1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 enum { 40 MPTCP_CMSG_TS = BIT(0), 41 MPTCP_CMSG_INQ = BIT(1), 42 }; 43 44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 45 46 static void __mptcp_destroy_sock(struct sock *sk); 47 static void mptcp_check_send_data_fin(struct sock *sk); 48 49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 50 static struct net_device mptcp_napi_dev; 51 52 /* Returns end sequence number of the receiver's advertised window */ 53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 54 { 55 return READ_ONCE(msk->wnd_end); 56 } 57 58 static bool mptcp_is_tcpsk(struct sock *sk) 59 { 60 struct socket *sock = sk->sk_socket; 61 62 if (unlikely(sk->sk_prot == &tcp_prot)) { 63 /* we are being invoked after mptcp_accept() has 64 * accepted a non-mp-capable flow: sk is a tcp_sk, 65 * not an mptcp one. 66 * 67 * Hand the socket over to tcp so all further socket ops 68 * bypass mptcp. 69 */ 70 WRITE_ONCE(sock->ops, &inet_stream_ops); 71 return true; 72 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 73 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { 74 WRITE_ONCE(sock->ops, &inet6_stream_ops); 75 return true; 76 #endif 77 } 78 79 return false; 80 } 81 82 static int __mptcp_socket_create(struct mptcp_sock *msk) 83 { 84 struct mptcp_subflow_context *subflow; 85 struct sock *sk = (struct sock *)msk; 86 struct socket *ssock; 87 int err; 88 89 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 90 if (err) 91 return err; 92 93 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 94 WRITE_ONCE(msk->first, ssock->sk); 95 subflow = mptcp_subflow_ctx(ssock->sk); 96 list_add(&subflow->node, &msk->conn_list); 97 sock_hold(ssock->sk); 98 subflow->request_mptcp = 1; 99 subflow->subflow_id = msk->subflow_id++; 100 101 /* This is the first subflow, always with id 0 */ 102 subflow->local_id_valid = 1; 103 mptcp_sock_graft(msk->first, sk->sk_socket); 104 iput(SOCK_INODE(ssock)); 105 106 return 0; 107 } 108 109 /* If the MPC handshake is not started, returns the first subflow, 110 * eventually allocating it. 111 */ 112 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 113 { 114 struct sock *sk = (struct sock *)msk; 115 int ret; 116 117 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 118 return ERR_PTR(-EINVAL); 119 120 if (!msk->first) { 121 ret = __mptcp_socket_create(msk); 122 if (ret) 123 return ERR_PTR(ret); 124 125 mptcp_sockopt_sync(msk, msk->first); 126 } 127 128 return msk->first; 129 } 130 131 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 132 { 133 sk_drops_add(sk, skb); 134 __kfree_skb(skb); 135 } 136 137 static void mptcp_rmem_charge(struct sock *sk, int size) 138 { 139 mptcp_sk(sk)->rmem_fwd_alloc -= size; 140 } 141 142 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 143 struct sk_buff *from) 144 { 145 bool fragstolen; 146 int delta; 147 148 if (MPTCP_SKB_CB(from)->offset || 149 !skb_try_coalesce(to, from, &fragstolen, &delta)) 150 return false; 151 152 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 153 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 154 to->len, MPTCP_SKB_CB(from)->end_seq); 155 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 156 157 /* note the fwd memory can reach a negative value after accounting 158 * for the delta, but the later skb free will restore a non 159 * negative one 160 */ 161 atomic_add(delta, &sk->sk_rmem_alloc); 162 mptcp_rmem_charge(sk, delta); 163 kfree_skb_partial(from, fragstolen); 164 165 return true; 166 } 167 168 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 169 struct sk_buff *from) 170 { 171 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 172 return false; 173 174 return mptcp_try_coalesce((struct sock *)msk, to, from); 175 } 176 177 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 178 { 179 amount >>= PAGE_SHIFT; 180 mptcp_sk(sk)->rmem_fwd_alloc -= amount << PAGE_SHIFT; 181 __sk_mem_reduce_allocated(sk, amount); 182 } 183 184 static void mptcp_rmem_uncharge(struct sock *sk, int size) 185 { 186 struct mptcp_sock *msk = mptcp_sk(sk); 187 int reclaimable; 188 189 msk->rmem_fwd_alloc += size; 190 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 191 192 /* see sk_mem_uncharge() for the rationale behind the following schema */ 193 if (unlikely(reclaimable >= PAGE_SIZE)) 194 __mptcp_rmem_reclaim(sk, reclaimable); 195 } 196 197 static void mptcp_rfree(struct sk_buff *skb) 198 { 199 unsigned int len = skb->truesize; 200 struct sock *sk = skb->sk; 201 202 atomic_sub(len, &sk->sk_rmem_alloc); 203 mptcp_rmem_uncharge(sk, len); 204 } 205 206 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 207 { 208 skb_orphan(skb); 209 skb->sk = sk; 210 skb->destructor = mptcp_rfree; 211 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 212 mptcp_rmem_charge(sk, skb->truesize); 213 } 214 215 /* "inspired" by tcp_data_queue_ofo(), main differences: 216 * - use mptcp seqs 217 * - don't cope with sacks 218 */ 219 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 220 { 221 struct sock *sk = (struct sock *)msk; 222 struct rb_node **p, *parent; 223 u64 seq, end_seq, max_seq; 224 struct sk_buff *skb1; 225 226 seq = MPTCP_SKB_CB(skb)->map_seq; 227 end_seq = MPTCP_SKB_CB(skb)->end_seq; 228 max_seq = atomic64_read(&msk->rcv_wnd_sent); 229 230 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 231 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 232 if (after64(end_seq, max_seq)) { 233 /* out of window */ 234 mptcp_drop(sk, skb); 235 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 236 (unsigned long long)end_seq - (unsigned long)max_seq, 237 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 238 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 239 return; 240 } 241 242 p = &msk->out_of_order_queue.rb_node; 243 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 244 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 245 rb_link_node(&skb->rbnode, NULL, p); 246 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 247 msk->ooo_last_skb = skb; 248 goto end; 249 } 250 251 /* with 2 subflows, adding at end of ooo queue is quite likely 252 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 253 */ 254 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 255 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 256 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 257 return; 258 } 259 260 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 261 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 262 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 263 parent = &msk->ooo_last_skb->rbnode; 264 p = &parent->rb_right; 265 goto insert; 266 } 267 268 /* Find place to insert this segment. Handle overlaps on the way. */ 269 parent = NULL; 270 while (*p) { 271 parent = *p; 272 skb1 = rb_to_skb(parent); 273 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 274 p = &parent->rb_left; 275 continue; 276 } 277 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 278 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 279 /* All the bits are present. Drop. */ 280 mptcp_drop(sk, skb); 281 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 282 return; 283 } 284 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 285 /* partial overlap: 286 * | skb | 287 * | skb1 | 288 * continue traversing 289 */ 290 } else { 291 /* skb's seq == skb1's seq and skb covers skb1. 292 * Replace skb1 with skb. 293 */ 294 rb_replace_node(&skb1->rbnode, &skb->rbnode, 295 &msk->out_of_order_queue); 296 mptcp_drop(sk, skb1); 297 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 298 goto merge_right; 299 } 300 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 301 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 302 return; 303 } 304 p = &parent->rb_right; 305 } 306 307 insert: 308 /* Insert segment into RB tree. */ 309 rb_link_node(&skb->rbnode, parent, p); 310 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 311 312 merge_right: 313 /* Remove other segments covered by skb. */ 314 while ((skb1 = skb_rb_next(skb)) != NULL) { 315 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 316 break; 317 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 318 mptcp_drop(sk, skb1); 319 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 320 } 321 /* If there is no skb after us, we are the last_skb ! */ 322 if (!skb1) 323 msk->ooo_last_skb = skb; 324 325 end: 326 skb_condense(skb); 327 mptcp_set_owner_r(skb, sk); 328 } 329 330 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 331 { 332 struct mptcp_sock *msk = mptcp_sk(sk); 333 int amt, amount; 334 335 if (size <= msk->rmem_fwd_alloc) 336 return true; 337 338 size -= msk->rmem_fwd_alloc; 339 amt = sk_mem_pages(size); 340 amount = amt << PAGE_SHIFT; 341 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 342 return false; 343 344 msk->rmem_fwd_alloc += amount; 345 return true; 346 } 347 348 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 349 struct sk_buff *skb, unsigned int offset, 350 size_t copy_len) 351 { 352 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 353 struct sock *sk = (struct sock *)msk; 354 struct sk_buff *tail; 355 bool has_rxtstamp; 356 357 __skb_unlink(skb, &ssk->sk_receive_queue); 358 359 skb_ext_reset(skb); 360 skb_orphan(skb); 361 362 /* try to fetch required memory from subflow */ 363 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 364 goto drop; 365 366 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 367 368 /* the skb map_seq accounts for the skb offset: 369 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 370 * value 371 */ 372 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 373 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 374 MPTCP_SKB_CB(skb)->offset = offset; 375 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 376 377 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 378 /* in sequence */ 379 msk->bytes_received += copy_len; 380 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 381 tail = skb_peek_tail(&sk->sk_receive_queue); 382 if (tail && mptcp_try_coalesce(sk, tail, skb)) 383 return true; 384 385 mptcp_set_owner_r(skb, sk); 386 __skb_queue_tail(&sk->sk_receive_queue, skb); 387 return true; 388 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 389 mptcp_data_queue_ofo(msk, skb); 390 return false; 391 } 392 393 /* old data, keep it simple and drop the whole pkt, sender 394 * will retransmit as needed, if needed. 395 */ 396 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 397 drop: 398 mptcp_drop(sk, skb); 399 return false; 400 } 401 402 static void mptcp_stop_timer(struct sock *sk) 403 { 404 struct inet_connection_sock *icsk = inet_csk(sk); 405 406 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 407 mptcp_sk(sk)->timer_ival = 0; 408 } 409 410 static void mptcp_close_wake_up(struct sock *sk) 411 { 412 if (sock_flag(sk, SOCK_DEAD)) 413 return; 414 415 sk->sk_state_change(sk); 416 if (sk->sk_shutdown == SHUTDOWN_MASK || 417 sk->sk_state == TCP_CLOSE) 418 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 419 else 420 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 421 } 422 423 static bool mptcp_pending_data_fin_ack(struct sock *sk) 424 { 425 struct mptcp_sock *msk = mptcp_sk(sk); 426 427 return ((1 << sk->sk_state) & 428 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 429 msk->write_seq == READ_ONCE(msk->snd_una); 430 } 431 432 static void mptcp_check_data_fin_ack(struct sock *sk) 433 { 434 struct mptcp_sock *msk = mptcp_sk(sk); 435 436 /* Look for an acknowledged DATA_FIN */ 437 if (mptcp_pending_data_fin_ack(sk)) { 438 WRITE_ONCE(msk->snd_data_fin_enable, 0); 439 440 switch (sk->sk_state) { 441 case TCP_FIN_WAIT1: 442 inet_sk_state_store(sk, TCP_FIN_WAIT2); 443 break; 444 case TCP_CLOSING: 445 case TCP_LAST_ACK: 446 inet_sk_state_store(sk, TCP_CLOSE); 447 break; 448 } 449 450 mptcp_close_wake_up(sk); 451 } 452 } 453 454 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 455 { 456 struct mptcp_sock *msk = mptcp_sk(sk); 457 458 if (READ_ONCE(msk->rcv_data_fin) && 459 ((1 << sk->sk_state) & 460 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 461 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 462 463 if (msk->ack_seq == rcv_data_fin_seq) { 464 if (seq) 465 *seq = rcv_data_fin_seq; 466 467 return true; 468 } 469 } 470 471 return false; 472 } 473 474 static void mptcp_set_datafin_timeout(struct sock *sk) 475 { 476 struct inet_connection_sock *icsk = inet_csk(sk); 477 u32 retransmits; 478 479 retransmits = min_t(u32, icsk->icsk_retransmits, 480 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 481 482 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 483 } 484 485 static void __mptcp_set_timeout(struct sock *sk, long tout) 486 { 487 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 488 } 489 490 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 491 { 492 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 493 494 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 495 inet_csk(ssk)->icsk_timeout - jiffies : 0; 496 } 497 498 static void mptcp_set_timeout(struct sock *sk) 499 { 500 struct mptcp_subflow_context *subflow; 501 long tout = 0; 502 503 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 504 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 505 __mptcp_set_timeout(sk, tout); 506 } 507 508 static inline bool tcp_can_send_ack(const struct sock *ssk) 509 { 510 return !((1 << inet_sk_state_load(ssk)) & 511 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 512 } 513 514 void __mptcp_subflow_send_ack(struct sock *ssk) 515 { 516 if (tcp_can_send_ack(ssk)) 517 tcp_send_ack(ssk); 518 } 519 520 static void mptcp_subflow_send_ack(struct sock *ssk) 521 { 522 bool slow; 523 524 slow = lock_sock_fast(ssk); 525 __mptcp_subflow_send_ack(ssk); 526 unlock_sock_fast(ssk, slow); 527 } 528 529 static void mptcp_send_ack(struct mptcp_sock *msk) 530 { 531 struct mptcp_subflow_context *subflow; 532 533 mptcp_for_each_subflow(msk, subflow) 534 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 535 } 536 537 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 538 { 539 bool slow; 540 541 slow = lock_sock_fast(ssk); 542 if (tcp_can_send_ack(ssk)) 543 tcp_cleanup_rbuf(ssk, 1); 544 unlock_sock_fast(ssk, slow); 545 } 546 547 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 548 { 549 const struct inet_connection_sock *icsk = inet_csk(ssk); 550 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 551 const struct tcp_sock *tp = tcp_sk(ssk); 552 553 return (ack_pending & ICSK_ACK_SCHED) && 554 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 555 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 556 (rx_empty && ack_pending & 557 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 558 } 559 560 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 561 { 562 int old_space = READ_ONCE(msk->old_wspace); 563 struct mptcp_subflow_context *subflow; 564 struct sock *sk = (struct sock *)msk; 565 int space = __mptcp_space(sk); 566 bool cleanup, rx_empty; 567 568 cleanup = (space > 0) && (space >= (old_space << 1)); 569 rx_empty = !__mptcp_rmem(sk); 570 571 mptcp_for_each_subflow(msk, subflow) { 572 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 573 574 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 575 mptcp_subflow_cleanup_rbuf(ssk); 576 } 577 } 578 579 static bool mptcp_check_data_fin(struct sock *sk) 580 { 581 struct mptcp_sock *msk = mptcp_sk(sk); 582 u64 rcv_data_fin_seq; 583 bool ret = false; 584 585 /* Need to ack a DATA_FIN received from a peer while this side 586 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 587 * msk->rcv_data_fin was set when parsing the incoming options 588 * at the subflow level and the msk lock was not held, so this 589 * is the first opportunity to act on the DATA_FIN and change 590 * the msk state. 591 * 592 * If we are caught up to the sequence number of the incoming 593 * DATA_FIN, send the DATA_ACK now and do state transition. If 594 * not caught up, do nothing and let the recv code send DATA_ACK 595 * when catching up. 596 */ 597 598 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 599 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 600 WRITE_ONCE(msk->rcv_data_fin, 0); 601 602 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 603 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 604 605 switch (sk->sk_state) { 606 case TCP_ESTABLISHED: 607 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 608 break; 609 case TCP_FIN_WAIT1: 610 inet_sk_state_store(sk, TCP_CLOSING); 611 break; 612 case TCP_FIN_WAIT2: 613 inet_sk_state_store(sk, TCP_CLOSE); 614 break; 615 default: 616 /* Other states not expected */ 617 WARN_ON_ONCE(1); 618 break; 619 } 620 621 ret = true; 622 if (!__mptcp_check_fallback(msk)) 623 mptcp_send_ack(msk); 624 mptcp_close_wake_up(sk); 625 } 626 return ret; 627 } 628 629 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 630 struct sock *ssk, 631 unsigned int *bytes) 632 { 633 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 634 struct sock *sk = (struct sock *)msk; 635 unsigned int moved = 0; 636 bool more_data_avail; 637 struct tcp_sock *tp; 638 bool done = false; 639 int sk_rbuf; 640 641 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 642 643 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 644 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 645 646 if (unlikely(ssk_rbuf > sk_rbuf)) { 647 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 648 sk_rbuf = ssk_rbuf; 649 } 650 } 651 652 pr_debug("msk=%p ssk=%p", msk, ssk); 653 tp = tcp_sk(ssk); 654 do { 655 u32 map_remaining, offset; 656 u32 seq = tp->copied_seq; 657 struct sk_buff *skb; 658 bool fin; 659 660 /* try to move as much data as available */ 661 map_remaining = subflow->map_data_len - 662 mptcp_subflow_get_map_offset(subflow); 663 664 skb = skb_peek(&ssk->sk_receive_queue); 665 if (!skb) { 666 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(), 667 * a different CPU can have already processed the pending 668 * data, stop here or we can enter an infinite loop 669 */ 670 if (!moved) 671 done = true; 672 break; 673 } 674 675 if (__mptcp_check_fallback(msk)) { 676 /* Under fallback skbs have no MPTCP extension and TCP could 677 * collapse them between the dummy map creation and the 678 * current dequeue. Be sure to adjust the map size. 679 */ 680 map_remaining = skb->len; 681 subflow->map_data_len = skb->len; 682 } 683 684 offset = seq - TCP_SKB_CB(skb)->seq; 685 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 686 if (fin) { 687 done = true; 688 seq++; 689 } 690 691 if (offset < skb->len) { 692 size_t len = skb->len - offset; 693 694 if (tp->urg_data) 695 done = true; 696 697 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 698 moved += len; 699 seq += len; 700 701 if (WARN_ON_ONCE(map_remaining < len)) 702 break; 703 } else { 704 WARN_ON_ONCE(!fin); 705 sk_eat_skb(ssk, skb); 706 done = true; 707 } 708 709 WRITE_ONCE(tp->copied_seq, seq); 710 more_data_avail = mptcp_subflow_data_available(ssk); 711 712 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 713 done = true; 714 break; 715 } 716 } while (more_data_avail); 717 718 *bytes += moved; 719 return done; 720 } 721 722 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 723 { 724 struct sock *sk = (struct sock *)msk; 725 struct sk_buff *skb, *tail; 726 bool moved = false; 727 struct rb_node *p; 728 u64 end_seq; 729 730 p = rb_first(&msk->out_of_order_queue); 731 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 732 while (p) { 733 skb = rb_to_skb(p); 734 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 735 break; 736 737 p = rb_next(p); 738 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 739 740 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 741 msk->ack_seq))) { 742 mptcp_drop(sk, skb); 743 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 744 continue; 745 } 746 747 end_seq = MPTCP_SKB_CB(skb)->end_seq; 748 tail = skb_peek_tail(&sk->sk_receive_queue); 749 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 750 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 751 752 /* skip overlapping data, if any */ 753 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 754 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 755 delta); 756 MPTCP_SKB_CB(skb)->offset += delta; 757 MPTCP_SKB_CB(skb)->map_seq += delta; 758 __skb_queue_tail(&sk->sk_receive_queue, skb); 759 } 760 msk->bytes_received += end_seq - msk->ack_seq; 761 msk->ack_seq = end_seq; 762 moved = true; 763 } 764 return moved; 765 } 766 767 /* In most cases we will be able to lock the mptcp socket. If its already 768 * owned, we need to defer to the work queue to avoid ABBA deadlock. 769 */ 770 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 771 { 772 struct sock *sk = (struct sock *)msk; 773 unsigned int moved = 0; 774 775 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 776 __mptcp_ofo_queue(msk); 777 if (unlikely(ssk->sk_err)) { 778 if (!sock_owned_by_user(sk)) 779 __mptcp_error_report(sk); 780 else 781 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 782 } 783 784 /* If the moves have caught up with the DATA_FIN sequence number 785 * it's time to ack the DATA_FIN and change socket state, but 786 * this is not a good place to change state. Let the workqueue 787 * do it. 788 */ 789 if (mptcp_pending_data_fin(sk, NULL)) 790 mptcp_schedule_work(sk); 791 return moved > 0; 792 } 793 794 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 795 { 796 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 797 struct mptcp_sock *msk = mptcp_sk(sk); 798 int sk_rbuf, ssk_rbuf; 799 800 /* The peer can send data while we are shutting down this 801 * subflow at msk destruction time, but we must avoid enqueuing 802 * more data to the msk receive queue 803 */ 804 if (unlikely(subflow->disposable)) 805 return; 806 807 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 808 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 809 if (unlikely(ssk_rbuf > sk_rbuf)) 810 sk_rbuf = ssk_rbuf; 811 812 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 813 if (__mptcp_rmem(sk) > sk_rbuf) { 814 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 815 return; 816 } 817 818 /* Wake-up the reader only for in-sequence data */ 819 mptcp_data_lock(sk); 820 if (move_skbs_to_msk(msk, ssk)) 821 sk->sk_data_ready(sk); 822 823 mptcp_data_unlock(sk); 824 } 825 826 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 827 { 828 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 829 WRITE_ONCE(msk->allow_infinite_fallback, false); 830 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 831 } 832 833 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 834 { 835 struct sock *sk = (struct sock *)msk; 836 837 if (sk->sk_state != TCP_ESTABLISHED) 838 return false; 839 840 /* attach to msk socket only after we are sure we will deal with it 841 * at close time 842 */ 843 if (sk->sk_socket && !ssk->sk_socket) 844 mptcp_sock_graft(ssk, sk->sk_socket); 845 846 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 847 mptcp_sockopt_sync_locked(msk, ssk); 848 mptcp_subflow_joined(msk, ssk); 849 return true; 850 } 851 852 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 853 { 854 struct mptcp_subflow_context *tmp, *subflow; 855 struct mptcp_sock *msk = mptcp_sk(sk); 856 857 list_for_each_entry_safe(subflow, tmp, join_list, node) { 858 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 859 bool slow = lock_sock_fast(ssk); 860 861 list_move_tail(&subflow->node, &msk->conn_list); 862 if (!__mptcp_finish_join(msk, ssk)) 863 mptcp_subflow_reset(ssk); 864 unlock_sock_fast(ssk, slow); 865 } 866 } 867 868 static bool mptcp_timer_pending(struct sock *sk) 869 { 870 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 871 } 872 873 static void mptcp_reset_timer(struct sock *sk) 874 { 875 struct inet_connection_sock *icsk = inet_csk(sk); 876 unsigned long tout; 877 878 /* prevent rescheduling on close */ 879 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 880 return; 881 882 tout = mptcp_sk(sk)->timer_ival; 883 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 884 } 885 886 bool mptcp_schedule_work(struct sock *sk) 887 { 888 if (inet_sk_state_load(sk) != TCP_CLOSE && 889 schedule_work(&mptcp_sk(sk)->work)) { 890 /* each subflow already holds a reference to the sk, and the 891 * workqueue is invoked by a subflow, so sk can't go away here. 892 */ 893 sock_hold(sk); 894 return true; 895 } 896 return false; 897 } 898 899 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 900 { 901 struct mptcp_subflow_context *subflow; 902 903 msk_owned_by_me(msk); 904 905 mptcp_for_each_subflow(msk, subflow) { 906 if (READ_ONCE(subflow->data_avail)) 907 return mptcp_subflow_tcp_sock(subflow); 908 } 909 910 return NULL; 911 } 912 913 static bool mptcp_skb_can_collapse_to(u64 write_seq, 914 const struct sk_buff *skb, 915 const struct mptcp_ext *mpext) 916 { 917 if (!tcp_skb_can_collapse_to(skb)) 918 return false; 919 920 /* can collapse only if MPTCP level sequence is in order and this 921 * mapping has not been xmitted yet 922 */ 923 return mpext && mpext->data_seq + mpext->data_len == write_seq && 924 !mpext->frozen; 925 } 926 927 /* we can append data to the given data frag if: 928 * - there is space available in the backing page_frag 929 * - the data frag tail matches the current page_frag free offset 930 * - the data frag end sequence number matches the current write seq 931 */ 932 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 933 const struct page_frag *pfrag, 934 const struct mptcp_data_frag *df) 935 { 936 return df && pfrag->page == df->page && 937 pfrag->size - pfrag->offset > 0 && 938 pfrag->offset == (df->offset + df->data_len) && 939 df->data_seq + df->data_len == msk->write_seq; 940 } 941 942 static void dfrag_uncharge(struct sock *sk, int len) 943 { 944 sk_mem_uncharge(sk, len); 945 sk_wmem_queued_add(sk, -len); 946 } 947 948 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 949 { 950 int len = dfrag->data_len + dfrag->overhead; 951 952 list_del(&dfrag->list); 953 dfrag_uncharge(sk, len); 954 put_page(dfrag->page); 955 } 956 957 static void __mptcp_clean_una(struct sock *sk) 958 { 959 struct mptcp_sock *msk = mptcp_sk(sk); 960 struct mptcp_data_frag *dtmp, *dfrag; 961 u64 snd_una; 962 963 snd_una = msk->snd_una; 964 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 965 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 966 break; 967 968 if (unlikely(dfrag == msk->first_pending)) { 969 /* in recovery mode can see ack after the current snd head */ 970 if (WARN_ON_ONCE(!msk->recovery)) 971 break; 972 973 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 974 } 975 976 dfrag_clear(sk, dfrag); 977 } 978 979 dfrag = mptcp_rtx_head(sk); 980 if (dfrag && after64(snd_una, dfrag->data_seq)) { 981 u64 delta = snd_una - dfrag->data_seq; 982 983 /* prevent wrap around in recovery mode */ 984 if (unlikely(delta > dfrag->already_sent)) { 985 if (WARN_ON_ONCE(!msk->recovery)) 986 goto out; 987 if (WARN_ON_ONCE(delta > dfrag->data_len)) 988 goto out; 989 dfrag->already_sent += delta - dfrag->already_sent; 990 } 991 992 dfrag->data_seq += delta; 993 dfrag->offset += delta; 994 dfrag->data_len -= delta; 995 dfrag->already_sent -= delta; 996 997 dfrag_uncharge(sk, delta); 998 } 999 1000 /* all retransmitted data acked, recovery completed */ 1001 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1002 msk->recovery = false; 1003 1004 out: 1005 if (snd_una == READ_ONCE(msk->snd_nxt) && 1006 snd_una == READ_ONCE(msk->write_seq)) { 1007 if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1008 mptcp_stop_timer(sk); 1009 } else { 1010 mptcp_reset_timer(sk); 1011 } 1012 } 1013 1014 static void __mptcp_clean_una_wakeup(struct sock *sk) 1015 { 1016 lockdep_assert_held_once(&sk->sk_lock.slock); 1017 1018 __mptcp_clean_una(sk); 1019 mptcp_write_space(sk); 1020 } 1021 1022 static void mptcp_clean_una_wakeup(struct sock *sk) 1023 { 1024 mptcp_data_lock(sk); 1025 __mptcp_clean_una_wakeup(sk); 1026 mptcp_data_unlock(sk); 1027 } 1028 1029 static void mptcp_enter_memory_pressure(struct sock *sk) 1030 { 1031 struct mptcp_subflow_context *subflow; 1032 struct mptcp_sock *msk = mptcp_sk(sk); 1033 bool first = true; 1034 1035 sk_stream_moderate_sndbuf(sk); 1036 mptcp_for_each_subflow(msk, subflow) { 1037 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1038 1039 if (first) 1040 tcp_enter_memory_pressure(ssk); 1041 sk_stream_moderate_sndbuf(ssk); 1042 first = false; 1043 } 1044 } 1045 1046 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1047 * data 1048 */ 1049 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1050 { 1051 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1052 pfrag, sk->sk_allocation))) 1053 return true; 1054 1055 mptcp_enter_memory_pressure(sk); 1056 return false; 1057 } 1058 1059 static struct mptcp_data_frag * 1060 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1061 int orig_offset) 1062 { 1063 int offset = ALIGN(orig_offset, sizeof(long)); 1064 struct mptcp_data_frag *dfrag; 1065 1066 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1067 dfrag->data_len = 0; 1068 dfrag->data_seq = msk->write_seq; 1069 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1070 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1071 dfrag->already_sent = 0; 1072 dfrag->page = pfrag->page; 1073 1074 return dfrag; 1075 } 1076 1077 struct mptcp_sendmsg_info { 1078 int mss_now; 1079 int size_goal; 1080 u16 limit; 1081 u16 sent; 1082 unsigned int flags; 1083 bool data_lock_held; 1084 }; 1085 1086 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1087 u64 data_seq, int avail_size) 1088 { 1089 u64 window_end = mptcp_wnd_end(msk); 1090 u64 mptcp_snd_wnd; 1091 1092 if (__mptcp_check_fallback(msk)) 1093 return avail_size; 1094 1095 mptcp_snd_wnd = window_end - data_seq; 1096 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1097 1098 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1099 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1100 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1101 } 1102 1103 return avail_size; 1104 } 1105 1106 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1107 { 1108 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1109 1110 if (!mpext) 1111 return false; 1112 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1113 return true; 1114 } 1115 1116 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1117 { 1118 struct sk_buff *skb; 1119 1120 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1121 if (likely(skb)) { 1122 if (likely(__mptcp_add_ext(skb, gfp))) { 1123 skb_reserve(skb, MAX_TCP_HEADER); 1124 skb->ip_summed = CHECKSUM_PARTIAL; 1125 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1126 return skb; 1127 } 1128 __kfree_skb(skb); 1129 } else { 1130 mptcp_enter_memory_pressure(sk); 1131 } 1132 return NULL; 1133 } 1134 1135 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1136 { 1137 struct sk_buff *skb; 1138 1139 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1140 if (!skb) 1141 return NULL; 1142 1143 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1144 tcp_skb_entail(ssk, skb); 1145 return skb; 1146 } 1147 tcp_skb_tsorted_anchor_cleanup(skb); 1148 kfree_skb(skb); 1149 return NULL; 1150 } 1151 1152 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1153 { 1154 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1155 1156 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1157 } 1158 1159 /* note: this always recompute the csum on the whole skb, even 1160 * if we just appended a single frag. More status info needed 1161 */ 1162 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1163 { 1164 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1165 __wsum csum = ~csum_unfold(mpext->csum); 1166 int offset = skb->len - added; 1167 1168 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1169 } 1170 1171 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1172 struct sock *ssk, 1173 struct mptcp_ext *mpext) 1174 { 1175 if (!mpext) 1176 return; 1177 1178 mpext->infinite_map = 1; 1179 mpext->data_len = 0; 1180 1181 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1182 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1183 pr_fallback(msk); 1184 mptcp_do_fallback(ssk); 1185 } 1186 1187 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1188 struct mptcp_data_frag *dfrag, 1189 struct mptcp_sendmsg_info *info) 1190 { 1191 u64 data_seq = dfrag->data_seq + info->sent; 1192 int offset = dfrag->offset + info->sent; 1193 struct mptcp_sock *msk = mptcp_sk(sk); 1194 bool zero_window_probe = false; 1195 struct mptcp_ext *mpext = NULL; 1196 bool can_coalesce = false; 1197 bool reuse_skb = true; 1198 struct sk_buff *skb; 1199 size_t copy; 1200 int i; 1201 1202 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1203 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1204 1205 if (WARN_ON_ONCE(info->sent > info->limit || 1206 info->limit > dfrag->data_len)) 1207 return 0; 1208 1209 if (unlikely(!__tcp_can_send(ssk))) 1210 return -EAGAIN; 1211 1212 /* compute send limit */ 1213 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1214 copy = info->size_goal; 1215 1216 skb = tcp_write_queue_tail(ssk); 1217 if (skb && copy > skb->len) { 1218 /* Limit the write to the size available in the 1219 * current skb, if any, so that we create at most a new skb. 1220 * Explicitly tells TCP internals to avoid collapsing on later 1221 * queue management operation, to avoid breaking the ext <-> 1222 * SSN association set here 1223 */ 1224 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1225 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1226 TCP_SKB_CB(skb)->eor = 1; 1227 goto alloc_skb; 1228 } 1229 1230 i = skb_shinfo(skb)->nr_frags; 1231 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1232 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1233 tcp_mark_push(tcp_sk(ssk), skb); 1234 goto alloc_skb; 1235 } 1236 1237 copy -= skb->len; 1238 } else { 1239 alloc_skb: 1240 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1241 if (!skb) 1242 return -ENOMEM; 1243 1244 i = skb_shinfo(skb)->nr_frags; 1245 reuse_skb = false; 1246 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1247 } 1248 1249 /* Zero window and all data acked? Probe. */ 1250 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1251 if (copy == 0) { 1252 u64 snd_una = READ_ONCE(msk->snd_una); 1253 1254 if (snd_una != msk->snd_nxt) { 1255 tcp_remove_empty_skb(ssk); 1256 return 0; 1257 } 1258 1259 zero_window_probe = true; 1260 data_seq = snd_una - 1; 1261 copy = 1; 1262 1263 /* all mptcp-level data is acked, no skbs should be present into the 1264 * ssk write queue 1265 */ 1266 WARN_ON_ONCE(reuse_skb); 1267 } 1268 1269 copy = min_t(size_t, copy, info->limit - info->sent); 1270 if (!sk_wmem_schedule(ssk, copy)) { 1271 tcp_remove_empty_skb(ssk); 1272 return -ENOMEM; 1273 } 1274 1275 if (can_coalesce) { 1276 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1277 } else { 1278 get_page(dfrag->page); 1279 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1280 } 1281 1282 skb->len += copy; 1283 skb->data_len += copy; 1284 skb->truesize += copy; 1285 sk_wmem_queued_add(ssk, copy); 1286 sk_mem_charge(ssk, copy); 1287 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1288 TCP_SKB_CB(skb)->end_seq += copy; 1289 tcp_skb_pcount_set(skb, 0); 1290 1291 /* on skb reuse we just need to update the DSS len */ 1292 if (reuse_skb) { 1293 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1294 mpext->data_len += copy; 1295 WARN_ON_ONCE(zero_window_probe); 1296 goto out; 1297 } 1298 1299 memset(mpext, 0, sizeof(*mpext)); 1300 mpext->data_seq = data_seq; 1301 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1302 mpext->data_len = copy; 1303 mpext->use_map = 1; 1304 mpext->dsn64 = 1; 1305 1306 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1307 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1308 mpext->dsn64); 1309 1310 if (zero_window_probe) { 1311 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1312 mpext->frozen = 1; 1313 if (READ_ONCE(msk->csum_enabled)) 1314 mptcp_update_data_checksum(skb, copy); 1315 tcp_push_pending_frames(ssk); 1316 return 0; 1317 } 1318 out: 1319 if (READ_ONCE(msk->csum_enabled)) 1320 mptcp_update_data_checksum(skb, copy); 1321 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1322 mptcp_update_infinite_map(msk, ssk, mpext); 1323 trace_mptcp_sendmsg_frag(mpext); 1324 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1325 return copy; 1326 } 1327 1328 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1329 sizeof(struct tcphdr) - \ 1330 MAX_TCP_OPTION_SPACE - \ 1331 sizeof(struct ipv6hdr) - \ 1332 sizeof(struct frag_hdr)) 1333 1334 struct subflow_send_info { 1335 struct sock *ssk; 1336 u64 linger_time; 1337 }; 1338 1339 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1340 { 1341 if (!subflow->stale) 1342 return; 1343 1344 subflow->stale = 0; 1345 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1346 } 1347 1348 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1349 { 1350 if (unlikely(subflow->stale)) { 1351 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1352 1353 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1354 return false; 1355 1356 mptcp_subflow_set_active(subflow); 1357 } 1358 return __mptcp_subflow_active(subflow); 1359 } 1360 1361 #define SSK_MODE_ACTIVE 0 1362 #define SSK_MODE_BACKUP 1 1363 #define SSK_MODE_MAX 2 1364 1365 /* implement the mptcp packet scheduler; 1366 * returns the subflow that will transmit the next DSS 1367 * additionally updates the rtx timeout 1368 */ 1369 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1370 { 1371 struct subflow_send_info send_info[SSK_MODE_MAX]; 1372 struct mptcp_subflow_context *subflow; 1373 struct sock *sk = (struct sock *)msk; 1374 u32 pace, burst, wmem; 1375 int i, nr_active = 0; 1376 struct sock *ssk; 1377 u64 linger_time; 1378 long tout = 0; 1379 1380 msk_owned_by_me(msk); 1381 1382 if (__mptcp_check_fallback(msk)) { 1383 if (!msk->first) 1384 return NULL; 1385 return __tcp_can_send(msk->first) && 1386 sk_stream_memory_free(msk->first) ? msk->first : NULL; 1387 } 1388 1389 /* re-use last subflow, if the burst allow that */ 1390 if (msk->last_snd && msk->snd_burst > 0 && 1391 sk_stream_memory_free(msk->last_snd) && 1392 mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) { 1393 mptcp_set_timeout(sk); 1394 return msk->last_snd; 1395 } 1396 1397 /* pick the subflow with the lower wmem/wspace ratio */ 1398 for (i = 0; i < SSK_MODE_MAX; ++i) { 1399 send_info[i].ssk = NULL; 1400 send_info[i].linger_time = -1; 1401 } 1402 1403 mptcp_for_each_subflow(msk, subflow) { 1404 trace_mptcp_subflow_get_send(subflow); 1405 ssk = mptcp_subflow_tcp_sock(subflow); 1406 if (!mptcp_subflow_active(subflow)) 1407 continue; 1408 1409 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1410 nr_active += !subflow->backup; 1411 pace = subflow->avg_pacing_rate; 1412 if (unlikely(!pace)) { 1413 /* init pacing rate from socket */ 1414 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1415 pace = subflow->avg_pacing_rate; 1416 if (!pace) 1417 continue; 1418 } 1419 1420 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1421 if (linger_time < send_info[subflow->backup].linger_time) { 1422 send_info[subflow->backup].ssk = ssk; 1423 send_info[subflow->backup].linger_time = linger_time; 1424 } 1425 } 1426 __mptcp_set_timeout(sk, tout); 1427 1428 /* pick the best backup if no other subflow is active */ 1429 if (!nr_active) 1430 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1431 1432 /* According to the blest algorithm, to avoid HoL blocking for the 1433 * faster flow, we need to: 1434 * - estimate the faster flow linger time 1435 * - use the above to estimate the amount of byte transferred 1436 * by the faster flow 1437 * - check that the amount of queued data is greter than the above, 1438 * otherwise do not use the picked, slower, subflow 1439 * We select the subflow with the shorter estimated time to flush 1440 * the queued mem, which basically ensure the above. We just need 1441 * to check that subflow has a non empty cwin. 1442 */ 1443 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1444 if (!ssk || !sk_stream_memory_free(ssk)) 1445 return NULL; 1446 1447 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1448 wmem = READ_ONCE(ssk->sk_wmem_queued); 1449 if (!burst) { 1450 msk->last_snd = NULL; 1451 return ssk; 1452 } 1453 1454 subflow = mptcp_subflow_ctx(ssk); 1455 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1456 READ_ONCE(ssk->sk_pacing_rate) * burst, 1457 burst + wmem); 1458 msk->last_snd = ssk; 1459 msk->snd_burst = burst; 1460 return ssk; 1461 } 1462 1463 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1464 { 1465 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1466 release_sock(ssk); 1467 } 1468 1469 static void mptcp_update_post_push(struct mptcp_sock *msk, 1470 struct mptcp_data_frag *dfrag, 1471 u32 sent) 1472 { 1473 u64 snd_nxt_new = dfrag->data_seq; 1474 1475 dfrag->already_sent += sent; 1476 1477 msk->snd_burst -= sent; 1478 1479 snd_nxt_new += dfrag->already_sent; 1480 1481 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1482 * is recovering after a failover. In that event, this re-sends 1483 * old segments. 1484 * 1485 * Thus compute snd_nxt_new candidate based on 1486 * the dfrag->data_seq that was sent and the data 1487 * that has been handed to the subflow for transmission 1488 * and skip update in case it was old dfrag. 1489 */ 1490 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1491 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1492 msk->snd_nxt = snd_nxt_new; 1493 } 1494 } 1495 1496 void mptcp_check_and_set_pending(struct sock *sk) 1497 { 1498 if (mptcp_send_head(sk)) 1499 mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING); 1500 } 1501 1502 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1503 { 1504 struct sock *prev_ssk = NULL, *ssk = NULL; 1505 struct mptcp_sock *msk = mptcp_sk(sk); 1506 struct mptcp_sendmsg_info info = { 1507 .flags = flags, 1508 }; 1509 bool do_check_data_fin = false; 1510 struct mptcp_data_frag *dfrag; 1511 int len; 1512 1513 while ((dfrag = mptcp_send_head(sk))) { 1514 info.sent = dfrag->already_sent; 1515 info.limit = dfrag->data_len; 1516 len = dfrag->data_len - dfrag->already_sent; 1517 while (len > 0) { 1518 int ret = 0; 1519 1520 prev_ssk = ssk; 1521 ssk = mptcp_subflow_get_send(msk); 1522 1523 /* First check. If the ssk has changed since 1524 * the last round, release prev_ssk 1525 */ 1526 if (ssk != prev_ssk && prev_ssk) 1527 mptcp_push_release(prev_ssk, &info); 1528 if (!ssk) 1529 goto out; 1530 1531 /* Need to lock the new subflow only if different 1532 * from the previous one, otherwise we are still 1533 * helding the relevant lock 1534 */ 1535 if (ssk != prev_ssk) 1536 lock_sock(ssk); 1537 1538 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1539 if (ret <= 0) { 1540 if (ret == -EAGAIN) 1541 continue; 1542 mptcp_push_release(ssk, &info); 1543 goto out; 1544 } 1545 1546 do_check_data_fin = true; 1547 info.sent += ret; 1548 len -= ret; 1549 1550 mptcp_update_post_push(msk, dfrag, ret); 1551 } 1552 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1553 } 1554 1555 /* at this point we held the socket lock for the last subflow we used */ 1556 if (ssk) 1557 mptcp_push_release(ssk, &info); 1558 1559 out: 1560 /* ensure the rtx timer is running */ 1561 if (!mptcp_timer_pending(sk)) 1562 mptcp_reset_timer(sk); 1563 if (do_check_data_fin) 1564 mptcp_check_send_data_fin(sk); 1565 } 1566 1567 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1568 { 1569 struct mptcp_sock *msk = mptcp_sk(sk); 1570 struct mptcp_sendmsg_info info = { 1571 .data_lock_held = true, 1572 }; 1573 struct mptcp_data_frag *dfrag; 1574 struct sock *xmit_ssk; 1575 int len, copied = 0; 1576 1577 info.flags = 0; 1578 while ((dfrag = mptcp_send_head(sk))) { 1579 info.sent = dfrag->already_sent; 1580 info.limit = dfrag->data_len; 1581 len = dfrag->data_len - dfrag->already_sent; 1582 while (len > 0) { 1583 int ret = 0; 1584 1585 /* check for a different subflow usage only after 1586 * spooling the first chunk of data 1587 */ 1588 xmit_ssk = first ? ssk : mptcp_subflow_get_send(msk); 1589 if (!xmit_ssk) 1590 goto out; 1591 if (xmit_ssk != ssk) { 1592 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), 1593 MPTCP_DELEGATE_SEND); 1594 goto out; 1595 } 1596 1597 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1598 if (ret <= 0) 1599 goto out; 1600 1601 info.sent += ret; 1602 copied += ret; 1603 len -= ret; 1604 first = false; 1605 1606 mptcp_update_post_push(msk, dfrag, ret); 1607 } 1608 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1609 } 1610 1611 out: 1612 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1613 * not going to flush it via release_sock() 1614 */ 1615 if (copied) { 1616 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1617 info.size_goal); 1618 if (!mptcp_timer_pending(sk)) 1619 mptcp_reset_timer(sk); 1620 1621 if (msk->snd_data_fin_enable && 1622 msk->snd_nxt + 1 == msk->write_seq) 1623 mptcp_schedule_work(sk); 1624 } 1625 } 1626 1627 static void mptcp_set_nospace(struct sock *sk) 1628 { 1629 /* enable autotune */ 1630 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1631 1632 /* will be cleared on avail space */ 1633 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1634 } 1635 1636 static int mptcp_disconnect(struct sock *sk, int flags); 1637 1638 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1639 size_t len, int *copied_syn) 1640 { 1641 unsigned int saved_flags = msg->msg_flags; 1642 struct mptcp_sock *msk = mptcp_sk(sk); 1643 struct sock *ssk; 1644 int ret; 1645 1646 /* on flags based fastopen the mptcp is supposed to create the 1647 * first subflow right now. Otherwise we are in the defer_connect 1648 * path, and the first subflow must be already present. 1649 * Since the defer_connect flag is cleared after the first succsful 1650 * fastopen attempt, no need to check for additional subflow status. 1651 */ 1652 if (msg->msg_flags & MSG_FASTOPEN) { 1653 ssk = __mptcp_nmpc_sk(msk); 1654 if (IS_ERR(ssk)) 1655 return PTR_ERR(ssk); 1656 } 1657 if (!msk->first) 1658 return -EINVAL; 1659 1660 ssk = msk->first; 1661 1662 lock_sock(ssk); 1663 msg->msg_flags |= MSG_DONTWAIT; 1664 msk->fastopening = 1; 1665 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1666 msk->fastopening = 0; 1667 msg->msg_flags = saved_flags; 1668 release_sock(ssk); 1669 1670 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1671 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1672 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1673 msg->msg_namelen, msg->msg_flags, 1); 1674 1675 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1676 * case of any error, except timeout or signal 1677 */ 1678 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1679 *copied_syn = 0; 1680 } else if (ret && ret != -EINPROGRESS) { 1681 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1682 * __inet_stream_connect() can fail, due to looking check, 1683 * see mptcp_disconnect(). 1684 * Attempt it again outside the problematic scope. 1685 */ 1686 if (!mptcp_disconnect(sk, 0)) 1687 sk->sk_socket->state = SS_UNCONNECTED; 1688 } 1689 inet_sk(sk)->defer_connect = 0; 1690 1691 return ret; 1692 } 1693 1694 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1695 { 1696 struct mptcp_sock *msk = mptcp_sk(sk); 1697 struct page_frag *pfrag; 1698 size_t copied = 0; 1699 int ret = 0; 1700 long timeo; 1701 1702 /* silently ignore everything else */ 1703 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1704 1705 lock_sock(sk); 1706 1707 if (unlikely(inet_sk(sk)->defer_connect || msg->msg_flags & MSG_FASTOPEN)) { 1708 int copied_syn = 0; 1709 1710 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1711 copied += copied_syn; 1712 if (ret == -EINPROGRESS && copied_syn > 0) 1713 goto out; 1714 else if (ret) 1715 goto do_error; 1716 } 1717 1718 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1719 1720 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1721 ret = sk_stream_wait_connect(sk, &timeo); 1722 if (ret) 1723 goto do_error; 1724 } 1725 1726 ret = -EPIPE; 1727 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1728 goto do_error; 1729 1730 pfrag = sk_page_frag(sk); 1731 1732 while (msg_data_left(msg)) { 1733 int total_ts, frag_truesize = 0; 1734 struct mptcp_data_frag *dfrag; 1735 bool dfrag_collapsed; 1736 size_t psize, offset; 1737 1738 /* reuse tail pfrag, if possible, or carve a new one from the 1739 * page allocator 1740 */ 1741 dfrag = mptcp_pending_tail(sk); 1742 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1743 if (!dfrag_collapsed) { 1744 if (!sk_stream_memory_free(sk)) 1745 goto wait_for_memory; 1746 1747 if (!mptcp_page_frag_refill(sk, pfrag)) 1748 goto wait_for_memory; 1749 1750 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1751 frag_truesize = dfrag->overhead; 1752 } 1753 1754 /* we do not bound vs wspace, to allow a single packet. 1755 * memory accounting will prevent execessive memory usage 1756 * anyway 1757 */ 1758 offset = dfrag->offset + dfrag->data_len; 1759 psize = pfrag->size - offset; 1760 psize = min_t(size_t, psize, msg_data_left(msg)); 1761 total_ts = psize + frag_truesize; 1762 1763 if (!sk_wmem_schedule(sk, total_ts)) 1764 goto wait_for_memory; 1765 1766 if (copy_page_from_iter(dfrag->page, offset, psize, 1767 &msg->msg_iter) != psize) { 1768 ret = -EFAULT; 1769 goto do_error; 1770 } 1771 1772 /* data successfully copied into the write queue */ 1773 sk->sk_forward_alloc -= total_ts; 1774 copied += psize; 1775 dfrag->data_len += psize; 1776 frag_truesize += psize; 1777 pfrag->offset += frag_truesize; 1778 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1779 1780 /* charge data on mptcp pending queue to the msk socket 1781 * Note: we charge such data both to sk and ssk 1782 */ 1783 sk_wmem_queued_add(sk, frag_truesize); 1784 if (!dfrag_collapsed) { 1785 get_page(dfrag->page); 1786 list_add_tail(&dfrag->list, &msk->rtx_queue); 1787 if (!msk->first_pending) 1788 WRITE_ONCE(msk->first_pending, dfrag); 1789 } 1790 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1791 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1792 !dfrag_collapsed); 1793 1794 continue; 1795 1796 wait_for_memory: 1797 mptcp_set_nospace(sk); 1798 __mptcp_push_pending(sk, msg->msg_flags); 1799 ret = sk_stream_wait_memory(sk, &timeo); 1800 if (ret) 1801 goto do_error; 1802 } 1803 1804 if (copied) 1805 __mptcp_push_pending(sk, msg->msg_flags); 1806 1807 out: 1808 release_sock(sk); 1809 return copied; 1810 1811 do_error: 1812 if (copied) 1813 goto out; 1814 1815 copied = sk_stream_error(sk, msg->msg_flags, ret); 1816 goto out; 1817 } 1818 1819 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1820 struct msghdr *msg, 1821 size_t len, int flags, 1822 struct scm_timestamping_internal *tss, 1823 int *cmsg_flags) 1824 { 1825 struct sk_buff *skb, *tmp; 1826 int copied = 0; 1827 1828 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1829 u32 offset = MPTCP_SKB_CB(skb)->offset; 1830 u32 data_len = skb->len - offset; 1831 u32 count = min_t(size_t, len - copied, data_len); 1832 int err; 1833 1834 if (!(flags & MSG_TRUNC)) { 1835 err = skb_copy_datagram_msg(skb, offset, msg, count); 1836 if (unlikely(err < 0)) { 1837 if (!copied) 1838 return err; 1839 break; 1840 } 1841 } 1842 1843 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1844 tcp_update_recv_tstamps(skb, tss); 1845 *cmsg_flags |= MPTCP_CMSG_TS; 1846 } 1847 1848 copied += count; 1849 1850 if (count < data_len) { 1851 if (!(flags & MSG_PEEK)) { 1852 MPTCP_SKB_CB(skb)->offset += count; 1853 MPTCP_SKB_CB(skb)->map_seq += count; 1854 } 1855 break; 1856 } 1857 1858 if (!(flags & MSG_PEEK)) { 1859 /* we will bulk release the skb memory later */ 1860 skb->destructor = NULL; 1861 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1862 __skb_unlink(skb, &msk->receive_queue); 1863 __kfree_skb(skb); 1864 } 1865 1866 if (copied >= len) 1867 break; 1868 } 1869 1870 return copied; 1871 } 1872 1873 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1874 * 1875 * Only difference: Use highest rtt estimate of the subflows in use. 1876 */ 1877 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1878 { 1879 struct mptcp_subflow_context *subflow; 1880 struct sock *sk = (struct sock *)msk; 1881 u8 scaling_ratio = U8_MAX; 1882 u32 time, advmss = 1; 1883 u64 rtt_us, mstamp; 1884 1885 msk_owned_by_me(msk); 1886 1887 if (copied <= 0) 1888 return; 1889 1890 msk->rcvq_space.copied += copied; 1891 1892 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1893 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1894 1895 rtt_us = msk->rcvq_space.rtt_us; 1896 if (rtt_us && time < (rtt_us >> 3)) 1897 return; 1898 1899 rtt_us = 0; 1900 mptcp_for_each_subflow(msk, subflow) { 1901 const struct tcp_sock *tp; 1902 u64 sf_rtt_us; 1903 u32 sf_advmss; 1904 1905 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1906 1907 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1908 sf_advmss = READ_ONCE(tp->advmss); 1909 1910 rtt_us = max(sf_rtt_us, rtt_us); 1911 advmss = max(sf_advmss, advmss); 1912 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 1913 } 1914 1915 msk->rcvq_space.rtt_us = rtt_us; 1916 msk->scaling_ratio = scaling_ratio; 1917 if (time < (rtt_us >> 3) || rtt_us == 0) 1918 return; 1919 1920 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1921 goto new_measure; 1922 1923 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 1924 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1925 u64 rcvwin, grow; 1926 int rcvbuf; 1927 1928 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1929 1930 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1931 1932 do_div(grow, msk->rcvq_space.space); 1933 rcvwin += (grow << 1); 1934 1935 rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin), 1936 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 1937 1938 if (rcvbuf > sk->sk_rcvbuf) { 1939 u32 window_clamp; 1940 1941 window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf); 1942 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 1943 1944 /* Make subflows follow along. If we do not do this, we 1945 * get drops at subflow level if skbs can't be moved to 1946 * the mptcp rx queue fast enough (announced rcv_win can 1947 * exceed ssk->sk_rcvbuf). 1948 */ 1949 mptcp_for_each_subflow(msk, subflow) { 1950 struct sock *ssk; 1951 bool slow; 1952 1953 ssk = mptcp_subflow_tcp_sock(subflow); 1954 slow = lock_sock_fast(ssk); 1955 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 1956 tcp_sk(ssk)->window_clamp = window_clamp; 1957 tcp_cleanup_rbuf(ssk, 1); 1958 unlock_sock_fast(ssk, slow); 1959 } 1960 } 1961 } 1962 1963 msk->rcvq_space.space = msk->rcvq_space.copied; 1964 new_measure: 1965 msk->rcvq_space.copied = 0; 1966 msk->rcvq_space.time = mstamp; 1967 } 1968 1969 static void __mptcp_update_rmem(struct sock *sk) 1970 { 1971 struct mptcp_sock *msk = mptcp_sk(sk); 1972 1973 if (!msk->rmem_released) 1974 return; 1975 1976 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 1977 mptcp_rmem_uncharge(sk, msk->rmem_released); 1978 WRITE_ONCE(msk->rmem_released, 0); 1979 } 1980 1981 static void __mptcp_splice_receive_queue(struct sock *sk) 1982 { 1983 struct mptcp_sock *msk = mptcp_sk(sk); 1984 1985 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 1986 } 1987 1988 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 1989 { 1990 struct sock *sk = (struct sock *)msk; 1991 unsigned int moved = 0; 1992 bool ret, done; 1993 1994 do { 1995 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 1996 bool slowpath; 1997 1998 /* we can have data pending in the subflows only if the msk 1999 * receive buffer was full at subflow_data_ready() time, 2000 * that is an unlikely slow path. 2001 */ 2002 if (likely(!ssk)) 2003 break; 2004 2005 slowpath = lock_sock_fast(ssk); 2006 mptcp_data_lock(sk); 2007 __mptcp_update_rmem(sk); 2008 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 2009 mptcp_data_unlock(sk); 2010 2011 if (unlikely(ssk->sk_err)) 2012 __mptcp_error_report(sk); 2013 unlock_sock_fast(ssk, slowpath); 2014 } while (!done); 2015 2016 /* acquire the data lock only if some input data is pending */ 2017 ret = moved > 0; 2018 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 2019 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2020 mptcp_data_lock(sk); 2021 __mptcp_update_rmem(sk); 2022 ret |= __mptcp_ofo_queue(msk); 2023 __mptcp_splice_receive_queue(sk); 2024 mptcp_data_unlock(sk); 2025 } 2026 if (ret) 2027 mptcp_check_data_fin((struct sock *)msk); 2028 return !skb_queue_empty(&msk->receive_queue); 2029 } 2030 2031 static unsigned int mptcp_inq_hint(const struct sock *sk) 2032 { 2033 const struct mptcp_sock *msk = mptcp_sk(sk); 2034 const struct sk_buff *skb; 2035 2036 skb = skb_peek(&msk->receive_queue); 2037 if (skb) { 2038 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 2039 2040 if (hint_val >= INT_MAX) 2041 return INT_MAX; 2042 2043 return (unsigned int)hint_val; 2044 } 2045 2046 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2047 return 1; 2048 2049 return 0; 2050 } 2051 2052 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2053 int flags, int *addr_len) 2054 { 2055 struct mptcp_sock *msk = mptcp_sk(sk); 2056 struct scm_timestamping_internal tss; 2057 int copied = 0, cmsg_flags = 0; 2058 int target; 2059 long timeo; 2060 2061 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2062 if (unlikely(flags & MSG_ERRQUEUE)) 2063 return inet_recv_error(sk, msg, len, addr_len); 2064 2065 lock_sock(sk); 2066 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2067 copied = -ENOTCONN; 2068 goto out_err; 2069 } 2070 2071 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2072 2073 len = min_t(size_t, len, INT_MAX); 2074 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2075 2076 if (unlikely(msk->recvmsg_inq)) 2077 cmsg_flags = MPTCP_CMSG_INQ; 2078 2079 while (copied < len) { 2080 int bytes_read; 2081 2082 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2083 if (unlikely(bytes_read < 0)) { 2084 if (!copied) 2085 copied = bytes_read; 2086 goto out_err; 2087 } 2088 2089 copied += bytes_read; 2090 2091 /* be sure to advertise window change */ 2092 mptcp_cleanup_rbuf(msk); 2093 2094 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2095 continue; 2096 2097 /* only the master socket status is relevant here. The exit 2098 * conditions mirror closely tcp_recvmsg() 2099 */ 2100 if (copied >= target) 2101 break; 2102 2103 if (copied) { 2104 if (sk->sk_err || 2105 sk->sk_state == TCP_CLOSE || 2106 (sk->sk_shutdown & RCV_SHUTDOWN) || 2107 !timeo || 2108 signal_pending(current)) 2109 break; 2110 } else { 2111 if (sk->sk_err) { 2112 copied = sock_error(sk); 2113 break; 2114 } 2115 2116 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2117 /* race breaker: the shutdown could be after the 2118 * previous receive queue check 2119 */ 2120 if (__mptcp_move_skbs(msk)) 2121 continue; 2122 break; 2123 } 2124 2125 if (sk->sk_state == TCP_CLOSE) { 2126 copied = -ENOTCONN; 2127 break; 2128 } 2129 2130 if (!timeo) { 2131 copied = -EAGAIN; 2132 break; 2133 } 2134 2135 if (signal_pending(current)) { 2136 copied = sock_intr_errno(timeo); 2137 break; 2138 } 2139 } 2140 2141 pr_debug("block timeout %ld", timeo); 2142 sk_wait_data(sk, &timeo, NULL); 2143 } 2144 2145 out_err: 2146 if (cmsg_flags && copied >= 0) { 2147 if (cmsg_flags & MPTCP_CMSG_TS) 2148 tcp_recv_timestamp(msg, sk, &tss); 2149 2150 if (cmsg_flags & MPTCP_CMSG_INQ) { 2151 unsigned int inq = mptcp_inq_hint(sk); 2152 2153 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2154 } 2155 } 2156 2157 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2158 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2159 skb_queue_empty(&msk->receive_queue), copied); 2160 if (!(flags & MSG_PEEK)) 2161 mptcp_rcv_space_adjust(msk, copied); 2162 2163 release_sock(sk); 2164 return copied; 2165 } 2166 2167 static void mptcp_retransmit_timer(struct timer_list *t) 2168 { 2169 struct inet_connection_sock *icsk = from_timer(icsk, t, 2170 icsk_retransmit_timer); 2171 struct sock *sk = &icsk->icsk_inet.sk; 2172 struct mptcp_sock *msk = mptcp_sk(sk); 2173 2174 bh_lock_sock(sk); 2175 if (!sock_owned_by_user(sk)) { 2176 /* we need a process context to retransmit */ 2177 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2178 mptcp_schedule_work(sk); 2179 } else { 2180 /* delegate our work to tcp_release_cb() */ 2181 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2182 } 2183 bh_unlock_sock(sk); 2184 sock_put(sk); 2185 } 2186 2187 static void mptcp_timeout_timer(struct timer_list *t) 2188 { 2189 struct sock *sk = from_timer(sk, t, sk_timer); 2190 2191 mptcp_schedule_work(sk); 2192 sock_put(sk); 2193 } 2194 2195 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2196 * level. 2197 * 2198 * A backup subflow is returned only if that is the only kind available. 2199 */ 2200 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2201 { 2202 struct sock *backup = NULL, *pick = NULL; 2203 struct mptcp_subflow_context *subflow; 2204 int min_stale_count = INT_MAX; 2205 2206 msk_owned_by_me(msk); 2207 2208 if (__mptcp_check_fallback(msk)) 2209 return NULL; 2210 2211 mptcp_for_each_subflow(msk, subflow) { 2212 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2213 2214 if (!__mptcp_subflow_active(subflow)) 2215 continue; 2216 2217 /* still data outstanding at TCP level? skip this */ 2218 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2219 mptcp_pm_subflow_chk_stale(msk, ssk); 2220 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2221 continue; 2222 } 2223 2224 if (subflow->backup) { 2225 if (!backup) 2226 backup = ssk; 2227 continue; 2228 } 2229 2230 if (!pick) 2231 pick = ssk; 2232 } 2233 2234 if (pick) 2235 return pick; 2236 2237 /* use backup only if there are no progresses anywhere */ 2238 return min_stale_count > 1 ? backup : NULL; 2239 } 2240 2241 bool __mptcp_retransmit_pending_data(struct sock *sk) 2242 { 2243 struct mptcp_data_frag *cur, *rtx_head; 2244 struct mptcp_sock *msk = mptcp_sk(sk); 2245 2246 if (__mptcp_check_fallback(msk)) 2247 return false; 2248 2249 if (tcp_rtx_and_write_queues_empty(sk)) 2250 return false; 2251 2252 /* the closing socket has some data untransmitted and/or unacked: 2253 * some data in the mptcp rtx queue has not really xmitted yet. 2254 * keep it simple and re-inject the whole mptcp level rtx queue 2255 */ 2256 mptcp_data_lock(sk); 2257 __mptcp_clean_una_wakeup(sk); 2258 rtx_head = mptcp_rtx_head(sk); 2259 if (!rtx_head) { 2260 mptcp_data_unlock(sk); 2261 return false; 2262 } 2263 2264 msk->recovery_snd_nxt = msk->snd_nxt; 2265 msk->recovery = true; 2266 mptcp_data_unlock(sk); 2267 2268 msk->first_pending = rtx_head; 2269 msk->snd_burst = 0; 2270 2271 /* be sure to clear the "sent status" on all re-injected fragments */ 2272 list_for_each_entry(cur, &msk->rtx_queue, list) { 2273 if (!cur->already_sent) 2274 break; 2275 cur->already_sent = 0; 2276 } 2277 2278 return true; 2279 } 2280 2281 /* flags for __mptcp_close_ssk() */ 2282 #define MPTCP_CF_PUSH BIT(1) 2283 #define MPTCP_CF_FASTCLOSE BIT(2) 2284 2285 /* subflow sockets can be either outgoing (connect) or incoming 2286 * (accept). 2287 * 2288 * Outgoing subflows use in-kernel sockets. 2289 * Incoming subflows do not have their own 'struct socket' allocated, 2290 * so we need to use tcp_close() after detaching them from the mptcp 2291 * parent socket. 2292 */ 2293 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2294 struct mptcp_subflow_context *subflow, 2295 unsigned int flags) 2296 { 2297 struct mptcp_sock *msk = mptcp_sk(sk); 2298 bool dispose_it, need_push = false; 2299 2300 /* If the first subflow moved to a close state before accept, e.g. due 2301 * to an incoming reset, mptcp either: 2302 * - if either the subflow or the msk are dead, destroy the context 2303 * (the subflow socket is deleted by inet_child_forget) and the msk 2304 * - otherwise do nothing at the moment and take action at accept and/or 2305 * listener shutdown - user-space must be able to accept() the closed 2306 * socket. 2307 */ 2308 if (msk->in_accept_queue && msk->first == ssk) { 2309 if (!sock_flag(sk, SOCK_DEAD) && !sock_flag(ssk, SOCK_DEAD)) 2310 return; 2311 2312 /* ensure later check in mptcp_worker() will dispose the msk */ 2313 sock_set_flag(sk, SOCK_DEAD); 2314 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2315 mptcp_subflow_drop_ctx(ssk); 2316 goto out_release; 2317 } 2318 2319 dispose_it = msk->free_first || ssk != msk->first; 2320 if (dispose_it) 2321 list_del(&subflow->node); 2322 2323 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2324 2325 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2326 /* be sure to force the tcp_disconnect() path, 2327 * to generate the egress reset 2328 */ 2329 ssk->sk_lingertime = 0; 2330 sock_set_flag(ssk, SOCK_LINGER); 2331 subflow->send_fastclose = 1; 2332 } 2333 2334 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2335 if (!dispose_it) { 2336 /* The MPTCP code never wait on the subflow sockets, TCP-level 2337 * disconnect should never fail 2338 */ 2339 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2340 mptcp_subflow_ctx_reset(subflow); 2341 release_sock(ssk); 2342 2343 goto out; 2344 } 2345 2346 subflow->disposable = 1; 2347 2348 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2349 * the ssk has been already destroyed, we just need to release the 2350 * reference owned by msk; 2351 */ 2352 if (!inet_csk(ssk)->icsk_ulp_ops) { 2353 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2354 kfree_rcu(subflow, rcu); 2355 } else { 2356 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2357 __tcp_close(ssk, 0); 2358 2359 /* close acquired an extra ref */ 2360 __sock_put(ssk); 2361 } 2362 2363 out_release: 2364 release_sock(ssk); 2365 2366 sock_put(ssk); 2367 2368 if (ssk == msk->first) 2369 WRITE_ONCE(msk->first, NULL); 2370 2371 out: 2372 if (ssk == msk->last_snd) 2373 msk->last_snd = NULL; 2374 2375 if (need_push) 2376 __mptcp_push_pending(sk, 0); 2377 } 2378 2379 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2380 struct mptcp_subflow_context *subflow) 2381 { 2382 if (sk->sk_state == TCP_ESTABLISHED) 2383 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2384 2385 /* subflow aborted before reaching the fully_established status 2386 * attempt the creation of the next subflow 2387 */ 2388 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow); 2389 2390 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2391 } 2392 2393 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2394 { 2395 return 0; 2396 } 2397 2398 static void __mptcp_close_subflow(struct sock *sk) 2399 { 2400 struct mptcp_subflow_context *subflow, *tmp; 2401 struct mptcp_sock *msk = mptcp_sk(sk); 2402 2403 might_sleep(); 2404 2405 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2406 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2407 2408 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2409 continue; 2410 2411 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2412 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2413 continue; 2414 2415 mptcp_close_ssk(sk, ssk, subflow); 2416 } 2417 2418 } 2419 2420 static bool mptcp_should_close(const struct sock *sk) 2421 { 2422 s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp; 2423 struct mptcp_subflow_context *subflow; 2424 2425 if (delta >= TCP_TIMEWAIT_LEN || mptcp_sk(sk)->in_accept_queue) 2426 return true; 2427 2428 /* if all subflows are in closed status don't bother with additional 2429 * timeout 2430 */ 2431 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2432 if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) != 2433 TCP_CLOSE) 2434 return false; 2435 } 2436 return true; 2437 } 2438 2439 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2440 { 2441 struct mptcp_subflow_context *subflow, *tmp; 2442 struct sock *sk = (struct sock *)msk; 2443 2444 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2445 return; 2446 2447 mptcp_token_destroy(msk); 2448 2449 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2450 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2451 bool slow; 2452 2453 slow = lock_sock_fast(tcp_sk); 2454 if (tcp_sk->sk_state != TCP_CLOSE) { 2455 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2456 tcp_set_state(tcp_sk, TCP_CLOSE); 2457 } 2458 unlock_sock_fast(tcp_sk, slow); 2459 } 2460 2461 /* Mirror the tcp_reset() error propagation */ 2462 switch (sk->sk_state) { 2463 case TCP_SYN_SENT: 2464 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2465 break; 2466 case TCP_CLOSE_WAIT: 2467 WRITE_ONCE(sk->sk_err, EPIPE); 2468 break; 2469 case TCP_CLOSE: 2470 return; 2471 default: 2472 WRITE_ONCE(sk->sk_err, ECONNRESET); 2473 } 2474 2475 inet_sk_state_store(sk, TCP_CLOSE); 2476 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2477 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2478 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2479 2480 /* the calling mptcp_worker will properly destroy the socket */ 2481 if (sock_flag(sk, SOCK_DEAD)) 2482 return; 2483 2484 sk->sk_state_change(sk); 2485 sk_error_report(sk); 2486 } 2487 2488 static void __mptcp_retrans(struct sock *sk) 2489 { 2490 struct mptcp_sock *msk = mptcp_sk(sk); 2491 struct mptcp_sendmsg_info info = {}; 2492 struct mptcp_data_frag *dfrag; 2493 size_t copied = 0; 2494 struct sock *ssk; 2495 int ret; 2496 2497 mptcp_clean_una_wakeup(sk); 2498 2499 /* first check ssk: need to kick "stale" logic */ 2500 ssk = mptcp_subflow_get_retrans(msk); 2501 dfrag = mptcp_rtx_head(sk); 2502 if (!dfrag) { 2503 if (mptcp_data_fin_enabled(msk)) { 2504 struct inet_connection_sock *icsk = inet_csk(sk); 2505 2506 icsk->icsk_retransmits++; 2507 mptcp_set_datafin_timeout(sk); 2508 mptcp_send_ack(msk); 2509 2510 goto reset_timer; 2511 } 2512 2513 if (!mptcp_send_head(sk)) 2514 return; 2515 2516 goto reset_timer; 2517 } 2518 2519 if (!ssk) 2520 goto reset_timer; 2521 2522 lock_sock(ssk); 2523 2524 /* limit retransmission to the bytes already sent on some subflows */ 2525 info.sent = 0; 2526 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent; 2527 while (info.sent < info.limit) { 2528 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2529 if (ret <= 0) 2530 break; 2531 2532 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2533 copied += ret; 2534 info.sent += ret; 2535 } 2536 if (copied) { 2537 dfrag->already_sent = max(dfrag->already_sent, info.sent); 2538 msk->bytes_retrans += copied; 2539 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2540 info.size_goal); 2541 WRITE_ONCE(msk->allow_infinite_fallback, false); 2542 } 2543 2544 release_sock(ssk); 2545 2546 reset_timer: 2547 mptcp_check_and_set_pending(sk); 2548 2549 if (!mptcp_timer_pending(sk)) 2550 mptcp_reset_timer(sk); 2551 } 2552 2553 /* schedule the timeout timer for the relevant event: either close timeout 2554 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2555 */ 2556 void mptcp_reset_timeout(struct mptcp_sock *msk, unsigned long fail_tout) 2557 { 2558 struct sock *sk = (struct sock *)msk; 2559 unsigned long timeout, close_timeout; 2560 2561 if (!fail_tout && !sock_flag(sk, SOCK_DEAD)) 2562 return; 2563 2564 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + TCP_TIMEWAIT_LEN; 2565 2566 /* the close timeout takes precedence on the fail one, and here at least one of 2567 * them is active 2568 */ 2569 timeout = sock_flag(sk, SOCK_DEAD) ? close_timeout : fail_tout; 2570 2571 sk_reset_timer(sk, &sk->sk_timer, timeout); 2572 } 2573 2574 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2575 { 2576 struct sock *ssk = msk->first; 2577 bool slow; 2578 2579 if (!ssk) 2580 return; 2581 2582 pr_debug("MP_FAIL doesn't respond, reset the subflow"); 2583 2584 slow = lock_sock_fast(ssk); 2585 mptcp_subflow_reset(ssk); 2586 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2587 unlock_sock_fast(ssk, slow); 2588 2589 mptcp_reset_timeout(msk, 0); 2590 } 2591 2592 static void mptcp_do_fastclose(struct sock *sk) 2593 { 2594 struct mptcp_subflow_context *subflow, *tmp; 2595 struct mptcp_sock *msk = mptcp_sk(sk); 2596 2597 inet_sk_state_store(sk, TCP_CLOSE); 2598 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2599 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2600 subflow, MPTCP_CF_FASTCLOSE); 2601 } 2602 2603 static void mptcp_worker(struct work_struct *work) 2604 { 2605 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2606 struct sock *sk = (struct sock *)msk; 2607 unsigned long fail_tout; 2608 int state; 2609 2610 lock_sock(sk); 2611 state = sk->sk_state; 2612 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2613 goto unlock; 2614 2615 mptcp_check_fastclose(msk); 2616 2617 mptcp_pm_nl_work(msk); 2618 2619 mptcp_check_send_data_fin(sk); 2620 mptcp_check_data_fin_ack(sk); 2621 mptcp_check_data_fin(sk); 2622 2623 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2624 __mptcp_close_subflow(sk); 2625 2626 /* There is no point in keeping around an orphaned sk timedout or 2627 * closed, but we need the msk around to reply to incoming DATA_FIN, 2628 * even if it is orphaned and in FIN_WAIT2 state 2629 */ 2630 if (sock_flag(sk, SOCK_DEAD)) { 2631 if (mptcp_should_close(sk)) 2632 mptcp_do_fastclose(sk); 2633 2634 if (sk->sk_state == TCP_CLOSE) { 2635 __mptcp_destroy_sock(sk); 2636 goto unlock; 2637 } 2638 } 2639 2640 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2641 __mptcp_retrans(sk); 2642 2643 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2644 if (fail_tout && time_after(jiffies, fail_tout)) 2645 mptcp_mp_fail_no_response(msk); 2646 2647 unlock: 2648 release_sock(sk); 2649 sock_put(sk); 2650 } 2651 2652 static void __mptcp_init_sock(struct sock *sk) 2653 { 2654 struct mptcp_sock *msk = mptcp_sk(sk); 2655 2656 INIT_LIST_HEAD(&msk->conn_list); 2657 INIT_LIST_HEAD(&msk->join_list); 2658 INIT_LIST_HEAD(&msk->rtx_queue); 2659 INIT_WORK(&msk->work, mptcp_worker); 2660 __skb_queue_head_init(&msk->receive_queue); 2661 msk->out_of_order_queue = RB_ROOT; 2662 msk->first_pending = NULL; 2663 msk->rmem_fwd_alloc = 0; 2664 WRITE_ONCE(msk->rmem_released, 0); 2665 msk->timer_ival = TCP_RTO_MIN; 2666 2667 WRITE_ONCE(msk->first, NULL); 2668 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2669 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2670 WRITE_ONCE(msk->allow_infinite_fallback, true); 2671 msk->recovery = false; 2672 msk->subflow_id = 1; 2673 2674 mptcp_pm_data_init(msk); 2675 2676 /* re-use the csk retrans timer for MPTCP-level retrans */ 2677 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2678 timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0); 2679 } 2680 2681 static void mptcp_ca_reset(struct sock *sk) 2682 { 2683 struct inet_connection_sock *icsk = inet_csk(sk); 2684 2685 tcp_assign_congestion_control(sk); 2686 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2687 2688 /* no need to keep a reference to the ops, the name will suffice */ 2689 tcp_cleanup_congestion_control(sk); 2690 icsk->icsk_ca_ops = NULL; 2691 } 2692 2693 static int mptcp_init_sock(struct sock *sk) 2694 { 2695 struct net *net = sock_net(sk); 2696 2697 __mptcp_init_sock(sk); 2698 2699 if (!mptcp_is_enabled(net)) 2700 return -ENOPROTOOPT; 2701 2702 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2703 return -ENOMEM; 2704 2705 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2706 2707 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2708 * propagate the correct value 2709 */ 2710 mptcp_ca_reset(sk); 2711 2712 sk_sockets_allocated_inc(sk); 2713 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2714 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2715 2716 return 0; 2717 } 2718 2719 static void __mptcp_clear_xmit(struct sock *sk) 2720 { 2721 struct mptcp_sock *msk = mptcp_sk(sk); 2722 struct mptcp_data_frag *dtmp, *dfrag; 2723 2724 WRITE_ONCE(msk->first_pending, NULL); 2725 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2726 dfrag_clear(sk, dfrag); 2727 } 2728 2729 void mptcp_cancel_work(struct sock *sk) 2730 { 2731 struct mptcp_sock *msk = mptcp_sk(sk); 2732 2733 if (cancel_work_sync(&msk->work)) 2734 __sock_put(sk); 2735 } 2736 2737 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2738 { 2739 lock_sock(ssk); 2740 2741 switch (ssk->sk_state) { 2742 case TCP_LISTEN: 2743 if (!(how & RCV_SHUTDOWN)) 2744 break; 2745 fallthrough; 2746 case TCP_SYN_SENT: 2747 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2748 break; 2749 default: 2750 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2751 pr_debug("Fallback"); 2752 ssk->sk_shutdown |= how; 2753 tcp_shutdown(ssk, how); 2754 2755 /* simulate the data_fin ack reception to let the state 2756 * machine move forward 2757 */ 2758 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2759 mptcp_schedule_work(sk); 2760 } else { 2761 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2762 tcp_send_ack(ssk); 2763 if (!mptcp_timer_pending(sk)) 2764 mptcp_reset_timer(sk); 2765 } 2766 break; 2767 } 2768 2769 release_sock(ssk); 2770 } 2771 2772 static const unsigned char new_state[16] = { 2773 /* current state: new state: action: */ 2774 [0 /* (Invalid) */] = TCP_CLOSE, 2775 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2776 [TCP_SYN_SENT] = TCP_CLOSE, 2777 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2778 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2779 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2780 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2781 [TCP_CLOSE] = TCP_CLOSE, 2782 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2783 [TCP_LAST_ACK] = TCP_LAST_ACK, 2784 [TCP_LISTEN] = TCP_CLOSE, 2785 [TCP_CLOSING] = TCP_CLOSING, 2786 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2787 }; 2788 2789 static int mptcp_close_state(struct sock *sk) 2790 { 2791 int next = (int)new_state[sk->sk_state]; 2792 int ns = next & TCP_STATE_MASK; 2793 2794 inet_sk_state_store(sk, ns); 2795 2796 return next & TCP_ACTION_FIN; 2797 } 2798 2799 static void mptcp_check_send_data_fin(struct sock *sk) 2800 { 2801 struct mptcp_subflow_context *subflow; 2802 struct mptcp_sock *msk = mptcp_sk(sk); 2803 2804 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2805 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2806 msk->snd_nxt, msk->write_seq); 2807 2808 /* we still need to enqueue subflows or not really shutting down, 2809 * skip this 2810 */ 2811 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2812 mptcp_send_head(sk)) 2813 return; 2814 2815 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2816 2817 mptcp_for_each_subflow(msk, subflow) { 2818 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2819 2820 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2821 } 2822 } 2823 2824 static void __mptcp_wr_shutdown(struct sock *sk) 2825 { 2826 struct mptcp_sock *msk = mptcp_sk(sk); 2827 2828 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2829 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2830 !!mptcp_send_head(sk)); 2831 2832 /* will be ignored by fallback sockets */ 2833 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2834 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2835 2836 mptcp_check_send_data_fin(sk); 2837 } 2838 2839 static void __mptcp_destroy_sock(struct sock *sk) 2840 { 2841 struct mptcp_sock *msk = mptcp_sk(sk); 2842 2843 pr_debug("msk=%p", msk); 2844 2845 might_sleep(); 2846 2847 mptcp_stop_timer(sk); 2848 sk_stop_timer(sk, &sk->sk_timer); 2849 msk->pm.status = 0; 2850 2851 sk->sk_prot->destroy(sk); 2852 2853 WARN_ON_ONCE(msk->rmem_fwd_alloc); 2854 WARN_ON_ONCE(msk->rmem_released); 2855 sk_stream_kill_queues(sk); 2856 xfrm_sk_free_policy(sk); 2857 2858 sock_put(sk); 2859 } 2860 2861 void __mptcp_unaccepted_force_close(struct sock *sk) 2862 { 2863 sock_set_flag(sk, SOCK_DEAD); 2864 mptcp_do_fastclose(sk); 2865 __mptcp_destroy_sock(sk); 2866 } 2867 2868 static __poll_t mptcp_check_readable(struct mptcp_sock *msk) 2869 { 2870 /* Concurrent splices from sk_receive_queue into receive_queue will 2871 * always show at least one non-empty queue when checked in this order. 2872 */ 2873 if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) && 2874 skb_queue_empty_lockless(&msk->receive_queue)) 2875 return 0; 2876 2877 return EPOLLIN | EPOLLRDNORM; 2878 } 2879 2880 static void mptcp_check_listen_stop(struct sock *sk) 2881 { 2882 struct sock *ssk; 2883 2884 if (inet_sk_state_load(sk) != TCP_LISTEN) 2885 return; 2886 2887 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 2888 ssk = mptcp_sk(sk)->first; 2889 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 2890 return; 2891 2892 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2893 tcp_set_state(ssk, TCP_CLOSE); 2894 mptcp_subflow_queue_clean(sk, ssk); 2895 inet_csk_listen_stop(ssk); 2896 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 2897 release_sock(ssk); 2898 } 2899 2900 bool __mptcp_close(struct sock *sk, long timeout) 2901 { 2902 struct mptcp_subflow_context *subflow; 2903 struct mptcp_sock *msk = mptcp_sk(sk); 2904 bool do_cancel_work = false; 2905 int subflows_alive = 0; 2906 2907 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2908 2909 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 2910 mptcp_check_listen_stop(sk); 2911 inet_sk_state_store(sk, TCP_CLOSE); 2912 goto cleanup; 2913 } 2914 2915 if (mptcp_check_readable(msk) || timeout < 0) { 2916 /* If the msk has read data, or the caller explicitly ask it, 2917 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 2918 */ 2919 mptcp_do_fastclose(sk); 2920 timeout = 0; 2921 } else if (mptcp_close_state(sk)) { 2922 __mptcp_wr_shutdown(sk); 2923 } 2924 2925 sk_stream_wait_close(sk, timeout); 2926 2927 cleanup: 2928 /* orphan all the subflows */ 2929 inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32; 2930 mptcp_for_each_subflow(msk, subflow) { 2931 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2932 bool slow = lock_sock_fast_nested(ssk); 2933 2934 subflows_alive += ssk->sk_state != TCP_CLOSE; 2935 2936 /* since the close timeout takes precedence on the fail one, 2937 * cancel the latter 2938 */ 2939 if (ssk == msk->first) 2940 subflow->fail_tout = 0; 2941 2942 /* detach from the parent socket, but allow data_ready to 2943 * push incoming data into the mptcp stack, to properly ack it 2944 */ 2945 ssk->sk_socket = NULL; 2946 ssk->sk_wq = NULL; 2947 unlock_sock_fast(ssk, slow); 2948 } 2949 sock_orphan(sk); 2950 2951 /* all the subflows are closed, only timeout can change the msk 2952 * state, let's not keep resources busy for no reasons 2953 */ 2954 if (subflows_alive == 0) 2955 inet_sk_state_store(sk, TCP_CLOSE); 2956 2957 sock_hold(sk); 2958 pr_debug("msk=%p state=%d", sk, sk->sk_state); 2959 if (msk->token) 2960 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 2961 2962 if (sk->sk_state == TCP_CLOSE) { 2963 __mptcp_destroy_sock(sk); 2964 do_cancel_work = true; 2965 } else { 2966 mptcp_reset_timeout(msk, 0); 2967 } 2968 2969 return do_cancel_work; 2970 } 2971 2972 static void mptcp_close(struct sock *sk, long timeout) 2973 { 2974 bool do_cancel_work; 2975 2976 lock_sock(sk); 2977 2978 do_cancel_work = __mptcp_close(sk, timeout); 2979 release_sock(sk); 2980 if (do_cancel_work) 2981 mptcp_cancel_work(sk); 2982 2983 sock_put(sk); 2984 } 2985 2986 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 2987 { 2988 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2989 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 2990 struct ipv6_pinfo *msk6 = inet6_sk(msk); 2991 2992 msk->sk_v6_daddr = ssk->sk_v6_daddr; 2993 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 2994 2995 if (msk6 && ssk6) { 2996 msk6->saddr = ssk6->saddr; 2997 msk6->flow_label = ssk6->flow_label; 2998 } 2999 #endif 3000 3001 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3002 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3003 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3004 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3005 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3006 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3007 } 3008 3009 static int mptcp_disconnect(struct sock *sk, int flags) 3010 { 3011 struct mptcp_sock *msk = mptcp_sk(sk); 3012 3013 /* Deny disconnect if other threads are blocked in sk_wait_event() 3014 * or inet_wait_for_connect(). 3015 */ 3016 if (sk->sk_wait_pending) 3017 return -EBUSY; 3018 3019 /* We are on the fastopen error path. We can't call straight into the 3020 * subflows cleanup code due to lock nesting (we are already under 3021 * msk->firstsocket lock). 3022 */ 3023 if (msk->fastopening) 3024 return -EBUSY; 3025 3026 mptcp_check_listen_stop(sk); 3027 inet_sk_state_store(sk, TCP_CLOSE); 3028 3029 mptcp_stop_timer(sk); 3030 sk_stop_timer(sk, &sk->sk_timer); 3031 3032 if (msk->token) 3033 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3034 3035 /* msk->subflow is still intact, the following will not free the first 3036 * subflow 3037 */ 3038 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3039 msk->last_snd = NULL; 3040 WRITE_ONCE(msk->flags, 0); 3041 msk->cb_flags = 0; 3042 msk->push_pending = 0; 3043 msk->recovery = false; 3044 msk->can_ack = false; 3045 msk->fully_established = false; 3046 msk->rcv_data_fin = false; 3047 msk->snd_data_fin_enable = false; 3048 msk->rcv_fastclose = false; 3049 msk->use_64bit_ack = false; 3050 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3051 mptcp_pm_data_reset(msk); 3052 mptcp_ca_reset(sk); 3053 msk->bytes_acked = 0; 3054 msk->bytes_received = 0; 3055 msk->bytes_sent = 0; 3056 msk->bytes_retrans = 0; 3057 3058 WRITE_ONCE(sk->sk_shutdown, 0); 3059 sk_error_report(sk); 3060 return 0; 3061 } 3062 3063 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3064 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3065 { 3066 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 3067 3068 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 3069 } 3070 #endif 3071 3072 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3073 const struct mptcp_options_received *mp_opt, 3074 struct sock *ssk, 3075 struct request_sock *req) 3076 { 3077 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3078 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3079 struct mptcp_sock *msk; 3080 3081 if (!nsk) 3082 return NULL; 3083 3084 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3085 if (nsk->sk_family == AF_INET6) 3086 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3087 #endif 3088 3089 nsk->sk_wait_pending = 0; 3090 __mptcp_init_sock(nsk); 3091 3092 msk = mptcp_sk(nsk); 3093 msk->local_key = subflow_req->local_key; 3094 msk->token = subflow_req->token; 3095 msk->in_accept_queue = 1; 3096 WRITE_ONCE(msk->fully_established, false); 3097 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3098 WRITE_ONCE(msk->csum_enabled, true); 3099 3100 msk->write_seq = subflow_req->idsn + 1; 3101 msk->snd_nxt = msk->write_seq; 3102 msk->snd_una = msk->write_seq; 3103 msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd; 3104 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3105 3106 /* passive msk is created after the first/MPC subflow */ 3107 msk->subflow_id = 2; 3108 3109 sock_reset_flag(nsk, SOCK_RCU_FREE); 3110 security_inet_csk_clone(nsk, req); 3111 3112 /* this can't race with mptcp_close(), as the msk is 3113 * not yet exposted to user-space 3114 */ 3115 inet_sk_state_store(nsk, TCP_ESTABLISHED); 3116 3117 /* The msk maintain a ref to each subflow in the connections list */ 3118 WRITE_ONCE(msk->first, ssk); 3119 list_add(&mptcp_subflow_ctx(ssk)->node, &msk->conn_list); 3120 sock_hold(ssk); 3121 3122 /* new mpc subflow takes ownership of the newly 3123 * created mptcp socket 3124 */ 3125 mptcp_token_accept(subflow_req, msk); 3126 3127 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3128 * uses the correct data 3129 */ 3130 mptcp_copy_inaddrs(nsk, ssk); 3131 mptcp_propagate_sndbuf(nsk, ssk); 3132 3133 mptcp_rcv_space_init(msk, ssk); 3134 bh_unlock_sock(nsk); 3135 3136 /* note: the newly allocated socket refcount is 2 now */ 3137 return nsk; 3138 } 3139 3140 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3141 { 3142 const struct tcp_sock *tp = tcp_sk(ssk); 3143 3144 msk->rcvq_space.copied = 0; 3145 msk->rcvq_space.rtt_us = 0; 3146 3147 msk->rcvq_space.time = tp->tcp_mstamp; 3148 3149 /* initial rcv_space offering made to peer */ 3150 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3151 TCP_INIT_CWND * tp->advmss); 3152 if (msk->rcvq_space.space == 0) 3153 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3154 3155 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3156 } 3157 3158 static struct sock *mptcp_accept(struct sock *ssk, int flags, int *err, 3159 bool kern) 3160 { 3161 struct sock *newsk; 3162 3163 pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk)); 3164 newsk = inet_csk_accept(ssk, flags, err, kern); 3165 if (!newsk) 3166 return NULL; 3167 3168 pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk)); 3169 if (sk_is_mptcp(newsk)) { 3170 struct mptcp_subflow_context *subflow; 3171 struct sock *new_mptcp_sock; 3172 3173 subflow = mptcp_subflow_ctx(newsk); 3174 new_mptcp_sock = subflow->conn; 3175 3176 /* is_mptcp should be false if subflow->conn is missing, see 3177 * subflow_syn_recv_sock() 3178 */ 3179 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3180 tcp_sk(newsk)->is_mptcp = 0; 3181 goto out; 3182 } 3183 3184 newsk = new_mptcp_sock; 3185 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3186 } else { 3187 MPTCP_INC_STATS(sock_net(ssk), 3188 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 3189 } 3190 3191 out: 3192 newsk->sk_kern_sock = kern; 3193 return newsk; 3194 } 3195 3196 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3197 { 3198 struct mptcp_subflow_context *subflow, *tmp; 3199 struct sock *sk = (struct sock *)msk; 3200 3201 __mptcp_clear_xmit(sk); 3202 3203 /* join list will be eventually flushed (with rst) at sock lock release time */ 3204 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3205 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3206 3207 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3208 mptcp_data_lock(sk); 3209 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3210 __skb_queue_purge(&sk->sk_receive_queue); 3211 skb_rbtree_purge(&msk->out_of_order_queue); 3212 mptcp_data_unlock(sk); 3213 3214 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3215 * inet_sock_destruct() will dispose it 3216 */ 3217 sk->sk_forward_alloc += msk->rmem_fwd_alloc; 3218 msk->rmem_fwd_alloc = 0; 3219 mptcp_token_destroy(msk); 3220 mptcp_pm_free_anno_list(msk); 3221 mptcp_free_local_addr_list(msk); 3222 } 3223 3224 static void mptcp_destroy(struct sock *sk) 3225 { 3226 struct mptcp_sock *msk = mptcp_sk(sk); 3227 3228 /* allow the following to close even the initial subflow */ 3229 msk->free_first = 1; 3230 mptcp_destroy_common(msk, 0); 3231 sk_sockets_allocated_dec(sk); 3232 } 3233 3234 void __mptcp_data_acked(struct sock *sk) 3235 { 3236 if (!sock_owned_by_user(sk)) 3237 __mptcp_clean_una(sk); 3238 else 3239 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3240 3241 if (mptcp_pending_data_fin_ack(sk)) 3242 mptcp_schedule_work(sk); 3243 } 3244 3245 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3246 { 3247 if (!mptcp_send_head(sk)) 3248 return; 3249 3250 if (!sock_owned_by_user(sk)) 3251 __mptcp_subflow_push_pending(sk, ssk, false); 3252 else 3253 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3254 } 3255 3256 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3257 BIT(MPTCP_RETRANSMIT) | \ 3258 BIT(MPTCP_FLUSH_JOIN_LIST)) 3259 3260 /* processes deferred events and flush wmem */ 3261 static void mptcp_release_cb(struct sock *sk) 3262 __must_hold(&sk->sk_lock.slock) 3263 { 3264 struct mptcp_sock *msk = mptcp_sk(sk); 3265 3266 for (;;) { 3267 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) | 3268 msk->push_pending; 3269 struct list_head join_list; 3270 3271 if (!flags) 3272 break; 3273 3274 INIT_LIST_HEAD(&join_list); 3275 list_splice_init(&msk->join_list, &join_list); 3276 3277 /* the following actions acquire the subflow socket lock 3278 * 3279 * 1) can't be invoked in atomic scope 3280 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3281 * datapath acquires the msk socket spinlock while helding 3282 * the subflow socket lock 3283 */ 3284 msk->push_pending = 0; 3285 msk->cb_flags &= ~flags; 3286 spin_unlock_bh(&sk->sk_lock.slock); 3287 3288 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3289 __mptcp_flush_join_list(sk, &join_list); 3290 if (flags & BIT(MPTCP_PUSH_PENDING)) 3291 __mptcp_push_pending(sk, 0); 3292 if (flags & BIT(MPTCP_RETRANSMIT)) 3293 __mptcp_retrans(sk); 3294 3295 cond_resched(); 3296 spin_lock_bh(&sk->sk_lock.slock); 3297 } 3298 3299 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3300 __mptcp_clean_una_wakeup(sk); 3301 if (unlikely(msk->cb_flags)) { 3302 /* be sure to set the current sk state before tacking actions 3303 * depending on sk_state, that is processing MPTCP_ERROR_REPORT 3304 */ 3305 if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags)) 3306 __mptcp_set_connected(sk); 3307 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3308 __mptcp_error_report(sk); 3309 if (__test_and_clear_bit(MPTCP_RESET_SCHEDULER, &msk->cb_flags)) 3310 msk->last_snd = NULL; 3311 } 3312 3313 __mptcp_update_rmem(sk); 3314 } 3315 3316 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3317 * TCP can't schedule delack timer before the subflow is fully established. 3318 * MPTCP uses the delack timer to do 3rd ack retransmissions 3319 */ 3320 static void schedule_3rdack_retransmission(struct sock *ssk) 3321 { 3322 struct inet_connection_sock *icsk = inet_csk(ssk); 3323 struct tcp_sock *tp = tcp_sk(ssk); 3324 unsigned long timeout; 3325 3326 if (mptcp_subflow_ctx(ssk)->fully_established) 3327 return; 3328 3329 /* reschedule with a timeout above RTT, as we must look only for drop */ 3330 if (tp->srtt_us) 3331 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3332 else 3333 timeout = TCP_TIMEOUT_INIT; 3334 timeout += jiffies; 3335 3336 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3337 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3338 icsk->icsk_ack.timeout = timeout; 3339 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3340 } 3341 3342 void mptcp_subflow_process_delegated(struct sock *ssk) 3343 { 3344 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3345 struct sock *sk = subflow->conn; 3346 3347 if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) { 3348 mptcp_data_lock(sk); 3349 if (!sock_owned_by_user(sk)) 3350 __mptcp_subflow_push_pending(sk, ssk, true); 3351 else 3352 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3353 mptcp_data_unlock(sk); 3354 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND); 3355 } 3356 if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) { 3357 schedule_3rdack_retransmission(ssk); 3358 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK); 3359 } 3360 } 3361 3362 static int mptcp_hash(struct sock *sk) 3363 { 3364 /* should never be called, 3365 * we hash the TCP subflows not the master socket 3366 */ 3367 WARN_ON_ONCE(1); 3368 return 0; 3369 } 3370 3371 static void mptcp_unhash(struct sock *sk) 3372 { 3373 /* called from sk_common_release(), but nothing to do here */ 3374 } 3375 3376 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3377 { 3378 struct mptcp_sock *msk = mptcp_sk(sk); 3379 3380 pr_debug("msk=%p, ssk=%p", msk, msk->first); 3381 if (WARN_ON_ONCE(!msk->first)) 3382 return -EINVAL; 3383 3384 return inet_csk_get_port(msk->first, snum); 3385 } 3386 3387 void mptcp_finish_connect(struct sock *ssk) 3388 { 3389 struct mptcp_subflow_context *subflow; 3390 struct mptcp_sock *msk; 3391 struct sock *sk; 3392 3393 subflow = mptcp_subflow_ctx(ssk); 3394 sk = subflow->conn; 3395 msk = mptcp_sk(sk); 3396 3397 pr_debug("msk=%p, token=%u", sk, subflow->token); 3398 3399 subflow->map_seq = subflow->iasn; 3400 subflow->map_subflow_seq = 1; 3401 3402 /* the socket is not connected yet, no msk/subflow ops can access/race 3403 * accessing the field below 3404 */ 3405 WRITE_ONCE(msk->local_key, subflow->local_key); 3406 WRITE_ONCE(msk->write_seq, subflow->idsn + 1); 3407 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3408 WRITE_ONCE(msk->snd_una, msk->write_seq); 3409 3410 mptcp_pm_new_connection(msk, ssk, 0); 3411 3412 mptcp_rcv_space_init(msk, ssk); 3413 } 3414 3415 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3416 { 3417 write_lock_bh(&sk->sk_callback_lock); 3418 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3419 sk_set_socket(sk, parent); 3420 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3421 write_unlock_bh(&sk->sk_callback_lock); 3422 } 3423 3424 bool mptcp_finish_join(struct sock *ssk) 3425 { 3426 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3427 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3428 struct sock *parent = (void *)msk; 3429 bool ret = true; 3430 3431 pr_debug("msk=%p, subflow=%p", msk, subflow); 3432 3433 /* mptcp socket already closing? */ 3434 if (!mptcp_is_fully_established(parent)) { 3435 subflow->reset_reason = MPTCP_RST_EMPTCP; 3436 return false; 3437 } 3438 3439 /* active subflow, already present inside the conn_list */ 3440 if (!list_empty(&subflow->node)) { 3441 mptcp_subflow_joined(msk, ssk); 3442 return true; 3443 } 3444 3445 if (!mptcp_pm_allow_new_subflow(msk)) 3446 goto err_prohibited; 3447 3448 /* If we can't acquire msk socket lock here, let the release callback 3449 * handle it 3450 */ 3451 mptcp_data_lock(parent); 3452 if (!sock_owned_by_user(parent)) { 3453 ret = __mptcp_finish_join(msk, ssk); 3454 if (ret) { 3455 sock_hold(ssk); 3456 list_add_tail(&subflow->node, &msk->conn_list); 3457 } 3458 } else { 3459 sock_hold(ssk); 3460 list_add_tail(&subflow->node, &msk->join_list); 3461 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3462 } 3463 mptcp_data_unlock(parent); 3464 3465 if (!ret) { 3466 err_prohibited: 3467 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3468 return false; 3469 } 3470 3471 return true; 3472 } 3473 3474 static void mptcp_shutdown(struct sock *sk, int how) 3475 { 3476 pr_debug("sk=%p, how=%d", sk, how); 3477 3478 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3479 __mptcp_wr_shutdown(sk); 3480 } 3481 3482 static int mptcp_forward_alloc_get(const struct sock *sk) 3483 { 3484 return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc; 3485 } 3486 3487 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3488 { 3489 const struct sock *sk = (void *)msk; 3490 u64 delta; 3491 3492 if (sk->sk_state == TCP_LISTEN) 3493 return -EINVAL; 3494 3495 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3496 return 0; 3497 3498 delta = msk->write_seq - v; 3499 if (__mptcp_check_fallback(msk) && msk->first) { 3500 struct tcp_sock *tp = tcp_sk(msk->first); 3501 3502 /* the first subflow is disconnected after close - see 3503 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3504 * so ignore that status, too. 3505 */ 3506 if (!((1 << msk->first->sk_state) & 3507 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3508 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3509 } 3510 if (delta > INT_MAX) 3511 delta = INT_MAX; 3512 3513 return (int)delta; 3514 } 3515 3516 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3517 { 3518 struct mptcp_sock *msk = mptcp_sk(sk); 3519 bool slow; 3520 3521 switch (cmd) { 3522 case SIOCINQ: 3523 if (sk->sk_state == TCP_LISTEN) 3524 return -EINVAL; 3525 3526 lock_sock(sk); 3527 __mptcp_move_skbs(msk); 3528 *karg = mptcp_inq_hint(sk); 3529 release_sock(sk); 3530 break; 3531 case SIOCOUTQ: 3532 slow = lock_sock_fast(sk); 3533 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3534 unlock_sock_fast(sk, slow); 3535 break; 3536 case SIOCOUTQNSD: 3537 slow = lock_sock_fast(sk); 3538 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3539 unlock_sock_fast(sk, slow); 3540 break; 3541 default: 3542 return -ENOIOCTLCMD; 3543 } 3544 3545 return 0; 3546 } 3547 3548 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3549 struct mptcp_subflow_context *subflow) 3550 { 3551 subflow->request_mptcp = 0; 3552 __mptcp_do_fallback(msk); 3553 } 3554 3555 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3556 { 3557 struct mptcp_subflow_context *subflow; 3558 struct mptcp_sock *msk = mptcp_sk(sk); 3559 int err = -EINVAL; 3560 struct sock *ssk; 3561 3562 ssk = __mptcp_nmpc_sk(msk); 3563 if (IS_ERR(ssk)) 3564 return PTR_ERR(ssk); 3565 3566 inet_sk_state_store(sk, TCP_SYN_SENT); 3567 subflow = mptcp_subflow_ctx(ssk); 3568 #ifdef CONFIG_TCP_MD5SIG 3569 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3570 * TCP option space. 3571 */ 3572 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3573 mptcp_subflow_early_fallback(msk, subflow); 3574 #endif 3575 if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) { 3576 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT); 3577 mptcp_subflow_early_fallback(msk, subflow); 3578 } 3579 if (likely(!__mptcp_check_fallback(msk))) 3580 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3581 3582 /* if reaching here via the fastopen/sendmsg path, the caller already 3583 * acquired the subflow socket lock, too. 3584 */ 3585 if (!msk->fastopening) 3586 lock_sock(ssk); 3587 3588 /* the following mirrors closely a very small chunk of code from 3589 * __inet_stream_connect() 3590 */ 3591 if (ssk->sk_state != TCP_CLOSE) 3592 goto out; 3593 3594 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3595 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3596 if (err) 3597 goto out; 3598 } 3599 3600 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3601 if (err < 0) 3602 goto out; 3603 3604 inet_sk(sk)->defer_connect = inet_sk(ssk)->defer_connect; 3605 3606 out: 3607 if (!msk->fastopening) 3608 release_sock(ssk); 3609 3610 /* on successful connect, the msk state will be moved to established by 3611 * subflow_finish_connect() 3612 */ 3613 if (unlikely(err)) { 3614 /* avoid leaving a dangling token in an unconnected socket */ 3615 mptcp_token_destroy(msk); 3616 inet_sk_state_store(sk, TCP_CLOSE); 3617 return err; 3618 } 3619 3620 mptcp_copy_inaddrs(sk, ssk); 3621 return 0; 3622 } 3623 3624 static struct proto mptcp_prot = { 3625 .name = "MPTCP", 3626 .owner = THIS_MODULE, 3627 .init = mptcp_init_sock, 3628 .connect = mptcp_connect, 3629 .disconnect = mptcp_disconnect, 3630 .close = mptcp_close, 3631 .accept = mptcp_accept, 3632 .setsockopt = mptcp_setsockopt, 3633 .getsockopt = mptcp_getsockopt, 3634 .shutdown = mptcp_shutdown, 3635 .destroy = mptcp_destroy, 3636 .sendmsg = mptcp_sendmsg, 3637 .ioctl = mptcp_ioctl, 3638 .recvmsg = mptcp_recvmsg, 3639 .release_cb = mptcp_release_cb, 3640 .hash = mptcp_hash, 3641 .unhash = mptcp_unhash, 3642 .get_port = mptcp_get_port, 3643 .forward_alloc_get = mptcp_forward_alloc_get, 3644 .sockets_allocated = &mptcp_sockets_allocated, 3645 3646 .memory_allocated = &tcp_memory_allocated, 3647 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3648 3649 .memory_pressure = &tcp_memory_pressure, 3650 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3651 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3652 .sysctl_mem = sysctl_tcp_mem, 3653 .obj_size = sizeof(struct mptcp_sock), 3654 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3655 .no_autobind = true, 3656 }; 3657 3658 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3659 { 3660 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3661 struct sock *ssk, *sk = sock->sk; 3662 int err = -EINVAL; 3663 3664 lock_sock(sk); 3665 ssk = __mptcp_nmpc_sk(msk); 3666 if (IS_ERR(ssk)) { 3667 err = PTR_ERR(ssk); 3668 goto unlock; 3669 } 3670 3671 if (sk->sk_family == AF_INET) 3672 err = inet_bind_sk(ssk, uaddr, addr_len); 3673 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3674 else if (sk->sk_family == AF_INET6) 3675 err = inet6_bind_sk(ssk, uaddr, addr_len); 3676 #endif 3677 if (!err) 3678 mptcp_copy_inaddrs(sk, ssk); 3679 3680 unlock: 3681 release_sock(sk); 3682 return err; 3683 } 3684 3685 static int mptcp_listen(struct socket *sock, int backlog) 3686 { 3687 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3688 struct sock *sk = sock->sk; 3689 struct sock *ssk; 3690 int err; 3691 3692 pr_debug("msk=%p", msk); 3693 3694 lock_sock(sk); 3695 3696 err = -EINVAL; 3697 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3698 goto unlock; 3699 3700 ssk = __mptcp_nmpc_sk(msk); 3701 if (IS_ERR(ssk)) { 3702 err = PTR_ERR(ssk); 3703 goto unlock; 3704 } 3705 3706 inet_sk_state_store(sk, TCP_LISTEN); 3707 sock_set_flag(sk, SOCK_RCU_FREE); 3708 3709 lock_sock(ssk); 3710 err = __inet_listen_sk(ssk, backlog); 3711 release_sock(ssk); 3712 inet_sk_state_store(sk, inet_sk_state_load(ssk)); 3713 3714 if (!err) { 3715 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3716 mptcp_copy_inaddrs(sk, ssk); 3717 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3718 } 3719 3720 unlock: 3721 release_sock(sk); 3722 return err; 3723 } 3724 3725 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3726 int flags, bool kern) 3727 { 3728 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3729 struct sock *ssk, *newsk; 3730 int err; 3731 3732 pr_debug("msk=%p", msk); 3733 3734 /* Buggy applications can call accept on socket states other then LISTEN 3735 * but no need to allocate the first subflow just to error out. 3736 */ 3737 ssk = READ_ONCE(msk->first); 3738 if (!ssk) 3739 return -EINVAL; 3740 3741 newsk = mptcp_accept(ssk, flags, &err, kern); 3742 if (!newsk) 3743 return err; 3744 3745 lock_sock(newsk); 3746 3747 __inet_accept(sock, newsock, newsk); 3748 if (!mptcp_is_tcpsk(newsock->sk)) { 3749 struct mptcp_sock *msk = mptcp_sk(newsk); 3750 struct mptcp_subflow_context *subflow; 3751 3752 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3753 msk->in_accept_queue = 0; 3754 3755 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3756 * This is needed so NOSPACE flag can be set from tcp stack. 3757 */ 3758 mptcp_for_each_subflow(msk, subflow) { 3759 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3760 3761 if (!ssk->sk_socket) 3762 mptcp_sock_graft(ssk, newsock); 3763 } 3764 3765 /* Do late cleanup for the first subflow as necessary. Also 3766 * deal with bad peers not doing a complete shutdown. 3767 */ 3768 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3769 __mptcp_close_ssk(newsk, msk->first, 3770 mptcp_subflow_ctx(msk->first), 0); 3771 if (unlikely(list_is_singular(&msk->conn_list))) 3772 inet_sk_state_store(newsk, TCP_CLOSE); 3773 } 3774 } 3775 release_sock(newsk); 3776 3777 return 0; 3778 } 3779 3780 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3781 { 3782 struct sock *sk = (struct sock *)msk; 3783 3784 if (sk_stream_is_writeable(sk)) 3785 return EPOLLOUT | EPOLLWRNORM; 3786 3787 mptcp_set_nospace(sk); 3788 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3789 if (sk_stream_is_writeable(sk)) 3790 return EPOLLOUT | EPOLLWRNORM; 3791 3792 return 0; 3793 } 3794 3795 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3796 struct poll_table_struct *wait) 3797 { 3798 struct sock *sk = sock->sk; 3799 struct mptcp_sock *msk; 3800 __poll_t mask = 0; 3801 u8 shutdown; 3802 int state; 3803 3804 msk = mptcp_sk(sk); 3805 sock_poll_wait(file, sock, wait); 3806 3807 state = inet_sk_state_load(sk); 3808 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3809 if (state == TCP_LISTEN) { 3810 struct sock *ssk = READ_ONCE(msk->first); 3811 3812 if (WARN_ON_ONCE(!ssk)) 3813 return 0; 3814 3815 return inet_csk_listen_poll(ssk); 3816 } 3817 3818 shutdown = READ_ONCE(sk->sk_shutdown); 3819 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3820 mask |= EPOLLHUP; 3821 if (shutdown & RCV_SHUTDOWN) 3822 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3823 3824 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3825 mask |= mptcp_check_readable(msk); 3826 if (shutdown & SEND_SHUTDOWN) 3827 mask |= EPOLLOUT | EPOLLWRNORM; 3828 else 3829 mask |= mptcp_check_writeable(msk); 3830 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 3831 /* cf tcp_poll() note about TFO */ 3832 mask |= EPOLLOUT | EPOLLWRNORM; 3833 } 3834 3835 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 3836 smp_rmb(); 3837 if (READ_ONCE(sk->sk_err)) 3838 mask |= EPOLLERR; 3839 3840 return mask; 3841 } 3842 3843 static const struct proto_ops mptcp_stream_ops = { 3844 .family = PF_INET, 3845 .owner = THIS_MODULE, 3846 .release = inet_release, 3847 .bind = mptcp_bind, 3848 .connect = inet_stream_connect, 3849 .socketpair = sock_no_socketpair, 3850 .accept = mptcp_stream_accept, 3851 .getname = inet_getname, 3852 .poll = mptcp_poll, 3853 .ioctl = inet_ioctl, 3854 .gettstamp = sock_gettstamp, 3855 .listen = mptcp_listen, 3856 .shutdown = inet_shutdown, 3857 .setsockopt = sock_common_setsockopt, 3858 .getsockopt = sock_common_getsockopt, 3859 .sendmsg = inet_sendmsg, 3860 .recvmsg = inet_recvmsg, 3861 .mmap = sock_no_mmap, 3862 }; 3863 3864 static struct inet_protosw mptcp_protosw = { 3865 .type = SOCK_STREAM, 3866 .protocol = IPPROTO_MPTCP, 3867 .prot = &mptcp_prot, 3868 .ops = &mptcp_stream_ops, 3869 .flags = INET_PROTOSW_ICSK, 3870 }; 3871 3872 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 3873 { 3874 struct mptcp_delegated_action *delegated; 3875 struct mptcp_subflow_context *subflow; 3876 int work_done = 0; 3877 3878 delegated = container_of(napi, struct mptcp_delegated_action, napi); 3879 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 3880 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3881 3882 bh_lock_sock_nested(ssk); 3883 if (!sock_owned_by_user(ssk) && 3884 mptcp_subflow_has_delegated_action(subflow)) 3885 mptcp_subflow_process_delegated(ssk); 3886 /* ... elsewhere tcp_release_cb_override already processed 3887 * the action or will do at next release_sock(). 3888 * In both case must dequeue the subflow here - on the same 3889 * CPU that scheduled it. 3890 */ 3891 bh_unlock_sock(ssk); 3892 sock_put(ssk); 3893 3894 if (++work_done == budget) 3895 return budget; 3896 } 3897 3898 /* always provide a 0 'work_done' argument, so that napi_complete_done 3899 * will not try accessing the NULL napi->dev ptr 3900 */ 3901 napi_complete_done(napi, 0); 3902 return work_done; 3903 } 3904 3905 void __init mptcp_proto_init(void) 3906 { 3907 struct mptcp_delegated_action *delegated; 3908 int cpu; 3909 3910 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 3911 3912 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 3913 panic("Failed to allocate MPTCP pcpu counter\n"); 3914 3915 init_dummy_netdev(&mptcp_napi_dev); 3916 for_each_possible_cpu(cpu) { 3917 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 3918 INIT_LIST_HEAD(&delegated->head); 3919 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 3920 mptcp_napi_poll); 3921 napi_enable(&delegated->napi); 3922 } 3923 3924 mptcp_subflow_init(); 3925 mptcp_pm_init(); 3926 mptcp_token_init(); 3927 3928 if (proto_register(&mptcp_prot, 1) != 0) 3929 panic("Failed to register MPTCP proto.\n"); 3930 3931 inet_register_protosw(&mptcp_protosw); 3932 3933 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 3934 } 3935 3936 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3937 static const struct proto_ops mptcp_v6_stream_ops = { 3938 .family = PF_INET6, 3939 .owner = THIS_MODULE, 3940 .release = inet6_release, 3941 .bind = mptcp_bind, 3942 .connect = inet_stream_connect, 3943 .socketpair = sock_no_socketpair, 3944 .accept = mptcp_stream_accept, 3945 .getname = inet6_getname, 3946 .poll = mptcp_poll, 3947 .ioctl = inet6_ioctl, 3948 .gettstamp = sock_gettstamp, 3949 .listen = mptcp_listen, 3950 .shutdown = inet_shutdown, 3951 .setsockopt = sock_common_setsockopt, 3952 .getsockopt = sock_common_getsockopt, 3953 .sendmsg = inet6_sendmsg, 3954 .recvmsg = inet6_recvmsg, 3955 .mmap = sock_no_mmap, 3956 #ifdef CONFIG_COMPAT 3957 .compat_ioctl = inet6_compat_ioctl, 3958 #endif 3959 }; 3960 3961 static struct proto mptcp_v6_prot; 3962 3963 static struct inet_protosw mptcp_v6_protosw = { 3964 .type = SOCK_STREAM, 3965 .protocol = IPPROTO_MPTCP, 3966 .prot = &mptcp_v6_prot, 3967 .ops = &mptcp_v6_stream_ops, 3968 .flags = INET_PROTOSW_ICSK, 3969 }; 3970 3971 int __init mptcp_proto_v6_init(void) 3972 { 3973 int err; 3974 3975 mptcp_v6_prot = mptcp_prot; 3976 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 3977 mptcp_v6_prot.slab = NULL; 3978 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 3979 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 3980 3981 err = proto_register(&mptcp_v6_prot, 1); 3982 if (err) 3983 return err; 3984 3985 err = inet6_register_protosw(&mptcp_v6_protosw); 3986 if (err) 3987 proto_unregister(&mptcp_v6_prot); 3988 3989 return err; 3990 } 3991 #endif 3992