1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 struct mptcp_skb_cb { 40 u64 map_seq; 41 u64 end_seq; 42 u32 offset; 43 u8 has_rxtstamp:1; 44 }; 45 46 #define MPTCP_SKB_CB(__skb) ((struct mptcp_skb_cb *)&((__skb)->cb[0])) 47 48 enum { 49 MPTCP_CMSG_TS = BIT(0), 50 MPTCP_CMSG_INQ = BIT(1), 51 }; 52 53 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 54 55 static void __mptcp_destroy_sock(struct sock *sk); 56 static void __mptcp_check_send_data_fin(struct sock *sk); 57 58 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 59 static struct net_device mptcp_napi_dev; 60 61 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not 62 * completed yet or has failed, return the subflow socket. 63 * Otherwise return NULL. 64 */ 65 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk) 66 { 67 if (!msk->subflow || READ_ONCE(msk->can_ack)) 68 return NULL; 69 70 return msk->subflow; 71 } 72 73 /* Returns end sequence number of the receiver's advertised window */ 74 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 75 { 76 return READ_ONCE(msk->wnd_end); 77 } 78 79 static bool mptcp_is_tcpsk(struct sock *sk) 80 { 81 struct socket *sock = sk->sk_socket; 82 83 if (unlikely(sk->sk_prot == &tcp_prot)) { 84 /* we are being invoked after mptcp_accept() has 85 * accepted a non-mp-capable flow: sk is a tcp_sk, 86 * not an mptcp one. 87 * 88 * Hand the socket over to tcp so all further socket ops 89 * bypass mptcp. 90 */ 91 sock->ops = &inet_stream_ops; 92 return true; 93 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 94 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { 95 sock->ops = &inet6_stream_ops; 96 return true; 97 #endif 98 } 99 100 return false; 101 } 102 103 static int __mptcp_socket_create(struct mptcp_sock *msk) 104 { 105 struct mptcp_subflow_context *subflow; 106 struct sock *sk = (struct sock *)msk; 107 struct socket *ssock; 108 int err; 109 110 err = mptcp_subflow_create_socket(sk, &ssock); 111 if (err) 112 return err; 113 114 msk->first = ssock->sk; 115 msk->subflow = ssock; 116 subflow = mptcp_subflow_ctx(ssock->sk); 117 list_add(&subflow->node, &msk->conn_list); 118 sock_hold(ssock->sk); 119 subflow->request_mptcp = 1; 120 mptcp_sock_graft(msk->first, sk->sk_socket); 121 122 return 0; 123 } 124 125 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 126 { 127 sk_drops_add(sk, skb); 128 __kfree_skb(skb); 129 } 130 131 static void mptcp_rmem_charge(struct sock *sk, int size) 132 { 133 mptcp_sk(sk)->rmem_fwd_alloc -= size; 134 } 135 136 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 137 struct sk_buff *from) 138 { 139 bool fragstolen; 140 int delta; 141 142 if (MPTCP_SKB_CB(from)->offset || 143 !skb_try_coalesce(to, from, &fragstolen, &delta)) 144 return false; 145 146 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 147 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 148 to->len, MPTCP_SKB_CB(from)->end_seq); 149 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 150 kfree_skb_partial(from, fragstolen); 151 atomic_add(delta, &sk->sk_rmem_alloc); 152 mptcp_rmem_charge(sk, delta); 153 return true; 154 } 155 156 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 157 struct sk_buff *from) 158 { 159 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 160 return false; 161 162 return mptcp_try_coalesce((struct sock *)msk, to, from); 163 } 164 165 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 166 { 167 amount >>= SK_MEM_QUANTUM_SHIFT; 168 mptcp_sk(sk)->rmem_fwd_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 169 __sk_mem_reduce_allocated(sk, amount); 170 } 171 172 static void mptcp_rmem_uncharge(struct sock *sk, int size) 173 { 174 struct mptcp_sock *msk = mptcp_sk(sk); 175 int reclaimable; 176 177 msk->rmem_fwd_alloc += size; 178 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 179 180 /* see sk_mem_uncharge() for the rationale behind the following schema */ 181 if (unlikely(reclaimable >= SK_RECLAIM_THRESHOLD)) 182 __mptcp_rmem_reclaim(sk, SK_RECLAIM_CHUNK); 183 } 184 185 static void mptcp_rfree(struct sk_buff *skb) 186 { 187 unsigned int len = skb->truesize; 188 struct sock *sk = skb->sk; 189 190 atomic_sub(len, &sk->sk_rmem_alloc); 191 mptcp_rmem_uncharge(sk, len); 192 } 193 194 static void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 195 { 196 skb_orphan(skb); 197 skb->sk = sk; 198 skb->destructor = mptcp_rfree; 199 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 200 mptcp_rmem_charge(sk, skb->truesize); 201 } 202 203 /* "inspired" by tcp_data_queue_ofo(), main differences: 204 * - use mptcp seqs 205 * - don't cope with sacks 206 */ 207 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 208 { 209 struct sock *sk = (struct sock *)msk; 210 struct rb_node **p, *parent; 211 u64 seq, end_seq, max_seq; 212 struct sk_buff *skb1; 213 214 seq = MPTCP_SKB_CB(skb)->map_seq; 215 end_seq = MPTCP_SKB_CB(skb)->end_seq; 216 max_seq = READ_ONCE(msk->rcv_wnd_sent); 217 218 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 219 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 220 if (after64(end_seq, max_seq)) { 221 /* out of window */ 222 mptcp_drop(sk, skb); 223 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 224 (unsigned long long)end_seq - (unsigned long)max_seq, 225 (unsigned long long)msk->rcv_wnd_sent); 226 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 227 return; 228 } 229 230 p = &msk->out_of_order_queue.rb_node; 231 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 232 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 233 rb_link_node(&skb->rbnode, NULL, p); 234 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 235 msk->ooo_last_skb = skb; 236 goto end; 237 } 238 239 /* with 2 subflows, adding at end of ooo queue is quite likely 240 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 241 */ 242 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 243 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 244 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 245 return; 246 } 247 248 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 249 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 250 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 251 parent = &msk->ooo_last_skb->rbnode; 252 p = &parent->rb_right; 253 goto insert; 254 } 255 256 /* Find place to insert this segment. Handle overlaps on the way. */ 257 parent = NULL; 258 while (*p) { 259 parent = *p; 260 skb1 = rb_to_skb(parent); 261 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 262 p = &parent->rb_left; 263 continue; 264 } 265 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 266 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 267 /* All the bits are present. Drop. */ 268 mptcp_drop(sk, skb); 269 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 270 return; 271 } 272 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 273 /* partial overlap: 274 * | skb | 275 * | skb1 | 276 * continue traversing 277 */ 278 } else { 279 /* skb's seq == skb1's seq and skb covers skb1. 280 * Replace skb1 with skb. 281 */ 282 rb_replace_node(&skb1->rbnode, &skb->rbnode, 283 &msk->out_of_order_queue); 284 mptcp_drop(sk, skb1); 285 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 286 goto merge_right; 287 } 288 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 289 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 290 return; 291 } 292 p = &parent->rb_right; 293 } 294 295 insert: 296 /* Insert segment into RB tree. */ 297 rb_link_node(&skb->rbnode, parent, p); 298 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 299 300 merge_right: 301 /* Remove other segments covered by skb. */ 302 while ((skb1 = skb_rb_next(skb)) != NULL) { 303 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 304 break; 305 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 306 mptcp_drop(sk, skb1); 307 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 308 } 309 /* If there is no skb after us, we are the last_skb ! */ 310 if (!skb1) 311 msk->ooo_last_skb = skb; 312 313 end: 314 skb_condense(skb); 315 mptcp_set_owner_r(skb, sk); 316 } 317 318 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 319 { 320 struct mptcp_sock *msk = mptcp_sk(sk); 321 int amt, amount; 322 323 if (size < msk->rmem_fwd_alloc) 324 return true; 325 326 amt = sk_mem_pages(size); 327 amount = amt << SK_MEM_QUANTUM_SHIFT; 328 msk->rmem_fwd_alloc += amount; 329 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) { 330 if (ssk->sk_forward_alloc < amount) { 331 msk->rmem_fwd_alloc -= amount; 332 return false; 333 } 334 335 ssk->sk_forward_alloc -= amount; 336 } 337 return true; 338 } 339 340 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 341 struct sk_buff *skb, unsigned int offset, 342 size_t copy_len) 343 { 344 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 345 struct sock *sk = (struct sock *)msk; 346 struct sk_buff *tail; 347 bool has_rxtstamp; 348 349 __skb_unlink(skb, &ssk->sk_receive_queue); 350 351 skb_ext_reset(skb); 352 skb_orphan(skb); 353 354 /* try to fetch required memory from subflow */ 355 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 356 goto drop; 357 358 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 359 360 /* the skb map_seq accounts for the skb offset: 361 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 362 * value 363 */ 364 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 365 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 366 MPTCP_SKB_CB(skb)->offset = offset; 367 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 368 369 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 370 /* in sequence */ 371 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 372 tail = skb_peek_tail(&sk->sk_receive_queue); 373 if (tail && mptcp_try_coalesce(sk, tail, skb)) 374 return true; 375 376 mptcp_set_owner_r(skb, sk); 377 __skb_queue_tail(&sk->sk_receive_queue, skb); 378 return true; 379 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 380 mptcp_data_queue_ofo(msk, skb); 381 return false; 382 } 383 384 /* old data, keep it simple and drop the whole pkt, sender 385 * will retransmit as needed, if needed. 386 */ 387 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 388 drop: 389 mptcp_drop(sk, skb); 390 return false; 391 } 392 393 static void mptcp_stop_timer(struct sock *sk) 394 { 395 struct inet_connection_sock *icsk = inet_csk(sk); 396 397 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 398 mptcp_sk(sk)->timer_ival = 0; 399 } 400 401 static void mptcp_close_wake_up(struct sock *sk) 402 { 403 if (sock_flag(sk, SOCK_DEAD)) 404 return; 405 406 sk->sk_state_change(sk); 407 if (sk->sk_shutdown == SHUTDOWN_MASK || 408 sk->sk_state == TCP_CLOSE) 409 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 410 else 411 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 412 } 413 414 static bool mptcp_pending_data_fin_ack(struct sock *sk) 415 { 416 struct mptcp_sock *msk = mptcp_sk(sk); 417 418 return !__mptcp_check_fallback(msk) && 419 ((1 << sk->sk_state) & 420 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 421 msk->write_seq == READ_ONCE(msk->snd_una); 422 } 423 424 static void mptcp_check_data_fin_ack(struct sock *sk) 425 { 426 struct mptcp_sock *msk = mptcp_sk(sk); 427 428 /* Look for an acknowledged DATA_FIN */ 429 if (mptcp_pending_data_fin_ack(sk)) { 430 WRITE_ONCE(msk->snd_data_fin_enable, 0); 431 432 switch (sk->sk_state) { 433 case TCP_FIN_WAIT1: 434 inet_sk_state_store(sk, TCP_FIN_WAIT2); 435 break; 436 case TCP_CLOSING: 437 case TCP_LAST_ACK: 438 inet_sk_state_store(sk, TCP_CLOSE); 439 break; 440 } 441 442 mptcp_close_wake_up(sk); 443 } 444 } 445 446 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 447 { 448 struct mptcp_sock *msk = mptcp_sk(sk); 449 450 if (READ_ONCE(msk->rcv_data_fin) && 451 ((1 << sk->sk_state) & 452 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 453 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 454 455 if (msk->ack_seq == rcv_data_fin_seq) { 456 if (seq) 457 *seq = rcv_data_fin_seq; 458 459 return true; 460 } 461 } 462 463 return false; 464 } 465 466 static void mptcp_set_datafin_timeout(const struct sock *sk) 467 { 468 struct inet_connection_sock *icsk = inet_csk(sk); 469 u32 retransmits; 470 471 retransmits = min_t(u32, icsk->icsk_retransmits, 472 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 473 474 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 475 } 476 477 static void __mptcp_set_timeout(struct sock *sk, long tout) 478 { 479 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 480 } 481 482 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 483 { 484 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 485 486 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 487 inet_csk(ssk)->icsk_timeout - jiffies : 0; 488 } 489 490 static void mptcp_set_timeout(struct sock *sk) 491 { 492 struct mptcp_subflow_context *subflow; 493 long tout = 0; 494 495 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 496 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 497 __mptcp_set_timeout(sk, tout); 498 } 499 500 static bool tcp_can_send_ack(const struct sock *ssk) 501 { 502 return !((1 << inet_sk_state_load(ssk)) & 503 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 504 } 505 506 void mptcp_subflow_send_ack(struct sock *ssk) 507 { 508 bool slow; 509 510 slow = lock_sock_fast(ssk); 511 if (tcp_can_send_ack(ssk)) 512 tcp_send_ack(ssk); 513 unlock_sock_fast(ssk, slow); 514 } 515 516 static void mptcp_send_ack(struct mptcp_sock *msk) 517 { 518 struct mptcp_subflow_context *subflow; 519 520 mptcp_for_each_subflow(msk, subflow) 521 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 522 } 523 524 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 525 { 526 bool slow; 527 528 slow = lock_sock_fast(ssk); 529 if (tcp_can_send_ack(ssk)) 530 tcp_cleanup_rbuf(ssk, 1); 531 unlock_sock_fast(ssk, slow); 532 } 533 534 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 535 { 536 const struct inet_connection_sock *icsk = inet_csk(ssk); 537 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 538 const struct tcp_sock *tp = tcp_sk(ssk); 539 540 return (ack_pending & ICSK_ACK_SCHED) && 541 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 542 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 543 (rx_empty && ack_pending & 544 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 545 } 546 547 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 548 { 549 int old_space = READ_ONCE(msk->old_wspace); 550 struct mptcp_subflow_context *subflow; 551 struct sock *sk = (struct sock *)msk; 552 int space = __mptcp_space(sk); 553 bool cleanup, rx_empty; 554 555 cleanup = (space > 0) && (space >= (old_space << 1)); 556 rx_empty = !__mptcp_rmem(sk); 557 558 mptcp_for_each_subflow(msk, subflow) { 559 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 560 561 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 562 mptcp_subflow_cleanup_rbuf(ssk); 563 } 564 } 565 566 static bool mptcp_check_data_fin(struct sock *sk) 567 { 568 struct mptcp_sock *msk = mptcp_sk(sk); 569 u64 rcv_data_fin_seq; 570 bool ret = false; 571 572 if (__mptcp_check_fallback(msk)) 573 return ret; 574 575 /* Need to ack a DATA_FIN received from a peer while this side 576 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 577 * msk->rcv_data_fin was set when parsing the incoming options 578 * at the subflow level and the msk lock was not held, so this 579 * is the first opportunity to act on the DATA_FIN and change 580 * the msk state. 581 * 582 * If we are caught up to the sequence number of the incoming 583 * DATA_FIN, send the DATA_ACK now and do state transition. If 584 * not caught up, do nothing and let the recv code send DATA_ACK 585 * when catching up. 586 */ 587 588 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 589 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 590 WRITE_ONCE(msk->rcv_data_fin, 0); 591 592 sk->sk_shutdown |= RCV_SHUTDOWN; 593 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 594 595 switch (sk->sk_state) { 596 case TCP_ESTABLISHED: 597 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 598 break; 599 case TCP_FIN_WAIT1: 600 inet_sk_state_store(sk, TCP_CLOSING); 601 break; 602 case TCP_FIN_WAIT2: 603 inet_sk_state_store(sk, TCP_CLOSE); 604 break; 605 default: 606 /* Other states not expected */ 607 WARN_ON_ONCE(1); 608 break; 609 } 610 611 ret = true; 612 mptcp_send_ack(msk); 613 mptcp_close_wake_up(sk); 614 } 615 return ret; 616 } 617 618 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 619 struct sock *ssk, 620 unsigned int *bytes) 621 { 622 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 623 struct sock *sk = (struct sock *)msk; 624 unsigned int moved = 0; 625 bool more_data_avail; 626 struct tcp_sock *tp; 627 bool done = false; 628 int sk_rbuf; 629 630 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 631 632 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 633 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 634 635 if (unlikely(ssk_rbuf > sk_rbuf)) { 636 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 637 sk_rbuf = ssk_rbuf; 638 } 639 } 640 641 pr_debug("msk=%p ssk=%p", msk, ssk); 642 tp = tcp_sk(ssk); 643 do { 644 u32 map_remaining, offset; 645 u32 seq = tp->copied_seq; 646 struct sk_buff *skb; 647 bool fin; 648 649 /* try to move as much data as available */ 650 map_remaining = subflow->map_data_len - 651 mptcp_subflow_get_map_offset(subflow); 652 653 skb = skb_peek(&ssk->sk_receive_queue); 654 if (!skb) { 655 /* if no data is found, a racing workqueue/recvmsg 656 * already processed the new data, stop here or we 657 * can enter an infinite loop 658 */ 659 if (!moved) 660 done = true; 661 break; 662 } 663 664 if (__mptcp_check_fallback(msk)) { 665 /* if we are running under the workqueue, TCP could have 666 * collapsed skbs between dummy map creation and now 667 * be sure to adjust the size 668 */ 669 map_remaining = skb->len; 670 subflow->map_data_len = skb->len; 671 } 672 673 offset = seq - TCP_SKB_CB(skb)->seq; 674 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 675 if (fin) { 676 done = true; 677 seq++; 678 } 679 680 if (offset < skb->len) { 681 size_t len = skb->len - offset; 682 683 if (tp->urg_data) 684 done = true; 685 686 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 687 moved += len; 688 seq += len; 689 690 if (WARN_ON_ONCE(map_remaining < len)) 691 break; 692 } else { 693 WARN_ON_ONCE(!fin); 694 sk_eat_skb(ssk, skb); 695 done = true; 696 } 697 698 WRITE_ONCE(tp->copied_seq, seq); 699 more_data_avail = mptcp_subflow_data_available(ssk); 700 701 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 702 done = true; 703 break; 704 } 705 } while (more_data_avail); 706 707 *bytes += moved; 708 return done; 709 } 710 711 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 712 { 713 struct sock *sk = (struct sock *)msk; 714 struct sk_buff *skb, *tail; 715 bool moved = false; 716 struct rb_node *p; 717 u64 end_seq; 718 719 p = rb_first(&msk->out_of_order_queue); 720 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 721 while (p) { 722 skb = rb_to_skb(p); 723 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 724 break; 725 726 p = rb_next(p); 727 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 728 729 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 730 msk->ack_seq))) { 731 mptcp_drop(sk, skb); 732 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 733 continue; 734 } 735 736 end_seq = MPTCP_SKB_CB(skb)->end_seq; 737 tail = skb_peek_tail(&sk->sk_receive_queue); 738 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 739 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 740 741 /* skip overlapping data, if any */ 742 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 743 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 744 delta); 745 MPTCP_SKB_CB(skb)->offset += delta; 746 MPTCP_SKB_CB(skb)->map_seq += delta; 747 __skb_queue_tail(&sk->sk_receive_queue, skb); 748 } 749 msk->ack_seq = end_seq; 750 moved = true; 751 } 752 return moved; 753 } 754 755 /* In most cases we will be able to lock the mptcp socket. If its already 756 * owned, we need to defer to the work queue to avoid ABBA deadlock. 757 */ 758 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 759 { 760 struct sock *sk = (struct sock *)msk; 761 unsigned int moved = 0; 762 763 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 764 __mptcp_ofo_queue(msk); 765 if (unlikely(ssk->sk_err)) { 766 if (!sock_owned_by_user(sk)) 767 __mptcp_error_report(sk); 768 else 769 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 770 } 771 772 /* If the moves have caught up with the DATA_FIN sequence number 773 * it's time to ack the DATA_FIN and change socket state, but 774 * this is not a good place to change state. Let the workqueue 775 * do it. 776 */ 777 if (mptcp_pending_data_fin(sk, NULL)) 778 mptcp_schedule_work(sk); 779 return moved > 0; 780 } 781 782 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 783 { 784 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 785 struct mptcp_sock *msk = mptcp_sk(sk); 786 int sk_rbuf, ssk_rbuf; 787 788 /* The peer can send data while we are shutting down this 789 * subflow at msk destruction time, but we must avoid enqueuing 790 * more data to the msk receive queue 791 */ 792 if (unlikely(subflow->disposable)) 793 return; 794 795 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 796 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 797 if (unlikely(ssk_rbuf > sk_rbuf)) 798 sk_rbuf = ssk_rbuf; 799 800 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 801 if (__mptcp_rmem(sk) > sk_rbuf) { 802 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 803 return; 804 } 805 806 /* Wake-up the reader only for in-sequence data */ 807 mptcp_data_lock(sk); 808 if (move_skbs_to_msk(msk, ssk)) 809 sk->sk_data_ready(sk); 810 811 mptcp_data_unlock(sk); 812 } 813 814 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 815 { 816 struct sock *sk = (struct sock *)msk; 817 818 if (sk->sk_state != TCP_ESTABLISHED) 819 return false; 820 821 /* attach to msk socket only after we are sure we will deal with it 822 * at close time 823 */ 824 if (sk->sk_socket && !ssk->sk_socket) 825 mptcp_sock_graft(ssk, sk->sk_socket); 826 827 mptcp_propagate_sndbuf((struct sock *)msk, ssk); 828 mptcp_sockopt_sync_locked(msk, ssk); 829 return true; 830 } 831 832 static void __mptcp_flush_join_list(struct sock *sk) 833 { 834 struct mptcp_subflow_context *tmp, *subflow; 835 struct mptcp_sock *msk = mptcp_sk(sk); 836 837 list_for_each_entry_safe(subflow, tmp, &msk->join_list, node) { 838 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 839 bool slow = lock_sock_fast(ssk); 840 841 list_move_tail(&subflow->node, &msk->conn_list); 842 if (!__mptcp_finish_join(msk, ssk)) 843 mptcp_subflow_reset(ssk); 844 unlock_sock_fast(ssk, slow); 845 } 846 } 847 848 static bool mptcp_timer_pending(struct sock *sk) 849 { 850 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 851 } 852 853 static void mptcp_reset_timer(struct sock *sk) 854 { 855 struct inet_connection_sock *icsk = inet_csk(sk); 856 unsigned long tout; 857 858 /* prevent rescheduling on close */ 859 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 860 return; 861 862 tout = mptcp_sk(sk)->timer_ival; 863 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 864 } 865 866 bool mptcp_schedule_work(struct sock *sk) 867 { 868 if (inet_sk_state_load(sk) != TCP_CLOSE && 869 schedule_work(&mptcp_sk(sk)->work)) { 870 /* each subflow already holds a reference to the sk, and the 871 * workqueue is invoked by a subflow, so sk can't go away here. 872 */ 873 sock_hold(sk); 874 return true; 875 } 876 return false; 877 } 878 879 void mptcp_subflow_eof(struct sock *sk) 880 { 881 if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags)) 882 mptcp_schedule_work(sk); 883 } 884 885 static void mptcp_check_for_eof(struct mptcp_sock *msk) 886 { 887 struct mptcp_subflow_context *subflow; 888 struct sock *sk = (struct sock *)msk; 889 int receivers = 0; 890 891 mptcp_for_each_subflow(msk, subflow) 892 receivers += !subflow->rx_eof; 893 if (receivers) 894 return; 895 896 if (!(sk->sk_shutdown & RCV_SHUTDOWN)) { 897 /* hopefully temporary hack: propagate shutdown status 898 * to msk, when all subflows agree on it 899 */ 900 sk->sk_shutdown |= RCV_SHUTDOWN; 901 902 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 903 sk->sk_data_ready(sk); 904 } 905 906 switch (sk->sk_state) { 907 case TCP_ESTABLISHED: 908 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 909 break; 910 case TCP_FIN_WAIT1: 911 inet_sk_state_store(sk, TCP_CLOSING); 912 break; 913 case TCP_FIN_WAIT2: 914 inet_sk_state_store(sk, TCP_CLOSE); 915 break; 916 default: 917 return; 918 } 919 mptcp_close_wake_up(sk); 920 } 921 922 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 923 { 924 struct mptcp_subflow_context *subflow; 925 struct sock *sk = (struct sock *)msk; 926 927 sock_owned_by_me(sk); 928 929 mptcp_for_each_subflow(msk, subflow) { 930 if (READ_ONCE(subflow->data_avail)) 931 return mptcp_subflow_tcp_sock(subflow); 932 } 933 934 return NULL; 935 } 936 937 static bool mptcp_skb_can_collapse_to(u64 write_seq, 938 const struct sk_buff *skb, 939 const struct mptcp_ext *mpext) 940 { 941 if (!tcp_skb_can_collapse_to(skb)) 942 return false; 943 944 /* can collapse only if MPTCP level sequence is in order and this 945 * mapping has not been xmitted yet 946 */ 947 return mpext && mpext->data_seq + mpext->data_len == write_seq && 948 !mpext->frozen; 949 } 950 951 /* we can append data to the given data frag if: 952 * - there is space available in the backing page_frag 953 * - the data frag tail matches the current page_frag free offset 954 * - the data frag end sequence number matches the current write seq 955 */ 956 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 957 const struct page_frag *pfrag, 958 const struct mptcp_data_frag *df) 959 { 960 return df && pfrag->page == df->page && 961 pfrag->size - pfrag->offset > 0 && 962 pfrag->offset == (df->offset + df->data_len) && 963 df->data_seq + df->data_len == msk->write_seq; 964 } 965 966 static void __mptcp_mem_reclaim_partial(struct sock *sk) 967 { 968 int reclaimable = mptcp_sk(sk)->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 969 970 lockdep_assert_held_once(&sk->sk_lock.slock); 971 972 if (reclaimable > SK_MEM_QUANTUM) 973 __mptcp_rmem_reclaim(sk, reclaimable - 1); 974 975 sk_mem_reclaim_partial(sk); 976 } 977 978 static void mptcp_mem_reclaim_partial(struct sock *sk) 979 { 980 mptcp_data_lock(sk); 981 __mptcp_mem_reclaim_partial(sk); 982 mptcp_data_unlock(sk); 983 } 984 985 static void dfrag_uncharge(struct sock *sk, int len) 986 { 987 sk_mem_uncharge(sk, len); 988 sk_wmem_queued_add(sk, -len); 989 } 990 991 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 992 { 993 int len = dfrag->data_len + dfrag->overhead; 994 995 list_del(&dfrag->list); 996 dfrag_uncharge(sk, len); 997 put_page(dfrag->page); 998 } 999 1000 static void __mptcp_clean_una(struct sock *sk) 1001 { 1002 struct mptcp_sock *msk = mptcp_sk(sk); 1003 struct mptcp_data_frag *dtmp, *dfrag; 1004 bool cleaned = false; 1005 u64 snd_una; 1006 1007 /* on fallback we just need to ignore snd_una, as this is really 1008 * plain TCP 1009 */ 1010 if (__mptcp_check_fallback(msk)) 1011 msk->snd_una = READ_ONCE(msk->snd_nxt); 1012 1013 snd_una = msk->snd_una; 1014 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1015 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1016 break; 1017 1018 if (unlikely(dfrag == msk->first_pending)) { 1019 /* in recovery mode can see ack after the current snd head */ 1020 if (WARN_ON_ONCE(!msk->recovery)) 1021 break; 1022 1023 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1024 } 1025 1026 dfrag_clear(sk, dfrag); 1027 cleaned = true; 1028 } 1029 1030 dfrag = mptcp_rtx_head(sk); 1031 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1032 u64 delta = snd_una - dfrag->data_seq; 1033 1034 /* prevent wrap around in recovery mode */ 1035 if (unlikely(delta > dfrag->already_sent)) { 1036 if (WARN_ON_ONCE(!msk->recovery)) 1037 goto out; 1038 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1039 goto out; 1040 dfrag->already_sent += delta - dfrag->already_sent; 1041 } 1042 1043 dfrag->data_seq += delta; 1044 dfrag->offset += delta; 1045 dfrag->data_len -= delta; 1046 dfrag->already_sent -= delta; 1047 1048 dfrag_uncharge(sk, delta); 1049 cleaned = true; 1050 } 1051 1052 /* all retransmitted data acked, recovery completed */ 1053 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1054 msk->recovery = false; 1055 1056 out: 1057 if (cleaned && tcp_under_memory_pressure(sk)) 1058 __mptcp_mem_reclaim_partial(sk); 1059 1060 if (snd_una == READ_ONCE(msk->snd_nxt) && 1061 snd_una == READ_ONCE(msk->write_seq)) { 1062 if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1063 mptcp_stop_timer(sk); 1064 } else { 1065 mptcp_reset_timer(sk); 1066 } 1067 } 1068 1069 static void __mptcp_clean_una_wakeup(struct sock *sk) 1070 { 1071 lockdep_assert_held_once(&sk->sk_lock.slock); 1072 1073 __mptcp_clean_una(sk); 1074 mptcp_write_space(sk); 1075 } 1076 1077 static void mptcp_clean_una_wakeup(struct sock *sk) 1078 { 1079 mptcp_data_lock(sk); 1080 __mptcp_clean_una_wakeup(sk); 1081 mptcp_data_unlock(sk); 1082 } 1083 1084 static void mptcp_enter_memory_pressure(struct sock *sk) 1085 { 1086 struct mptcp_subflow_context *subflow; 1087 struct mptcp_sock *msk = mptcp_sk(sk); 1088 bool first = true; 1089 1090 sk_stream_moderate_sndbuf(sk); 1091 mptcp_for_each_subflow(msk, subflow) { 1092 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1093 1094 if (first) 1095 tcp_enter_memory_pressure(ssk); 1096 sk_stream_moderate_sndbuf(ssk); 1097 first = false; 1098 } 1099 } 1100 1101 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1102 * data 1103 */ 1104 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1105 { 1106 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1107 pfrag, sk->sk_allocation))) 1108 return true; 1109 1110 mptcp_enter_memory_pressure(sk); 1111 return false; 1112 } 1113 1114 static struct mptcp_data_frag * 1115 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1116 int orig_offset) 1117 { 1118 int offset = ALIGN(orig_offset, sizeof(long)); 1119 struct mptcp_data_frag *dfrag; 1120 1121 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1122 dfrag->data_len = 0; 1123 dfrag->data_seq = msk->write_seq; 1124 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1125 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1126 dfrag->already_sent = 0; 1127 dfrag->page = pfrag->page; 1128 1129 return dfrag; 1130 } 1131 1132 struct mptcp_sendmsg_info { 1133 int mss_now; 1134 int size_goal; 1135 u16 limit; 1136 u16 sent; 1137 unsigned int flags; 1138 bool data_lock_held; 1139 }; 1140 1141 static int mptcp_check_allowed_size(struct mptcp_sock *msk, u64 data_seq, 1142 int avail_size) 1143 { 1144 u64 window_end = mptcp_wnd_end(msk); 1145 1146 if (__mptcp_check_fallback(msk)) 1147 return avail_size; 1148 1149 if (!before64(data_seq + avail_size, window_end)) { 1150 u64 allowed_size = window_end - data_seq; 1151 1152 return min_t(unsigned int, allowed_size, avail_size); 1153 } 1154 1155 return avail_size; 1156 } 1157 1158 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1159 { 1160 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1161 1162 if (!mpext) 1163 return false; 1164 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1165 return true; 1166 } 1167 1168 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1169 { 1170 struct sk_buff *skb; 1171 1172 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1173 if (likely(skb)) { 1174 if (likely(__mptcp_add_ext(skb, gfp))) { 1175 skb_reserve(skb, MAX_TCP_HEADER); 1176 skb->ip_summed = CHECKSUM_PARTIAL; 1177 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1178 return skb; 1179 } 1180 __kfree_skb(skb); 1181 } else { 1182 mptcp_enter_memory_pressure(sk); 1183 } 1184 return NULL; 1185 } 1186 1187 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1188 { 1189 struct sk_buff *skb; 1190 1191 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1192 if (!skb) 1193 return NULL; 1194 1195 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1196 tcp_skb_entail(ssk, skb); 1197 return skb; 1198 } 1199 kfree_skb(skb); 1200 return NULL; 1201 } 1202 1203 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1204 { 1205 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1206 1207 if (unlikely(tcp_under_memory_pressure(sk))) { 1208 if (data_lock_held) 1209 __mptcp_mem_reclaim_partial(sk); 1210 else 1211 mptcp_mem_reclaim_partial(sk); 1212 } 1213 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1214 } 1215 1216 /* note: this always recompute the csum on the whole skb, even 1217 * if we just appended a single frag. More status info needed 1218 */ 1219 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1220 { 1221 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1222 __wsum csum = ~csum_unfold(mpext->csum); 1223 int offset = skb->len - added; 1224 1225 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1226 } 1227 1228 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1229 struct mptcp_data_frag *dfrag, 1230 struct mptcp_sendmsg_info *info) 1231 { 1232 u64 data_seq = dfrag->data_seq + info->sent; 1233 int offset = dfrag->offset + info->sent; 1234 struct mptcp_sock *msk = mptcp_sk(sk); 1235 bool zero_window_probe = false; 1236 struct mptcp_ext *mpext = NULL; 1237 bool can_coalesce = false; 1238 bool reuse_skb = true; 1239 struct sk_buff *skb; 1240 size_t copy; 1241 int i; 1242 1243 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1244 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1245 1246 if (WARN_ON_ONCE(info->sent > info->limit || 1247 info->limit > dfrag->data_len)) 1248 return 0; 1249 1250 /* compute send limit */ 1251 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1252 copy = info->size_goal; 1253 1254 skb = tcp_write_queue_tail(ssk); 1255 if (skb && copy > skb->len) { 1256 /* Limit the write to the size available in the 1257 * current skb, if any, so that we create at most a new skb. 1258 * Explicitly tells TCP internals to avoid collapsing on later 1259 * queue management operation, to avoid breaking the ext <-> 1260 * SSN association set here 1261 */ 1262 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1263 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1264 TCP_SKB_CB(skb)->eor = 1; 1265 goto alloc_skb; 1266 } 1267 1268 i = skb_shinfo(skb)->nr_frags; 1269 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1270 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1271 tcp_mark_push(tcp_sk(ssk), skb); 1272 goto alloc_skb; 1273 } 1274 1275 copy -= skb->len; 1276 } else { 1277 alloc_skb: 1278 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1279 if (!skb) 1280 return -ENOMEM; 1281 1282 i = skb_shinfo(skb)->nr_frags; 1283 reuse_skb = false; 1284 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1285 } 1286 1287 /* Zero window and all data acked? Probe. */ 1288 copy = mptcp_check_allowed_size(msk, data_seq, copy); 1289 if (copy == 0) { 1290 u64 snd_una = READ_ONCE(msk->snd_una); 1291 1292 if (snd_una != msk->snd_nxt) { 1293 tcp_remove_empty_skb(ssk); 1294 return 0; 1295 } 1296 1297 zero_window_probe = true; 1298 data_seq = snd_una - 1; 1299 copy = 1; 1300 1301 /* all mptcp-level data is acked, no skbs should be present into the 1302 * ssk write queue 1303 */ 1304 WARN_ON_ONCE(reuse_skb); 1305 } 1306 1307 copy = min_t(size_t, copy, info->limit - info->sent); 1308 if (!sk_wmem_schedule(ssk, copy)) { 1309 tcp_remove_empty_skb(ssk); 1310 return -ENOMEM; 1311 } 1312 1313 if (can_coalesce) { 1314 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1315 } else { 1316 get_page(dfrag->page); 1317 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1318 } 1319 1320 skb->len += copy; 1321 skb->data_len += copy; 1322 skb->truesize += copy; 1323 sk_wmem_queued_add(ssk, copy); 1324 sk_mem_charge(ssk, copy); 1325 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1326 TCP_SKB_CB(skb)->end_seq += copy; 1327 tcp_skb_pcount_set(skb, 0); 1328 1329 /* on skb reuse we just need to update the DSS len */ 1330 if (reuse_skb) { 1331 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1332 mpext->data_len += copy; 1333 WARN_ON_ONCE(zero_window_probe); 1334 goto out; 1335 } 1336 1337 memset(mpext, 0, sizeof(*mpext)); 1338 mpext->data_seq = data_seq; 1339 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1340 mpext->data_len = copy; 1341 mpext->use_map = 1; 1342 mpext->dsn64 = 1; 1343 1344 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1345 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1346 mpext->dsn64); 1347 1348 if (zero_window_probe) { 1349 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1350 mpext->frozen = 1; 1351 if (READ_ONCE(msk->csum_enabled)) 1352 mptcp_update_data_checksum(skb, copy); 1353 tcp_push_pending_frames(ssk); 1354 return 0; 1355 } 1356 out: 1357 if (READ_ONCE(msk->csum_enabled)) 1358 mptcp_update_data_checksum(skb, copy); 1359 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1360 return copy; 1361 } 1362 1363 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1364 sizeof(struct tcphdr) - \ 1365 MAX_TCP_OPTION_SPACE - \ 1366 sizeof(struct ipv6hdr) - \ 1367 sizeof(struct frag_hdr)) 1368 1369 struct subflow_send_info { 1370 struct sock *ssk; 1371 u64 linger_time; 1372 }; 1373 1374 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1375 { 1376 if (!subflow->stale) 1377 return; 1378 1379 subflow->stale = 0; 1380 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1381 } 1382 1383 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1384 { 1385 if (unlikely(subflow->stale)) { 1386 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1387 1388 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1389 return false; 1390 1391 mptcp_subflow_set_active(subflow); 1392 } 1393 return __mptcp_subflow_active(subflow); 1394 } 1395 1396 #define SSK_MODE_ACTIVE 0 1397 #define SSK_MODE_BACKUP 1 1398 #define SSK_MODE_MAX 2 1399 1400 /* implement the mptcp packet scheduler; 1401 * returns the subflow that will transmit the next DSS 1402 * additionally updates the rtx timeout 1403 */ 1404 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1405 { 1406 struct subflow_send_info send_info[SSK_MODE_MAX]; 1407 struct mptcp_subflow_context *subflow; 1408 struct sock *sk = (struct sock *)msk; 1409 u32 pace, burst, wmem; 1410 int i, nr_active = 0; 1411 struct sock *ssk; 1412 u64 linger_time; 1413 long tout = 0; 1414 1415 sock_owned_by_me(sk); 1416 1417 if (__mptcp_check_fallback(msk)) { 1418 if (!msk->first) 1419 return NULL; 1420 return sk_stream_memory_free(msk->first) ? msk->first : NULL; 1421 } 1422 1423 /* re-use last subflow, if the burst allow that */ 1424 if (msk->last_snd && msk->snd_burst > 0 && 1425 sk_stream_memory_free(msk->last_snd) && 1426 mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) { 1427 mptcp_set_timeout(sk); 1428 return msk->last_snd; 1429 } 1430 1431 /* pick the subflow with the lower wmem/wspace ratio */ 1432 for (i = 0; i < SSK_MODE_MAX; ++i) { 1433 send_info[i].ssk = NULL; 1434 send_info[i].linger_time = -1; 1435 } 1436 1437 mptcp_for_each_subflow(msk, subflow) { 1438 trace_mptcp_subflow_get_send(subflow); 1439 ssk = mptcp_subflow_tcp_sock(subflow); 1440 if (!mptcp_subflow_active(subflow)) 1441 continue; 1442 1443 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1444 nr_active += !subflow->backup; 1445 pace = subflow->avg_pacing_rate; 1446 if (unlikely(!pace)) { 1447 /* init pacing rate from socket */ 1448 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1449 pace = subflow->avg_pacing_rate; 1450 if (!pace) 1451 continue; 1452 } 1453 1454 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1455 if (linger_time < send_info[subflow->backup].linger_time) { 1456 send_info[subflow->backup].ssk = ssk; 1457 send_info[subflow->backup].linger_time = linger_time; 1458 } 1459 } 1460 __mptcp_set_timeout(sk, tout); 1461 1462 /* pick the best backup if no other subflow is active */ 1463 if (!nr_active) 1464 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1465 1466 /* According to the blest algorithm, to avoid HoL blocking for the 1467 * faster flow, we need to: 1468 * - estimate the faster flow linger time 1469 * - use the above to estimate the amount of byte transferred 1470 * by the faster flow 1471 * - check that the amount of queued data is greter than the above, 1472 * otherwise do not use the picked, slower, subflow 1473 * We select the subflow with the shorter estimated time to flush 1474 * the queued mem, which basically ensure the above. We just need 1475 * to check that subflow has a non empty cwin. 1476 */ 1477 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1478 if (!ssk || !sk_stream_memory_free(ssk) || !tcp_sk(ssk)->snd_wnd) 1479 return NULL; 1480 1481 burst = min_t(int, MPTCP_SEND_BURST_SIZE, tcp_sk(ssk)->snd_wnd); 1482 wmem = READ_ONCE(ssk->sk_wmem_queued); 1483 subflow = mptcp_subflow_ctx(ssk); 1484 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1485 READ_ONCE(ssk->sk_pacing_rate) * burst, 1486 burst + wmem); 1487 msk->last_snd = ssk; 1488 msk->snd_burst = burst; 1489 return ssk; 1490 } 1491 1492 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1493 { 1494 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1495 release_sock(ssk); 1496 } 1497 1498 static void mptcp_update_post_push(struct mptcp_sock *msk, 1499 struct mptcp_data_frag *dfrag, 1500 u32 sent) 1501 { 1502 u64 snd_nxt_new = dfrag->data_seq; 1503 1504 dfrag->already_sent += sent; 1505 1506 msk->snd_burst -= sent; 1507 1508 snd_nxt_new += dfrag->already_sent; 1509 1510 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1511 * is recovering after a failover. In that event, this re-sends 1512 * old segments. 1513 * 1514 * Thus compute snd_nxt_new candidate based on 1515 * the dfrag->data_seq that was sent and the data 1516 * that has been handed to the subflow for transmission 1517 * and skip update in case it was old dfrag. 1518 */ 1519 if (likely(after64(snd_nxt_new, msk->snd_nxt))) 1520 msk->snd_nxt = snd_nxt_new; 1521 } 1522 1523 void mptcp_check_and_set_pending(struct sock *sk) 1524 { 1525 if (mptcp_send_head(sk)) 1526 mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING); 1527 } 1528 1529 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1530 { 1531 struct sock *prev_ssk = NULL, *ssk = NULL; 1532 struct mptcp_sock *msk = mptcp_sk(sk); 1533 struct mptcp_sendmsg_info info = { 1534 .flags = flags, 1535 }; 1536 struct mptcp_data_frag *dfrag; 1537 int len, copied = 0; 1538 1539 while ((dfrag = mptcp_send_head(sk))) { 1540 info.sent = dfrag->already_sent; 1541 info.limit = dfrag->data_len; 1542 len = dfrag->data_len - dfrag->already_sent; 1543 while (len > 0) { 1544 int ret = 0; 1545 1546 prev_ssk = ssk; 1547 ssk = mptcp_subflow_get_send(msk); 1548 1549 /* First check. If the ssk has changed since 1550 * the last round, release prev_ssk 1551 */ 1552 if (ssk != prev_ssk && prev_ssk) 1553 mptcp_push_release(prev_ssk, &info); 1554 if (!ssk) 1555 goto out; 1556 1557 /* Need to lock the new subflow only if different 1558 * from the previous one, otherwise we are still 1559 * helding the relevant lock 1560 */ 1561 if (ssk != prev_ssk) 1562 lock_sock(ssk); 1563 1564 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1565 if (ret <= 0) { 1566 mptcp_push_release(ssk, &info); 1567 goto out; 1568 } 1569 1570 info.sent += ret; 1571 copied += ret; 1572 len -= ret; 1573 1574 mptcp_update_post_push(msk, dfrag, ret); 1575 } 1576 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1577 } 1578 1579 /* at this point we held the socket lock for the last subflow we used */ 1580 if (ssk) 1581 mptcp_push_release(ssk, &info); 1582 1583 out: 1584 /* ensure the rtx timer is running */ 1585 if (!mptcp_timer_pending(sk)) 1586 mptcp_reset_timer(sk); 1587 if (copied) 1588 __mptcp_check_send_data_fin(sk); 1589 } 1590 1591 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk) 1592 { 1593 struct mptcp_sock *msk = mptcp_sk(sk); 1594 struct mptcp_sendmsg_info info = { 1595 .data_lock_held = true, 1596 }; 1597 struct mptcp_data_frag *dfrag; 1598 struct sock *xmit_ssk; 1599 int len, copied = 0; 1600 bool first = true; 1601 1602 info.flags = 0; 1603 while ((dfrag = mptcp_send_head(sk))) { 1604 info.sent = dfrag->already_sent; 1605 info.limit = dfrag->data_len; 1606 len = dfrag->data_len - dfrag->already_sent; 1607 while (len > 0) { 1608 int ret = 0; 1609 1610 /* the caller already invoked the packet scheduler, 1611 * check for a different subflow usage only after 1612 * spooling the first chunk of data 1613 */ 1614 xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk)); 1615 if (!xmit_ssk) 1616 goto out; 1617 if (xmit_ssk != ssk) { 1618 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), 1619 MPTCP_DELEGATE_SEND); 1620 goto out; 1621 } 1622 1623 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1624 if (ret <= 0) 1625 goto out; 1626 1627 info.sent += ret; 1628 copied += ret; 1629 len -= ret; 1630 first = false; 1631 1632 mptcp_update_post_push(msk, dfrag, ret); 1633 } 1634 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1635 } 1636 1637 out: 1638 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1639 * not going to flush it via release_sock() 1640 */ 1641 if (copied) { 1642 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1643 info.size_goal); 1644 if (!mptcp_timer_pending(sk)) 1645 mptcp_reset_timer(sk); 1646 1647 if (msk->snd_data_fin_enable && 1648 msk->snd_nxt + 1 == msk->write_seq) 1649 mptcp_schedule_work(sk); 1650 } 1651 } 1652 1653 static void mptcp_set_nospace(struct sock *sk) 1654 { 1655 /* enable autotune */ 1656 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1657 1658 /* will be cleared on avail space */ 1659 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1660 } 1661 1662 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1663 { 1664 struct mptcp_sock *msk = mptcp_sk(sk); 1665 struct page_frag *pfrag; 1666 size_t copied = 0; 1667 int ret = 0; 1668 long timeo; 1669 1670 /* we don't support FASTOPEN yet */ 1671 if (msg->msg_flags & MSG_FASTOPEN) 1672 return -EOPNOTSUPP; 1673 1674 /* silently ignore everything else */ 1675 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL; 1676 1677 lock_sock(sk); 1678 1679 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1680 1681 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1682 ret = sk_stream_wait_connect(sk, &timeo); 1683 if (ret) 1684 goto out; 1685 } 1686 1687 pfrag = sk_page_frag(sk); 1688 1689 while (msg_data_left(msg)) { 1690 int total_ts, frag_truesize = 0; 1691 struct mptcp_data_frag *dfrag; 1692 bool dfrag_collapsed; 1693 size_t psize, offset; 1694 1695 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) { 1696 ret = -EPIPE; 1697 goto out; 1698 } 1699 1700 /* reuse tail pfrag, if possible, or carve a new one from the 1701 * page allocator 1702 */ 1703 dfrag = mptcp_pending_tail(sk); 1704 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1705 if (!dfrag_collapsed) { 1706 if (!sk_stream_memory_free(sk)) 1707 goto wait_for_memory; 1708 1709 if (!mptcp_page_frag_refill(sk, pfrag)) 1710 goto wait_for_memory; 1711 1712 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1713 frag_truesize = dfrag->overhead; 1714 } 1715 1716 /* we do not bound vs wspace, to allow a single packet. 1717 * memory accounting will prevent execessive memory usage 1718 * anyway 1719 */ 1720 offset = dfrag->offset + dfrag->data_len; 1721 psize = pfrag->size - offset; 1722 psize = min_t(size_t, psize, msg_data_left(msg)); 1723 total_ts = psize + frag_truesize; 1724 1725 if (!sk_wmem_schedule(sk, total_ts)) 1726 goto wait_for_memory; 1727 1728 if (copy_page_from_iter(dfrag->page, offset, psize, 1729 &msg->msg_iter) != psize) { 1730 ret = -EFAULT; 1731 goto out; 1732 } 1733 1734 /* data successfully copied into the write queue */ 1735 sk->sk_forward_alloc -= total_ts; 1736 copied += psize; 1737 dfrag->data_len += psize; 1738 frag_truesize += psize; 1739 pfrag->offset += frag_truesize; 1740 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1741 1742 /* charge data on mptcp pending queue to the msk socket 1743 * Note: we charge such data both to sk and ssk 1744 */ 1745 sk_wmem_queued_add(sk, frag_truesize); 1746 if (!dfrag_collapsed) { 1747 get_page(dfrag->page); 1748 list_add_tail(&dfrag->list, &msk->rtx_queue); 1749 if (!msk->first_pending) 1750 WRITE_ONCE(msk->first_pending, dfrag); 1751 } 1752 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1753 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1754 !dfrag_collapsed); 1755 1756 continue; 1757 1758 wait_for_memory: 1759 mptcp_set_nospace(sk); 1760 __mptcp_push_pending(sk, msg->msg_flags); 1761 ret = sk_stream_wait_memory(sk, &timeo); 1762 if (ret) 1763 goto out; 1764 } 1765 1766 if (copied) 1767 __mptcp_push_pending(sk, msg->msg_flags); 1768 1769 out: 1770 release_sock(sk); 1771 return copied ? : ret; 1772 } 1773 1774 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1775 struct msghdr *msg, 1776 size_t len, int flags, 1777 struct scm_timestamping_internal *tss, 1778 int *cmsg_flags) 1779 { 1780 struct sk_buff *skb, *tmp; 1781 int copied = 0; 1782 1783 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1784 u32 offset = MPTCP_SKB_CB(skb)->offset; 1785 u32 data_len = skb->len - offset; 1786 u32 count = min_t(size_t, len - copied, data_len); 1787 int err; 1788 1789 if (!(flags & MSG_TRUNC)) { 1790 err = skb_copy_datagram_msg(skb, offset, msg, count); 1791 if (unlikely(err < 0)) { 1792 if (!copied) 1793 return err; 1794 break; 1795 } 1796 } 1797 1798 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1799 tcp_update_recv_tstamps(skb, tss); 1800 *cmsg_flags |= MPTCP_CMSG_TS; 1801 } 1802 1803 copied += count; 1804 1805 if (count < data_len) { 1806 if (!(flags & MSG_PEEK)) { 1807 MPTCP_SKB_CB(skb)->offset += count; 1808 MPTCP_SKB_CB(skb)->map_seq += count; 1809 } 1810 break; 1811 } 1812 1813 if (!(flags & MSG_PEEK)) { 1814 /* we will bulk release the skb memory later */ 1815 skb->destructor = NULL; 1816 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1817 __skb_unlink(skb, &msk->receive_queue); 1818 __kfree_skb(skb); 1819 } 1820 1821 if (copied >= len) 1822 break; 1823 } 1824 1825 return copied; 1826 } 1827 1828 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1829 * 1830 * Only difference: Use highest rtt estimate of the subflows in use. 1831 */ 1832 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1833 { 1834 struct mptcp_subflow_context *subflow; 1835 struct sock *sk = (struct sock *)msk; 1836 u32 time, advmss = 1; 1837 u64 rtt_us, mstamp; 1838 1839 sock_owned_by_me(sk); 1840 1841 if (copied <= 0) 1842 return; 1843 1844 msk->rcvq_space.copied += copied; 1845 1846 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1847 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1848 1849 rtt_us = msk->rcvq_space.rtt_us; 1850 if (rtt_us && time < (rtt_us >> 3)) 1851 return; 1852 1853 rtt_us = 0; 1854 mptcp_for_each_subflow(msk, subflow) { 1855 const struct tcp_sock *tp; 1856 u64 sf_rtt_us; 1857 u32 sf_advmss; 1858 1859 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1860 1861 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1862 sf_advmss = READ_ONCE(tp->advmss); 1863 1864 rtt_us = max(sf_rtt_us, rtt_us); 1865 advmss = max(sf_advmss, advmss); 1866 } 1867 1868 msk->rcvq_space.rtt_us = rtt_us; 1869 if (time < (rtt_us >> 3) || rtt_us == 0) 1870 return; 1871 1872 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1873 goto new_measure; 1874 1875 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 1876 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1877 int rcvmem, rcvbuf; 1878 u64 rcvwin, grow; 1879 1880 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1881 1882 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1883 1884 do_div(grow, msk->rcvq_space.space); 1885 rcvwin += (grow << 1); 1886 1887 rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER); 1888 while (tcp_win_from_space(sk, rcvmem) < advmss) 1889 rcvmem += 128; 1890 1891 do_div(rcvwin, advmss); 1892 rcvbuf = min_t(u64, rcvwin * rcvmem, 1893 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 1894 1895 if (rcvbuf > sk->sk_rcvbuf) { 1896 u32 window_clamp; 1897 1898 window_clamp = tcp_win_from_space(sk, rcvbuf); 1899 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 1900 1901 /* Make subflows follow along. If we do not do this, we 1902 * get drops at subflow level if skbs can't be moved to 1903 * the mptcp rx queue fast enough (announced rcv_win can 1904 * exceed ssk->sk_rcvbuf). 1905 */ 1906 mptcp_for_each_subflow(msk, subflow) { 1907 struct sock *ssk; 1908 bool slow; 1909 1910 ssk = mptcp_subflow_tcp_sock(subflow); 1911 slow = lock_sock_fast(ssk); 1912 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 1913 tcp_sk(ssk)->window_clamp = window_clamp; 1914 tcp_cleanup_rbuf(ssk, 1); 1915 unlock_sock_fast(ssk, slow); 1916 } 1917 } 1918 } 1919 1920 msk->rcvq_space.space = msk->rcvq_space.copied; 1921 new_measure: 1922 msk->rcvq_space.copied = 0; 1923 msk->rcvq_space.time = mstamp; 1924 } 1925 1926 static void __mptcp_update_rmem(struct sock *sk) 1927 { 1928 struct mptcp_sock *msk = mptcp_sk(sk); 1929 1930 if (!msk->rmem_released) 1931 return; 1932 1933 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 1934 mptcp_rmem_uncharge(sk, msk->rmem_released); 1935 WRITE_ONCE(msk->rmem_released, 0); 1936 } 1937 1938 static void __mptcp_splice_receive_queue(struct sock *sk) 1939 { 1940 struct mptcp_sock *msk = mptcp_sk(sk); 1941 1942 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 1943 } 1944 1945 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 1946 { 1947 struct sock *sk = (struct sock *)msk; 1948 unsigned int moved = 0; 1949 bool ret, done; 1950 1951 do { 1952 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 1953 bool slowpath; 1954 1955 /* we can have data pending in the subflows only if the msk 1956 * receive buffer was full at subflow_data_ready() time, 1957 * that is an unlikely slow path. 1958 */ 1959 if (likely(!ssk)) 1960 break; 1961 1962 slowpath = lock_sock_fast(ssk); 1963 mptcp_data_lock(sk); 1964 __mptcp_update_rmem(sk); 1965 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 1966 mptcp_data_unlock(sk); 1967 1968 if (unlikely(ssk->sk_err)) 1969 __mptcp_error_report(sk); 1970 unlock_sock_fast(ssk, slowpath); 1971 } while (!done); 1972 1973 /* acquire the data lock only if some input data is pending */ 1974 ret = moved > 0; 1975 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 1976 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 1977 mptcp_data_lock(sk); 1978 __mptcp_update_rmem(sk); 1979 ret |= __mptcp_ofo_queue(msk); 1980 __mptcp_splice_receive_queue(sk); 1981 mptcp_data_unlock(sk); 1982 } 1983 if (ret) 1984 mptcp_check_data_fin((struct sock *)msk); 1985 return !skb_queue_empty(&msk->receive_queue); 1986 } 1987 1988 static unsigned int mptcp_inq_hint(const struct sock *sk) 1989 { 1990 const struct mptcp_sock *msk = mptcp_sk(sk); 1991 const struct sk_buff *skb; 1992 1993 skb = skb_peek(&msk->receive_queue); 1994 if (skb) { 1995 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 1996 1997 if (hint_val >= INT_MAX) 1998 return INT_MAX; 1999 2000 return (unsigned int)hint_val; 2001 } 2002 2003 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2004 return 1; 2005 2006 return 0; 2007 } 2008 2009 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2010 int nonblock, int flags, int *addr_len) 2011 { 2012 struct mptcp_sock *msk = mptcp_sk(sk); 2013 struct scm_timestamping_internal tss; 2014 int copied = 0, cmsg_flags = 0; 2015 int target; 2016 long timeo; 2017 2018 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2019 if (unlikely(flags & MSG_ERRQUEUE)) 2020 return inet_recv_error(sk, msg, len, addr_len); 2021 2022 lock_sock(sk); 2023 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2024 copied = -ENOTCONN; 2025 goto out_err; 2026 } 2027 2028 timeo = sock_rcvtimeo(sk, nonblock); 2029 2030 len = min_t(size_t, len, INT_MAX); 2031 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2032 2033 if (unlikely(msk->recvmsg_inq)) 2034 cmsg_flags = MPTCP_CMSG_INQ; 2035 2036 while (copied < len) { 2037 int bytes_read; 2038 2039 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2040 if (unlikely(bytes_read < 0)) { 2041 if (!copied) 2042 copied = bytes_read; 2043 goto out_err; 2044 } 2045 2046 copied += bytes_read; 2047 2048 /* be sure to advertise window change */ 2049 mptcp_cleanup_rbuf(msk); 2050 2051 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2052 continue; 2053 2054 /* only the master socket status is relevant here. The exit 2055 * conditions mirror closely tcp_recvmsg() 2056 */ 2057 if (copied >= target) 2058 break; 2059 2060 if (copied) { 2061 if (sk->sk_err || 2062 sk->sk_state == TCP_CLOSE || 2063 (sk->sk_shutdown & RCV_SHUTDOWN) || 2064 !timeo || 2065 signal_pending(current)) 2066 break; 2067 } else { 2068 if (sk->sk_err) { 2069 copied = sock_error(sk); 2070 break; 2071 } 2072 2073 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2074 mptcp_check_for_eof(msk); 2075 2076 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2077 /* race breaker: the shutdown could be after the 2078 * previous receive queue check 2079 */ 2080 if (__mptcp_move_skbs(msk)) 2081 continue; 2082 break; 2083 } 2084 2085 if (sk->sk_state == TCP_CLOSE) { 2086 copied = -ENOTCONN; 2087 break; 2088 } 2089 2090 if (!timeo) { 2091 copied = -EAGAIN; 2092 break; 2093 } 2094 2095 if (signal_pending(current)) { 2096 copied = sock_intr_errno(timeo); 2097 break; 2098 } 2099 } 2100 2101 pr_debug("block timeout %ld", timeo); 2102 sk_wait_data(sk, &timeo, NULL); 2103 } 2104 2105 out_err: 2106 if (cmsg_flags && copied >= 0) { 2107 if (cmsg_flags & MPTCP_CMSG_TS) 2108 tcp_recv_timestamp(msg, sk, &tss); 2109 2110 if (cmsg_flags & MPTCP_CMSG_INQ) { 2111 unsigned int inq = mptcp_inq_hint(sk); 2112 2113 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2114 } 2115 } 2116 2117 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2118 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2119 skb_queue_empty(&msk->receive_queue), copied); 2120 if (!(flags & MSG_PEEK)) 2121 mptcp_rcv_space_adjust(msk, copied); 2122 2123 release_sock(sk); 2124 return copied; 2125 } 2126 2127 static void mptcp_retransmit_timer(struct timer_list *t) 2128 { 2129 struct inet_connection_sock *icsk = from_timer(icsk, t, 2130 icsk_retransmit_timer); 2131 struct sock *sk = &icsk->icsk_inet.sk; 2132 struct mptcp_sock *msk = mptcp_sk(sk); 2133 2134 bh_lock_sock(sk); 2135 if (!sock_owned_by_user(sk)) { 2136 /* we need a process context to retransmit */ 2137 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2138 mptcp_schedule_work(sk); 2139 } else { 2140 /* delegate our work to tcp_release_cb() */ 2141 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2142 } 2143 bh_unlock_sock(sk); 2144 sock_put(sk); 2145 } 2146 2147 static void mptcp_timeout_timer(struct timer_list *t) 2148 { 2149 struct sock *sk = from_timer(sk, t, sk_timer); 2150 2151 mptcp_schedule_work(sk); 2152 sock_put(sk); 2153 } 2154 2155 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2156 * level. 2157 * 2158 * A backup subflow is returned only if that is the only kind available. 2159 */ 2160 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2161 { 2162 struct sock *backup = NULL, *pick = NULL; 2163 struct mptcp_subflow_context *subflow; 2164 int min_stale_count = INT_MAX; 2165 2166 sock_owned_by_me((const struct sock *)msk); 2167 2168 if (__mptcp_check_fallback(msk)) 2169 return NULL; 2170 2171 mptcp_for_each_subflow(msk, subflow) { 2172 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2173 2174 if (!__mptcp_subflow_active(subflow)) 2175 continue; 2176 2177 /* still data outstanding at TCP level? skip this */ 2178 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2179 mptcp_pm_subflow_chk_stale(msk, ssk); 2180 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2181 continue; 2182 } 2183 2184 if (subflow->backup) { 2185 if (!backup) 2186 backup = ssk; 2187 continue; 2188 } 2189 2190 if (!pick) 2191 pick = ssk; 2192 } 2193 2194 if (pick) 2195 return pick; 2196 2197 /* use backup only if there are no progresses anywhere */ 2198 return min_stale_count > 1 ? backup : NULL; 2199 } 2200 2201 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk) 2202 { 2203 if (msk->subflow) { 2204 iput(SOCK_INODE(msk->subflow)); 2205 msk->subflow = NULL; 2206 } 2207 } 2208 2209 bool __mptcp_retransmit_pending_data(struct sock *sk) 2210 { 2211 struct mptcp_data_frag *cur, *rtx_head; 2212 struct mptcp_sock *msk = mptcp_sk(sk); 2213 2214 if (__mptcp_check_fallback(mptcp_sk(sk))) 2215 return false; 2216 2217 if (tcp_rtx_and_write_queues_empty(sk)) 2218 return false; 2219 2220 /* the closing socket has some data untransmitted and/or unacked: 2221 * some data in the mptcp rtx queue has not really xmitted yet. 2222 * keep it simple and re-inject the whole mptcp level rtx queue 2223 */ 2224 mptcp_data_lock(sk); 2225 __mptcp_clean_una_wakeup(sk); 2226 rtx_head = mptcp_rtx_head(sk); 2227 if (!rtx_head) { 2228 mptcp_data_unlock(sk); 2229 return false; 2230 } 2231 2232 msk->recovery_snd_nxt = msk->snd_nxt; 2233 msk->recovery = true; 2234 mptcp_data_unlock(sk); 2235 2236 msk->first_pending = rtx_head; 2237 msk->snd_burst = 0; 2238 2239 /* be sure to clear the "sent status" on all re-injected fragments */ 2240 list_for_each_entry(cur, &msk->rtx_queue, list) { 2241 if (!cur->already_sent) 2242 break; 2243 cur->already_sent = 0; 2244 } 2245 2246 return true; 2247 } 2248 2249 /* flags for __mptcp_close_ssk() */ 2250 #define MPTCP_CF_PUSH BIT(1) 2251 #define MPTCP_CF_FASTCLOSE BIT(2) 2252 2253 /* subflow sockets can be either outgoing (connect) or incoming 2254 * (accept). 2255 * 2256 * Outgoing subflows use in-kernel sockets. 2257 * Incoming subflows do not have their own 'struct socket' allocated, 2258 * so we need to use tcp_close() after detaching them from the mptcp 2259 * parent socket. 2260 */ 2261 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2262 struct mptcp_subflow_context *subflow, 2263 unsigned int flags) 2264 { 2265 struct mptcp_sock *msk = mptcp_sk(sk); 2266 bool need_push, dispose_it; 2267 2268 dispose_it = !msk->subflow || ssk != msk->subflow->sk; 2269 if (dispose_it) 2270 list_del(&subflow->node); 2271 2272 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2273 2274 if (flags & MPTCP_CF_FASTCLOSE) 2275 subflow->send_fastclose = 1; 2276 2277 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2278 if (!dispose_it) { 2279 tcp_disconnect(ssk, 0); 2280 msk->subflow->state = SS_UNCONNECTED; 2281 mptcp_subflow_ctx_reset(subflow); 2282 release_sock(ssk); 2283 2284 goto out; 2285 } 2286 2287 /* if we are invoked by the msk cleanup code, the subflow is 2288 * already orphaned 2289 */ 2290 if (ssk->sk_socket) 2291 sock_orphan(ssk); 2292 2293 subflow->disposable = 1; 2294 2295 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2296 * the ssk has been already destroyed, we just need to release the 2297 * reference owned by msk; 2298 */ 2299 if (!inet_csk(ssk)->icsk_ulp_ops) { 2300 kfree_rcu(subflow, rcu); 2301 } else { 2302 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2303 __tcp_close(ssk, 0); 2304 2305 /* close acquired an extra ref */ 2306 __sock_put(ssk); 2307 } 2308 release_sock(ssk); 2309 2310 sock_put(ssk); 2311 2312 if (ssk == msk->first) 2313 msk->first = NULL; 2314 2315 out: 2316 if (ssk == msk->last_snd) 2317 msk->last_snd = NULL; 2318 2319 if (need_push) 2320 __mptcp_push_pending(sk, 0); 2321 } 2322 2323 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2324 struct mptcp_subflow_context *subflow) 2325 { 2326 if (sk->sk_state == TCP_ESTABLISHED) 2327 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2328 2329 /* subflow aborted before reaching the fully_established status 2330 * attempt the creation of the next subflow 2331 */ 2332 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow); 2333 2334 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2335 } 2336 2337 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2338 { 2339 return 0; 2340 } 2341 2342 static void __mptcp_close_subflow(struct mptcp_sock *msk) 2343 { 2344 struct mptcp_subflow_context *subflow, *tmp; 2345 2346 might_sleep(); 2347 2348 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { 2349 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2350 2351 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2352 continue; 2353 2354 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2355 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2356 continue; 2357 2358 mptcp_close_ssk((struct sock *)msk, ssk, subflow); 2359 } 2360 } 2361 2362 static bool mptcp_check_close_timeout(const struct sock *sk) 2363 { 2364 s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp; 2365 struct mptcp_subflow_context *subflow; 2366 2367 if (delta >= TCP_TIMEWAIT_LEN) 2368 return true; 2369 2370 /* if all subflows are in closed status don't bother with additional 2371 * timeout 2372 */ 2373 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2374 if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) != 2375 TCP_CLOSE) 2376 return false; 2377 } 2378 return true; 2379 } 2380 2381 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2382 { 2383 struct mptcp_subflow_context *subflow, *tmp; 2384 struct sock *sk = &msk->sk.icsk_inet.sk; 2385 2386 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2387 return; 2388 2389 mptcp_token_destroy(msk); 2390 2391 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { 2392 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2393 bool slow; 2394 2395 slow = lock_sock_fast(tcp_sk); 2396 if (tcp_sk->sk_state != TCP_CLOSE) { 2397 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2398 tcp_set_state(tcp_sk, TCP_CLOSE); 2399 } 2400 unlock_sock_fast(tcp_sk, slow); 2401 } 2402 2403 inet_sk_state_store(sk, TCP_CLOSE); 2404 sk->sk_shutdown = SHUTDOWN_MASK; 2405 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2406 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2407 2408 mptcp_close_wake_up(sk); 2409 } 2410 2411 static void __mptcp_retrans(struct sock *sk) 2412 { 2413 struct mptcp_sock *msk = mptcp_sk(sk); 2414 struct mptcp_sendmsg_info info = {}; 2415 struct mptcp_data_frag *dfrag; 2416 size_t copied = 0; 2417 struct sock *ssk; 2418 int ret; 2419 2420 mptcp_clean_una_wakeup(sk); 2421 2422 /* first check ssk: need to kick "stale" logic */ 2423 ssk = mptcp_subflow_get_retrans(msk); 2424 dfrag = mptcp_rtx_head(sk); 2425 if (!dfrag) { 2426 if (mptcp_data_fin_enabled(msk)) { 2427 struct inet_connection_sock *icsk = inet_csk(sk); 2428 2429 icsk->icsk_retransmits++; 2430 mptcp_set_datafin_timeout(sk); 2431 mptcp_send_ack(msk); 2432 2433 goto reset_timer; 2434 } 2435 2436 if (!mptcp_send_head(sk)) 2437 return; 2438 2439 goto reset_timer; 2440 } 2441 2442 if (!ssk) 2443 goto reset_timer; 2444 2445 lock_sock(ssk); 2446 2447 /* limit retransmission to the bytes already sent on some subflows */ 2448 info.sent = 0; 2449 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent; 2450 while (info.sent < info.limit) { 2451 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2452 if (ret <= 0) 2453 break; 2454 2455 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2456 copied += ret; 2457 info.sent += ret; 2458 } 2459 if (copied) { 2460 dfrag->already_sent = max(dfrag->already_sent, info.sent); 2461 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2462 info.size_goal); 2463 } 2464 2465 release_sock(ssk); 2466 2467 reset_timer: 2468 mptcp_check_and_set_pending(sk); 2469 2470 if (!mptcp_timer_pending(sk)) 2471 mptcp_reset_timer(sk); 2472 } 2473 2474 static void mptcp_worker(struct work_struct *work) 2475 { 2476 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2477 struct sock *sk = &msk->sk.icsk_inet.sk; 2478 int state; 2479 2480 lock_sock(sk); 2481 state = sk->sk_state; 2482 if (unlikely(state == TCP_CLOSE)) 2483 goto unlock; 2484 2485 mptcp_check_data_fin_ack(sk); 2486 2487 mptcp_check_fastclose(msk); 2488 2489 mptcp_pm_nl_work(msk); 2490 2491 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2492 mptcp_check_for_eof(msk); 2493 2494 __mptcp_check_send_data_fin(sk); 2495 mptcp_check_data_fin(sk); 2496 2497 /* There is no point in keeping around an orphaned sk timedout or 2498 * closed, but we need the msk around to reply to incoming DATA_FIN, 2499 * even if it is orphaned and in FIN_WAIT2 state 2500 */ 2501 if (sock_flag(sk, SOCK_DEAD) && 2502 (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) { 2503 inet_sk_state_store(sk, TCP_CLOSE); 2504 __mptcp_destroy_sock(sk); 2505 goto unlock; 2506 } 2507 2508 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2509 __mptcp_close_subflow(msk); 2510 2511 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2512 __mptcp_retrans(sk); 2513 2514 unlock: 2515 release_sock(sk); 2516 sock_put(sk); 2517 } 2518 2519 static int __mptcp_init_sock(struct sock *sk) 2520 { 2521 struct mptcp_sock *msk = mptcp_sk(sk); 2522 2523 INIT_LIST_HEAD(&msk->conn_list); 2524 INIT_LIST_HEAD(&msk->join_list); 2525 INIT_LIST_HEAD(&msk->rtx_queue); 2526 INIT_WORK(&msk->work, mptcp_worker); 2527 __skb_queue_head_init(&msk->receive_queue); 2528 msk->out_of_order_queue = RB_ROOT; 2529 msk->first_pending = NULL; 2530 msk->rmem_fwd_alloc = 0; 2531 WRITE_ONCE(msk->rmem_released, 0); 2532 msk->timer_ival = TCP_RTO_MIN; 2533 2534 msk->first = NULL; 2535 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2536 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2537 msk->recovery = false; 2538 2539 mptcp_pm_data_init(msk); 2540 2541 /* re-use the csk retrans timer for MPTCP-level retrans */ 2542 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2543 timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0); 2544 2545 return 0; 2546 } 2547 2548 static void mptcp_ca_reset(struct sock *sk) 2549 { 2550 struct inet_connection_sock *icsk = inet_csk(sk); 2551 2552 tcp_assign_congestion_control(sk); 2553 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2554 2555 /* no need to keep a reference to the ops, the name will suffice */ 2556 tcp_cleanup_congestion_control(sk); 2557 icsk->icsk_ca_ops = NULL; 2558 } 2559 2560 static int mptcp_init_sock(struct sock *sk) 2561 { 2562 struct net *net = sock_net(sk); 2563 int ret; 2564 2565 ret = __mptcp_init_sock(sk); 2566 if (ret) 2567 return ret; 2568 2569 if (!mptcp_is_enabled(net)) 2570 return -ENOPROTOOPT; 2571 2572 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2573 return -ENOMEM; 2574 2575 ret = __mptcp_socket_create(mptcp_sk(sk)); 2576 if (ret) 2577 return ret; 2578 2579 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2580 * propagate the correct value 2581 */ 2582 mptcp_ca_reset(sk); 2583 2584 sk_sockets_allocated_inc(sk); 2585 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 2586 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 2587 2588 return 0; 2589 } 2590 2591 static void __mptcp_clear_xmit(struct sock *sk) 2592 { 2593 struct mptcp_sock *msk = mptcp_sk(sk); 2594 struct mptcp_data_frag *dtmp, *dfrag; 2595 2596 WRITE_ONCE(msk->first_pending, NULL); 2597 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2598 dfrag_clear(sk, dfrag); 2599 } 2600 2601 static void mptcp_cancel_work(struct sock *sk) 2602 { 2603 struct mptcp_sock *msk = mptcp_sk(sk); 2604 2605 if (cancel_work_sync(&msk->work)) 2606 __sock_put(sk); 2607 } 2608 2609 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2610 { 2611 lock_sock(ssk); 2612 2613 switch (ssk->sk_state) { 2614 case TCP_LISTEN: 2615 if (!(how & RCV_SHUTDOWN)) 2616 break; 2617 fallthrough; 2618 case TCP_SYN_SENT: 2619 tcp_disconnect(ssk, O_NONBLOCK); 2620 break; 2621 default: 2622 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2623 pr_debug("Fallback"); 2624 ssk->sk_shutdown |= how; 2625 tcp_shutdown(ssk, how); 2626 } else { 2627 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2628 tcp_send_ack(ssk); 2629 if (!mptcp_timer_pending(sk)) 2630 mptcp_reset_timer(sk); 2631 } 2632 break; 2633 } 2634 2635 release_sock(ssk); 2636 } 2637 2638 static const unsigned char new_state[16] = { 2639 /* current state: new state: action: */ 2640 [0 /* (Invalid) */] = TCP_CLOSE, 2641 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2642 [TCP_SYN_SENT] = TCP_CLOSE, 2643 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2644 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2645 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2646 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2647 [TCP_CLOSE] = TCP_CLOSE, 2648 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2649 [TCP_LAST_ACK] = TCP_LAST_ACK, 2650 [TCP_LISTEN] = TCP_CLOSE, 2651 [TCP_CLOSING] = TCP_CLOSING, 2652 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2653 }; 2654 2655 static int mptcp_close_state(struct sock *sk) 2656 { 2657 int next = (int)new_state[sk->sk_state]; 2658 int ns = next & TCP_STATE_MASK; 2659 2660 inet_sk_state_store(sk, ns); 2661 2662 return next & TCP_ACTION_FIN; 2663 } 2664 2665 static void __mptcp_check_send_data_fin(struct sock *sk) 2666 { 2667 struct mptcp_subflow_context *subflow; 2668 struct mptcp_sock *msk = mptcp_sk(sk); 2669 2670 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2671 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2672 msk->snd_nxt, msk->write_seq); 2673 2674 /* we still need to enqueue subflows or not really shutting down, 2675 * skip this 2676 */ 2677 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2678 mptcp_send_head(sk)) 2679 return; 2680 2681 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2682 2683 /* fallback socket will not get data_fin/ack, can move to the next 2684 * state now 2685 */ 2686 if (__mptcp_check_fallback(msk)) { 2687 WRITE_ONCE(msk->snd_una, msk->write_seq); 2688 if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { 2689 inet_sk_state_store(sk, TCP_CLOSE); 2690 mptcp_close_wake_up(sk); 2691 } else if (sk->sk_state == TCP_FIN_WAIT1) { 2692 inet_sk_state_store(sk, TCP_FIN_WAIT2); 2693 } 2694 } 2695 2696 mptcp_for_each_subflow(msk, subflow) { 2697 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2698 2699 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2700 } 2701 } 2702 2703 static void __mptcp_wr_shutdown(struct sock *sk) 2704 { 2705 struct mptcp_sock *msk = mptcp_sk(sk); 2706 2707 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2708 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2709 !!mptcp_send_head(sk)); 2710 2711 /* will be ignored by fallback sockets */ 2712 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2713 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2714 2715 __mptcp_check_send_data_fin(sk); 2716 } 2717 2718 static void __mptcp_destroy_sock(struct sock *sk) 2719 { 2720 struct mptcp_subflow_context *subflow, *tmp; 2721 struct mptcp_sock *msk = mptcp_sk(sk); 2722 LIST_HEAD(conn_list); 2723 2724 pr_debug("msk=%p", msk); 2725 2726 might_sleep(); 2727 2728 /* join list will be eventually flushed (with rst) at sock lock release time*/ 2729 list_splice_init(&msk->conn_list, &conn_list); 2730 2731 sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer); 2732 sk_stop_timer(sk, &sk->sk_timer); 2733 msk->pm.status = 0; 2734 2735 /* clears msk->subflow, allowing the following loop to close 2736 * even the initial subflow 2737 */ 2738 mptcp_dispose_initial_subflow(msk); 2739 list_for_each_entry_safe(subflow, tmp, &conn_list, node) { 2740 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2741 __mptcp_close_ssk(sk, ssk, subflow, 0); 2742 } 2743 2744 sk->sk_prot->destroy(sk); 2745 2746 WARN_ON_ONCE(msk->rmem_fwd_alloc); 2747 WARN_ON_ONCE(msk->rmem_released); 2748 sk_stream_kill_queues(sk); 2749 xfrm_sk_free_policy(sk); 2750 2751 sk_refcnt_debug_release(sk); 2752 sock_put(sk); 2753 } 2754 2755 static void mptcp_close(struct sock *sk, long timeout) 2756 { 2757 struct mptcp_subflow_context *subflow; 2758 bool do_cancel_work = false; 2759 2760 lock_sock(sk); 2761 sk->sk_shutdown = SHUTDOWN_MASK; 2762 2763 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 2764 inet_sk_state_store(sk, TCP_CLOSE); 2765 goto cleanup; 2766 } 2767 2768 if (mptcp_close_state(sk)) 2769 __mptcp_wr_shutdown(sk); 2770 2771 sk_stream_wait_close(sk, timeout); 2772 2773 cleanup: 2774 /* orphan all the subflows */ 2775 inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32; 2776 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2777 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2778 bool slow = lock_sock_fast_nested(ssk); 2779 2780 sock_orphan(ssk); 2781 unlock_sock_fast(ssk, slow); 2782 } 2783 sock_orphan(sk); 2784 2785 sock_hold(sk); 2786 pr_debug("msk=%p state=%d", sk, sk->sk_state); 2787 if (mptcp_sk(sk)->token) 2788 mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL); 2789 2790 if (sk->sk_state == TCP_CLOSE) { 2791 __mptcp_destroy_sock(sk); 2792 do_cancel_work = true; 2793 } else { 2794 sk_reset_timer(sk, &sk->sk_timer, jiffies + TCP_TIMEWAIT_LEN); 2795 } 2796 release_sock(sk); 2797 if (do_cancel_work) 2798 mptcp_cancel_work(sk); 2799 2800 sock_put(sk); 2801 } 2802 2803 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 2804 { 2805 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2806 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 2807 struct ipv6_pinfo *msk6 = inet6_sk(msk); 2808 2809 msk->sk_v6_daddr = ssk->sk_v6_daddr; 2810 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 2811 2812 if (msk6 && ssk6) { 2813 msk6->saddr = ssk6->saddr; 2814 msk6->flow_label = ssk6->flow_label; 2815 } 2816 #endif 2817 2818 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 2819 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 2820 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 2821 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 2822 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 2823 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 2824 } 2825 2826 static int mptcp_disconnect(struct sock *sk, int flags) 2827 { 2828 struct mptcp_subflow_context *subflow; 2829 struct mptcp_sock *msk = mptcp_sk(sk); 2830 2831 inet_sk_state_store(sk, TCP_CLOSE); 2832 2833 mptcp_for_each_subflow(msk, subflow) { 2834 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2835 2836 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_FASTCLOSE); 2837 } 2838 2839 sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer); 2840 sk_stop_timer(sk, &sk->sk_timer); 2841 2842 if (mptcp_sk(sk)->token) 2843 mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL); 2844 2845 mptcp_destroy_common(msk); 2846 msk->last_snd = NULL; 2847 WRITE_ONCE(msk->flags, 0); 2848 msk->cb_flags = 0; 2849 msk->push_pending = 0; 2850 msk->recovery = false; 2851 msk->can_ack = false; 2852 msk->fully_established = false; 2853 msk->rcv_data_fin = false; 2854 msk->snd_data_fin_enable = false; 2855 msk->rcv_fastclose = false; 2856 msk->use_64bit_ack = false; 2857 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2858 mptcp_pm_data_reset(msk); 2859 mptcp_ca_reset(sk); 2860 2861 sk->sk_shutdown = 0; 2862 sk_error_report(sk); 2863 return 0; 2864 } 2865 2866 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2867 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 2868 { 2869 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 2870 2871 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 2872 } 2873 #endif 2874 2875 struct sock *mptcp_sk_clone(const struct sock *sk, 2876 const struct mptcp_options_received *mp_opt, 2877 struct request_sock *req) 2878 { 2879 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 2880 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 2881 struct mptcp_sock *msk; 2882 u64 ack_seq; 2883 2884 if (!nsk) 2885 return NULL; 2886 2887 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2888 if (nsk->sk_family == AF_INET6) 2889 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 2890 #endif 2891 2892 __mptcp_init_sock(nsk); 2893 2894 msk = mptcp_sk(nsk); 2895 msk->local_key = subflow_req->local_key; 2896 msk->token = subflow_req->token; 2897 msk->subflow = NULL; 2898 WRITE_ONCE(msk->fully_established, false); 2899 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 2900 WRITE_ONCE(msk->csum_enabled, true); 2901 2902 msk->write_seq = subflow_req->idsn + 1; 2903 msk->snd_nxt = msk->write_seq; 2904 msk->snd_una = msk->write_seq; 2905 msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd; 2906 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 2907 2908 if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) { 2909 msk->can_ack = true; 2910 msk->remote_key = mp_opt->sndr_key; 2911 mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq); 2912 ack_seq++; 2913 WRITE_ONCE(msk->ack_seq, ack_seq); 2914 WRITE_ONCE(msk->rcv_wnd_sent, ack_seq); 2915 } 2916 2917 sock_reset_flag(nsk, SOCK_RCU_FREE); 2918 /* will be fully established after successful MPC subflow creation */ 2919 inet_sk_state_store(nsk, TCP_SYN_RECV); 2920 2921 security_inet_csk_clone(nsk, req); 2922 bh_unlock_sock(nsk); 2923 2924 /* keep a single reference */ 2925 __sock_put(nsk); 2926 return nsk; 2927 } 2928 2929 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 2930 { 2931 const struct tcp_sock *tp = tcp_sk(ssk); 2932 2933 msk->rcvq_space.copied = 0; 2934 msk->rcvq_space.rtt_us = 0; 2935 2936 msk->rcvq_space.time = tp->tcp_mstamp; 2937 2938 /* initial rcv_space offering made to peer */ 2939 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 2940 TCP_INIT_CWND * tp->advmss); 2941 if (msk->rcvq_space.space == 0) 2942 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 2943 2944 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 2945 } 2946 2947 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err, 2948 bool kern) 2949 { 2950 struct mptcp_sock *msk = mptcp_sk(sk); 2951 struct socket *listener; 2952 struct sock *newsk; 2953 2954 listener = __mptcp_nmpc_socket(msk); 2955 if (WARN_ON_ONCE(!listener)) { 2956 *err = -EINVAL; 2957 return NULL; 2958 } 2959 2960 pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk)); 2961 newsk = inet_csk_accept(listener->sk, flags, err, kern); 2962 if (!newsk) 2963 return NULL; 2964 2965 pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk)); 2966 if (sk_is_mptcp(newsk)) { 2967 struct mptcp_subflow_context *subflow; 2968 struct sock *new_mptcp_sock; 2969 2970 subflow = mptcp_subflow_ctx(newsk); 2971 new_mptcp_sock = subflow->conn; 2972 2973 /* is_mptcp should be false if subflow->conn is missing, see 2974 * subflow_syn_recv_sock() 2975 */ 2976 if (WARN_ON_ONCE(!new_mptcp_sock)) { 2977 tcp_sk(newsk)->is_mptcp = 0; 2978 goto out; 2979 } 2980 2981 /* acquire the 2nd reference for the owning socket */ 2982 sock_hold(new_mptcp_sock); 2983 newsk = new_mptcp_sock; 2984 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 2985 } else { 2986 MPTCP_INC_STATS(sock_net(sk), 2987 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 2988 } 2989 2990 out: 2991 newsk->sk_kern_sock = kern; 2992 return newsk; 2993 } 2994 2995 void mptcp_destroy_common(struct mptcp_sock *msk) 2996 { 2997 struct sock *sk = (struct sock *)msk; 2998 2999 __mptcp_clear_xmit(sk); 3000 3001 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3002 mptcp_data_lock(sk); 3003 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3004 __skb_queue_purge(&sk->sk_receive_queue); 3005 skb_rbtree_purge(&msk->out_of_order_queue); 3006 mptcp_data_unlock(sk); 3007 3008 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3009 * inet_sock_destruct() will dispose it 3010 */ 3011 sk->sk_forward_alloc += msk->rmem_fwd_alloc; 3012 msk->rmem_fwd_alloc = 0; 3013 mptcp_token_destroy(msk); 3014 mptcp_pm_free_anno_list(msk); 3015 } 3016 3017 static void mptcp_destroy(struct sock *sk) 3018 { 3019 struct mptcp_sock *msk = mptcp_sk(sk); 3020 3021 mptcp_destroy_common(msk); 3022 sk_sockets_allocated_dec(sk); 3023 } 3024 3025 void __mptcp_data_acked(struct sock *sk) 3026 { 3027 if (!sock_owned_by_user(sk)) 3028 __mptcp_clean_una(sk); 3029 else 3030 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3031 3032 if (mptcp_pending_data_fin_ack(sk)) 3033 mptcp_schedule_work(sk); 3034 } 3035 3036 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3037 { 3038 if (!mptcp_send_head(sk)) 3039 return; 3040 3041 if (!sock_owned_by_user(sk)) { 3042 struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk)); 3043 3044 if (xmit_ssk == ssk) 3045 __mptcp_subflow_push_pending(sk, ssk); 3046 else if (xmit_ssk) 3047 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), MPTCP_DELEGATE_SEND); 3048 } else { 3049 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3050 } 3051 } 3052 3053 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3054 BIT(MPTCP_RETRANSMIT) | \ 3055 BIT(MPTCP_FLUSH_JOIN_LIST)) 3056 3057 /* processes deferred events and flush wmem */ 3058 static void mptcp_release_cb(struct sock *sk) 3059 __must_hold(&sk->sk_lock.slock) 3060 { 3061 struct mptcp_sock *msk = mptcp_sk(sk); 3062 3063 for (;;) { 3064 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) | 3065 msk->push_pending; 3066 if (!flags) 3067 break; 3068 3069 /* the following actions acquire the subflow socket lock 3070 * 3071 * 1) can't be invoked in atomic scope 3072 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3073 * datapath acquires the msk socket spinlock while helding 3074 * the subflow socket lock 3075 */ 3076 msk->push_pending = 0; 3077 msk->cb_flags &= ~flags; 3078 spin_unlock_bh(&sk->sk_lock.slock); 3079 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3080 __mptcp_flush_join_list(sk); 3081 if (flags & BIT(MPTCP_PUSH_PENDING)) 3082 __mptcp_push_pending(sk, 0); 3083 if (flags & BIT(MPTCP_RETRANSMIT)) 3084 __mptcp_retrans(sk); 3085 3086 cond_resched(); 3087 spin_lock_bh(&sk->sk_lock.slock); 3088 } 3089 3090 /* be sure to set the current sk state before tacking actions 3091 * depending on sk_state 3092 */ 3093 if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags)) 3094 __mptcp_set_connected(sk); 3095 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3096 __mptcp_clean_una_wakeup(sk); 3097 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3098 __mptcp_error_report(sk); 3099 3100 __mptcp_update_rmem(sk); 3101 } 3102 3103 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3104 * TCP can't schedule delack timer before the subflow is fully established. 3105 * MPTCP uses the delack timer to do 3rd ack retransmissions 3106 */ 3107 static void schedule_3rdack_retransmission(struct sock *ssk) 3108 { 3109 struct inet_connection_sock *icsk = inet_csk(ssk); 3110 struct tcp_sock *tp = tcp_sk(ssk); 3111 unsigned long timeout; 3112 3113 if (mptcp_subflow_ctx(ssk)->fully_established) 3114 return; 3115 3116 /* reschedule with a timeout above RTT, as we must look only for drop */ 3117 if (tp->srtt_us) 3118 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3119 else 3120 timeout = TCP_TIMEOUT_INIT; 3121 timeout += jiffies; 3122 3123 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3124 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3125 icsk->icsk_ack.timeout = timeout; 3126 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3127 } 3128 3129 void mptcp_subflow_process_delegated(struct sock *ssk) 3130 { 3131 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3132 struct sock *sk = subflow->conn; 3133 3134 if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) { 3135 mptcp_data_lock(sk); 3136 if (!sock_owned_by_user(sk)) 3137 __mptcp_subflow_push_pending(sk, ssk); 3138 else 3139 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3140 mptcp_data_unlock(sk); 3141 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND); 3142 } 3143 if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) { 3144 schedule_3rdack_retransmission(ssk); 3145 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK); 3146 } 3147 } 3148 3149 static int mptcp_hash(struct sock *sk) 3150 { 3151 /* should never be called, 3152 * we hash the TCP subflows not the master socket 3153 */ 3154 WARN_ON_ONCE(1); 3155 return 0; 3156 } 3157 3158 static void mptcp_unhash(struct sock *sk) 3159 { 3160 /* called from sk_common_release(), but nothing to do here */ 3161 } 3162 3163 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3164 { 3165 struct mptcp_sock *msk = mptcp_sk(sk); 3166 struct socket *ssock; 3167 3168 ssock = __mptcp_nmpc_socket(msk); 3169 pr_debug("msk=%p, subflow=%p", msk, ssock); 3170 if (WARN_ON_ONCE(!ssock)) 3171 return -EINVAL; 3172 3173 return inet_csk_get_port(ssock->sk, snum); 3174 } 3175 3176 void mptcp_finish_connect(struct sock *ssk) 3177 { 3178 struct mptcp_subflow_context *subflow; 3179 struct mptcp_sock *msk; 3180 struct sock *sk; 3181 u64 ack_seq; 3182 3183 subflow = mptcp_subflow_ctx(ssk); 3184 sk = subflow->conn; 3185 msk = mptcp_sk(sk); 3186 3187 pr_debug("msk=%p, token=%u", sk, subflow->token); 3188 3189 mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq); 3190 ack_seq++; 3191 subflow->map_seq = ack_seq; 3192 subflow->map_subflow_seq = 1; 3193 3194 /* the socket is not connected yet, no msk/subflow ops can access/race 3195 * accessing the field below 3196 */ 3197 WRITE_ONCE(msk->remote_key, subflow->remote_key); 3198 WRITE_ONCE(msk->local_key, subflow->local_key); 3199 WRITE_ONCE(msk->write_seq, subflow->idsn + 1); 3200 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3201 WRITE_ONCE(msk->ack_seq, ack_seq); 3202 WRITE_ONCE(msk->rcv_wnd_sent, ack_seq); 3203 WRITE_ONCE(msk->can_ack, 1); 3204 WRITE_ONCE(msk->snd_una, msk->write_seq); 3205 3206 mptcp_pm_new_connection(msk, ssk, 0); 3207 3208 mptcp_rcv_space_init(msk, ssk); 3209 } 3210 3211 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3212 { 3213 write_lock_bh(&sk->sk_callback_lock); 3214 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3215 sk_set_socket(sk, parent); 3216 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3217 write_unlock_bh(&sk->sk_callback_lock); 3218 } 3219 3220 bool mptcp_finish_join(struct sock *ssk) 3221 { 3222 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3223 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3224 struct sock *parent = (void *)msk; 3225 bool ret = true; 3226 3227 pr_debug("msk=%p, subflow=%p", msk, subflow); 3228 3229 /* mptcp socket already closing? */ 3230 if (!mptcp_is_fully_established(parent)) { 3231 subflow->reset_reason = MPTCP_RST_EMPTCP; 3232 return false; 3233 } 3234 3235 if (!msk->pm.server_side) 3236 goto out; 3237 3238 if (!mptcp_pm_allow_new_subflow(msk)) 3239 goto err_prohibited; 3240 3241 if (WARN_ON_ONCE(!list_empty(&subflow->node))) 3242 goto err_prohibited; 3243 3244 /* active connections are already on conn_list. 3245 * If we can't acquire msk socket lock here, let the release callback 3246 * handle it 3247 */ 3248 mptcp_data_lock(parent); 3249 if (!sock_owned_by_user(parent)) { 3250 ret = __mptcp_finish_join(msk, ssk); 3251 if (ret) { 3252 sock_hold(ssk); 3253 list_add_tail(&subflow->node, &msk->conn_list); 3254 } 3255 } else { 3256 sock_hold(ssk); 3257 list_add_tail(&subflow->node, &msk->join_list); 3258 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3259 } 3260 mptcp_data_unlock(parent); 3261 3262 if (!ret) { 3263 err_prohibited: 3264 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3265 return false; 3266 } 3267 3268 subflow->map_seq = READ_ONCE(msk->ack_seq); 3269 3270 out: 3271 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 3272 return true; 3273 } 3274 3275 static void mptcp_shutdown(struct sock *sk, int how) 3276 { 3277 pr_debug("sk=%p, how=%d", sk, how); 3278 3279 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3280 __mptcp_wr_shutdown(sk); 3281 } 3282 3283 static int mptcp_forward_alloc_get(const struct sock *sk) 3284 { 3285 return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc; 3286 } 3287 3288 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3289 { 3290 const struct sock *sk = (void *)msk; 3291 u64 delta; 3292 3293 if (sk->sk_state == TCP_LISTEN) 3294 return -EINVAL; 3295 3296 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3297 return 0; 3298 3299 delta = msk->write_seq - v; 3300 if (__mptcp_check_fallback(msk) && msk->first) { 3301 struct tcp_sock *tp = tcp_sk(msk->first); 3302 3303 /* the first subflow is disconnected after close - see 3304 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3305 * so ignore that status, too. 3306 */ 3307 if (!((1 << msk->first->sk_state) & 3308 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3309 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3310 } 3311 if (delta > INT_MAX) 3312 delta = INT_MAX; 3313 3314 return (int)delta; 3315 } 3316 3317 static int mptcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3318 { 3319 struct mptcp_sock *msk = mptcp_sk(sk); 3320 bool slow; 3321 int answ; 3322 3323 switch (cmd) { 3324 case SIOCINQ: 3325 if (sk->sk_state == TCP_LISTEN) 3326 return -EINVAL; 3327 3328 lock_sock(sk); 3329 __mptcp_move_skbs(msk); 3330 answ = mptcp_inq_hint(sk); 3331 release_sock(sk); 3332 break; 3333 case SIOCOUTQ: 3334 slow = lock_sock_fast(sk); 3335 answ = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3336 unlock_sock_fast(sk, slow); 3337 break; 3338 case SIOCOUTQNSD: 3339 slow = lock_sock_fast(sk); 3340 answ = mptcp_ioctl_outq(msk, msk->snd_nxt); 3341 unlock_sock_fast(sk, slow); 3342 break; 3343 default: 3344 return -ENOIOCTLCMD; 3345 } 3346 3347 return put_user(answ, (int __user *)arg); 3348 } 3349 3350 static struct proto mptcp_prot = { 3351 .name = "MPTCP", 3352 .owner = THIS_MODULE, 3353 .init = mptcp_init_sock, 3354 .disconnect = mptcp_disconnect, 3355 .close = mptcp_close, 3356 .accept = mptcp_accept, 3357 .setsockopt = mptcp_setsockopt, 3358 .getsockopt = mptcp_getsockopt, 3359 .shutdown = mptcp_shutdown, 3360 .destroy = mptcp_destroy, 3361 .sendmsg = mptcp_sendmsg, 3362 .ioctl = mptcp_ioctl, 3363 .recvmsg = mptcp_recvmsg, 3364 .release_cb = mptcp_release_cb, 3365 .hash = mptcp_hash, 3366 .unhash = mptcp_unhash, 3367 .get_port = mptcp_get_port, 3368 .forward_alloc_get = mptcp_forward_alloc_get, 3369 .sockets_allocated = &mptcp_sockets_allocated, 3370 .memory_allocated = &tcp_memory_allocated, 3371 .memory_pressure = &tcp_memory_pressure, 3372 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3373 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3374 .sysctl_mem = sysctl_tcp_mem, 3375 .obj_size = sizeof(struct mptcp_sock), 3376 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3377 .no_autobind = true, 3378 }; 3379 3380 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3381 { 3382 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3383 struct socket *ssock; 3384 int err; 3385 3386 lock_sock(sock->sk); 3387 ssock = __mptcp_nmpc_socket(msk); 3388 if (!ssock) { 3389 err = -EINVAL; 3390 goto unlock; 3391 } 3392 3393 err = ssock->ops->bind(ssock, uaddr, addr_len); 3394 if (!err) 3395 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3396 3397 unlock: 3398 release_sock(sock->sk); 3399 return err; 3400 } 3401 3402 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3403 struct mptcp_subflow_context *subflow) 3404 { 3405 subflow->request_mptcp = 0; 3406 __mptcp_do_fallback(msk); 3407 } 3408 3409 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr, 3410 int addr_len, int flags) 3411 { 3412 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3413 struct mptcp_subflow_context *subflow; 3414 struct socket *ssock; 3415 int err = -EINVAL; 3416 3417 lock_sock(sock->sk); 3418 if (uaddr) { 3419 if (addr_len < sizeof(uaddr->sa_family)) 3420 goto unlock; 3421 3422 if (uaddr->sa_family == AF_UNSPEC) { 3423 err = mptcp_disconnect(sock->sk, flags); 3424 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 3425 goto unlock; 3426 } 3427 } 3428 3429 if (sock->state != SS_UNCONNECTED && msk->subflow) { 3430 /* pending connection or invalid state, let existing subflow 3431 * cope with that 3432 */ 3433 ssock = msk->subflow; 3434 goto do_connect; 3435 } 3436 3437 ssock = __mptcp_nmpc_socket(msk); 3438 if (!ssock) 3439 goto unlock; 3440 3441 mptcp_token_destroy(msk); 3442 inet_sk_state_store(sock->sk, TCP_SYN_SENT); 3443 subflow = mptcp_subflow_ctx(ssock->sk); 3444 #ifdef CONFIG_TCP_MD5SIG 3445 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3446 * TCP option space. 3447 */ 3448 if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info)) 3449 mptcp_subflow_early_fallback(msk, subflow); 3450 #endif 3451 if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) { 3452 MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT); 3453 mptcp_subflow_early_fallback(msk, subflow); 3454 } 3455 if (likely(!__mptcp_check_fallback(msk))) 3456 MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE); 3457 3458 do_connect: 3459 err = ssock->ops->connect(ssock, uaddr, addr_len, flags); 3460 sock->state = ssock->state; 3461 3462 /* on successful connect, the msk state will be moved to established by 3463 * subflow_finish_connect() 3464 */ 3465 if (!err || err == -EINPROGRESS) 3466 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3467 else 3468 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 3469 3470 unlock: 3471 release_sock(sock->sk); 3472 return err; 3473 } 3474 3475 static int mptcp_listen(struct socket *sock, int backlog) 3476 { 3477 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3478 struct socket *ssock; 3479 int err; 3480 3481 pr_debug("msk=%p", msk); 3482 3483 lock_sock(sock->sk); 3484 ssock = __mptcp_nmpc_socket(msk); 3485 if (!ssock) { 3486 err = -EINVAL; 3487 goto unlock; 3488 } 3489 3490 mptcp_token_destroy(msk); 3491 inet_sk_state_store(sock->sk, TCP_LISTEN); 3492 sock_set_flag(sock->sk, SOCK_RCU_FREE); 3493 3494 err = ssock->ops->listen(ssock, backlog); 3495 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 3496 if (!err) 3497 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3498 3499 unlock: 3500 release_sock(sock->sk); 3501 return err; 3502 } 3503 3504 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3505 int flags, bool kern) 3506 { 3507 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3508 struct socket *ssock; 3509 int err; 3510 3511 pr_debug("msk=%p", msk); 3512 3513 ssock = __mptcp_nmpc_socket(msk); 3514 if (!ssock) 3515 return -EINVAL; 3516 3517 err = ssock->ops->accept(sock, newsock, flags, kern); 3518 if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) { 3519 struct mptcp_sock *msk = mptcp_sk(newsock->sk); 3520 struct mptcp_subflow_context *subflow; 3521 struct sock *newsk = newsock->sk; 3522 3523 lock_sock(newsk); 3524 3525 /* PM/worker can now acquire the first subflow socket 3526 * lock without racing with listener queue cleanup, 3527 * we can notify it, if needed. 3528 * 3529 * Even if remote has reset the initial subflow by now 3530 * the refcnt is still at least one. 3531 */ 3532 subflow = mptcp_subflow_ctx(msk->first); 3533 list_add(&subflow->node, &msk->conn_list); 3534 sock_hold(msk->first); 3535 if (mptcp_is_fully_established(newsk)) 3536 mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL); 3537 3538 mptcp_copy_inaddrs(newsk, msk->first); 3539 mptcp_rcv_space_init(msk, msk->first); 3540 mptcp_propagate_sndbuf(newsk, msk->first); 3541 3542 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3543 * This is needed so NOSPACE flag can be set from tcp stack. 3544 */ 3545 mptcp_for_each_subflow(msk, subflow) { 3546 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3547 3548 if (!ssk->sk_socket) 3549 mptcp_sock_graft(ssk, newsock); 3550 } 3551 release_sock(newsk); 3552 } 3553 3554 return err; 3555 } 3556 3557 static __poll_t mptcp_check_readable(struct mptcp_sock *msk) 3558 { 3559 /* Concurrent splices from sk_receive_queue into receive_queue will 3560 * always show at least one non-empty queue when checked in this order. 3561 */ 3562 if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) && 3563 skb_queue_empty_lockless(&msk->receive_queue)) 3564 return 0; 3565 3566 return EPOLLIN | EPOLLRDNORM; 3567 } 3568 3569 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3570 { 3571 struct sock *sk = (struct sock *)msk; 3572 3573 if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN)) 3574 return EPOLLOUT | EPOLLWRNORM; 3575 3576 if (sk_stream_is_writeable(sk)) 3577 return EPOLLOUT | EPOLLWRNORM; 3578 3579 mptcp_set_nospace(sk); 3580 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3581 if (sk_stream_is_writeable(sk)) 3582 return EPOLLOUT | EPOLLWRNORM; 3583 3584 return 0; 3585 } 3586 3587 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3588 struct poll_table_struct *wait) 3589 { 3590 struct sock *sk = sock->sk; 3591 struct mptcp_sock *msk; 3592 __poll_t mask = 0; 3593 int state; 3594 3595 msk = mptcp_sk(sk); 3596 sock_poll_wait(file, sock, wait); 3597 3598 state = inet_sk_state_load(sk); 3599 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3600 if (state == TCP_LISTEN) { 3601 if (WARN_ON_ONCE(!msk->subflow || !msk->subflow->sk)) 3602 return 0; 3603 3604 return inet_csk_listen_poll(msk->subflow->sk); 3605 } 3606 3607 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3608 mask |= mptcp_check_readable(msk); 3609 mask |= mptcp_check_writeable(msk); 3610 } 3611 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3612 mask |= EPOLLHUP; 3613 if (sk->sk_shutdown & RCV_SHUTDOWN) 3614 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3615 3616 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 3617 smp_rmb(); 3618 if (sk->sk_err) 3619 mask |= EPOLLERR; 3620 3621 return mask; 3622 } 3623 3624 static const struct proto_ops mptcp_stream_ops = { 3625 .family = PF_INET, 3626 .owner = THIS_MODULE, 3627 .release = inet_release, 3628 .bind = mptcp_bind, 3629 .connect = mptcp_stream_connect, 3630 .socketpair = sock_no_socketpair, 3631 .accept = mptcp_stream_accept, 3632 .getname = inet_getname, 3633 .poll = mptcp_poll, 3634 .ioctl = inet_ioctl, 3635 .gettstamp = sock_gettstamp, 3636 .listen = mptcp_listen, 3637 .shutdown = inet_shutdown, 3638 .setsockopt = sock_common_setsockopt, 3639 .getsockopt = sock_common_getsockopt, 3640 .sendmsg = inet_sendmsg, 3641 .recvmsg = inet_recvmsg, 3642 .mmap = sock_no_mmap, 3643 .sendpage = inet_sendpage, 3644 }; 3645 3646 static struct inet_protosw mptcp_protosw = { 3647 .type = SOCK_STREAM, 3648 .protocol = IPPROTO_MPTCP, 3649 .prot = &mptcp_prot, 3650 .ops = &mptcp_stream_ops, 3651 .flags = INET_PROTOSW_ICSK, 3652 }; 3653 3654 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 3655 { 3656 struct mptcp_delegated_action *delegated; 3657 struct mptcp_subflow_context *subflow; 3658 int work_done = 0; 3659 3660 delegated = container_of(napi, struct mptcp_delegated_action, napi); 3661 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 3662 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3663 3664 bh_lock_sock_nested(ssk); 3665 if (!sock_owned_by_user(ssk) && 3666 mptcp_subflow_has_delegated_action(subflow)) 3667 mptcp_subflow_process_delegated(ssk); 3668 /* ... elsewhere tcp_release_cb_override already processed 3669 * the action or will do at next release_sock(). 3670 * In both case must dequeue the subflow here - on the same 3671 * CPU that scheduled it. 3672 */ 3673 bh_unlock_sock(ssk); 3674 sock_put(ssk); 3675 3676 if (++work_done == budget) 3677 return budget; 3678 } 3679 3680 /* always provide a 0 'work_done' argument, so that napi_complete_done 3681 * will not try accessing the NULL napi->dev ptr 3682 */ 3683 napi_complete_done(napi, 0); 3684 return work_done; 3685 } 3686 3687 void __init mptcp_proto_init(void) 3688 { 3689 struct mptcp_delegated_action *delegated; 3690 int cpu; 3691 3692 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 3693 3694 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 3695 panic("Failed to allocate MPTCP pcpu counter\n"); 3696 3697 init_dummy_netdev(&mptcp_napi_dev); 3698 for_each_possible_cpu(cpu) { 3699 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 3700 INIT_LIST_HEAD(&delegated->head); 3701 netif_tx_napi_add(&mptcp_napi_dev, &delegated->napi, mptcp_napi_poll, 3702 NAPI_POLL_WEIGHT); 3703 napi_enable(&delegated->napi); 3704 } 3705 3706 mptcp_subflow_init(); 3707 mptcp_pm_init(); 3708 mptcp_token_init(); 3709 3710 if (proto_register(&mptcp_prot, 1) != 0) 3711 panic("Failed to register MPTCP proto.\n"); 3712 3713 inet_register_protosw(&mptcp_protosw); 3714 3715 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 3716 } 3717 3718 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3719 static const struct proto_ops mptcp_v6_stream_ops = { 3720 .family = PF_INET6, 3721 .owner = THIS_MODULE, 3722 .release = inet6_release, 3723 .bind = mptcp_bind, 3724 .connect = mptcp_stream_connect, 3725 .socketpair = sock_no_socketpair, 3726 .accept = mptcp_stream_accept, 3727 .getname = inet6_getname, 3728 .poll = mptcp_poll, 3729 .ioctl = inet6_ioctl, 3730 .gettstamp = sock_gettstamp, 3731 .listen = mptcp_listen, 3732 .shutdown = inet_shutdown, 3733 .setsockopt = sock_common_setsockopt, 3734 .getsockopt = sock_common_getsockopt, 3735 .sendmsg = inet6_sendmsg, 3736 .recvmsg = inet6_recvmsg, 3737 .mmap = sock_no_mmap, 3738 .sendpage = inet_sendpage, 3739 #ifdef CONFIG_COMPAT 3740 .compat_ioctl = inet6_compat_ioctl, 3741 #endif 3742 }; 3743 3744 static struct proto mptcp_v6_prot; 3745 3746 static void mptcp_v6_destroy(struct sock *sk) 3747 { 3748 mptcp_destroy(sk); 3749 inet6_destroy_sock(sk); 3750 } 3751 3752 static struct inet_protosw mptcp_v6_protosw = { 3753 .type = SOCK_STREAM, 3754 .protocol = IPPROTO_MPTCP, 3755 .prot = &mptcp_v6_prot, 3756 .ops = &mptcp_v6_stream_ops, 3757 .flags = INET_PROTOSW_ICSK, 3758 }; 3759 3760 int __init mptcp_proto_v6_init(void) 3761 { 3762 int err; 3763 3764 mptcp_v6_prot = mptcp_prot; 3765 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 3766 mptcp_v6_prot.slab = NULL; 3767 mptcp_v6_prot.destroy = mptcp_v6_destroy; 3768 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 3769 3770 err = proto_register(&mptcp_v6_prot, 1); 3771 if (err) 3772 return err; 3773 3774 err = inet6_register_protosw(&mptcp_v6_protosw); 3775 if (err) 3776 proto_unregister(&mptcp_v6_prot); 3777 3778 return err; 3779 } 3780 #endif 3781