1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 struct mptcp_skb_cb { 40 u64 map_seq; 41 u64 end_seq; 42 u32 offset; 43 u8 has_rxtstamp:1; 44 }; 45 46 #define MPTCP_SKB_CB(__skb) ((struct mptcp_skb_cb *)&((__skb)->cb[0])) 47 48 enum { 49 MPTCP_CMSG_TS = BIT(0), 50 MPTCP_CMSG_INQ = BIT(1), 51 }; 52 53 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 54 55 static void __mptcp_destroy_sock(struct sock *sk); 56 static void __mptcp_check_send_data_fin(struct sock *sk); 57 58 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 59 static struct net_device mptcp_napi_dev; 60 61 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not 62 * completed yet or has failed, return the subflow socket. 63 * Otherwise return NULL. 64 */ 65 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk) 66 { 67 if (!msk->subflow || READ_ONCE(msk->can_ack)) 68 return NULL; 69 70 return msk->subflow; 71 } 72 73 /* Returns end sequence number of the receiver's advertised window */ 74 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 75 { 76 return READ_ONCE(msk->wnd_end); 77 } 78 79 static bool mptcp_is_tcpsk(struct sock *sk) 80 { 81 struct socket *sock = sk->sk_socket; 82 83 if (unlikely(sk->sk_prot == &tcp_prot)) { 84 /* we are being invoked after mptcp_accept() has 85 * accepted a non-mp-capable flow: sk is a tcp_sk, 86 * not an mptcp one. 87 * 88 * Hand the socket over to tcp so all further socket ops 89 * bypass mptcp. 90 */ 91 sock->ops = &inet_stream_ops; 92 return true; 93 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 94 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { 95 sock->ops = &inet6_stream_ops; 96 return true; 97 #endif 98 } 99 100 return false; 101 } 102 103 static int __mptcp_socket_create(struct mptcp_sock *msk) 104 { 105 struct mptcp_subflow_context *subflow; 106 struct sock *sk = (struct sock *)msk; 107 struct socket *ssock; 108 int err; 109 110 err = mptcp_subflow_create_socket(sk, &ssock); 111 if (err) 112 return err; 113 114 msk->first = ssock->sk; 115 msk->subflow = ssock; 116 subflow = mptcp_subflow_ctx(ssock->sk); 117 list_add(&subflow->node, &msk->conn_list); 118 sock_hold(ssock->sk); 119 subflow->request_mptcp = 1; 120 121 /* This is the first subflow, always with id 0 */ 122 subflow->local_id_valid = 1; 123 mptcp_sock_graft(msk->first, sk->sk_socket); 124 125 return 0; 126 } 127 128 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 129 { 130 sk_drops_add(sk, skb); 131 __kfree_skb(skb); 132 } 133 134 static void mptcp_rmem_charge(struct sock *sk, int size) 135 { 136 mptcp_sk(sk)->rmem_fwd_alloc -= size; 137 } 138 139 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 140 struct sk_buff *from) 141 { 142 bool fragstolen; 143 int delta; 144 145 if (MPTCP_SKB_CB(from)->offset || 146 !skb_try_coalesce(to, from, &fragstolen, &delta)) 147 return false; 148 149 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 150 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 151 to->len, MPTCP_SKB_CB(from)->end_seq); 152 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 153 154 /* note the fwd memory can reach a negative value after accounting 155 * for the delta, but the later skb free will restore a non 156 * negative one 157 */ 158 atomic_add(delta, &sk->sk_rmem_alloc); 159 mptcp_rmem_charge(sk, delta); 160 kfree_skb_partial(from, fragstolen); 161 162 return true; 163 } 164 165 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 166 struct sk_buff *from) 167 { 168 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 169 return false; 170 171 return mptcp_try_coalesce((struct sock *)msk, to, from); 172 } 173 174 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 175 { 176 amount >>= PAGE_SHIFT; 177 mptcp_sk(sk)->rmem_fwd_alloc -= amount << PAGE_SHIFT; 178 __sk_mem_reduce_allocated(sk, amount); 179 } 180 181 static void mptcp_rmem_uncharge(struct sock *sk, int size) 182 { 183 struct mptcp_sock *msk = mptcp_sk(sk); 184 int reclaimable; 185 186 msk->rmem_fwd_alloc += size; 187 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 188 189 /* see sk_mem_uncharge() for the rationale behind the following schema */ 190 if (unlikely(reclaimable >= PAGE_SIZE)) 191 __mptcp_rmem_reclaim(sk, reclaimable); 192 } 193 194 static void mptcp_rfree(struct sk_buff *skb) 195 { 196 unsigned int len = skb->truesize; 197 struct sock *sk = skb->sk; 198 199 atomic_sub(len, &sk->sk_rmem_alloc); 200 mptcp_rmem_uncharge(sk, len); 201 } 202 203 static void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 204 { 205 skb_orphan(skb); 206 skb->sk = sk; 207 skb->destructor = mptcp_rfree; 208 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 209 mptcp_rmem_charge(sk, skb->truesize); 210 } 211 212 /* "inspired" by tcp_data_queue_ofo(), main differences: 213 * - use mptcp seqs 214 * - don't cope with sacks 215 */ 216 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 217 { 218 struct sock *sk = (struct sock *)msk; 219 struct rb_node **p, *parent; 220 u64 seq, end_seq, max_seq; 221 struct sk_buff *skb1; 222 223 seq = MPTCP_SKB_CB(skb)->map_seq; 224 end_seq = MPTCP_SKB_CB(skb)->end_seq; 225 max_seq = atomic64_read(&msk->rcv_wnd_sent); 226 227 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 228 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 229 if (after64(end_seq, max_seq)) { 230 /* out of window */ 231 mptcp_drop(sk, skb); 232 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 233 (unsigned long long)end_seq - (unsigned long)max_seq, 234 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 235 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 236 return; 237 } 238 239 p = &msk->out_of_order_queue.rb_node; 240 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 241 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 242 rb_link_node(&skb->rbnode, NULL, p); 243 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 244 msk->ooo_last_skb = skb; 245 goto end; 246 } 247 248 /* with 2 subflows, adding at end of ooo queue is quite likely 249 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 250 */ 251 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 252 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 253 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 254 return; 255 } 256 257 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 258 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 259 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 260 parent = &msk->ooo_last_skb->rbnode; 261 p = &parent->rb_right; 262 goto insert; 263 } 264 265 /* Find place to insert this segment. Handle overlaps on the way. */ 266 parent = NULL; 267 while (*p) { 268 parent = *p; 269 skb1 = rb_to_skb(parent); 270 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 271 p = &parent->rb_left; 272 continue; 273 } 274 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 275 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 276 /* All the bits are present. Drop. */ 277 mptcp_drop(sk, skb); 278 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 279 return; 280 } 281 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 282 /* partial overlap: 283 * | skb | 284 * | skb1 | 285 * continue traversing 286 */ 287 } else { 288 /* skb's seq == skb1's seq and skb covers skb1. 289 * Replace skb1 with skb. 290 */ 291 rb_replace_node(&skb1->rbnode, &skb->rbnode, 292 &msk->out_of_order_queue); 293 mptcp_drop(sk, skb1); 294 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 295 goto merge_right; 296 } 297 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 298 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 299 return; 300 } 301 p = &parent->rb_right; 302 } 303 304 insert: 305 /* Insert segment into RB tree. */ 306 rb_link_node(&skb->rbnode, parent, p); 307 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 308 309 merge_right: 310 /* Remove other segments covered by skb. */ 311 while ((skb1 = skb_rb_next(skb)) != NULL) { 312 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 313 break; 314 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 315 mptcp_drop(sk, skb1); 316 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 317 } 318 /* If there is no skb after us, we are the last_skb ! */ 319 if (!skb1) 320 msk->ooo_last_skb = skb; 321 322 end: 323 skb_condense(skb); 324 mptcp_set_owner_r(skb, sk); 325 } 326 327 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 328 { 329 struct mptcp_sock *msk = mptcp_sk(sk); 330 int amt, amount; 331 332 if (size <= msk->rmem_fwd_alloc) 333 return true; 334 335 size -= msk->rmem_fwd_alloc; 336 amt = sk_mem_pages(size); 337 amount = amt << PAGE_SHIFT; 338 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 339 return false; 340 341 msk->rmem_fwd_alloc += amount; 342 return true; 343 } 344 345 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 346 struct sk_buff *skb, unsigned int offset, 347 size_t copy_len) 348 { 349 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 350 struct sock *sk = (struct sock *)msk; 351 struct sk_buff *tail; 352 bool has_rxtstamp; 353 354 __skb_unlink(skb, &ssk->sk_receive_queue); 355 356 skb_ext_reset(skb); 357 skb_orphan(skb); 358 359 /* try to fetch required memory from subflow */ 360 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 361 goto drop; 362 363 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 364 365 /* the skb map_seq accounts for the skb offset: 366 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 367 * value 368 */ 369 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 370 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 371 MPTCP_SKB_CB(skb)->offset = offset; 372 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 373 374 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 375 /* in sequence */ 376 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 377 tail = skb_peek_tail(&sk->sk_receive_queue); 378 if (tail && mptcp_try_coalesce(sk, tail, skb)) 379 return true; 380 381 mptcp_set_owner_r(skb, sk); 382 __skb_queue_tail(&sk->sk_receive_queue, skb); 383 return true; 384 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 385 mptcp_data_queue_ofo(msk, skb); 386 return false; 387 } 388 389 /* old data, keep it simple and drop the whole pkt, sender 390 * will retransmit as needed, if needed. 391 */ 392 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 393 drop: 394 mptcp_drop(sk, skb); 395 return false; 396 } 397 398 static void mptcp_stop_timer(struct sock *sk) 399 { 400 struct inet_connection_sock *icsk = inet_csk(sk); 401 402 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 403 mptcp_sk(sk)->timer_ival = 0; 404 } 405 406 static void mptcp_close_wake_up(struct sock *sk) 407 { 408 if (sock_flag(sk, SOCK_DEAD)) 409 return; 410 411 sk->sk_state_change(sk); 412 if (sk->sk_shutdown == SHUTDOWN_MASK || 413 sk->sk_state == TCP_CLOSE) 414 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 415 else 416 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 417 } 418 419 static bool mptcp_pending_data_fin_ack(struct sock *sk) 420 { 421 struct mptcp_sock *msk = mptcp_sk(sk); 422 423 return !__mptcp_check_fallback(msk) && 424 ((1 << sk->sk_state) & 425 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 426 msk->write_seq == READ_ONCE(msk->snd_una); 427 } 428 429 static void mptcp_check_data_fin_ack(struct sock *sk) 430 { 431 struct mptcp_sock *msk = mptcp_sk(sk); 432 433 /* Look for an acknowledged DATA_FIN */ 434 if (mptcp_pending_data_fin_ack(sk)) { 435 WRITE_ONCE(msk->snd_data_fin_enable, 0); 436 437 switch (sk->sk_state) { 438 case TCP_FIN_WAIT1: 439 inet_sk_state_store(sk, TCP_FIN_WAIT2); 440 break; 441 case TCP_CLOSING: 442 case TCP_LAST_ACK: 443 inet_sk_state_store(sk, TCP_CLOSE); 444 break; 445 } 446 447 mptcp_close_wake_up(sk); 448 } 449 } 450 451 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 452 { 453 struct mptcp_sock *msk = mptcp_sk(sk); 454 455 if (READ_ONCE(msk->rcv_data_fin) && 456 ((1 << sk->sk_state) & 457 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 458 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 459 460 if (msk->ack_seq == rcv_data_fin_seq) { 461 if (seq) 462 *seq = rcv_data_fin_seq; 463 464 return true; 465 } 466 } 467 468 return false; 469 } 470 471 static void mptcp_set_datafin_timeout(const struct sock *sk) 472 { 473 struct inet_connection_sock *icsk = inet_csk(sk); 474 u32 retransmits; 475 476 retransmits = min_t(u32, icsk->icsk_retransmits, 477 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 478 479 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 480 } 481 482 static void __mptcp_set_timeout(struct sock *sk, long tout) 483 { 484 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 485 } 486 487 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 488 { 489 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 490 491 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 492 inet_csk(ssk)->icsk_timeout - jiffies : 0; 493 } 494 495 static void mptcp_set_timeout(struct sock *sk) 496 { 497 struct mptcp_subflow_context *subflow; 498 long tout = 0; 499 500 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 501 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 502 __mptcp_set_timeout(sk, tout); 503 } 504 505 static inline bool tcp_can_send_ack(const struct sock *ssk) 506 { 507 return !((1 << inet_sk_state_load(ssk)) & 508 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 509 } 510 511 void __mptcp_subflow_send_ack(struct sock *ssk) 512 { 513 if (tcp_can_send_ack(ssk)) 514 tcp_send_ack(ssk); 515 } 516 517 static void mptcp_subflow_send_ack(struct sock *ssk) 518 { 519 bool slow; 520 521 slow = lock_sock_fast(ssk); 522 __mptcp_subflow_send_ack(ssk); 523 unlock_sock_fast(ssk, slow); 524 } 525 526 static void mptcp_send_ack(struct mptcp_sock *msk) 527 { 528 struct mptcp_subflow_context *subflow; 529 530 mptcp_for_each_subflow(msk, subflow) 531 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 532 } 533 534 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 535 { 536 bool slow; 537 538 slow = lock_sock_fast(ssk); 539 if (tcp_can_send_ack(ssk)) 540 tcp_cleanup_rbuf(ssk, 1); 541 unlock_sock_fast(ssk, slow); 542 } 543 544 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 545 { 546 const struct inet_connection_sock *icsk = inet_csk(ssk); 547 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 548 const struct tcp_sock *tp = tcp_sk(ssk); 549 550 return (ack_pending & ICSK_ACK_SCHED) && 551 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 552 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 553 (rx_empty && ack_pending & 554 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 555 } 556 557 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 558 { 559 int old_space = READ_ONCE(msk->old_wspace); 560 struct mptcp_subflow_context *subflow; 561 struct sock *sk = (struct sock *)msk; 562 int space = __mptcp_space(sk); 563 bool cleanup, rx_empty; 564 565 cleanup = (space > 0) && (space >= (old_space << 1)); 566 rx_empty = !__mptcp_rmem(sk); 567 568 mptcp_for_each_subflow(msk, subflow) { 569 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 570 571 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 572 mptcp_subflow_cleanup_rbuf(ssk); 573 } 574 } 575 576 static bool mptcp_check_data_fin(struct sock *sk) 577 { 578 struct mptcp_sock *msk = mptcp_sk(sk); 579 u64 rcv_data_fin_seq; 580 bool ret = false; 581 582 if (__mptcp_check_fallback(msk)) 583 return ret; 584 585 /* Need to ack a DATA_FIN received from a peer while this side 586 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 587 * msk->rcv_data_fin was set when parsing the incoming options 588 * at the subflow level and the msk lock was not held, so this 589 * is the first opportunity to act on the DATA_FIN and change 590 * the msk state. 591 * 592 * If we are caught up to the sequence number of the incoming 593 * DATA_FIN, send the DATA_ACK now and do state transition. If 594 * not caught up, do nothing and let the recv code send DATA_ACK 595 * when catching up. 596 */ 597 598 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 599 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 600 WRITE_ONCE(msk->rcv_data_fin, 0); 601 602 sk->sk_shutdown |= RCV_SHUTDOWN; 603 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 604 605 switch (sk->sk_state) { 606 case TCP_ESTABLISHED: 607 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 608 break; 609 case TCP_FIN_WAIT1: 610 inet_sk_state_store(sk, TCP_CLOSING); 611 break; 612 case TCP_FIN_WAIT2: 613 inet_sk_state_store(sk, TCP_CLOSE); 614 break; 615 default: 616 /* Other states not expected */ 617 WARN_ON_ONCE(1); 618 break; 619 } 620 621 ret = true; 622 mptcp_send_ack(msk); 623 mptcp_close_wake_up(sk); 624 } 625 return ret; 626 } 627 628 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 629 struct sock *ssk, 630 unsigned int *bytes) 631 { 632 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 633 struct sock *sk = (struct sock *)msk; 634 unsigned int moved = 0; 635 bool more_data_avail; 636 struct tcp_sock *tp; 637 bool done = false; 638 int sk_rbuf; 639 640 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 641 642 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 643 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 644 645 if (unlikely(ssk_rbuf > sk_rbuf)) { 646 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 647 sk_rbuf = ssk_rbuf; 648 } 649 } 650 651 pr_debug("msk=%p ssk=%p", msk, ssk); 652 tp = tcp_sk(ssk); 653 do { 654 u32 map_remaining, offset; 655 u32 seq = tp->copied_seq; 656 struct sk_buff *skb; 657 bool fin; 658 659 /* try to move as much data as available */ 660 map_remaining = subflow->map_data_len - 661 mptcp_subflow_get_map_offset(subflow); 662 663 skb = skb_peek(&ssk->sk_receive_queue); 664 if (!skb) { 665 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(), 666 * a different CPU can have already processed the pending 667 * data, stop here or we can enter an infinite loop 668 */ 669 if (!moved) 670 done = true; 671 break; 672 } 673 674 if (__mptcp_check_fallback(msk)) { 675 /* Under fallback skbs have no MPTCP extension and TCP could 676 * collapse them between the dummy map creation and the 677 * current dequeue. Be sure to adjust the map size. 678 */ 679 map_remaining = skb->len; 680 subflow->map_data_len = skb->len; 681 } 682 683 offset = seq - TCP_SKB_CB(skb)->seq; 684 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 685 if (fin) { 686 done = true; 687 seq++; 688 } 689 690 if (offset < skb->len) { 691 size_t len = skb->len - offset; 692 693 if (tp->urg_data) 694 done = true; 695 696 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 697 moved += len; 698 seq += len; 699 700 if (WARN_ON_ONCE(map_remaining < len)) 701 break; 702 } else { 703 WARN_ON_ONCE(!fin); 704 sk_eat_skb(ssk, skb); 705 done = true; 706 } 707 708 WRITE_ONCE(tp->copied_seq, seq); 709 more_data_avail = mptcp_subflow_data_available(ssk); 710 711 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 712 done = true; 713 break; 714 } 715 } while (more_data_avail); 716 717 *bytes += moved; 718 return done; 719 } 720 721 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 722 { 723 struct sock *sk = (struct sock *)msk; 724 struct sk_buff *skb, *tail; 725 bool moved = false; 726 struct rb_node *p; 727 u64 end_seq; 728 729 p = rb_first(&msk->out_of_order_queue); 730 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 731 while (p) { 732 skb = rb_to_skb(p); 733 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 734 break; 735 736 p = rb_next(p); 737 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 738 739 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 740 msk->ack_seq))) { 741 mptcp_drop(sk, skb); 742 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 743 continue; 744 } 745 746 end_seq = MPTCP_SKB_CB(skb)->end_seq; 747 tail = skb_peek_tail(&sk->sk_receive_queue); 748 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 749 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 750 751 /* skip overlapping data, if any */ 752 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 753 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 754 delta); 755 MPTCP_SKB_CB(skb)->offset += delta; 756 MPTCP_SKB_CB(skb)->map_seq += delta; 757 __skb_queue_tail(&sk->sk_receive_queue, skb); 758 } 759 msk->ack_seq = end_seq; 760 moved = true; 761 } 762 return moved; 763 } 764 765 /* In most cases we will be able to lock the mptcp socket. If its already 766 * owned, we need to defer to the work queue to avoid ABBA deadlock. 767 */ 768 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 769 { 770 struct sock *sk = (struct sock *)msk; 771 unsigned int moved = 0; 772 773 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 774 __mptcp_ofo_queue(msk); 775 if (unlikely(ssk->sk_err)) { 776 if (!sock_owned_by_user(sk)) 777 __mptcp_error_report(sk); 778 else 779 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 780 } 781 782 /* If the moves have caught up with the DATA_FIN sequence number 783 * it's time to ack the DATA_FIN and change socket state, but 784 * this is not a good place to change state. Let the workqueue 785 * do it. 786 */ 787 if (mptcp_pending_data_fin(sk, NULL)) 788 mptcp_schedule_work(sk); 789 return moved > 0; 790 } 791 792 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 793 { 794 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 795 struct mptcp_sock *msk = mptcp_sk(sk); 796 int sk_rbuf, ssk_rbuf; 797 798 /* The peer can send data while we are shutting down this 799 * subflow at msk destruction time, but we must avoid enqueuing 800 * more data to the msk receive queue 801 */ 802 if (unlikely(subflow->disposable)) 803 return; 804 805 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 806 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 807 if (unlikely(ssk_rbuf > sk_rbuf)) 808 sk_rbuf = ssk_rbuf; 809 810 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 811 if (__mptcp_rmem(sk) > sk_rbuf) { 812 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 813 return; 814 } 815 816 /* Wake-up the reader only for in-sequence data */ 817 mptcp_data_lock(sk); 818 if (move_skbs_to_msk(msk, ssk)) 819 sk->sk_data_ready(sk); 820 821 mptcp_data_unlock(sk); 822 } 823 824 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 825 { 826 struct sock *sk = (struct sock *)msk; 827 828 if (sk->sk_state != TCP_ESTABLISHED) 829 return false; 830 831 /* attach to msk socket only after we are sure we will deal with it 832 * at close time 833 */ 834 if (sk->sk_socket && !ssk->sk_socket) 835 mptcp_sock_graft(ssk, sk->sk_socket); 836 837 mptcp_propagate_sndbuf((struct sock *)msk, ssk); 838 mptcp_sockopt_sync_locked(msk, ssk); 839 return true; 840 } 841 842 static void __mptcp_flush_join_list(struct sock *sk) 843 { 844 struct mptcp_subflow_context *tmp, *subflow; 845 struct mptcp_sock *msk = mptcp_sk(sk); 846 847 list_for_each_entry_safe(subflow, tmp, &msk->join_list, node) { 848 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 849 bool slow = lock_sock_fast(ssk); 850 851 list_move_tail(&subflow->node, &msk->conn_list); 852 if (!__mptcp_finish_join(msk, ssk)) 853 mptcp_subflow_reset(ssk); 854 unlock_sock_fast(ssk, slow); 855 } 856 } 857 858 static bool mptcp_timer_pending(struct sock *sk) 859 { 860 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 861 } 862 863 static void mptcp_reset_timer(struct sock *sk) 864 { 865 struct inet_connection_sock *icsk = inet_csk(sk); 866 unsigned long tout; 867 868 /* prevent rescheduling on close */ 869 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 870 return; 871 872 tout = mptcp_sk(sk)->timer_ival; 873 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 874 } 875 876 bool mptcp_schedule_work(struct sock *sk) 877 { 878 if (inet_sk_state_load(sk) != TCP_CLOSE && 879 schedule_work(&mptcp_sk(sk)->work)) { 880 /* each subflow already holds a reference to the sk, and the 881 * workqueue is invoked by a subflow, so sk can't go away here. 882 */ 883 sock_hold(sk); 884 return true; 885 } 886 return false; 887 } 888 889 void mptcp_subflow_eof(struct sock *sk) 890 { 891 if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags)) 892 mptcp_schedule_work(sk); 893 } 894 895 static void mptcp_check_for_eof(struct mptcp_sock *msk) 896 { 897 struct mptcp_subflow_context *subflow; 898 struct sock *sk = (struct sock *)msk; 899 int receivers = 0; 900 901 mptcp_for_each_subflow(msk, subflow) 902 receivers += !subflow->rx_eof; 903 if (receivers) 904 return; 905 906 if (!(sk->sk_shutdown & RCV_SHUTDOWN)) { 907 /* hopefully temporary hack: propagate shutdown status 908 * to msk, when all subflows agree on it 909 */ 910 sk->sk_shutdown |= RCV_SHUTDOWN; 911 912 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 913 sk->sk_data_ready(sk); 914 } 915 916 switch (sk->sk_state) { 917 case TCP_ESTABLISHED: 918 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 919 break; 920 case TCP_FIN_WAIT1: 921 inet_sk_state_store(sk, TCP_CLOSING); 922 break; 923 case TCP_FIN_WAIT2: 924 inet_sk_state_store(sk, TCP_CLOSE); 925 break; 926 default: 927 return; 928 } 929 mptcp_close_wake_up(sk); 930 } 931 932 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 933 { 934 struct mptcp_subflow_context *subflow; 935 struct sock *sk = (struct sock *)msk; 936 937 sock_owned_by_me(sk); 938 939 mptcp_for_each_subflow(msk, subflow) { 940 if (READ_ONCE(subflow->data_avail)) 941 return mptcp_subflow_tcp_sock(subflow); 942 } 943 944 return NULL; 945 } 946 947 static bool mptcp_skb_can_collapse_to(u64 write_seq, 948 const struct sk_buff *skb, 949 const struct mptcp_ext *mpext) 950 { 951 if (!tcp_skb_can_collapse_to(skb)) 952 return false; 953 954 /* can collapse only if MPTCP level sequence is in order and this 955 * mapping has not been xmitted yet 956 */ 957 return mpext && mpext->data_seq + mpext->data_len == write_seq && 958 !mpext->frozen; 959 } 960 961 /* we can append data to the given data frag if: 962 * - there is space available in the backing page_frag 963 * - the data frag tail matches the current page_frag free offset 964 * - the data frag end sequence number matches the current write seq 965 */ 966 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 967 const struct page_frag *pfrag, 968 const struct mptcp_data_frag *df) 969 { 970 return df && pfrag->page == df->page && 971 pfrag->size - pfrag->offset > 0 && 972 pfrag->offset == (df->offset + df->data_len) && 973 df->data_seq + df->data_len == msk->write_seq; 974 } 975 976 static void dfrag_uncharge(struct sock *sk, int len) 977 { 978 sk_mem_uncharge(sk, len); 979 sk_wmem_queued_add(sk, -len); 980 } 981 982 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 983 { 984 int len = dfrag->data_len + dfrag->overhead; 985 986 list_del(&dfrag->list); 987 dfrag_uncharge(sk, len); 988 put_page(dfrag->page); 989 } 990 991 static void __mptcp_clean_una(struct sock *sk) 992 { 993 struct mptcp_sock *msk = mptcp_sk(sk); 994 struct mptcp_data_frag *dtmp, *dfrag; 995 u64 snd_una; 996 997 /* on fallback we just need to ignore snd_una, as this is really 998 * plain TCP 999 */ 1000 if (__mptcp_check_fallback(msk)) 1001 msk->snd_una = READ_ONCE(msk->snd_nxt); 1002 1003 snd_una = msk->snd_una; 1004 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1005 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1006 break; 1007 1008 if (unlikely(dfrag == msk->first_pending)) { 1009 /* in recovery mode can see ack after the current snd head */ 1010 if (WARN_ON_ONCE(!msk->recovery)) 1011 break; 1012 1013 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1014 } 1015 1016 dfrag_clear(sk, dfrag); 1017 } 1018 1019 dfrag = mptcp_rtx_head(sk); 1020 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1021 u64 delta = snd_una - dfrag->data_seq; 1022 1023 /* prevent wrap around in recovery mode */ 1024 if (unlikely(delta > dfrag->already_sent)) { 1025 if (WARN_ON_ONCE(!msk->recovery)) 1026 goto out; 1027 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1028 goto out; 1029 dfrag->already_sent += delta - dfrag->already_sent; 1030 } 1031 1032 dfrag->data_seq += delta; 1033 dfrag->offset += delta; 1034 dfrag->data_len -= delta; 1035 dfrag->already_sent -= delta; 1036 1037 dfrag_uncharge(sk, delta); 1038 } 1039 1040 /* all retransmitted data acked, recovery completed */ 1041 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1042 msk->recovery = false; 1043 1044 out: 1045 if (snd_una == READ_ONCE(msk->snd_nxt) && 1046 snd_una == READ_ONCE(msk->write_seq)) { 1047 if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1048 mptcp_stop_timer(sk); 1049 } else { 1050 mptcp_reset_timer(sk); 1051 } 1052 } 1053 1054 static void __mptcp_clean_una_wakeup(struct sock *sk) 1055 { 1056 lockdep_assert_held_once(&sk->sk_lock.slock); 1057 1058 __mptcp_clean_una(sk); 1059 mptcp_write_space(sk); 1060 } 1061 1062 static void mptcp_clean_una_wakeup(struct sock *sk) 1063 { 1064 mptcp_data_lock(sk); 1065 __mptcp_clean_una_wakeup(sk); 1066 mptcp_data_unlock(sk); 1067 } 1068 1069 static void mptcp_enter_memory_pressure(struct sock *sk) 1070 { 1071 struct mptcp_subflow_context *subflow; 1072 struct mptcp_sock *msk = mptcp_sk(sk); 1073 bool first = true; 1074 1075 sk_stream_moderate_sndbuf(sk); 1076 mptcp_for_each_subflow(msk, subflow) { 1077 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1078 1079 if (first) 1080 tcp_enter_memory_pressure(ssk); 1081 sk_stream_moderate_sndbuf(ssk); 1082 first = false; 1083 } 1084 } 1085 1086 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1087 * data 1088 */ 1089 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1090 { 1091 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1092 pfrag, sk->sk_allocation))) 1093 return true; 1094 1095 mptcp_enter_memory_pressure(sk); 1096 return false; 1097 } 1098 1099 static struct mptcp_data_frag * 1100 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1101 int orig_offset) 1102 { 1103 int offset = ALIGN(orig_offset, sizeof(long)); 1104 struct mptcp_data_frag *dfrag; 1105 1106 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1107 dfrag->data_len = 0; 1108 dfrag->data_seq = msk->write_seq; 1109 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1110 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1111 dfrag->already_sent = 0; 1112 dfrag->page = pfrag->page; 1113 1114 return dfrag; 1115 } 1116 1117 struct mptcp_sendmsg_info { 1118 int mss_now; 1119 int size_goal; 1120 u16 limit; 1121 u16 sent; 1122 unsigned int flags; 1123 bool data_lock_held; 1124 }; 1125 1126 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1127 u64 data_seq, int avail_size) 1128 { 1129 u64 window_end = mptcp_wnd_end(msk); 1130 u64 mptcp_snd_wnd; 1131 1132 if (__mptcp_check_fallback(msk)) 1133 return avail_size; 1134 1135 mptcp_snd_wnd = window_end - data_seq; 1136 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1137 1138 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1139 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1140 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1141 } 1142 1143 return avail_size; 1144 } 1145 1146 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1147 { 1148 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1149 1150 if (!mpext) 1151 return false; 1152 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1153 return true; 1154 } 1155 1156 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1157 { 1158 struct sk_buff *skb; 1159 1160 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1161 if (likely(skb)) { 1162 if (likely(__mptcp_add_ext(skb, gfp))) { 1163 skb_reserve(skb, MAX_TCP_HEADER); 1164 skb->ip_summed = CHECKSUM_PARTIAL; 1165 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1166 return skb; 1167 } 1168 __kfree_skb(skb); 1169 } else { 1170 mptcp_enter_memory_pressure(sk); 1171 } 1172 return NULL; 1173 } 1174 1175 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1176 { 1177 struct sk_buff *skb; 1178 1179 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1180 if (!skb) 1181 return NULL; 1182 1183 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1184 tcp_skb_entail(ssk, skb); 1185 return skb; 1186 } 1187 tcp_skb_tsorted_anchor_cleanup(skb); 1188 kfree_skb(skb); 1189 return NULL; 1190 } 1191 1192 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1193 { 1194 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1195 1196 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1197 } 1198 1199 /* note: this always recompute the csum on the whole skb, even 1200 * if we just appended a single frag. More status info needed 1201 */ 1202 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1203 { 1204 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1205 __wsum csum = ~csum_unfold(mpext->csum); 1206 int offset = skb->len - added; 1207 1208 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1209 } 1210 1211 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1212 struct sock *ssk, 1213 struct mptcp_ext *mpext) 1214 { 1215 if (!mpext) 1216 return; 1217 1218 mpext->infinite_map = 1; 1219 mpext->data_len = 0; 1220 1221 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1222 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1223 pr_fallback(msk); 1224 mptcp_do_fallback(ssk); 1225 } 1226 1227 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1228 struct mptcp_data_frag *dfrag, 1229 struct mptcp_sendmsg_info *info) 1230 { 1231 u64 data_seq = dfrag->data_seq + info->sent; 1232 int offset = dfrag->offset + info->sent; 1233 struct mptcp_sock *msk = mptcp_sk(sk); 1234 bool zero_window_probe = false; 1235 struct mptcp_ext *mpext = NULL; 1236 bool can_coalesce = false; 1237 bool reuse_skb = true; 1238 struct sk_buff *skb; 1239 size_t copy; 1240 int i; 1241 1242 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1243 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1244 1245 if (WARN_ON_ONCE(info->sent > info->limit || 1246 info->limit > dfrag->data_len)) 1247 return 0; 1248 1249 if (unlikely(!__tcp_can_send(ssk))) 1250 return -EAGAIN; 1251 1252 /* compute send limit */ 1253 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1254 copy = info->size_goal; 1255 1256 skb = tcp_write_queue_tail(ssk); 1257 if (skb && copy > skb->len) { 1258 /* Limit the write to the size available in the 1259 * current skb, if any, so that we create at most a new skb. 1260 * Explicitly tells TCP internals to avoid collapsing on later 1261 * queue management operation, to avoid breaking the ext <-> 1262 * SSN association set here 1263 */ 1264 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1265 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1266 TCP_SKB_CB(skb)->eor = 1; 1267 goto alloc_skb; 1268 } 1269 1270 i = skb_shinfo(skb)->nr_frags; 1271 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1272 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1273 tcp_mark_push(tcp_sk(ssk), skb); 1274 goto alloc_skb; 1275 } 1276 1277 copy -= skb->len; 1278 } else { 1279 alloc_skb: 1280 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1281 if (!skb) 1282 return -ENOMEM; 1283 1284 i = skb_shinfo(skb)->nr_frags; 1285 reuse_skb = false; 1286 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1287 } 1288 1289 /* Zero window and all data acked? Probe. */ 1290 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1291 if (copy == 0) { 1292 u64 snd_una = READ_ONCE(msk->snd_una); 1293 1294 if (snd_una != msk->snd_nxt) { 1295 tcp_remove_empty_skb(ssk); 1296 return 0; 1297 } 1298 1299 zero_window_probe = true; 1300 data_seq = snd_una - 1; 1301 copy = 1; 1302 1303 /* all mptcp-level data is acked, no skbs should be present into the 1304 * ssk write queue 1305 */ 1306 WARN_ON_ONCE(reuse_skb); 1307 } 1308 1309 copy = min_t(size_t, copy, info->limit - info->sent); 1310 if (!sk_wmem_schedule(ssk, copy)) { 1311 tcp_remove_empty_skb(ssk); 1312 return -ENOMEM; 1313 } 1314 1315 if (can_coalesce) { 1316 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1317 } else { 1318 get_page(dfrag->page); 1319 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1320 } 1321 1322 skb->len += copy; 1323 skb->data_len += copy; 1324 skb->truesize += copy; 1325 sk_wmem_queued_add(ssk, copy); 1326 sk_mem_charge(ssk, copy); 1327 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1328 TCP_SKB_CB(skb)->end_seq += copy; 1329 tcp_skb_pcount_set(skb, 0); 1330 1331 /* on skb reuse we just need to update the DSS len */ 1332 if (reuse_skb) { 1333 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1334 mpext->data_len += copy; 1335 WARN_ON_ONCE(zero_window_probe); 1336 goto out; 1337 } 1338 1339 memset(mpext, 0, sizeof(*mpext)); 1340 mpext->data_seq = data_seq; 1341 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1342 mpext->data_len = copy; 1343 mpext->use_map = 1; 1344 mpext->dsn64 = 1; 1345 1346 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1347 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1348 mpext->dsn64); 1349 1350 if (zero_window_probe) { 1351 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1352 mpext->frozen = 1; 1353 if (READ_ONCE(msk->csum_enabled)) 1354 mptcp_update_data_checksum(skb, copy); 1355 tcp_push_pending_frames(ssk); 1356 return 0; 1357 } 1358 out: 1359 if (READ_ONCE(msk->csum_enabled)) 1360 mptcp_update_data_checksum(skb, copy); 1361 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1362 mptcp_update_infinite_map(msk, ssk, mpext); 1363 trace_mptcp_sendmsg_frag(mpext); 1364 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1365 return copy; 1366 } 1367 1368 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1369 sizeof(struct tcphdr) - \ 1370 MAX_TCP_OPTION_SPACE - \ 1371 sizeof(struct ipv6hdr) - \ 1372 sizeof(struct frag_hdr)) 1373 1374 struct subflow_send_info { 1375 struct sock *ssk; 1376 u64 linger_time; 1377 }; 1378 1379 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1380 { 1381 if (!subflow->stale) 1382 return; 1383 1384 subflow->stale = 0; 1385 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1386 } 1387 1388 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1389 { 1390 if (unlikely(subflow->stale)) { 1391 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1392 1393 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1394 return false; 1395 1396 mptcp_subflow_set_active(subflow); 1397 } 1398 return __mptcp_subflow_active(subflow); 1399 } 1400 1401 #define SSK_MODE_ACTIVE 0 1402 #define SSK_MODE_BACKUP 1 1403 #define SSK_MODE_MAX 2 1404 1405 /* implement the mptcp packet scheduler; 1406 * returns the subflow that will transmit the next DSS 1407 * additionally updates the rtx timeout 1408 */ 1409 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1410 { 1411 struct subflow_send_info send_info[SSK_MODE_MAX]; 1412 struct mptcp_subflow_context *subflow; 1413 struct sock *sk = (struct sock *)msk; 1414 u32 pace, burst, wmem; 1415 int i, nr_active = 0; 1416 struct sock *ssk; 1417 u64 linger_time; 1418 long tout = 0; 1419 1420 sock_owned_by_me(sk); 1421 1422 if (__mptcp_check_fallback(msk)) { 1423 if (!msk->first) 1424 return NULL; 1425 return __tcp_can_send(msk->first) && 1426 sk_stream_memory_free(msk->first) ? msk->first : NULL; 1427 } 1428 1429 /* re-use last subflow, if the burst allow that */ 1430 if (msk->last_snd && msk->snd_burst > 0 && 1431 sk_stream_memory_free(msk->last_snd) && 1432 mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) { 1433 mptcp_set_timeout(sk); 1434 return msk->last_snd; 1435 } 1436 1437 /* pick the subflow with the lower wmem/wspace ratio */ 1438 for (i = 0; i < SSK_MODE_MAX; ++i) { 1439 send_info[i].ssk = NULL; 1440 send_info[i].linger_time = -1; 1441 } 1442 1443 mptcp_for_each_subflow(msk, subflow) { 1444 trace_mptcp_subflow_get_send(subflow); 1445 ssk = mptcp_subflow_tcp_sock(subflow); 1446 if (!mptcp_subflow_active(subflow)) 1447 continue; 1448 1449 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1450 nr_active += !subflow->backup; 1451 pace = subflow->avg_pacing_rate; 1452 if (unlikely(!pace)) { 1453 /* init pacing rate from socket */ 1454 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1455 pace = subflow->avg_pacing_rate; 1456 if (!pace) 1457 continue; 1458 } 1459 1460 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1461 if (linger_time < send_info[subflow->backup].linger_time) { 1462 send_info[subflow->backup].ssk = ssk; 1463 send_info[subflow->backup].linger_time = linger_time; 1464 } 1465 } 1466 __mptcp_set_timeout(sk, tout); 1467 1468 /* pick the best backup if no other subflow is active */ 1469 if (!nr_active) 1470 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1471 1472 /* According to the blest algorithm, to avoid HoL blocking for the 1473 * faster flow, we need to: 1474 * - estimate the faster flow linger time 1475 * - use the above to estimate the amount of byte transferred 1476 * by the faster flow 1477 * - check that the amount of queued data is greter than the above, 1478 * otherwise do not use the picked, slower, subflow 1479 * We select the subflow with the shorter estimated time to flush 1480 * the queued mem, which basically ensure the above. We just need 1481 * to check that subflow has a non empty cwin. 1482 */ 1483 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1484 if (!ssk || !sk_stream_memory_free(ssk)) 1485 return NULL; 1486 1487 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1488 wmem = READ_ONCE(ssk->sk_wmem_queued); 1489 if (!burst) { 1490 msk->last_snd = NULL; 1491 return ssk; 1492 } 1493 1494 subflow = mptcp_subflow_ctx(ssk); 1495 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1496 READ_ONCE(ssk->sk_pacing_rate) * burst, 1497 burst + wmem); 1498 msk->last_snd = ssk; 1499 msk->snd_burst = burst; 1500 return ssk; 1501 } 1502 1503 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1504 { 1505 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1506 release_sock(ssk); 1507 } 1508 1509 static void mptcp_update_post_push(struct mptcp_sock *msk, 1510 struct mptcp_data_frag *dfrag, 1511 u32 sent) 1512 { 1513 u64 snd_nxt_new = dfrag->data_seq; 1514 1515 dfrag->already_sent += sent; 1516 1517 msk->snd_burst -= sent; 1518 1519 snd_nxt_new += dfrag->already_sent; 1520 1521 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1522 * is recovering after a failover. In that event, this re-sends 1523 * old segments. 1524 * 1525 * Thus compute snd_nxt_new candidate based on 1526 * the dfrag->data_seq that was sent and the data 1527 * that has been handed to the subflow for transmission 1528 * and skip update in case it was old dfrag. 1529 */ 1530 if (likely(after64(snd_nxt_new, msk->snd_nxt))) 1531 msk->snd_nxt = snd_nxt_new; 1532 } 1533 1534 void mptcp_check_and_set_pending(struct sock *sk) 1535 { 1536 if (mptcp_send_head(sk)) 1537 mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING); 1538 } 1539 1540 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1541 { 1542 struct sock *prev_ssk = NULL, *ssk = NULL; 1543 struct mptcp_sock *msk = mptcp_sk(sk); 1544 struct mptcp_sendmsg_info info = { 1545 .flags = flags, 1546 }; 1547 bool do_check_data_fin = false; 1548 struct mptcp_data_frag *dfrag; 1549 int len; 1550 1551 while ((dfrag = mptcp_send_head(sk))) { 1552 info.sent = dfrag->already_sent; 1553 info.limit = dfrag->data_len; 1554 len = dfrag->data_len - dfrag->already_sent; 1555 while (len > 0) { 1556 int ret = 0; 1557 1558 prev_ssk = ssk; 1559 ssk = mptcp_subflow_get_send(msk); 1560 1561 /* First check. If the ssk has changed since 1562 * the last round, release prev_ssk 1563 */ 1564 if (ssk != prev_ssk && prev_ssk) 1565 mptcp_push_release(prev_ssk, &info); 1566 if (!ssk) 1567 goto out; 1568 1569 /* Need to lock the new subflow only if different 1570 * from the previous one, otherwise we are still 1571 * helding the relevant lock 1572 */ 1573 if (ssk != prev_ssk) 1574 lock_sock(ssk); 1575 1576 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1577 if (ret <= 0) { 1578 if (ret == -EAGAIN) 1579 continue; 1580 mptcp_push_release(ssk, &info); 1581 goto out; 1582 } 1583 1584 do_check_data_fin = true; 1585 info.sent += ret; 1586 len -= ret; 1587 1588 mptcp_update_post_push(msk, dfrag, ret); 1589 } 1590 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1591 } 1592 1593 /* at this point we held the socket lock for the last subflow we used */ 1594 if (ssk) 1595 mptcp_push_release(ssk, &info); 1596 1597 out: 1598 /* ensure the rtx timer is running */ 1599 if (!mptcp_timer_pending(sk)) 1600 mptcp_reset_timer(sk); 1601 if (do_check_data_fin) 1602 __mptcp_check_send_data_fin(sk); 1603 } 1604 1605 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk) 1606 { 1607 struct mptcp_sock *msk = mptcp_sk(sk); 1608 struct mptcp_sendmsg_info info = { 1609 .data_lock_held = true, 1610 }; 1611 struct mptcp_data_frag *dfrag; 1612 struct sock *xmit_ssk; 1613 int len, copied = 0; 1614 bool first = true; 1615 1616 info.flags = 0; 1617 while ((dfrag = mptcp_send_head(sk))) { 1618 info.sent = dfrag->already_sent; 1619 info.limit = dfrag->data_len; 1620 len = dfrag->data_len - dfrag->already_sent; 1621 while (len > 0) { 1622 int ret = 0; 1623 1624 /* the caller already invoked the packet scheduler, 1625 * check for a different subflow usage only after 1626 * spooling the first chunk of data 1627 */ 1628 xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk)); 1629 if (!xmit_ssk) 1630 goto out; 1631 if (xmit_ssk != ssk) { 1632 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), 1633 MPTCP_DELEGATE_SEND); 1634 goto out; 1635 } 1636 1637 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1638 if (ret <= 0) 1639 goto out; 1640 1641 info.sent += ret; 1642 copied += ret; 1643 len -= ret; 1644 first = false; 1645 1646 mptcp_update_post_push(msk, dfrag, ret); 1647 } 1648 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1649 } 1650 1651 out: 1652 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1653 * not going to flush it via release_sock() 1654 */ 1655 if (copied) { 1656 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1657 info.size_goal); 1658 if (!mptcp_timer_pending(sk)) 1659 mptcp_reset_timer(sk); 1660 1661 if (msk->snd_data_fin_enable && 1662 msk->snd_nxt + 1 == msk->write_seq) 1663 mptcp_schedule_work(sk); 1664 } 1665 } 1666 1667 static void mptcp_set_nospace(struct sock *sk) 1668 { 1669 /* enable autotune */ 1670 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1671 1672 /* will be cleared on avail space */ 1673 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1674 } 1675 1676 static int mptcp_sendmsg_fastopen(struct sock *sk, struct sock *ssk, struct msghdr *msg, 1677 size_t len, int *copied_syn) 1678 { 1679 unsigned int saved_flags = msg->msg_flags; 1680 struct mptcp_sock *msk = mptcp_sk(sk); 1681 int ret; 1682 1683 lock_sock(ssk); 1684 msg->msg_flags |= MSG_DONTWAIT; 1685 msk->connect_flags = O_NONBLOCK; 1686 msk->is_sendmsg = 1; 1687 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1688 msk->is_sendmsg = 0; 1689 msg->msg_flags = saved_flags; 1690 release_sock(ssk); 1691 1692 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1693 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1694 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1695 msg->msg_namelen, msg->msg_flags, 1); 1696 1697 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1698 * case of any error, except timeout or signal 1699 */ 1700 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1701 *copied_syn = 0; 1702 } 1703 1704 return ret; 1705 } 1706 1707 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1708 { 1709 struct mptcp_sock *msk = mptcp_sk(sk); 1710 struct page_frag *pfrag; 1711 struct socket *ssock; 1712 size_t copied = 0; 1713 int ret = 0; 1714 long timeo; 1715 1716 /* we don't support FASTOPEN yet */ 1717 if (msg->msg_flags & MSG_FASTOPEN) 1718 return -EOPNOTSUPP; 1719 1720 /* silently ignore everything else */ 1721 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL; 1722 1723 lock_sock(sk); 1724 1725 ssock = __mptcp_nmpc_socket(msk); 1726 if (unlikely(ssock && inet_sk(ssock->sk)->defer_connect)) { 1727 int copied_syn = 0; 1728 1729 ret = mptcp_sendmsg_fastopen(sk, ssock->sk, msg, len, &copied_syn); 1730 copied += copied_syn; 1731 if (ret == -EINPROGRESS && copied_syn > 0) 1732 goto out; 1733 else if (ret) 1734 goto do_error; 1735 } 1736 1737 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1738 1739 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1740 ret = sk_stream_wait_connect(sk, &timeo); 1741 if (ret) 1742 goto do_error; 1743 } 1744 1745 ret = -EPIPE; 1746 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1747 goto do_error; 1748 1749 pfrag = sk_page_frag(sk); 1750 1751 while (msg_data_left(msg)) { 1752 int total_ts, frag_truesize = 0; 1753 struct mptcp_data_frag *dfrag; 1754 bool dfrag_collapsed; 1755 size_t psize, offset; 1756 1757 /* reuse tail pfrag, if possible, or carve a new one from the 1758 * page allocator 1759 */ 1760 dfrag = mptcp_pending_tail(sk); 1761 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1762 if (!dfrag_collapsed) { 1763 if (!sk_stream_memory_free(sk)) 1764 goto wait_for_memory; 1765 1766 if (!mptcp_page_frag_refill(sk, pfrag)) 1767 goto wait_for_memory; 1768 1769 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1770 frag_truesize = dfrag->overhead; 1771 } 1772 1773 /* we do not bound vs wspace, to allow a single packet. 1774 * memory accounting will prevent execessive memory usage 1775 * anyway 1776 */ 1777 offset = dfrag->offset + dfrag->data_len; 1778 psize = pfrag->size - offset; 1779 psize = min_t(size_t, psize, msg_data_left(msg)); 1780 total_ts = psize + frag_truesize; 1781 1782 if (!sk_wmem_schedule(sk, total_ts)) 1783 goto wait_for_memory; 1784 1785 if (copy_page_from_iter(dfrag->page, offset, psize, 1786 &msg->msg_iter) != psize) { 1787 ret = -EFAULT; 1788 goto do_error; 1789 } 1790 1791 /* data successfully copied into the write queue */ 1792 sk->sk_forward_alloc -= total_ts; 1793 copied += psize; 1794 dfrag->data_len += psize; 1795 frag_truesize += psize; 1796 pfrag->offset += frag_truesize; 1797 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1798 1799 /* charge data on mptcp pending queue to the msk socket 1800 * Note: we charge such data both to sk and ssk 1801 */ 1802 sk_wmem_queued_add(sk, frag_truesize); 1803 if (!dfrag_collapsed) { 1804 get_page(dfrag->page); 1805 list_add_tail(&dfrag->list, &msk->rtx_queue); 1806 if (!msk->first_pending) 1807 WRITE_ONCE(msk->first_pending, dfrag); 1808 } 1809 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1810 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1811 !dfrag_collapsed); 1812 1813 continue; 1814 1815 wait_for_memory: 1816 mptcp_set_nospace(sk); 1817 __mptcp_push_pending(sk, msg->msg_flags); 1818 ret = sk_stream_wait_memory(sk, &timeo); 1819 if (ret) 1820 goto do_error; 1821 } 1822 1823 if (copied) 1824 __mptcp_push_pending(sk, msg->msg_flags); 1825 1826 out: 1827 release_sock(sk); 1828 return copied; 1829 1830 do_error: 1831 if (copied) 1832 goto out; 1833 1834 copied = sk_stream_error(sk, msg->msg_flags, ret); 1835 goto out; 1836 } 1837 1838 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1839 struct msghdr *msg, 1840 size_t len, int flags, 1841 struct scm_timestamping_internal *tss, 1842 int *cmsg_flags) 1843 { 1844 struct sk_buff *skb, *tmp; 1845 int copied = 0; 1846 1847 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1848 u32 offset = MPTCP_SKB_CB(skb)->offset; 1849 u32 data_len = skb->len - offset; 1850 u32 count = min_t(size_t, len - copied, data_len); 1851 int err; 1852 1853 if (!(flags & MSG_TRUNC)) { 1854 err = skb_copy_datagram_msg(skb, offset, msg, count); 1855 if (unlikely(err < 0)) { 1856 if (!copied) 1857 return err; 1858 break; 1859 } 1860 } 1861 1862 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1863 tcp_update_recv_tstamps(skb, tss); 1864 *cmsg_flags |= MPTCP_CMSG_TS; 1865 } 1866 1867 copied += count; 1868 1869 if (count < data_len) { 1870 if (!(flags & MSG_PEEK)) { 1871 MPTCP_SKB_CB(skb)->offset += count; 1872 MPTCP_SKB_CB(skb)->map_seq += count; 1873 } 1874 break; 1875 } 1876 1877 if (!(flags & MSG_PEEK)) { 1878 /* we will bulk release the skb memory later */ 1879 skb->destructor = NULL; 1880 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1881 __skb_unlink(skb, &msk->receive_queue); 1882 __kfree_skb(skb); 1883 } 1884 1885 if (copied >= len) 1886 break; 1887 } 1888 1889 return copied; 1890 } 1891 1892 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1893 * 1894 * Only difference: Use highest rtt estimate of the subflows in use. 1895 */ 1896 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1897 { 1898 struct mptcp_subflow_context *subflow; 1899 struct sock *sk = (struct sock *)msk; 1900 u32 time, advmss = 1; 1901 u64 rtt_us, mstamp; 1902 1903 sock_owned_by_me(sk); 1904 1905 if (copied <= 0) 1906 return; 1907 1908 msk->rcvq_space.copied += copied; 1909 1910 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1911 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1912 1913 rtt_us = msk->rcvq_space.rtt_us; 1914 if (rtt_us && time < (rtt_us >> 3)) 1915 return; 1916 1917 rtt_us = 0; 1918 mptcp_for_each_subflow(msk, subflow) { 1919 const struct tcp_sock *tp; 1920 u64 sf_rtt_us; 1921 u32 sf_advmss; 1922 1923 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1924 1925 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1926 sf_advmss = READ_ONCE(tp->advmss); 1927 1928 rtt_us = max(sf_rtt_us, rtt_us); 1929 advmss = max(sf_advmss, advmss); 1930 } 1931 1932 msk->rcvq_space.rtt_us = rtt_us; 1933 if (time < (rtt_us >> 3) || rtt_us == 0) 1934 return; 1935 1936 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1937 goto new_measure; 1938 1939 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 1940 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1941 int rcvmem, rcvbuf; 1942 u64 rcvwin, grow; 1943 1944 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1945 1946 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1947 1948 do_div(grow, msk->rcvq_space.space); 1949 rcvwin += (grow << 1); 1950 1951 rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER); 1952 while (tcp_win_from_space(sk, rcvmem) < advmss) 1953 rcvmem += 128; 1954 1955 do_div(rcvwin, advmss); 1956 rcvbuf = min_t(u64, rcvwin * rcvmem, 1957 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 1958 1959 if (rcvbuf > sk->sk_rcvbuf) { 1960 u32 window_clamp; 1961 1962 window_clamp = tcp_win_from_space(sk, rcvbuf); 1963 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 1964 1965 /* Make subflows follow along. If we do not do this, we 1966 * get drops at subflow level if skbs can't be moved to 1967 * the mptcp rx queue fast enough (announced rcv_win can 1968 * exceed ssk->sk_rcvbuf). 1969 */ 1970 mptcp_for_each_subflow(msk, subflow) { 1971 struct sock *ssk; 1972 bool slow; 1973 1974 ssk = mptcp_subflow_tcp_sock(subflow); 1975 slow = lock_sock_fast(ssk); 1976 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 1977 tcp_sk(ssk)->window_clamp = window_clamp; 1978 tcp_cleanup_rbuf(ssk, 1); 1979 unlock_sock_fast(ssk, slow); 1980 } 1981 } 1982 } 1983 1984 msk->rcvq_space.space = msk->rcvq_space.copied; 1985 new_measure: 1986 msk->rcvq_space.copied = 0; 1987 msk->rcvq_space.time = mstamp; 1988 } 1989 1990 static void __mptcp_update_rmem(struct sock *sk) 1991 { 1992 struct mptcp_sock *msk = mptcp_sk(sk); 1993 1994 if (!msk->rmem_released) 1995 return; 1996 1997 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 1998 mptcp_rmem_uncharge(sk, msk->rmem_released); 1999 WRITE_ONCE(msk->rmem_released, 0); 2000 } 2001 2002 static void __mptcp_splice_receive_queue(struct sock *sk) 2003 { 2004 struct mptcp_sock *msk = mptcp_sk(sk); 2005 2006 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 2007 } 2008 2009 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 2010 { 2011 struct sock *sk = (struct sock *)msk; 2012 unsigned int moved = 0; 2013 bool ret, done; 2014 2015 do { 2016 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 2017 bool slowpath; 2018 2019 /* we can have data pending in the subflows only if the msk 2020 * receive buffer was full at subflow_data_ready() time, 2021 * that is an unlikely slow path. 2022 */ 2023 if (likely(!ssk)) 2024 break; 2025 2026 slowpath = lock_sock_fast(ssk); 2027 mptcp_data_lock(sk); 2028 __mptcp_update_rmem(sk); 2029 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 2030 mptcp_data_unlock(sk); 2031 2032 if (unlikely(ssk->sk_err)) 2033 __mptcp_error_report(sk); 2034 unlock_sock_fast(ssk, slowpath); 2035 } while (!done); 2036 2037 /* acquire the data lock only if some input data is pending */ 2038 ret = moved > 0; 2039 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 2040 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2041 mptcp_data_lock(sk); 2042 __mptcp_update_rmem(sk); 2043 ret |= __mptcp_ofo_queue(msk); 2044 __mptcp_splice_receive_queue(sk); 2045 mptcp_data_unlock(sk); 2046 } 2047 if (ret) 2048 mptcp_check_data_fin((struct sock *)msk); 2049 return !skb_queue_empty(&msk->receive_queue); 2050 } 2051 2052 static unsigned int mptcp_inq_hint(const struct sock *sk) 2053 { 2054 const struct mptcp_sock *msk = mptcp_sk(sk); 2055 const struct sk_buff *skb; 2056 2057 skb = skb_peek(&msk->receive_queue); 2058 if (skb) { 2059 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 2060 2061 if (hint_val >= INT_MAX) 2062 return INT_MAX; 2063 2064 return (unsigned int)hint_val; 2065 } 2066 2067 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2068 return 1; 2069 2070 return 0; 2071 } 2072 2073 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2074 int flags, int *addr_len) 2075 { 2076 struct mptcp_sock *msk = mptcp_sk(sk); 2077 struct scm_timestamping_internal tss; 2078 int copied = 0, cmsg_flags = 0; 2079 int target; 2080 long timeo; 2081 2082 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2083 if (unlikely(flags & MSG_ERRQUEUE)) 2084 return inet_recv_error(sk, msg, len, addr_len); 2085 2086 lock_sock(sk); 2087 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2088 copied = -ENOTCONN; 2089 goto out_err; 2090 } 2091 2092 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2093 2094 len = min_t(size_t, len, INT_MAX); 2095 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2096 2097 if (unlikely(msk->recvmsg_inq)) 2098 cmsg_flags = MPTCP_CMSG_INQ; 2099 2100 while (copied < len) { 2101 int bytes_read; 2102 2103 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2104 if (unlikely(bytes_read < 0)) { 2105 if (!copied) 2106 copied = bytes_read; 2107 goto out_err; 2108 } 2109 2110 copied += bytes_read; 2111 2112 /* be sure to advertise window change */ 2113 mptcp_cleanup_rbuf(msk); 2114 2115 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2116 continue; 2117 2118 /* only the master socket status is relevant here. The exit 2119 * conditions mirror closely tcp_recvmsg() 2120 */ 2121 if (copied >= target) 2122 break; 2123 2124 if (copied) { 2125 if (sk->sk_err || 2126 sk->sk_state == TCP_CLOSE || 2127 (sk->sk_shutdown & RCV_SHUTDOWN) || 2128 !timeo || 2129 signal_pending(current)) 2130 break; 2131 } else { 2132 if (sk->sk_err) { 2133 copied = sock_error(sk); 2134 break; 2135 } 2136 2137 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2138 mptcp_check_for_eof(msk); 2139 2140 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2141 /* race breaker: the shutdown could be after the 2142 * previous receive queue check 2143 */ 2144 if (__mptcp_move_skbs(msk)) 2145 continue; 2146 break; 2147 } 2148 2149 if (sk->sk_state == TCP_CLOSE) { 2150 copied = -ENOTCONN; 2151 break; 2152 } 2153 2154 if (!timeo) { 2155 copied = -EAGAIN; 2156 break; 2157 } 2158 2159 if (signal_pending(current)) { 2160 copied = sock_intr_errno(timeo); 2161 break; 2162 } 2163 } 2164 2165 pr_debug("block timeout %ld", timeo); 2166 sk_wait_data(sk, &timeo, NULL); 2167 } 2168 2169 out_err: 2170 if (cmsg_flags && copied >= 0) { 2171 if (cmsg_flags & MPTCP_CMSG_TS) 2172 tcp_recv_timestamp(msg, sk, &tss); 2173 2174 if (cmsg_flags & MPTCP_CMSG_INQ) { 2175 unsigned int inq = mptcp_inq_hint(sk); 2176 2177 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2178 } 2179 } 2180 2181 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2182 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2183 skb_queue_empty(&msk->receive_queue), copied); 2184 if (!(flags & MSG_PEEK)) 2185 mptcp_rcv_space_adjust(msk, copied); 2186 2187 release_sock(sk); 2188 return copied; 2189 } 2190 2191 static void mptcp_retransmit_timer(struct timer_list *t) 2192 { 2193 struct inet_connection_sock *icsk = from_timer(icsk, t, 2194 icsk_retransmit_timer); 2195 struct sock *sk = &icsk->icsk_inet.sk; 2196 struct mptcp_sock *msk = mptcp_sk(sk); 2197 2198 bh_lock_sock(sk); 2199 if (!sock_owned_by_user(sk)) { 2200 /* we need a process context to retransmit */ 2201 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2202 mptcp_schedule_work(sk); 2203 } else { 2204 /* delegate our work to tcp_release_cb() */ 2205 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2206 } 2207 bh_unlock_sock(sk); 2208 sock_put(sk); 2209 } 2210 2211 static void mptcp_timeout_timer(struct timer_list *t) 2212 { 2213 struct sock *sk = from_timer(sk, t, sk_timer); 2214 2215 mptcp_schedule_work(sk); 2216 sock_put(sk); 2217 } 2218 2219 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2220 * level. 2221 * 2222 * A backup subflow is returned only if that is the only kind available. 2223 */ 2224 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2225 { 2226 struct sock *backup = NULL, *pick = NULL; 2227 struct mptcp_subflow_context *subflow; 2228 int min_stale_count = INT_MAX; 2229 2230 sock_owned_by_me((const struct sock *)msk); 2231 2232 if (__mptcp_check_fallback(msk)) 2233 return NULL; 2234 2235 mptcp_for_each_subflow(msk, subflow) { 2236 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2237 2238 if (!__mptcp_subflow_active(subflow)) 2239 continue; 2240 2241 /* still data outstanding at TCP level? skip this */ 2242 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2243 mptcp_pm_subflow_chk_stale(msk, ssk); 2244 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2245 continue; 2246 } 2247 2248 if (subflow->backup) { 2249 if (!backup) 2250 backup = ssk; 2251 continue; 2252 } 2253 2254 if (!pick) 2255 pick = ssk; 2256 } 2257 2258 if (pick) 2259 return pick; 2260 2261 /* use backup only if there are no progresses anywhere */ 2262 return min_stale_count > 1 ? backup : NULL; 2263 } 2264 2265 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk) 2266 { 2267 if (msk->subflow) { 2268 iput(SOCK_INODE(msk->subflow)); 2269 msk->subflow = NULL; 2270 } 2271 } 2272 2273 bool __mptcp_retransmit_pending_data(struct sock *sk) 2274 { 2275 struct mptcp_data_frag *cur, *rtx_head; 2276 struct mptcp_sock *msk = mptcp_sk(sk); 2277 2278 if (__mptcp_check_fallback(mptcp_sk(sk))) 2279 return false; 2280 2281 if (tcp_rtx_and_write_queues_empty(sk)) 2282 return false; 2283 2284 /* the closing socket has some data untransmitted and/or unacked: 2285 * some data in the mptcp rtx queue has not really xmitted yet. 2286 * keep it simple and re-inject the whole mptcp level rtx queue 2287 */ 2288 mptcp_data_lock(sk); 2289 __mptcp_clean_una_wakeup(sk); 2290 rtx_head = mptcp_rtx_head(sk); 2291 if (!rtx_head) { 2292 mptcp_data_unlock(sk); 2293 return false; 2294 } 2295 2296 msk->recovery_snd_nxt = msk->snd_nxt; 2297 msk->recovery = true; 2298 mptcp_data_unlock(sk); 2299 2300 msk->first_pending = rtx_head; 2301 msk->snd_burst = 0; 2302 2303 /* be sure to clear the "sent status" on all re-injected fragments */ 2304 list_for_each_entry(cur, &msk->rtx_queue, list) { 2305 if (!cur->already_sent) 2306 break; 2307 cur->already_sent = 0; 2308 } 2309 2310 return true; 2311 } 2312 2313 /* flags for __mptcp_close_ssk() */ 2314 #define MPTCP_CF_PUSH BIT(1) 2315 #define MPTCP_CF_FASTCLOSE BIT(2) 2316 2317 /* subflow sockets can be either outgoing (connect) or incoming 2318 * (accept). 2319 * 2320 * Outgoing subflows use in-kernel sockets. 2321 * Incoming subflows do not have their own 'struct socket' allocated, 2322 * so we need to use tcp_close() after detaching them from the mptcp 2323 * parent socket. 2324 */ 2325 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2326 struct mptcp_subflow_context *subflow, 2327 unsigned int flags) 2328 { 2329 struct mptcp_sock *msk = mptcp_sk(sk); 2330 bool need_push, dispose_it; 2331 2332 dispose_it = !msk->subflow || ssk != msk->subflow->sk; 2333 if (dispose_it) 2334 list_del(&subflow->node); 2335 2336 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2337 2338 if (flags & MPTCP_CF_FASTCLOSE) { 2339 /* be sure to force the tcp_disconnect() path, 2340 * to generate the egress reset 2341 */ 2342 ssk->sk_lingertime = 0; 2343 sock_set_flag(ssk, SOCK_LINGER); 2344 subflow->send_fastclose = 1; 2345 } 2346 2347 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2348 if (!dispose_it) { 2349 tcp_disconnect(ssk, 0); 2350 msk->subflow->state = SS_UNCONNECTED; 2351 mptcp_subflow_ctx_reset(subflow); 2352 release_sock(ssk); 2353 2354 goto out; 2355 } 2356 2357 sock_orphan(ssk); 2358 subflow->disposable = 1; 2359 2360 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2361 * the ssk has been already destroyed, we just need to release the 2362 * reference owned by msk; 2363 */ 2364 if (!inet_csk(ssk)->icsk_ulp_ops) { 2365 kfree_rcu(subflow, rcu); 2366 } else { 2367 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2368 if (ssk->sk_state == TCP_LISTEN) { 2369 tcp_set_state(ssk, TCP_CLOSE); 2370 mptcp_subflow_queue_clean(ssk); 2371 inet_csk_listen_stop(ssk); 2372 } 2373 __tcp_close(ssk, 0); 2374 2375 /* close acquired an extra ref */ 2376 __sock_put(ssk); 2377 } 2378 release_sock(ssk); 2379 2380 sock_put(ssk); 2381 2382 if (ssk == msk->first) 2383 msk->first = NULL; 2384 2385 out: 2386 if (ssk == msk->last_snd) 2387 msk->last_snd = NULL; 2388 2389 if (need_push) 2390 __mptcp_push_pending(sk, 0); 2391 } 2392 2393 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2394 struct mptcp_subflow_context *subflow) 2395 { 2396 if (sk->sk_state == TCP_ESTABLISHED) 2397 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2398 2399 /* subflow aborted before reaching the fully_established status 2400 * attempt the creation of the next subflow 2401 */ 2402 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow); 2403 2404 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2405 } 2406 2407 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2408 { 2409 return 0; 2410 } 2411 2412 static void __mptcp_close_subflow(struct mptcp_sock *msk) 2413 { 2414 struct mptcp_subflow_context *subflow, *tmp; 2415 2416 might_sleep(); 2417 2418 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2419 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2420 2421 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2422 continue; 2423 2424 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2425 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2426 continue; 2427 2428 mptcp_close_ssk((struct sock *)msk, ssk, subflow); 2429 } 2430 } 2431 2432 static bool mptcp_check_close_timeout(const struct sock *sk) 2433 { 2434 s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp; 2435 struct mptcp_subflow_context *subflow; 2436 2437 if (delta >= TCP_TIMEWAIT_LEN) 2438 return true; 2439 2440 /* if all subflows are in closed status don't bother with additional 2441 * timeout 2442 */ 2443 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2444 if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) != 2445 TCP_CLOSE) 2446 return false; 2447 } 2448 return true; 2449 } 2450 2451 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2452 { 2453 struct mptcp_subflow_context *subflow, *tmp; 2454 struct sock *sk = &msk->sk.icsk_inet.sk; 2455 2456 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2457 return; 2458 2459 mptcp_token_destroy(msk); 2460 2461 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2462 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2463 bool slow; 2464 2465 slow = lock_sock_fast(tcp_sk); 2466 if (tcp_sk->sk_state != TCP_CLOSE) { 2467 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2468 tcp_set_state(tcp_sk, TCP_CLOSE); 2469 } 2470 unlock_sock_fast(tcp_sk, slow); 2471 } 2472 2473 /* Mirror the tcp_reset() error propagation */ 2474 switch (sk->sk_state) { 2475 case TCP_SYN_SENT: 2476 sk->sk_err = ECONNREFUSED; 2477 break; 2478 case TCP_CLOSE_WAIT: 2479 sk->sk_err = EPIPE; 2480 break; 2481 case TCP_CLOSE: 2482 return; 2483 default: 2484 sk->sk_err = ECONNRESET; 2485 } 2486 2487 inet_sk_state_store(sk, TCP_CLOSE); 2488 sk->sk_shutdown = SHUTDOWN_MASK; 2489 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2490 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2491 2492 /* the calling mptcp_worker will properly destroy the socket */ 2493 if (sock_flag(sk, SOCK_DEAD)) 2494 return; 2495 2496 sk->sk_state_change(sk); 2497 sk_error_report(sk); 2498 } 2499 2500 static void __mptcp_retrans(struct sock *sk) 2501 { 2502 struct mptcp_sock *msk = mptcp_sk(sk); 2503 struct mptcp_sendmsg_info info = {}; 2504 struct mptcp_data_frag *dfrag; 2505 size_t copied = 0; 2506 struct sock *ssk; 2507 int ret; 2508 2509 mptcp_clean_una_wakeup(sk); 2510 2511 /* first check ssk: need to kick "stale" logic */ 2512 ssk = mptcp_subflow_get_retrans(msk); 2513 dfrag = mptcp_rtx_head(sk); 2514 if (!dfrag) { 2515 if (mptcp_data_fin_enabled(msk)) { 2516 struct inet_connection_sock *icsk = inet_csk(sk); 2517 2518 icsk->icsk_retransmits++; 2519 mptcp_set_datafin_timeout(sk); 2520 mptcp_send_ack(msk); 2521 2522 goto reset_timer; 2523 } 2524 2525 if (!mptcp_send_head(sk)) 2526 return; 2527 2528 goto reset_timer; 2529 } 2530 2531 if (!ssk) 2532 goto reset_timer; 2533 2534 lock_sock(ssk); 2535 2536 /* limit retransmission to the bytes already sent on some subflows */ 2537 info.sent = 0; 2538 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent; 2539 while (info.sent < info.limit) { 2540 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2541 if (ret <= 0) 2542 break; 2543 2544 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2545 copied += ret; 2546 info.sent += ret; 2547 } 2548 if (copied) { 2549 dfrag->already_sent = max(dfrag->already_sent, info.sent); 2550 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2551 info.size_goal); 2552 WRITE_ONCE(msk->allow_infinite_fallback, false); 2553 } 2554 2555 release_sock(ssk); 2556 2557 reset_timer: 2558 mptcp_check_and_set_pending(sk); 2559 2560 if (!mptcp_timer_pending(sk)) 2561 mptcp_reset_timer(sk); 2562 } 2563 2564 /* schedule the timeout timer for the relevant event: either close timeout 2565 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2566 */ 2567 void mptcp_reset_timeout(struct mptcp_sock *msk, unsigned long fail_tout) 2568 { 2569 struct sock *sk = (struct sock *)msk; 2570 unsigned long timeout, close_timeout; 2571 2572 if (!fail_tout && !sock_flag(sk, SOCK_DEAD)) 2573 return; 2574 2575 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + TCP_TIMEWAIT_LEN; 2576 2577 /* the close timeout takes precedence on the fail one, and here at least one of 2578 * them is active 2579 */ 2580 timeout = sock_flag(sk, SOCK_DEAD) ? close_timeout : fail_tout; 2581 2582 sk_reset_timer(sk, &sk->sk_timer, timeout); 2583 } 2584 2585 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2586 { 2587 struct sock *ssk = msk->first; 2588 bool slow; 2589 2590 if (!ssk) 2591 return; 2592 2593 pr_debug("MP_FAIL doesn't respond, reset the subflow"); 2594 2595 slow = lock_sock_fast(ssk); 2596 mptcp_subflow_reset(ssk); 2597 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2598 unlock_sock_fast(ssk, slow); 2599 2600 mptcp_reset_timeout(msk, 0); 2601 } 2602 2603 static void mptcp_do_fastclose(struct sock *sk) 2604 { 2605 struct mptcp_subflow_context *subflow, *tmp; 2606 struct mptcp_sock *msk = mptcp_sk(sk); 2607 2608 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2609 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2610 subflow, MPTCP_CF_FASTCLOSE); 2611 } 2612 2613 static void mptcp_worker(struct work_struct *work) 2614 { 2615 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2616 struct sock *sk = &msk->sk.icsk_inet.sk; 2617 unsigned long fail_tout; 2618 int state; 2619 2620 lock_sock(sk); 2621 state = sk->sk_state; 2622 if (unlikely(state == TCP_CLOSE)) 2623 goto unlock; 2624 2625 mptcp_check_data_fin_ack(sk); 2626 2627 mptcp_check_fastclose(msk); 2628 2629 mptcp_pm_nl_work(msk); 2630 2631 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2632 mptcp_check_for_eof(msk); 2633 2634 __mptcp_check_send_data_fin(sk); 2635 mptcp_check_data_fin(sk); 2636 2637 /* There is no point in keeping around an orphaned sk timedout or 2638 * closed, but we need the msk around to reply to incoming DATA_FIN, 2639 * even if it is orphaned and in FIN_WAIT2 state 2640 */ 2641 if (sock_flag(sk, SOCK_DEAD)) { 2642 if (mptcp_check_close_timeout(sk)) { 2643 inet_sk_state_store(sk, TCP_CLOSE); 2644 mptcp_do_fastclose(sk); 2645 } 2646 if (sk->sk_state == TCP_CLOSE) { 2647 __mptcp_destroy_sock(sk); 2648 goto unlock; 2649 } 2650 } 2651 2652 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2653 __mptcp_close_subflow(msk); 2654 2655 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2656 __mptcp_retrans(sk); 2657 2658 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2659 if (fail_tout && time_after(jiffies, fail_tout)) 2660 mptcp_mp_fail_no_response(msk); 2661 2662 unlock: 2663 release_sock(sk); 2664 sock_put(sk); 2665 } 2666 2667 static int __mptcp_init_sock(struct sock *sk) 2668 { 2669 struct mptcp_sock *msk = mptcp_sk(sk); 2670 2671 INIT_LIST_HEAD(&msk->conn_list); 2672 INIT_LIST_HEAD(&msk->join_list); 2673 INIT_LIST_HEAD(&msk->rtx_queue); 2674 INIT_WORK(&msk->work, mptcp_worker); 2675 __skb_queue_head_init(&msk->receive_queue); 2676 msk->out_of_order_queue = RB_ROOT; 2677 msk->first_pending = NULL; 2678 msk->rmem_fwd_alloc = 0; 2679 WRITE_ONCE(msk->rmem_released, 0); 2680 msk->timer_ival = TCP_RTO_MIN; 2681 2682 msk->first = NULL; 2683 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2684 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2685 WRITE_ONCE(msk->allow_infinite_fallback, true); 2686 msk->recovery = false; 2687 2688 mptcp_pm_data_init(msk); 2689 2690 /* re-use the csk retrans timer for MPTCP-level retrans */ 2691 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2692 timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0); 2693 2694 return 0; 2695 } 2696 2697 static void mptcp_ca_reset(struct sock *sk) 2698 { 2699 struct inet_connection_sock *icsk = inet_csk(sk); 2700 2701 tcp_assign_congestion_control(sk); 2702 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2703 2704 /* no need to keep a reference to the ops, the name will suffice */ 2705 tcp_cleanup_congestion_control(sk); 2706 icsk->icsk_ca_ops = NULL; 2707 } 2708 2709 static int mptcp_init_sock(struct sock *sk) 2710 { 2711 struct net *net = sock_net(sk); 2712 int ret; 2713 2714 ret = __mptcp_init_sock(sk); 2715 if (ret) 2716 return ret; 2717 2718 if (!mptcp_is_enabled(net)) 2719 return -ENOPROTOOPT; 2720 2721 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2722 return -ENOMEM; 2723 2724 ret = __mptcp_socket_create(mptcp_sk(sk)); 2725 if (ret) 2726 return ret; 2727 2728 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2729 * propagate the correct value 2730 */ 2731 mptcp_ca_reset(sk); 2732 2733 sk_sockets_allocated_inc(sk); 2734 sk->sk_rcvbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]); 2735 sk->sk_sndbuf = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]); 2736 2737 return 0; 2738 } 2739 2740 static void __mptcp_clear_xmit(struct sock *sk) 2741 { 2742 struct mptcp_sock *msk = mptcp_sk(sk); 2743 struct mptcp_data_frag *dtmp, *dfrag; 2744 2745 WRITE_ONCE(msk->first_pending, NULL); 2746 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2747 dfrag_clear(sk, dfrag); 2748 } 2749 2750 void mptcp_cancel_work(struct sock *sk) 2751 { 2752 struct mptcp_sock *msk = mptcp_sk(sk); 2753 2754 if (cancel_work_sync(&msk->work)) 2755 __sock_put(sk); 2756 } 2757 2758 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2759 { 2760 lock_sock(ssk); 2761 2762 switch (ssk->sk_state) { 2763 case TCP_LISTEN: 2764 if (!(how & RCV_SHUTDOWN)) 2765 break; 2766 fallthrough; 2767 case TCP_SYN_SENT: 2768 tcp_disconnect(ssk, O_NONBLOCK); 2769 break; 2770 default: 2771 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2772 pr_debug("Fallback"); 2773 ssk->sk_shutdown |= how; 2774 tcp_shutdown(ssk, how); 2775 } else { 2776 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2777 tcp_send_ack(ssk); 2778 if (!mptcp_timer_pending(sk)) 2779 mptcp_reset_timer(sk); 2780 } 2781 break; 2782 } 2783 2784 release_sock(ssk); 2785 } 2786 2787 static const unsigned char new_state[16] = { 2788 /* current state: new state: action: */ 2789 [0 /* (Invalid) */] = TCP_CLOSE, 2790 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2791 [TCP_SYN_SENT] = TCP_CLOSE, 2792 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2793 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2794 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2795 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2796 [TCP_CLOSE] = TCP_CLOSE, 2797 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2798 [TCP_LAST_ACK] = TCP_LAST_ACK, 2799 [TCP_LISTEN] = TCP_CLOSE, 2800 [TCP_CLOSING] = TCP_CLOSING, 2801 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2802 }; 2803 2804 static int mptcp_close_state(struct sock *sk) 2805 { 2806 int next = (int)new_state[sk->sk_state]; 2807 int ns = next & TCP_STATE_MASK; 2808 2809 inet_sk_state_store(sk, ns); 2810 2811 return next & TCP_ACTION_FIN; 2812 } 2813 2814 static void __mptcp_check_send_data_fin(struct sock *sk) 2815 { 2816 struct mptcp_subflow_context *subflow; 2817 struct mptcp_sock *msk = mptcp_sk(sk); 2818 2819 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2820 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2821 msk->snd_nxt, msk->write_seq); 2822 2823 /* we still need to enqueue subflows or not really shutting down, 2824 * skip this 2825 */ 2826 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2827 mptcp_send_head(sk)) 2828 return; 2829 2830 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2831 2832 /* fallback socket will not get data_fin/ack, can move to the next 2833 * state now 2834 */ 2835 if (__mptcp_check_fallback(msk)) { 2836 WRITE_ONCE(msk->snd_una, msk->write_seq); 2837 if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { 2838 inet_sk_state_store(sk, TCP_CLOSE); 2839 mptcp_close_wake_up(sk); 2840 } else if (sk->sk_state == TCP_FIN_WAIT1) { 2841 inet_sk_state_store(sk, TCP_FIN_WAIT2); 2842 } 2843 } 2844 2845 mptcp_for_each_subflow(msk, subflow) { 2846 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2847 2848 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2849 } 2850 } 2851 2852 static void __mptcp_wr_shutdown(struct sock *sk) 2853 { 2854 struct mptcp_sock *msk = mptcp_sk(sk); 2855 2856 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2857 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2858 !!mptcp_send_head(sk)); 2859 2860 /* will be ignored by fallback sockets */ 2861 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2862 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2863 2864 __mptcp_check_send_data_fin(sk); 2865 } 2866 2867 static void __mptcp_destroy_sock(struct sock *sk) 2868 { 2869 struct mptcp_sock *msk = mptcp_sk(sk); 2870 2871 pr_debug("msk=%p", msk); 2872 2873 might_sleep(); 2874 2875 mptcp_stop_timer(sk); 2876 sk_stop_timer(sk, &sk->sk_timer); 2877 msk->pm.status = 0; 2878 2879 sk->sk_prot->destroy(sk); 2880 2881 WARN_ON_ONCE(msk->rmem_fwd_alloc); 2882 WARN_ON_ONCE(msk->rmem_released); 2883 sk_stream_kill_queues(sk); 2884 xfrm_sk_free_policy(sk); 2885 2886 sk_refcnt_debug_release(sk); 2887 sock_put(sk); 2888 } 2889 2890 static __poll_t mptcp_check_readable(struct mptcp_sock *msk) 2891 { 2892 /* Concurrent splices from sk_receive_queue into receive_queue will 2893 * always show at least one non-empty queue when checked in this order. 2894 */ 2895 if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) && 2896 skb_queue_empty_lockless(&msk->receive_queue)) 2897 return 0; 2898 2899 return EPOLLIN | EPOLLRDNORM; 2900 } 2901 2902 bool __mptcp_close(struct sock *sk, long timeout) 2903 { 2904 struct mptcp_subflow_context *subflow; 2905 struct mptcp_sock *msk = mptcp_sk(sk); 2906 bool do_cancel_work = false; 2907 2908 sk->sk_shutdown = SHUTDOWN_MASK; 2909 2910 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 2911 inet_sk_state_store(sk, TCP_CLOSE); 2912 goto cleanup; 2913 } 2914 2915 if (mptcp_check_readable(msk)) { 2916 /* the msk has read data, do the MPTCP equivalent of TCP reset */ 2917 inet_sk_state_store(sk, TCP_CLOSE); 2918 mptcp_do_fastclose(sk); 2919 } else if (mptcp_close_state(sk)) { 2920 __mptcp_wr_shutdown(sk); 2921 } 2922 2923 sk_stream_wait_close(sk, timeout); 2924 2925 cleanup: 2926 /* orphan all the subflows */ 2927 inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32; 2928 mptcp_for_each_subflow(msk, subflow) { 2929 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2930 bool slow = lock_sock_fast_nested(ssk); 2931 2932 /* since the close timeout takes precedence on the fail one, 2933 * cancel the latter 2934 */ 2935 if (ssk == msk->first) 2936 subflow->fail_tout = 0; 2937 2938 /* detach from the parent socket, but allow data_ready to 2939 * push incoming data into the mptcp stack, to properly ack it 2940 */ 2941 ssk->sk_socket = NULL; 2942 ssk->sk_wq = NULL; 2943 unlock_sock_fast(ssk, slow); 2944 } 2945 sock_orphan(sk); 2946 2947 sock_hold(sk); 2948 pr_debug("msk=%p state=%d", sk, sk->sk_state); 2949 if (mptcp_sk(sk)->token) 2950 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 2951 2952 if (sk->sk_state == TCP_CLOSE) { 2953 __mptcp_destroy_sock(sk); 2954 do_cancel_work = true; 2955 } else { 2956 mptcp_reset_timeout(msk, 0); 2957 } 2958 2959 return do_cancel_work; 2960 } 2961 2962 static void mptcp_close(struct sock *sk, long timeout) 2963 { 2964 bool do_cancel_work; 2965 2966 lock_sock(sk); 2967 2968 do_cancel_work = __mptcp_close(sk, timeout); 2969 release_sock(sk); 2970 if (do_cancel_work) 2971 mptcp_cancel_work(sk); 2972 2973 sock_put(sk); 2974 } 2975 2976 void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 2977 { 2978 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2979 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 2980 struct ipv6_pinfo *msk6 = inet6_sk(msk); 2981 2982 msk->sk_v6_daddr = ssk->sk_v6_daddr; 2983 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 2984 2985 if (msk6 && ssk6) { 2986 msk6->saddr = ssk6->saddr; 2987 msk6->flow_label = ssk6->flow_label; 2988 } 2989 #endif 2990 2991 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 2992 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 2993 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 2994 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 2995 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 2996 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 2997 } 2998 2999 static int mptcp_disconnect(struct sock *sk, int flags) 3000 { 3001 struct mptcp_sock *msk = mptcp_sk(sk); 3002 3003 inet_sk_state_store(sk, TCP_CLOSE); 3004 3005 mptcp_stop_timer(sk); 3006 sk_stop_timer(sk, &sk->sk_timer); 3007 3008 if (mptcp_sk(sk)->token) 3009 mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL); 3010 3011 /* msk->subflow is still intact, the following will not free the first 3012 * subflow 3013 */ 3014 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3015 msk->last_snd = NULL; 3016 WRITE_ONCE(msk->flags, 0); 3017 msk->cb_flags = 0; 3018 msk->push_pending = 0; 3019 msk->recovery = false; 3020 msk->can_ack = false; 3021 msk->fully_established = false; 3022 msk->rcv_data_fin = false; 3023 msk->snd_data_fin_enable = false; 3024 msk->rcv_fastclose = false; 3025 msk->use_64bit_ack = false; 3026 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3027 mptcp_pm_data_reset(msk); 3028 mptcp_ca_reset(sk); 3029 3030 sk->sk_shutdown = 0; 3031 sk_error_report(sk); 3032 return 0; 3033 } 3034 3035 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3036 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3037 { 3038 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 3039 3040 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 3041 } 3042 #endif 3043 3044 struct sock *mptcp_sk_clone(const struct sock *sk, 3045 const struct mptcp_options_received *mp_opt, 3046 struct request_sock *req) 3047 { 3048 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3049 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3050 struct mptcp_sock *msk; 3051 u64 ack_seq; 3052 3053 if (!nsk) 3054 return NULL; 3055 3056 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3057 if (nsk->sk_family == AF_INET6) 3058 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3059 #endif 3060 3061 __mptcp_init_sock(nsk); 3062 3063 msk = mptcp_sk(nsk); 3064 msk->local_key = subflow_req->local_key; 3065 msk->token = subflow_req->token; 3066 msk->subflow = NULL; 3067 WRITE_ONCE(msk->fully_established, false); 3068 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3069 WRITE_ONCE(msk->csum_enabled, true); 3070 3071 msk->write_seq = subflow_req->idsn + 1; 3072 msk->snd_nxt = msk->write_seq; 3073 msk->snd_una = msk->write_seq; 3074 msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd; 3075 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3076 3077 if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) { 3078 msk->can_ack = true; 3079 msk->remote_key = mp_opt->sndr_key; 3080 mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq); 3081 ack_seq++; 3082 WRITE_ONCE(msk->ack_seq, ack_seq); 3083 atomic64_set(&msk->rcv_wnd_sent, ack_seq); 3084 } 3085 3086 sock_reset_flag(nsk, SOCK_RCU_FREE); 3087 /* will be fully established after successful MPC subflow creation */ 3088 inet_sk_state_store(nsk, TCP_SYN_RECV); 3089 3090 security_inet_csk_clone(nsk, req); 3091 bh_unlock_sock(nsk); 3092 3093 /* keep a single reference */ 3094 __sock_put(nsk); 3095 return nsk; 3096 } 3097 3098 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3099 { 3100 const struct tcp_sock *tp = tcp_sk(ssk); 3101 3102 msk->rcvq_space.copied = 0; 3103 msk->rcvq_space.rtt_us = 0; 3104 3105 msk->rcvq_space.time = tp->tcp_mstamp; 3106 3107 /* initial rcv_space offering made to peer */ 3108 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3109 TCP_INIT_CWND * tp->advmss); 3110 if (msk->rcvq_space.space == 0) 3111 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3112 3113 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3114 } 3115 3116 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err, 3117 bool kern) 3118 { 3119 struct mptcp_sock *msk = mptcp_sk(sk); 3120 struct socket *listener; 3121 struct sock *newsk; 3122 3123 listener = __mptcp_nmpc_socket(msk); 3124 if (WARN_ON_ONCE(!listener)) { 3125 *err = -EINVAL; 3126 return NULL; 3127 } 3128 3129 pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk)); 3130 newsk = inet_csk_accept(listener->sk, flags, err, kern); 3131 if (!newsk) 3132 return NULL; 3133 3134 pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk)); 3135 if (sk_is_mptcp(newsk)) { 3136 struct mptcp_subflow_context *subflow; 3137 struct sock *new_mptcp_sock; 3138 3139 subflow = mptcp_subflow_ctx(newsk); 3140 new_mptcp_sock = subflow->conn; 3141 3142 /* is_mptcp should be false if subflow->conn is missing, see 3143 * subflow_syn_recv_sock() 3144 */ 3145 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3146 tcp_sk(newsk)->is_mptcp = 0; 3147 goto out; 3148 } 3149 3150 /* acquire the 2nd reference for the owning socket */ 3151 sock_hold(new_mptcp_sock); 3152 newsk = new_mptcp_sock; 3153 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3154 } else { 3155 MPTCP_INC_STATS(sock_net(sk), 3156 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 3157 } 3158 3159 out: 3160 newsk->sk_kern_sock = kern; 3161 return newsk; 3162 } 3163 3164 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3165 { 3166 struct mptcp_subflow_context *subflow, *tmp; 3167 struct sock *sk = (struct sock *)msk; 3168 3169 __mptcp_clear_xmit(sk); 3170 3171 /* join list will be eventually flushed (with rst) at sock lock release time */ 3172 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3173 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3174 3175 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3176 mptcp_data_lock(sk); 3177 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3178 __skb_queue_purge(&sk->sk_receive_queue); 3179 skb_rbtree_purge(&msk->out_of_order_queue); 3180 mptcp_data_unlock(sk); 3181 3182 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3183 * inet_sock_destruct() will dispose it 3184 */ 3185 sk->sk_forward_alloc += msk->rmem_fwd_alloc; 3186 msk->rmem_fwd_alloc = 0; 3187 mptcp_token_destroy(msk); 3188 mptcp_pm_free_anno_list(msk); 3189 mptcp_free_local_addr_list(msk); 3190 } 3191 3192 static void mptcp_destroy(struct sock *sk) 3193 { 3194 struct mptcp_sock *msk = mptcp_sk(sk); 3195 3196 /* clears msk->subflow, allowing the following to close 3197 * even the initial subflow 3198 */ 3199 mptcp_dispose_initial_subflow(msk); 3200 mptcp_destroy_common(msk, 0); 3201 sk_sockets_allocated_dec(sk); 3202 } 3203 3204 void __mptcp_data_acked(struct sock *sk) 3205 { 3206 if (!sock_owned_by_user(sk)) 3207 __mptcp_clean_una(sk); 3208 else 3209 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3210 3211 if (mptcp_pending_data_fin_ack(sk)) 3212 mptcp_schedule_work(sk); 3213 } 3214 3215 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3216 { 3217 if (!mptcp_send_head(sk)) 3218 return; 3219 3220 if (!sock_owned_by_user(sk)) { 3221 struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk)); 3222 3223 if (xmit_ssk == ssk) 3224 __mptcp_subflow_push_pending(sk, ssk); 3225 else if (xmit_ssk) 3226 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), MPTCP_DELEGATE_SEND); 3227 } else { 3228 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3229 } 3230 } 3231 3232 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3233 BIT(MPTCP_RETRANSMIT) | \ 3234 BIT(MPTCP_FLUSH_JOIN_LIST)) 3235 3236 /* processes deferred events and flush wmem */ 3237 static void mptcp_release_cb(struct sock *sk) 3238 __must_hold(&sk->sk_lock.slock) 3239 { 3240 struct mptcp_sock *msk = mptcp_sk(sk); 3241 3242 for (;;) { 3243 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) | 3244 msk->push_pending; 3245 if (!flags) 3246 break; 3247 3248 /* the following actions acquire the subflow socket lock 3249 * 3250 * 1) can't be invoked in atomic scope 3251 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3252 * datapath acquires the msk socket spinlock while helding 3253 * the subflow socket lock 3254 */ 3255 msk->push_pending = 0; 3256 msk->cb_flags &= ~flags; 3257 spin_unlock_bh(&sk->sk_lock.slock); 3258 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3259 __mptcp_flush_join_list(sk); 3260 if (flags & BIT(MPTCP_PUSH_PENDING)) 3261 __mptcp_push_pending(sk, 0); 3262 if (flags & BIT(MPTCP_RETRANSMIT)) 3263 __mptcp_retrans(sk); 3264 3265 cond_resched(); 3266 spin_lock_bh(&sk->sk_lock.slock); 3267 } 3268 3269 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3270 __mptcp_clean_una_wakeup(sk); 3271 if (unlikely(&msk->cb_flags)) { 3272 /* be sure to set the current sk state before tacking actions 3273 * depending on sk_state, that is processing MPTCP_ERROR_REPORT 3274 */ 3275 if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags)) 3276 __mptcp_set_connected(sk); 3277 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3278 __mptcp_error_report(sk); 3279 if (__test_and_clear_bit(MPTCP_RESET_SCHEDULER, &msk->cb_flags)) 3280 msk->last_snd = NULL; 3281 } 3282 3283 __mptcp_update_rmem(sk); 3284 } 3285 3286 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3287 * TCP can't schedule delack timer before the subflow is fully established. 3288 * MPTCP uses the delack timer to do 3rd ack retransmissions 3289 */ 3290 static void schedule_3rdack_retransmission(struct sock *ssk) 3291 { 3292 struct inet_connection_sock *icsk = inet_csk(ssk); 3293 struct tcp_sock *tp = tcp_sk(ssk); 3294 unsigned long timeout; 3295 3296 if (mptcp_subflow_ctx(ssk)->fully_established) 3297 return; 3298 3299 /* reschedule with a timeout above RTT, as we must look only for drop */ 3300 if (tp->srtt_us) 3301 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3302 else 3303 timeout = TCP_TIMEOUT_INIT; 3304 timeout += jiffies; 3305 3306 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3307 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3308 icsk->icsk_ack.timeout = timeout; 3309 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3310 } 3311 3312 void mptcp_subflow_process_delegated(struct sock *ssk) 3313 { 3314 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3315 struct sock *sk = subflow->conn; 3316 3317 if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) { 3318 mptcp_data_lock(sk); 3319 if (!sock_owned_by_user(sk)) 3320 __mptcp_subflow_push_pending(sk, ssk); 3321 else 3322 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3323 mptcp_data_unlock(sk); 3324 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND); 3325 } 3326 if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) { 3327 schedule_3rdack_retransmission(ssk); 3328 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK); 3329 } 3330 } 3331 3332 static int mptcp_hash(struct sock *sk) 3333 { 3334 /* should never be called, 3335 * we hash the TCP subflows not the master socket 3336 */ 3337 WARN_ON_ONCE(1); 3338 return 0; 3339 } 3340 3341 static void mptcp_unhash(struct sock *sk) 3342 { 3343 /* called from sk_common_release(), but nothing to do here */ 3344 } 3345 3346 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3347 { 3348 struct mptcp_sock *msk = mptcp_sk(sk); 3349 struct socket *ssock; 3350 3351 ssock = __mptcp_nmpc_socket(msk); 3352 pr_debug("msk=%p, subflow=%p", msk, ssock); 3353 if (WARN_ON_ONCE(!ssock)) 3354 return -EINVAL; 3355 3356 return inet_csk_get_port(ssock->sk, snum); 3357 } 3358 3359 void mptcp_finish_connect(struct sock *ssk) 3360 { 3361 struct mptcp_subflow_context *subflow; 3362 struct mptcp_sock *msk; 3363 struct sock *sk; 3364 u64 ack_seq; 3365 3366 subflow = mptcp_subflow_ctx(ssk); 3367 sk = subflow->conn; 3368 msk = mptcp_sk(sk); 3369 3370 pr_debug("msk=%p, token=%u", sk, subflow->token); 3371 3372 mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq); 3373 ack_seq++; 3374 subflow->map_seq = ack_seq; 3375 subflow->map_subflow_seq = 1; 3376 3377 /* the socket is not connected yet, no msk/subflow ops can access/race 3378 * accessing the field below 3379 */ 3380 WRITE_ONCE(msk->remote_key, subflow->remote_key); 3381 WRITE_ONCE(msk->local_key, subflow->local_key); 3382 WRITE_ONCE(msk->write_seq, subflow->idsn + 1); 3383 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3384 WRITE_ONCE(msk->ack_seq, ack_seq); 3385 WRITE_ONCE(msk->can_ack, 1); 3386 WRITE_ONCE(msk->snd_una, msk->write_seq); 3387 atomic64_set(&msk->rcv_wnd_sent, ack_seq); 3388 3389 mptcp_pm_new_connection(msk, ssk, 0); 3390 3391 mptcp_rcv_space_init(msk, ssk); 3392 } 3393 3394 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3395 { 3396 write_lock_bh(&sk->sk_callback_lock); 3397 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3398 sk_set_socket(sk, parent); 3399 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3400 write_unlock_bh(&sk->sk_callback_lock); 3401 } 3402 3403 bool mptcp_finish_join(struct sock *ssk) 3404 { 3405 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3406 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3407 struct sock *parent = (void *)msk; 3408 bool ret = true; 3409 3410 pr_debug("msk=%p, subflow=%p", msk, subflow); 3411 3412 /* mptcp socket already closing? */ 3413 if (!mptcp_is_fully_established(parent)) { 3414 subflow->reset_reason = MPTCP_RST_EMPTCP; 3415 return false; 3416 } 3417 3418 if (!list_empty(&subflow->node)) 3419 goto out; 3420 3421 if (!mptcp_pm_allow_new_subflow(msk)) 3422 goto err_prohibited; 3423 3424 /* active connections are already on conn_list. 3425 * If we can't acquire msk socket lock here, let the release callback 3426 * handle it 3427 */ 3428 mptcp_data_lock(parent); 3429 if (!sock_owned_by_user(parent)) { 3430 ret = __mptcp_finish_join(msk, ssk); 3431 if (ret) { 3432 sock_hold(ssk); 3433 list_add_tail(&subflow->node, &msk->conn_list); 3434 } 3435 } else { 3436 sock_hold(ssk); 3437 list_add_tail(&subflow->node, &msk->join_list); 3438 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3439 } 3440 mptcp_data_unlock(parent); 3441 3442 if (!ret) { 3443 err_prohibited: 3444 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3445 return false; 3446 } 3447 3448 subflow->map_seq = READ_ONCE(msk->ack_seq); 3449 WRITE_ONCE(msk->allow_infinite_fallback, false); 3450 3451 out: 3452 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 3453 return true; 3454 } 3455 3456 static void mptcp_shutdown(struct sock *sk, int how) 3457 { 3458 pr_debug("sk=%p, how=%d", sk, how); 3459 3460 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3461 __mptcp_wr_shutdown(sk); 3462 } 3463 3464 static int mptcp_forward_alloc_get(const struct sock *sk) 3465 { 3466 return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc; 3467 } 3468 3469 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3470 { 3471 const struct sock *sk = (void *)msk; 3472 u64 delta; 3473 3474 if (sk->sk_state == TCP_LISTEN) 3475 return -EINVAL; 3476 3477 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3478 return 0; 3479 3480 delta = msk->write_seq - v; 3481 if (__mptcp_check_fallback(msk) && msk->first) { 3482 struct tcp_sock *tp = tcp_sk(msk->first); 3483 3484 /* the first subflow is disconnected after close - see 3485 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3486 * so ignore that status, too. 3487 */ 3488 if (!((1 << msk->first->sk_state) & 3489 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3490 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3491 } 3492 if (delta > INT_MAX) 3493 delta = INT_MAX; 3494 3495 return (int)delta; 3496 } 3497 3498 static int mptcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3499 { 3500 struct mptcp_sock *msk = mptcp_sk(sk); 3501 bool slow; 3502 int answ; 3503 3504 switch (cmd) { 3505 case SIOCINQ: 3506 if (sk->sk_state == TCP_LISTEN) 3507 return -EINVAL; 3508 3509 lock_sock(sk); 3510 __mptcp_move_skbs(msk); 3511 answ = mptcp_inq_hint(sk); 3512 release_sock(sk); 3513 break; 3514 case SIOCOUTQ: 3515 slow = lock_sock_fast(sk); 3516 answ = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3517 unlock_sock_fast(sk, slow); 3518 break; 3519 case SIOCOUTQNSD: 3520 slow = lock_sock_fast(sk); 3521 answ = mptcp_ioctl_outq(msk, msk->snd_nxt); 3522 unlock_sock_fast(sk, slow); 3523 break; 3524 default: 3525 return -ENOIOCTLCMD; 3526 } 3527 3528 return put_user(answ, (int __user *)arg); 3529 } 3530 3531 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3532 struct mptcp_subflow_context *subflow) 3533 { 3534 subflow->request_mptcp = 0; 3535 __mptcp_do_fallback(msk); 3536 } 3537 3538 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3539 { 3540 struct mptcp_subflow_context *subflow; 3541 struct mptcp_sock *msk = mptcp_sk(sk); 3542 struct socket *ssock; 3543 int err = -EINVAL; 3544 3545 ssock = __mptcp_nmpc_socket(msk); 3546 if (!ssock) 3547 return -EINVAL; 3548 3549 mptcp_token_destroy(msk); 3550 inet_sk_state_store(sk, TCP_SYN_SENT); 3551 subflow = mptcp_subflow_ctx(ssock->sk); 3552 #ifdef CONFIG_TCP_MD5SIG 3553 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3554 * TCP option space. 3555 */ 3556 if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info)) 3557 mptcp_subflow_early_fallback(msk, subflow); 3558 #endif 3559 if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) { 3560 MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT); 3561 mptcp_subflow_early_fallback(msk, subflow); 3562 } 3563 if (likely(!__mptcp_check_fallback(msk))) 3564 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3565 3566 /* if reaching here via the fastopen/sendmsg path, the caller already 3567 * acquired the subflow socket lock, too. 3568 */ 3569 if (msk->is_sendmsg) 3570 err = __inet_stream_connect(ssock, uaddr, addr_len, msk->connect_flags, 1); 3571 else 3572 err = inet_stream_connect(ssock, uaddr, addr_len, msk->connect_flags); 3573 inet_sk(sk)->defer_connect = inet_sk(ssock->sk)->defer_connect; 3574 3575 /* on successful connect, the msk state will be moved to established by 3576 * subflow_finish_connect() 3577 */ 3578 if (unlikely(err && err != -EINPROGRESS)) { 3579 inet_sk_state_store(sk, inet_sk_state_load(ssock->sk)); 3580 return err; 3581 } 3582 3583 mptcp_copy_inaddrs(sk, ssock->sk); 3584 3585 /* unblocking connect, mptcp-level inet_stream_connect will error out 3586 * without changing the socket state, update it here. 3587 */ 3588 if (err == -EINPROGRESS) 3589 sk->sk_socket->state = ssock->state; 3590 return err; 3591 } 3592 3593 static struct proto mptcp_prot = { 3594 .name = "MPTCP", 3595 .owner = THIS_MODULE, 3596 .init = mptcp_init_sock, 3597 .connect = mptcp_connect, 3598 .disconnect = mptcp_disconnect, 3599 .close = mptcp_close, 3600 .accept = mptcp_accept, 3601 .setsockopt = mptcp_setsockopt, 3602 .getsockopt = mptcp_getsockopt, 3603 .shutdown = mptcp_shutdown, 3604 .destroy = mptcp_destroy, 3605 .sendmsg = mptcp_sendmsg, 3606 .ioctl = mptcp_ioctl, 3607 .recvmsg = mptcp_recvmsg, 3608 .release_cb = mptcp_release_cb, 3609 .hash = mptcp_hash, 3610 .unhash = mptcp_unhash, 3611 .get_port = mptcp_get_port, 3612 .forward_alloc_get = mptcp_forward_alloc_get, 3613 .sockets_allocated = &mptcp_sockets_allocated, 3614 3615 .memory_allocated = &tcp_memory_allocated, 3616 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3617 3618 .memory_pressure = &tcp_memory_pressure, 3619 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3620 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3621 .sysctl_mem = sysctl_tcp_mem, 3622 .obj_size = sizeof(struct mptcp_sock), 3623 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3624 .no_autobind = true, 3625 }; 3626 3627 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3628 { 3629 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3630 struct socket *ssock; 3631 int err; 3632 3633 lock_sock(sock->sk); 3634 ssock = __mptcp_nmpc_socket(msk); 3635 if (!ssock) { 3636 err = -EINVAL; 3637 goto unlock; 3638 } 3639 3640 err = ssock->ops->bind(ssock, uaddr, addr_len); 3641 if (!err) 3642 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3643 3644 unlock: 3645 release_sock(sock->sk); 3646 return err; 3647 } 3648 3649 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr, 3650 int addr_len, int flags) 3651 { 3652 int ret; 3653 3654 lock_sock(sock->sk); 3655 mptcp_sk(sock->sk)->connect_flags = flags; 3656 ret = __inet_stream_connect(sock, uaddr, addr_len, flags, 0); 3657 release_sock(sock->sk); 3658 return ret; 3659 } 3660 3661 static int mptcp_listen(struct socket *sock, int backlog) 3662 { 3663 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3664 struct socket *ssock; 3665 int err; 3666 3667 pr_debug("msk=%p", msk); 3668 3669 lock_sock(sock->sk); 3670 ssock = __mptcp_nmpc_socket(msk); 3671 if (!ssock) { 3672 err = -EINVAL; 3673 goto unlock; 3674 } 3675 3676 mptcp_token_destroy(msk); 3677 inet_sk_state_store(sock->sk, TCP_LISTEN); 3678 sock_set_flag(sock->sk, SOCK_RCU_FREE); 3679 3680 err = ssock->ops->listen(ssock, backlog); 3681 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 3682 if (!err) 3683 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3684 3685 unlock: 3686 release_sock(sock->sk); 3687 return err; 3688 } 3689 3690 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3691 int flags, bool kern) 3692 { 3693 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3694 struct socket *ssock; 3695 int err; 3696 3697 pr_debug("msk=%p", msk); 3698 3699 ssock = __mptcp_nmpc_socket(msk); 3700 if (!ssock) 3701 return -EINVAL; 3702 3703 err = ssock->ops->accept(sock, newsock, flags, kern); 3704 if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) { 3705 struct mptcp_sock *msk = mptcp_sk(newsock->sk); 3706 struct mptcp_subflow_context *subflow; 3707 struct sock *newsk = newsock->sk; 3708 3709 lock_sock(newsk); 3710 3711 /* PM/worker can now acquire the first subflow socket 3712 * lock without racing with listener queue cleanup, 3713 * we can notify it, if needed. 3714 * 3715 * Even if remote has reset the initial subflow by now 3716 * the refcnt is still at least one. 3717 */ 3718 subflow = mptcp_subflow_ctx(msk->first); 3719 list_add(&subflow->node, &msk->conn_list); 3720 sock_hold(msk->first); 3721 if (mptcp_is_fully_established(newsk)) 3722 mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL); 3723 3724 mptcp_rcv_space_init(msk, msk->first); 3725 mptcp_propagate_sndbuf(newsk, msk->first); 3726 3727 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3728 * This is needed so NOSPACE flag can be set from tcp stack. 3729 */ 3730 mptcp_for_each_subflow(msk, subflow) { 3731 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3732 3733 if (!ssk->sk_socket) 3734 mptcp_sock_graft(ssk, newsock); 3735 } 3736 release_sock(newsk); 3737 } 3738 3739 return err; 3740 } 3741 3742 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3743 { 3744 struct sock *sk = (struct sock *)msk; 3745 3746 if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN)) 3747 return EPOLLOUT | EPOLLWRNORM; 3748 3749 if (sk_stream_is_writeable(sk)) 3750 return EPOLLOUT | EPOLLWRNORM; 3751 3752 mptcp_set_nospace(sk); 3753 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3754 if (sk_stream_is_writeable(sk)) 3755 return EPOLLOUT | EPOLLWRNORM; 3756 3757 return 0; 3758 } 3759 3760 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3761 struct poll_table_struct *wait) 3762 { 3763 struct sock *sk = sock->sk; 3764 struct mptcp_sock *msk; 3765 __poll_t mask = 0; 3766 int state; 3767 3768 msk = mptcp_sk(sk); 3769 sock_poll_wait(file, sock, wait); 3770 3771 state = inet_sk_state_load(sk); 3772 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3773 if (state == TCP_LISTEN) { 3774 if (WARN_ON_ONCE(!msk->subflow || !msk->subflow->sk)) 3775 return 0; 3776 3777 return inet_csk_listen_poll(msk->subflow->sk); 3778 } 3779 3780 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3781 mask |= mptcp_check_readable(msk); 3782 mask |= mptcp_check_writeable(msk); 3783 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 3784 /* cf tcp_poll() note about TFO */ 3785 mask |= EPOLLOUT | EPOLLWRNORM; 3786 } 3787 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3788 mask |= EPOLLHUP; 3789 if (sk->sk_shutdown & RCV_SHUTDOWN) 3790 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3791 3792 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 3793 smp_rmb(); 3794 if (sk->sk_err) 3795 mask |= EPOLLERR; 3796 3797 return mask; 3798 } 3799 3800 static const struct proto_ops mptcp_stream_ops = { 3801 .family = PF_INET, 3802 .owner = THIS_MODULE, 3803 .release = inet_release, 3804 .bind = mptcp_bind, 3805 .connect = mptcp_stream_connect, 3806 .socketpair = sock_no_socketpair, 3807 .accept = mptcp_stream_accept, 3808 .getname = inet_getname, 3809 .poll = mptcp_poll, 3810 .ioctl = inet_ioctl, 3811 .gettstamp = sock_gettstamp, 3812 .listen = mptcp_listen, 3813 .shutdown = inet_shutdown, 3814 .setsockopt = sock_common_setsockopt, 3815 .getsockopt = sock_common_getsockopt, 3816 .sendmsg = inet_sendmsg, 3817 .recvmsg = inet_recvmsg, 3818 .mmap = sock_no_mmap, 3819 .sendpage = inet_sendpage, 3820 }; 3821 3822 static struct inet_protosw mptcp_protosw = { 3823 .type = SOCK_STREAM, 3824 .protocol = IPPROTO_MPTCP, 3825 .prot = &mptcp_prot, 3826 .ops = &mptcp_stream_ops, 3827 .flags = INET_PROTOSW_ICSK, 3828 }; 3829 3830 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 3831 { 3832 struct mptcp_delegated_action *delegated; 3833 struct mptcp_subflow_context *subflow; 3834 int work_done = 0; 3835 3836 delegated = container_of(napi, struct mptcp_delegated_action, napi); 3837 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 3838 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3839 3840 bh_lock_sock_nested(ssk); 3841 if (!sock_owned_by_user(ssk) && 3842 mptcp_subflow_has_delegated_action(subflow)) 3843 mptcp_subflow_process_delegated(ssk); 3844 /* ... elsewhere tcp_release_cb_override already processed 3845 * the action or will do at next release_sock(). 3846 * In both case must dequeue the subflow here - on the same 3847 * CPU that scheduled it. 3848 */ 3849 bh_unlock_sock(ssk); 3850 sock_put(ssk); 3851 3852 if (++work_done == budget) 3853 return budget; 3854 } 3855 3856 /* always provide a 0 'work_done' argument, so that napi_complete_done 3857 * will not try accessing the NULL napi->dev ptr 3858 */ 3859 napi_complete_done(napi, 0); 3860 return work_done; 3861 } 3862 3863 void __init mptcp_proto_init(void) 3864 { 3865 struct mptcp_delegated_action *delegated; 3866 int cpu; 3867 3868 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 3869 3870 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 3871 panic("Failed to allocate MPTCP pcpu counter\n"); 3872 3873 init_dummy_netdev(&mptcp_napi_dev); 3874 for_each_possible_cpu(cpu) { 3875 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 3876 INIT_LIST_HEAD(&delegated->head); 3877 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 3878 mptcp_napi_poll); 3879 napi_enable(&delegated->napi); 3880 } 3881 3882 mptcp_subflow_init(); 3883 mptcp_pm_init(); 3884 mptcp_token_init(); 3885 3886 if (proto_register(&mptcp_prot, 1) != 0) 3887 panic("Failed to register MPTCP proto.\n"); 3888 3889 inet_register_protosw(&mptcp_protosw); 3890 3891 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 3892 } 3893 3894 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3895 static const struct proto_ops mptcp_v6_stream_ops = { 3896 .family = PF_INET6, 3897 .owner = THIS_MODULE, 3898 .release = inet6_release, 3899 .bind = mptcp_bind, 3900 .connect = mptcp_stream_connect, 3901 .socketpair = sock_no_socketpair, 3902 .accept = mptcp_stream_accept, 3903 .getname = inet6_getname, 3904 .poll = mptcp_poll, 3905 .ioctl = inet6_ioctl, 3906 .gettstamp = sock_gettstamp, 3907 .listen = mptcp_listen, 3908 .shutdown = inet_shutdown, 3909 .setsockopt = sock_common_setsockopt, 3910 .getsockopt = sock_common_getsockopt, 3911 .sendmsg = inet6_sendmsg, 3912 .recvmsg = inet6_recvmsg, 3913 .mmap = sock_no_mmap, 3914 .sendpage = inet_sendpage, 3915 #ifdef CONFIG_COMPAT 3916 .compat_ioctl = inet6_compat_ioctl, 3917 #endif 3918 }; 3919 3920 static struct proto mptcp_v6_prot; 3921 3922 static void mptcp_v6_destroy(struct sock *sk) 3923 { 3924 mptcp_destroy(sk); 3925 inet6_destroy_sock(sk); 3926 } 3927 3928 static struct inet_protosw mptcp_v6_protosw = { 3929 .type = SOCK_STREAM, 3930 .protocol = IPPROTO_MPTCP, 3931 .prot = &mptcp_v6_prot, 3932 .ops = &mptcp_v6_stream_ops, 3933 .flags = INET_PROTOSW_ICSK, 3934 }; 3935 3936 int __init mptcp_proto_v6_init(void) 3937 { 3938 int err; 3939 3940 mptcp_v6_prot = mptcp_prot; 3941 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 3942 mptcp_v6_prot.slab = NULL; 3943 mptcp_v6_prot.destroy = mptcp_v6_destroy; 3944 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 3945 3946 err = proto_register(&mptcp_v6_prot, 1); 3947 if (err) 3948 return err; 3949 3950 err = inet6_register_protosw(&mptcp_v6_protosw); 3951 if (err) 3952 proto_unregister(&mptcp_v6_prot); 3953 3954 return err; 3955 } 3956 #endif 3957