1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 enum { 40 MPTCP_CMSG_TS = BIT(0), 41 MPTCP_CMSG_INQ = BIT(1), 42 }; 43 44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 45 46 static void __mptcp_destroy_sock(struct sock *sk); 47 static void mptcp_check_send_data_fin(struct sock *sk); 48 49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 50 static struct net_device mptcp_napi_dev; 51 52 /* Returns end sequence number of the receiver's advertised window */ 53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 54 { 55 return READ_ONCE(msk->wnd_end); 56 } 57 58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 59 { 60 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 61 if (sk->sk_prot == &tcpv6_prot) 62 return &inet6_stream_ops; 63 #endif 64 WARN_ON_ONCE(sk->sk_prot != &tcp_prot); 65 return &inet_stream_ops; 66 } 67 68 static int __mptcp_socket_create(struct mptcp_sock *msk) 69 { 70 struct mptcp_subflow_context *subflow; 71 struct sock *sk = (struct sock *)msk; 72 struct socket *ssock; 73 int err; 74 75 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 76 if (err) 77 return err; 78 79 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 80 WRITE_ONCE(msk->first, ssock->sk); 81 subflow = mptcp_subflow_ctx(ssock->sk); 82 list_add(&subflow->node, &msk->conn_list); 83 sock_hold(ssock->sk); 84 subflow->request_mptcp = 1; 85 subflow->subflow_id = msk->subflow_id++; 86 87 /* This is the first subflow, always with id 0 */ 88 WRITE_ONCE(subflow->local_id, 0); 89 mptcp_sock_graft(msk->first, sk->sk_socket); 90 iput(SOCK_INODE(ssock)); 91 92 return 0; 93 } 94 95 /* If the MPC handshake is not started, returns the first subflow, 96 * eventually allocating it. 97 */ 98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 99 { 100 struct sock *sk = (struct sock *)msk; 101 int ret; 102 103 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 104 return ERR_PTR(-EINVAL); 105 106 if (!msk->first) { 107 ret = __mptcp_socket_create(msk); 108 if (ret) 109 return ERR_PTR(ret); 110 111 mptcp_sockopt_sync(msk, msk->first); 112 } 113 114 return msk->first; 115 } 116 117 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 118 { 119 sk_drops_add(sk, skb); 120 __kfree_skb(skb); 121 } 122 123 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size) 124 { 125 WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc, 126 mptcp_sk(sk)->rmem_fwd_alloc + size); 127 } 128 129 static void mptcp_rmem_charge(struct sock *sk, int size) 130 { 131 mptcp_rmem_fwd_alloc_add(sk, -size); 132 } 133 134 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 135 struct sk_buff *from) 136 { 137 bool fragstolen; 138 int delta; 139 140 if (MPTCP_SKB_CB(from)->offset || 141 !skb_try_coalesce(to, from, &fragstolen, &delta)) 142 return false; 143 144 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 145 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 146 to->len, MPTCP_SKB_CB(from)->end_seq); 147 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 148 149 /* note the fwd memory can reach a negative value after accounting 150 * for the delta, but the later skb free will restore a non 151 * negative one 152 */ 153 atomic_add(delta, &sk->sk_rmem_alloc); 154 mptcp_rmem_charge(sk, delta); 155 kfree_skb_partial(from, fragstolen); 156 157 return true; 158 } 159 160 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 161 struct sk_buff *from) 162 { 163 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 164 return false; 165 166 return mptcp_try_coalesce((struct sock *)msk, to, from); 167 } 168 169 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 170 { 171 amount >>= PAGE_SHIFT; 172 mptcp_rmem_charge(sk, amount << PAGE_SHIFT); 173 __sk_mem_reduce_allocated(sk, amount); 174 } 175 176 static void mptcp_rmem_uncharge(struct sock *sk, int size) 177 { 178 struct mptcp_sock *msk = mptcp_sk(sk); 179 int reclaimable; 180 181 mptcp_rmem_fwd_alloc_add(sk, size); 182 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 183 184 /* see sk_mem_uncharge() for the rationale behind the following schema */ 185 if (unlikely(reclaimable >= PAGE_SIZE)) 186 __mptcp_rmem_reclaim(sk, reclaimable); 187 } 188 189 static void mptcp_rfree(struct sk_buff *skb) 190 { 191 unsigned int len = skb->truesize; 192 struct sock *sk = skb->sk; 193 194 atomic_sub(len, &sk->sk_rmem_alloc); 195 mptcp_rmem_uncharge(sk, len); 196 } 197 198 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 199 { 200 skb_orphan(skb); 201 skb->sk = sk; 202 skb->destructor = mptcp_rfree; 203 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 204 mptcp_rmem_charge(sk, skb->truesize); 205 } 206 207 /* "inspired" by tcp_data_queue_ofo(), main differences: 208 * - use mptcp seqs 209 * - don't cope with sacks 210 */ 211 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 212 { 213 struct sock *sk = (struct sock *)msk; 214 struct rb_node **p, *parent; 215 u64 seq, end_seq, max_seq; 216 struct sk_buff *skb1; 217 218 seq = MPTCP_SKB_CB(skb)->map_seq; 219 end_seq = MPTCP_SKB_CB(skb)->end_seq; 220 max_seq = atomic64_read(&msk->rcv_wnd_sent); 221 222 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 223 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 224 if (after64(end_seq, max_seq)) { 225 /* out of window */ 226 mptcp_drop(sk, skb); 227 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 228 (unsigned long long)end_seq - (unsigned long)max_seq, 229 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 230 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 231 return; 232 } 233 234 p = &msk->out_of_order_queue.rb_node; 235 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 236 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 237 rb_link_node(&skb->rbnode, NULL, p); 238 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 239 msk->ooo_last_skb = skb; 240 goto end; 241 } 242 243 /* with 2 subflows, adding at end of ooo queue is quite likely 244 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 245 */ 246 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 247 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 248 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 249 return; 250 } 251 252 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 253 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 254 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 255 parent = &msk->ooo_last_skb->rbnode; 256 p = &parent->rb_right; 257 goto insert; 258 } 259 260 /* Find place to insert this segment. Handle overlaps on the way. */ 261 parent = NULL; 262 while (*p) { 263 parent = *p; 264 skb1 = rb_to_skb(parent); 265 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 266 p = &parent->rb_left; 267 continue; 268 } 269 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 270 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 271 /* All the bits are present. Drop. */ 272 mptcp_drop(sk, skb); 273 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 274 return; 275 } 276 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 277 /* partial overlap: 278 * | skb | 279 * | skb1 | 280 * continue traversing 281 */ 282 } else { 283 /* skb's seq == skb1's seq and skb covers skb1. 284 * Replace skb1 with skb. 285 */ 286 rb_replace_node(&skb1->rbnode, &skb->rbnode, 287 &msk->out_of_order_queue); 288 mptcp_drop(sk, skb1); 289 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 290 goto merge_right; 291 } 292 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 293 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 294 return; 295 } 296 p = &parent->rb_right; 297 } 298 299 insert: 300 /* Insert segment into RB tree. */ 301 rb_link_node(&skb->rbnode, parent, p); 302 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 303 304 merge_right: 305 /* Remove other segments covered by skb. */ 306 while ((skb1 = skb_rb_next(skb)) != NULL) { 307 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 308 break; 309 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 310 mptcp_drop(sk, skb1); 311 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 312 } 313 /* If there is no skb after us, we are the last_skb ! */ 314 if (!skb1) 315 msk->ooo_last_skb = skb; 316 317 end: 318 skb_condense(skb); 319 mptcp_set_owner_r(skb, sk); 320 } 321 322 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 323 { 324 struct mptcp_sock *msk = mptcp_sk(sk); 325 int amt, amount; 326 327 if (size <= msk->rmem_fwd_alloc) 328 return true; 329 330 size -= msk->rmem_fwd_alloc; 331 amt = sk_mem_pages(size); 332 amount = amt << PAGE_SHIFT; 333 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 334 return false; 335 336 mptcp_rmem_fwd_alloc_add(sk, amount); 337 return true; 338 } 339 340 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 341 struct sk_buff *skb, unsigned int offset, 342 size_t copy_len) 343 { 344 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 345 struct sock *sk = (struct sock *)msk; 346 struct sk_buff *tail; 347 bool has_rxtstamp; 348 349 __skb_unlink(skb, &ssk->sk_receive_queue); 350 351 skb_ext_reset(skb); 352 skb_orphan(skb); 353 354 /* try to fetch required memory from subflow */ 355 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 356 goto drop; 357 358 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 359 360 /* the skb map_seq accounts for the skb offset: 361 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 362 * value 363 */ 364 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 365 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 366 MPTCP_SKB_CB(skb)->offset = offset; 367 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 368 369 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 370 /* in sequence */ 371 msk->bytes_received += copy_len; 372 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 373 tail = skb_peek_tail(&sk->sk_receive_queue); 374 if (tail && mptcp_try_coalesce(sk, tail, skb)) 375 return true; 376 377 mptcp_set_owner_r(skb, sk); 378 __skb_queue_tail(&sk->sk_receive_queue, skb); 379 return true; 380 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 381 mptcp_data_queue_ofo(msk, skb); 382 return false; 383 } 384 385 /* old data, keep it simple and drop the whole pkt, sender 386 * will retransmit as needed, if needed. 387 */ 388 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 389 drop: 390 mptcp_drop(sk, skb); 391 return false; 392 } 393 394 static void mptcp_stop_rtx_timer(struct sock *sk) 395 { 396 struct inet_connection_sock *icsk = inet_csk(sk); 397 398 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 399 mptcp_sk(sk)->timer_ival = 0; 400 } 401 402 static void mptcp_close_wake_up(struct sock *sk) 403 { 404 if (sock_flag(sk, SOCK_DEAD)) 405 return; 406 407 sk->sk_state_change(sk); 408 if (sk->sk_shutdown == SHUTDOWN_MASK || 409 sk->sk_state == TCP_CLOSE) 410 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 411 else 412 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 413 } 414 415 static bool mptcp_pending_data_fin_ack(struct sock *sk) 416 { 417 struct mptcp_sock *msk = mptcp_sk(sk); 418 419 return ((1 << sk->sk_state) & 420 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 421 msk->write_seq == READ_ONCE(msk->snd_una); 422 } 423 424 static void mptcp_check_data_fin_ack(struct sock *sk) 425 { 426 struct mptcp_sock *msk = mptcp_sk(sk); 427 428 /* Look for an acknowledged DATA_FIN */ 429 if (mptcp_pending_data_fin_ack(sk)) { 430 WRITE_ONCE(msk->snd_data_fin_enable, 0); 431 432 switch (sk->sk_state) { 433 case TCP_FIN_WAIT1: 434 mptcp_set_state(sk, TCP_FIN_WAIT2); 435 break; 436 case TCP_CLOSING: 437 case TCP_LAST_ACK: 438 mptcp_set_state(sk, TCP_CLOSE); 439 break; 440 } 441 442 mptcp_close_wake_up(sk); 443 } 444 } 445 446 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 447 { 448 struct mptcp_sock *msk = mptcp_sk(sk); 449 450 if (READ_ONCE(msk->rcv_data_fin) && 451 ((1 << sk->sk_state) & 452 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 453 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 454 455 if (msk->ack_seq == rcv_data_fin_seq) { 456 if (seq) 457 *seq = rcv_data_fin_seq; 458 459 return true; 460 } 461 } 462 463 return false; 464 } 465 466 static void mptcp_set_datafin_timeout(struct sock *sk) 467 { 468 struct inet_connection_sock *icsk = inet_csk(sk); 469 u32 retransmits; 470 471 retransmits = min_t(u32, icsk->icsk_retransmits, 472 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 473 474 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 475 } 476 477 static void __mptcp_set_timeout(struct sock *sk, long tout) 478 { 479 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 480 } 481 482 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 483 { 484 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 485 486 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 487 inet_csk(ssk)->icsk_timeout - jiffies : 0; 488 } 489 490 static void mptcp_set_timeout(struct sock *sk) 491 { 492 struct mptcp_subflow_context *subflow; 493 long tout = 0; 494 495 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 496 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 497 __mptcp_set_timeout(sk, tout); 498 } 499 500 static inline bool tcp_can_send_ack(const struct sock *ssk) 501 { 502 return !((1 << inet_sk_state_load(ssk)) & 503 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 504 } 505 506 void __mptcp_subflow_send_ack(struct sock *ssk) 507 { 508 if (tcp_can_send_ack(ssk)) 509 tcp_send_ack(ssk); 510 } 511 512 static void mptcp_subflow_send_ack(struct sock *ssk) 513 { 514 bool slow; 515 516 slow = lock_sock_fast(ssk); 517 __mptcp_subflow_send_ack(ssk); 518 unlock_sock_fast(ssk, slow); 519 } 520 521 static void mptcp_send_ack(struct mptcp_sock *msk) 522 { 523 struct mptcp_subflow_context *subflow; 524 525 mptcp_for_each_subflow(msk, subflow) 526 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 527 } 528 529 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 530 { 531 bool slow; 532 533 slow = lock_sock_fast(ssk); 534 if (tcp_can_send_ack(ssk)) 535 tcp_cleanup_rbuf(ssk, 1); 536 unlock_sock_fast(ssk, slow); 537 } 538 539 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 540 { 541 const struct inet_connection_sock *icsk = inet_csk(ssk); 542 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 543 const struct tcp_sock *tp = tcp_sk(ssk); 544 545 return (ack_pending & ICSK_ACK_SCHED) && 546 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 547 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 548 (rx_empty && ack_pending & 549 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 550 } 551 552 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 553 { 554 int old_space = READ_ONCE(msk->old_wspace); 555 struct mptcp_subflow_context *subflow; 556 struct sock *sk = (struct sock *)msk; 557 int space = __mptcp_space(sk); 558 bool cleanup, rx_empty; 559 560 cleanup = (space > 0) && (space >= (old_space << 1)); 561 rx_empty = !__mptcp_rmem(sk); 562 563 mptcp_for_each_subflow(msk, subflow) { 564 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 565 566 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 567 mptcp_subflow_cleanup_rbuf(ssk); 568 } 569 } 570 571 static bool mptcp_check_data_fin(struct sock *sk) 572 { 573 struct mptcp_sock *msk = mptcp_sk(sk); 574 u64 rcv_data_fin_seq; 575 bool ret = false; 576 577 /* Need to ack a DATA_FIN received from a peer while this side 578 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 579 * msk->rcv_data_fin was set when parsing the incoming options 580 * at the subflow level and the msk lock was not held, so this 581 * is the first opportunity to act on the DATA_FIN and change 582 * the msk state. 583 * 584 * If we are caught up to the sequence number of the incoming 585 * DATA_FIN, send the DATA_ACK now and do state transition. If 586 * not caught up, do nothing and let the recv code send DATA_ACK 587 * when catching up. 588 */ 589 590 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 591 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 592 WRITE_ONCE(msk->rcv_data_fin, 0); 593 594 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 595 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 596 597 switch (sk->sk_state) { 598 case TCP_ESTABLISHED: 599 mptcp_set_state(sk, TCP_CLOSE_WAIT); 600 break; 601 case TCP_FIN_WAIT1: 602 mptcp_set_state(sk, TCP_CLOSING); 603 break; 604 case TCP_FIN_WAIT2: 605 mptcp_set_state(sk, TCP_CLOSE); 606 break; 607 default: 608 /* Other states not expected */ 609 WARN_ON_ONCE(1); 610 break; 611 } 612 613 ret = true; 614 if (!__mptcp_check_fallback(msk)) 615 mptcp_send_ack(msk); 616 mptcp_close_wake_up(sk); 617 } 618 return ret; 619 } 620 621 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 622 struct sock *ssk, 623 unsigned int *bytes) 624 { 625 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 626 struct sock *sk = (struct sock *)msk; 627 unsigned int moved = 0; 628 bool more_data_avail; 629 struct tcp_sock *tp; 630 bool done = false; 631 int sk_rbuf; 632 633 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 634 635 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 636 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 637 638 if (unlikely(ssk_rbuf > sk_rbuf)) { 639 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 640 sk_rbuf = ssk_rbuf; 641 } 642 } 643 644 pr_debug("msk=%p ssk=%p", msk, ssk); 645 tp = tcp_sk(ssk); 646 do { 647 u32 map_remaining, offset; 648 u32 seq = tp->copied_seq; 649 struct sk_buff *skb; 650 bool fin; 651 652 /* try to move as much data as available */ 653 map_remaining = subflow->map_data_len - 654 mptcp_subflow_get_map_offset(subflow); 655 656 skb = skb_peek(&ssk->sk_receive_queue); 657 if (!skb) { 658 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(), 659 * a different CPU can have already processed the pending 660 * data, stop here or we can enter an infinite loop 661 */ 662 if (!moved) 663 done = true; 664 break; 665 } 666 667 if (__mptcp_check_fallback(msk)) { 668 /* Under fallback skbs have no MPTCP extension and TCP could 669 * collapse them between the dummy map creation and the 670 * current dequeue. Be sure to adjust the map size. 671 */ 672 map_remaining = skb->len; 673 subflow->map_data_len = skb->len; 674 } 675 676 offset = seq - TCP_SKB_CB(skb)->seq; 677 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 678 if (fin) { 679 done = true; 680 seq++; 681 } 682 683 if (offset < skb->len) { 684 size_t len = skb->len - offset; 685 686 if (tp->urg_data) 687 done = true; 688 689 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 690 moved += len; 691 seq += len; 692 693 if (WARN_ON_ONCE(map_remaining < len)) 694 break; 695 } else { 696 WARN_ON_ONCE(!fin); 697 sk_eat_skb(ssk, skb); 698 done = true; 699 } 700 701 WRITE_ONCE(tp->copied_seq, seq); 702 more_data_avail = mptcp_subflow_data_available(ssk); 703 704 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 705 done = true; 706 break; 707 } 708 } while (more_data_avail); 709 710 *bytes += moved; 711 return done; 712 } 713 714 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 715 { 716 struct sock *sk = (struct sock *)msk; 717 struct sk_buff *skb, *tail; 718 bool moved = false; 719 struct rb_node *p; 720 u64 end_seq; 721 722 p = rb_first(&msk->out_of_order_queue); 723 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 724 while (p) { 725 skb = rb_to_skb(p); 726 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 727 break; 728 729 p = rb_next(p); 730 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 731 732 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 733 msk->ack_seq))) { 734 mptcp_drop(sk, skb); 735 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 736 continue; 737 } 738 739 end_seq = MPTCP_SKB_CB(skb)->end_seq; 740 tail = skb_peek_tail(&sk->sk_receive_queue); 741 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 742 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 743 744 /* skip overlapping data, if any */ 745 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 746 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 747 delta); 748 MPTCP_SKB_CB(skb)->offset += delta; 749 MPTCP_SKB_CB(skb)->map_seq += delta; 750 __skb_queue_tail(&sk->sk_receive_queue, skb); 751 } 752 msk->bytes_received += end_seq - msk->ack_seq; 753 msk->ack_seq = end_seq; 754 moved = true; 755 } 756 return moved; 757 } 758 759 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 760 { 761 int err = sock_error(ssk); 762 int ssk_state; 763 764 if (!err) 765 return false; 766 767 /* only propagate errors on fallen-back sockets or 768 * on MPC connect 769 */ 770 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 771 return false; 772 773 /* We need to propagate only transition to CLOSE state. 774 * Orphaned socket will see such state change via 775 * subflow_sched_work_if_closed() and that path will properly 776 * destroy the msk as needed. 777 */ 778 ssk_state = inet_sk_state_load(ssk); 779 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 780 mptcp_set_state(sk, ssk_state); 781 WRITE_ONCE(sk->sk_err, -err); 782 783 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 784 smp_wmb(); 785 sk_error_report(sk); 786 return true; 787 } 788 789 void __mptcp_error_report(struct sock *sk) 790 { 791 struct mptcp_subflow_context *subflow; 792 struct mptcp_sock *msk = mptcp_sk(sk); 793 794 mptcp_for_each_subflow(msk, subflow) 795 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 796 break; 797 } 798 799 /* In most cases we will be able to lock the mptcp socket. If its already 800 * owned, we need to defer to the work queue to avoid ABBA deadlock. 801 */ 802 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 803 { 804 struct sock *sk = (struct sock *)msk; 805 unsigned int moved = 0; 806 807 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 808 __mptcp_ofo_queue(msk); 809 if (unlikely(ssk->sk_err)) { 810 if (!sock_owned_by_user(sk)) 811 __mptcp_error_report(sk); 812 else 813 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 814 } 815 816 /* If the moves have caught up with the DATA_FIN sequence number 817 * it's time to ack the DATA_FIN and change socket state, but 818 * this is not a good place to change state. Let the workqueue 819 * do it. 820 */ 821 if (mptcp_pending_data_fin(sk, NULL)) 822 mptcp_schedule_work(sk); 823 return moved > 0; 824 } 825 826 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 827 { 828 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 829 struct mptcp_sock *msk = mptcp_sk(sk); 830 int sk_rbuf, ssk_rbuf; 831 832 /* The peer can send data while we are shutting down this 833 * subflow at msk destruction time, but we must avoid enqueuing 834 * more data to the msk receive queue 835 */ 836 if (unlikely(subflow->disposable)) 837 return; 838 839 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 840 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 841 if (unlikely(ssk_rbuf > sk_rbuf)) 842 sk_rbuf = ssk_rbuf; 843 844 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 845 if (__mptcp_rmem(sk) > sk_rbuf) { 846 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 847 return; 848 } 849 850 /* Wake-up the reader only for in-sequence data */ 851 mptcp_data_lock(sk); 852 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 853 sk->sk_data_ready(sk); 854 mptcp_data_unlock(sk); 855 } 856 857 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 858 { 859 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 860 WRITE_ONCE(msk->allow_infinite_fallback, false); 861 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 862 } 863 864 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 865 { 866 struct sock *sk = (struct sock *)msk; 867 868 if (sk->sk_state != TCP_ESTABLISHED) 869 return false; 870 871 /* attach to msk socket only after we are sure we will deal with it 872 * at close time 873 */ 874 if (sk->sk_socket && !ssk->sk_socket) 875 mptcp_sock_graft(ssk, sk->sk_socket); 876 877 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 878 mptcp_sockopt_sync_locked(msk, ssk); 879 mptcp_subflow_joined(msk, ssk); 880 mptcp_stop_tout_timer(sk); 881 __mptcp_propagate_sndbuf(sk, ssk); 882 return true; 883 } 884 885 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 886 { 887 struct mptcp_subflow_context *tmp, *subflow; 888 struct mptcp_sock *msk = mptcp_sk(sk); 889 890 list_for_each_entry_safe(subflow, tmp, join_list, node) { 891 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 892 bool slow = lock_sock_fast(ssk); 893 894 list_move_tail(&subflow->node, &msk->conn_list); 895 if (!__mptcp_finish_join(msk, ssk)) 896 mptcp_subflow_reset(ssk); 897 unlock_sock_fast(ssk, slow); 898 } 899 } 900 901 static bool mptcp_rtx_timer_pending(struct sock *sk) 902 { 903 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 904 } 905 906 static void mptcp_reset_rtx_timer(struct sock *sk) 907 { 908 struct inet_connection_sock *icsk = inet_csk(sk); 909 unsigned long tout; 910 911 /* prevent rescheduling on close */ 912 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 913 return; 914 915 tout = mptcp_sk(sk)->timer_ival; 916 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 917 } 918 919 bool mptcp_schedule_work(struct sock *sk) 920 { 921 if (inet_sk_state_load(sk) != TCP_CLOSE && 922 schedule_work(&mptcp_sk(sk)->work)) { 923 /* each subflow already holds a reference to the sk, and the 924 * workqueue is invoked by a subflow, so sk can't go away here. 925 */ 926 sock_hold(sk); 927 return true; 928 } 929 return false; 930 } 931 932 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 933 { 934 struct mptcp_subflow_context *subflow; 935 936 msk_owned_by_me(msk); 937 938 mptcp_for_each_subflow(msk, subflow) { 939 if (READ_ONCE(subflow->data_avail)) 940 return mptcp_subflow_tcp_sock(subflow); 941 } 942 943 return NULL; 944 } 945 946 static bool mptcp_skb_can_collapse_to(u64 write_seq, 947 const struct sk_buff *skb, 948 const struct mptcp_ext *mpext) 949 { 950 if (!tcp_skb_can_collapse_to(skb)) 951 return false; 952 953 /* can collapse only if MPTCP level sequence is in order and this 954 * mapping has not been xmitted yet 955 */ 956 return mpext && mpext->data_seq + mpext->data_len == write_seq && 957 !mpext->frozen; 958 } 959 960 /* we can append data to the given data frag if: 961 * - there is space available in the backing page_frag 962 * - the data frag tail matches the current page_frag free offset 963 * - the data frag end sequence number matches the current write seq 964 */ 965 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 966 const struct page_frag *pfrag, 967 const struct mptcp_data_frag *df) 968 { 969 return df && pfrag->page == df->page && 970 pfrag->size - pfrag->offset > 0 && 971 pfrag->offset == (df->offset + df->data_len) && 972 df->data_seq + df->data_len == msk->write_seq; 973 } 974 975 static void dfrag_uncharge(struct sock *sk, int len) 976 { 977 sk_mem_uncharge(sk, len); 978 sk_wmem_queued_add(sk, -len); 979 } 980 981 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 982 { 983 int len = dfrag->data_len + dfrag->overhead; 984 985 list_del(&dfrag->list); 986 dfrag_uncharge(sk, len); 987 put_page(dfrag->page); 988 } 989 990 static void __mptcp_clean_una(struct sock *sk) 991 { 992 struct mptcp_sock *msk = mptcp_sk(sk); 993 struct mptcp_data_frag *dtmp, *dfrag; 994 u64 snd_una; 995 996 snd_una = msk->snd_una; 997 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 998 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 999 break; 1000 1001 if (unlikely(dfrag == msk->first_pending)) { 1002 /* in recovery mode can see ack after the current snd head */ 1003 if (WARN_ON_ONCE(!msk->recovery)) 1004 break; 1005 1006 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1007 } 1008 1009 dfrag_clear(sk, dfrag); 1010 } 1011 1012 dfrag = mptcp_rtx_head(sk); 1013 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1014 u64 delta = snd_una - dfrag->data_seq; 1015 1016 /* prevent wrap around in recovery mode */ 1017 if (unlikely(delta > dfrag->already_sent)) { 1018 if (WARN_ON_ONCE(!msk->recovery)) 1019 goto out; 1020 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1021 goto out; 1022 dfrag->already_sent += delta - dfrag->already_sent; 1023 } 1024 1025 dfrag->data_seq += delta; 1026 dfrag->offset += delta; 1027 dfrag->data_len -= delta; 1028 dfrag->already_sent -= delta; 1029 1030 dfrag_uncharge(sk, delta); 1031 } 1032 1033 /* all retransmitted data acked, recovery completed */ 1034 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1035 msk->recovery = false; 1036 1037 out: 1038 if (snd_una == READ_ONCE(msk->snd_nxt) && 1039 snd_una == READ_ONCE(msk->write_seq)) { 1040 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1041 mptcp_stop_rtx_timer(sk); 1042 } else { 1043 mptcp_reset_rtx_timer(sk); 1044 } 1045 } 1046 1047 static void __mptcp_clean_una_wakeup(struct sock *sk) 1048 { 1049 lockdep_assert_held_once(&sk->sk_lock.slock); 1050 1051 __mptcp_clean_una(sk); 1052 mptcp_write_space(sk); 1053 } 1054 1055 static void mptcp_clean_una_wakeup(struct sock *sk) 1056 { 1057 mptcp_data_lock(sk); 1058 __mptcp_clean_una_wakeup(sk); 1059 mptcp_data_unlock(sk); 1060 } 1061 1062 static void mptcp_enter_memory_pressure(struct sock *sk) 1063 { 1064 struct mptcp_subflow_context *subflow; 1065 struct mptcp_sock *msk = mptcp_sk(sk); 1066 bool first = true; 1067 1068 mptcp_for_each_subflow(msk, subflow) { 1069 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1070 1071 if (first) 1072 tcp_enter_memory_pressure(ssk); 1073 sk_stream_moderate_sndbuf(ssk); 1074 1075 first = false; 1076 } 1077 __mptcp_sync_sndbuf(sk); 1078 } 1079 1080 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1081 * data 1082 */ 1083 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1084 { 1085 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1086 pfrag, sk->sk_allocation))) 1087 return true; 1088 1089 mptcp_enter_memory_pressure(sk); 1090 return false; 1091 } 1092 1093 static struct mptcp_data_frag * 1094 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1095 int orig_offset) 1096 { 1097 int offset = ALIGN(orig_offset, sizeof(long)); 1098 struct mptcp_data_frag *dfrag; 1099 1100 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1101 dfrag->data_len = 0; 1102 dfrag->data_seq = msk->write_seq; 1103 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1104 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1105 dfrag->already_sent = 0; 1106 dfrag->page = pfrag->page; 1107 1108 return dfrag; 1109 } 1110 1111 struct mptcp_sendmsg_info { 1112 int mss_now; 1113 int size_goal; 1114 u16 limit; 1115 u16 sent; 1116 unsigned int flags; 1117 bool data_lock_held; 1118 }; 1119 1120 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1121 u64 data_seq, int avail_size) 1122 { 1123 u64 window_end = mptcp_wnd_end(msk); 1124 u64 mptcp_snd_wnd; 1125 1126 if (__mptcp_check_fallback(msk)) 1127 return avail_size; 1128 1129 mptcp_snd_wnd = window_end - data_seq; 1130 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1131 1132 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1133 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1134 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1135 } 1136 1137 return avail_size; 1138 } 1139 1140 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1141 { 1142 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1143 1144 if (!mpext) 1145 return false; 1146 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1147 return true; 1148 } 1149 1150 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1151 { 1152 struct sk_buff *skb; 1153 1154 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1155 if (likely(skb)) { 1156 if (likely(__mptcp_add_ext(skb, gfp))) { 1157 skb_reserve(skb, MAX_TCP_HEADER); 1158 skb->ip_summed = CHECKSUM_PARTIAL; 1159 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1160 return skb; 1161 } 1162 __kfree_skb(skb); 1163 } else { 1164 mptcp_enter_memory_pressure(sk); 1165 } 1166 return NULL; 1167 } 1168 1169 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1170 { 1171 struct sk_buff *skb; 1172 1173 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1174 if (!skb) 1175 return NULL; 1176 1177 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1178 tcp_skb_entail(ssk, skb); 1179 return skb; 1180 } 1181 tcp_skb_tsorted_anchor_cleanup(skb); 1182 kfree_skb(skb); 1183 return NULL; 1184 } 1185 1186 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1187 { 1188 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1189 1190 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1191 } 1192 1193 /* note: this always recompute the csum on the whole skb, even 1194 * if we just appended a single frag. More status info needed 1195 */ 1196 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1197 { 1198 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1199 __wsum csum = ~csum_unfold(mpext->csum); 1200 int offset = skb->len - added; 1201 1202 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1203 } 1204 1205 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1206 struct sock *ssk, 1207 struct mptcp_ext *mpext) 1208 { 1209 if (!mpext) 1210 return; 1211 1212 mpext->infinite_map = 1; 1213 mpext->data_len = 0; 1214 1215 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1216 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1217 pr_fallback(msk); 1218 mptcp_do_fallback(ssk); 1219 } 1220 1221 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1222 1223 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1224 struct mptcp_data_frag *dfrag, 1225 struct mptcp_sendmsg_info *info) 1226 { 1227 u64 data_seq = dfrag->data_seq + info->sent; 1228 int offset = dfrag->offset + info->sent; 1229 struct mptcp_sock *msk = mptcp_sk(sk); 1230 bool zero_window_probe = false; 1231 struct mptcp_ext *mpext = NULL; 1232 bool can_coalesce = false; 1233 bool reuse_skb = true; 1234 struct sk_buff *skb; 1235 size_t copy; 1236 int i; 1237 1238 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1239 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1240 1241 if (WARN_ON_ONCE(info->sent > info->limit || 1242 info->limit > dfrag->data_len)) 1243 return 0; 1244 1245 if (unlikely(!__tcp_can_send(ssk))) 1246 return -EAGAIN; 1247 1248 /* compute send limit */ 1249 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1250 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1251 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1252 copy = info->size_goal; 1253 1254 skb = tcp_write_queue_tail(ssk); 1255 if (skb && copy > skb->len) { 1256 /* Limit the write to the size available in the 1257 * current skb, if any, so that we create at most a new skb. 1258 * Explicitly tells TCP internals to avoid collapsing on later 1259 * queue management operation, to avoid breaking the ext <-> 1260 * SSN association set here 1261 */ 1262 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1263 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1264 TCP_SKB_CB(skb)->eor = 1; 1265 tcp_mark_push(tcp_sk(ssk), skb); 1266 goto alloc_skb; 1267 } 1268 1269 i = skb_shinfo(skb)->nr_frags; 1270 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1271 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1272 tcp_mark_push(tcp_sk(ssk), skb); 1273 goto alloc_skb; 1274 } 1275 1276 copy -= skb->len; 1277 } else { 1278 alloc_skb: 1279 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1280 if (!skb) 1281 return -ENOMEM; 1282 1283 i = skb_shinfo(skb)->nr_frags; 1284 reuse_skb = false; 1285 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1286 } 1287 1288 /* Zero window and all data acked? Probe. */ 1289 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1290 if (copy == 0) { 1291 u64 snd_una = READ_ONCE(msk->snd_una); 1292 1293 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) { 1294 tcp_remove_empty_skb(ssk); 1295 return 0; 1296 } 1297 1298 zero_window_probe = true; 1299 data_seq = snd_una - 1; 1300 copy = 1; 1301 } 1302 1303 copy = min_t(size_t, copy, info->limit - info->sent); 1304 if (!sk_wmem_schedule(ssk, copy)) { 1305 tcp_remove_empty_skb(ssk); 1306 return -ENOMEM; 1307 } 1308 1309 if (can_coalesce) { 1310 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1311 } else { 1312 get_page(dfrag->page); 1313 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1314 } 1315 1316 skb->len += copy; 1317 skb->data_len += copy; 1318 skb->truesize += copy; 1319 sk_wmem_queued_add(ssk, copy); 1320 sk_mem_charge(ssk, copy); 1321 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1322 TCP_SKB_CB(skb)->end_seq += copy; 1323 tcp_skb_pcount_set(skb, 0); 1324 1325 /* on skb reuse we just need to update the DSS len */ 1326 if (reuse_skb) { 1327 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1328 mpext->data_len += copy; 1329 goto out; 1330 } 1331 1332 memset(mpext, 0, sizeof(*mpext)); 1333 mpext->data_seq = data_seq; 1334 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1335 mpext->data_len = copy; 1336 mpext->use_map = 1; 1337 mpext->dsn64 = 1; 1338 1339 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1340 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1341 mpext->dsn64); 1342 1343 if (zero_window_probe) { 1344 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1345 mpext->frozen = 1; 1346 if (READ_ONCE(msk->csum_enabled)) 1347 mptcp_update_data_checksum(skb, copy); 1348 tcp_push_pending_frames(ssk); 1349 return 0; 1350 } 1351 out: 1352 if (READ_ONCE(msk->csum_enabled)) 1353 mptcp_update_data_checksum(skb, copy); 1354 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1355 mptcp_update_infinite_map(msk, ssk, mpext); 1356 trace_mptcp_sendmsg_frag(mpext); 1357 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1358 return copy; 1359 } 1360 1361 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1362 sizeof(struct tcphdr) - \ 1363 MAX_TCP_OPTION_SPACE - \ 1364 sizeof(struct ipv6hdr) - \ 1365 sizeof(struct frag_hdr)) 1366 1367 struct subflow_send_info { 1368 struct sock *ssk; 1369 u64 linger_time; 1370 }; 1371 1372 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1373 { 1374 if (!subflow->stale) 1375 return; 1376 1377 subflow->stale = 0; 1378 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1379 } 1380 1381 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1382 { 1383 if (unlikely(subflow->stale)) { 1384 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1385 1386 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1387 return false; 1388 1389 mptcp_subflow_set_active(subflow); 1390 } 1391 return __mptcp_subflow_active(subflow); 1392 } 1393 1394 #define SSK_MODE_ACTIVE 0 1395 #define SSK_MODE_BACKUP 1 1396 #define SSK_MODE_MAX 2 1397 1398 /* implement the mptcp packet scheduler; 1399 * returns the subflow that will transmit the next DSS 1400 * additionally updates the rtx timeout 1401 */ 1402 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1403 { 1404 struct subflow_send_info send_info[SSK_MODE_MAX]; 1405 struct mptcp_subflow_context *subflow; 1406 struct sock *sk = (struct sock *)msk; 1407 u32 pace, burst, wmem; 1408 int i, nr_active = 0; 1409 struct sock *ssk; 1410 u64 linger_time; 1411 long tout = 0; 1412 1413 /* pick the subflow with the lower wmem/wspace ratio */ 1414 for (i = 0; i < SSK_MODE_MAX; ++i) { 1415 send_info[i].ssk = NULL; 1416 send_info[i].linger_time = -1; 1417 } 1418 1419 mptcp_for_each_subflow(msk, subflow) { 1420 trace_mptcp_subflow_get_send(subflow); 1421 ssk = mptcp_subflow_tcp_sock(subflow); 1422 if (!mptcp_subflow_active(subflow)) 1423 continue; 1424 1425 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1426 nr_active += !subflow->backup; 1427 pace = subflow->avg_pacing_rate; 1428 if (unlikely(!pace)) { 1429 /* init pacing rate from socket */ 1430 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1431 pace = subflow->avg_pacing_rate; 1432 if (!pace) 1433 continue; 1434 } 1435 1436 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1437 if (linger_time < send_info[subflow->backup].linger_time) { 1438 send_info[subflow->backup].ssk = ssk; 1439 send_info[subflow->backup].linger_time = linger_time; 1440 } 1441 } 1442 __mptcp_set_timeout(sk, tout); 1443 1444 /* pick the best backup if no other subflow is active */ 1445 if (!nr_active) 1446 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1447 1448 /* According to the blest algorithm, to avoid HoL blocking for the 1449 * faster flow, we need to: 1450 * - estimate the faster flow linger time 1451 * - use the above to estimate the amount of byte transferred 1452 * by the faster flow 1453 * - check that the amount of queued data is greter than the above, 1454 * otherwise do not use the picked, slower, subflow 1455 * We select the subflow with the shorter estimated time to flush 1456 * the queued mem, which basically ensure the above. We just need 1457 * to check that subflow has a non empty cwin. 1458 */ 1459 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1460 if (!ssk || !sk_stream_memory_free(ssk)) 1461 return NULL; 1462 1463 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1464 wmem = READ_ONCE(ssk->sk_wmem_queued); 1465 if (!burst) 1466 return ssk; 1467 1468 subflow = mptcp_subflow_ctx(ssk); 1469 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1470 READ_ONCE(ssk->sk_pacing_rate) * burst, 1471 burst + wmem); 1472 msk->snd_burst = burst; 1473 return ssk; 1474 } 1475 1476 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1477 { 1478 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1479 release_sock(ssk); 1480 } 1481 1482 static void mptcp_update_post_push(struct mptcp_sock *msk, 1483 struct mptcp_data_frag *dfrag, 1484 u32 sent) 1485 { 1486 u64 snd_nxt_new = dfrag->data_seq; 1487 1488 dfrag->already_sent += sent; 1489 1490 msk->snd_burst -= sent; 1491 1492 snd_nxt_new += dfrag->already_sent; 1493 1494 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1495 * is recovering after a failover. In that event, this re-sends 1496 * old segments. 1497 * 1498 * Thus compute snd_nxt_new candidate based on 1499 * the dfrag->data_seq that was sent and the data 1500 * that has been handed to the subflow for transmission 1501 * and skip update in case it was old dfrag. 1502 */ 1503 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1504 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1505 msk->snd_nxt = snd_nxt_new; 1506 } 1507 } 1508 1509 void mptcp_check_and_set_pending(struct sock *sk) 1510 { 1511 if (mptcp_send_head(sk)) { 1512 mptcp_data_lock(sk); 1513 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1514 mptcp_data_unlock(sk); 1515 } 1516 } 1517 1518 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1519 struct mptcp_sendmsg_info *info) 1520 { 1521 struct mptcp_sock *msk = mptcp_sk(sk); 1522 struct mptcp_data_frag *dfrag; 1523 int len, copied = 0, err = 0; 1524 1525 while ((dfrag = mptcp_send_head(sk))) { 1526 info->sent = dfrag->already_sent; 1527 info->limit = dfrag->data_len; 1528 len = dfrag->data_len - dfrag->already_sent; 1529 while (len > 0) { 1530 int ret = 0; 1531 1532 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1533 if (ret <= 0) { 1534 err = copied ? : ret; 1535 goto out; 1536 } 1537 1538 info->sent += ret; 1539 copied += ret; 1540 len -= ret; 1541 1542 mptcp_update_post_push(msk, dfrag, ret); 1543 } 1544 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1545 1546 if (msk->snd_burst <= 0 || 1547 !sk_stream_memory_free(ssk) || 1548 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1549 err = copied; 1550 goto out; 1551 } 1552 mptcp_set_timeout(sk); 1553 } 1554 err = copied; 1555 1556 out: 1557 return err; 1558 } 1559 1560 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1561 { 1562 struct sock *prev_ssk = NULL, *ssk = NULL; 1563 struct mptcp_sock *msk = mptcp_sk(sk); 1564 struct mptcp_sendmsg_info info = { 1565 .flags = flags, 1566 }; 1567 bool do_check_data_fin = false; 1568 int push_count = 1; 1569 1570 while (mptcp_send_head(sk) && (push_count > 0)) { 1571 struct mptcp_subflow_context *subflow; 1572 int ret = 0; 1573 1574 if (mptcp_sched_get_send(msk)) 1575 break; 1576 1577 push_count = 0; 1578 1579 mptcp_for_each_subflow(msk, subflow) { 1580 if (READ_ONCE(subflow->scheduled)) { 1581 mptcp_subflow_set_scheduled(subflow, false); 1582 1583 prev_ssk = ssk; 1584 ssk = mptcp_subflow_tcp_sock(subflow); 1585 if (ssk != prev_ssk) { 1586 /* First check. If the ssk has changed since 1587 * the last round, release prev_ssk 1588 */ 1589 if (prev_ssk) 1590 mptcp_push_release(prev_ssk, &info); 1591 1592 /* Need to lock the new subflow only if different 1593 * from the previous one, otherwise we are still 1594 * helding the relevant lock 1595 */ 1596 lock_sock(ssk); 1597 } 1598 1599 push_count++; 1600 1601 ret = __subflow_push_pending(sk, ssk, &info); 1602 if (ret <= 0) { 1603 if (ret != -EAGAIN || 1604 (1 << ssk->sk_state) & 1605 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1606 push_count--; 1607 continue; 1608 } 1609 do_check_data_fin = true; 1610 } 1611 } 1612 } 1613 1614 /* at this point we held the socket lock for the last subflow we used */ 1615 if (ssk) 1616 mptcp_push_release(ssk, &info); 1617 1618 /* ensure the rtx timer is running */ 1619 if (!mptcp_rtx_timer_pending(sk)) 1620 mptcp_reset_rtx_timer(sk); 1621 if (do_check_data_fin) 1622 mptcp_check_send_data_fin(sk); 1623 } 1624 1625 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1626 { 1627 struct mptcp_sock *msk = mptcp_sk(sk); 1628 struct mptcp_sendmsg_info info = { 1629 .data_lock_held = true, 1630 }; 1631 bool keep_pushing = true; 1632 struct sock *xmit_ssk; 1633 int copied = 0; 1634 1635 info.flags = 0; 1636 while (mptcp_send_head(sk) && keep_pushing) { 1637 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1638 int ret = 0; 1639 1640 /* check for a different subflow usage only after 1641 * spooling the first chunk of data 1642 */ 1643 if (first) { 1644 mptcp_subflow_set_scheduled(subflow, false); 1645 ret = __subflow_push_pending(sk, ssk, &info); 1646 first = false; 1647 if (ret <= 0) 1648 break; 1649 copied += ret; 1650 continue; 1651 } 1652 1653 if (mptcp_sched_get_send(msk)) 1654 goto out; 1655 1656 if (READ_ONCE(subflow->scheduled)) { 1657 mptcp_subflow_set_scheduled(subflow, false); 1658 ret = __subflow_push_pending(sk, ssk, &info); 1659 if (ret <= 0) 1660 keep_pushing = false; 1661 copied += ret; 1662 } 1663 1664 mptcp_for_each_subflow(msk, subflow) { 1665 if (READ_ONCE(subflow->scheduled)) { 1666 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1667 if (xmit_ssk != ssk) { 1668 mptcp_subflow_delegate(subflow, 1669 MPTCP_DELEGATE_SEND); 1670 keep_pushing = false; 1671 } 1672 } 1673 } 1674 } 1675 1676 out: 1677 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1678 * not going to flush it via release_sock() 1679 */ 1680 if (copied) { 1681 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1682 info.size_goal); 1683 if (!mptcp_rtx_timer_pending(sk)) 1684 mptcp_reset_rtx_timer(sk); 1685 1686 if (msk->snd_data_fin_enable && 1687 msk->snd_nxt + 1 == msk->write_seq) 1688 mptcp_schedule_work(sk); 1689 } 1690 } 1691 1692 static void mptcp_set_nospace(struct sock *sk) 1693 { 1694 /* enable autotune */ 1695 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1696 1697 /* will be cleared on avail space */ 1698 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1699 } 1700 1701 static int mptcp_disconnect(struct sock *sk, int flags); 1702 1703 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1704 size_t len, int *copied_syn) 1705 { 1706 unsigned int saved_flags = msg->msg_flags; 1707 struct mptcp_sock *msk = mptcp_sk(sk); 1708 struct sock *ssk; 1709 int ret; 1710 1711 /* on flags based fastopen the mptcp is supposed to create the 1712 * first subflow right now. Otherwise we are in the defer_connect 1713 * path, and the first subflow must be already present. 1714 * Since the defer_connect flag is cleared after the first succsful 1715 * fastopen attempt, no need to check for additional subflow status. 1716 */ 1717 if (msg->msg_flags & MSG_FASTOPEN) { 1718 ssk = __mptcp_nmpc_sk(msk); 1719 if (IS_ERR(ssk)) 1720 return PTR_ERR(ssk); 1721 } 1722 if (!msk->first) 1723 return -EINVAL; 1724 1725 ssk = msk->first; 1726 1727 lock_sock(ssk); 1728 msg->msg_flags |= MSG_DONTWAIT; 1729 msk->fastopening = 1; 1730 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1731 msk->fastopening = 0; 1732 msg->msg_flags = saved_flags; 1733 release_sock(ssk); 1734 1735 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1736 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1737 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1738 msg->msg_namelen, msg->msg_flags, 1); 1739 1740 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1741 * case of any error, except timeout or signal 1742 */ 1743 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1744 *copied_syn = 0; 1745 } else if (ret && ret != -EINPROGRESS) { 1746 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1747 * __inet_stream_connect() can fail, due to looking check, 1748 * see mptcp_disconnect(). 1749 * Attempt it again outside the problematic scope. 1750 */ 1751 if (!mptcp_disconnect(sk, 0)) 1752 sk->sk_socket->state = SS_UNCONNECTED; 1753 } 1754 inet_clear_bit(DEFER_CONNECT, sk); 1755 1756 return ret; 1757 } 1758 1759 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1760 { 1761 struct mptcp_sock *msk = mptcp_sk(sk); 1762 struct page_frag *pfrag; 1763 size_t copied = 0; 1764 int ret = 0; 1765 long timeo; 1766 1767 /* silently ignore everything else */ 1768 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1769 1770 lock_sock(sk); 1771 1772 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1773 msg->msg_flags & MSG_FASTOPEN)) { 1774 int copied_syn = 0; 1775 1776 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1777 copied += copied_syn; 1778 if (ret == -EINPROGRESS && copied_syn > 0) 1779 goto out; 1780 else if (ret) 1781 goto do_error; 1782 } 1783 1784 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1785 1786 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1787 ret = sk_stream_wait_connect(sk, &timeo); 1788 if (ret) 1789 goto do_error; 1790 } 1791 1792 ret = -EPIPE; 1793 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1794 goto do_error; 1795 1796 pfrag = sk_page_frag(sk); 1797 1798 while (msg_data_left(msg)) { 1799 int total_ts, frag_truesize = 0; 1800 struct mptcp_data_frag *dfrag; 1801 bool dfrag_collapsed; 1802 size_t psize, offset; 1803 1804 /* reuse tail pfrag, if possible, or carve a new one from the 1805 * page allocator 1806 */ 1807 dfrag = mptcp_pending_tail(sk); 1808 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1809 if (!dfrag_collapsed) { 1810 if (!sk_stream_memory_free(sk)) 1811 goto wait_for_memory; 1812 1813 if (!mptcp_page_frag_refill(sk, pfrag)) 1814 goto wait_for_memory; 1815 1816 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1817 frag_truesize = dfrag->overhead; 1818 } 1819 1820 /* we do not bound vs wspace, to allow a single packet. 1821 * memory accounting will prevent execessive memory usage 1822 * anyway 1823 */ 1824 offset = dfrag->offset + dfrag->data_len; 1825 psize = pfrag->size - offset; 1826 psize = min_t(size_t, psize, msg_data_left(msg)); 1827 total_ts = psize + frag_truesize; 1828 1829 if (!sk_wmem_schedule(sk, total_ts)) 1830 goto wait_for_memory; 1831 1832 if (copy_page_from_iter(dfrag->page, offset, psize, 1833 &msg->msg_iter) != psize) { 1834 ret = -EFAULT; 1835 goto do_error; 1836 } 1837 1838 /* data successfully copied into the write queue */ 1839 sk_forward_alloc_add(sk, -total_ts); 1840 copied += psize; 1841 dfrag->data_len += psize; 1842 frag_truesize += psize; 1843 pfrag->offset += frag_truesize; 1844 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1845 1846 /* charge data on mptcp pending queue to the msk socket 1847 * Note: we charge such data both to sk and ssk 1848 */ 1849 sk_wmem_queued_add(sk, frag_truesize); 1850 if (!dfrag_collapsed) { 1851 get_page(dfrag->page); 1852 list_add_tail(&dfrag->list, &msk->rtx_queue); 1853 if (!msk->first_pending) 1854 WRITE_ONCE(msk->first_pending, dfrag); 1855 } 1856 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1857 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1858 !dfrag_collapsed); 1859 1860 continue; 1861 1862 wait_for_memory: 1863 mptcp_set_nospace(sk); 1864 __mptcp_push_pending(sk, msg->msg_flags); 1865 ret = sk_stream_wait_memory(sk, &timeo); 1866 if (ret) 1867 goto do_error; 1868 } 1869 1870 if (copied) 1871 __mptcp_push_pending(sk, msg->msg_flags); 1872 1873 out: 1874 release_sock(sk); 1875 return copied; 1876 1877 do_error: 1878 if (copied) 1879 goto out; 1880 1881 copied = sk_stream_error(sk, msg->msg_flags, ret); 1882 goto out; 1883 } 1884 1885 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1886 struct msghdr *msg, 1887 size_t len, int flags, 1888 struct scm_timestamping_internal *tss, 1889 int *cmsg_flags) 1890 { 1891 struct sk_buff *skb, *tmp; 1892 int copied = 0; 1893 1894 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1895 u32 offset = MPTCP_SKB_CB(skb)->offset; 1896 u32 data_len = skb->len - offset; 1897 u32 count = min_t(size_t, len - copied, data_len); 1898 int err; 1899 1900 if (!(flags & MSG_TRUNC)) { 1901 err = skb_copy_datagram_msg(skb, offset, msg, count); 1902 if (unlikely(err < 0)) { 1903 if (!copied) 1904 return err; 1905 break; 1906 } 1907 } 1908 1909 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1910 tcp_update_recv_tstamps(skb, tss); 1911 *cmsg_flags |= MPTCP_CMSG_TS; 1912 } 1913 1914 copied += count; 1915 1916 if (count < data_len) { 1917 if (!(flags & MSG_PEEK)) { 1918 MPTCP_SKB_CB(skb)->offset += count; 1919 MPTCP_SKB_CB(skb)->map_seq += count; 1920 msk->bytes_consumed += count; 1921 } 1922 break; 1923 } 1924 1925 if (!(flags & MSG_PEEK)) { 1926 /* we will bulk release the skb memory later */ 1927 skb->destructor = NULL; 1928 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1929 __skb_unlink(skb, &msk->receive_queue); 1930 __kfree_skb(skb); 1931 msk->bytes_consumed += count; 1932 } 1933 1934 if (copied >= len) 1935 break; 1936 } 1937 1938 return copied; 1939 } 1940 1941 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1942 * 1943 * Only difference: Use highest rtt estimate of the subflows in use. 1944 */ 1945 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1946 { 1947 struct mptcp_subflow_context *subflow; 1948 struct sock *sk = (struct sock *)msk; 1949 u8 scaling_ratio = U8_MAX; 1950 u32 time, advmss = 1; 1951 u64 rtt_us, mstamp; 1952 1953 msk_owned_by_me(msk); 1954 1955 if (copied <= 0) 1956 return; 1957 1958 if (!msk->rcvspace_init) 1959 mptcp_rcv_space_init(msk, msk->first); 1960 1961 msk->rcvq_space.copied += copied; 1962 1963 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1964 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1965 1966 rtt_us = msk->rcvq_space.rtt_us; 1967 if (rtt_us && time < (rtt_us >> 3)) 1968 return; 1969 1970 rtt_us = 0; 1971 mptcp_for_each_subflow(msk, subflow) { 1972 const struct tcp_sock *tp; 1973 u64 sf_rtt_us; 1974 u32 sf_advmss; 1975 1976 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1977 1978 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1979 sf_advmss = READ_ONCE(tp->advmss); 1980 1981 rtt_us = max(sf_rtt_us, rtt_us); 1982 advmss = max(sf_advmss, advmss); 1983 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 1984 } 1985 1986 msk->rcvq_space.rtt_us = rtt_us; 1987 msk->scaling_ratio = scaling_ratio; 1988 if (time < (rtt_us >> 3) || rtt_us == 0) 1989 return; 1990 1991 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1992 goto new_measure; 1993 1994 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 1995 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1996 u64 rcvwin, grow; 1997 int rcvbuf; 1998 1999 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 2000 2001 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 2002 2003 do_div(grow, msk->rcvq_space.space); 2004 rcvwin += (grow << 1); 2005 2006 rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin), 2007 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 2008 2009 if (rcvbuf > sk->sk_rcvbuf) { 2010 u32 window_clamp; 2011 2012 window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf); 2013 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 2014 2015 /* Make subflows follow along. If we do not do this, we 2016 * get drops at subflow level if skbs can't be moved to 2017 * the mptcp rx queue fast enough (announced rcv_win can 2018 * exceed ssk->sk_rcvbuf). 2019 */ 2020 mptcp_for_each_subflow(msk, subflow) { 2021 struct sock *ssk; 2022 bool slow; 2023 2024 ssk = mptcp_subflow_tcp_sock(subflow); 2025 slow = lock_sock_fast(ssk); 2026 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 2027 WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp); 2028 tcp_cleanup_rbuf(ssk, 1); 2029 unlock_sock_fast(ssk, slow); 2030 } 2031 } 2032 } 2033 2034 msk->rcvq_space.space = msk->rcvq_space.copied; 2035 new_measure: 2036 msk->rcvq_space.copied = 0; 2037 msk->rcvq_space.time = mstamp; 2038 } 2039 2040 static void __mptcp_update_rmem(struct sock *sk) 2041 { 2042 struct mptcp_sock *msk = mptcp_sk(sk); 2043 2044 if (!msk->rmem_released) 2045 return; 2046 2047 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 2048 mptcp_rmem_uncharge(sk, msk->rmem_released); 2049 WRITE_ONCE(msk->rmem_released, 0); 2050 } 2051 2052 static void __mptcp_splice_receive_queue(struct sock *sk) 2053 { 2054 struct mptcp_sock *msk = mptcp_sk(sk); 2055 2056 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 2057 } 2058 2059 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 2060 { 2061 struct sock *sk = (struct sock *)msk; 2062 unsigned int moved = 0; 2063 bool ret, done; 2064 2065 do { 2066 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 2067 bool slowpath; 2068 2069 /* we can have data pending in the subflows only if the msk 2070 * receive buffer was full at subflow_data_ready() time, 2071 * that is an unlikely slow path. 2072 */ 2073 if (likely(!ssk)) 2074 break; 2075 2076 slowpath = lock_sock_fast(ssk); 2077 mptcp_data_lock(sk); 2078 __mptcp_update_rmem(sk); 2079 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 2080 mptcp_data_unlock(sk); 2081 2082 if (unlikely(ssk->sk_err)) 2083 __mptcp_error_report(sk); 2084 unlock_sock_fast(ssk, slowpath); 2085 } while (!done); 2086 2087 /* acquire the data lock only if some input data is pending */ 2088 ret = moved > 0; 2089 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 2090 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2091 mptcp_data_lock(sk); 2092 __mptcp_update_rmem(sk); 2093 ret |= __mptcp_ofo_queue(msk); 2094 __mptcp_splice_receive_queue(sk); 2095 mptcp_data_unlock(sk); 2096 } 2097 if (ret) 2098 mptcp_check_data_fin((struct sock *)msk); 2099 return !skb_queue_empty(&msk->receive_queue); 2100 } 2101 2102 static unsigned int mptcp_inq_hint(const struct sock *sk) 2103 { 2104 const struct mptcp_sock *msk = mptcp_sk(sk); 2105 const struct sk_buff *skb; 2106 2107 skb = skb_peek(&msk->receive_queue); 2108 if (skb) { 2109 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 2110 2111 if (hint_val >= INT_MAX) 2112 return INT_MAX; 2113 2114 return (unsigned int)hint_val; 2115 } 2116 2117 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2118 return 1; 2119 2120 return 0; 2121 } 2122 2123 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2124 int flags, int *addr_len) 2125 { 2126 struct mptcp_sock *msk = mptcp_sk(sk); 2127 struct scm_timestamping_internal tss; 2128 int copied = 0, cmsg_flags = 0; 2129 int target; 2130 long timeo; 2131 2132 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2133 if (unlikely(flags & MSG_ERRQUEUE)) 2134 return inet_recv_error(sk, msg, len, addr_len); 2135 2136 lock_sock(sk); 2137 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2138 copied = -ENOTCONN; 2139 goto out_err; 2140 } 2141 2142 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2143 2144 len = min_t(size_t, len, INT_MAX); 2145 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2146 2147 if (unlikely(msk->recvmsg_inq)) 2148 cmsg_flags = MPTCP_CMSG_INQ; 2149 2150 while (copied < len) { 2151 int bytes_read; 2152 2153 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2154 if (unlikely(bytes_read < 0)) { 2155 if (!copied) 2156 copied = bytes_read; 2157 goto out_err; 2158 } 2159 2160 copied += bytes_read; 2161 2162 /* be sure to advertise window change */ 2163 mptcp_cleanup_rbuf(msk); 2164 2165 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2166 continue; 2167 2168 /* only the master socket status is relevant here. The exit 2169 * conditions mirror closely tcp_recvmsg() 2170 */ 2171 if (copied >= target) 2172 break; 2173 2174 if (copied) { 2175 if (sk->sk_err || 2176 sk->sk_state == TCP_CLOSE || 2177 (sk->sk_shutdown & RCV_SHUTDOWN) || 2178 !timeo || 2179 signal_pending(current)) 2180 break; 2181 } else { 2182 if (sk->sk_err) { 2183 copied = sock_error(sk); 2184 break; 2185 } 2186 2187 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2188 /* race breaker: the shutdown could be after the 2189 * previous receive queue check 2190 */ 2191 if (__mptcp_move_skbs(msk)) 2192 continue; 2193 break; 2194 } 2195 2196 if (sk->sk_state == TCP_CLOSE) { 2197 copied = -ENOTCONN; 2198 break; 2199 } 2200 2201 if (!timeo) { 2202 copied = -EAGAIN; 2203 break; 2204 } 2205 2206 if (signal_pending(current)) { 2207 copied = sock_intr_errno(timeo); 2208 break; 2209 } 2210 } 2211 2212 pr_debug("block timeout %ld", timeo); 2213 sk_wait_data(sk, &timeo, NULL); 2214 } 2215 2216 out_err: 2217 if (cmsg_flags && copied >= 0) { 2218 if (cmsg_flags & MPTCP_CMSG_TS) 2219 tcp_recv_timestamp(msg, sk, &tss); 2220 2221 if (cmsg_flags & MPTCP_CMSG_INQ) { 2222 unsigned int inq = mptcp_inq_hint(sk); 2223 2224 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2225 } 2226 } 2227 2228 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2229 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2230 skb_queue_empty(&msk->receive_queue), copied); 2231 if (!(flags & MSG_PEEK)) 2232 mptcp_rcv_space_adjust(msk, copied); 2233 2234 release_sock(sk); 2235 return copied; 2236 } 2237 2238 static void mptcp_retransmit_timer(struct timer_list *t) 2239 { 2240 struct inet_connection_sock *icsk = from_timer(icsk, t, 2241 icsk_retransmit_timer); 2242 struct sock *sk = &icsk->icsk_inet.sk; 2243 struct mptcp_sock *msk = mptcp_sk(sk); 2244 2245 bh_lock_sock(sk); 2246 if (!sock_owned_by_user(sk)) { 2247 /* we need a process context to retransmit */ 2248 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2249 mptcp_schedule_work(sk); 2250 } else { 2251 /* delegate our work to tcp_release_cb() */ 2252 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2253 } 2254 bh_unlock_sock(sk); 2255 sock_put(sk); 2256 } 2257 2258 static void mptcp_tout_timer(struct timer_list *t) 2259 { 2260 struct sock *sk = from_timer(sk, t, sk_timer); 2261 2262 mptcp_schedule_work(sk); 2263 sock_put(sk); 2264 } 2265 2266 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2267 * level. 2268 * 2269 * A backup subflow is returned only if that is the only kind available. 2270 */ 2271 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2272 { 2273 struct sock *backup = NULL, *pick = NULL; 2274 struct mptcp_subflow_context *subflow; 2275 int min_stale_count = INT_MAX; 2276 2277 mptcp_for_each_subflow(msk, subflow) { 2278 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2279 2280 if (!__mptcp_subflow_active(subflow)) 2281 continue; 2282 2283 /* still data outstanding at TCP level? skip this */ 2284 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2285 mptcp_pm_subflow_chk_stale(msk, ssk); 2286 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2287 continue; 2288 } 2289 2290 if (subflow->backup) { 2291 if (!backup) 2292 backup = ssk; 2293 continue; 2294 } 2295 2296 if (!pick) 2297 pick = ssk; 2298 } 2299 2300 if (pick) 2301 return pick; 2302 2303 /* use backup only if there are no progresses anywhere */ 2304 return min_stale_count > 1 ? backup : NULL; 2305 } 2306 2307 bool __mptcp_retransmit_pending_data(struct sock *sk) 2308 { 2309 struct mptcp_data_frag *cur, *rtx_head; 2310 struct mptcp_sock *msk = mptcp_sk(sk); 2311 2312 if (__mptcp_check_fallback(msk)) 2313 return false; 2314 2315 /* the closing socket has some data untransmitted and/or unacked: 2316 * some data in the mptcp rtx queue has not really xmitted yet. 2317 * keep it simple and re-inject the whole mptcp level rtx queue 2318 */ 2319 mptcp_data_lock(sk); 2320 __mptcp_clean_una_wakeup(sk); 2321 rtx_head = mptcp_rtx_head(sk); 2322 if (!rtx_head) { 2323 mptcp_data_unlock(sk); 2324 return false; 2325 } 2326 2327 msk->recovery_snd_nxt = msk->snd_nxt; 2328 msk->recovery = true; 2329 mptcp_data_unlock(sk); 2330 2331 msk->first_pending = rtx_head; 2332 msk->snd_burst = 0; 2333 2334 /* be sure to clear the "sent status" on all re-injected fragments */ 2335 list_for_each_entry(cur, &msk->rtx_queue, list) { 2336 if (!cur->already_sent) 2337 break; 2338 cur->already_sent = 0; 2339 } 2340 2341 return true; 2342 } 2343 2344 /* flags for __mptcp_close_ssk() */ 2345 #define MPTCP_CF_PUSH BIT(1) 2346 #define MPTCP_CF_FASTCLOSE BIT(2) 2347 2348 /* be sure to send a reset only if the caller asked for it, also 2349 * clean completely the subflow status when the subflow reaches 2350 * TCP_CLOSE state 2351 */ 2352 static void __mptcp_subflow_disconnect(struct sock *ssk, 2353 struct mptcp_subflow_context *subflow, 2354 unsigned int flags) 2355 { 2356 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2357 (flags & MPTCP_CF_FASTCLOSE)) { 2358 /* The MPTCP code never wait on the subflow sockets, TCP-level 2359 * disconnect should never fail 2360 */ 2361 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2362 mptcp_subflow_ctx_reset(subflow); 2363 } else { 2364 tcp_shutdown(ssk, SEND_SHUTDOWN); 2365 } 2366 } 2367 2368 /* subflow sockets can be either outgoing (connect) or incoming 2369 * (accept). 2370 * 2371 * Outgoing subflows use in-kernel sockets. 2372 * Incoming subflows do not have their own 'struct socket' allocated, 2373 * so we need to use tcp_close() after detaching them from the mptcp 2374 * parent socket. 2375 */ 2376 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2377 struct mptcp_subflow_context *subflow, 2378 unsigned int flags) 2379 { 2380 struct mptcp_sock *msk = mptcp_sk(sk); 2381 bool dispose_it, need_push = false; 2382 2383 /* If the first subflow moved to a close state before accept, e.g. due 2384 * to an incoming reset or listener shutdown, the subflow socket is 2385 * already deleted by inet_child_forget() and the mptcp socket can't 2386 * survive too. 2387 */ 2388 if (msk->in_accept_queue && msk->first == ssk && 2389 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2390 /* ensure later check in mptcp_worker() will dispose the msk */ 2391 mptcp_set_close_tout(sk, tcp_jiffies32 - (TCP_TIMEWAIT_LEN + 1)); 2392 sock_set_flag(sk, SOCK_DEAD); 2393 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2394 mptcp_subflow_drop_ctx(ssk); 2395 goto out_release; 2396 } 2397 2398 dispose_it = msk->free_first || ssk != msk->first; 2399 if (dispose_it) 2400 list_del(&subflow->node); 2401 2402 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2403 2404 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2405 /* be sure to force the tcp_close path 2406 * to generate the egress reset 2407 */ 2408 ssk->sk_lingertime = 0; 2409 sock_set_flag(ssk, SOCK_LINGER); 2410 subflow->send_fastclose = 1; 2411 } 2412 2413 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2414 if (!dispose_it) { 2415 __mptcp_subflow_disconnect(ssk, subflow, flags); 2416 release_sock(ssk); 2417 2418 goto out; 2419 } 2420 2421 subflow->disposable = 1; 2422 2423 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2424 * the ssk has been already destroyed, we just need to release the 2425 * reference owned by msk; 2426 */ 2427 if (!inet_csk(ssk)->icsk_ulp_ops) { 2428 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2429 kfree_rcu(subflow, rcu); 2430 } else { 2431 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2432 __tcp_close(ssk, 0); 2433 2434 /* close acquired an extra ref */ 2435 __sock_put(ssk); 2436 } 2437 2438 out_release: 2439 __mptcp_subflow_error_report(sk, ssk); 2440 release_sock(ssk); 2441 2442 sock_put(ssk); 2443 2444 if (ssk == msk->first) 2445 WRITE_ONCE(msk->first, NULL); 2446 2447 out: 2448 __mptcp_sync_sndbuf(sk); 2449 if (need_push) 2450 __mptcp_push_pending(sk, 0); 2451 2452 /* Catch every 'all subflows closed' scenario, including peers silently 2453 * closing them, e.g. due to timeout. 2454 * For established sockets, allow an additional timeout before closing, 2455 * as the protocol can still create more subflows. 2456 */ 2457 if (list_is_singular(&msk->conn_list) && msk->first && 2458 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2459 if (sk->sk_state != TCP_ESTABLISHED || 2460 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2461 mptcp_set_state(sk, TCP_CLOSE); 2462 mptcp_close_wake_up(sk); 2463 } else { 2464 mptcp_start_tout_timer(sk); 2465 } 2466 } 2467 } 2468 2469 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2470 struct mptcp_subflow_context *subflow) 2471 { 2472 if (sk->sk_state == TCP_ESTABLISHED) 2473 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2474 2475 /* subflow aborted before reaching the fully_established status 2476 * attempt the creation of the next subflow 2477 */ 2478 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow); 2479 2480 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2481 } 2482 2483 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2484 { 2485 return 0; 2486 } 2487 2488 static void __mptcp_close_subflow(struct sock *sk) 2489 { 2490 struct mptcp_subflow_context *subflow, *tmp; 2491 struct mptcp_sock *msk = mptcp_sk(sk); 2492 2493 might_sleep(); 2494 2495 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2496 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2497 2498 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2499 continue; 2500 2501 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2502 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2503 continue; 2504 2505 mptcp_close_ssk(sk, ssk, subflow); 2506 } 2507 2508 } 2509 2510 static bool mptcp_close_tout_expired(const struct sock *sk) 2511 { 2512 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2513 sk->sk_state == TCP_CLOSE) 2514 return false; 2515 2516 return time_after32(tcp_jiffies32, 2517 inet_csk(sk)->icsk_mtup.probe_timestamp + TCP_TIMEWAIT_LEN); 2518 } 2519 2520 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2521 { 2522 struct mptcp_subflow_context *subflow, *tmp; 2523 struct sock *sk = (struct sock *)msk; 2524 2525 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2526 return; 2527 2528 mptcp_token_destroy(msk); 2529 2530 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2531 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2532 bool slow; 2533 2534 slow = lock_sock_fast(tcp_sk); 2535 if (tcp_sk->sk_state != TCP_CLOSE) { 2536 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2537 tcp_set_state(tcp_sk, TCP_CLOSE); 2538 } 2539 unlock_sock_fast(tcp_sk, slow); 2540 } 2541 2542 /* Mirror the tcp_reset() error propagation */ 2543 switch (sk->sk_state) { 2544 case TCP_SYN_SENT: 2545 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2546 break; 2547 case TCP_CLOSE_WAIT: 2548 WRITE_ONCE(sk->sk_err, EPIPE); 2549 break; 2550 case TCP_CLOSE: 2551 return; 2552 default: 2553 WRITE_ONCE(sk->sk_err, ECONNRESET); 2554 } 2555 2556 mptcp_set_state(sk, TCP_CLOSE); 2557 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2558 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2559 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2560 2561 /* the calling mptcp_worker will properly destroy the socket */ 2562 if (sock_flag(sk, SOCK_DEAD)) 2563 return; 2564 2565 sk->sk_state_change(sk); 2566 sk_error_report(sk); 2567 } 2568 2569 static void __mptcp_retrans(struct sock *sk) 2570 { 2571 struct mptcp_sock *msk = mptcp_sk(sk); 2572 struct mptcp_subflow_context *subflow; 2573 struct mptcp_sendmsg_info info = {}; 2574 struct mptcp_data_frag *dfrag; 2575 struct sock *ssk; 2576 int ret, err; 2577 u16 len = 0; 2578 2579 mptcp_clean_una_wakeup(sk); 2580 2581 /* first check ssk: need to kick "stale" logic */ 2582 err = mptcp_sched_get_retrans(msk); 2583 dfrag = mptcp_rtx_head(sk); 2584 if (!dfrag) { 2585 if (mptcp_data_fin_enabled(msk)) { 2586 struct inet_connection_sock *icsk = inet_csk(sk); 2587 2588 icsk->icsk_retransmits++; 2589 mptcp_set_datafin_timeout(sk); 2590 mptcp_send_ack(msk); 2591 2592 goto reset_timer; 2593 } 2594 2595 if (!mptcp_send_head(sk)) 2596 return; 2597 2598 goto reset_timer; 2599 } 2600 2601 if (err) 2602 goto reset_timer; 2603 2604 mptcp_for_each_subflow(msk, subflow) { 2605 if (READ_ONCE(subflow->scheduled)) { 2606 u16 copied = 0; 2607 2608 mptcp_subflow_set_scheduled(subflow, false); 2609 2610 ssk = mptcp_subflow_tcp_sock(subflow); 2611 2612 lock_sock(ssk); 2613 2614 /* limit retransmission to the bytes already sent on some subflows */ 2615 info.sent = 0; 2616 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2617 dfrag->already_sent; 2618 while (info.sent < info.limit) { 2619 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2620 if (ret <= 0) 2621 break; 2622 2623 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2624 copied += ret; 2625 info.sent += ret; 2626 } 2627 if (copied) { 2628 len = max(copied, len); 2629 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2630 info.size_goal); 2631 WRITE_ONCE(msk->allow_infinite_fallback, false); 2632 } 2633 2634 release_sock(ssk); 2635 } 2636 } 2637 2638 msk->bytes_retrans += len; 2639 dfrag->already_sent = max(dfrag->already_sent, len); 2640 2641 reset_timer: 2642 mptcp_check_and_set_pending(sk); 2643 2644 if (!mptcp_rtx_timer_pending(sk)) 2645 mptcp_reset_rtx_timer(sk); 2646 } 2647 2648 /* schedule the timeout timer for the relevant event: either close timeout 2649 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2650 */ 2651 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2652 { 2653 struct sock *sk = (struct sock *)msk; 2654 unsigned long timeout, close_timeout; 2655 2656 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2657 return; 2658 2659 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + 2660 TCP_TIMEWAIT_LEN; 2661 2662 /* the close timeout takes precedence on the fail one, and here at least one of 2663 * them is active 2664 */ 2665 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2666 2667 sk_reset_timer(sk, &sk->sk_timer, timeout); 2668 } 2669 2670 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2671 { 2672 struct sock *ssk = msk->first; 2673 bool slow; 2674 2675 if (!ssk) 2676 return; 2677 2678 pr_debug("MP_FAIL doesn't respond, reset the subflow"); 2679 2680 slow = lock_sock_fast(ssk); 2681 mptcp_subflow_reset(ssk); 2682 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2683 unlock_sock_fast(ssk, slow); 2684 } 2685 2686 static void mptcp_do_fastclose(struct sock *sk) 2687 { 2688 struct mptcp_subflow_context *subflow, *tmp; 2689 struct mptcp_sock *msk = mptcp_sk(sk); 2690 2691 mptcp_set_state(sk, TCP_CLOSE); 2692 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2693 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2694 subflow, MPTCP_CF_FASTCLOSE); 2695 } 2696 2697 static void mptcp_worker(struct work_struct *work) 2698 { 2699 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2700 struct sock *sk = (struct sock *)msk; 2701 unsigned long fail_tout; 2702 int state; 2703 2704 lock_sock(sk); 2705 state = sk->sk_state; 2706 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2707 goto unlock; 2708 2709 mptcp_check_fastclose(msk); 2710 2711 mptcp_pm_nl_work(msk); 2712 2713 mptcp_check_send_data_fin(sk); 2714 mptcp_check_data_fin_ack(sk); 2715 mptcp_check_data_fin(sk); 2716 2717 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2718 __mptcp_close_subflow(sk); 2719 2720 if (mptcp_close_tout_expired(sk)) { 2721 mptcp_do_fastclose(sk); 2722 mptcp_close_wake_up(sk); 2723 } 2724 2725 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2726 __mptcp_destroy_sock(sk); 2727 goto unlock; 2728 } 2729 2730 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2731 __mptcp_retrans(sk); 2732 2733 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2734 if (fail_tout && time_after(jiffies, fail_tout)) 2735 mptcp_mp_fail_no_response(msk); 2736 2737 unlock: 2738 release_sock(sk); 2739 sock_put(sk); 2740 } 2741 2742 static void __mptcp_init_sock(struct sock *sk) 2743 { 2744 struct mptcp_sock *msk = mptcp_sk(sk); 2745 2746 INIT_LIST_HEAD(&msk->conn_list); 2747 INIT_LIST_HEAD(&msk->join_list); 2748 INIT_LIST_HEAD(&msk->rtx_queue); 2749 INIT_WORK(&msk->work, mptcp_worker); 2750 __skb_queue_head_init(&msk->receive_queue); 2751 msk->out_of_order_queue = RB_ROOT; 2752 msk->first_pending = NULL; 2753 msk->rmem_fwd_alloc = 0; 2754 WRITE_ONCE(msk->rmem_released, 0); 2755 msk->timer_ival = TCP_RTO_MIN; 2756 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2757 2758 WRITE_ONCE(msk->first, NULL); 2759 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2760 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2761 WRITE_ONCE(msk->allow_infinite_fallback, true); 2762 msk->recovery = false; 2763 msk->subflow_id = 1; 2764 2765 mptcp_pm_data_init(msk); 2766 2767 /* re-use the csk retrans timer for MPTCP-level retrans */ 2768 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2769 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2770 } 2771 2772 static void mptcp_ca_reset(struct sock *sk) 2773 { 2774 struct inet_connection_sock *icsk = inet_csk(sk); 2775 2776 tcp_assign_congestion_control(sk); 2777 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2778 2779 /* no need to keep a reference to the ops, the name will suffice */ 2780 tcp_cleanup_congestion_control(sk); 2781 icsk->icsk_ca_ops = NULL; 2782 } 2783 2784 static int mptcp_init_sock(struct sock *sk) 2785 { 2786 struct net *net = sock_net(sk); 2787 int ret; 2788 2789 __mptcp_init_sock(sk); 2790 2791 if (!mptcp_is_enabled(net)) 2792 return -ENOPROTOOPT; 2793 2794 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2795 return -ENOMEM; 2796 2797 ret = mptcp_init_sched(mptcp_sk(sk), 2798 mptcp_sched_find(mptcp_get_scheduler(net))); 2799 if (ret) 2800 return ret; 2801 2802 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2803 2804 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2805 * propagate the correct value 2806 */ 2807 mptcp_ca_reset(sk); 2808 2809 sk_sockets_allocated_inc(sk); 2810 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2811 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2812 2813 return 0; 2814 } 2815 2816 static void __mptcp_clear_xmit(struct sock *sk) 2817 { 2818 struct mptcp_sock *msk = mptcp_sk(sk); 2819 struct mptcp_data_frag *dtmp, *dfrag; 2820 2821 WRITE_ONCE(msk->first_pending, NULL); 2822 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2823 dfrag_clear(sk, dfrag); 2824 } 2825 2826 void mptcp_cancel_work(struct sock *sk) 2827 { 2828 struct mptcp_sock *msk = mptcp_sk(sk); 2829 2830 if (cancel_work_sync(&msk->work)) 2831 __sock_put(sk); 2832 } 2833 2834 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2835 { 2836 lock_sock(ssk); 2837 2838 switch (ssk->sk_state) { 2839 case TCP_LISTEN: 2840 if (!(how & RCV_SHUTDOWN)) 2841 break; 2842 fallthrough; 2843 case TCP_SYN_SENT: 2844 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2845 break; 2846 default: 2847 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2848 pr_debug("Fallback"); 2849 ssk->sk_shutdown |= how; 2850 tcp_shutdown(ssk, how); 2851 2852 /* simulate the data_fin ack reception to let the state 2853 * machine move forward 2854 */ 2855 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2856 mptcp_schedule_work(sk); 2857 } else { 2858 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2859 tcp_send_ack(ssk); 2860 if (!mptcp_rtx_timer_pending(sk)) 2861 mptcp_reset_rtx_timer(sk); 2862 } 2863 break; 2864 } 2865 2866 release_sock(ssk); 2867 } 2868 2869 void mptcp_set_state(struct sock *sk, int state) 2870 { 2871 int oldstate = sk->sk_state; 2872 2873 switch (state) { 2874 case TCP_ESTABLISHED: 2875 if (oldstate != TCP_ESTABLISHED) 2876 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2877 break; 2878 case TCP_CLOSE_WAIT: 2879 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state: 2880 * MPTCP "accepted" sockets will be created later on. So no 2881 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT. 2882 */ 2883 break; 2884 default: 2885 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2886 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2887 } 2888 2889 inet_sk_state_store(sk, state); 2890 } 2891 2892 static const unsigned char new_state[16] = { 2893 /* current state: new state: action: */ 2894 [0 /* (Invalid) */] = TCP_CLOSE, 2895 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2896 [TCP_SYN_SENT] = TCP_CLOSE, 2897 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2898 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2899 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2900 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2901 [TCP_CLOSE] = TCP_CLOSE, 2902 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2903 [TCP_LAST_ACK] = TCP_LAST_ACK, 2904 [TCP_LISTEN] = TCP_CLOSE, 2905 [TCP_CLOSING] = TCP_CLOSING, 2906 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2907 }; 2908 2909 static int mptcp_close_state(struct sock *sk) 2910 { 2911 int next = (int)new_state[sk->sk_state]; 2912 int ns = next & TCP_STATE_MASK; 2913 2914 mptcp_set_state(sk, ns); 2915 2916 return next & TCP_ACTION_FIN; 2917 } 2918 2919 static void mptcp_check_send_data_fin(struct sock *sk) 2920 { 2921 struct mptcp_subflow_context *subflow; 2922 struct mptcp_sock *msk = mptcp_sk(sk); 2923 2924 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2925 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2926 msk->snd_nxt, msk->write_seq); 2927 2928 /* we still need to enqueue subflows or not really shutting down, 2929 * skip this 2930 */ 2931 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2932 mptcp_send_head(sk)) 2933 return; 2934 2935 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2936 2937 mptcp_for_each_subflow(msk, subflow) { 2938 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2939 2940 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2941 } 2942 } 2943 2944 static void __mptcp_wr_shutdown(struct sock *sk) 2945 { 2946 struct mptcp_sock *msk = mptcp_sk(sk); 2947 2948 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2949 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2950 !!mptcp_send_head(sk)); 2951 2952 /* will be ignored by fallback sockets */ 2953 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2954 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2955 2956 mptcp_check_send_data_fin(sk); 2957 } 2958 2959 static void __mptcp_destroy_sock(struct sock *sk) 2960 { 2961 struct mptcp_sock *msk = mptcp_sk(sk); 2962 2963 pr_debug("msk=%p", msk); 2964 2965 might_sleep(); 2966 2967 mptcp_stop_rtx_timer(sk); 2968 sk_stop_timer(sk, &sk->sk_timer); 2969 msk->pm.status = 0; 2970 mptcp_release_sched(msk); 2971 2972 sk->sk_prot->destroy(sk); 2973 2974 WARN_ON_ONCE(msk->rmem_fwd_alloc); 2975 WARN_ON_ONCE(msk->rmem_released); 2976 sk_stream_kill_queues(sk); 2977 xfrm_sk_free_policy(sk); 2978 2979 sock_put(sk); 2980 } 2981 2982 void __mptcp_unaccepted_force_close(struct sock *sk) 2983 { 2984 sock_set_flag(sk, SOCK_DEAD); 2985 mptcp_do_fastclose(sk); 2986 __mptcp_destroy_sock(sk); 2987 } 2988 2989 static __poll_t mptcp_check_readable(struct sock *sk) 2990 { 2991 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 2992 } 2993 2994 static void mptcp_check_listen_stop(struct sock *sk) 2995 { 2996 struct sock *ssk; 2997 2998 if (inet_sk_state_load(sk) != TCP_LISTEN) 2999 return; 3000 3001 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3002 ssk = mptcp_sk(sk)->first; 3003 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3004 return; 3005 3006 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3007 tcp_set_state(ssk, TCP_CLOSE); 3008 mptcp_subflow_queue_clean(sk, ssk); 3009 inet_csk_listen_stop(ssk); 3010 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3011 release_sock(ssk); 3012 } 3013 3014 bool __mptcp_close(struct sock *sk, long timeout) 3015 { 3016 struct mptcp_subflow_context *subflow; 3017 struct mptcp_sock *msk = mptcp_sk(sk); 3018 bool do_cancel_work = false; 3019 int subflows_alive = 0; 3020 3021 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3022 3023 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3024 mptcp_check_listen_stop(sk); 3025 mptcp_set_state(sk, TCP_CLOSE); 3026 goto cleanup; 3027 } 3028 3029 if (mptcp_data_avail(msk) || timeout < 0) { 3030 /* If the msk has read data, or the caller explicitly ask it, 3031 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3032 */ 3033 mptcp_do_fastclose(sk); 3034 timeout = 0; 3035 } else if (mptcp_close_state(sk)) { 3036 __mptcp_wr_shutdown(sk); 3037 } 3038 3039 sk_stream_wait_close(sk, timeout); 3040 3041 cleanup: 3042 /* orphan all the subflows */ 3043 mptcp_for_each_subflow(msk, subflow) { 3044 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3045 bool slow = lock_sock_fast_nested(ssk); 3046 3047 subflows_alive += ssk->sk_state != TCP_CLOSE; 3048 3049 /* since the close timeout takes precedence on the fail one, 3050 * cancel the latter 3051 */ 3052 if (ssk == msk->first) 3053 subflow->fail_tout = 0; 3054 3055 /* detach from the parent socket, but allow data_ready to 3056 * push incoming data into the mptcp stack, to properly ack it 3057 */ 3058 ssk->sk_socket = NULL; 3059 ssk->sk_wq = NULL; 3060 unlock_sock_fast(ssk, slow); 3061 } 3062 sock_orphan(sk); 3063 3064 /* all the subflows are closed, only timeout can change the msk 3065 * state, let's not keep resources busy for no reasons 3066 */ 3067 if (subflows_alive == 0) 3068 mptcp_set_state(sk, TCP_CLOSE); 3069 3070 sock_hold(sk); 3071 pr_debug("msk=%p state=%d", sk, sk->sk_state); 3072 if (msk->token) 3073 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3074 3075 if (sk->sk_state == TCP_CLOSE) { 3076 __mptcp_destroy_sock(sk); 3077 do_cancel_work = true; 3078 } else { 3079 mptcp_start_tout_timer(sk); 3080 } 3081 3082 return do_cancel_work; 3083 } 3084 3085 static void mptcp_close(struct sock *sk, long timeout) 3086 { 3087 bool do_cancel_work; 3088 3089 lock_sock(sk); 3090 3091 do_cancel_work = __mptcp_close(sk, timeout); 3092 release_sock(sk); 3093 if (do_cancel_work) 3094 mptcp_cancel_work(sk); 3095 3096 sock_put(sk); 3097 } 3098 3099 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3100 { 3101 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3102 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3103 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3104 3105 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3106 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3107 3108 if (msk6 && ssk6) { 3109 msk6->saddr = ssk6->saddr; 3110 msk6->flow_label = ssk6->flow_label; 3111 } 3112 #endif 3113 3114 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3115 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3116 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3117 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3118 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3119 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3120 } 3121 3122 static int mptcp_disconnect(struct sock *sk, int flags) 3123 { 3124 struct mptcp_sock *msk = mptcp_sk(sk); 3125 3126 /* We are on the fastopen error path. We can't call straight into the 3127 * subflows cleanup code due to lock nesting (we are already under 3128 * msk->firstsocket lock). 3129 */ 3130 if (msk->fastopening) 3131 return -EBUSY; 3132 3133 mptcp_check_listen_stop(sk); 3134 mptcp_set_state(sk, TCP_CLOSE); 3135 3136 mptcp_stop_rtx_timer(sk); 3137 mptcp_stop_tout_timer(sk); 3138 3139 if (msk->token) 3140 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3141 3142 /* msk->subflow is still intact, the following will not free the first 3143 * subflow 3144 */ 3145 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3146 WRITE_ONCE(msk->flags, 0); 3147 msk->cb_flags = 0; 3148 msk->recovery = false; 3149 msk->can_ack = false; 3150 msk->fully_established = false; 3151 msk->rcv_data_fin = false; 3152 msk->snd_data_fin_enable = false; 3153 msk->rcv_fastclose = false; 3154 msk->use_64bit_ack = false; 3155 msk->bytes_consumed = 0; 3156 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3157 mptcp_pm_data_reset(msk); 3158 mptcp_ca_reset(sk); 3159 msk->bytes_acked = 0; 3160 msk->bytes_received = 0; 3161 msk->bytes_sent = 0; 3162 msk->bytes_retrans = 0; 3163 msk->rcvspace_init = 0; 3164 3165 WRITE_ONCE(sk->sk_shutdown, 0); 3166 sk_error_report(sk); 3167 return 0; 3168 } 3169 3170 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3171 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3172 { 3173 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 3174 3175 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 3176 } 3177 3178 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3179 { 3180 const struct ipv6_pinfo *np = inet6_sk(sk); 3181 struct ipv6_txoptions *opt; 3182 struct ipv6_pinfo *newnp; 3183 3184 newnp = inet6_sk(newsk); 3185 3186 rcu_read_lock(); 3187 opt = rcu_dereference(np->opt); 3188 if (opt) { 3189 opt = ipv6_dup_options(newsk, opt); 3190 if (!opt) 3191 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3192 } 3193 RCU_INIT_POINTER(newnp->opt, opt); 3194 rcu_read_unlock(); 3195 } 3196 #endif 3197 3198 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3199 { 3200 struct ip_options_rcu *inet_opt, *newopt = NULL; 3201 const struct inet_sock *inet = inet_sk(sk); 3202 struct inet_sock *newinet; 3203 3204 newinet = inet_sk(newsk); 3205 3206 rcu_read_lock(); 3207 inet_opt = rcu_dereference(inet->inet_opt); 3208 if (inet_opt) { 3209 newopt = sock_kmalloc(newsk, sizeof(*inet_opt) + 3210 inet_opt->opt.optlen, GFP_ATOMIC); 3211 if (newopt) 3212 memcpy(newopt, inet_opt, sizeof(*inet_opt) + 3213 inet_opt->opt.optlen); 3214 else 3215 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3216 } 3217 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3218 rcu_read_unlock(); 3219 } 3220 3221 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3222 const struct mptcp_options_received *mp_opt, 3223 struct sock *ssk, 3224 struct request_sock *req) 3225 { 3226 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3227 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3228 struct mptcp_subflow_context *subflow; 3229 struct mptcp_sock *msk; 3230 3231 if (!nsk) 3232 return NULL; 3233 3234 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3235 if (nsk->sk_family == AF_INET6) 3236 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3237 #endif 3238 3239 __mptcp_init_sock(nsk); 3240 3241 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3242 if (nsk->sk_family == AF_INET6) 3243 mptcp_copy_ip6_options(nsk, sk); 3244 else 3245 #endif 3246 mptcp_copy_ip_options(nsk, sk); 3247 3248 msk = mptcp_sk(nsk); 3249 msk->local_key = subflow_req->local_key; 3250 msk->token = subflow_req->token; 3251 msk->in_accept_queue = 1; 3252 WRITE_ONCE(msk->fully_established, false); 3253 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3254 WRITE_ONCE(msk->csum_enabled, true); 3255 3256 msk->write_seq = subflow_req->idsn + 1; 3257 msk->snd_nxt = msk->write_seq; 3258 msk->snd_una = msk->write_seq; 3259 msk->wnd_end = msk->snd_nxt + tcp_sk(ssk)->snd_wnd; 3260 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3261 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3262 3263 /* passive msk is created after the first/MPC subflow */ 3264 msk->subflow_id = 2; 3265 3266 sock_reset_flag(nsk, SOCK_RCU_FREE); 3267 security_inet_csk_clone(nsk, req); 3268 3269 /* this can't race with mptcp_close(), as the msk is 3270 * not yet exposted to user-space 3271 */ 3272 mptcp_set_state(nsk, TCP_ESTABLISHED); 3273 3274 /* The msk maintain a ref to each subflow in the connections list */ 3275 WRITE_ONCE(msk->first, ssk); 3276 subflow = mptcp_subflow_ctx(ssk); 3277 list_add(&subflow->node, &msk->conn_list); 3278 sock_hold(ssk); 3279 3280 /* new mpc subflow takes ownership of the newly 3281 * created mptcp socket 3282 */ 3283 mptcp_token_accept(subflow_req, msk); 3284 3285 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3286 * uses the correct data 3287 */ 3288 mptcp_copy_inaddrs(nsk, ssk); 3289 __mptcp_propagate_sndbuf(nsk, ssk); 3290 3291 mptcp_rcv_space_init(msk, ssk); 3292 3293 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3294 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3295 bh_unlock_sock(nsk); 3296 3297 /* note: the newly allocated socket refcount is 2 now */ 3298 return nsk; 3299 } 3300 3301 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3302 { 3303 const struct tcp_sock *tp = tcp_sk(ssk); 3304 3305 msk->rcvspace_init = 1; 3306 msk->rcvq_space.copied = 0; 3307 msk->rcvq_space.rtt_us = 0; 3308 3309 msk->rcvq_space.time = tp->tcp_mstamp; 3310 3311 /* initial rcv_space offering made to peer */ 3312 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3313 TCP_INIT_CWND * tp->advmss); 3314 if (msk->rcvq_space.space == 0) 3315 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3316 } 3317 3318 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3319 { 3320 struct mptcp_subflow_context *subflow, *tmp; 3321 struct sock *sk = (struct sock *)msk; 3322 3323 __mptcp_clear_xmit(sk); 3324 3325 /* join list will be eventually flushed (with rst) at sock lock release time */ 3326 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3327 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3328 3329 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3330 mptcp_data_lock(sk); 3331 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3332 __skb_queue_purge(&sk->sk_receive_queue); 3333 skb_rbtree_purge(&msk->out_of_order_queue); 3334 mptcp_data_unlock(sk); 3335 3336 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3337 * inet_sock_destruct() will dispose it 3338 */ 3339 sk_forward_alloc_add(sk, msk->rmem_fwd_alloc); 3340 WRITE_ONCE(msk->rmem_fwd_alloc, 0); 3341 mptcp_token_destroy(msk); 3342 mptcp_pm_free_anno_list(msk); 3343 mptcp_free_local_addr_list(msk); 3344 } 3345 3346 static void mptcp_destroy(struct sock *sk) 3347 { 3348 struct mptcp_sock *msk = mptcp_sk(sk); 3349 3350 /* allow the following to close even the initial subflow */ 3351 msk->free_first = 1; 3352 mptcp_destroy_common(msk, 0); 3353 sk_sockets_allocated_dec(sk); 3354 } 3355 3356 void __mptcp_data_acked(struct sock *sk) 3357 { 3358 if (!sock_owned_by_user(sk)) 3359 __mptcp_clean_una(sk); 3360 else 3361 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3362 3363 if (mptcp_pending_data_fin_ack(sk)) 3364 mptcp_schedule_work(sk); 3365 } 3366 3367 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3368 { 3369 if (!mptcp_send_head(sk)) 3370 return; 3371 3372 if (!sock_owned_by_user(sk)) 3373 __mptcp_subflow_push_pending(sk, ssk, false); 3374 else 3375 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3376 } 3377 3378 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3379 BIT(MPTCP_RETRANSMIT) | \ 3380 BIT(MPTCP_FLUSH_JOIN_LIST)) 3381 3382 /* processes deferred events and flush wmem */ 3383 static void mptcp_release_cb(struct sock *sk) 3384 __must_hold(&sk->sk_lock.slock) 3385 { 3386 struct mptcp_sock *msk = mptcp_sk(sk); 3387 3388 for (;;) { 3389 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3390 struct list_head join_list; 3391 3392 if (!flags) 3393 break; 3394 3395 INIT_LIST_HEAD(&join_list); 3396 list_splice_init(&msk->join_list, &join_list); 3397 3398 /* the following actions acquire the subflow socket lock 3399 * 3400 * 1) can't be invoked in atomic scope 3401 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3402 * datapath acquires the msk socket spinlock while helding 3403 * the subflow socket lock 3404 */ 3405 msk->cb_flags &= ~flags; 3406 spin_unlock_bh(&sk->sk_lock.slock); 3407 3408 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3409 __mptcp_flush_join_list(sk, &join_list); 3410 if (flags & BIT(MPTCP_PUSH_PENDING)) 3411 __mptcp_push_pending(sk, 0); 3412 if (flags & BIT(MPTCP_RETRANSMIT)) 3413 __mptcp_retrans(sk); 3414 3415 cond_resched(); 3416 spin_lock_bh(&sk->sk_lock.slock); 3417 } 3418 3419 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3420 __mptcp_clean_una_wakeup(sk); 3421 if (unlikely(msk->cb_flags)) { 3422 /* be sure to sync the msk state before taking actions 3423 * depending on sk_state (MPTCP_ERROR_REPORT) 3424 * On sk release avoid actions depending on the first subflow 3425 */ 3426 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3427 __mptcp_sync_state(sk, msk->pending_state); 3428 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3429 __mptcp_error_report(sk); 3430 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3431 __mptcp_sync_sndbuf(sk); 3432 } 3433 3434 __mptcp_update_rmem(sk); 3435 } 3436 3437 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3438 * TCP can't schedule delack timer before the subflow is fully established. 3439 * MPTCP uses the delack timer to do 3rd ack retransmissions 3440 */ 3441 static void schedule_3rdack_retransmission(struct sock *ssk) 3442 { 3443 struct inet_connection_sock *icsk = inet_csk(ssk); 3444 struct tcp_sock *tp = tcp_sk(ssk); 3445 unsigned long timeout; 3446 3447 if (mptcp_subflow_ctx(ssk)->fully_established) 3448 return; 3449 3450 /* reschedule with a timeout above RTT, as we must look only for drop */ 3451 if (tp->srtt_us) 3452 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3453 else 3454 timeout = TCP_TIMEOUT_INIT; 3455 timeout += jiffies; 3456 3457 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3458 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3459 icsk->icsk_ack.timeout = timeout; 3460 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3461 } 3462 3463 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3464 { 3465 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3466 struct sock *sk = subflow->conn; 3467 3468 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3469 mptcp_data_lock(sk); 3470 if (!sock_owned_by_user(sk)) 3471 __mptcp_subflow_push_pending(sk, ssk, true); 3472 else 3473 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3474 mptcp_data_unlock(sk); 3475 } 3476 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3477 mptcp_data_lock(sk); 3478 if (!sock_owned_by_user(sk)) 3479 __mptcp_sync_sndbuf(sk); 3480 else 3481 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3482 mptcp_data_unlock(sk); 3483 } 3484 if (status & BIT(MPTCP_DELEGATE_ACK)) 3485 schedule_3rdack_retransmission(ssk); 3486 } 3487 3488 static int mptcp_hash(struct sock *sk) 3489 { 3490 /* should never be called, 3491 * we hash the TCP subflows not the master socket 3492 */ 3493 WARN_ON_ONCE(1); 3494 return 0; 3495 } 3496 3497 static void mptcp_unhash(struct sock *sk) 3498 { 3499 /* called from sk_common_release(), but nothing to do here */ 3500 } 3501 3502 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3503 { 3504 struct mptcp_sock *msk = mptcp_sk(sk); 3505 3506 pr_debug("msk=%p, ssk=%p", msk, msk->first); 3507 if (WARN_ON_ONCE(!msk->first)) 3508 return -EINVAL; 3509 3510 return inet_csk_get_port(msk->first, snum); 3511 } 3512 3513 void mptcp_finish_connect(struct sock *ssk) 3514 { 3515 struct mptcp_subflow_context *subflow; 3516 struct mptcp_sock *msk; 3517 struct sock *sk; 3518 3519 subflow = mptcp_subflow_ctx(ssk); 3520 sk = subflow->conn; 3521 msk = mptcp_sk(sk); 3522 3523 pr_debug("msk=%p, token=%u", sk, subflow->token); 3524 3525 subflow->map_seq = subflow->iasn; 3526 subflow->map_subflow_seq = 1; 3527 3528 /* the socket is not connected yet, no msk/subflow ops can access/race 3529 * accessing the field below 3530 */ 3531 WRITE_ONCE(msk->local_key, subflow->local_key); 3532 3533 mptcp_pm_new_connection(msk, ssk, 0); 3534 } 3535 3536 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3537 { 3538 write_lock_bh(&sk->sk_callback_lock); 3539 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3540 sk_set_socket(sk, parent); 3541 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3542 write_unlock_bh(&sk->sk_callback_lock); 3543 } 3544 3545 bool mptcp_finish_join(struct sock *ssk) 3546 { 3547 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3548 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3549 struct sock *parent = (void *)msk; 3550 bool ret = true; 3551 3552 pr_debug("msk=%p, subflow=%p", msk, subflow); 3553 3554 /* mptcp socket already closing? */ 3555 if (!mptcp_is_fully_established(parent)) { 3556 subflow->reset_reason = MPTCP_RST_EMPTCP; 3557 return false; 3558 } 3559 3560 /* active subflow, already present inside the conn_list */ 3561 if (!list_empty(&subflow->node)) { 3562 mptcp_subflow_joined(msk, ssk); 3563 mptcp_propagate_sndbuf(parent, ssk); 3564 return true; 3565 } 3566 3567 if (!mptcp_pm_allow_new_subflow(msk)) 3568 goto err_prohibited; 3569 3570 /* If we can't acquire msk socket lock here, let the release callback 3571 * handle it 3572 */ 3573 mptcp_data_lock(parent); 3574 if (!sock_owned_by_user(parent)) { 3575 ret = __mptcp_finish_join(msk, ssk); 3576 if (ret) { 3577 sock_hold(ssk); 3578 list_add_tail(&subflow->node, &msk->conn_list); 3579 } 3580 } else { 3581 sock_hold(ssk); 3582 list_add_tail(&subflow->node, &msk->join_list); 3583 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3584 } 3585 mptcp_data_unlock(parent); 3586 3587 if (!ret) { 3588 err_prohibited: 3589 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3590 return false; 3591 } 3592 3593 return true; 3594 } 3595 3596 static void mptcp_shutdown(struct sock *sk, int how) 3597 { 3598 pr_debug("sk=%p, how=%d", sk, how); 3599 3600 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3601 __mptcp_wr_shutdown(sk); 3602 } 3603 3604 static int mptcp_forward_alloc_get(const struct sock *sk) 3605 { 3606 return READ_ONCE(sk->sk_forward_alloc) + 3607 READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc); 3608 } 3609 3610 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3611 { 3612 const struct sock *sk = (void *)msk; 3613 u64 delta; 3614 3615 if (sk->sk_state == TCP_LISTEN) 3616 return -EINVAL; 3617 3618 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3619 return 0; 3620 3621 delta = msk->write_seq - v; 3622 if (__mptcp_check_fallback(msk) && msk->first) { 3623 struct tcp_sock *tp = tcp_sk(msk->first); 3624 3625 /* the first subflow is disconnected after close - see 3626 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3627 * so ignore that status, too. 3628 */ 3629 if (!((1 << msk->first->sk_state) & 3630 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3631 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3632 } 3633 if (delta > INT_MAX) 3634 delta = INT_MAX; 3635 3636 return (int)delta; 3637 } 3638 3639 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3640 { 3641 struct mptcp_sock *msk = mptcp_sk(sk); 3642 bool slow; 3643 3644 switch (cmd) { 3645 case SIOCINQ: 3646 if (sk->sk_state == TCP_LISTEN) 3647 return -EINVAL; 3648 3649 lock_sock(sk); 3650 __mptcp_move_skbs(msk); 3651 *karg = mptcp_inq_hint(sk); 3652 release_sock(sk); 3653 break; 3654 case SIOCOUTQ: 3655 slow = lock_sock_fast(sk); 3656 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3657 unlock_sock_fast(sk, slow); 3658 break; 3659 case SIOCOUTQNSD: 3660 slow = lock_sock_fast(sk); 3661 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3662 unlock_sock_fast(sk, slow); 3663 break; 3664 default: 3665 return -ENOIOCTLCMD; 3666 } 3667 3668 return 0; 3669 } 3670 3671 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3672 struct mptcp_subflow_context *subflow) 3673 { 3674 subflow->request_mptcp = 0; 3675 __mptcp_do_fallback(msk); 3676 } 3677 3678 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3679 { 3680 struct mptcp_subflow_context *subflow; 3681 struct mptcp_sock *msk = mptcp_sk(sk); 3682 int err = -EINVAL; 3683 struct sock *ssk; 3684 3685 ssk = __mptcp_nmpc_sk(msk); 3686 if (IS_ERR(ssk)) 3687 return PTR_ERR(ssk); 3688 3689 mptcp_set_state(sk, TCP_SYN_SENT); 3690 subflow = mptcp_subflow_ctx(ssk); 3691 #ifdef CONFIG_TCP_MD5SIG 3692 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3693 * TCP option space. 3694 */ 3695 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3696 mptcp_subflow_early_fallback(msk, subflow); 3697 #endif 3698 if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) { 3699 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT); 3700 mptcp_subflow_early_fallback(msk, subflow); 3701 } 3702 3703 WRITE_ONCE(msk->write_seq, subflow->idsn); 3704 WRITE_ONCE(msk->snd_nxt, subflow->idsn); 3705 WRITE_ONCE(msk->snd_una, subflow->idsn); 3706 if (likely(!__mptcp_check_fallback(msk))) 3707 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3708 3709 /* if reaching here via the fastopen/sendmsg path, the caller already 3710 * acquired the subflow socket lock, too. 3711 */ 3712 if (!msk->fastopening) 3713 lock_sock(ssk); 3714 3715 /* the following mirrors closely a very small chunk of code from 3716 * __inet_stream_connect() 3717 */ 3718 if (ssk->sk_state != TCP_CLOSE) 3719 goto out; 3720 3721 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3722 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3723 if (err) 3724 goto out; 3725 } 3726 3727 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3728 if (err < 0) 3729 goto out; 3730 3731 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3732 3733 out: 3734 if (!msk->fastopening) 3735 release_sock(ssk); 3736 3737 /* on successful connect, the msk state will be moved to established by 3738 * subflow_finish_connect() 3739 */ 3740 if (unlikely(err)) { 3741 /* avoid leaving a dangling token in an unconnected socket */ 3742 mptcp_token_destroy(msk); 3743 mptcp_set_state(sk, TCP_CLOSE); 3744 return err; 3745 } 3746 3747 mptcp_copy_inaddrs(sk, ssk); 3748 return 0; 3749 } 3750 3751 static struct proto mptcp_prot = { 3752 .name = "MPTCP", 3753 .owner = THIS_MODULE, 3754 .init = mptcp_init_sock, 3755 .connect = mptcp_connect, 3756 .disconnect = mptcp_disconnect, 3757 .close = mptcp_close, 3758 .setsockopt = mptcp_setsockopt, 3759 .getsockopt = mptcp_getsockopt, 3760 .shutdown = mptcp_shutdown, 3761 .destroy = mptcp_destroy, 3762 .sendmsg = mptcp_sendmsg, 3763 .ioctl = mptcp_ioctl, 3764 .recvmsg = mptcp_recvmsg, 3765 .release_cb = mptcp_release_cb, 3766 .hash = mptcp_hash, 3767 .unhash = mptcp_unhash, 3768 .get_port = mptcp_get_port, 3769 .forward_alloc_get = mptcp_forward_alloc_get, 3770 .sockets_allocated = &mptcp_sockets_allocated, 3771 3772 .memory_allocated = &tcp_memory_allocated, 3773 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3774 3775 .memory_pressure = &tcp_memory_pressure, 3776 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3777 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3778 .sysctl_mem = sysctl_tcp_mem, 3779 .obj_size = sizeof(struct mptcp_sock), 3780 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3781 .no_autobind = true, 3782 }; 3783 3784 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3785 { 3786 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3787 struct sock *ssk, *sk = sock->sk; 3788 int err = -EINVAL; 3789 3790 lock_sock(sk); 3791 ssk = __mptcp_nmpc_sk(msk); 3792 if (IS_ERR(ssk)) { 3793 err = PTR_ERR(ssk); 3794 goto unlock; 3795 } 3796 3797 if (sk->sk_family == AF_INET) 3798 err = inet_bind_sk(ssk, uaddr, addr_len); 3799 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3800 else if (sk->sk_family == AF_INET6) 3801 err = inet6_bind_sk(ssk, uaddr, addr_len); 3802 #endif 3803 if (!err) 3804 mptcp_copy_inaddrs(sk, ssk); 3805 3806 unlock: 3807 release_sock(sk); 3808 return err; 3809 } 3810 3811 static int mptcp_listen(struct socket *sock, int backlog) 3812 { 3813 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3814 struct sock *sk = sock->sk; 3815 struct sock *ssk; 3816 int err; 3817 3818 pr_debug("msk=%p", msk); 3819 3820 lock_sock(sk); 3821 3822 err = -EINVAL; 3823 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3824 goto unlock; 3825 3826 ssk = __mptcp_nmpc_sk(msk); 3827 if (IS_ERR(ssk)) { 3828 err = PTR_ERR(ssk); 3829 goto unlock; 3830 } 3831 3832 mptcp_set_state(sk, TCP_LISTEN); 3833 sock_set_flag(sk, SOCK_RCU_FREE); 3834 3835 lock_sock(ssk); 3836 err = __inet_listen_sk(ssk, backlog); 3837 release_sock(ssk); 3838 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3839 3840 if (!err) { 3841 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3842 mptcp_copy_inaddrs(sk, ssk); 3843 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3844 } 3845 3846 unlock: 3847 release_sock(sk); 3848 return err; 3849 } 3850 3851 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3852 int flags, bool kern) 3853 { 3854 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3855 struct sock *ssk, *newsk; 3856 int err; 3857 3858 pr_debug("msk=%p", msk); 3859 3860 /* Buggy applications can call accept on socket states other then LISTEN 3861 * but no need to allocate the first subflow just to error out. 3862 */ 3863 ssk = READ_ONCE(msk->first); 3864 if (!ssk) 3865 return -EINVAL; 3866 3867 pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk)); 3868 newsk = inet_csk_accept(ssk, flags, &err, kern); 3869 if (!newsk) 3870 return err; 3871 3872 pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk)); 3873 if (sk_is_mptcp(newsk)) { 3874 struct mptcp_subflow_context *subflow; 3875 struct sock *new_mptcp_sock; 3876 3877 subflow = mptcp_subflow_ctx(newsk); 3878 new_mptcp_sock = subflow->conn; 3879 3880 /* is_mptcp should be false if subflow->conn is missing, see 3881 * subflow_syn_recv_sock() 3882 */ 3883 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3884 tcp_sk(newsk)->is_mptcp = 0; 3885 goto tcpfallback; 3886 } 3887 3888 newsk = new_mptcp_sock; 3889 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3890 3891 newsk->sk_kern_sock = kern; 3892 lock_sock(newsk); 3893 __inet_accept(sock, newsock, newsk); 3894 3895 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3896 msk = mptcp_sk(newsk); 3897 msk->in_accept_queue = 0; 3898 3899 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3900 * This is needed so NOSPACE flag can be set from tcp stack. 3901 */ 3902 mptcp_for_each_subflow(msk, subflow) { 3903 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3904 3905 if (!ssk->sk_socket) 3906 mptcp_sock_graft(ssk, newsock); 3907 } 3908 3909 /* Do late cleanup for the first subflow as necessary. Also 3910 * deal with bad peers not doing a complete shutdown. 3911 */ 3912 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3913 __mptcp_close_ssk(newsk, msk->first, 3914 mptcp_subflow_ctx(msk->first), 0); 3915 if (unlikely(list_is_singular(&msk->conn_list))) 3916 mptcp_set_state(newsk, TCP_CLOSE); 3917 } 3918 } else { 3919 tcpfallback: 3920 newsk->sk_kern_sock = kern; 3921 lock_sock(newsk); 3922 __inet_accept(sock, newsock, newsk); 3923 /* we are being invoked after accepting a non-mp-capable 3924 * flow: sk is a tcp_sk, not an mptcp one. 3925 * 3926 * Hand the socket over to tcp so all further socket ops 3927 * bypass mptcp. 3928 */ 3929 WRITE_ONCE(newsock->sk->sk_socket->ops, 3930 mptcp_fallback_tcp_ops(newsock->sk)); 3931 } 3932 release_sock(newsk); 3933 3934 return 0; 3935 } 3936 3937 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3938 { 3939 struct sock *sk = (struct sock *)msk; 3940 3941 if (sk_stream_is_writeable(sk)) 3942 return EPOLLOUT | EPOLLWRNORM; 3943 3944 mptcp_set_nospace(sk); 3945 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3946 if (sk_stream_is_writeable(sk)) 3947 return EPOLLOUT | EPOLLWRNORM; 3948 3949 return 0; 3950 } 3951 3952 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3953 struct poll_table_struct *wait) 3954 { 3955 struct sock *sk = sock->sk; 3956 struct mptcp_sock *msk; 3957 __poll_t mask = 0; 3958 u8 shutdown; 3959 int state; 3960 3961 msk = mptcp_sk(sk); 3962 sock_poll_wait(file, sock, wait); 3963 3964 state = inet_sk_state_load(sk); 3965 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3966 if (state == TCP_LISTEN) { 3967 struct sock *ssk = READ_ONCE(msk->first); 3968 3969 if (WARN_ON_ONCE(!ssk)) 3970 return 0; 3971 3972 return inet_csk_listen_poll(ssk); 3973 } 3974 3975 shutdown = READ_ONCE(sk->sk_shutdown); 3976 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3977 mask |= EPOLLHUP; 3978 if (shutdown & RCV_SHUTDOWN) 3979 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3980 3981 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3982 mask |= mptcp_check_readable(sk); 3983 if (shutdown & SEND_SHUTDOWN) 3984 mask |= EPOLLOUT | EPOLLWRNORM; 3985 else 3986 mask |= mptcp_check_writeable(msk); 3987 } else if (state == TCP_SYN_SENT && 3988 inet_test_bit(DEFER_CONNECT, sk)) { 3989 /* cf tcp_poll() note about TFO */ 3990 mask |= EPOLLOUT | EPOLLWRNORM; 3991 } 3992 3993 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 3994 smp_rmb(); 3995 if (READ_ONCE(sk->sk_err)) 3996 mask |= EPOLLERR; 3997 3998 return mask; 3999 } 4000 4001 static const struct proto_ops mptcp_stream_ops = { 4002 .family = PF_INET, 4003 .owner = THIS_MODULE, 4004 .release = inet_release, 4005 .bind = mptcp_bind, 4006 .connect = inet_stream_connect, 4007 .socketpair = sock_no_socketpair, 4008 .accept = mptcp_stream_accept, 4009 .getname = inet_getname, 4010 .poll = mptcp_poll, 4011 .ioctl = inet_ioctl, 4012 .gettstamp = sock_gettstamp, 4013 .listen = mptcp_listen, 4014 .shutdown = inet_shutdown, 4015 .setsockopt = sock_common_setsockopt, 4016 .getsockopt = sock_common_getsockopt, 4017 .sendmsg = inet_sendmsg, 4018 .recvmsg = inet_recvmsg, 4019 .mmap = sock_no_mmap, 4020 .set_rcvlowat = mptcp_set_rcvlowat, 4021 }; 4022 4023 static struct inet_protosw mptcp_protosw = { 4024 .type = SOCK_STREAM, 4025 .protocol = IPPROTO_MPTCP, 4026 .prot = &mptcp_prot, 4027 .ops = &mptcp_stream_ops, 4028 .flags = INET_PROTOSW_ICSK, 4029 }; 4030 4031 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4032 { 4033 struct mptcp_delegated_action *delegated; 4034 struct mptcp_subflow_context *subflow; 4035 int work_done = 0; 4036 4037 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4038 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4039 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4040 4041 bh_lock_sock_nested(ssk); 4042 if (!sock_owned_by_user(ssk)) { 4043 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4044 } else { 4045 /* tcp_release_cb_override already processed 4046 * the action or will do at next release_sock(). 4047 * In both case must dequeue the subflow here - on the same 4048 * CPU that scheduled it. 4049 */ 4050 smp_wmb(); 4051 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4052 } 4053 bh_unlock_sock(ssk); 4054 sock_put(ssk); 4055 4056 if (++work_done == budget) 4057 return budget; 4058 } 4059 4060 /* always provide a 0 'work_done' argument, so that napi_complete_done 4061 * will not try accessing the NULL napi->dev ptr 4062 */ 4063 napi_complete_done(napi, 0); 4064 return work_done; 4065 } 4066 4067 void __init mptcp_proto_init(void) 4068 { 4069 struct mptcp_delegated_action *delegated; 4070 int cpu; 4071 4072 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4073 4074 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4075 panic("Failed to allocate MPTCP pcpu counter\n"); 4076 4077 init_dummy_netdev(&mptcp_napi_dev); 4078 for_each_possible_cpu(cpu) { 4079 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4080 INIT_LIST_HEAD(&delegated->head); 4081 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 4082 mptcp_napi_poll); 4083 napi_enable(&delegated->napi); 4084 } 4085 4086 mptcp_subflow_init(); 4087 mptcp_pm_init(); 4088 mptcp_sched_init(); 4089 mptcp_token_init(); 4090 4091 if (proto_register(&mptcp_prot, 1) != 0) 4092 panic("Failed to register MPTCP proto.\n"); 4093 4094 inet_register_protosw(&mptcp_protosw); 4095 4096 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4097 } 4098 4099 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4100 static const struct proto_ops mptcp_v6_stream_ops = { 4101 .family = PF_INET6, 4102 .owner = THIS_MODULE, 4103 .release = inet6_release, 4104 .bind = mptcp_bind, 4105 .connect = inet_stream_connect, 4106 .socketpair = sock_no_socketpair, 4107 .accept = mptcp_stream_accept, 4108 .getname = inet6_getname, 4109 .poll = mptcp_poll, 4110 .ioctl = inet6_ioctl, 4111 .gettstamp = sock_gettstamp, 4112 .listen = mptcp_listen, 4113 .shutdown = inet_shutdown, 4114 .setsockopt = sock_common_setsockopt, 4115 .getsockopt = sock_common_getsockopt, 4116 .sendmsg = inet6_sendmsg, 4117 .recvmsg = inet6_recvmsg, 4118 .mmap = sock_no_mmap, 4119 #ifdef CONFIG_COMPAT 4120 .compat_ioctl = inet6_compat_ioctl, 4121 #endif 4122 .set_rcvlowat = mptcp_set_rcvlowat, 4123 }; 4124 4125 static struct proto mptcp_v6_prot; 4126 4127 static struct inet_protosw mptcp_v6_protosw = { 4128 .type = SOCK_STREAM, 4129 .protocol = IPPROTO_MPTCP, 4130 .prot = &mptcp_v6_prot, 4131 .ops = &mptcp_v6_stream_ops, 4132 .flags = INET_PROTOSW_ICSK, 4133 }; 4134 4135 int __init mptcp_proto_v6_init(void) 4136 { 4137 int err; 4138 4139 mptcp_v6_prot = mptcp_prot; 4140 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 4141 mptcp_v6_prot.slab = NULL; 4142 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4143 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4144 4145 err = proto_register(&mptcp_v6_prot, 1); 4146 if (err) 4147 return err; 4148 4149 err = inet6_register_protosw(&mptcp_v6_protosw); 4150 if (err) 4151 proto_unregister(&mptcp_v6_prot); 4152 4153 return err; 4154 } 4155 #endif 4156