xref: /openbmc/linux/net/mptcp/protocol.c (revision 6b6c2ebd83f2bf97e8f221479372aaca97a4a9b2)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31 
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 	struct mptcp_sock msk;
35 	struct ipv6_pinfo np;
36 };
37 #endif
38 
39 enum {
40 	MPTCP_CMSG_TS = BIT(0),
41 	MPTCP_CMSG_INQ = BIT(1),
42 };
43 
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45 
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void mptcp_check_send_data_fin(struct sock *sk);
48 
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
50 static struct net_device mptcp_napi_dev;
51 
52 /* Returns end sequence number of the receiver's advertised window */
53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
54 {
55 	return READ_ONCE(msk->wnd_end);
56 }
57 
58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
59 {
60 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
61 	if (sk->sk_prot == &tcpv6_prot)
62 		return &inet6_stream_ops;
63 #endif
64 	WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
65 	return &inet_stream_ops;
66 }
67 
68 static int __mptcp_socket_create(struct mptcp_sock *msk)
69 {
70 	struct mptcp_subflow_context *subflow;
71 	struct sock *sk = (struct sock *)msk;
72 	struct socket *ssock;
73 	int err;
74 
75 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
76 	if (err)
77 		return err;
78 
79 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
80 	WRITE_ONCE(msk->first, ssock->sk);
81 	subflow = mptcp_subflow_ctx(ssock->sk);
82 	list_add(&subflow->node, &msk->conn_list);
83 	sock_hold(ssock->sk);
84 	subflow->request_mptcp = 1;
85 	subflow->subflow_id = msk->subflow_id++;
86 
87 	/* This is the first subflow, always with id 0 */
88 	WRITE_ONCE(subflow->local_id, 0);
89 	mptcp_sock_graft(msk->first, sk->sk_socket);
90 	iput(SOCK_INODE(ssock));
91 
92 	return 0;
93 }
94 
95 /* If the MPC handshake is not started, returns the first subflow,
96  * eventually allocating it.
97  */
98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
99 {
100 	struct sock *sk = (struct sock *)msk;
101 	int ret;
102 
103 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
104 		return ERR_PTR(-EINVAL);
105 
106 	if (!msk->first) {
107 		ret = __mptcp_socket_create(msk);
108 		if (ret)
109 			return ERR_PTR(ret);
110 
111 		mptcp_sockopt_sync(msk, msk->first);
112 	}
113 
114 	return msk->first;
115 }
116 
117 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
118 {
119 	sk_drops_add(sk, skb);
120 	__kfree_skb(skb);
121 }
122 
123 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size)
124 {
125 	WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc,
126 		   mptcp_sk(sk)->rmem_fwd_alloc + size);
127 }
128 
129 static void mptcp_rmem_charge(struct sock *sk, int size)
130 {
131 	mptcp_rmem_fwd_alloc_add(sk, -size);
132 }
133 
134 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
135 			       struct sk_buff *from)
136 {
137 	bool fragstolen;
138 	int delta;
139 
140 	if (MPTCP_SKB_CB(from)->offset ||
141 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
142 		return false;
143 
144 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
145 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
146 		 to->len, MPTCP_SKB_CB(from)->end_seq);
147 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
148 
149 	/* note the fwd memory can reach a negative value after accounting
150 	 * for the delta, but the later skb free will restore a non
151 	 * negative one
152 	 */
153 	atomic_add(delta, &sk->sk_rmem_alloc);
154 	mptcp_rmem_charge(sk, delta);
155 	kfree_skb_partial(from, fragstolen);
156 
157 	return true;
158 }
159 
160 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
161 				   struct sk_buff *from)
162 {
163 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
164 		return false;
165 
166 	return mptcp_try_coalesce((struct sock *)msk, to, from);
167 }
168 
169 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
170 {
171 	amount >>= PAGE_SHIFT;
172 	mptcp_rmem_charge(sk, amount << PAGE_SHIFT);
173 	__sk_mem_reduce_allocated(sk, amount);
174 }
175 
176 static void mptcp_rmem_uncharge(struct sock *sk, int size)
177 {
178 	struct mptcp_sock *msk = mptcp_sk(sk);
179 	int reclaimable;
180 
181 	mptcp_rmem_fwd_alloc_add(sk, size);
182 	reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
183 
184 	/* see sk_mem_uncharge() for the rationale behind the following schema */
185 	if (unlikely(reclaimable >= PAGE_SIZE))
186 		__mptcp_rmem_reclaim(sk, reclaimable);
187 }
188 
189 static void mptcp_rfree(struct sk_buff *skb)
190 {
191 	unsigned int len = skb->truesize;
192 	struct sock *sk = skb->sk;
193 
194 	atomic_sub(len, &sk->sk_rmem_alloc);
195 	mptcp_rmem_uncharge(sk, len);
196 }
197 
198 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
199 {
200 	skb_orphan(skb);
201 	skb->sk = sk;
202 	skb->destructor = mptcp_rfree;
203 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
204 	mptcp_rmem_charge(sk, skb->truesize);
205 }
206 
207 /* "inspired" by tcp_data_queue_ofo(), main differences:
208  * - use mptcp seqs
209  * - don't cope with sacks
210  */
211 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
212 {
213 	struct sock *sk = (struct sock *)msk;
214 	struct rb_node **p, *parent;
215 	u64 seq, end_seq, max_seq;
216 	struct sk_buff *skb1;
217 
218 	seq = MPTCP_SKB_CB(skb)->map_seq;
219 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
220 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
221 
222 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
223 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
224 	if (after64(end_seq, max_seq)) {
225 		/* out of window */
226 		mptcp_drop(sk, skb);
227 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
228 			 (unsigned long long)end_seq - (unsigned long)max_seq,
229 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
230 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
231 		return;
232 	}
233 
234 	p = &msk->out_of_order_queue.rb_node;
235 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
236 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
237 		rb_link_node(&skb->rbnode, NULL, p);
238 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
239 		msk->ooo_last_skb = skb;
240 		goto end;
241 	}
242 
243 	/* with 2 subflows, adding at end of ooo queue is quite likely
244 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
245 	 */
246 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
247 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
248 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
249 		return;
250 	}
251 
252 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
253 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
254 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
255 		parent = &msk->ooo_last_skb->rbnode;
256 		p = &parent->rb_right;
257 		goto insert;
258 	}
259 
260 	/* Find place to insert this segment. Handle overlaps on the way. */
261 	parent = NULL;
262 	while (*p) {
263 		parent = *p;
264 		skb1 = rb_to_skb(parent);
265 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
266 			p = &parent->rb_left;
267 			continue;
268 		}
269 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
270 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
271 				/* All the bits are present. Drop. */
272 				mptcp_drop(sk, skb);
273 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
274 				return;
275 			}
276 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
277 				/* partial overlap:
278 				 *     |     skb      |
279 				 *  |     skb1    |
280 				 * continue traversing
281 				 */
282 			} else {
283 				/* skb's seq == skb1's seq and skb covers skb1.
284 				 * Replace skb1 with skb.
285 				 */
286 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
287 						&msk->out_of_order_queue);
288 				mptcp_drop(sk, skb1);
289 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
290 				goto merge_right;
291 			}
292 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
293 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
294 			return;
295 		}
296 		p = &parent->rb_right;
297 	}
298 
299 insert:
300 	/* Insert segment into RB tree. */
301 	rb_link_node(&skb->rbnode, parent, p);
302 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
303 
304 merge_right:
305 	/* Remove other segments covered by skb. */
306 	while ((skb1 = skb_rb_next(skb)) != NULL) {
307 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
308 			break;
309 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
310 		mptcp_drop(sk, skb1);
311 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
312 	}
313 	/* If there is no skb after us, we are the last_skb ! */
314 	if (!skb1)
315 		msk->ooo_last_skb = skb;
316 
317 end:
318 	skb_condense(skb);
319 	mptcp_set_owner_r(skb, sk);
320 }
321 
322 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
323 {
324 	struct mptcp_sock *msk = mptcp_sk(sk);
325 	int amt, amount;
326 
327 	if (size <= msk->rmem_fwd_alloc)
328 		return true;
329 
330 	size -= msk->rmem_fwd_alloc;
331 	amt = sk_mem_pages(size);
332 	amount = amt << PAGE_SHIFT;
333 	if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
334 		return false;
335 
336 	mptcp_rmem_fwd_alloc_add(sk, amount);
337 	return true;
338 }
339 
340 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
341 			     struct sk_buff *skb, unsigned int offset,
342 			     size_t copy_len)
343 {
344 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
345 	struct sock *sk = (struct sock *)msk;
346 	struct sk_buff *tail;
347 	bool has_rxtstamp;
348 
349 	__skb_unlink(skb, &ssk->sk_receive_queue);
350 
351 	skb_ext_reset(skb);
352 	skb_orphan(skb);
353 
354 	/* try to fetch required memory from subflow */
355 	if (!mptcp_rmem_schedule(sk, ssk, skb->truesize))
356 		goto drop;
357 
358 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
359 
360 	/* the skb map_seq accounts for the skb offset:
361 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
362 	 * value
363 	 */
364 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
365 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
366 	MPTCP_SKB_CB(skb)->offset = offset;
367 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
368 
369 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
370 		/* in sequence */
371 		msk->bytes_received += copy_len;
372 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
373 		tail = skb_peek_tail(&sk->sk_receive_queue);
374 		if (tail && mptcp_try_coalesce(sk, tail, skb))
375 			return true;
376 
377 		mptcp_set_owner_r(skb, sk);
378 		__skb_queue_tail(&sk->sk_receive_queue, skb);
379 		return true;
380 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
381 		mptcp_data_queue_ofo(msk, skb);
382 		return false;
383 	}
384 
385 	/* old data, keep it simple and drop the whole pkt, sender
386 	 * will retransmit as needed, if needed.
387 	 */
388 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
389 drop:
390 	mptcp_drop(sk, skb);
391 	return false;
392 }
393 
394 static void mptcp_stop_rtx_timer(struct sock *sk)
395 {
396 	struct inet_connection_sock *icsk = inet_csk(sk);
397 
398 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
399 	mptcp_sk(sk)->timer_ival = 0;
400 }
401 
402 static void mptcp_close_wake_up(struct sock *sk)
403 {
404 	if (sock_flag(sk, SOCK_DEAD))
405 		return;
406 
407 	sk->sk_state_change(sk);
408 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
409 	    sk->sk_state == TCP_CLOSE)
410 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
411 	else
412 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
413 }
414 
415 static bool mptcp_pending_data_fin_ack(struct sock *sk)
416 {
417 	struct mptcp_sock *msk = mptcp_sk(sk);
418 
419 	return ((1 << sk->sk_state) &
420 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
421 	       msk->write_seq == READ_ONCE(msk->snd_una);
422 }
423 
424 static void mptcp_check_data_fin_ack(struct sock *sk)
425 {
426 	struct mptcp_sock *msk = mptcp_sk(sk);
427 
428 	/* Look for an acknowledged DATA_FIN */
429 	if (mptcp_pending_data_fin_ack(sk)) {
430 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
431 
432 		switch (sk->sk_state) {
433 		case TCP_FIN_WAIT1:
434 			mptcp_set_state(sk, TCP_FIN_WAIT2);
435 			break;
436 		case TCP_CLOSING:
437 		case TCP_LAST_ACK:
438 			mptcp_set_state(sk, TCP_CLOSE);
439 			break;
440 		}
441 
442 		mptcp_close_wake_up(sk);
443 	}
444 }
445 
446 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
447 {
448 	struct mptcp_sock *msk = mptcp_sk(sk);
449 
450 	if (READ_ONCE(msk->rcv_data_fin) &&
451 	    ((1 << sk->sk_state) &
452 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
453 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
454 
455 		if (msk->ack_seq == rcv_data_fin_seq) {
456 			if (seq)
457 				*seq = rcv_data_fin_seq;
458 
459 			return true;
460 		}
461 	}
462 
463 	return false;
464 }
465 
466 static void mptcp_set_datafin_timeout(struct sock *sk)
467 {
468 	struct inet_connection_sock *icsk = inet_csk(sk);
469 	u32 retransmits;
470 
471 	retransmits = min_t(u32, icsk->icsk_retransmits,
472 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
473 
474 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
475 }
476 
477 static void __mptcp_set_timeout(struct sock *sk, long tout)
478 {
479 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
480 }
481 
482 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
483 {
484 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
485 
486 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
487 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
488 }
489 
490 static void mptcp_set_timeout(struct sock *sk)
491 {
492 	struct mptcp_subflow_context *subflow;
493 	long tout = 0;
494 
495 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
496 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
497 	__mptcp_set_timeout(sk, tout);
498 }
499 
500 static inline bool tcp_can_send_ack(const struct sock *ssk)
501 {
502 	return !((1 << inet_sk_state_load(ssk)) &
503 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
504 }
505 
506 void __mptcp_subflow_send_ack(struct sock *ssk)
507 {
508 	if (tcp_can_send_ack(ssk))
509 		tcp_send_ack(ssk);
510 }
511 
512 static void mptcp_subflow_send_ack(struct sock *ssk)
513 {
514 	bool slow;
515 
516 	slow = lock_sock_fast(ssk);
517 	__mptcp_subflow_send_ack(ssk);
518 	unlock_sock_fast(ssk, slow);
519 }
520 
521 static void mptcp_send_ack(struct mptcp_sock *msk)
522 {
523 	struct mptcp_subflow_context *subflow;
524 
525 	mptcp_for_each_subflow(msk, subflow)
526 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
527 }
528 
529 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
530 {
531 	bool slow;
532 
533 	slow = lock_sock_fast(ssk);
534 	if (tcp_can_send_ack(ssk))
535 		tcp_cleanup_rbuf(ssk, 1);
536 	unlock_sock_fast(ssk, slow);
537 }
538 
539 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
540 {
541 	const struct inet_connection_sock *icsk = inet_csk(ssk);
542 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
543 	const struct tcp_sock *tp = tcp_sk(ssk);
544 
545 	return (ack_pending & ICSK_ACK_SCHED) &&
546 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
547 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
548 		 (rx_empty && ack_pending &
549 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
550 }
551 
552 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
553 {
554 	int old_space = READ_ONCE(msk->old_wspace);
555 	struct mptcp_subflow_context *subflow;
556 	struct sock *sk = (struct sock *)msk;
557 	int space =  __mptcp_space(sk);
558 	bool cleanup, rx_empty;
559 
560 	cleanup = (space > 0) && (space >= (old_space << 1));
561 	rx_empty = !__mptcp_rmem(sk);
562 
563 	mptcp_for_each_subflow(msk, subflow) {
564 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
565 
566 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
567 			mptcp_subflow_cleanup_rbuf(ssk);
568 	}
569 }
570 
571 static bool mptcp_check_data_fin(struct sock *sk)
572 {
573 	struct mptcp_sock *msk = mptcp_sk(sk);
574 	u64 rcv_data_fin_seq;
575 	bool ret = false;
576 
577 	/* Need to ack a DATA_FIN received from a peer while this side
578 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
579 	 * msk->rcv_data_fin was set when parsing the incoming options
580 	 * at the subflow level and the msk lock was not held, so this
581 	 * is the first opportunity to act on the DATA_FIN and change
582 	 * the msk state.
583 	 *
584 	 * If we are caught up to the sequence number of the incoming
585 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
586 	 * not caught up, do nothing and let the recv code send DATA_ACK
587 	 * when catching up.
588 	 */
589 
590 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
591 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
592 		WRITE_ONCE(msk->rcv_data_fin, 0);
593 
594 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
595 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
596 
597 		switch (sk->sk_state) {
598 		case TCP_ESTABLISHED:
599 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
600 			break;
601 		case TCP_FIN_WAIT1:
602 			mptcp_set_state(sk, TCP_CLOSING);
603 			break;
604 		case TCP_FIN_WAIT2:
605 			mptcp_set_state(sk, TCP_CLOSE);
606 			break;
607 		default:
608 			/* Other states not expected */
609 			WARN_ON_ONCE(1);
610 			break;
611 		}
612 
613 		ret = true;
614 		if (!__mptcp_check_fallback(msk))
615 			mptcp_send_ack(msk);
616 		mptcp_close_wake_up(sk);
617 	}
618 	return ret;
619 }
620 
621 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
622 					   struct sock *ssk,
623 					   unsigned int *bytes)
624 {
625 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
626 	struct sock *sk = (struct sock *)msk;
627 	unsigned int moved = 0;
628 	bool more_data_avail;
629 	struct tcp_sock *tp;
630 	bool done = false;
631 	int sk_rbuf;
632 
633 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
634 
635 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
636 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
637 
638 		if (unlikely(ssk_rbuf > sk_rbuf)) {
639 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
640 			sk_rbuf = ssk_rbuf;
641 		}
642 	}
643 
644 	pr_debug("msk=%p ssk=%p", msk, ssk);
645 	tp = tcp_sk(ssk);
646 	do {
647 		u32 map_remaining, offset;
648 		u32 seq = tp->copied_seq;
649 		struct sk_buff *skb;
650 		bool fin;
651 
652 		/* try to move as much data as available */
653 		map_remaining = subflow->map_data_len -
654 				mptcp_subflow_get_map_offset(subflow);
655 
656 		skb = skb_peek(&ssk->sk_receive_queue);
657 		if (!skb) {
658 			/* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
659 			 * a different CPU can have already processed the pending
660 			 * data, stop here or we can enter an infinite loop
661 			 */
662 			if (!moved)
663 				done = true;
664 			break;
665 		}
666 
667 		if (__mptcp_check_fallback(msk)) {
668 			/* Under fallback skbs have no MPTCP extension and TCP could
669 			 * collapse them between the dummy map creation and the
670 			 * current dequeue. Be sure to adjust the map size.
671 			 */
672 			map_remaining = skb->len;
673 			subflow->map_data_len = skb->len;
674 		}
675 
676 		offset = seq - TCP_SKB_CB(skb)->seq;
677 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
678 		if (fin) {
679 			done = true;
680 			seq++;
681 		}
682 
683 		if (offset < skb->len) {
684 			size_t len = skb->len - offset;
685 
686 			if (tp->urg_data)
687 				done = true;
688 
689 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
690 				moved += len;
691 			seq += len;
692 
693 			if (WARN_ON_ONCE(map_remaining < len))
694 				break;
695 		} else {
696 			WARN_ON_ONCE(!fin);
697 			sk_eat_skb(ssk, skb);
698 			done = true;
699 		}
700 
701 		WRITE_ONCE(tp->copied_seq, seq);
702 		more_data_avail = mptcp_subflow_data_available(ssk);
703 
704 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
705 			done = true;
706 			break;
707 		}
708 	} while (more_data_avail);
709 
710 	*bytes += moved;
711 	return done;
712 }
713 
714 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
715 {
716 	struct sock *sk = (struct sock *)msk;
717 	struct sk_buff *skb, *tail;
718 	bool moved = false;
719 	struct rb_node *p;
720 	u64 end_seq;
721 
722 	p = rb_first(&msk->out_of_order_queue);
723 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
724 	while (p) {
725 		skb = rb_to_skb(p);
726 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
727 			break;
728 
729 		p = rb_next(p);
730 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
731 
732 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
733 				      msk->ack_seq))) {
734 			mptcp_drop(sk, skb);
735 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
736 			continue;
737 		}
738 
739 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
740 		tail = skb_peek_tail(&sk->sk_receive_queue);
741 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
742 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
743 
744 			/* skip overlapping data, if any */
745 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
746 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
747 				 delta);
748 			MPTCP_SKB_CB(skb)->offset += delta;
749 			MPTCP_SKB_CB(skb)->map_seq += delta;
750 			__skb_queue_tail(&sk->sk_receive_queue, skb);
751 		}
752 		msk->bytes_received += end_seq - msk->ack_seq;
753 		msk->ack_seq = end_seq;
754 		moved = true;
755 	}
756 	return moved;
757 }
758 
759 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
760 {
761 	int err = sock_error(ssk);
762 	int ssk_state;
763 
764 	if (!err)
765 		return false;
766 
767 	/* only propagate errors on fallen-back sockets or
768 	 * on MPC connect
769 	 */
770 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
771 		return false;
772 
773 	/* We need to propagate only transition to CLOSE state.
774 	 * Orphaned socket will see such state change via
775 	 * subflow_sched_work_if_closed() and that path will properly
776 	 * destroy the msk as needed.
777 	 */
778 	ssk_state = inet_sk_state_load(ssk);
779 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
780 		mptcp_set_state(sk, ssk_state);
781 	WRITE_ONCE(sk->sk_err, -err);
782 
783 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
784 	smp_wmb();
785 	sk_error_report(sk);
786 	return true;
787 }
788 
789 void __mptcp_error_report(struct sock *sk)
790 {
791 	struct mptcp_subflow_context *subflow;
792 	struct mptcp_sock *msk = mptcp_sk(sk);
793 
794 	mptcp_for_each_subflow(msk, subflow)
795 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
796 			break;
797 }
798 
799 /* In most cases we will be able to lock the mptcp socket.  If its already
800  * owned, we need to defer to the work queue to avoid ABBA deadlock.
801  */
802 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
803 {
804 	struct sock *sk = (struct sock *)msk;
805 	unsigned int moved = 0;
806 
807 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
808 	__mptcp_ofo_queue(msk);
809 	if (unlikely(ssk->sk_err)) {
810 		if (!sock_owned_by_user(sk))
811 			__mptcp_error_report(sk);
812 		else
813 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
814 	}
815 
816 	/* If the moves have caught up with the DATA_FIN sequence number
817 	 * it's time to ack the DATA_FIN and change socket state, but
818 	 * this is not a good place to change state. Let the workqueue
819 	 * do it.
820 	 */
821 	if (mptcp_pending_data_fin(sk, NULL))
822 		mptcp_schedule_work(sk);
823 	return moved > 0;
824 }
825 
826 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
827 {
828 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
829 	struct mptcp_sock *msk = mptcp_sk(sk);
830 	int sk_rbuf, ssk_rbuf;
831 
832 	/* The peer can send data while we are shutting down this
833 	 * subflow at msk destruction time, but we must avoid enqueuing
834 	 * more data to the msk receive queue
835 	 */
836 	if (unlikely(subflow->disposable))
837 		return;
838 
839 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
840 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
841 	if (unlikely(ssk_rbuf > sk_rbuf))
842 		sk_rbuf = ssk_rbuf;
843 
844 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
845 	if (__mptcp_rmem(sk) > sk_rbuf) {
846 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
847 		return;
848 	}
849 
850 	/* Wake-up the reader only for in-sequence data */
851 	mptcp_data_lock(sk);
852 	if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
853 		sk->sk_data_ready(sk);
854 	mptcp_data_unlock(sk);
855 }
856 
857 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
858 {
859 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
860 	WRITE_ONCE(msk->allow_infinite_fallback, false);
861 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
862 }
863 
864 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
865 {
866 	struct sock *sk = (struct sock *)msk;
867 
868 	if (sk->sk_state != TCP_ESTABLISHED)
869 		return false;
870 
871 	/* attach to msk socket only after we are sure we will deal with it
872 	 * at close time
873 	 */
874 	if (sk->sk_socket && !ssk->sk_socket)
875 		mptcp_sock_graft(ssk, sk->sk_socket);
876 
877 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
878 	mptcp_sockopt_sync_locked(msk, ssk);
879 	mptcp_subflow_joined(msk, ssk);
880 	mptcp_stop_tout_timer(sk);
881 	__mptcp_propagate_sndbuf(sk, ssk);
882 	return true;
883 }
884 
885 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
886 {
887 	struct mptcp_subflow_context *tmp, *subflow;
888 	struct mptcp_sock *msk = mptcp_sk(sk);
889 
890 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
891 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
892 		bool slow = lock_sock_fast(ssk);
893 
894 		list_move_tail(&subflow->node, &msk->conn_list);
895 		if (!__mptcp_finish_join(msk, ssk))
896 			mptcp_subflow_reset(ssk);
897 		unlock_sock_fast(ssk, slow);
898 	}
899 }
900 
901 static bool mptcp_rtx_timer_pending(struct sock *sk)
902 {
903 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
904 }
905 
906 static void mptcp_reset_rtx_timer(struct sock *sk)
907 {
908 	struct inet_connection_sock *icsk = inet_csk(sk);
909 	unsigned long tout;
910 
911 	/* prevent rescheduling on close */
912 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
913 		return;
914 
915 	tout = mptcp_sk(sk)->timer_ival;
916 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
917 }
918 
919 bool mptcp_schedule_work(struct sock *sk)
920 {
921 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
922 	    schedule_work(&mptcp_sk(sk)->work)) {
923 		/* each subflow already holds a reference to the sk, and the
924 		 * workqueue is invoked by a subflow, so sk can't go away here.
925 		 */
926 		sock_hold(sk);
927 		return true;
928 	}
929 	return false;
930 }
931 
932 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
933 {
934 	struct mptcp_subflow_context *subflow;
935 
936 	msk_owned_by_me(msk);
937 
938 	mptcp_for_each_subflow(msk, subflow) {
939 		if (READ_ONCE(subflow->data_avail))
940 			return mptcp_subflow_tcp_sock(subflow);
941 	}
942 
943 	return NULL;
944 }
945 
946 static bool mptcp_skb_can_collapse_to(u64 write_seq,
947 				      const struct sk_buff *skb,
948 				      const struct mptcp_ext *mpext)
949 {
950 	if (!tcp_skb_can_collapse_to(skb))
951 		return false;
952 
953 	/* can collapse only if MPTCP level sequence is in order and this
954 	 * mapping has not been xmitted yet
955 	 */
956 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
957 	       !mpext->frozen;
958 }
959 
960 /* we can append data to the given data frag if:
961  * - there is space available in the backing page_frag
962  * - the data frag tail matches the current page_frag free offset
963  * - the data frag end sequence number matches the current write seq
964  */
965 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
966 				       const struct page_frag *pfrag,
967 				       const struct mptcp_data_frag *df)
968 {
969 	return df && pfrag->page == df->page &&
970 		pfrag->size - pfrag->offset > 0 &&
971 		pfrag->offset == (df->offset + df->data_len) &&
972 		df->data_seq + df->data_len == msk->write_seq;
973 }
974 
975 static void dfrag_uncharge(struct sock *sk, int len)
976 {
977 	sk_mem_uncharge(sk, len);
978 	sk_wmem_queued_add(sk, -len);
979 }
980 
981 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
982 {
983 	int len = dfrag->data_len + dfrag->overhead;
984 
985 	list_del(&dfrag->list);
986 	dfrag_uncharge(sk, len);
987 	put_page(dfrag->page);
988 }
989 
990 static void __mptcp_clean_una(struct sock *sk)
991 {
992 	struct mptcp_sock *msk = mptcp_sk(sk);
993 	struct mptcp_data_frag *dtmp, *dfrag;
994 	u64 snd_una;
995 
996 	snd_una = msk->snd_una;
997 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
998 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
999 			break;
1000 
1001 		if (unlikely(dfrag == msk->first_pending)) {
1002 			/* in recovery mode can see ack after the current snd head */
1003 			if (WARN_ON_ONCE(!msk->recovery))
1004 				break;
1005 
1006 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1007 		}
1008 
1009 		dfrag_clear(sk, dfrag);
1010 	}
1011 
1012 	dfrag = mptcp_rtx_head(sk);
1013 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1014 		u64 delta = snd_una - dfrag->data_seq;
1015 
1016 		/* prevent wrap around in recovery mode */
1017 		if (unlikely(delta > dfrag->already_sent)) {
1018 			if (WARN_ON_ONCE(!msk->recovery))
1019 				goto out;
1020 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1021 				goto out;
1022 			dfrag->already_sent += delta - dfrag->already_sent;
1023 		}
1024 
1025 		dfrag->data_seq += delta;
1026 		dfrag->offset += delta;
1027 		dfrag->data_len -= delta;
1028 		dfrag->already_sent -= delta;
1029 
1030 		dfrag_uncharge(sk, delta);
1031 	}
1032 
1033 	/* all retransmitted data acked, recovery completed */
1034 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1035 		msk->recovery = false;
1036 
1037 out:
1038 	if (snd_una == READ_ONCE(msk->snd_nxt) &&
1039 	    snd_una == READ_ONCE(msk->write_seq)) {
1040 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1041 			mptcp_stop_rtx_timer(sk);
1042 	} else {
1043 		mptcp_reset_rtx_timer(sk);
1044 	}
1045 }
1046 
1047 static void __mptcp_clean_una_wakeup(struct sock *sk)
1048 {
1049 	lockdep_assert_held_once(&sk->sk_lock.slock);
1050 
1051 	__mptcp_clean_una(sk);
1052 	mptcp_write_space(sk);
1053 }
1054 
1055 static void mptcp_clean_una_wakeup(struct sock *sk)
1056 {
1057 	mptcp_data_lock(sk);
1058 	__mptcp_clean_una_wakeup(sk);
1059 	mptcp_data_unlock(sk);
1060 }
1061 
1062 static void mptcp_enter_memory_pressure(struct sock *sk)
1063 {
1064 	struct mptcp_subflow_context *subflow;
1065 	struct mptcp_sock *msk = mptcp_sk(sk);
1066 	bool first = true;
1067 
1068 	mptcp_for_each_subflow(msk, subflow) {
1069 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1070 
1071 		if (first)
1072 			tcp_enter_memory_pressure(ssk);
1073 		sk_stream_moderate_sndbuf(ssk);
1074 
1075 		first = false;
1076 	}
1077 	__mptcp_sync_sndbuf(sk);
1078 }
1079 
1080 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1081  * data
1082  */
1083 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1084 {
1085 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1086 					pfrag, sk->sk_allocation)))
1087 		return true;
1088 
1089 	mptcp_enter_memory_pressure(sk);
1090 	return false;
1091 }
1092 
1093 static struct mptcp_data_frag *
1094 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1095 		      int orig_offset)
1096 {
1097 	int offset = ALIGN(orig_offset, sizeof(long));
1098 	struct mptcp_data_frag *dfrag;
1099 
1100 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1101 	dfrag->data_len = 0;
1102 	dfrag->data_seq = msk->write_seq;
1103 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1104 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1105 	dfrag->already_sent = 0;
1106 	dfrag->page = pfrag->page;
1107 
1108 	return dfrag;
1109 }
1110 
1111 struct mptcp_sendmsg_info {
1112 	int mss_now;
1113 	int size_goal;
1114 	u16 limit;
1115 	u16 sent;
1116 	unsigned int flags;
1117 	bool data_lock_held;
1118 };
1119 
1120 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1121 				    u64 data_seq, int avail_size)
1122 {
1123 	u64 window_end = mptcp_wnd_end(msk);
1124 	u64 mptcp_snd_wnd;
1125 
1126 	if (__mptcp_check_fallback(msk))
1127 		return avail_size;
1128 
1129 	mptcp_snd_wnd = window_end - data_seq;
1130 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1131 
1132 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1133 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1134 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1135 	}
1136 
1137 	return avail_size;
1138 }
1139 
1140 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1141 {
1142 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1143 
1144 	if (!mpext)
1145 		return false;
1146 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1147 	return true;
1148 }
1149 
1150 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1151 {
1152 	struct sk_buff *skb;
1153 
1154 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1155 	if (likely(skb)) {
1156 		if (likely(__mptcp_add_ext(skb, gfp))) {
1157 			skb_reserve(skb, MAX_TCP_HEADER);
1158 			skb->ip_summed = CHECKSUM_PARTIAL;
1159 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1160 			return skb;
1161 		}
1162 		__kfree_skb(skb);
1163 	} else {
1164 		mptcp_enter_memory_pressure(sk);
1165 	}
1166 	return NULL;
1167 }
1168 
1169 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1170 {
1171 	struct sk_buff *skb;
1172 
1173 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1174 	if (!skb)
1175 		return NULL;
1176 
1177 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1178 		tcp_skb_entail(ssk, skb);
1179 		return skb;
1180 	}
1181 	tcp_skb_tsorted_anchor_cleanup(skb);
1182 	kfree_skb(skb);
1183 	return NULL;
1184 }
1185 
1186 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1187 {
1188 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1189 
1190 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1191 }
1192 
1193 /* note: this always recompute the csum on the whole skb, even
1194  * if we just appended a single frag. More status info needed
1195  */
1196 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1197 {
1198 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1199 	__wsum csum = ~csum_unfold(mpext->csum);
1200 	int offset = skb->len - added;
1201 
1202 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1203 }
1204 
1205 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1206 				      struct sock *ssk,
1207 				      struct mptcp_ext *mpext)
1208 {
1209 	if (!mpext)
1210 		return;
1211 
1212 	mpext->infinite_map = 1;
1213 	mpext->data_len = 0;
1214 
1215 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1216 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1217 	pr_fallback(msk);
1218 	mptcp_do_fallback(ssk);
1219 }
1220 
1221 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1222 
1223 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1224 			      struct mptcp_data_frag *dfrag,
1225 			      struct mptcp_sendmsg_info *info)
1226 {
1227 	u64 data_seq = dfrag->data_seq + info->sent;
1228 	int offset = dfrag->offset + info->sent;
1229 	struct mptcp_sock *msk = mptcp_sk(sk);
1230 	bool zero_window_probe = false;
1231 	struct mptcp_ext *mpext = NULL;
1232 	bool can_coalesce = false;
1233 	bool reuse_skb = true;
1234 	struct sk_buff *skb;
1235 	size_t copy;
1236 	int i;
1237 
1238 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1239 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1240 
1241 	if (WARN_ON_ONCE(info->sent > info->limit ||
1242 			 info->limit > dfrag->data_len))
1243 		return 0;
1244 
1245 	if (unlikely(!__tcp_can_send(ssk)))
1246 		return -EAGAIN;
1247 
1248 	/* compute send limit */
1249 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1250 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1251 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1252 	copy = info->size_goal;
1253 
1254 	skb = tcp_write_queue_tail(ssk);
1255 	if (skb && copy > skb->len) {
1256 		/* Limit the write to the size available in the
1257 		 * current skb, if any, so that we create at most a new skb.
1258 		 * Explicitly tells TCP internals to avoid collapsing on later
1259 		 * queue management operation, to avoid breaking the ext <->
1260 		 * SSN association set here
1261 		 */
1262 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1263 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1264 			TCP_SKB_CB(skb)->eor = 1;
1265 			tcp_mark_push(tcp_sk(ssk), skb);
1266 			goto alloc_skb;
1267 		}
1268 
1269 		i = skb_shinfo(skb)->nr_frags;
1270 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1271 		if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1272 			tcp_mark_push(tcp_sk(ssk), skb);
1273 			goto alloc_skb;
1274 		}
1275 
1276 		copy -= skb->len;
1277 	} else {
1278 alloc_skb:
1279 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1280 		if (!skb)
1281 			return -ENOMEM;
1282 
1283 		i = skb_shinfo(skb)->nr_frags;
1284 		reuse_skb = false;
1285 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1286 	}
1287 
1288 	/* Zero window and all data acked? Probe. */
1289 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1290 	if (copy == 0) {
1291 		u64 snd_una = READ_ONCE(msk->snd_una);
1292 
1293 		if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
1294 			tcp_remove_empty_skb(ssk);
1295 			return 0;
1296 		}
1297 
1298 		zero_window_probe = true;
1299 		data_seq = snd_una - 1;
1300 		copy = 1;
1301 	}
1302 
1303 	copy = min_t(size_t, copy, info->limit - info->sent);
1304 	if (!sk_wmem_schedule(ssk, copy)) {
1305 		tcp_remove_empty_skb(ssk);
1306 		return -ENOMEM;
1307 	}
1308 
1309 	if (can_coalesce) {
1310 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1311 	} else {
1312 		get_page(dfrag->page);
1313 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1314 	}
1315 
1316 	skb->len += copy;
1317 	skb->data_len += copy;
1318 	skb->truesize += copy;
1319 	sk_wmem_queued_add(ssk, copy);
1320 	sk_mem_charge(ssk, copy);
1321 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1322 	TCP_SKB_CB(skb)->end_seq += copy;
1323 	tcp_skb_pcount_set(skb, 0);
1324 
1325 	/* on skb reuse we just need to update the DSS len */
1326 	if (reuse_skb) {
1327 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1328 		mpext->data_len += copy;
1329 		goto out;
1330 	}
1331 
1332 	memset(mpext, 0, sizeof(*mpext));
1333 	mpext->data_seq = data_seq;
1334 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1335 	mpext->data_len = copy;
1336 	mpext->use_map = 1;
1337 	mpext->dsn64 = 1;
1338 
1339 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1340 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1341 		 mpext->dsn64);
1342 
1343 	if (zero_window_probe) {
1344 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1345 		mpext->frozen = 1;
1346 		if (READ_ONCE(msk->csum_enabled))
1347 			mptcp_update_data_checksum(skb, copy);
1348 		tcp_push_pending_frames(ssk);
1349 		return 0;
1350 	}
1351 out:
1352 	if (READ_ONCE(msk->csum_enabled))
1353 		mptcp_update_data_checksum(skb, copy);
1354 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1355 		mptcp_update_infinite_map(msk, ssk, mpext);
1356 	trace_mptcp_sendmsg_frag(mpext);
1357 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1358 	return copy;
1359 }
1360 
1361 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1362 					 sizeof(struct tcphdr) - \
1363 					 MAX_TCP_OPTION_SPACE - \
1364 					 sizeof(struct ipv6hdr) - \
1365 					 sizeof(struct frag_hdr))
1366 
1367 struct subflow_send_info {
1368 	struct sock *ssk;
1369 	u64 linger_time;
1370 };
1371 
1372 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1373 {
1374 	if (!subflow->stale)
1375 		return;
1376 
1377 	subflow->stale = 0;
1378 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1379 }
1380 
1381 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1382 {
1383 	if (unlikely(subflow->stale)) {
1384 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1385 
1386 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1387 			return false;
1388 
1389 		mptcp_subflow_set_active(subflow);
1390 	}
1391 	return __mptcp_subflow_active(subflow);
1392 }
1393 
1394 #define SSK_MODE_ACTIVE	0
1395 #define SSK_MODE_BACKUP	1
1396 #define SSK_MODE_MAX	2
1397 
1398 /* implement the mptcp packet scheduler;
1399  * returns the subflow that will transmit the next DSS
1400  * additionally updates the rtx timeout
1401  */
1402 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1403 {
1404 	struct subflow_send_info send_info[SSK_MODE_MAX];
1405 	struct mptcp_subflow_context *subflow;
1406 	struct sock *sk = (struct sock *)msk;
1407 	u32 pace, burst, wmem;
1408 	int i, nr_active = 0;
1409 	struct sock *ssk;
1410 	u64 linger_time;
1411 	long tout = 0;
1412 
1413 	/* pick the subflow with the lower wmem/wspace ratio */
1414 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1415 		send_info[i].ssk = NULL;
1416 		send_info[i].linger_time = -1;
1417 	}
1418 
1419 	mptcp_for_each_subflow(msk, subflow) {
1420 		trace_mptcp_subflow_get_send(subflow);
1421 		ssk =  mptcp_subflow_tcp_sock(subflow);
1422 		if (!mptcp_subflow_active(subflow))
1423 			continue;
1424 
1425 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1426 		nr_active += !subflow->backup;
1427 		pace = subflow->avg_pacing_rate;
1428 		if (unlikely(!pace)) {
1429 			/* init pacing rate from socket */
1430 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1431 			pace = subflow->avg_pacing_rate;
1432 			if (!pace)
1433 				continue;
1434 		}
1435 
1436 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1437 		if (linger_time < send_info[subflow->backup].linger_time) {
1438 			send_info[subflow->backup].ssk = ssk;
1439 			send_info[subflow->backup].linger_time = linger_time;
1440 		}
1441 	}
1442 	__mptcp_set_timeout(sk, tout);
1443 
1444 	/* pick the best backup if no other subflow is active */
1445 	if (!nr_active)
1446 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1447 
1448 	/* According to the blest algorithm, to avoid HoL blocking for the
1449 	 * faster flow, we need to:
1450 	 * - estimate the faster flow linger time
1451 	 * - use the above to estimate the amount of byte transferred
1452 	 *   by the faster flow
1453 	 * - check that the amount of queued data is greter than the above,
1454 	 *   otherwise do not use the picked, slower, subflow
1455 	 * We select the subflow with the shorter estimated time to flush
1456 	 * the queued mem, which basically ensure the above. We just need
1457 	 * to check that subflow has a non empty cwin.
1458 	 */
1459 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1460 	if (!ssk || !sk_stream_memory_free(ssk))
1461 		return NULL;
1462 
1463 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1464 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1465 	if (!burst)
1466 		return ssk;
1467 
1468 	subflow = mptcp_subflow_ctx(ssk);
1469 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1470 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1471 					   burst + wmem);
1472 	msk->snd_burst = burst;
1473 	return ssk;
1474 }
1475 
1476 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1477 {
1478 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1479 	release_sock(ssk);
1480 }
1481 
1482 static void mptcp_update_post_push(struct mptcp_sock *msk,
1483 				   struct mptcp_data_frag *dfrag,
1484 				   u32 sent)
1485 {
1486 	u64 snd_nxt_new = dfrag->data_seq;
1487 
1488 	dfrag->already_sent += sent;
1489 
1490 	msk->snd_burst -= sent;
1491 
1492 	snd_nxt_new += dfrag->already_sent;
1493 
1494 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1495 	 * is recovering after a failover. In that event, this re-sends
1496 	 * old segments.
1497 	 *
1498 	 * Thus compute snd_nxt_new candidate based on
1499 	 * the dfrag->data_seq that was sent and the data
1500 	 * that has been handed to the subflow for transmission
1501 	 * and skip update in case it was old dfrag.
1502 	 */
1503 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1504 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1505 		msk->snd_nxt = snd_nxt_new;
1506 	}
1507 }
1508 
1509 void mptcp_check_and_set_pending(struct sock *sk)
1510 {
1511 	if (mptcp_send_head(sk)) {
1512 		mptcp_data_lock(sk);
1513 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1514 		mptcp_data_unlock(sk);
1515 	}
1516 }
1517 
1518 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1519 				  struct mptcp_sendmsg_info *info)
1520 {
1521 	struct mptcp_sock *msk = mptcp_sk(sk);
1522 	struct mptcp_data_frag *dfrag;
1523 	int len, copied = 0, err = 0;
1524 
1525 	while ((dfrag = mptcp_send_head(sk))) {
1526 		info->sent = dfrag->already_sent;
1527 		info->limit = dfrag->data_len;
1528 		len = dfrag->data_len - dfrag->already_sent;
1529 		while (len > 0) {
1530 			int ret = 0;
1531 
1532 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1533 			if (ret <= 0) {
1534 				err = copied ? : ret;
1535 				goto out;
1536 			}
1537 
1538 			info->sent += ret;
1539 			copied += ret;
1540 			len -= ret;
1541 
1542 			mptcp_update_post_push(msk, dfrag, ret);
1543 		}
1544 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1545 
1546 		if (msk->snd_burst <= 0 ||
1547 		    !sk_stream_memory_free(ssk) ||
1548 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1549 			err = copied;
1550 			goto out;
1551 		}
1552 		mptcp_set_timeout(sk);
1553 	}
1554 	err = copied;
1555 
1556 out:
1557 	return err;
1558 }
1559 
1560 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1561 {
1562 	struct sock *prev_ssk = NULL, *ssk = NULL;
1563 	struct mptcp_sock *msk = mptcp_sk(sk);
1564 	struct mptcp_sendmsg_info info = {
1565 				.flags = flags,
1566 	};
1567 	bool do_check_data_fin = false;
1568 	int push_count = 1;
1569 
1570 	while (mptcp_send_head(sk) && (push_count > 0)) {
1571 		struct mptcp_subflow_context *subflow;
1572 		int ret = 0;
1573 
1574 		if (mptcp_sched_get_send(msk))
1575 			break;
1576 
1577 		push_count = 0;
1578 
1579 		mptcp_for_each_subflow(msk, subflow) {
1580 			if (READ_ONCE(subflow->scheduled)) {
1581 				mptcp_subflow_set_scheduled(subflow, false);
1582 
1583 				prev_ssk = ssk;
1584 				ssk = mptcp_subflow_tcp_sock(subflow);
1585 				if (ssk != prev_ssk) {
1586 					/* First check. If the ssk has changed since
1587 					 * the last round, release prev_ssk
1588 					 */
1589 					if (prev_ssk)
1590 						mptcp_push_release(prev_ssk, &info);
1591 
1592 					/* Need to lock the new subflow only if different
1593 					 * from the previous one, otherwise we are still
1594 					 * helding the relevant lock
1595 					 */
1596 					lock_sock(ssk);
1597 				}
1598 
1599 				push_count++;
1600 
1601 				ret = __subflow_push_pending(sk, ssk, &info);
1602 				if (ret <= 0) {
1603 					if (ret != -EAGAIN ||
1604 					    (1 << ssk->sk_state) &
1605 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1606 						push_count--;
1607 					continue;
1608 				}
1609 				do_check_data_fin = true;
1610 			}
1611 		}
1612 	}
1613 
1614 	/* at this point we held the socket lock for the last subflow we used */
1615 	if (ssk)
1616 		mptcp_push_release(ssk, &info);
1617 
1618 	/* ensure the rtx timer is running */
1619 	if (!mptcp_rtx_timer_pending(sk))
1620 		mptcp_reset_rtx_timer(sk);
1621 	if (do_check_data_fin)
1622 		mptcp_check_send_data_fin(sk);
1623 }
1624 
1625 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1626 {
1627 	struct mptcp_sock *msk = mptcp_sk(sk);
1628 	struct mptcp_sendmsg_info info = {
1629 		.data_lock_held = true,
1630 	};
1631 	bool keep_pushing = true;
1632 	struct sock *xmit_ssk;
1633 	int copied = 0;
1634 
1635 	info.flags = 0;
1636 	while (mptcp_send_head(sk) && keep_pushing) {
1637 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1638 		int ret = 0;
1639 
1640 		/* check for a different subflow usage only after
1641 		 * spooling the first chunk of data
1642 		 */
1643 		if (first) {
1644 			mptcp_subflow_set_scheduled(subflow, false);
1645 			ret = __subflow_push_pending(sk, ssk, &info);
1646 			first = false;
1647 			if (ret <= 0)
1648 				break;
1649 			copied += ret;
1650 			continue;
1651 		}
1652 
1653 		if (mptcp_sched_get_send(msk))
1654 			goto out;
1655 
1656 		if (READ_ONCE(subflow->scheduled)) {
1657 			mptcp_subflow_set_scheduled(subflow, false);
1658 			ret = __subflow_push_pending(sk, ssk, &info);
1659 			if (ret <= 0)
1660 				keep_pushing = false;
1661 			copied += ret;
1662 		}
1663 
1664 		mptcp_for_each_subflow(msk, subflow) {
1665 			if (READ_ONCE(subflow->scheduled)) {
1666 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1667 				if (xmit_ssk != ssk) {
1668 					mptcp_subflow_delegate(subflow,
1669 							       MPTCP_DELEGATE_SEND);
1670 					keep_pushing = false;
1671 				}
1672 			}
1673 		}
1674 	}
1675 
1676 out:
1677 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1678 	 * not going to flush it via release_sock()
1679 	 */
1680 	if (copied) {
1681 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1682 			 info.size_goal);
1683 		if (!mptcp_rtx_timer_pending(sk))
1684 			mptcp_reset_rtx_timer(sk);
1685 
1686 		if (msk->snd_data_fin_enable &&
1687 		    msk->snd_nxt + 1 == msk->write_seq)
1688 			mptcp_schedule_work(sk);
1689 	}
1690 }
1691 
1692 static void mptcp_set_nospace(struct sock *sk)
1693 {
1694 	/* enable autotune */
1695 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1696 
1697 	/* will be cleared on avail space */
1698 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1699 }
1700 
1701 static int mptcp_disconnect(struct sock *sk, int flags);
1702 
1703 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1704 				  size_t len, int *copied_syn)
1705 {
1706 	unsigned int saved_flags = msg->msg_flags;
1707 	struct mptcp_sock *msk = mptcp_sk(sk);
1708 	struct sock *ssk;
1709 	int ret;
1710 
1711 	/* on flags based fastopen the mptcp is supposed to create the
1712 	 * first subflow right now. Otherwise we are in the defer_connect
1713 	 * path, and the first subflow must be already present.
1714 	 * Since the defer_connect flag is cleared after the first succsful
1715 	 * fastopen attempt, no need to check for additional subflow status.
1716 	 */
1717 	if (msg->msg_flags & MSG_FASTOPEN) {
1718 		ssk = __mptcp_nmpc_sk(msk);
1719 		if (IS_ERR(ssk))
1720 			return PTR_ERR(ssk);
1721 	}
1722 	if (!msk->first)
1723 		return -EINVAL;
1724 
1725 	ssk = msk->first;
1726 
1727 	lock_sock(ssk);
1728 	msg->msg_flags |= MSG_DONTWAIT;
1729 	msk->fastopening = 1;
1730 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1731 	msk->fastopening = 0;
1732 	msg->msg_flags = saved_flags;
1733 	release_sock(ssk);
1734 
1735 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1736 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1737 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1738 					    msg->msg_namelen, msg->msg_flags, 1);
1739 
1740 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1741 		 * case of any error, except timeout or signal
1742 		 */
1743 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1744 			*copied_syn = 0;
1745 	} else if (ret && ret != -EINPROGRESS) {
1746 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1747 		 * __inet_stream_connect() can fail, due to looking check,
1748 		 * see mptcp_disconnect().
1749 		 * Attempt it again outside the problematic scope.
1750 		 */
1751 		if (!mptcp_disconnect(sk, 0))
1752 			sk->sk_socket->state = SS_UNCONNECTED;
1753 	}
1754 	inet_clear_bit(DEFER_CONNECT, sk);
1755 
1756 	return ret;
1757 }
1758 
1759 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1760 {
1761 	struct mptcp_sock *msk = mptcp_sk(sk);
1762 	struct page_frag *pfrag;
1763 	size_t copied = 0;
1764 	int ret = 0;
1765 	long timeo;
1766 
1767 	/* silently ignore everything else */
1768 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1769 
1770 	lock_sock(sk);
1771 
1772 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1773 		     msg->msg_flags & MSG_FASTOPEN)) {
1774 		int copied_syn = 0;
1775 
1776 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1777 		copied += copied_syn;
1778 		if (ret == -EINPROGRESS && copied_syn > 0)
1779 			goto out;
1780 		else if (ret)
1781 			goto do_error;
1782 	}
1783 
1784 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1785 
1786 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1787 		ret = sk_stream_wait_connect(sk, &timeo);
1788 		if (ret)
1789 			goto do_error;
1790 	}
1791 
1792 	ret = -EPIPE;
1793 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1794 		goto do_error;
1795 
1796 	pfrag = sk_page_frag(sk);
1797 
1798 	while (msg_data_left(msg)) {
1799 		int total_ts, frag_truesize = 0;
1800 		struct mptcp_data_frag *dfrag;
1801 		bool dfrag_collapsed;
1802 		size_t psize, offset;
1803 
1804 		/* reuse tail pfrag, if possible, or carve a new one from the
1805 		 * page allocator
1806 		 */
1807 		dfrag = mptcp_pending_tail(sk);
1808 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1809 		if (!dfrag_collapsed) {
1810 			if (!sk_stream_memory_free(sk))
1811 				goto wait_for_memory;
1812 
1813 			if (!mptcp_page_frag_refill(sk, pfrag))
1814 				goto wait_for_memory;
1815 
1816 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1817 			frag_truesize = dfrag->overhead;
1818 		}
1819 
1820 		/* we do not bound vs wspace, to allow a single packet.
1821 		 * memory accounting will prevent execessive memory usage
1822 		 * anyway
1823 		 */
1824 		offset = dfrag->offset + dfrag->data_len;
1825 		psize = pfrag->size - offset;
1826 		psize = min_t(size_t, psize, msg_data_left(msg));
1827 		total_ts = psize + frag_truesize;
1828 
1829 		if (!sk_wmem_schedule(sk, total_ts))
1830 			goto wait_for_memory;
1831 
1832 		if (copy_page_from_iter(dfrag->page, offset, psize,
1833 					&msg->msg_iter) != psize) {
1834 			ret = -EFAULT;
1835 			goto do_error;
1836 		}
1837 
1838 		/* data successfully copied into the write queue */
1839 		sk_forward_alloc_add(sk, -total_ts);
1840 		copied += psize;
1841 		dfrag->data_len += psize;
1842 		frag_truesize += psize;
1843 		pfrag->offset += frag_truesize;
1844 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1845 
1846 		/* charge data on mptcp pending queue to the msk socket
1847 		 * Note: we charge such data both to sk and ssk
1848 		 */
1849 		sk_wmem_queued_add(sk, frag_truesize);
1850 		if (!dfrag_collapsed) {
1851 			get_page(dfrag->page);
1852 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1853 			if (!msk->first_pending)
1854 				WRITE_ONCE(msk->first_pending, dfrag);
1855 		}
1856 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1857 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1858 			 !dfrag_collapsed);
1859 
1860 		continue;
1861 
1862 wait_for_memory:
1863 		mptcp_set_nospace(sk);
1864 		__mptcp_push_pending(sk, msg->msg_flags);
1865 		ret = sk_stream_wait_memory(sk, &timeo);
1866 		if (ret)
1867 			goto do_error;
1868 	}
1869 
1870 	if (copied)
1871 		__mptcp_push_pending(sk, msg->msg_flags);
1872 
1873 out:
1874 	release_sock(sk);
1875 	return copied;
1876 
1877 do_error:
1878 	if (copied)
1879 		goto out;
1880 
1881 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1882 	goto out;
1883 }
1884 
1885 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1886 				struct msghdr *msg,
1887 				size_t len, int flags,
1888 				struct scm_timestamping_internal *tss,
1889 				int *cmsg_flags)
1890 {
1891 	struct sk_buff *skb, *tmp;
1892 	int copied = 0;
1893 
1894 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1895 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1896 		u32 data_len = skb->len - offset;
1897 		u32 count = min_t(size_t, len - copied, data_len);
1898 		int err;
1899 
1900 		if (!(flags & MSG_TRUNC)) {
1901 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1902 			if (unlikely(err < 0)) {
1903 				if (!copied)
1904 					return err;
1905 				break;
1906 			}
1907 		}
1908 
1909 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1910 			tcp_update_recv_tstamps(skb, tss);
1911 			*cmsg_flags |= MPTCP_CMSG_TS;
1912 		}
1913 
1914 		copied += count;
1915 
1916 		if (count < data_len) {
1917 			if (!(flags & MSG_PEEK)) {
1918 				MPTCP_SKB_CB(skb)->offset += count;
1919 				MPTCP_SKB_CB(skb)->map_seq += count;
1920 				msk->bytes_consumed += count;
1921 			}
1922 			break;
1923 		}
1924 
1925 		if (!(flags & MSG_PEEK)) {
1926 			/* we will bulk release the skb memory later */
1927 			skb->destructor = NULL;
1928 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1929 			__skb_unlink(skb, &msk->receive_queue);
1930 			__kfree_skb(skb);
1931 			msk->bytes_consumed += count;
1932 		}
1933 
1934 		if (copied >= len)
1935 			break;
1936 	}
1937 
1938 	return copied;
1939 }
1940 
1941 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1942  *
1943  * Only difference: Use highest rtt estimate of the subflows in use.
1944  */
1945 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1946 {
1947 	struct mptcp_subflow_context *subflow;
1948 	struct sock *sk = (struct sock *)msk;
1949 	u8 scaling_ratio = U8_MAX;
1950 	u32 time, advmss = 1;
1951 	u64 rtt_us, mstamp;
1952 
1953 	msk_owned_by_me(msk);
1954 
1955 	if (copied <= 0)
1956 		return;
1957 
1958 	if (!msk->rcvspace_init)
1959 		mptcp_rcv_space_init(msk, msk->first);
1960 
1961 	msk->rcvq_space.copied += copied;
1962 
1963 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1964 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1965 
1966 	rtt_us = msk->rcvq_space.rtt_us;
1967 	if (rtt_us && time < (rtt_us >> 3))
1968 		return;
1969 
1970 	rtt_us = 0;
1971 	mptcp_for_each_subflow(msk, subflow) {
1972 		const struct tcp_sock *tp;
1973 		u64 sf_rtt_us;
1974 		u32 sf_advmss;
1975 
1976 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1977 
1978 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1979 		sf_advmss = READ_ONCE(tp->advmss);
1980 
1981 		rtt_us = max(sf_rtt_us, rtt_us);
1982 		advmss = max(sf_advmss, advmss);
1983 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
1984 	}
1985 
1986 	msk->rcvq_space.rtt_us = rtt_us;
1987 	msk->scaling_ratio = scaling_ratio;
1988 	if (time < (rtt_us >> 3) || rtt_us == 0)
1989 		return;
1990 
1991 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1992 		goto new_measure;
1993 
1994 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
1995 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1996 		u64 rcvwin, grow;
1997 		int rcvbuf;
1998 
1999 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
2000 
2001 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
2002 
2003 		do_div(grow, msk->rcvq_space.space);
2004 		rcvwin += (grow << 1);
2005 
2006 		rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin),
2007 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
2008 
2009 		if (rcvbuf > sk->sk_rcvbuf) {
2010 			u32 window_clamp;
2011 
2012 			window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf);
2013 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
2014 
2015 			/* Make subflows follow along.  If we do not do this, we
2016 			 * get drops at subflow level if skbs can't be moved to
2017 			 * the mptcp rx queue fast enough (announced rcv_win can
2018 			 * exceed ssk->sk_rcvbuf).
2019 			 */
2020 			mptcp_for_each_subflow(msk, subflow) {
2021 				struct sock *ssk;
2022 				bool slow;
2023 
2024 				ssk = mptcp_subflow_tcp_sock(subflow);
2025 				slow = lock_sock_fast(ssk);
2026 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
2027 				WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp);
2028 				tcp_cleanup_rbuf(ssk, 1);
2029 				unlock_sock_fast(ssk, slow);
2030 			}
2031 		}
2032 	}
2033 
2034 	msk->rcvq_space.space = msk->rcvq_space.copied;
2035 new_measure:
2036 	msk->rcvq_space.copied = 0;
2037 	msk->rcvq_space.time = mstamp;
2038 }
2039 
2040 static void __mptcp_update_rmem(struct sock *sk)
2041 {
2042 	struct mptcp_sock *msk = mptcp_sk(sk);
2043 
2044 	if (!msk->rmem_released)
2045 		return;
2046 
2047 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
2048 	mptcp_rmem_uncharge(sk, msk->rmem_released);
2049 	WRITE_ONCE(msk->rmem_released, 0);
2050 }
2051 
2052 static void __mptcp_splice_receive_queue(struct sock *sk)
2053 {
2054 	struct mptcp_sock *msk = mptcp_sk(sk);
2055 
2056 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
2057 }
2058 
2059 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
2060 {
2061 	struct sock *sk = (struct sock *)msk;
2062 	unsigned int moved = 0;
2063 	bool ret, done;
2064 
2065 	do {
2066 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2067 		bool slowpath;
2068 
2069 		/* we can have data pending in the subflows only if the msk
2070 		 * receive buffer was full at subflow_data_ready() time,
2071 		 * that is an unlikely slow path.
2072 		 */
2073 		if (likely(!ssk))
2074 			break;
2075 
2076 		slowpath = lock_sock_fast(ssk);
2077 		mptcp_data_lock(sk);
2078 		__mptcp_update_rmem(sk);
2079 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2080 		mptcp_data_unlock(sk);
2081 
2082 		if (unlikely(ssk->sk_err))
2083 			__mptcp_error_report(sk);
2084 		unlock_sock_fast(ssk, slowpath);
2085 	} while (!done);
2086 
2087 	/* acquire the data lock only if some input data is pending */
2088 	ret = moved > 0;
2089 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2090 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2091 		mptcp_data_lock(sk);
2092 		__mptcp_update_rmem(sk);
2093 		ret |= __mptcp_ofo_queue(msk);
2094 		__mptcp_splice_receive_queue(sk);
2095 		mptcp_data_unlock(sk);
2096 	}
2097 	if (ret)
2098 		mptcp_check_data_fin((struct sock *)msk);
2099 	return !skb_queue_empty(&msk->receive_queue);
2100 }
2101 
2102 static unsigned int mptcp_inq_hint(const struct sock *sk)
2103 {
2104 	const struct mptcp_sock *msk = mptcp_sk(sk);
2105 	const struct sk_buff *skb;
2106 
2107 	skb = skb_peek(&msk->receive_queue);
2108 	if (skb) {
2109 		u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
2110 
2111 		if (hint_val >= INT_MAX)
2112 			return INT_MAX;
2113 
2114 		return (unsigned int)hint_val;
2115 	}
2116 
2117 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2118 		return 1;
2119 
2120 	return 0;
2121 }
2122 
2123 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2124 			 int flags, int *addr_len)
2125 {
2126 	struct mptcp_sock *msk = mptcp_sk(sk);
2127 	struct scm_timestamping_internal tss;
2128 	int copied = 0, cmsg_flags = 0;
2129 	int target;
2130 	long timeo;
2131 
2132 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2133 	if (unlikely(flags & MSG_ERRQUEUE))
2134 		return inet_recv_error(sk, msg, len, addr_len);
2135 
2136 	lock_sock(sk);
2137 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2138 		copied = -ENOTCONN;
2139 		goto out_err;
2140 	}
2141 
2142 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2143 
2144 	len = min_t(size_t, len, INT_MAX);
2145 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2146 
2147 	if (unlikely(msk->recvmsg_inq))
2148 		cmsg_flags = MPTCP_CMSG_INQ;
2149 
2150 	while (copied < len) {
2151 		int bytes_read;
2152 
2153 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2154 		if (unlikely(bytes_read < 0)) {
2155 			if (!copied)
2156 				copied = bytes_read;
2157 			goto out_err;
2158 		}
2159 
2160 		copied += bytes_read;
2161 
2162 		/* be sure to advertise window change */
2163 		mptcp_cleanup_rbuf(msk);
2164 
2165 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2166 			continue;
2167 
2168 		/* only the master socket status is relevant here. The exit
2169 		 * conditions mirror closely tcp_recvmsg()
2170 		 */
2171 		if (copied >= target)
2172 			break;
2173 
2174 		if (copied) {
2175 			if (sk->sk_err ||
2176 			    sk->sk_state == TCP_CLOSE ||
2177 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2178 			    !timeo ||
2179 			    signal_pending(current))
2180 				break;
2181 		} else {
2182 			if (sk->sk_err) {
2183 				copied = sock_error(sk);
2184 				break;
2185 			}
2186 
2187 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2188 				/* race breaker: the shutdown could be after the
2189 				 * previous receive queue check
2190 				 */
2191 				if (__mptcp_move_skbs(msk))
2192 					continue;
2193 				break;
2194 			}
2195 
2196 			if (sk->sk_state == TCP_CLOSE) {
2197 				copied = -ENOTCONN;
2198 				break;
2199 			}
2200 
2201 			if (!timeo) {
2202 				copied = -EAGAIN;
2203 				break;
2204 			}
2205 
2206 			if (signal_pending(current)) {
2207 				copied = sock_intr_errno(timeo);
2208 				break;
2209 			}
2210 		}
2211 
2212 		pr_debug("block timeout %ld", timeo);
2213 		sk_wait_data(sk, &timeo, NULL);
2214 	}
2215 
2216 out_err:
2217 	if (cmsg_flags && copied >= 0) {
2218 		if (cmsg_flags & MPTCP_CMSG_TS)
2219 			tcp_recv_timestamp(msg, sk, &tss);
2220 
2221 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2222 			unsigned int inq = mptcp_inq_hint(sk);
2223 
2224 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2225 		}
2226 	}
2227 
2228 	pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
2229 		 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2230 		 skb_queue_empty(&msk->receive_queue), copied);
2231 	if (!(flags & MSG_PEEK))
2232 		mptcp_rcv_space_adjust(msk, copied);
2233 
2234 	release_sock(sk);
2235 	return copied;
2236 }
2237 
2238 static void mptcp_retransmit_timer(struct timer_list *t)
2239 {
2240 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2241 						       icsk_retransmit_timer);
2242 	struct sock *sk = &icsk->icsk_inet.sk;
2243 	struct mptcp_sock *msk = mptcp_sk(sk);
2244 
2245 	bh_lock_sock(sk);
2246 	if (!sock_owned_by_user(sk)) {
2247 		/* we need a process context to retransmit */
2248 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2249 			mptcp_schedule_work(sk);
2250 	} else {
2251 		/* delegate our work to tcp_release_cb() */
2252 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2253 	}
2254 	bh_unlock_sock(sk);
2255 	sock_put(sk);
2256 }
2257 
2258 static void mptcp_tout_timer(struct timer_list *t)
2259 {
2260 	struct sock *sk = from_timer(sk, t, sk_timer);
2261 
2262 	mptcp_schedule_work(sk);
2263 	sock_put(sk);
2264 }
2265 
2266 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2267  * level.
2268  *
2269  * A backup subflow is returned only if that is the only kind available.
2270  */
2271 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2272 {
2273 	struct sock *backup = NULL, *pick = NULL;
2274 	struct mptcp_subflow_context *subflow;
2275 	int min_stale_count = INT_MAX;
2276 
2277 	mptcp_for_each_subflow(msk, subflow) {
2278 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2279 
2280 		if (!__mptcp_subflow_active(subflow))
2281 			continue;
2282 
2283 		/* still data outstanding at TCP level? skip this */
2284 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2285 			mptcp_pm_subflow_chk_stale(msk, ssk);
2286 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2287 			continue;
2288 		}
2289 
2290 		if (subflow->backup) {
2291 			if (!backup)
2292 				backup = ssk;
2293 			continue;
2294 		}
2295 
2296 		if (!pick)
2297 			pick = ssk;
2298 	}
2299 
2300 	if (pick)
2301 		return pick;
2302 
2303 	/* use backup only if there are no progresses anywhere */
2304 	return min_stale_count > 1 ? backup : NULL;
2305 }
2306 
2307 bool __mptcp_retransmit_pending_data(struct sock *sk)
2308 {
2309 	struct mptcp_data_frag *cur, *rtx_head;
2310 	struct mptcp_sock *msk = mptcp_sk(sk);
2311 
2312 	if (__mptcp_check_fallback(msk))
2313 		return false;
2314 
2315 	/* the closing socket has some data untransmitted and/or unacked:
2316 	 * some data in the mptcp rtx queue has not really xmitted yet.
2317 	 * keep it simple and re-inject the whole mptcp level rtx queue
2318 	 */
2319 	mptcp_data_lock(sk);
2320 	__mptcp_clean_una_wakeup(sk);
2321 	rtx_head = mptcp_rtx_head(sk);
2322 	if (!rtx_head) {
2323 		mptcp_data_unlock(sk);
2324 		return false;
2325 	}
2326 
2327 	msk->recovery_snd_nxt = msk->snd_nxt;
2328 	msk->recovery = true;
2329 	mptcp_data_unlock(sk);
2330 
2331 	msk->first_pending = rtx_head;
2332 	msk->snd_burst = 0;
2333 
2334 	/* be sure to clear the "sent status" on all re-injected fragments */
2335 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2336 		if (!cur->already_sent)
2337 			break;
2338 		cur->already_sent = 0;
2339 	}
2340 
2341 	return true;
2342 }
2343 
2344 /* flags for __mptcp_close_ssk() */
2345 #define MPTCP_CF_PUSH		BIT(1)
2346 #define MPTCP_CF_FASTCLOSE	BIT(2)
2347 
2348 /* be sure to send a reset only if the caller asked for it, also
2349  * clean completely the subflow status when the subflow reaches
2350  * TCP_CLOSE state
2351  */
2352 static void __mptcp_subflow_disconnect(struct sock *ssk,
2353 				       struct mptcp_subflow_context *subflow,
2354 				       unsigned int flags)
2355 {
2356 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2357 	    (flags & MPTCP_CF_FASTCLOSE)) {
2358 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2359 		 * disconnect should never fail
2360 		 */
2361 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2362 		mptcp_subflow_ctx_reset(subflow);
2363 	} else {
2364 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2365 	}
2366 }
2367 
2368 /* subflow sockets can be either outgoing (connect) or incoming
2369  * (accept).
2370  *
2371  * Outgoing subflows use in-kernel sockets.
2372  * Incoming subflows do not have their own 'struct socket' allocated,
2373  * so we need to use tcp_close() after detaching them from the mptcp
2374  * parent socket.
2375  */
2376 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2377 			      struct mptcp_subflow_context *subflow,
2378 			      unsigned int flags)
2379 {
2380 	struct mptcp_sock *msk = mptcp_sk(sk);
2381 	bool dispose_it, need_push = false;
2382 
2383 	/* If the first subflow moved to a close state before accept, e.g. due
2384 	 * to an incoming reset or listener shutdown, the subflow socket is
2385 	 * already deleted by inet_child_forget() and the mptcp socket can't
2386 	 * survive too.
2387 	 */
2388 	if (msk->in_accept_queue && msk->first == ssk &&
2389 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2390 		/* ensure later check in mptcp_worker() will dispose the msk */
2391 		mptcp_set_close_tout(sk, tcp_jiffies32 - (TCP_TIMEWAIT_LEN + 1));
2392 		sock_set_flag(sk, SOCK_DEAD);
2393 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2394 		mptcp_subflow_drop_ctx(ssk);
2395 		goto out_release;
2396 	}
2397 
2398 	dispose_it = msk->free_first || ssk != msk->first;
2399 	if (dispose_it)
2400 		list_del(&subflow->node);
2401 
2402 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2403 
2404 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2405 		/* be sure to force the tcp_close path
2406 		 * to generate the egress reset
2407 		 */
2408 		ssk->sk_lingertime = 0;
2409 		sock_set_flag(ssk, SOCK_LINGER);
2410 		subflow->send_fastclose = 1;
2411 	}
2412 
2413 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2414 	if (!dispose_it) {
2415 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2416 		release_sock(ssk);
2417 
2418 		goto out;
2419 	}
2420 
2421 	subflow->disposable = 1;
2422 
2423 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2424 	 * the ssk has been already destroyed, we just need to release the
2425 	 * reference owned by msk;
2426 	 */
2427 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2428 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2429 		kfree_rcu(subflow, rcu);
2430 	} else {
2431 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2432 		__tcp_close(ssk, 0);
2433 
2434 		/* close acquired an extra ref */
2435 		__sock_put(ssk);
2436 	}
2437 
2438 out_release:
2439 	__mptcp_subflow_error_report(sk, ssk);
2440 	release_sock(ssk);
2441 
2442 	sock_put(ssk);
2443 
2444 	if (ssk == msk->first)
2445 		WRITE_ONCE(msk->first, NULL);
2446 
2447 out:
2448 	__mptcp_sync_sndbuf(sk);
2449 	if (need_push)
2450 		__mptcp_push_pending(sk, 0);
2451 
2452 	/* Catch every 'all subflows closed' scenario, including peers silently
2453 	 * closing them, e.g. due to timeout.
2454 	 * For established sockets, allow an additional timeout before closing,
2455 	 * as the protocol can still create more subflows.
2456 	 */
2457 	if (list_is_singular(&msk->conn_list) && msk->first &&
2458 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2459 		if (sk->sk_state != TCP_ESTABLISHED ||
2460 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2461 			mptcp_set_state(sk, TCP_CLOSE);
2462 			mptcp_close_wake_up(sk);
2463 		} else {
2464 			mptcp_start_tout_timer(sk);
2465 		}
2466 	}
2467 }
2468 
2469 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2470 		     struct mptcp_subflow_context *subflow)
2471 {
2472 	if (sk->sk_state == TCP_ESTABLISHED)
2473 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2474 
2475 	/* subflow aborted before reaching the fully_established status
2476 	 * attempt the creation of the next subflow
2477 	 */
2478 	mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow);
2479 
2480 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2481 }
2482 
2483 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2484 {
2485 	return 0;
2486 }
2487 
2488 static void __mptcp_close_subflow(struct sock *sk)
2489 {
2490 	struct mptcp_subflow_context *subflow, *tmp;
2491 	struct mptcp_sock *msk = mptcp_sk(sk);
2492 
2493 	might_sleep();
2494 
2495 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2496 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2497 
2498 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2499 			continue;
2500 
2501 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2502 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2503 			continue;
2504 
2505 		mptcp_close_ssk(sk, ssk, subflow);
2506 	}
2507 
2508 }
2509 
2510 static bool mptcp_close_tout_expired(const struct sock *sk)
2511 {
2512 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2513 	    sk->sk_state == TCP_CLOSE)
2514 		return false;
2515 
2516 	return time_after32(tcp_jiffies32,
2517 		  inet_csk(sk)->icsk_mtup.probe_timestamp + TCP_TIMEWAIT_LEN);
2518 }
2519 
2520 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2521 {
2522 	struct mptcp_subflow_context *subflow, *tmp;
2523 	struct sock *sk = (struct sock *)msk;
2524 
2525 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2526 		return;
2527 
2528 	mptcp_token_destroy(msk);
2529 
2530 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2531 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2532 		bool slow;
2533 
2534 		slow = lock_sock_fast(tcp_sk);
2535 		if (tcp_sk->sk_state != TCP_CLOSE) {
2536 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2537 			tcp_set_state(tcp_sk, TCP_CLOSE);
2538 		}
2539 		unlock_sock_fast(tcp_sk, slow);
2540 	}
2541 
2542 	/* Mirror the tcp_reset() error propagation */
2543 	switch (sk->sk_state) {
2544 	case TCP_SYN_SENT:
2545 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2546 		break;
2547 	case TCP_CLOSE_WAIT:
2548 		WRITE_ONCE(sk->sk_err, EPIPE);
2549 		break;
2550 	case TCP_CLOSE:
2551 		return;
2552 	default:
2553 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2554 	}
2555 
2556 	mptcp_set_state(sk, TCP_CLOSE);
2557 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2558 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2559 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2560 
2561 	/* the calling mptcp_worker will properly destroy the socket */
2562 	if (sock_flag(sk, SOCK_DEAD))
2563 		return;
2564 
2565 	sk->sk_state_change(sk);
2566 	sk_error_report(sk);
2567 }
2568 
2569 static void __mptcp_retrans(struct sock *sk)
2570 {
2571 	struct mptcp_sock *msk = mptcp_sk(sk);
2572 	struct mptcp_subflow_context *subflow;
2573 	struct mptcp_sendmsg_info info = {};
2574 	struct mptcp_data_frag *dfrag;
2575 	struct sock *ssk;
2576 	int ret, err;
2577 	u16 len = 0;
2578 
2579 	mptcp_clean_una_wakeup(sk);
2580 
2581 	/* first check ssk: need to kick "stale" logic */
2582 	err = mptcp_sched_get_retrans(msk);
2583 	dfrag = mptcp_rtx_head(sk);
2584 	if (!dfrag) {
2585 		if (mptcp_data_fin_enabled(msk)) {
2586 			struct inet_connection_sock *icsk = inet_csk(sk);
2587 
2588 			icsk->icsk_retransmits++;
2589 			mptcp_set_datafin_timeout(sk);
2590 			mptcp_send_ack(msk);
2591 
2592 			goto reset_timer;
2593 		}
2594 
2595 		if (!mptcp_send_head(sk))
2596 			return;
2597 
2598 		goto reset_timer;
2599 	}
2600 
2601 	if (err)
2602 		goto reset_timer;
2603 
2604 	mptcp_for_each_subflow(msk, subflow) {
2605 		if (READ_ONCE(subflow->scheduled)) {
2606 			u16 copied = 0;
2607 
2608 			mptcp_subflow_set_scheduled(subflow, false);
2609 
2610 			ssk = mptcp_subflow_tcp_sock(subflow);
2611 
2612 			lock_sock(ssk);
2613 
2614 			/* limit retransmission to the bytes already sent on some subflows */
2615 			info.sent = 0;
2616 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2617 								    dfrag->already_sent;
2618 			while (info.sent < info.limit) {
2619 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2620 				if (ret <= 0)
2621 					break;
2622 
2623 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2624 				copied += ret;
2625 				info.sent += ret;
2626 			}
2627 			if (copied) {
2628 				len = max(copied, len);
2629 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2630 					 info.size_goal);
2631 				WRITE_ONCE(msk->allow_infinite_fallback, false);
2632 			}
2633 
2634 			release_sock(ssk);
2635 		}
2636 	}
2637 
2638 	msk->bytes_retrans += len;
2639 	dfrag->already_sent = max(dfrag->already_sent, len);
2640 
2641 reset_timer:
2642 	mptcp_check_and_set_pending(sk);
2643 
2644 	if (!mptcp_rtx_timer_pending(sk))
2645 		mptcp_reset_rtx_timer(sk);
2646 }
2647 
2648 /* schedule the timeout timer for the relevant event: either close timeout
2649  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2650  */
2651 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2652 {
2653 	struct sock *sk = (struct sock *)msk;
2654 	unsigned long timeout, close_timeout;
2655 
2656 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2657 		return;
2658 
2659 	close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies +
2660 			TCP_TIMEWAIT_LEN;
2661 
2662 	/* the close timeout takes precedence on the fail one, and here at least one of
2663 	 * them is active
2664 	 */
2665 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2666 
2667 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2668 }
2669 
2670 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2671 {
2672 	struct sock *ssk = msk->first;
2673 	bool slow;
2674 
2675 	if (!ssk)
2676 		return;
2677 
2678 	pr_debug("MP_FAIL doesn't respond, reset the subflow");
2679 
2680 	slow = lock_sock_fast(ssk);
2681 	mptcp_subflow_reset(ssk);
2682 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2683 	unlock_sock_fast(ssk, slow);
2684 }
2685 
2686 static void mptcp_do_fastclose(struct sock *sk)
2687 {
2688 	struct mptcp_subflow_context *subflow, *tmp;
2689 	struct mptcp_sock *msk = mptcp_sk(sk);
2690 
2691 	mptcp_set_state(sk, TCP_CLOSE);
2692 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2693 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2694 				  subflow, MPTCP_CF_FASTCLOSE);
2695 }
2696 
2697 static void mptcp_worker(struct work_struct *work)
2698 {
2699 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2700 	struct sock *sk = (struct sock *)msk;
2701 	unsigned long fail_tout;
2702 	int state;
2703 
2704 	lock_sock(sk);
2705 	state = sk->sk_state;
2706 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2707 		goto unlock;
2708 
2709 	mptcp_check_fastclose(msk);
2710 
2711 	mptcp_pm_nl_work(msk);
2712 
2713 	mptcp_check_send_data_fin(sk);
2714 	mptcp_check_data_fin_ack(sk);
2715 	mptcp_check_data_fin(sk);
2716 
2717 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2718 		__mptcp_close_subflow(sk);
2719 
2720 	if (mptcp_close_tout_expired(sk)) {
2721 		mptcp_do_fastclose(sk);
2722 		mptcp_close_wake_up(sk);
2723 	}
2724 
2725 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2726 		__mptcp_destroy_sock(sk);
2727 		goto unlock;
2728 	}
2729 
2730 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2731 		__mptcp_retrans(sk);
2732 
2733 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2734 	if (fail_tout && time_after(jiffies, fail_tout))
2735 		mptcp_mp_fail_no_response(msk);
2736 
2737 unlock:
2738 	release_sock(sk);
2739 	sock_put(sk);
2740 }
2741 
2742 static void __mptcp_init_sock(struct sock *sk)
2743 {
2744 	struct mptcp_sock *msk = mptcp_sk(sk);
2745 
2746 	INIT_LIST_HEAD(&msk->conn_list);
2747 	INIT_LIST_HEAD(&msk->join_list);
2748 	INIT_LIST_HEAD(&msk->rtx_queue);
2749 	INIT_WORK(&msk->work, mptcp_worker);
2750 	__skb_queue_head_init(&msk->receive_queue);
2751 	msk->out_of_order_queue = RB_ROOT;
2752 	msk->first_pending = NULL;
2753 	msk->rmem_fwd_alloc = 0;
2754 	WRITE_ONCE(msk->rmem_released, 0);
2755 	msk->timer_ival = TCP_RTO_MIN;
2756 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2757 
2758 	WRITE_ONCE(msk->first, NULL);
2759 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2760 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2761 	WRITE_ONCE(msk->allow_infinite_fallback, true);
2762 	msk->recovery = false;
2763 	msk->subflow_id = 1;
2764 
2765 	mptcp_pm_data_init(msk);
2766 
2767 	/* re-use the csk retrans timer for MPTCP-level retrans */
2768 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2769 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2770 }
2771 
2772 static void mptcp_ca_reset(struct sock *sk)
2773 {
2774 	struct inet_connection_sock *icsk = inet_csk(sk);
2775 
2776 	tcp_assign_congestion_control(sk);
2777 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2778 
2779 	/* no need to keep a reference to the ops, the name will suffice */
2780 	tcp_cleanup_congestion_control(sk);
2781 	icsk->icsk_ca_ops = NULL;
2782 }
2783 
2784 static int mptcp_init_sock(struct sock *sk)
2785 {
2786 	struct net *net = sock_net(sk);
2787 	int ret;
2788 
2789 	__mptcp_init_sock(sk);
2790 
2791 	if (!mptcp_is_enabled(net))
2792 		return -ENOPROTOOPT;
2793 
2794 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2795 		return -ENOMEM;
2796 
2797 	ret = mptcp_init_sched(mptcp_sk(sk),
2798 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2799 	if (ret)
2800 		return ret;
2801 
2802 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2803 
2804 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2805 	 * propagate the correct value
2806 	 */
2807 	mptcp_ca_reset(sk);
2808 
2809 	sk_sockets_allocated_inc(sk);
2810 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2811 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2812 
2813 	return 0;
2814 }
2815 
2816 static void __mptcp_clear_xmit(struct sock *sk)
2817 {
2818 	struct mptcp_sock *msk = mptcp_sk(sk);
2819 	struct mptcp_data_frag *dtmp, *dfrag;
2820 
2821 	WRITE_ONCE(msk->first_pending, NULL);
2822 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2823 		dfrag_clear(sk, dfrag);
2824 }
2825 
2826 void mptcp_cancel_work(struct sock *sk)
2827 {
2828 	struct mptcp_sock *msk = mptcp_sk(sk);
2829 
2830 	if (cancel_work_sync(&msk->work))
2831 		__sock_put(sk);
2832 }
2833 
2834 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2835 {
2836 	lock_sock(ssk);
2837 
2838 	switch (ssk->sk_state) {
2839 	case TCP_LISTEN:
2840 		if (!(how & RCV_SHUTDOWN))
2841 			break;
2842 		fallthrough;
2843 	case TCP_SYN_SENT:
2844 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2845 		break;
2846 	default:
2847 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2848 			pr_debug("Fallback");
2849 			ssk->sk_shutdown |= how;
2850 			tcp_shutdown(ssk, how);
2851 
2852 			/* simulate the data_fin ack reception to let the state
2853 			 * machine move forward
2854 			 */
2855 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2856 			mptcp_schedule_work(sk);
2857 		} else {
2858 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2859 			tcp_send_ack(ssk);
2860 			if (!mptcp_rtx_timer_pending(sk))
2861 				mptcp_reset_rtx_timer(sk);
2862 		}
2863 		break;
2864 	}
2865 
2866 	release_sock(ssk);
2867 }
2868 
2869 void mptcp_set_state(struct sock *sk, int state)
2870 {
2871 	int oldstate = sk->sk_state;
2872 
2873 	switch (state) {
2874 	case TCP_ESTABLISHED:
2875 		if (oldstate != TCP_ESTABLISHED)
2876 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2877 		break;
2878 	case TCP_CLOSE_WAIT:
2879 		/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2880 		 * MPTCP "accepted" sockets will be created later on. So no
2881 		 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2882 		 */
2883 		break;
2884 	default:
2885 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2886 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2887 	}
2888 
2889 	inet_sk_state_store(sk, state);
2890 }
2891 
2892 static const unsigned char new_state[16] = {
2893 	/* current state:     new state:      action:	*/
2894 	[0 /* (Invalid) */] = TCP_CLOSE,
2895 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2896 	[TCP_SYN_SENT]      = TCP_CLOSE,
2897 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2898 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2899 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2900 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2901 	[TCP_CLOSE]         = TCP_CLOSE,
2902 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2903 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2904 	[TCP_LISTEN]        = TCP_CLOSE,
2905 	[TCP_CLOSING]       = TCP_CLOSING,
2906 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2907 };
2908 
2909 static int mptcp_close_state(struct sock *sk)
2910 {
2911 	int next = (int)new_state[sk->sk_state];
2912 	int ns = next & TCP_STATE_MASK;
2913 
2914 	mptcp_set_state(sk, ns);
2915 
2916 	return next & TCP_ACTION_FIN;
2917 }
2918 
2919 static void mptcp_check_send_data_fin(struct sock *sk)
2920 {
2921 	struct mptcp_subflow_context *subflow;
2922 	struct mptcp_sock *msk = mptcp_sk(sk);
2923 
2924 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2925 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2926 		 msk->snd_nxt, msk->write_seq);
2927 
2928 	/* we still need to enqueue subflows or not really shutting down,
2929 	 * skip this
2930 	 */
2931 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2932 	    mptcp_send_head(sk))
2933 		return;
2934 
2935 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2936 
2937 	mptcp_for_each_subflow(msk, subflow) {
2938 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2939 
2940 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2941 	}
2942 }
2943 
2944 static void __mptcp_wr_shutdown(struct sock *sk)
2945 {
2946 	struct mptcp_sock *msk = mptcp_sk(sk);
2947 
2948 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2949 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2950 		 !!mptcp_send_head(sk));
2951 
2952 	/* will be ignored by fallback sockets */
2953 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2954 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2955 
2956 	mptcp_check_send_data_fin(sk);
2957 }
2958 
2959 static void __mptcp_destroy_sock(struct sock *sk)
2960 {
2961 	struct mptcp_sock *msk = mptcp_sk(sk);
2962 
2963 	pr_debug("msk=%p", msk);
2964 
2965 	might_sleep();
2966 
2967 	mptcp_stop_rtx_timer(sk);
2968 	sk_stop_timer(sk, &sk->sk_timer);
2969 	msk->pm.status = 0;
2970 	mptcp_release_sched(msk);
2971 
2972 	sk->sk_prot->destroy(sk);
2973 
2974 	WARN_ON_ONCE(msk->rmem_fwd_alloc);
2975 	WARN_ON_ONCE(msk->rmem_released);
2976 	sk_stream_kill_queues(sk);
2977 	xfrm_sk_free_policy(sk);
2978 
2979 	sock_put(sk);
2980 }
2981 
2982 void __mptcp_unaccepted_force_close(struct sock *sk)
2983 {
2984 	sock_set_flag(sk, SOCK_DEAD);
2985 	mptcp_do_fastclose(sk);
2986 	__mptcp_destroy_sock(sk);
2987 }
2988 
2989 static __poll_t mptcp_check_readable(struct sock *sk)
2990 {
2991 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
2992 }
2993 
2994 static void mptcp_check_listen_stop(struct sock *sk)
2995 {
2996 	struct sock *ssk;
2997 
2998 	if (inet_sk_state_load(sk) != TCP_LISTEN)
2999 		return;
3000 
3001 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3002 	ssk = mptcp_sk(sk)->first;
3003 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3004 		return;
3005 
3006 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3007 	tcp_set_state(ssk, TCP_CLOSE);
3008 	mptcp_subflow_queue_clean(sk, ssk);
3009 	inet_csk_listen_stop(ssk);
3010 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3011 	release_sock(ssk);
3012 }
3013 
3014 bool __mptcp_close(struct sock *sk, long timeout)
3015 {
3016 	struct mptcp_subflow_context *subflow;
3017 	struct mptcp_sock *msk = mptcp_sk(sk);
3018 	bool do_cancel_work = false;
3019 	int subflows_alive = 0;
3020 
3021 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3022 
3023 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3024 		mptcp_check_listen_stop(sk);
3025 		mptcp_set_state(sk, TCP_CLOSE);
3026 		goto cleanup;
3027 	}
3028 
3029 	if (mptcp_data_avail(msk) || timeout < 0) {
3030 		/* If the msk has read data, or the caller explicitly ask it,
3031 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3032 		 */
3033 		mptcp_do_fastclose(sk);
3034 		timeout = 0;
3035 	} else if (mptcp_close_state(sk)) {
3036 		__mptcp_wr_shutdown(sk);
3037 	}
3038 
3039 	sk_stream_wait_close(sk, timeout);
3040 
3041 cleanup:
3042 	/* orphan all the subflows */
3043 	mptcp_for_each_subflow(msk, subflow) {
3044 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3045 		bool slow = lock_sock_fast_nested(ssk);
3046 
3047 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3048 
3049 		/* since the close timeout takes precedence on the fail one,
3050 		 * cancel the latter
3051 		 */
3052 		if (ssk == msk->first)
3053 			subflow->fail_tout = 0;
3054 
3055 		/* detach from the parent socket, but allow data_ready to
3056 		 * push incoming data into the mptcp stack, to properly ack it
3057 		 */
3058 		ssk->sk_socket = NULL;
3059 		ssk->sk_wq = NULL;
3060 		unlock_sock_fast(ssk, slow);
3061 	}
3062 	sock_orphan(sk);
3063 
3064 	/* all the subflows are closed, only timeout can change the msk
3065 	 * state, let's not keep resources busy for no reasons
3066 	 */
3067 	if (subflows_alive == 0)
3068 		mptcp_set_state(sk, TCP_CLOSE);
3069 
3070 	sock_hold(sk);
3071 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
3072 	if (msk->token)
3073 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3074 
3075 	if (sk->sk_state == TCP_CLOSE) {
3076 		__mptcp_destroy_sock(sk);
3077 		do_cancel_work = true;
3078 	} else {
3079 		mptcp_start_tout_timer(sk);
3080 	}
3081 
3082 	return do_cancel_work;
3083 }
3084 
3085 static void mptcp_close(struct sock *sk, long timeout)
3086 {
3087 	bool do_cancel_work;
3088 
3089 	lock_sock(sk);
3090 
3091 	do_cancel_work = __mptcp_close(sk, timeout);
3092 	release_sock(sk);
3093 	if (do_cancel_work)
3094 		mptcp_cancel_work(sk);
3095 
3096 	sock_put(sk);
3097 }
3098 
3099 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3100 {
3101 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3102 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3103 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3104 
3105 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3106 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3107 
3108 	if (msk6 && ssk6) {
3109 		msk6->saddr = ssk6->saddr;
3110 		msk6->flow_label = ssk6->flow_label;
3111 	}
3112 #endif
3113 
3114 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3115 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3116 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3117 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3118 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3119 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3120 }
3121 
3122 static int mptcp_disconnect(struct sock *sk, int flags)
3123 {
3124 	struct mptcp_sock *msk = mptcp_sk(sk);
3125 
3126 	/* We are on the fastopen error path. We can't call straight into the
3127 	 * subflows cleanup code due to lock nesting (we are already under
3128 	 * msk->firstsocket lock).
3129 	 */
3130 	if (msk->fastopening)
3131 		return -EBUSY;
3132 
3133 	mptcp_check_listen_stop(sk);
3134 	mptcp_set_state(sk, TCP_CLOSE);
3135 
3136 	mptcp_stop_rtx_timer(sk);
3137 	mptcp_stop_tout_timer(sk);
3138 
3139 	if (msk->token)
3140 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3141 
3142 	/* msk->subflow is still intact, the following will not free the first
3143 	 * subflow
3144 	 */
3145 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3146 	WRITE_ONCE(msk->flags, 0);
3147 	msk->cb_flags = 0;
3148 	msk->recovery = false;
3149 	msk->can_ack = false;
3150 	msk->fully_established = false;
3151 	msk->rcv_data_fin = false;
3152 	msk->snd_data_fin_enable = false;
3153 	msk->rcv_fastclose = false;
3154 	msk->use_64bit_ack = false;
3155 	msk->bytes_consumed = 0;
3156 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3157 	mptcp_pm_data_reset(msk);
3158 	mptcp_ca_reset(sk);
3159 	msk->bytes_acked = 0;
3160 	msk->bytes_received = 0;
3161 	msk->bytes_sent = 0;
3162 	msk->bytes_retrans = 0;
3163 	msk->rcvspace_init = 0;
3164 
3165 	WRITE_ONCE(sk->sk_shutdown, 0);
3166 	sk_error_report(sk);
3167 	return 0;
3168 }
3169 
3170 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3171 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3172 {
3173 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3174 
3175 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3176 }
3177 
3178 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3179 {
3180 	const struct ipv6_pinfo *np = inet6_sk(sk);
3181 	struct ipv6_txoptions *opt;
3182 	struct ipv6_pinfo *newnp;
3183 
3184 	newnp = inet6_sk(newsk);
3185 
3186 	rcu_read_lock();
3187 	opt = rcu_dereference(np->opt);
3188 	if (opt) {
3189 		opt = ipv6_dup_options(newsk, opt);
3190 		if (!opt)
3191 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3192 	}
3193 	RCU_INIT_POINTER(newnp->opt, opt);
3194 	rcu_read_unlock();
3195 }
3196 #endif
3197 
3198 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3199 {
3200 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3201 	const struct inet_sock *inet = inet_sk(sk);
3202 	struct inet_sock *newinet;
3203 
3204 	newinet = inet_sk(newsk);
3205 
3206 	rcu_read_lock();
3207 	inet_opt = rcu_dereference(inet->inet_opt);
3208 	if (inet_opt) {
3209 		newopt = sock_kmalloc(newsk, sizeof(*inet_opt) +
3210 				      inet_opt->opt.optlen, GFP_ATOMIC);
3211 		if (newopt)
3212 			memcpy(newopt, inet_opt, sizeof(*inet_opt) +
3213 			       inet_opt->opt.optlen);
3214 		else
3215 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3216 	}
3217 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3218 	rcu_read_unlock();
3219 }
3220 
3221 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3222 				 const struct mptcp_options_received *mp_opt,
3223 				 struct sock *ssk,
3224 				 struct request_sock *req)
3225 {
3226 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3227 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3228 	struct mptcp_subflow_context *subflow;
3229 	struct mptcp_sock *msk;
3230 
3231 	if (!nsk)
3232 		return NULL;
3233 
3234 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3235 	if (nsk->sk_family == AF_INET6)
3236 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3237 #endif
3238 
3239 	__mptcp_init_sock(nsk);
3240 
3241 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3242 	if (nsk->sk_family == AF_INET6)
3243 		mptcp_copy_ip6_options(nsk, sk);
3244 	else
3245 #endif
3246 		mptcp_copy_ip_options(nsk, sk);
3247 
3248 	msk = mptcp_sk(nsk);
3249 	msk->local_key = subflow_req->local_key;
3250 	msk->token = subflow_req->token;
3251 	msk->in_accept_queue = 1;
3252 	WRITE_ONCE(msk->fully_established, false);
3253 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3254 		WRITE_ONCE(msk->csum_enabled, true);
3255 
3256 	msk->write_seq = subflow_req->idsn + 1;
3257 	msk->snd_nxt = msk->write_seq;
3258 	msk->snd_una = msk->write_seq;
3259 	msk->wnd_end = msk->snd_nxt + tcp_sk(ssk)->snd_wnd;
3260 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3261 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3262 
3263 	/* passive msk is created after the first/MPC subflow */
3264 	msk->subflow_id = 2;
3265 
3266 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3267 	security_inet_csk_clone(nsk, req);
3268 
3269 	/* this can't race with mptcp_close(), as the msk is
3270 	 * not yet exposted to user-space
3271 	 */
3272 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3273 
3274 	/* The msk maintain a ref to each subflow in the connections list */
3275 	WRITE_ONCE(msk->first, ssk);
3276 	subflow = mptcp_subflow_ctx(ssk);
3277 	list_add(&subflow->node, &msk->conn_list);
3278 	sock_hold(ssk);
3279 
3280 	/* new mpc subflow takes ownership of the newly
3281 	 * created mptcp socket
3282 	 */
3283 	mptcp_token_accept(subflow_req, msk);
3284 
3285 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3286 	 * uses the correct data
3287 	 */
3288 	mptcp_copy_inaddrs(nsk, ssk);
3289 	__mptcp_propagate_sndbuf(nsk, ssk);
3290 
3291 	mptcp_rcv_space_init(msk, ssk);
3292 
3293 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3294 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3295 	bh_unlock_sock(nsk);
3296 
3297 	/* note: the newly allocated socket refcount is 2 now */
3298 	return nsk;
3299 }
3300 
3301 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3302 {
3303 	const struct tcp_sock *tp = tcp_sk(ssk);
3304 
3305 	msk->rcvspace_init = 1;
3306 	msk->rcvq_space.copied = 0;
3307 	msk->rcvq_space.rtt_us = 0;
3308 
3309 	msk->rcvq_space.time = tp->tcp_mstamp;
3310 
3311 	/* initial rcv_space offering made to peer */
3312 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3313 				      TCP_INIT_CWND * tp->advmss);
3314 	if (msk->rcvq_space.space == 0)
3315 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3316 }
3317 
3318 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3319 {
3320 	struct mptcp_subflow_context *subflow, *tmp;
3321 	struct sock *sk = (struct sock *)msk;
3322 
3323 	__mptcp_clear_xmit(sk);
3324 
3325 	/* join list will be eventually flushed (with rst) at sock lock release time */
3326 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3327 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3328 
3329 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3330 	mptcp_data_lock(sk);
3331 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3332 	__skb_queue_purge(&sk->sk_receive_queue);
3333 	skb_rbtree_purge(&msk->out_of_order_queue);
3334 	mptcp_data_unlock(sk);
3335 
3336 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3337 	 * inet_sock_destruct() will dispose it
3338 	 */
3339 	sk_forward_alloc_add(sk, msk->rmem_fwd_alloc);
3340 	WRITE_ONCE(msk->rmem_fwd_alloc, 0);
3341 	mptcp_token_destroy(msk);
3342 	mptcp_pm_free_anno_list(msk);
3343 	mptcp_free_local_addr_list(msk);
3344 }
3345 
3346 static void mptcp_destroy(struct sock *sk)
3347 {
3348 	struct mptcp_sock *msk = mptcp_sk(sk);
3349 
3350 	/* allow the following to close even the initial subflow */
3351 	msk->free_first = 1;
3352 	mptcp_destroy_common(msk, 0);
3353 	sk_sockets_allocated_dec(sk);
3354 }
3355 
3356 void __mptcp_data_acked(struct sock *sk)
3357 {
3358 	if (!sock_owned_by_user(sk))
3359 		__mptcp_clean_una(sk);
3360 	else
3361 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3362 
3363 	if (mptcp_pending_data_fin_ack(sk))
3364 		mptcp_schedule_work(sk);
3365 }
3366 
3367 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3368 {
3369 	if (!mptcp_send_head(sk))
3370 		return;
3371 
3372 	if (!sock_owned_by_user(sk))
3373 		__mptcp_subflow_push_pending(sk, ssk, false);
3374 	else
3375 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3376 }
3377 
3378 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3379 				      BIT(MPTCP_RETRANSMIT) | \
3380 				      BIT(MPTCP_FLUSH_JOIN_LIST))
3381 
3382 /* processes deferred events and flush wmem */
3383 static void mptcp_release_cb(struct sock *sk)
3384 	__must_hold(&sk->sk_lock.slock)
3385 {
3386 	struct mptcp_sock *msk = mptcp_sk(sk);
3387 
3388 	for (;;) {
3389 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3390 		struct list_head join_list;
3391 
3392 		if (!flags)
3393 			break;
3394 
3395 		INIT_LIST_HEAD(&join_list);
3396 		list_splice_init(&msk->join_list, &join_list);
3397 
3398 		/* the following actions acquire the subflow socket lock
3399 		 *
3400 		 * 1) can't be invoked in atomic scope
3401 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3402 		 *    datapath acquires the msk socket spinlock while helding
3403 		 *    the subflow socket lock
3404 		 */
3405 		msk->cb_flags &= ~flags;
3406 		spin_unlock_bh(&sk->sk_lock.slock);
3407 
3408 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3409 			__mptcp_flush_join_list(sk, &join_list);
3410 		if (flags & BIT(MPTCP_PUSH_PENDING))
3411 			__mptcp_push_pending(sk, 0);
3412 		if (flags & BIT(MPTCP_RETRANSMIT))
3413 			__mptcp_retrans(sk);
3414 
3415 		cond_resched();
3416 		spin_lock_bh(&sk->sk_lock.slock);
3417 	}
3418 
3419 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3420 		__mptcp_clean_una_wakeup(sk);
3421 	if (unlikely(msk->cb_flags)) {
3422 		/* be sure to sync the msk state before taking actions
3423 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3424 		 * On sk release avoid actions depending on the first subflow
3425 		 */
3426 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3427 			__mptcp_sync_state(sk, msk->pending_state);
3428 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3429 			__mptcp_error_report(sk);
3430 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3431 			__mptcp_sync_sndbuf(sk);
3432 	}
3433 
3434 	__mptcp_update_rmem(sk);
3435 }
3436 
3437 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3438  * TCP can't schedule delack timer before the subflow is fully established.
3439  * MPTCP uses the delack timer to do 3rd ack retransmissions
3440  */
3441 static void schedule_3rdack_retransmission(struct sock *ssk)
3442 {
3443 	struct inet_connection_sock *icsk = inet_csk(ssk);
3444 	struct tcp_sock *tp = tcp_sk(ssk);
3445 	unsigned long timeout;
3446 
3447 	if (mptcp_subflow_ctx(ssk)->fully_established)
3448 		return;
3449 
3450 	/* reschedule with a timeout above RTT, as we must look only for drop */
3451 	if (tp->srtt_us)
3452 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3453 	else
3454 		timeout = TCP_TIMEOUT_INIT;
3455 	timeout += jiffies;
3456 
3457 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3458 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3459 	icsk->icsk_ack.timeout = timeout;
3460 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3461 }
3462 
3463 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3464 {
3465 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3466 	struct sock *sk = subflow->conn;
3467 
3468 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3469 		mptcp_data_lock(sk);
3470 		if (!sock_owned_by_user(sk))
3471 			__mptcp_subflow_push_pending(sk, ssk, true);
3472 		else
3473 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3474 		mptcp_data_unlock(sk);
3475 	}
3476 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3477 		mptcp_data_lock(sk);
3478 		if (!sock_owned_by_user(sk))
3479 			__mptcp_sync_sndbuf(sk);
3480 		else
3481 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3482 		mptcp_data_unlock(sk);
3483 	}
3484 	if (status & BIT(MPTCP_DELEGATE_ACK))
3485 		schedule_3rdack_retransmission(ssk);
3486 }
3487 
3488 static int mptcp_hash(struct sock *sk)
3489 {
3490 	/* should never be called,
3491 	 * we hash the TCP subflows not the master socket
3492 	 */
3493 	WARN_ON_ONCE(1);
3494 	return 0;
3495 }
3496 
3497 static void mptcp_unhash(struct sock *sk)
3498 {
3499 	/* called from sk_common_release(), but nothing to do here */
3500 }
3501 
3502 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3503 {
3504 	struct mptcp_sock *msk = mptcp_sk(sk);
3505 
3506 	pr_debug("msk=%p, ssk=%p", msk, msk->first);
3507 	if (WARN_ON_ONCE(!msk->first))
3508 		return -EINVAL;
3509 
3510 	return inet_csk_get_port(msk->first, snum);
3511 }
3512 
3513 void mptcp_finish_connect(struct sock *ssk)
3514 {
3515 	struct mptcp_subflow_context *subflow;
3516 	struct mptcp_sock *msk;
3517 	struct sock *sk;
3518 
3519 	subflow = mptcp_subflow_ctx(ssk);
3520 	sk = subflow->conn;
3521 	msk = mptcp_sk(sk);
3522 
3523 	pr_debug("msk=%p, token=%u", sk, subflow->token);
3524 
3525 	subflow->map_seq = subflow->iasn;
3526 	subflow->map_subflow_seq = 1;
3527 
3528 	/* the socket is not connected yet, no msk/subflow ops can access/race
3529 	 * accessing the field below
3530 	 */
3531 	WRITE_ONCE(msk->local_key, subflow->local_key);
3532 
3533 	mptcp_pm_new_connection(msk, ssk, 0);
3534 }
3535 
3536 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3537 {
3538 	write_lock_bh(&sk->sk_callback_lock);
3539 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3540 	sk_set_socket(sk, parent);
3541 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3542 	write_unlock_bh(&sk->sk_callback_lock);
3543 }
3544 
3545 bool mptcp_finish_join(struct sock *ssk)
3546 {
3547 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3548 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3549 	struct sock *parent = (void *)msk;
3550 	bool ret = true;
3551 
3552 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3553 
3554 	/* mptcp socket already closing? */
3555 	if (!mptcp_is_fully_established(parent)) {
3556 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3557 		return false;
3558 	}
3559 
3560 	/* active subflow, already present inside the conn_list */
3561 	if (!list_empty(&subflow->node)) {
3562 		mptcp_subflow_joined(msk, ssk);
3563 		mptcp_propagate_sndbuf(parent, ssk);
3564 		return true;
3565 	}
3566 
3567 	if (!mptcp_pm_allow_new_subflow(msk))
3568 		goto err_prohibited;
3569 
3570 	/* If we can't acquire msk socket lock here, let the release callback
3571 	 * handle it
3572 	 */
3573 	mptcp_data_lock(parent);
3574 	if (!sock_owned_by_user(parent)) {
3575 		ret = __mptcp_finish_join(msk, ssk);
3576 		if (ret) {
3577 			sock_hold(ssk);
3578 			list_add_tail(&subflow->node, &msk->conn_list);
3579 		}
3580 	} else {
3581 		sock_hold(ssk);
3582 		list_add_tail(&subflow->node, &msk->join_list);
3583 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3584 	}
3585 	mptcp_data_unlock(parent);
3586 
3587 	if (!ret) {
3588 err_prohibited:
3589 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3590 		return false;
3591 	}
3592 
3593 	return true;
3594 }
3595 
3596 static void mptcp_shutdown(struct sock *sk, int how)
3597 {
3598 	pr_debug("sk=%p, how=%d", sk, how);
3599 
3600 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3601 		__mptcp_wr_shutdown(sk);
3602 }
3603 
3604 static int mptcp_forward_alloc_get(const struct sock *sk)
3605 {
3606 	return READ_ONCE(sk->sk_forward_alloc) +
3607 	       READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc);
3608 }
3609 
3610 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3611 {
3612 	const struct sock *sk = (void *)msk;
3613 	u64 delta;
3614 
3615 	if (sk->sk_state == TCP_LISTEN)
3616 		return -EINVAL;
3617 
3618 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3619 		return 0;
3620 
3621 	delta = msk->write_seq - v;
3622 	if (__mptcp_check_fallback(msk) && msk->first) {
3623 		struct tcp_sock *tp = tcp_sk(msk->first);
3624 
3625 		/* the first subflow is disconnected after close - see
3626 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3627 		 * so ignore that status, too.
3628 		 */
3629 		if (!((1 << msk->first->sk_state) &
3630 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3631 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3632 	}
3633 	if (delta > INT_MAX)
3634 		delta = INT_MAX;
3635 
3636 	return (int)delta;
3637 }
3638 
3639 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3640 {
3641 	struct mptcp_sock *msk = mptcp_sk(sk);
3642 	bool slow;
3643 
3644 	switch (cmd) {
3645 	case SIOCINQ:
3646 		if (sk->sk_state == TCP_LISTEN)
3647 			return -EINVAL;
3648 
3649 		lock_sock(sk);
3650 		__mptcp_move_skbs(msk);
3651 		*karg = mptcp_inq_hint(sk);
3652 		release_sock(sk);
3653 		break;
3654 	case SIOCOUTQ:
3655 		slow = lock_sock_fast(sk);
3656 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3657 		unlock_sock_fast(sk, slow);
3658 		break;
3659 	case SIOCOUTQNSD:
3660 		slow = lock_sock_fast(sk);
3661 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3662 		unlock_sock_fast(sk, slow);
3663 		break;
3664 	default:
3665 		return -ENOIOCTLCMD;
3666 	}
3667 
3668 	return 0;
3669 }
3670 
3671 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3672 					 struct mptcp_subflow_context *subflow)
3673 {
3674 	subflow->request_mptcp = 0;
3675 	__mptcp_do_fallback(msk);
3676 }
3677 
3678 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3679 {
3680 	struct mptcp_subflow_context *subflow;
3681 	struct mptcp_sock *msk = mptcp_sk(sk);
3682 	int err = -EINVAL;
3683 	struct sock *ssk;
3684 
3685 	ssk = __mptcp_nmpc_sk(msk);
3686 	if (IS_ERR(ssk))
3687 		return PTR_ERR(ssk);
3688 
3689 	mptcp_set_state(sk, TCP_SYN_SENT);
3690 	subflow = mptcp_subflow_ctx(ssk);
3691 #ifdef CONFIG_TCP_MD5SIG
3692 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3693 	 * TCP option space.
3694 	 */
3695 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3696 		mptcp_subflow_early_fallback(msk, subflow);
3697 #endif
3698 	if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) {
3699 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
3700 		mptcp_subflow_early_fallback(msk, subflow);
3701 	}
3702 
3703 	WRITE_ONCE(msk->write_seq, subflow->idsn);
3704 	WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3705 	WRITE_ONCE(msk->snd_una, subflow->idsn);
3706 	if (likely(!__mptcp_check_fallback(msk)))
3707 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3708 
3709 	/* if reaching here via the fastopen/sendmsg path, the caller already
3710 	 * acquired the subflow socket lock, too.
3711 	 */
3712 	if (!msk->fastopening)
3713 		lock_sock(ssk);
3714 
3715 	/* the following mirrors closely a very small chunk of code from
3716 	 * __inet_stream_connect()
3717 	 */
3718 	if (ssk->sk_state != TCP_CLOSE)
3719 		goto out;
3720 
3721 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3722 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3723 		if (err)
3724 			goto out;
3725 	}
3726 
3727 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3728 	if (err < 0)
3729 		goto out;
3730 
3731 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3732 
3733 out:
3734 	if (!msk->fastopening)
3735 		release_sock(ssk);
3736 
3737 	/* on successful connect, the msk state will be moved to established by
3738 	 * subflow_finish_connect()
3739 	 */
3740 	if (unlikely(err)) {
3741 		/* avoid leaving a dangling token in an unconnected socket */
3742 		mptcp_token_destroy(msk);
3743 		mptcp_set_state(sk, TCP_CLOSE);
3744 		return err;
3745 	}
3746 
3747 	mptcp_copy_inaddrs(sk, ssk);
3748 	return 0;
3749 }
3750 
3751 static struct proto mptcp_prot = {
3752 	.name		= "MPTCP",
3753 	.owner		= THIS_MODULE,
3754 	.init		= mptcp_init_sock,
3755 	.connect	= mptcp_connect,
3756 	.disconnect	= mptcp_disconnect,
3757 	.close		= mptcp_close,
3758 	.setsockopt	= mptcp_setsockopt,
3759 	.getsockopt	= mptcp_getsockopt,
3760 	.shutdown	= mptcp_shutdown,
3761 	.destroy	= mptcp_destroy,
3762 	.sendmsg	= mptcp_sendmsg,
3763 	.ioctl		= mptcp_ioctl,
3764 	.recvmsg	= mptcp_recvmsg,
3765 	.release_cb	= mptcp_release_cb,
3766 	.hash		= mptcp_hash,
3767 	.unhash		= mptcp_unhash,
3768 	.get_port	= mptcp_get_port,
3769 	.forward_alloc_get	= mptcp_forward_alloc_get,
3770 	.sockets_allocated	= &mptcp_sockets_allocated,
3771 
3772 	.memory_allocated	= &tcp_memory_allocated,
3773 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3774 
3775 	.memory_pressure	= &tcp_memory_pressure,
3776 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3777 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3778 	.sysctl_mem	= sysctl_tcp_mem,
3779 	.obj_size	= sizeof(struct mptcp_sock),
3780 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3781 	.no_autobind	= true,
3782 };
3783 
3784 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3785 {
3786 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3787 	struct sock *ssk, *sk = sock->sk;
3788 	int err = -EINVAL;
3789 
3790 	lock_sock(sk);
3791 	ssk = __mptcp_nmpc_sk(msk);
3792 	if (IS_ERR(ssk)) {
3793 		err = PTR_ERR(ssk);
3794 		goto unlock;
3795 	}
3796 
3797 	if (sk->sk_family == AF_INET)
3798 		err = inet_bind_sk(ssk, uaddr, addr_len);
3799 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3800 	else if (sk->sk_family == AF_INET6)
3801 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3802 #endif
3803 	if (!err)
3804 		mptcp_copy_inaddrs(sk, ssk);
3805 
3806 unlock:
3807 	release_sock(sk);
3808 	return err;
3809 }
3810 
3811 static int mptcp_listen(struct socket *sock, int backlog)
3812 {
3813 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3814 	struct sock *sk = sock->sk;
3815 	struct sock *ssk;
3816 	int err;
3817 
3818 	pr_debug("msk=%p", msk);
3819 
3820 	lock_sock(sk);
3821 
3822 	err = -EINVAL;
3823 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3824 		goto unlock;
3825 
3826 	ssk = __mptcp_nmpc_sk(msk);
3827 	if (IS_ERR(ssk)) {
3828 		err = PTR_ERR(ssk);
3829 		goto unlock;
3830 	}
3831 
3832 	mptcp_set_state(sk, TCP_LISTEN);
3833 	sock_set_flag(sk, SOCK_RCU_FREE);
3834 
3835 	lock_sock(ssk);
3836 	err = __inet_listen_sk(ssk, backlog);
3837 	release_sock(ssk);
3838 	mptcp_set_state(sk, inet_sk_state_load(ssk));
3839 
3840 	if (!err) {
3841 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3842 		mptcp_copy_inaddrs(sk, ssk);
3843 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3844 	}
3845 
3846 unlock:
3847 	release_sock(sk);
3848 	return err;
3849 }
3850 
3851 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3852 			       int flags, bool kern)
3853 {
3854 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3855 	struct sock *ssk, *newsk;
3856 	int err;
3857 
3858 	pr_debug("msk=%p", msk);
3859 
3860 	/* Buggy applications can call accept on socket states other then LISTEN
3861 	 * but no need to allocate the first subflow just to error out.
3862 	 */
3863 	ssk = READ_ONCE(msk->first);
3864 	if (!ssk)
3865 		return -EINVAL;
3866 
3867 	pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk));
3868 	newsk = inet_csk_accept(ssk, flags, &err, kern);
3869 	if (!newsk)
3870 		return err;
3871 
3872 	pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk));
3873 	if (sk_is_mptcp(newsk)) {
3874 		struct mptcp_subflow_context *subflow;
3875 		struct sock *new_mptcp_sock;
3876 
3877 		subflow = mptcp_subflow_ctx(newsk);
3878 		new_mptcp_sock = subflow->conn;
3879 
3880 		/* is_mptcp should be false if subflow->conn is missing, see
3881 		 * subflow_syn_recv_sock()
3882 		 */
3883 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3884 			tcp_sk(newsk)->is_mptcp = 0;
3885 			goto tcpfallback;
3886 		}
3887 
3888 		newsk = new_mptcp_sock;
3889 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3890 
3891 		newsk->sk_kern_sock = kern;
3892 		lock_sock(newsk);
3893 		__inet_accept(sock, newsock, newsk);
3894 
3895 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3896 		msk = mptcp_sk(newsk);
3897 		msk->in_accept_queue = 0;
3898 
3899 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3900 		 * This is needed so NOSPACE flag can be set from tcp stack.
3901 		 */
3902 		mptcp_for_each_subflow(msk, subflow) {
3903 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3904 
3905 			if (!ssk->sk_socket)
3906 				mptcp_sock_graft(ssk, newsock);
3907 		}
3908 
3909 		/* Do late cleanup for the first subflow as necessary. Also
3910 		 * deal with bad peers not doing a complete shutdown.
3911 		 */
3912 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3913 			__mptcp_close_ssk(newsk, msk->first,
3914 					  mptcp_subflow_ctx(msk->first), 0);
3915 			if (unlikely(list_is_singular(&msk->conn_list)))
3916 				mptcp_set_state(newsk, TCP_CLOSE);
3917 		}
3918 	} else {
3919 tcpfallback:
3920 		newsk->sk_kern_sock = kern;
3921 		lock_sock(newsk);
3922 		__inet_accept(sock, newsock, newsk);
3923 		/* we are being invoked after accepting a non-mp-capable
3924 		 * flow: sk is a tcp_sk, not an mptcp one.
3925 		 *
3926 		 * Hand the socket over to tcp so all further socket ops
3927 		 * bypass mptcp.
3928 		 */
3929 		WRITE_ONCE(newsock->sk->sk_socket->ops,
3930 			   mptcp_fallback_tcp_ops(newsock->sk));
3931 	}
3932 	release_sock(newsk);
3933 
3934 	return 0;
3935 }
3936 
3937 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3938 {
3939 	struct sock *sk = (struct sock *)msk;
3940 
3941 	if (sk_stream_is_writeable(sk))
3942 		return EPOLLOUT | EPOLLWRNORM;
3943 
3944 	mptcp_set_nospace(sk);
3945 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3946 	if (sk_stream_is_writeable(sk))
3947 		return EPOLLOUT | EPOLLWRNORM;
3948 
3949 	return 0;
3950 }
3951 
3952 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3953 			   struct poll_table_struct *wait)
3954 {
3955 	struct sock *sk = sock->sk;
3956 	struct mptcp_sock *msk;
3957 	__poll_t mask = 0;
3958 	u8 shutdown;
3959 	int state;
3960 
3961 	msk = mptcp_sk(sk);
3962 	sock_poll_wait(file, sock, wait);
3963 
3964 	state = inet_sk_state_load(sk);
3965 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3966 	if (state == TCP_LISTEN) {
3967 		struct sock *ssk = READ_ONCE(msk->first);
3968 
3969 		if (WARN_ON_ONCE(!ssk))
3970 			return 0;
3971 
3972 		return inet_csk_listen_poll(ssk);
3973 	}
3974 
3975 	shutdown = READ_ONCE(sk->sk_shutdown);
3976 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3977 		mask |= EPOLLHUP;
3978 	if (shutdown & RCV_SHUTDOWN)
3979 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3980 
3981 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3982 		mask |= mptcp_check_readable(sk);
3983 		if (shutdown & SEND_SHUTDOWN)
3984 			mask |= EPOLLOUT | EPOLLWRNORM;
3985 		else
3986 			mask |= mptcp_check_writeable(msk);
3987 	} else if (state == TCP_SYN_SENT &&
3988 		   inet_test_bit(DEFER_CONNECT, sk)) {
3989 		/* cf tcp_poll() note about TFO */
3990 		mask |= EPOLLOUT | EPOLLWRNORM;
3991 	}
3992 
3993 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
3994 	smp_rmb();
3995 	if (READ_ONCE(sk->sk_err))
3996 		mask |= EPOLLERR;
3997 
3998 	return mask;
3999 }
4000 
4001 static const struct proto_ops mptcp_stream_ops = {
4002 	.family		   = PF_INET,
4003 	.owner		   = THIS_MODULE,
4004 	.release	   = inet_release,
4005 	.bind		   = mptcp_bind,
4006 	.connect	   = inet_stream_connect,
4007 	.socketpair	   = sock_no_socketpair,
4008 	.accept		   = mptcp_stream_accept,
4009 	.getname	   = inet_getname,
4010 	.poll		   = mptcp_poll,
4011 	.ioctl		   = inet_ioctl,
4012 	.gettstamp	   = sock_gettstamp,
4013 	.listen		   = mptcp_listen,
4014 	.shutdown	   = inet_shutdown,
4015 	.setsockopt	   = sock_common_setsockopt,
4016 	.getsockopt	   = sock_common_getsockopt,
4017 	.sendmsg	   = inet_sendmsg,
4018 	.recvmsg	   = inet_recvmsg,
4019 	.mmap		   = sock_no_mmap,
4020 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4021 };
4022 
4023 static struct inet_protosw mptcp_protosw = {
4024 	.type		= SOCK_STREAM,
4025 	.protocol	= IPPROTO_MPTCP,
4026 	.prot		= &mptcp_prot,
4027 	.ops		= &mptcp_stream_ops,
4028 	.flags		= INET_PROTOSW_ICSK,
4029 };
4030 
4031 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4032 {
4033 	struct mptcp_delegated_action *delegated;
4034 	struct mptcp_subflow_context *subflow;
4035 	int work_done = 0;
4036 
4037 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
4038 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4039 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4040 
4041 		bh_lock_sock_nested(ssk);
4042 		if (!sock_owned_by_user(ssk)) {
4043 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4044 		} else {
4045 			/* tcp_release_cb_override already processed
4046 			 * the action or will do at next release_sock().
4047 			 * In both case must dequeue the subflow here - on the same
4048 			 * CPU that scheduled it.
4049 			 */
4050 			smp_wmb();
4051 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4052 		}
4053 		bh_unlock_sock(ssk);
4054 		sock_put(ssk);
4055 
4056 		if (++work_done == budget)
4057 			return budget;
4058 	}
4059 
4060 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4061 	 * will not try accessing the NULL napi->dev ptr
4062 	 */
4063 	napi_complete_done(napi, 0);
4064 	return work_done;
4065 }
4066 
4067 void __init mptcp_proto_init(void)
4068 {
4069 	struct mptcp_delegated_action *delegated;
4070 	int cpu;
4071 
4072 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4073 
4074 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4075 		panic("Failed to allocate MPTCP pcpu counter\n");
4076 
4077 	init_dummy_netdev(&mptcp_napi_dev);
4078 	for_each_possible_cpu(cpu) {
4079 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4080 		INIT_LIST_HEAD(&delegated->head);
4081 		netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
4082 				  mptcp_napi_poll);
4083 		napi_enable(&delegated->napi);
4084 	}
4085 
4086 	mptcp_subflow_init();
4087 	mptcp_pm_init();
4088 	mptcp_sched_init();
4089 	mptcp_token_init();
4090 
4091 	if (proto_register(&mptcp_prot, 1) != 0)
4092 		panic("Failed to register MPTCP proto.\n");
4093 
4094 	inet_register_protosw(&mptcp_protosw);
4095 
4096 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4097 }
4098 
4099 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4100 static const struct proto_ops mptcp_v6_stream_ops = {
4101 	.family		   = PF_INET6,
4102 	.owner		   = THIS_MODULE,
4103 	.release	   = inet6_release,
4104 	.bind		   = mptcp_bind,
4105 	.connect	   = inet_stream_connect,
4106 	.socketpair	   = sock_no_socketpair,
4107 	.accept		   = mptcp_stream_accept,
4108 	.getname	   = inet6_getname,
4109 	.poll		   = mptcp_poll,
4110 	.ioctl		   = inet6_ioctl,
4111 	.gettstamp	   = sock_gettstamp,
4112 	.listen		   = mptcp_listen,
4113 	.shutdown	   = inet_shutdown,
4114 	.setsockopt	   = sock_common_setsockopt,
4115 	.getsockopt	   = sock_common_getsockopt,
4116 	.sendmsg	   = inet6_sendmsg,
4117 	.recvmsg	   = inet6_recvmsg,
4118 	.mmap		   = sock_no_mmap,
4119 #ifdef CONFIG_COMPAT
4120 	.compat_ioctl	   = inet6_compat_ioctl,
4121 #endif
4122 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4123 };
4124 
4125 static struct proto mptcp_v6_prot;
4126 
4127 static struct inet_protosw mptcp_v6_protosw = {
4128 	.type		= SOCK_STREAM,
4129 	.protocol	= IPPROTO_MPTCP,
4130 	.prot		= &mptcp_v6_prot,
4131 	.ops		= &mptcp_v6_stream_ops,
4132 	.flags		= INET_PROTOSW_ICSK,
4133 };
4134 
4135 int __init mptcp_proto_v6_init(void)
4136 {
4137 	int err;
4138 
4139 	mptcp_v6_prot = mptcp_prot;
4140 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
4141 	mptcp_v6_prot.slab = NULL;
4142 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4143 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4144 
4145 	err = proto_register(&mptcp_v6_prot, 1);
4146 	if (err)
4147 		return err;
4148 
4149 	err = inet6_register_protosw(&mptcp_v6_protosw);
4150 	if (err)
4151 		proto_unregister(&mptcp_v6_prot);
4152 
4153 	return err;
4154 }
4155 #endif
4156