3428 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3429 __mptcp_sync_state(sk, msk->pending_state); 3430 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3431 __mptcp_error_report(sk); 3432 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3433 __mptcp_sync_sndbuf(sk); 3434 } 3435 3436 __mptcp_update_rmem(sk); 3437 } 3438 3439 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3440 * TCP can't schedule delack timer before the subflow is fully established. 3441 * MPTCP uses the delack timer to do 3rd ack retransmissions 3442 */ 3443 static void schedule_3rdack_retransmission(struct sock *ssk) 3444 { 3445 struct inet_connection_sock *icsk = inet_csk(ssk); 3446 struct tcp_sock *tp = tcp_sk(ssk); 3447 unsigned long timeout; 3448 3449 if (mptcp_subflow_ctx(ssk)->fully_established) 3450 return; 3451 3452 /* reschedule with a timeout above RTT, as we must look only for drop */ 3453 if (tp->srtt_us) 3454 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3455 else 3456 timeout = TCP_TIMEOUT_INIT; 3457 timeout += jiffies; 3458 3459 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3460 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3461 icsk->icsk_ack.timeout = timeout; 3462 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3463 } 3464 3465 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3466 { 3467 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3468 struct sock *sk = subflow->conn; 3469 3470 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3471 mptcp_data_lock(sk); 3472 if (!sock_owned_by_user(sk)) 3473 __mptcp_subflow_push_pending(sk, ssk, true); 3474 else 3475 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3476 mptcp_data_unlock(sk); 3477 } 3478 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3479 mptcp_data_lock(sk); 3480 if (!sock_owned_by_user(sk)) 3481 __mptcp_sync_sndbuf(sk); 3482 else 3483 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3484 mptcp_data_unlock(sk); 3485 } 3486 if (status & BIT(MPTCP_DELEGATE_ACK)) 3487 schedule_3rdack_retransmission(ssk); 3488 } 3489 3490 static int mptcp_hash(struct sock *sk) 3491 { 3492 /* should never be called, 3493 * we hash the TCP subflows not the master socket 3494 */ 3495 WARN_ON_ONCE(1); 3496 return 0; 3497 } 3498 3499 static void mptcp_unhash(struct sock *sk) 3500 { 3501 /* called from sk_common_release(), but nothing to do here */ 3502 } 3503 3504 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3505 { 3506 struct mptcp_sock *msk = mptcp_sk(sk); 3507 3508 pr_debug("msk=%p, ssk=%p", msk, msk->first); 3509 if (WARN_ON_ONCE(!msk->first)) 3510 return -EINVAL; 3511 3512 return inet_csk_get_port(msk->first, snum); 3513 } 3514 3515 void mptcp_finish_connect(struct sock *ssk) 3516 { 3517 struct mptcp_subflow_context *subflow; 3518 struct mptcp_sock *msk; 3519 struct sock *sk; 3520 3521 subflow = mptcp_subflow_ctx(ssk); 3522 sk = subflow->conn; 3523 msk = mptcp_sk(sk); 3524 3525 pr_debug("msk=%p, token=%u", sk, subflow->token); 3526 3527 subflow->map_seq = subflow->iasn; 3528 subflow->map_subflow_seq = 1; 3529 3530 /* the socket is not connected yet, no msk/subflow ops can access/race 3531 * accessing the field below 3532 */ 3533 WRITE_ONCE(msk->local_key, subflow->local_key); 3534 3535 mptcp_pm_new_connection(msk, ssk, 0); 3536 } 3537 3538 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3539 { 3540 write_lock_bh(&sk->sk_callback_lock); 3541 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3542 sk_set_socket(sk, parent); 3543 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3544 write_unlock_bh(&sk->sk_callback_lock); 3545 } 3546 3547 bool mptcp_finish_join(struct sock *ssk) 3548 { 3549 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3550 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3551 struct sock *parent = (void *)msk; 3552 bool ret = true; 3553 3554 pr_debug("msk=%p, subflow=%p", msk, subflow); 3555 3556 /* mptcp socket already closing? */ 3557 if (!mptcp_is_fully_established(parent)) { 3558 subflow->reset_reason = MPTCP_RST_EMPTCP; 3559 return false; 3560 } 3561 3562 /* active subflow, already present inside the conn_list */ 3563 if (!list_empty(&subflow->node)) { 3564 mptcp_subflow_joined(msk, ssk); 3565 mptcp_propagate_sndbuf(parent, ssk); 3566 return true; 3567 } 3568 3569 if (!mptcp_pm_allow_new_subflow(msk)) 3570 goto err_prohibited; 3571 3572 /* If we can't acquire msk socket lock here, let the release callback 3573 * handle it 3574 */ 3575 mptcp_data_lock(parent); 3576 if (!sock_owned_by_user(parent)) { 3577 ret = __mptcp_finish_join(msk, ssk); 3578 if (ret) { 3579 sock_hold(ssk); 3580 list_add_tail(&subflow->node, &msk->conn_list); 3581 } 3582 } else { 3583 sock_hold(ssk); 3584 list_add_tail(&subflow->node, &msk->join_list); 3585 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3586 } 3587 mptcp_data_unlock(parent); 3588 3589 if (!ret) { 3590 err_prohibited: 3591 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3592 return false; 3593 } 3594 3595 return true; 3596 } 3597 3598 static void mptcp_shutdown(struct sock *sk, int how) 3599 { 3600 pr_debug("sk=%p, how=%d", sk, how); 3601 3602 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3603 __mptcp_wr_shutdown(sk); 3604 } 3605 3606 static int mptcp_forward_alloc_get(const struct sock *sk) 3607 { 3608 return READ_ONCE(sk->sk_forward_alloc) + 3609 READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc); 3610 } 3611 3612 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3613 { 3614 const struct sock *sk = (void *)msk; 3615 u64 delta; 3616 3617 if (sk->sk_state == TCP_LISTEN) 3618 return -EINVAL; 3619 3620 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3621 return 0; 3622 3623 delta = msk->write_seq - v; 3624 if (__mptcp_check_fallback(msk) && msk->first) { 3625 struct tcp_sock *tp = tcp_sk(msk->first); 3626 3627 /* the first subflow is disconnected after close - see 3628 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3629 * so ignore that status, too. 3630 */ 3631 if (!((1 << msk->first->sk_state) & 3632 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3633 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3634 } 3635 if (delta > INT_MAX) 3636 delta = INT_MAX; 3637 3638 return (int)delta; 3639 } 3640 3641 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3642 { 3643 struct mptcp_sock *msk = mptcp_sk(sk); 3644 bool slow; 3645 3646 switch (cmd) { 3647 case SIOCINQ: 3648 if (sk->sk_state == TCP_LISTEN) 3649 return -EINVAL; 3650 3651 lock_sock(sk); 3652 __mptcp_move_skbs(msk); 3653 *karg = mptcp_inq_hint(sk); 3654 release_sock(sk); 3655 break; 3656 case SIOCOUTQ: 3657 slow = lock_sock_fast(sk); 3658 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3659 unlock_sock_fast(sk, slow); 3660 break; 3661 case SIOCOUTQNSD: 3662 slow = lock_sock_fast(sk); 3663 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3664 unlock_sock_fast(sk, slow); 3665 break; 3666 default: 3667 return -ENOIOCTLCMD; 3668 } 3669 3670 return 0; 3671 } 3672 3673 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3674 struct mptcp_subflow_context *subflow) 3675 { 3676 subflow->request_mptcp = 0; 3677 __mptcp_do_fallback(msk); 3678 } 3679 3680 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3681 { 3682 struct mptcp_subflow_context *subflow; 3683 struct mptcp_sock *msk = mptcp_sk(sk); 3684 int err = -EINVAL; 3685 struct sock *ssk; 3686 3687 ssk = __mptcp_nmpc_sk(msk); 3688 if (IS_ERR(ssk)) 3689 return PTR_ERR(ssk); 3690 3691 mptcp_set_state(sk, TCP_SYN_SENT); 3692 subflow = mptcp_subflow_ctx(ssk); 3693 #ifdef CONFIG_TCP_MD5SIG 3694 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3695 * TCP option space. 3696 */ 3697 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3698 mptcp_subflow_early_fallback(msk, subflow); 3699 #endif 3700 if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) { 3701 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT); 3702 mptcp_subflow_early_fallback(msk, subflow); 3703 } 3704 3705 WRITE_ONCE(msk->write_seq, subflow->idsn); 3706 WRITE_ONCE(msk->snd_nxt, subflow->idsn); 3707 WRITE_ONCE(msk->snd_una, subflow->idsn); 3708 if (likely(!__mptcp_check_fallback(msk))) 3709 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3710 3711 /* if reaching here via the fastopen/sendmsg path, the caller already 3712 * acquired the subflow socket lock, too. 3713 */ 3714 if (!msk->fastopening) 3715 lock_sock(ssk); 3716 3717 /* the following mirrors closely a very small chunk of code from 3718 * __inet_stream_connect() 3719 */ 3720 if (ssk->sk_state != TCP_CLOSE) 3721 goto out; 3722 3723 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3724 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3725 if (err) 3726 goto out; 3727 } 3728 3729 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3730 if (err < 0) 3731 goto out; 3732 3733 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3734 3735 out: 3736 if (!msk->fastopening) 3737 release_sock(ssk); 3738 3739 /* on successful connect, the msk state will be moved to established by 3740 * subflow_finish_connect() 3741 */ 3742 if (unlikely(err)) { 3743 /* avoid leaving a dangling token in an unconnected socket */ 3744 mptcp_token_destroy(msk); 3745 mptcp_set_state(sk, TCP_CLOSE); 3746 return err; 3747 } 3748 3749 mptcp_copy_inaddrs(sk, ssk); 3750 return 0; 3751 } 3752 3753 static struct proto mptcp_prot = { 3754 .name = "MPTCP", 3755 .owner = THIS_MODULE, 3756 .init = mptcp_init_sock, 3757 .connect = mptcp_connect, 3758 .disconnect = mptcp_disconnect, 3759 .close = mptcp_close, 3760 .setsockopt = mptcp_setsockopt, 3761 .getsockopt = mptcp_getsockopt, 3762 .shutdown = mptcp_shutdown, 3763 .destroy = mptcp_destroy, 3764 .sendmsg = mptcp_sendmsg, 3765 .ioctl = mptcp_ioctl, 3766 .recvmsg = mptcp_recvmsg, 3767 .release_cb = mptcp_release_cb, 3768 .hash = mptcp_hash, 3769 .unhash = mptcp_unhash, 3770 .get_port = mptcp_get_port, 3771 .forward_alloc_get = mptcp_forward_alloc_get, 3772 .sockets_allocated = &mptcp_sockets_allocated, 3773 3774 .memory_allocated = &tcp_memory_allocated, 3775 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3776 3777 .memory_pressure = &tcp_memory_pressure, 3778 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3779 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3780 .sysctl_mem = sysctl_tcp_mem, 3781 .obj_size = sizeof(struct mptcp_sock), 3782 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3783 .no_autobind = true, 3784 }; 3785 3786 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3787 { 3788 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3789 struct sock *ssk, *sk = sock->sk; 3790 int err = -EINVAL; 3791 3792 lock_sock(sk); 3793 ssk = __mptcp_nmpc_sk(msk); 3794 if (IS_ERR(ssk)) { 3795 err = PTR_ERR(ssk); 3796 goto unlock; 3797 } 3798 3799 if (sk->sk_family == AF_INET) 3800 err = inet_bind_sk(ssk, uaddr, addr_len); 3801 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3802 else if (sk->sk_family == AF_INET6) 3803 err = inet6_bind_sk(ssk, uaddr, addr_len); 3804 #endif 3805 if (!err) 3806 mptcp_copy_inaddrs(sk, ssk); 3807 3808 unlock: 3809 release_sock(sk); 3810 return err; 3811 } 3812 3813 static int mptcp_listen(struct socket *sock, int backlog) 3814 { 3815 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3816 struct sock *sk = sock->sk; 3817 struct sock *ssk; 3818 int err; 3819 3820 pr_debug("msk=%p", msk); 3821 3822 lock_sock(sk); 3823 3824 err = -EINVAL; 3825 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3826 goto unlock; 3827 3828 ssk = __mptcp_nmpc_sk(msk); 3829 if (IS_ERR(ssk)) { 3830 err = PTR_ERR(ssk); 3831 goto unlock; 3832 } 3833 3834 mptcp_set_state(sk, TCP_LISTEN); 3835 sock_set_flag(sk, SOCK_RCU_FREE); 3836 3837 lock_sock(ssk); 3838 err = __inet_listen_sk(ssk, backlog); 3839 release_sock(ssk); 3840 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3841 3842 if (!err) { 3843 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3844 mptcp_copy_inaddrs(sk, ssk); 3845 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3846 } 3847 3848 unlock: 3849 release_sock(sk); 3850 return err; 3851 } 3852 3853 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3854 int flags, bool kern) 3855 { 3856 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3857 struct sock *ssk, *newsk; 3858 int err; 3859 3860 pr_debug("msk=%p", msk); 3861 3862 /* Buggy applications can call accept on socket states other then LISTEN 3863 * but no need to allocate the first subflow just to error out. 3864 */ 3865 ssk = READ_ONCE(msk->first); 3866 if (!ssk) 3867 return -EINVAL; 3868 3869 pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk)); 3870 newsk = inet_csk_accept(ssk, flags, &err, kern); 3871 if (!newsk) 3872 return err; 3873 3874 pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk)); 3875 if (sk_is_mptcp(newsk)) { 3876 struct mptcp_subflow_context *subflow; 3877 struct sock *new_mptcp_sock; 3878 3879 subflow = mptcp_subflow_ctx(newsk); 3880 new_mptcp_sock = subflow->conn; 3881 3882 /* is_mptcp should be false if subflow->conn is missing, see 3883 * subflow_syn_recv_sock() 3884 */ 3885 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3886 tcp_sk(newsk)->is_mptcp = 0; 3887 goto tcpfallback; 3888 } 3889 3890 newsk = new_mptcp_sock; 3891 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3892 3893 newsk->sk_kern_sock = kern; 3894 lock_sock(newsk); 3895 __inet_accept(sock, newsock, newsk); 3896 3897 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3898 msk = mptcp_sk(newsk); 3899 msk->in_accept_queue = 0; 3900 3901 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3902 * This is needed so NOSPACE flag can be set from tcp stack. 3903 */ 3904 mptcp_for_each_subflow(msk, subflow) { 3905 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3906 3907 if (!ssk->sk_socket) 3908 mptcp_sock_graft(ssk, newsock); 3909 } 3910 3911 /* Do late cleanup for the first subflow as necessary. Also 3912 * deal with bad peers not doing a complete shutdown. 3913 */ 3914 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3915 __mptcp_close_ssk(newsk, msk->first, 3916 mptcp_subflow_ctx(msk->first), 0); 3917 if (unlikely(list_is_singular(&msk->conn_list))) 3918 mptcp_set_state(newsk, TCP_CLOSE); 3919 } 3920 } else { 3921 tcpfallback: 3922 newsk->sk_kern_sock = kern; 3923 lock_sock(newsk); 3924 __inet_accept(sock, newsock, newsk); 3925 /* we are being invoked after accepting a non-mp-capable 3926 * flow: sk is a tcp_sk, not an mptcp one. 3927 * 3928 * Hand the socket over to tcp so all further socket ops 3929 * bypass mptcp. 3930 */ 3931 WRITE_ONCE(newsock->sk->sk_socket->ops, 3932 mptcp_fallback_tcp_ops(newsock->sk)); 3933 } 3934 release_sock(newsk); 3935 3936 return 0; 3937 } 3938 3939 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3940 { 3941 struct sock *sk = (struct sock *)msk; 3942 3943 if (sk_stream_is_writeable(sk)) 3944 return EPOLLOUT | EPOLLWRNORM; 3945 3946 mptcp_set_nospace(sk); 3947 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3948 if (sk_stream_is_writeable(sk)) 3949 return EPOLLOUT | EPOLLWRNORM; 3950 3951 return 0; 3952 } 3953 3954 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3955 struct poll_table_struct *wait) 3956 { 3957 struct sock *sk = sock->sk; 3958 struct mptcp_sock *msk; 3959 __poll_t mask = 0; 3960 u8 shutdown; 3961 int state; 3962 3963 msk = mptcp_sk(sk); 3964 sock_poll_wait(file, sock, wait); 3965 3966 state = inet_sk_state_load(sk); 3967 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3968 if (state == TCP_LISTEN) { 3969 struct sock *ssk = READ_ONCE(msk->first); 3970 3971 if (WARN_ON_ONCE(!ssk)) 3972 return 0; 3973 3974 return inet_csk_listen_poll(ssk); 3975 } 3976 3977 shutdown = READ_ONCE(sk->sk_shutdown); 3978 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3979 mask |= EPOLLHUP; 3980 if (shutdown & RCV_SHUTDOWN) 3981 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3982 3983 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3984 mask |= mptcp_check_readable(sk); 3985 if (shutdown & SEND_SHUTDOWN) 3986 mask |= EPOLLOUT | EPOLLWRNORM; 3987 else 3988 mask |= mptcp_check_writeable(msk); 3989 } else if (state == TCP_SYN_SENT && 3990 inet_test_bit(DEFER_CONNECT, sk)) { 3991 /* cf tcp_poll() note about TFO */ 3992 mask |= EPOLLOUT | EPOLLWRNORM; 3993 } 3994 3995 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 3996 smp_rmb(); 3997 if (READ_ONCE(sk->sk_err)) 3998 mask |= EPOLLERR; 3999 4000 return mask; 4001 } 4002 4003 static const struct proto_ops mptcp_stream_ops = { 4004 .family = PF_INET, 4005 .owner = THIS_MODULE, 4006 .release = inet_release, 4007 .bind = mptcp_bind, 4008 .connect = inet_stream_connect, 4009 .socketpair = sock_no_socketpair, 4010 .accept = mptcp_stream_accept, 4011 .getname = inet_getname, 4012 .poll = mptcp_poll, 4013 .ioctl = inet_ioctl, 4014 .gettstamp = sock_gettstamp, 4015 .listen = mptcp_listen, 4016 .shutdown = inet_shutdown, 4017 .setsockopt = sock_common_setsockopt, 4018 .getsockopt = sock_common_getsockopt, 4019 .sendmsg = inet_sendmsg, 4020 .recvmsg = inet_recvmsg, 4021 .mmap = sock_no_mmap, 4022 .set_rcvlowat = mptcp_set_rcvlowat, 4023 }; 4024 4025 static struct inet_protosw mptcp_protosw = { 4026 .type = SOCK_STREAM, 4027 .protocol = IPPROTO_MPTCP, 4028 .prot = &mptcp_prot, 4029 .ops = &mptcp_stream_ops, 4030 .flags = INET_PROTOSW_ICSK, 4031 }; 4032 4033 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4034 { 4035 struct mptcp_delegated_action *delegated; 4036 struct mptcp_subflow_context *subflow; 4037 int work_done = 0; 4038 4039 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4040 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4041 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4042 4043 bh_lock_sock_nested(ssk); 4044 if (!sock_owned_by_user(ssk)) { 4045 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4046 } else { 4047 /* tcp_release_cb_override already processed 4048 * the action or will do at next release_sock(). 4049 * In both case must dequeue the subflow here - on the same 4050 * CPU that scheduled it. 4051 */ 4052 smp_wmb(); 4053 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4054 } 4055 bh_unlock_sock(ssk); 4056 sock_put(ssk); 4057 4058 if (++work_done == budget) 4059 return budget; 4060 } 4061 4062 /* always provide a 0 'work_done' argument, so that napi_complete_done 4063 * will not try accessing the NULL napi->dev ptr 4064 */ 4065 napi_complete_done(napi, 0); 4066 return work_done; 4067 } 4068 4069 void __init mptcp_proto_init(void) 4070 { 4071 struct mptcp_delegated_action *delegated; 4072 int cpu; 4073 4074 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4075 4076 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4077 panic("Failed to allocate MPTCP pcpu counter\n"); 4078 4079 init_dummy_netdev(&mptcp_napi_dev); 4080 for_each_possible_cpu(cpu) { 4081 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4082 INIT_LIST_HEAD(&delegated->head); 4083 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 4084 mptcp_napi_poll); 4085 napi_enable(&delegated->napi); 4086 } 4087 4088 mptcp_subflow_init(); 4089 mptcp_pm_init(); 4090 mptcp_sched_init(); 4091 mptcp_token_init(); 4092 4093 if (proto_register(&mptcp_prot, 1) != 0) 4094 panic("Failed to register MPTCP proto.\n"); 4095 4096 inet_register_protosw(&mptcp_protosw); 4097 4098 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4099 } 4100 4101 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4102 static const struct proto_ops mptcp_v6_stream_ops = { 4103 .family = PF_INET6, 4104 .owner = THIS_MODULE, 4105 .release = inet6_release, 4106 .bind = mptcp_bind, 4107 .connect = inet_stream_connect, 4108 .socketpair = sock_no_socketpair, 4109 .accept = mptcp_stream_accept, 4110 .getname = inet6_getname, 4111 .poll = mptcp_poll, 4112 .ioctl = inet6_ioctl, 4113 .gettstamp = sock_gettstamp, 4114 .listen = mptcp_listen, 4115 .shutdown = inet_shutdown, 4116 .setsockopt = sock_common_setsockopt, 4117 .getsockopt = sock_common_getsockopt, 4118 .sendmsg = inet6_sendmsg, 4119 .recvmsg = inet6_recvmsg, 4120 .mmap = sock_no_mmap, 4121 #ifdef CONFIG_COMPAT 4122 .compat_ioctl = inet6_compat_ioctl, 4123 #endif 4124 .set_rcvlowat = mptcp_set_rcvlowat, 4125 }; 4126 4127 static struct proto mptcp_v6_prot; 4128 4129 static struct inet_protosw mptcp_v6_protosw = { 4130 .type = SOCK_STREAM, 4131 .protocol = IPPROTO_MPTCP, 4132 .prot = &mptcp_v6_prot, 4133 .ops = &mptcp_v6_stream_ops, 4134 .flags = INET_PROTOSW_ICSK, 4135 }; 4136 4137 int __init mptcp_proto_v6_init(void) 4138 { 4139 int err; 4140 4141 mptcp_v6_prot = mptcp_prot; 4142 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 4143 mptcp_v6_prot.slab = NULL; 4144 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4145 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4146 4147 err = proto_register(&mptcp_v6_prot, 1); 4148 if (err) 4149 return err; 4150 4151 err = inet6_register_protosw(&mptcp_v6_protosw); 4152 if (err) 4153 proto_unregister(&mptcp_v6_prot); 4154 4155 return err; 4156 } 4157 #endif 4158