1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 struct mptcp_skb_cb { 40 u64 map_seq; 41 u64 end_seq; 42 u32 offset; 43 u8 has_rxtstamp:1; 44 }; 45 46 #define MPTCP_SKB_CB(__skb) ((struct mptcp_skb_cb *)&((__skb)->cb[0])) 47 48 enum { 49 MPTCP_CMSG_TS = BIT(0), 50 MPTCP_CMSG_INQ = BIT(1), 51 }; 52 53 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 54 55 static void __mptcp_destroy_sock(struct sock *sk); 56 static void __mptcp_check_send_data_fin(struct sock *sk); 57 58 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 59 static struct net_device mptcp_napi_dev; 60 61 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not 62 * completed yet or has failed, return the subflow socket. 63 * Otherwise return NULL. 64 */ 65 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk) 66 { 67 if (!msk->subflow || READ_ONCE(msk->can_ack)) 68 return NULL; 69 70 return msk->subflow; 71 } 72 73 /* Returns end sequence number of the receiver's advertised window */ 74 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 75 { 76 return READ_ONCE(msk->wnd_end); 77 } 78 79 static bool mptcp_is_tcpsk(struct sock *sk) 80 { 81 struct socket *sock = sk->sk_socket; 82 83 if (unlikely(sk->sk_prot == &tcp_prot)) { 84 /* we are being invoked after mptcp_accept() has 85 * accepted a non-mp-capable flow: sk is a tcp_sk, 86 * not an mptcp one. 87 * 88 * Hand the socket over to tcp so all further socket ops 89 * bypass mptcp. 90 */ 91 sock->ops = &inet_stream_ops; 92 return true; 93 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 94 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { 95 sock->ops = &inet6_stream_ops; 96 return true; 97 #endif 98 } 99 100 return false; 101 } 102 103 static int __mptcp_socket_create(struct mptcp_sock *msk) 104 { 105 struct mptcp_subflow_context *subflow; 106 struct sock *sk = (struct sock *)msk; 107 struct socket *ssock; 108 int err; 109 110 err = mptcp_subflow_create_socket(sk, &ssock); 111 if (err) 112 return err; 113 114 msk->first = ssock->sk; 115 msk->subflow = ssock; 116 subflow = mptcp_subflow_ctx(ssock->sk); 117 list_add(&subflow->node, &msk->conn_list); 118 sock_hold(ssock->sk); 119 subflow->request_mptcp = 1; 120 mptcp_sock_graft(msk->first, sk->sk_socket); 121 122 return 0; 123 } 124 125 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 126 { 127 sk_drops_add(sk, skb); 128 __kfree_skb(skb); 129 } 130 131 static void mptcp_rmem_charge(struct sock *sk, int size) 132 { 133 mptcp_sk(sk)->rmem_fwd_alloc -= size; 134 } 135 136 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 137 struct sk_buff *from) 138 { 139 bool fragstolen; 140 int delta; 141 142 if (MPTCP_SKB_CB(from)->offset || 143 !skb_try_coalesce(to, from, &fragstolen, &delta)) 144 return false; 145 146 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 147 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 148 to->len, MPTCP_SKB_CB(from)->end_seq); 149 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 150 kfree_skb_partial(from, fragstolen); 151 atomic_add(delta, &sk->sk_rmem_alloc); 152 mptcp_rmem_charge(sk, delta); 153 return true; 154 } 155 156 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 157 struct sk_buff *from) 158 { 159 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 160 return false; 161 162 return mptcp_try_coalesce((struct sock *)msk, to, from); 163 } 164 165 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 166 { 167 amount >>= SK_MEM_QUANTUM_SHIFT; 168 mptcp_sk(sk)->rmem_fwd_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 169 __sk_mem_reduce_allocated(sk, amount); 170 } 171 172 static void mptcp_rmem_uncharge(struct sock *sk, int size) 173 { 174 struct mptcp_sock *msk = mptcp_sk(sk); 175 int reclaimable; 176 177 msk->rmem_fwd_alloc += size; 178 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 179 180 /* see sk_mem_uncharge() for the rationale behind the following schema */ 181 if (unlikely(reclaimable >= SK_RECLAIM_THRESHOLD)) 182 __mptcp_rmem_reclaim(sk, SK_RECLAIM_CHUNK); 183 } 184 185 static void mptcp_rfree(struct sk_buff *skb) 186 { 187 unsigned int len = skb->truesize; 188 struct sock *sk = skb->sk; 189 190 atomic_sub(len, &sk->sk_rmem_alloc); 191 mptcp_rmem_uncharge(sk, len); 192 } 193 194 static void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 195 { 196 skb_orphan(skb); 197 skb->sk = sk; 198 skb->destructor = mptcp_rfree; 199 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 200 mptcp_rmem_charge(sk, skb->truesize); 201 } 202 203 /* "inspired" by tcp_data_queue_ofo(), main differences: 204 * - use mptcp seqs 205 * - don't cope with sacks 206 */ 207 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 208 { 209 struct sock *sk = (struct sock *)msk; 210 struct rb_node **p, *parent; 211 u64 seq, end_seq, max_seq; 212 struct sk_buff *skb1; 213 214 seq = MPTCP_SKB_CB(skb)->map_seq; 215 end_seq = MPTCP_SKB_CB(skb)->end_seq; 216 max_seq = READ_ONCE(msk->rcv_wnd_sent); 217 218 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 219 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 220 if (after64(end_seq, max_seq)) { 221 /* out of window */ 222 mptcp_drop(sk, skb); 223 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 224 (unsigned long long)end_seq - (unsigned long)max_seq, 225 (unsigned long long)msk->rcv_wnd_sent); 226 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 227 return; 228 } 229 230 p = &msk->out_of_order_queue.rb_node; 231 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 232 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 233 rb_link_node(&skb->rbnode, NULL, p); 234 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 235 msk->ooo_last_skb = skb; 236 goto end; 237 } 238 239 /* with 2 subflows, adding at end of ooo queue is quite likely 240 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 241 */ 242 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 243 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 244 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 245 return; 246 } 247 248 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 249 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 250 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 251 parent = &msk->ooo_last_skb->rbnode; 252 p = &parent->rb_right; 253 goto insert; 254 } 255 256 /* Find place to insert this segment. Handle overlaps on the way. */ 257 parent = NULL; 258 while (*p) { 259 parent = *p; 260 skb1 = rb_to_skb(parent); 261 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 262 p = &parent->rb_left; 263 continue; 264 } 265 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 266 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 267 /* All the bits are present. Drop. */ 268 mptcp_drop(sk, skb); 269 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 270 return; 271 } 272 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 273 /* partial overlap: 274 * | skb | 275 * | skb1 | 276 * continue traversing 277 */ 278 } else { 279 /* skb's seq == skb1's seq and skb covers skb1. 280 * Replace skb1 with skb. 281 */ 282 rb_replace_node(&skb1->rbnode, &skb->rbnode, 283 &msk->out_of_order_queue); 284 mptcp_drop(sk, skb1); 285 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 286 goto merge_right; 287 } 288 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 289 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 290 return; 291 } 292 p = &parent->rb_right; 293 } 294 295 insert: 296 /* Insert segment into RB tree. */ 297 rb_link_node(&skb->rbnode, parent, p); 298 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 299 300 merge_right: 301 /* Remove other segments covered by skb. */ 302 while ((skb1 = skb_rb_next(skb)) != NULL) { 303 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 304 break; 305 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 306 mptcp_drop(sk, skb1); 307 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 308 } 309 /* If there is no skb after us, we are the last_skb ! */ 310 if (!skb1) 311 msk->ooo_last_skb = skb; 312 313 end: 314 skb_condense(skb); 315 mptcp_set_owner_r(skb, sk); 316 } 317 318 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 319 { 320 struct mptcp_sock *msk = mptcp_sk(sk); 321 int amt, amount; 322 323 if (size < msk->rmem_fwd_alloc) 324 return true; 325 326 amt = sk_mem_pages(size); 327 amount = amt << SK_MEM_QUANTUM_SHIFT; 328 msk->rmem_fwd_alloc += amount; 329 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) { 330 if (ssk->sk_forward_alloc < amount) { 331 msk->rmem_fwd_alloc -= amount; 332 return false; 333 } 334 335 ssk->sk_forward_alloc -= amount; 336 } 337 return true; 338 } 339 340 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 341 struct sk_buff *skb, unsigned int offset, 342 size_t copy_len) 343 { 344 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 345 struct sock *sk = (struct sock *)msk; 346 struct sk_buff *tail; 347 bool has_rxtstamp; 348 349 __skb_unlink(skb, &ssk->sk_receive_queue); 350 351 skb_ext_reset(skb); 352 skb_orphan(skb); 353 354 /* try to fetch required memory from subflow */ 355 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 356 goto drop; 357 358 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 359 360 /* the skb map_seq accounts for the skb offset: 361 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 362 * value 363 */ 364 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 365 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 366 MPTCP_SKB_CB(skb)->offset = offset; 367 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 368 369 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 370 /* in sequence */ 371 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 372 tail = skb_peek_tail(&sk->sk_receive_queue); 373 if (tail && mptcp_try_coalesce(sk, tail, skb)) 374 return true; 375 376 mptcp_set_owner_r(skb, sk); 377 __skb_queue_tail(&sk->sk_receive_queue, skb); 378 return true; 379 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 380 mptcp_data_queue_ofo(msk, skb); 381 return false; 382 } 383 384 /* old data, keep it simple and drop the whole pkt, sender 385 * will retransmit as needed, if needed. 386 */ 387 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 388 drop: 389 mptcp_drop(sk, skb); 390 return false; 391 } 392 393 static void mptcp_stop_timer(struct sock *sk) 394 { 395 struct inet_connection_sock *icsk = inet_csk(sk); 396 397 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 398 mptcp_sk(sk)->timer_ival = 0; 399 } 400 401 static void mptcp_close_wake_up(struct sock *sk) 402 { 403 if (sock_flag(sk, SOCK_DEAD)) 404 return; 405 406 sk->sk_state_change(sk); 407 if (sk->sk_shutdown == SHUTDOWN_MASK || 408 sk->sk_state == TCP_CLOSE) 409 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 410 else 411 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 412 } 413 414 static bool mptcp_pending_data_fin_ack(struct sock *sk) 415 { 416 struct mptcp_sock *msk = mptcp_sk(sk); 417 418 return !__mptcp_check_fallback(msk) && 419 ((1 << sk->sk_state) & 420 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 421 msk->write_seq == READ_ONCE(msk->snd_una); 422 } 423 424 static void mptcp_check_data_fin_ack(struct sock *sk) 425 { 426 struct mptcp_sock *msk = mptcp_sk(sk); 427 428 /* Look for an acknowledged DATA_FIN */ 429 if (mptcp_pending_data_fin_ack(sk)) { 430 WRITE_ONCE(msk->snd_data_fin_enable, 0); 431 432 switch (sk->sk_state) { 433 case TCP_FIN_WAIT1: 434 inet_sk_state_store(sk, TCP_FIN_WAIT2); 435 break; 436 case TCP_CLOSING: 437 case TCP_LAST_ACK: 438 inet_sk_state_store(sk, TCP_CLOSE); 439 break; 440 } 441 442 mptcp_close_wake_up(sk); 443 } 444 } 445 446 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 447 { 448 struct mptcp_sock *msk = mptcp_sk(sk); 449 450 if (READ_ONCE(msk->rcv_data_fin) && 451 ((1 << sk->sk_state) & 452 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 453 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 454 455 if (msk->ack_seq == rcv_data_fin_seq) { 456 if (seq) 457 *seq = rcv_data_fin_seq; 458 459 return true; 460 } 461 } 462 463 return false; 464 } 465 466 static void mptcp_set_datafin_timeout(const struct sock *sk) 467 { 468 struct inet_connection_sock *icsk = inet_csk(sk); 469 470 mptcp_sk(sk)->timer_ival = min(TCP_RTO_MAX, 471 TCP_RTO_MIN << icsk->icsk_retransmits); 472 } 473 474 static void __mptcp_set_timeout(struct sock *sk, long tout) 475 { 476 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 477 } 478 479 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 480 { 481 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 482 483 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 484 inet_csk(ssk)->icsk_timeout - jiffies : 0; 485 } 486 487 static void mptcp_set_timeout(struct sock *sk) 488 { 489 struct mptcp_subflow_context *subflow; 490 long tout = 0; 491 492 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 493 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 494 __mptcp_set_timeout(sk, tout); 495 } 496 497 static bool tcp_can_send_ack(const struct sock *ssk) 498 { 499 return !((1 << inet_sk_state_load(ssk)) & 500 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 501 } 502 503 void mptcp_subflow_send_ack(struct sock *ssk) 504 { 505 bool slow; 506 507 slow = lock_sock_fast(ssk); 508 if (tcp_can_send_ack(ssk)) 509 tcp_send_ack(ssk); 510 unlock_sock_fast(ssk, slow); 511 } 512 513 static void mptcp_send_ack(struct mptcp_sock *msk) 514 { 515 struct mptcp_subflow_context *subflow; 516 517 mptcp_for_each_subflow(msk, subflow) 518 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 519 } 520 521 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 522 { 523 bool slow; 524 525 slow = lock_sock_fast(ssk); 526 if (tcp_can_send_ack(ssk)) 527 tcp_cleanup_rbuf(ssk, 1); 528 unlock_sock_fast(ssk, slow); 529 } 530 531 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 532 { 533 const struct inet_connection_sock *icsk = inet_csk(ssk); 534 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 535 const struct tcp_sock *tp = tcp_sk(ssk); 536 537 return (ack_pending & ICSK_ACK_SCHED) && 538 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 539 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 540 (rx_empty && ack_pending & 541 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 542 } 543 544 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 545 { 546 int old_space = READ_ONCE(msk->old_wspace); 547 struct mptcp_subflow_context *subflow; 548 struct sock *sk = (struct sock *)msk; 549 int space = __mptcp_space(sk); 550 bool cleanup, rx_empty; 551 552 cleanup = (space > 0) && (space >= (old_space << 1)); 553 rx_empty = !__mptcp_rmem(sk); 554 555 mptcp_for_each_subflow(msk, subflow) { 556 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 557 558 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 559 mptcp_subflow_cleanup_rbuf(ssk); 560 } 561 } 562 563 static bool mptcp_check_data_fin(struct sock *sk) 564 { 565 struct mptcp_sock *msk = mptcp_sk(sk); 566 u64 rcv_data_fin_seq; 567 bool ret = false; 568 569 if (__mptcp_check_fallback(msk)) 570 return ret; 571 572 /* Need to ack a DATA_FIN received from a peer while this side 573 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 574 * msk->rcv_data_fin was set when parsing the incoming options 575 * at the subflow level and the msk lock was not held, so this 576 * is the first opportunity to act on the DATA_FIN and change 577 * the msk state. 578 * 579 * If we are caught up to the sequence number of the incoming 580 * DATA_FIN, send the DATA_ACK now and do state transition. If 581 * not caught up, do nothing and let the recv code send DATA_ACK 582 * when catching up. 583 */ 584 585 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 586 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 587 WRITE_ONCE(msk->rcv_data_fin, 0); 588 589 sk->sk_shutdown |= RCV_SHUTDOWN; 590 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 591 592 switch (sk->sk_state) { 593 case TCP_ESTABLISHED: 594 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 595 break; 596 case TCP_FIN_WAIT1: 597 inet_sk_state_store(sk, TCP_CLOSING); 598 break; 599 case TCP_FIN_WAIT2: 600 inet_sk_state_store(sk, TCP_CLOSE); 601 break; 602 default: 603 /* Other states not expected */ 604 WARN_ON_ONCE(1); 605 break; 606 } 607 608 ret = true; 609 mptcp_send_ack(msk); 610 mptcp_close_wake_up(sk); 611 } 612 return ret; 613 } 614 615 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 616 struct sock *ssk, 617 unsigned int *bytes) 618 { 619 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 620 struct sock *sk = (struct sock *)msk; 621 unsigned int moved = 0; 622 bool more_data_avail; 623 struct tcp_sock *tp; 624 bool done = false; 625 int sk_rbuf; 626 627 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 628 629 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 630 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 631 632 if (unlikely(ssk_rbuf > sk_rbuf)) { 633 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 634 sk_rbuf = ssk_rbuf; 635 } 636 } 637 638 pr_debug("msk=%p ssk=%p", msk, ssk); 639 tp = tcp_sk(ssk); 640 do { 641 u32 map_remaining, offset; 642 u32 seq = tp->copied_seq; 643 struct sk_buff *skb; 644 bool fin; 645 646 /* try to move as much data as available */ 647 map_remaining = subflow->map_data_len - 648 mptcp_subflow_get_map_offset(subflow); 649 650 skb = skb_peek(&ssk->sk_receive_queue); 651 if (!skb) { 652 /* if no data is found, a racing workqueue/recvmsg 653 * already processed the new data, stop here or we 654 * can enter an infinite loop 655 */ 656 if (!moved) 657 done = true; 658 break; 659 } 660 661 if (__mptcp_check_fallback(msk)) { 662 /* if we are running under the workqueue, TCP could have 663 * collapsed skbs between dummy map creation and now 664 * be sure to adjust the size 665 */ 666 map_remaining = skb->len; 667 subflow->map_data_len = skb->len; 668 } 669 670 offset = seq - TCP_SKB_CB(skb)->seq; 671 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 672 if (fin) { 673 done = true; 674 seq++; 675 } 676 677 if (offset < skb->len) { 678 size_t len = skb->len - offset; 679 680 if (tp->urg_data) 681 done = true; 682 683 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 684 moved += len; 685 seq += len; 686 687 if (WARN_ON_ONCE(map_remaining < len)) 688 break; 689 } else { 690 WARN_ON_ONCE(!fin); 691 sk_eat_skb(ssk, skb); 692 done = true; 693 } 694 695 WRITE_ONCE(tp->copied_seq, seq); 696 more_data_avail = mptcp_subflow_data_available(ssk); 697 698 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 699 done = true; 700 break; 701 } 702 } while (more_data_avail); 703 704 *bytes += moved; 705 return done; 706 } 707 708 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 709 { 710 struct sock *sk = (struct sock *)msk; 711 struct sk_buff *skb, *tail; 712 bool moved = false; 713 struct rb_node *p; 714 u64 end_seq; 715 716 p = rb_first(&msk->out_of_order_queue); 717 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 718 while (p) { 719 skb = rb_to_skb(p); 720 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 721 break; 722 723 p = rb_next(p); 724 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 725 726 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 727 msk->ack_seq))) { 728 mptcp_drop(sk, skb); 729 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 730 continue; 731 } 732 733 end_seq = MPTCP_SKB_CB(skb)->end_seq; 734 tail = skb_peek_tail(&sk->sk_receive_queue); 735 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 736 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 737 738 /* skip overlapping data, if any */ 739 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 740 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 741 delta); 742 MPTCP_SKB_CB(skb)->offset += delta; 743 MPTCP_SKB_CB(skb)->map_seq += delta; 744 __skb_queue_tail(&sk->sk_receive_queue, skb); 745 } 746 msk->ack_seq = end_seq; 747 moved = true; 748 } 749 return moved; 750 } 751 752 /* In most cases we will be able to lock the mptcp socket. If its already 753 * owned, we need to defer to the work queue to avoid ABBA deadlock. 754 */ 755 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 756 { 757 struct sock *sk = (struct sock *)msk; 758 unsigned int moved = 0; 759 760 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 761 __mptcp_ofo_queue(msk); 762 if (unlikely(ssk->sk_err)) { 763 if (!sock_owned_by_user(sk)) 764 __mptcp_error_report(sk); 765 else 766 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 767 } 768 769 /* If the moves have caught up with the DATA_FIN sequence number 770 * it's time to ack the DATA_FIN and change socket state, but 771 * this is not a good place to change state. Let the workqueue 772 * do it. 773 */ 774 if (mptcp_pending_data_fin(sk, NULL)) 775 mptcp_schedule_work(sk); 776 return moved > 0; 777 } 778 779 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 780 { 781 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 782 struct mptcp_sock *msk = mptcp_sk(sk); 783 int sk_rbuf, ssk_rbuf; 784 785 /* The peer can send data while we are shutting down this 786 * subflow at msk destruction time, but we must avoid enqueuing 787 * more data to the msk receive queue 788 */ 789 if (unlikely(subflow->disposable)) 790 return; 791 792 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 793 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 794 if (unlikely(ssk_rbuf > sk_rbuf)) 795 sk_rbuf = ssk_rbuf; 796 797 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 798 if (__mptcp_rmem(sk) > sk_rbuf) { 799 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 800 return; 801 } 802 803 /* Wake-up the reader only for in-sequence data */ 804 mptcp_data_lock(sk); 805 if (move_skbs_to_msk(msk, ssk)) 806 sk->sk_data_ready(sk); 807 808 mptcp_data_unlock(sk); 809 } 810 811 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 812 { 813 struct sock *sk = (struct sock *)msk; 814 815 if (sk->sk_state != TCP_ESTABLISHED) 816 return false; 817 818 /* attach to msk socket only after we are sure we will deal with it 819 * at close time 820 */ 821 if (sk->sk_socket && !ssk->sk_socket) 822 mptcp_sock_graft(ssk, sk->sk_socket); 823 824 mptcp_propagate_sndbuf((struct sock *)msk, ssk); 825 mptcp_sockopt_sync_locked(msk, ssk); 826 return true; 827 } 828 829 static void __mptcp_flush_join_list(struct sock *sk) 830 { 831 struct mptcp_subflow_context *tmp, *subflow; 832 struct mptcp_sock *msk = mptcp_sk(sk); 833 834 list_for_each_entry_safe(subflow, tmp, &msk->join_list, node) { 835 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 836 bool slow = lock_sock_fast(ssk); 837 838 list_move_tail(&subflow->node, &msk->conn_list); 839 if (!__mptcp_finish_join(msk, ssk)) 840 mptcp_subflow_reset(ssk); 841 unlock_sock_fast(ssk, slow); 842 } 843 } 844 845 static bool mptcp_timer_pending(struct sock *sk) 846 { 847 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 848 } 849 850 static void mptcp_reset_timer(struct sock *sk) 851 { 852 struct inet_connection_sock *icsk = inet_csk(sk); 853 unsigned long tout; 854 855 /* prevent rescheduling on close */ 856 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 857 return; 858 859 tout = mptcp_sk(sk)->timer_ival; 860 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 861 } 862 863 bool mptcp_schedule_work(struct sock *sk) 864 { 865 if (inet_sk_state_load(sk) != TCP_CLOSE && 866 schedule_work(&mptcp_sk(sk)->work)) { 867 /* each subflow already holds a reference to the sk, and the 868 * workqueue is invoked by a subflow, so sk can't go away here. 869 */ 870 sock_hold(sk); 871 return true; 872 } 873 return false; 874 } 875 876 void mptcp_subflow_eof(struct sock *sk) 877 { 878 if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags)) 879 mptcp_schedule_work(sk); 880 } 881 882 static void mptcp_check_for_eof(struct mptcp_sock *msk) 883 { 884 struct mptcp_subflow_context *subflow; 885 struct sock *sk = (struct sock *)msk; 886 int receivers = 0; 887 888 mptcp_for_each_subflow(msk, subflow) 889 receivers += !subflow->rx_eof; 890 if (receivers) 891 return; 892 893 if (!(sk->sk_shutdown & RCV_SHUTDOWN)) { 894 /* hopefully temporary hack: propagate shutdown status 895 * to msk, when all subflows agree on it 896 */ 897 sk->sk_shutdown |= RCV_SHUTDOWN; 898 899 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 900 sk->sk_data_ready(sk); 901 } 902 903 switch (sk->sk_state) { 904 case TCP_ESTABLISHED: 905 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 906 break; 907 case TCP_FIN_WAIT1: 908 inet_sk_state_store(sk, TCP_CLOSING); 909 break; 910 case TCP_FIN_WAIT2: 911 inet_sk_state_store(sk, TCP_CLOSE); 912 break; 913 default: 914 return; 915 } 916 mptcp_close_wake_up(sk); 917 } 918 919 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 920 { 921 struct mptcp_subflow_context *subflow; 922 struct sock *sk = (struct sock *)msk; 923 924 sock_owned_by_me(sk); 925 926 mptcp_for_each_subflow(msk, subflow) { 927 if (READ_ONCE(subflow->data_avail)) 928 return mptcp_subflow_tcp_sock(subflow); 929 } 930 931 return NULL; 932 } 933 934 static bool mptcp_skb_can_collapse_to(u64 write_seq, 935 const struct sk_buff *skb, 936 const struct mptcp_ext *mpext) 937 { 938 if (!tcp_skb_can_collapse_to(skb)) 939 return false; 940 941 /* can collapse only if MPTCP level sequence is in order and this 942 * mapping has not been xmitted yet 943 */ 944 return mpext && mpext->data_seq + mpext->data_len == write_seq && 945 !mpext->frozen; 946 } 947 948 /* we can append data to the given data frag if: 949 * - there is space available in the backing page_frag 950 * - the data frag tail matches the current page_frag free offset 951 * - the data frag end sequence number matches the current write seq 952 */ 953 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 954 const struct page_frag *pfrag, 955 const struct mptcp_data_frag *df) 956 { 957 return df && pfrag->page == df->page && 958 pfrag->size - pfrag->offset > 0 && 959 pfrag->offset == (df->offset + df->data_len) && 960 df->data_seq + df->data_len == msk->write_seq; 961 } 962 963 static void __mptcp_mem_reclaim_partial(struct sock *sk) 964 { 965 int reclaimable = mptcp_sk(sk)->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 966 967 lockdep_assert_held_once(&sk->sk_lock.slock); 968 969 if (reclaimable > SK_MEM_QUANTUM) 970 __mptcp_rmem_reclaim(sk, reclaimable - 1); 971 972 sk_mem_reclaim_partial(sk); 973 } 974 975 static void mptcp_mem_reclaim_partial(struct sock *sk) 976 { 977 mptcp_data_lock(sk); 978 __mptcp_mem_reclaim_partial(sk); 979 mptcp_data_unlock(sk); 980 } 981 982 static void dfrag_uncharge(struct sock *sk, int len) 983 { 984 sk_mem_uncharge(sk, len); 985 sk_wmem_queued_add(sk, -len); 986 } 987 988 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 989 { 990 int len = dfrag->data_len + dfrag->overhead; 991 992 list_del(&dfrag->list); 993 dfrag_uncharge(sk, len); 994 put_page(dfrag->page); 995 } 996 997 static void __mptcp_clean_una(struct sock *sk) 998 { 999 struct mptcp_sock *msk = mptcp_sk(sk); 1000 struct mptcp_data_frag *dtmp, *dfrag; 1001 bool cleaned = false; 1002 u64 snd_una; 1003 1004 /* on fallback we just need to ignore snd_una, as this is really 1005 * plain TCP 1006 */ 1007 if (__mptcp_check_fallback(msk)) 1008 msk->snd_una = READ_ONCE(msk->snd_nxt); 1009 1010 snd_una = msk->snd_una; 1011 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1012 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1013 break; 1014 1015 if (unlikely(dfrag == msk->first_pending)) { 1016 /* in recovery mode can see ack after the current snd head */ 1017 if (WARN_ON_ONCE(!msk->recovery)) 1018 break; 1019 1020 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1021 } 1022 1023 dfrag_clear(sk, dfrag); 1024 cleaned = true; 1025 } 1026 1027 dfrag = mptcp_rtx_head(sk); 1028 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1029 u64 delta = snd_una - dfrag->data_seq; 1030 1031 /* prevent wrap around in recovery mode */ 1032 if (unlikely(delta > dfrag->already_sent)) { 1033 if (WARN_ON_ONCE(!msk->recovery)) 1034 goto out; 1035 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1036 goto out; 1037 dfrag->already_sent += delta - dfrag->already_sent; 1038 } 1039 1040 dfrag->data_seq += delta; 1041 dfrag->offset += delta; 1042 dfrag->data_len -= delta; 1043 dfrag->already_sent -= delta; 1044 1045 dfrag_uncharge(sk, delta); 1046 cleaned = true; 1047 } 1048 1049 /* all retransmitted data acked, recovery completed */ 1050 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1051 msk->recovery = false; 1052 1053 out: 1054 if (cleaned && tcp_under_memory_pressure(sk)) 1055 __mptcp_mem_reclaim_partial(sk); 1056 1057 if (snd_una == READ_ONCE(msk->snd_nxt) && 1058 snd_una == READ_ONCE(msk->write_seq)) { 1059 if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1060 mptcp_stop_timer(sk); 1061 } else { 1062 mptcp_reset_timer(sk); 1063 } 1064 } 1065 1066 static void __mptcp_clean_una_wakeup(struct sock *sk) 1067 { 1068 lockdep_assert_held_once(&sk->sk_lock.slock); 1069 1070 __mptcp_clean_una(sk); 1071 mptcp_write_space(sk); 1072 } 1073 1074 static void mptcp_clean_una_wakeup(struct sock *sk) 1075 { 1076 mptcp_data_lock(sk); 1077 __mptcp_clean_una_wakeup(sk); 1078 mptcp_data_unlock(sk); 1079 } 1080 1081 static void mptcp_enter_memory_pressure(struct sock *sk) 1082 { 1083 struct mptcp_subflow_context *subflow; 1084 struct mptcp_sock *msk = mptcp_sk(sk); 1085 bool first = true; 1086 1087 sk_stream_moderate_sndbuf(sk); 1088 mptcp_for_each_subflow(msk, subflow) { 1089 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1090 1091 if (first) 1092 tcp_enter_memory_pressure(ssk); 1093 sk_stream_moderate_sndbuf(ssk); 1094 first = false; 1095 } 1096 } 1097 1098 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1099 * data 1100 */ 1101 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1102 { 1103 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1104 pfrag, sk->sk_allocation))) 1105 return true; 1106 1107 mptcp_enter_memory_pressure(sk); 1108 return false; 1109 } 1110 1111 static struct mptcp_data_frag * 1112 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1113 int orig_offset) 1114 { 1115 int offset = ALIGN(orig_offset, sizeof(long)); 1116 struct mptcp_data_frag *dfrag; 1117 1118 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1119 dfrag->data_len = 0; 1120 dfrag->data_seq = msk->write_seq; 1121 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1122 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1123 dfrag->already_sent = 0; 1124 dfrag->page = pfrag->page; 1125 1126 return dfrag; 1127 } 1128 1129 struct mptcp_sendmsg_info { 1130 int mss_now; 1131 int size_goal; 1132 u16 limit; 1133 u16 sent; 1134 unsigned int flags; 1135 bool data_lock_held; 1136 }; 1137 1138 static int mptcp_check_allowed_size(struct mptcp_sock *msk, u64 data_seq, 1139 int avail_size) 1140 { 1141 u64 window_end = mptcp_wnd_end(msk); 1142 1143 if (__mptcp_check_fallback(msk)) 1144 return avail_size; 1145 1146 if (!before64(data_seq + avail_size, window_end)) { 1147 u64 allowed_size = window_end - data_seq; 1148 1149 return min_t(unsigned int, allowed_size, avail_size); 1150 } 1151 1152 return avail_size; 1153 } 1154 1155 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1156 { 1157 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1158 1159 if (!mpext) 1160 return false; 1161 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1162 return true; 1163 } 1164 1165 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1166 { 1167 struct sk_buff *skb; 1168 1169 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1170 if (likely(skb)) { 1171 if (likely(__mptcp_add_ext(skb, gfp))) { 1172 skb_reserve(skb, MAX_TCP_HEADER); 1173 skb->ip_summed = CHECKSUM_PARTIAL; 1174 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1175 return skb; 1176 } 1177 __kfree_skb(skb); 1178 } else { 1179 mptcp_enter_memory_pressure(sk); 1180 } 1181 return NULL; 1182 } 1183 1184 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1185 { 1186 struct sk_buff *skb; 1187 1188 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1189 if (!skb) 1190 return NULL; 1191 1192 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1193 tcp_skb_entail(ssk, skb); 1194 return skb; 1195 } 1196 kfree_skb(skb); 1197 return NULL; 1198 } 1199 1200 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1201 { 1202 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1203 1204 if (unlikely(tcp_under_memory_pressure(sk))) { 1205 if (data_lock_held) 1206 __mptcp_mem_reclaim_partial(sk); 1207 else 1208 mptcp_mem_reclaim_partial(sk); 1209 } 1210 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1211 } 1212 1213 /* note: this always recompute the csum on the whole skb, even 1214 * if we just appended a single frag. More status info needed 1215 */ 1216 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1217 { 1218 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1219 __wsum csum = ~csum_unfold(mpext->csum); 1220 int offset = skb->len - added; 1221 1222 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1223 } 1224 1225 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1226 struct mptcp_data_frag *dfrag, 1227 struct mptcp_sendmsg_info *info) 1228 { 1229 u64 data_seq = dfrag->data_seq + info->sent; 1230 int offset = dfrag->offset + info->sent; 1231 struct mptcp_sock *msk = mptcp_sk(sk); 1232 bool zero_window_probe = false; 1233 struct mptcp_ext *mpext = NULL; 1234 bool can_coalesce = false; 1235 bool reuse_skb = true; 1236 struct sk_buff *skb; 1237 size_t copy; 1238 int i; 1239 1240 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1241 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1242 1243 if (WARN_ON_ONCE(info->sent > info->limit || 1244 info->limit > dfrag->data_len)) 1245 return 0; 1246 1247 /* compute send limit */ 1248 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1249 copy = info->size_goal; 1250 1251 skb = tcp_write_queue_tail(ssk); 1252 if (skb && copy > skb->len) { 1253 /* Limit the write to the size available in the 1254 * current skb, if any, so that we create at most a new skb. 1255 * Explicitly tells TCP internals to avoid collapsing on later 1256 * queue management operation, to avoid breaking the ext <-> 1257 * SSN association set here 1258 */ 1259 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1260 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1261 TCP_SKB_CB(skb)->eor = 1; 1262 goto alloc_skb; 1263 } 1264 1265 i = skb_shinfo(skb)->nr_frags; 1266 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1267 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1268 tcp_mark_push(tcp_sk(ssk), skb); 1269 goto alloc_skb; 1270 } 1271 1272 copy -= skb->len; 1273 } else { 1274 alloc_skb: 1275 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1276 if (!skb) 1277 return -ENOMEM; 1278 1279 i = skb_shinfo(skb)->nr_frags; 1280 reuse_skb = false; 1281 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1282 } 1283 1284 /* Zero window and all data acked? Probe. */ 1285 copy = mptcp_check_allowed_size(msk, data_seq, copy); 1286 if (copy == 0) { 1287 u64 snd_una = READ_ONCE(msk->snd_una); 1288 1289 if (snd_una != msk->snd_nxt) { 1290 tcp_remove_empty_skb(ssk); 1291 return 0; 1292 } 1293 1294 zero_window_probe = true; 1295 data_seq = snd_una - 1; 1296 copy = 1; 1297 1298 /* all mptcp-level data is acked, no skbs should be present into the 1299 * ssk write queue 1300 */ 1301 WARN_ON_ONCE(reuse_skb); 1302 } 1303 1304 copy = min_t(size_t, copy, info->limit - info->sent); 1305 if (!sk_wmem_schedule(ssk, copy)) { 1306 tcp_remove_empty_skb(ssk); 1307 return -ENOMEM; 1308 } 1309 1310 if (can_coalesce) { 1311 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1312 } else { 1313 get_page(dfrag->page); 1314 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1315 } 1316 1317 skb->len += copy; 1318 skb->data_len += copy; 1319 skb->truesize += copy; 1320 sk_wmem_queued_add(ssk, copy); 1321 sk_mem_charge(ssk, copy); 1322 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1323 TCP_SKB_CB(skb)->end_seq += copy; 1324 tcp_skb_pcount_set(skb, 0); 1325 1326 /* on skb reuse we just need to update the DSS len */ 1327 if (reuse_skb) { 1328 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1329 mpext->data_len += copy; 1330 WARN_ON_ONCE(zero_window_probe); 1331 goto out; 1332 } 1333 1334 memset(mpext, 0, sizeof(*mpext)); 1335 mpext->data_seq = data_seq; 1336 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1337 mpext->data_len = copy; 1338 mpext->use_map = 1; 1339 mpext->dsn64 = 1; 1340 1341 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1342 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1343 mpext->dsn64); 1344 1345 if (zero_window_probe) { 1346 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1347 mpext->frozen = 1; 1348 if (READ_ONCE(msk->csum_enabled)) 1349 mptcp_update_data_checksum(skb, copy); 1350 tcp_push_pending_frames(ssk); 1351 return 0; 1352 } 1353 out: 1354 if (READ_ONCE(msk->csum_enabled)) 1355 mptcp_update_data_checksum(skb, copy); 1356 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1357 return copy; 1358 } 1359 1360 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1361 sizeof(struct tcphdr) - \ 1362 MAX_TCP_OPTION_SPACE - \ 1363 sizeof(struct ipv6hdr) - \ 1364 sizeof(struct frag_hdr)) 1365 1366 struct subflow_send_info { 1367 struct sock *ssk; 1368 u64 linger_time; 1369 }; 1370 1371 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1372 { 1373 if (!subflow->stale) 1374 return; 1375 1376 subflow->stale = 0; 1377 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1378 } 1379 1380 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1381 { 1382 if (unlikely(subflow->stale)) { 1383 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1384 1385 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1386 return false; 1387 1388 mptcp_subflow_set_active(subflow); 1389 } 1390 return __mptcp_subflow_active(subflow); 1391 } 1392 1393 #define SSK_MODE_ACTIVE 0 1394 #define SSK_MODE_BACKUP 1 1395 #define SSK_MODE_MAX 2 1396 1397 /* implement the mptcp packet scheduler; 1398 * returns the subflow that will transmit the next DSS 1399 * additionally updates the rtx timeout 1400 */ 1401 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1402 { 1403 struct subflow_send_info send_info[SSK_MODE_MAX]; 1404 struct mptcp_subflow_context *subflow; 1405 struct sock *sk = (struct sock *)msk; 1406 u32 pace, burst, wmem; 1407 int i, nr_active = 0; 1408 struct sock *ssk; 1409 u64 linger_time; 1410 long tout = 0; 1411 1412 sock_owned_by_me(sk); 1413 1414 if (__mptcp_check_fallback(msk)) { 1415 if (!msk->first) 1416 return NULL; 1417 return sk_stream_memory_free(msk->first) ? msk->first : NULL; 1418 } 1419 1420 /* re-use last subflow, if the burst allow that */ 1421 if (msk->last_snd && msk->snd_burst > 0 && 1422 sk_stream_memory_free(msk->last_snd) && 1423 mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) { 1424 mptcp_set_timeout(sk); 1425 return msk->last_snd; 1426 } 1427 1428 /* pick the subflow with the lower wmem/wspace ratio */ 1429 for (i = 0; i < SSK_MODE_MAX; ++i) { 1430 send_info[i].ssk = NULL; 1431 send_info[i].linger_time = -1; 1432 } 1433 1434 mptcp_for_each_subflow(msk, subflow) { 1435 trace_mptcp_subflow_get_send(subflow); 1436 ssk = mptcp_subflow_tcp_sock(subflow); 1437 if (!mptcp_subflow_active(subflow)) 1438 continue; 1439 1440 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1441 nr_active += !subflow->backup; 1442 pace = subflow->avg_pacing_rate; 1443 if (unlikely(!pace)) { 1444 /* init pacing rate from socket */ 1445 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1446 pace = subflow->avg_pacing_rate; 1447 if (!pace) 1448 continue; 1449 } 1450 1451 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1452 if (linger_time < send_info[subflow->backup].linger_time) { 1453 send_info[subflow->backup].ssk = ssk; 1454 send_info[subflow->backup].linger_time = linger_time; 1455 } 1456 } 1457 __mptcp_set_timeout(sk, tout); 1458 1459 /* pick the best backup if no other subflow is active */ 1460 if (!nr_active) 1461 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1462 1463 /* According to the blest algorithm, to avoid HoL blocking for the 1464 * faster flow, we need to: 1465 * - estimate the faster flow linger time 1466 * - use the above to estimate the amount of byte transferred 1467 * by the faster flow 1468 * - check that the amount of queued data is greter than the above, 1469 * otherwise do not use the picked, slower, subflow 1470 * We select the subflow with the shorter estimated time to flush 1471 * the queued mem, which basically ensure the above. We just need 1472 * to check that subflow has a non empty cwin. 1473 */ 1474 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1475 if (!ssk || !sk_stream_memory_free(ssk) || !tcp_sk(ssk)->snd_wnd) 1476 return NULL; 1477 1478 burst = min_t(int, MPTCP_SEND_BURST_SIZE, tcp_sk(ssk)->snd_wnd); 1479 wmem = READ_ONCE(ssk->sk_wmem_queued); 1480 subflow = mptcp_subflow_ctx(ssk); 1481 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1482 READ_ONCE(ssk->sk_pacing_rate) * burst, 1483 burst + wmem); 1484 msk->last_snd = ssk; 1485 msk->snd_burst = burst; 1486 return ssk; 1487 } 1488 1489 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1490 { 1491 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1492 release_sock(ssk); 1493 } 1494 1495 static void mptcp_update_post_push(struct mptcp_sock *msk, 1496 struct mptcp_data_frag *dfrag, 1497 u32 sent) 1498 { 1499 u64 snd_nxt_new = dfrag->data_seq; 1500 1501 dfrag->already_sent += sent; 1502 1503 msk->snd_burst -= sent; 1504 1505 snd_nxt_new += dfrag->already_sent; 1506 1507 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1508 * is recovering after a failover. In that event, this re-sends 1509 * old segments. 1510 * 1511 * Thus compute snd_nxt_new candidate based on 1512 * the dfrag->data_seq that was sent and the data 1513 * that has been handed to the subflow for transmission 1514 * and skip update in case it was old dfrag. 1515 */ 1516 if (likely(after64(snd_nxt_new, msk->snd_nxt))) 1517 msk->snd_nxt = snd_nxt_new; 1518 } 1519 1520 void mptcp_check_and_set_pending(struct sock *sk) 1521 { 1522 if (mptcp_send_head(sk)) 1523 mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING); 1524 } 1525 1526 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1527 { 1528 struct sock *prev_ssk = NULL, *ssk = NULL; 1529 struct mptcp_sock *msk = mptcp_sk(sk); 1530 struct mptcp_sendmsg_info info = { 1531 .flags = flags, 1532 }; 1533 struct mptcp_data_frag *dfrag; 1534 int len, copied = 0; 1535 1536 while ((dfrag = mptcp_send_head(sk))) { 1537 info.sent = dfrag->already_sent; 1538 info.limit = dfrag->data_len; 1539 len = dfrag->data_len - dfrag->already_sent; 1540 while (len > 0) { 1541 int ret = 0; 1542 1543 prev_ssk = ssk; 1544 ssk = mptcp_subflow_get_send(msk); 1545 1546 /* First check. If the ssk has changed since 1547 * the last round, release prev_ssk 1548 */ 1549 if (ssk != prev_ssk && prev_ssk) 1550 mptcp_push_release(prev_ssk, &info); 1551 if (!ssk) 1552 goto out; 1553 1554 /* Need to lock the new subflow only if different 1555 * from the previous one, otherwise we are still 1556 * helding the relevant lock 1557 */ 1558 if (ssk != prev_ssk) 1559 lock_sock(ssk); 1560 1561 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1562 if (ret <= 0) { 1563 mptcp_push_release(ssk, &info); 1564 goto out; 1565 } 1566 1567 info.sent += ret; 1568 copied += ret; 1569 len -= ret; 1570 1571 mptcp_update_post_push(msk, dfrag, ret); 1572 } 1573 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1574 } 1575 1576 /* at this point we held the socket lock for the last subflow we used */ 1577 if (ssk) 1578 mptcp_push_release(ssk, &info); 1579 1580 out: 1581 /* ensure the rtx timer is running */ 1582 if (!mptcp_timer_pending(sk)) 1583 mptcp_reset_timer(sk); 1584 if (copied) 1585 __mptcp_check_send_data_fin(sk); 1586 } 1587 1588 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk) 1589 { 1590 struct mptcp_sock *msk = mptcp_sk(sk); 1591 struct mptcp_sendmsg_info info = { 1592 .data_lock_held = true, 1593 }; 1594 struct mptcp_data_frag *dfrag; 1595 struct sock *xmit_ssk; 1596 int len, copied = 0; 1597 bool first = true; 1598 1599 info.flags = 0; 1600 while ((dfrag = mptcp_send_head(sk))) { 1601 info.sent = dfrag->already_sent; 1602 info.limit = dfrag->data_len; 1603 len = dfrag->data_len - dfrag->already_sent; 1604 while (len > 0) { 1605 int ret = 0; 1606 1607 /* the caller already invoked the packet scheduler, 1608 * check for a different subflow usage only after 1609 * spooling the first chunk of data 1610 */ 1611 xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk)); 1612 if (!xmit_ssk) 1613 goto out; 1614 if (xmit_ssk != ssk) { 1615 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), 1616 MPTCP_DELEGATE_SEND); 1617 goto out; 1618 } 1619 1620 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1621 if (ret <= 0) 1622 goto out; 1623 1624 info.sent += ret; 1625 copied += ret; 1626 len -= ret; 1627 first = false; 1628 1629 mptcp_update_post_push(msk, dfrag, ret); 1630 } 1631 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1632 } 1633 1634 out: 1635 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1636 * not going to flush it via release_sock() 1637 */ 1638 if (copied) { 1639 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1640 info.size_goal); 1641 if (!mptcp_timer_pending(sk)) 1642 mptcp_reset_timer(sk); 1643 1644 if (msk->snd_data_fin_enable && 1645 msk->snd_nxt + 1 == msk->write_seq) 1646 mptcp_schedule_work(sk); 1647 } 1648 } 1649 1650 static void mptcp_set_nospace(struct sock *sk) 1651 { 1652 /* enable autotune */ 1653 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1654 1655 /* will be cleared on avail space */ 1656 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1657 } 1658 1659 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1660 { 1661 struct mptcp_sock *msk = mptcp_sk(sk); 1662 struct page_frag *pfrag; 1663 size_t copied = 0; 1664 int ret = 0; 1665 long timeo; 1666 1667 /* we don't support FASTOPEN yet */ 1668 if (msg->msg_flags & MSG_FASTOPEN) 1669 return -EOPNOTSUPP; 1670 1671 /* silently ignore everything else */ 1672 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL; 1673 1674 lock_sock(sk); 1675 1676 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1677 1678 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1679 ret = sk_stream_wait_connect(sk, &timeo); 1680 if (ret) 1681 goto out; 1682 } 1683 1684 pfrag = sk_page_frag(sk); 1685 1686 while (msg_data_left(msg)) { 1687 int total_ts, frag_truesize = 0; 1688 struct mptcp_data_frag *dfrag; 1689 bool dfrag_collapsed; 1690 size_t psize, offset; 1691 1692 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) { 1693 ret = -EPIPE; 1694 goto out; 1695 } 1696 1697 /* reuse tail pfrag, if possible, or carve a new one from the 1698 * page allocator 1699 */ 1700 dfrag = mptcp_pending_tail(sk); 1701 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1702 if (!dfrag_collapsed) { 1703 if (!sk_stream_memory_free(sk)) 1704 goto wait_for_memory; 1705 1706 if (!mptcp_page_frag_refill(sk, pfrag)) 1707 goto wait_for_memory; 1708 1709 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1710 frag_truesize = dfrag->overhead; 1711 } 1712 1713 /* we do not bound vs wspace, to allow a single packet. 1714 * memory accounting will prevent execessive memory usage 1715 * anyway 1716 */ 1717 offset = dfrag->offset + dfrag->data_len; 1718 psize = pfrag->size - offset; 1719 psize = min_t(size_t, psize, msg_data_left(msg)); 1720 total_ts = psize + frag_truesize; 1721 1722 if (!sk_wmem_schedule(sk, total_ts)) 1723 goto wait_for_memory; 1724 1725 if (copy_page_from_iter(dfrag->page, offset, psize, 1726 &msg->msg_iter) != psize) { 1727 ret = -EFAULT; 1728 goto out; 1729 } 1730 1731 /* data successfully copied into the write queue */ 1732 sk->sk_forward_alloc -= total_ts; 1733 copied += psize; 1734 dfrag->data_len += psize; 1735 frag_truesize += psize; 1736 pfrag->offset += frag_truesize; 1737 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1738 1739 /* charge data on mptcp pending queue to the msk socket 1740 * Note: we charge such data both to sk and ssk 1741 */ 1742 sk_wmem_queued_add(sk, frag_truesize); 1743 if (!dfrag_collapsed) { 1744 get_page(dfrag->page); 1745 list_add_tail(&dfrag->list, &msk->rtx_queue); 1746 if (!msk->first_pending) 1747 WRITE_ONCE(msk->first_pending, dfrag); 1748 } 1749 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1750 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1751 !dfrag_collapsed); 1752 1753 continue; 1754 1755 wait_for_memory: 1756 mptcp_set_nospace(sk); 1757 __mptcp_push_pending(sk, msg->msg_flags); 1758 ret = sk_stream_wait_memory(sk, &timeo); 1759 if (ret) 1760 goto out; 1761 } 1762 1763 if (copied) 1764 __mptcp_push_pending(sk, msg->msg_flags); 1765 1766 out: 1767 release_sock(sk); 1768 return copied ? : ret; 1769 } 1770 1771 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1772 struct msghdr *msg, 1773 size_t len, int flags, 1774 struct scm_timestamping_internal *tss, 1775 int *cmsg_flags) 1776 { 1777 struct sk_buff *skb, *tmp; 1778 int copied = 0; 1779 1780 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1781 u32 offset = MPTCP_SKB_CB(skb)->offset; 1782 u32 data_len = skb->len - offset; 1783 u32 count = min_t(size_t, len - copied, data_len); 1784 int err; 1785 1786 if (!(flags & MSG_TRUNC)) { 1787 err = skb_copy_datagram_msg(skb, offset, msg, count); 1788 if (unlikely(err < 0)) { 1789 if (!copied) 1790 return err; 1791 break; 1792 } 1793 } 1794 1795 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1796 tcp_update_recv_tstamps(skb, tss); 1797 *cmsg_flags |= MPTCP_CMSG_TS; 1798 } 1799 1800 copied += count; 1801 1802 if (count < data_len) { 1803 if (!(flags & MSG_PEEK)) { 1804 MPTCP_SKB_CB(skb)->offset += count; 1805 MPTCP_SKB_CB(skb)->map_seq += count; 1806 } 1807 break; 1808 } 1809 1810 if (!(flags & MSG_PEEK)) { 1811 /* we will bulk release the skb memory later */ 1812 skb->destructor = NULL; 1813 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1814 __skb_unlink(skb, &msk->receive_queue); 1815 __kfree_skb(skb); 1816 } 1817 1818 if (copied >= len) 1819 break; 1820 } 1821 1822 return copied; 1823 } 1824 1825 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1826 * 1827 * Only difference: Use highest rtt estimate of the subflows in use. 1828 */ 1829 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1830 { 1831 struct mptcp_subflow_context *subflow; 1832 struct sock *sk = (struct sock *)msk; 1833 u32 time, advmss = 1; 1834 u64 rtt_us, mstamp; 1835 1836 sock_owned_by_me(sk); 1837 1838 if (copied <= 0) 1839 return; 1840 1841 msk->rcvq_space.copied += copied; 1842 1843 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1844 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1845 1846 rtt_us = msk->rcvq_space.rtt_us; 1847 if (rtt_us && time < (rtt_us >> 3)) 1848 return; 1849 1850 rtt_us = 0; 1851 mptcp_for_each_subflow(msk, subflow) { 1852 const struct tcp_sock *tp; 1853 u64 sf_rtt_us; 1854 u32 sf_advmss; 1855 1856 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1857 1858 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1859 sf_advmss = READ_ONCE(tp->advmss); 1860 1861 rtt_us = max(sf_rtt_us, rtt_us); 1862 advmss = max(sf_advmss, advmss); 1863 } 1864 1865 msk->rcvq_space.rtt_us = rtt_us; 1866 if (time < (rtt_us >> 3) || rtt_us == 0) 1867 return; 1868 1869 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1870 goto new_measure; 1871 1872 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 1873 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1874 int rcvmem, rcvbuf; 1875 u64 rcvwin, grow; 1876 1877 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1878 1879 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1880 1881 do_div(grow, msk->rcvq_space.space); 1882 rcvwin += (grow << 1); 1883 1884 rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER); 1885 while (tcp_win_from_space(sk, rcvmem) < advmss) 1886 rcvmem += 128; 1887 1888 do_div(rcvwin, advmss); 1889 rcvbuf = min_t(u64, rcvwin * rcvmem, 1890 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 1891 1892 if (rcvbuf > sk->sk_rcvbuf) { 1893 u32 window_clamp; 1894 1895 window_clamp = tcp_win_from_space(sk, rcvbuf); 1896 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 1897 1898 /* Make subflows follow along. If we do not do this, we 1899 * get drops at subflow level if skbs can't be moved to 1900 * the mptcp rx queue fast enough (announced rcv_win can 1901 * exceed ssk->sk_rcvbuf). 1902 */ 1903 mptcp_for_each_subflow(msk, subflow) { 1904 struct sock *ssk; 1905 bool slow; 1906 1907 ssk = mptcp_subflow_tcp_sock(subflow); 1908 slow = lock_sock_fast(ssk); 1909 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 1910 tcp_sk(ssk)->window_clamp = window_clamp; 1911 tcp_cleanup_rbuf(ssk, 1); 1912 unlock_sock_fast(ssk, slow); 1913 } 1914 } 1915 } 1916 1917 msk->rcvq_space.space = msk->rcvq_space.copied; 1918 new_measure: 1919 msk->rcvq_space.copied = 0; 1920 msk->rcvq_space.time = mstamp; 1921 } 1922 1923 static void __mptcp_update_rmem(struct sock *sk) 1924 { 1925 struct mptcp_sock *msk = mptcp_sk(sk); 1926 1927 if (!msk->rmem_released) 1928 return; 1929 1930 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 1931 mptcp_rmem_uncharge(sk, msk->rmem_released); 1932 WRITE_ONCE(msk->rmem_released, 0); 1933 } 1934 1935 static void __mptcp_splice_receive_queue(struct sock *sk) 1936 { 1937 struct mptcp_sock *msk = mptcp_sk(sk); 1938 1939 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 1940 } 1941 1942 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 1943 { 1944 struct sock *sk = (struct sock *)msk; 1945 unsigned int moved = 0; 1946 bool ret, done; 1947 1948 do { 1949 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 1950 bool slowpath; 1951 1952 /* we can have data pending in the subflows only if the msk 1953 * receive buffer was full at subflow_data_ready() time, 1954 * that is an unlikely slow path. 1955 */ 1956 if (likely(!ssk)) 1957 break; 1958 1959 slowpath = lock_sock_fast(ssk); 1960 mptcp_data_lock(sk); 1961 __mptcp_update_rmem(sk); 1962 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 1963 mptcp_data_unlock(sk); 1964 1965 if (unlikely(ssk->sk_err)) 1966 __mptcp_error_report(sk); 1967 unlock_sock_fast(ssk, slowpath); 1968 } while (!done); 1969 1970 /* acquire the data lock only if some input data is pending */ 1971 ret = moved > 0; 1972 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 1973 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 1974 mptcp_data_lock(sk); 1975 __mptcp_update_rmem(sk); 1976 ret |= __mptcp_ofo_queue(msk); 1977 __mptcp_splice_receive_queue(sk); 1978 mptcp_data_unlock(sk); 1979 } 1980 if (ret) 1981 mptcp_check_data_fin((struct sock *)msk); 1982 return !skb_queue_empty(&msk->receive_queue); 1983 } 1984 1985 static unsigned int mptcp_inq_hint(const struct sock *sk) 1986 { 1987 const struct mptcp_sock *msk = mptcp_sk(sk); 1988 const struct sk_buff *skb; 1989 1990 skb = skb_peek(&msk->receive_queue); 1991 if (skb) { 1992 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 1993 1994 if (hint_val >= INT_MAX) 1995 return INT_MAX; 1996 1997 return (unsigned int)hint_val; 1998 } 1999 2000 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2001 return 1; 2002 2003 return 0; 2004 } 2005 2006 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2007 int nonblock, int flags, int *addr_len) 2008 { 2009 struct mptcp_sock *msk = mptcp_sk(sk); 2010 struct scm_timestamping_internal tss; 2011 int copied = 0, cmsg_flags = 0; 2012 int target; 2013 long timeo; 2014 2015 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2016 if (unlikely(flags & MSG_ERRQUEUE)) 2017 return inet_recv_error(sk, msg, len, addr_len); 2018 2019 lock_sock(sk); 2020 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2021 copied = -ENOTCONN; 2022 goto out_err; 2023 } 2024 2025 timeo = sock_rcvtimeo(sk, nonblock); 2026 2027 len = min_t(size_t, len, INT_MAX); 2028 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2029 2030 if (unlikely(msk->recvmsg_inq)) 2031 cmsg_flags = MPTCP_CMSG_INQ; 2032 2033 while (copied < len) { 2034 int bytes_read; 2035 2036 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2037 if (unlikely(bytes_read < 0)) { 2038 if (!copied) 2039 copied = bytes_read; 2040 goto out_err; 2041 } 2042 2043 copied += bytes_read; 2044 2045 /* be sure to advertise window change */ 2046 mptcp_cleanup_rbuf(msk); 2047 2048 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2049 continue; 2050 2051 /* only the master socket status is relevant here. The exit 2052 * conditions mirror closely tcp_recvmsg() 2053 */ 2054 if (copied >= target) 2055 break; 2056 2057 if (copied) { 2058 if (sk->sk_err || 2059 sk->sk_state == TCP_CLOSE || 2060 (sk->sk_shutdown & RCV_SHUTDOWN) || 2061 !timeo || 2062 signal_pending(current)) 2063 break; 2064 } else { 2065 if (sk->sk_err) { 2066 copied = sock_error(sk); 2067 break; 2068 } 2069 2070 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2071 mptcp_check_for_eof(msk); 2072 2073 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2074 /* race breaker: the shutdown could be after the 2075 * previous receive queue check 2076 */ 2077 if (__mptcp_move_skbs(msk)) 2078 continue; 2079 break; 2080 } 2081 2082 if (sk->sk_state == TCP_CLOSE) { 2083 copied = -ENOTCONN; 2084 break; 2085 } 2086 2087 if (!timeo) { 2088 copied = -EAGAIN; 2089 break; 2090 } 2091 2092 if (signal_pending(current)) { 2093 copied = sock_intr_errno(timeo); 2094 break; 2095 } 2096 } 2097 2098 pr_debug("block timeout %ld", timeo); 2099 sk_wait_data(sk, &timeo, NULL); 2100 } 2101 2102 out_err: 2103 if (cmsg_flags && copied >= 0) { 2104 if (cmsg_flags & MPTCP_CMSG_TS) 2105 tcp_recv_timestamp(msg, sk, &tss); 2106 2107 if (cmsg_flags & MPTCP_CMSG_INQ) { 2108 unsigned int inq = mptcp_inq_hint(sk); 2109 2110 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2111 } 2112 } 2113 2114 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2115 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2116 skb_queue_empty(&msk->receive_queue), copied); 2117 if (!(flags & MSG_PEEK)) 2118 mptcp_rcv_space_adjust(msk, copied); 2119 2120 release_sock(sk); 2121 return copied; 2122 } 2123 2124 static void mptcp_retransmit_timer(struct timer_list *t) 2125 { 2126 struct inet_connection_sock *icsk = from_timer(icsk, t, 2127 icsk_retransmit_timer); 2128 struct sock *sk = &icsk->icsk_inet.sk; 2129 struct mptcp_sock *msk = mptcp_sk(sk); 2130 2131 bh_lock_sock(sk); 2132 if (!sock_owned_by_user(sk)) { 2133 /* we need a process context to retransmit */ 2134 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2135 mptcp_schedule_work(sk); 2136 } else { 2137 /* delegate our work to tcp_release_cb() */ 2138 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2139 } 2140 bh_unlock_sock(sk); 2141 sock_put(sk); 2142 } 2143 2144 static void mptcp_timeout_timer(struct timer_list *t) 2145 { 2146 struct sock *sk = from_timer(sk, t, sk_timer); 2147 2148 mptcp_schedule_work(sk); 2149 sock_put(sk); 2150 } 2151 2152 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2153 * level. 2154 * 2155 * A backup subflow is returned only if that is the only kind available. 2156 */ 2157 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2158 { 2159 struct sock *backup = NULL, *pick = NULL; 2160 struct mptcp_subflow_context *subflow; 2161 int min_stale_count = INT_MAX; 2162 2163 sock_owned_by_me((const struct sock *)msk); 2164 2165 if (__mptcp_check_fallback(msk)) 2166 return NULL; 2167 2168 mptcp_for_each_subflow(msk, subflow) { 2169 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2170 2171 if (!__mptcp_subflow_active(subflow)) 2172 continue; 2173 2174 /* still data outstanding at TCP level? skip this */ 2175 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2176 mptcp_pm_subflow_chk_stale(msk, ssk); 2177 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2178 continue; 2179 } 2180 2181 if (subflow->backup) { 2182 if (!backup) 2183 backup = ssk; 2184 continue; 2185 } 2186 2187 if (!pick) 2188 pick = ssk; 2189 } 2190 2191 if (pick) 2192 return pick; 2193 2194 /* use backup only if there are no progresses anywhere */ 2195 return min_stale_count > 1 ? backup : NULL; 2196 } 2197 2198 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk) 2199 { 2200 if (msk->subflow) { 2201 iput(SOCK_INODE(msk->subflow)); 2202 msk->subflow = NULL; 2203 } 2204 } 2205 2206 bool __mptcp_retransmit_pending_data(struct sock *sk) 2207 { 2208 struct mptcp_data_frag *cur, *rtx_head; 2209 struct mptcp_sock *msk = mptcp_sk(sk); 2210 2211 if (__mptcp_check_fallback(mptcp_sk(sk))) 2212 return false; 2213 2214 if (tcp_rtx_and_write_queues_empty(sk)) 2215 return false; 2216 2217 /* the closing socket has some data untransmitted and/or unacked: 2218 * some data in the mptcp rtx queue has not really xmitted yet. 2219 * keep it simple and re-inject the whole mptcp level rtx queue 2220 */ 2221 mptcp_data_lock(sk); 2222 __mptcp_clean_una_wakeup(sk); 2223 rtx_head = mptcp_rtx_head(sk); 2224 if (!rtx_head) { 2225 mptcp_data_unlock(sk); 2226 return false; 2227 } 2228 2229 msk->recovery_snd_nxt = msk->snd_nxt; 2230 msk->recovery = true; 2231 mptcp_data_unlock(sk); 2232 2233 msk->first_pending = rtx_head; 2234 msk->snd_burst = 0; 2235 2236 /* be sure to clear the "sent status" on all re-injected fragments */ 2237 list_for_each_entry(cur, &msk->rtx_queue, list) { 2238 if (!cur->already_sent) 2239 break; 2240 cur->already_sent = 0; 2241 } 2242 2243 return true; 2244 } 2245 2246 /* flags for __mptcp_close_ssk() */ 2247 #define MPTCP_CF_PUSH BIT(1) 2248 #define MPTCP_CF_FASTCLOSE BIT(2) 2249 2250 /* subflow sockets can be either outgoing (connect) or incoming 2251 * (accept). 2252 * 2253 * Outgoing subflows use in-kernel sockets. 2254 * Incoming subflows do not have their own 'struct socket' allocated, 2255 * so we need to use tcp_close() after detaching them from the mptcp 2256 * parent socket. 2257 */ 2258 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2259 struct mptcp_subflow_context *subflow, 2260 unsigned int flags) 2261 { 2262 struct mptcp_sock *msk = mptcp_sk(sk); 2263 bool need_push, dispose_it; 2264 2265 dispose_it = !msk->subflow || ssk != msk->subflow->sk; 2266 if (dispose_it) 2267 list_del(&subflow->node); 2268 2269 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2270 2271 if (flags & MPTCP_CF_FASTCLOSE) 2272 subflow->send_fastclose = 1; 2273 2274 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2275 if (!dispose_it) { 2276 tcp_disconnect(ssk, 0); 2277 msk->subflow->state = SS_UNCONNECTED; 2278 mptcp_subflow_ctx_reset(subflow); 2279 release_sock(ssk); 2280 2281 goto out; 2282 } 2283 2284 /* if we are invoked by the msk cleanup code, the subflow is 2285 * already orphaned 2286 */ 2287 if (ssk->sk_socket) 2288 sock_orphan(ssk); 2289 2290 subflow->disposable = 1; 2291 2292 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2293 * the ssk has been already destroyed, we just need to release the 2294 * reference owned by msk; 2295 */ 2296 if (!inet_csk(ssk)->icsk_ulp_ops) { 2297 kfree_rcu(subflow, rcu); 2298 } else { 2299 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2300 __tcp_close(ssk, 0); 2301 2302 /* close acquired an extra ref */ 2303 __sock_put(ssk); 2304 } 2305 release_sock(ssk); 2306 2307 sock_put(ssk); 2308 2309 if (ssk == msk->first) 2310 msk->first = NULL; 2311 2312 out: 2313 if (ssk == msk->last_snd) 2314 msk->last_snd = NULL; 2315 2316 if (need_push) 2317 __mptcp_push_pending(sk, 0); 2318 } 2319 2320 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2321 struct mptcp_subflow_context *subflow) 2322 { 2323 if (sk->sk_state == TCP_ESTABLISHED) 2324 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2325 2326 /* subflow aborted before reaching the fully_established status 2327 * attempt the creation of the next subflow 2328 */ 2329 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow); 2330 2331 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2332 } 2333 2334 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2335 { 2336 return 0; 2337 } 2338 2339 static void __mptcp_close_subflow(struct mptcp_sock *msk) 2340 { 2341 struct mptcp_subflow_context *subflow, *tmp; 2342 2343 might_sleep(); 2344 2345 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { 2346 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2347 2348 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2349 continue; 2350 2351 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2352 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2353 continue; 2354 2355 mptcp_close_ssk((struct sock *)msk, ssk, subflow); 2356 } 2357 } 2358 2359 static bool mptcp_check_close_timeout(const struct sock *sk) 2360 { 2361 s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp; 2362 struct mptcp_subflow_context *subflow; 2363 2364 if (delta >= TCP_TIMEWAIT_LEN) 2365 return true; 2366 2367 /* if all subflows are in closed status don't bother with additional 2368 * timeout 2369 */ 2370 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2371 if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) != 2372 TCP_CLOSE) 2373 return false; 2374 } 2375 return true; 2376 } 2377 2378 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2379 { 2380 struct mptcp_subflow_context *subflow, *tmp; 2381 struct sock *sk = &msk->sk.icsk_inet.sk; 2382 2383 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2384 return; 2385 2386 mptcp_token_destroy(msk); 2387 2388 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { 2389 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2390 bool slow; 2391 2392 slow = lock_sock_fast(tcp_sk); 2393 if (tcp_sk->sk_state != TCP_CLOSE) { 2394 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2395 tcp_set_state(tcp_sk, TCP_CLOSE); 2396 } 2397 unlock_sock_fast(tcp_sk, slow); 2398 } 2399 2400 inet_sk_state_store(sk, TCP_CLOSE); 2401 sk->sk_shutdown = SHUTDOWN_MASK; 2402 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2403 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2404 2405 mptcp_close_wake_up(sk); 2406 } 2407 2408 static void __mptcp_retrans(struct sock *sk) 2409 { 2410 struct mptcp_sock *msk = mptcp_sk(sk); 2411 struct mptcp_sendmsg_info info = {}; 2412 struct mptcp_data_frag *dfrag; 2413 size_t copied = 0; 2414 struct sock *ssk; 2415 int ret; 2416 2417 mptcp_clean_una_wakeup(sk); 2418 2419 /* first check ssk: need to kick "stale" logic */ 2420 ssk = mptcp_subflow_get_retrans(msk); 2421 dfrag = mptcp_rtx_head(sk); 2422 if (!dfrag) { 2423 if (mptcp_data_fin_enabled(msk)) { 2424 struct inet_connection_sock *icsk = inet_csk(sk); 2425 2426 icsk->icsk_retransmits++; 2427 mptcp_set_datafin_timeout(sk); 2428 mptcp_send_ack(msk); 2429 2430 goto reset_timer; 2431 } 2432 2433 if (!mptcp_send_head(sk)) 2434 return; 2435 2436 goto reset_timer; 2437 } 2438 2439 if (!ssk) 2440 goto reset_timer; 2441 2442 lock_sock(ssk); 2443 2444 /* limit retransmission to the bytes already sent on some subflows */ 2445 info.sent = 0; 2446 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent; 2447 while (info.sent < info.limit) { 2448 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2449 if (ret <= 0) 2450 break; 2451 2452 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2453 copied += ret; 2454 info.sent += ret; 2455 } 2456 if (copied) { 2457 dfrag->already_sent = max(dfrag->already_sent, info.sent); 2458 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2459 info.size_goal); 2460 } 2461 2462 release_sock(ssk); 2463 2464 reset_timer: 2465 mptcp_check_and_set_pending(sk); 2466 2467 if (!mptcp_timer_pending(sk)) 2468 mptcp_reset_timer(sk); 2469 } 2470 2471 static void mptcp_worker(struct work_struct *work) 2472 { 2473 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2474 struct sock *sk = &msk->sk.icsk_inet.sk; 2475 int state; 2476 2477 lock_sock(sk); 2478 state = sk->sk_state; 2479 if (unlikely(state == TCP_CLOSE)) 2480 goto unlock; 2481 2482 mptcp_check_data_fin_ack(sk); 2483 2484 mptcp_check_fastclose(msk); 2485 2486 mptcp_pm_nl_work(msk); 2487 2488 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2489 mptcp_check_for_eof(msk); 2490 2491 __mptcp_check_send_data_fin(sk); 2492 mptcp_check_data_fin(sk); 2493 2494 /* There is no point in keeping around an orphaned sk timedout or 2495 * closed, but we need the msk around to reply to incoming DATA_FIN, 2496 * even if it is orphaned and in FIN_WAIT2 state 2497 */ 2498 if (sock_flag(sk, SOCK_DEAD) && 2499 (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) { 2500 inet_sk_state_store(sk, TCP_CLOSE); 2501 __mptcp_destroy_sock(sk); 2502 goto unlock; 2503 } 2504 2505 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2506 __mptcp_close_subflow(msk); 2507 2508 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2509 __mptcp_retrans(sk); 2510 2511 unlock: 2512 release_sock(sk); 2513 sock_put(sk); 2514 } 2515 2516 static int __mptcp_init_sock(struct sock *sk) 2517 { 2518 struct mptcp_sock *msk = mptcp_sk(sk); 2519 2520 INIT_LIST_HEAD(&msk->conn_list); 2521 INIT_LIST_HEAD(&msk->join_list); 2522 INIT_LIST_HEAD(&msk->rtx_queue); 2523 INIT_WORK(&msk->work, mptcp_worker); 2524 __skb_queue_head_init(&msk->receive_queue); 2525 msk->out_of_order_queue = RB_ROOT; 2526 msk->first_pending = NULL; 2527 msk->rmem_fwd_alloc = 0; 2528 WRITE_ONCE(msk->rmem_released, 0); 2529 msk->timer_ival = TCP_RTO_MIN; 2530 2531 msk->first = NULL; 2532 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2533 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2534 msk->recovery = false; 2535 2536 mptcp_pm_data_init(msk); 2537 2538 /* re-use the csk retrans timer for MPTCP-level retrans */ 2539 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2540 timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0); 2541 2542 return 0; 2543 } 2544 2545 static void mptcp_ca_reset(struct sock *sk) 2546 { 2547 struct inet_connection_sock *icsk = inet_csk(sk); 2548 2549 tcp_assign_congestion_control(sk); 2550 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2551 2552 /* no need to keep a reference to the ops, the name will suffice */ 2553 tcp_cleanup_congestion_control(sk); 2554 icsk->icsk_ca_ops = NULL; 2555 } 2556 2557 static int mptcp_init_sock(struct sock *sk) 2558 { 2559 struct net *net = sock_net(sk); 2560 int ret; 2561 2562 ret = __mptcp_init_sock(sk); 2563 if (ret) 2564 return ret; 2565 2566 if (!mptcp_is_enabled(net)) 2567 return -ENOPROTOOPT; 2568 2569 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2570 return -ENOMEM; 2571 2572 ret = __mptcp_socket_create(mptcp_sk(sk)); 2573 if (ret) 2574 return ret; 2575 2576 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2577 * propagate the correct value 2578 */ 2579 mptcp_ca_reset(sk); 2580 2581 sk_sockets_allocated_inc(sk); 2582 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 2583 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 2584 2585 return 0; 2586 } 2587 2588 static void __mptcp_clear_xmit(struct sock *sk) 2589 { 2590 struct mptcp_sock *msk = mptcp_sk(sk); 2591 struct mptcp_data_frag *dtmp, *dfrag; 2592 2593 WRITE_ONCE(msk->first_pending, NULL); 2594 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2595 dfrag_clear(sk, dfrag); 2596 } 2597 2598 static void mptcp_cancel_work(struct sock *sk) 2599 { 2600 struct mptcp_sock *msk = mptcp_sk(sk); 2601 2602 if (cancel_work_sync(&msk->work)) 2603 __sock_put(sk); 2604 } 2605 2606 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2607 { 2608 lock_sock(ssk); 2609 2610 switch (ssk->sk_state) { 2611 case TCP_LISTEN: 2612 if (!(how & RCV_SHUTDOWN)) 2613 break; 2614 fallthrough; 2615 case TCP_SYN_SENT: 2616 tcp_disconnect(ssk, O_NONBLOCK); 2617 break; 2618 default: 2619 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2620 pr_debug("Fallback"); 2621 ssk->sk_shutdown |= how; 2622 tcp_shutdown(ssk, how); 2623 } else { 2624 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2625 tcp_send_ack(ssk); 2626 if (!mptcp_timer_pending(sk)) 2627 mptcp_reset_timer(sk); 2628 } 2629 break; 2630 } 2631 2632 release_sock(ssk); 2633 } 2634 2635 static const unsigned char new_state[16] = { 2636 /* current state: new state: action: */ 2637 [0 /* (Invalid) */] = TCP_CLOSE, 2638 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2639 [TCP_SYN_SENT] = TCP_CLOSE, 2640 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2641 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2642 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2643 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2644 [TCP_CLOSE] = TCP_CLOSE, 2645 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2646 [TCP_LAST_ACK] = TCP_LAST_ACK, 2647 [TCP_LISTEN] = TCP_CLOSE, 2648 [TCP_CLOSING] = TCP_CLOSING, 2649 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2650 }; 2651 2652 static int mptcp_close_state(struct sock *sk) 2653 { 2654 int next = (int)new_state[sk->sk_state]; 2655 int ns = next & TCP_STATE_MASK; 2656 2657 inet_sk_state_store(sk, ns); 2658 2659 return next & TCP_ACTION_FIN; 2660 } 2661 2662 static void __mptcp_check_send_data_fin(struct sock *sk) 2663 { 2664 struct mptcp_subflow_context *subflow; 2665 struct mptcp_sock *msk = mptcp_sk(sk); 2666 2667 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2668 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2669 msk->snd_nxt, msk->write_seq); 2670 2671 /* we still need to enqueue subflows or not really shutting down, 2672 * skip this 2673 */ 2674 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2675 mptcp_send_head(sk)) 2676 return; 2677 2678 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2679 2680 /* fallback socket will not get data_fin/ack, can move to the next 2681 * state now 2682 */ 2683 if (__mptcp_check_fallback(msk)) { 2684 WRITE_ONCE(msk->snd_una, msk->write_seq); 2685 if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { 2686 inet_sk_state_store(sk, TCP_CLOSE); 2687 mptcp_close_wake_up(sk); 2688 } else if (sk->sk_state == TCP_FIN_WAIT1) { 2689 inet_sk_state_store(sk, TCP_FIN_WAIT2); 2690 } 2691 } 2692 2693 mptcp_for_each_subflow(msk, subflow) { 2694 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2695 2696 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2697 } 2698 } 2699 2700 static void __mptcp_wr_shutdown(struct sock *sk) 2701 { 2702 struct mptcp_sock *msk = mptcp_sk(sk); 2703 2704 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2705 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2706 !!mptcp_send_head(sk)); 2707 2708 /* will be ignored by fallback sockets */ 2709 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2710 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2711 2712 __mptcp_check_send_data_fin(sk); 2713 } 2714 2715 static void __mptcp_destroy_sock(struct sock *sk) 2716 { 2717 struct mptcp_subflow_context *subflow, *tmp; 2718 struct mptcp_sock *msk = mptcp_sk(sk); 2719 LIST_HEAD(conn_list); 2720 2721 pr_debug("msk=%p", msk); 2722 2723 might_sleep(); 2724 2725 /* join list will be eventually flushed (with rst) at sock lock release time*/ 2726 list_splice_init(&msk->conn_list, &conn_list); 2727 2728 sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer); 2729 sk_stop_timer(sk, &sk->sk_timer); 2730 msk->pm.status = 0; 2731 2732 /* clears msk->subflow, allowing the following loop to close 2733 * even the initial subflow 2734 */ 2735 mptcp_dispose_initial_subflow(msk); 2736 list_for_each_entry_safe(subflow, tmp, &conn_list, node) { 2737 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2738 __mptcp_close_ssk(sk, ssk, subflow, 0); 2739 } 2740 2741 sk->sk_prot->destroy(sk); 2742 2743 WARN_ON_ONCE(msk->rmem_fwd_alloc); 2744 WARN_ON_ONCE(msk->rmem_released); 2745 sk_stream_kill_queues(sk); 2746 xfrm_sk_free_policy(sk); 2747 2748 sk_refcnt_debug_release(sk); 2749 sock_put(sk); 2750 } 2751 2752 static void mptcp_close(struct sock *sk, long timeout) 2753 { 2754 struct mptcp_subflow_context *subflow; 2755 bool do_cancel_work = false; 2756 2757 lock_sock(sk); 2758 sk->sk_shutdown = SHUTDOWN_MASK; 2759 2760 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 2761 inet_sk_state_store(sk, TCP_CLOSE); 2762 goto cleanup; 2763 } 2764 2765 if (mptcp_close_state(sk)) 2766 __mptcp_wr_shutdown(sk); 2767 2768 sk_stream_wait_close(sk, timeout); 2769 2770 cleanup: 2771 /* orphan all the subflows */ 2772 inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32; 2773 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2774 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2775 bool slow = lock_sock_fast_nested(ssk); 2776 2777 sock_orphan(ssk); 2778 unlock_sock_fast(ssk, slow); 2779 } 2780 sock_orphan(sk); 2781 2782 sock_hold(sk); 2783 pr_debug("msk=%p state=%d", sk, sk->sk_state); 2784 if (mptcp_sk(sk)->token) 2785 mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL); 2786 2787 if (sk->sk_state == TCP_CLOSE) { 2788 __mptcp_destroy_sock(sk); 2789 do_cancel_work = true; 2790 } else { 2791 sk_reset_timer(sk, &sk->sk_timer, jiffies + TCP_TIMEWAIT_LEN); 2792 } 2793 release_sock(sk); 2794 if (do_cancel_work) 2795 mptcp_cancel_work(sk); 2796 2797 sock_put(sk); 2798 } 2799 2800 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 2801 { 2802 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2803 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 2804 struct ipv6_pinfo *msk6 = inet6_sk(msk); 2805 2806 msk->sk_v6_daddr = ssk->sk_v6_daddr; 2807 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 2808 2809 if (msk6 && ssk6) { 2810 msk6->saddr = ssk6->saddr; 2811 msk6->flow_label = ssk6->flow_label; 2812 } 2813 #endif 2814 2815 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 2816 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 2817 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 2818 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 2819 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 2820 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 2821 } 2822 2823 static int mptcp_disconnect(struct sock *sk, int flags) 2824 { 2825 struct mptcp_subflow_context *subflow; 2826 struct mptcp_sock *msk = mptcp_sk(sk); 2827 2828 inet_sk_state_store(sk, TCP_CLOSE); 2829 2830 mptcp_for_each_subflow(msk, subflow) { 2831 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2832 2833 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_FASTCLOSE); 2834 } 2835 2836 sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer); 2837 sk_stop_timer(sk, &sk->sk_timer); 2838 2839 if (mptcp_sk(sk)->token) 2840 mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL); 2841 2842 mptcp_destroy_common(msk); 2843 msk->last_snd = NULL; 2844 WRITE_ONCE(msk->flags, 0); 2845 msk->cb_flags = 0; 2846 msk->push_pending = 0; 2847 msk->recovery = false; 2848 msk->can_ack = false; 2849 msk->fully_established = false; 2850 msk->rcv_data_fin = false; 2851 msk->snd_data_fin_enable = false; 2852 msk->rcv_fastclose = false; 2853 msk->use_64bit_ack = false; 2854 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2855 mptcp_pm_data_reset(msk); 2856 mptcp_ca_reset(sk); 2857 2858 sk->sk_shutdown = 0; 2859 sk_error_report(sk); 2860 return 0; 2861 } 2862 2863 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2864 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 2865 { 2866 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 2867 2868 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 2869 } 2870 #endif 2871 2872 struct sock *mptcp_sk_clone(const struct sock *sk, 2873 const struct mptcp_options_received *mp_opt, 2874 struct request_sock *req) 2875 { 2876 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 2877 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 2878 struct mptcp_sock *msk; 2879 u64 ack_seq; 2880 2881 if (!nsk) 2882 return NULL; 2883 2884 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2885 if (nsk->sk_family == AF_INET6) 2886 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 2887 #endif 2888 2889 __mptcp_init_sock(nsk); 2890 2891 msk = mptcp_sk(nsk); 2892 msk->local_key = subflow_req->local_key; 2893 msk->token = subflow_req->token; 2894 msk->subflow = NULL; 2895 WRITE_ONCE(msk->fully_established, false); 2896 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 2897 WRITE_ONCE(msk->csum_enabled, true); 2898 2899 msk->write_seq = subflow_req->idsn + 1; 2900 msk->snd_nxt = msk->write_seq; 2901 msk->snd_una = msk->write_seq; 2902 msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd; 2903 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 2904 2905 if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) { 2906 msk->can_ack = true; 2907 msk->remote_key = mp_opt->sndr_key; 2908 mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq); 2909 ack_seq++; 2910 WRITE_ONCE(msk->ack_seq, ack_seq); 2911 WRITE_ONCE(msk->rcv_wnd_sent, ack_seq); 2912 } 2913 2914 sock_reset_flag(nsk, SOCK_RCU_FREE); 2915 /* will be fully established after successful MPC subflow creation */ 2916 inet_sk_state_store(nsk, TCP_SYN_RECV); 2917 2918 security_inet_csk_clone(nsk, req); 2919 bh_unlock_sock(nsk); 2920 2921 /* keep a single reference */ 2922 __sock_put(nsk); 2923 return nsk; 2924 } 2925 2926 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 2927 { 2928 const struct tcp_sock *tp = tcp_sk(ssk); 2929 2930 msk->rcvq_space.copied = 0; 2931 msk->rcvq_space.rtt_us = 0; 2932 2933 msk->rcvq_space.time = tp->tcp_mstamp; 2934 2935 /* initial rcv_space offering made to peer */ 2936 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 2937 TCP_INIT_CWND * tp->advmss); 2938 if (msk->rcvq_space.space == 0) 2939 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 2940 2941 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 2942 } 2943 2944 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err, 2945 bool kern) 2946 { 2947 struct mptcp_sock *msk = mptcp_sk(sk); 2948 struct socket *listener; 2949 struct sock *newsk; 2950 2951 listener = __mptcp_nmpc_socket(msk); 2952 if (WARN_ON_ONCE(!listener)) { 2953 *err = -EINVAL; 2954 return NULL; 2955 } 2956 2957 pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk)); 2958 newsk = inet_csk_accept(listener->sk, flags, err, kern); 2959 if (!newsk) 2960 return NULL; 2961 2962 pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk)); 2963 if (sk_is_mptcp(newsk)) { 2964 struct mptcp_subflow_context *subflow; 2965 struct sock *new_mptcp_sock; 2966 2967 subflow = mptcp_subflow_ctx(newsk); 2968 new_mptcp_sock = subflow->conn; 2969 2970 /* is_mptcp should be false if subflow->conn is missing, see 2971 * subflow_syn_recv_sock() 2972 */ 2973 if (WARN_ON_ONCE(!new_mptcp_sock)) { 2974 tcp_sk(newsk)->is_mptcp = 0; 2975 goto out; 2976 } 2977 2978 /* acquire the 2nd reference for the owning socket */ 2979 sock_hold(new_mptcp_sock); 2980 newsk = new_mptcp_sock; 2981 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 2982 } else { 2983 MPTCP_INC_STATS(sock_net(sk), 2984 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 2985 } 2986 2987 out: 2988 newsk->sk_kern_sock = kern; 2989 return newsk; 2990 } 2991 2992 void mptcp_destroy_common(struct mptcp_sock *msk) 2993 { 2994 struct sock *sk = (struct sock *)msk; 2995 2996 __mptcp_clear_xmit(sk); 2997 2998 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 2999 mptcp_data_lock(sk); 3000 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3001 __skb_queue_purge(&sk->sk_receive_queue); 3002 skb_rbtree_purge(&msk->out_of_order_queue); 3003 mptcp_data_unlock(sk); 3004 3005 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3006 * inet_sock_destruct() will dispose it 3007 */ 3008 sk->sk_forward_alloc += msk->rmem_fwd_alloc; 3009 msk->rmem_fwd_alloc = 0; 3010 mptcp_token_destroy(msk); 3011 mptcp_pm_free_anno_list(msk); 3012 } 3013 3014 static void mptcp_destroy(struct sock *sk) 3015 { 3016 struct mptcp_sock *msk = mptcp_sk(sk); 3017 3018 mptcp_destroy_common(msk); 3019 sk_sockets_allocated_dec(sk); 3020 } 3021 3022 void __mptcp_data_acked(struct sock *sk) 3023 { 3024 if (!sock_owned_by_user(sk)) 3025 __mptcp_clean_una(sk); 3026 else 3027 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3028 3029 if (mptcp_pending_data_fin_ack(sk)) 3030 mptcp_schedule_work(sk); 3031 } 3032 3033 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3034 { 3035 if (!mptcp_send_head(sk)) 3036 return; 3037 3038 if (!sock_owned_by_user(sk)) { 3039 struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk)); 3040 3041 if (xmit_ssk == ssk) 3042 __mptcp_subflow_push_pending(sk, ssk); 3043 else if (xmit_ssk) 3044 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), MPTCP_DELEGATE_SEND); 3045 } else { 3046 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3047 } 3048 } 3049 3050 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3051 BIT(MPTCP_RETRANSMIT) | \ 3052 BIT(MPTCP_FLUSH_JOIN_LIST)) 3053 3054 /* processes deferred events and flush wmem */ 3055 static void mptcp_release_cb(struct sock *sk) 3056 __must_hold(&sk->sk_lock.slock) 3057 { 3058 struct mptcp_sock *msk = mptcp_sk(sk); 3059 3060 for (;;) { 3061 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) | 3062 msk->push_pending; 3063 if (!flags) 3064 break; 3065 3066 /* the following actions acquire the subflow socket lock 3067 * 3068 * 1) can't be invoked in atomic scope 3069 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3070 * datapath acquires the msk socket spinlock while helding 3071 * the subflow socket lock 3072 */ 3073 msk->push_pending = 0; 3074 msk->cb_flags &= ~flags; 3075 spin_unlock_bh(&sk->sk_lock.slock); 3076 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3077 __mptcp_flush_join_list(sk); 3078 if (flags & BIT(MPTCP_PUSH_PENDING)) 3079 __mptcp_push_pending(sk, 0); 3080 if (flags & BIT(MPTCP_RETRANSMIT)) 3081 __mptcp_retrans(sk); 3082 3083 cond_resched(); 3084 spin_lock_bh(&sk->sk_lock.slock); 3085 } 3086 3087 /* be sure to set the current sk state before tacking actions 3088 * depending on sk_state 3089 */ 3090 if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags)) 3091 __mptcp_set_connected(sk); 3092 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3093 __mptcp_clean_una_wakeup(sk); 3094 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3095 __mptcp_error_report(sk); 3096 3097 __mptcp_update_rmem(sk); 3098 } 3099 3100 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3101 * TCP can't schedule delack timer before the subflow is fully established. 3102 * MPTCP uses the delack timer to do 3rd ack retransmissions 3103 */ 3104 static void schedule_3rdack_retransmission(struct sock *ssk) 3105 { 3106 struct inet_connection_sock *icsk = inet_csk(ssk); 3107 struct tcp_sock *tp = tcp_sk(ssk); 3108 unsigned long timeout; 3109 3110 if (mptcp_subflow_ctx(ssk)->fully_established) 3111 return; 3112 3113 /* reschedule with a timeout above RTT, as we must look only for drop */ 3114 if (tp->srtt_us) 3115 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3116 else 3117 timeout = TCP_TIMEOUT_INIT; 3118 timeout += jiffies; 3119 3120 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3121 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3122 icsk->icsk_ack.timeout = timeout; 3123 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3124 } 3125 3126 void mptcp_subflow_process_delegated(struct sock *ssk) 3127 { 3128 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3129 struct sock *sk = subflow->conn; 3130 3131 if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) { 3132 mptcp_data_lock(sk); 3133 if (!sock_owned_by_user(sk)) 3134 __mptcp_subflow_push_pending(sk, ssk); 3135 else 3136 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3137 mptcp_data_unlock(sk); 3138 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND); 3139 } 3140 if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) { 3141 schedule_3rdack_retransmission(ssk); 3142 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK); 3143 } 3144 } 3145 3146 static int mptcp_hash(struct sock *sk) 3147 { 3148 /* should never be called, 3149 * we hash the TCP subflows not the master socket 3150 */ 3151 WARN_ON_ONCE(1); 3152 return 0; 3153 } 3154 3155 static void mptcp_unhash(struct sock *sk) 3156 { 3157 /* called from sk_common_release(), but nothing to do here */ 3158 } 3159 3160 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3161 { 3162 struct mptcp_sock *msk = mptcp_sk(sk); 3163 struct socket *ssock; 3164 3165 ssock = __mptcp_nmpc_socket(msk); 3166 pr_debug("msk=%p, subflow=%p", msk, ssock); 3167 if (WARN_ON_ONCE(!ssock)) 3168 return -EINVAL; 3169 3170 return inet_csk_get_port(ssock->sk, snum); 3171 } 3172 3173 void mptcp_finish_connect(struct sock *ssk) 3174 { 3175 struct mptcp_subflow_context *subflow; 3176 struct mptcp_sock *msk; 3177 struct sock *sk; 3178 u64 ack_seq; 3179 3180 subflow = mptcp_subflow_ctx(ssk); 3181 sk = subflow->conn; 3182 msk = mptcp_sk(sk); 3183 3184 pr_debug("msk=%p, token=%u", sk, subflow->token); 3185 3186 mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq); 3187 ack_seq++; 3188 subflow->map_seq = ack_seq; 3189 subflow->map_subflow_seq = 1; 3190 3191 /* the socket is not connected yet, no msk/subflow ops can access/race 3192 * accessing the field below 3193 */ 3194 WRITE_ONCE(msk->remote_key, subflow->remote_key); 3195 WRITE_ONCE(msk->local_key, subflow->local_key); 3196 WRITE_ONCE(msk->write_seq, subflow->idsn + 1); 3197 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3198 WRITE_ONCE(msk->ack_seq, ack_seq); 3199 WRITE_ONCE(msk->rcv_wnd_sent, ack_seq); 3200 WRITE_ONCE(msk->can_ack, 1); 3201 WRITE_ONCE(msk->snd_una, msk->write_seq); 3202 3203 mptcp_pm_new_connection(msk, ssk, 0); 3204 3205 mptcp_rcv_space_init(msk, ssk); 3206 } 3207 3208 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3209 { 3210 write_lock_bh(&sk->sk_callback_lock); 3211 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3212 sk_set_socket(sk, parent); 3213 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3214 write_unlock_bh(&sk->sk_callback_lock); 3215 } 3216 3217 bool mptcp_finish_join(struct sock *ssk) 3218 { 3219 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3220 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3221 struct sock *parent = (void *)msk; 3222 bool ret = true; 3223 3224 pr_debug("msk=%p, subflow=%p", msk, subflow); 3225 3226 /* mptcp socket already closing? */ 3227 if (!mptcp_is_fully_established(parent)) { 3228 subflow->reset_reason = MPTCP_RST_EMPTCP; 3229 return false; 3230 } 3231 3232 if (!msk->pm.server_side) 3233 goto out; 3234 3235 if (!mptcp_pm_allow_new_subflow(msk)) 3236 goto err_prohibited; 3237 3238 if (WARN_ON_ONCE(!list_empty(&subflow->node))) 3239 goto err_prohibited; 3240 3241 /* active connections are already on conn_list. 3242 * If we can't acquire msk socket lock here, let the release callback 3243 * handle it 3244 */ 3245 mptcp_data_lock(parent); 3246 if (!sock_owned_by_user(parent)) { 3247 ret = __mptcp_finish_join(msk, ssk); 3248 if (ret) { 3249 sock_hold(ssk); 3250 list_add_tail(&subflow->node, &msk->conn_list); 3251 } 3252 } else { 3253 sock_hold(ssk); 3254 list_add_tail(&subflow->node, &msk->join_list); 3255 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3256 } 3257 mptcp_data_unlock(parent); 3258 3259 if (!ret) { 3260 err_prohibited: 3261 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3262 return false; 3263 } 3264 3265 subflow->map_seq = READ_ONCE(msk->ack_seq); 3266 3267 out: 3268 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 3269 return true; 3270 } 3271 3272 static void mptcp_shutdown(struct sock *sk, int how) 3273 { 3274 pr_debug("sk=%p, how=%d", sk, how); 3275 3276 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3277 __mptcp_wr_shutdown(sk); 3278 } 3279 3280 static int mptcp_forward_alloc_get(const struct sock *sk) 3281 { 3282 return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc; 3283 } 3284 3285 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3286 { 3287 const struct sock *sk = (void *)msk; 3288 u64 delta; 3289 3290 if (sk->sk_state == TCP_LISTEN) 3291 return -EINVAL; 3292 3293 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3294 return 0; 3295 3296 delta = msk->write_seq - v; 3297 if (delta > INT_MAX) 3298 delta = INT_MAX; 3299 3300 return (int)delta; 3301 } 3302 3303 static int mptcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3304 { 3305 struct mptcp_sock *msk = mptcp_sk(sk); 3306 bool slow; 3307 int answ; 3308 3309 switch (cmd) { 3310 case SIOCINQ: 3311 if (sk->sk_state == TCP_LISTEN) 3312 return -EINVAL; 3313 3314 lock_sock(sk); 3315 __mptcp_move_skbs(msk); 3316 answ = mptcp_inq_hint(sk); 3317 release_sock(sk); 3318 break; 3319 case SIOCOUTQ: 3320 slow = lock_sock_fast(sk); 3321 answ = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3322 unlock_sock_fast(sk, slow); 3323 break; 3324 case SIOCOUTQNSD: 3325 slow = lock_sock_fast(sk); 3326 answ = mptcp_ioctl_outq(msk, msk->snd_nxt); 3327 unlock_sock_fast(sk, slow); 3328 break; 3329 default: 3330 return -ENOIOCTLCMD; 3331 } 3332 3333 return put_user(answ, (int __user *)arg); 3334 } 3335 3336 static struct proto mptcp_prot = { 3337 .name = "MPTCP", 3338 .owner = THIS_MODULE, 3339 .init = mptcp_init_sock, 3340 .disconnect = mptcp_disconnect, 3341 .close = mptcp_close, 3342 .accept = mptcp_accept, 3343 .setsockopt = mptcp_setsockopt, 3344 .getsockopt = mptcp_getsockopt, 3345 .shutdown = mptcp_shutdown, 3346 .destroy = mptcp_destroy, 3347 .sendmsg = mptcp_sendmsg, 3348 .ioctl = mptcp_ioctl, 3349 .recvmsg = mptcp_recvmsg, 3350 .release_cb = mptcp_release_cb, 3351 .hash = mptcp_hash, 3352 .unhash = mptcp_unhash, 3353 .get_port = mptcp_get_port, 3354 .forward_alloc_get = mptcp_forward_alloc_get, 3355 .sockets_allocated = &mptcp_sockets_allocated, 3356 .memory_allocated = &tcp_memory_allocated, 3357 .memory_pressure = &tcp_memory_pressure, 3358 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3359 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3360 .sysctl_mem = sysctl_tcp_mem, 3361 .obj_size = sizeof(struct mptcp_sock), 3362 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3363 .no_autobind = true, 3364 }; 3365 3366 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3367 { 3368 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3369 struct socket *ssock; 3370 int err; 3371 3372 lock_sock(sock->sk); 3373 ssock = __mptcp_nmpc_socket(msk); 3374 if (!ssock) { 3375 err = -EINVAL; 3376 goto unlock; 3377 } 3378 3379 err = ssock->ops->bind(ssock, uaddr, addr_len); 3380 if (!err) 3381 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3382 3383 unlock: 3384 release_sock(sock->sk); 3385 return err; 3386 } 3387 3388 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3389 struct mptcp_subflow_context *subflow) 3390 { 3391 subflow->request_mptcp = 0; 3392 __mptcp_do_fallback(msk); 3393 } 3394 3395 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr, 3396 int addr_len, int flags) 3397 { 3398 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3399 struct mptcp_subflow_context *subflow; 3400 struct socket *ssock; 3401 int err = -EINVAL; 3402 3403 lock_sock(sock->sk); 3404 if (uaddr) { 3405 if (addr_len < sizeof(uaddr->sa_family)) 3406 goto unlock; 3407 3408 if (uaddr->sa_family == AF_UNSPEC) { 3409 err = mptcp_disconnect(sock->sk, flags); 3410 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 3411 goto unlock; 3412 } 3413 } 3414 3415 if (sock->state != SS_UNCONNECTED && msk->subflow) { 3416 /* pending connection or invalid state, let existing subflow 3417 * cope with that 3418 */ 3419 ssock = msk->subflow; 3420 goto do_connect; 3421 } 3422 3423 ssock = __mptcp_nmpc_socket(msk); 3424 if (!ssock) 3425 goto unlock; 3426 3427 mptcp_token_destroy(msk); 3428 inet_sk_state_store(sock->sk, TCP_SYN_SENT); 3429 subflow = mptcp_subflow_ctx(ssock->sk); 3430 #ifdef CONFIG_TCP_MD5SIG 3431 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3432 * TCP option space. 3433 */ 3434 if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info)) 3435 mptcp_subflow_early_fallback(msk, subflow); 3436 #endif 3437 if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) { 3438 MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT); 3439 mptcp_subflow_early_fallback(msk, subflow); 3440 } 3441 if (likely(!__mptcp_check_fallback(msk))) 3442 MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE); 3443 3444 do_connect: 3445 err = ssock->ops->connect(ssock, uaddr, addr_len, flags); 3446 sock->state = ssock->state; 3447 3448 /* on successful connect, the msk state will be moved to established by 3449 * subflow_finish_connect() 3450 */ 3451 if (!err || err == -EINPROGRESS) 3452 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3453 else 3454 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 3455 3456 unlock: 3457 release_sock(sock->sk); 3458 return err; 3459 } 3460 3461 static int mptcp_listen(struct socket *sock, int backlog) 3462 { 3463 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3464 struct socket *ssock; 3465 int err; 3466 3467 pr_debug("msk=%p", msk); 3468 3469 lock_sock(sock->sk); 3470 ssock = __mptcp_nmpc_socket(msk); 3471 if (!ssock) { 3472 err = -EINVAL; 3473 goto unlock; 3474 } 3475 3476 mptcp_token_destroy(msk); 3477 inet_sk_state_store(sock->sk, TCP_LISTEN); 3478 sock_set_flag(sock->sk, SOCK_RCU_FREE); 3479 3480 err = ssock->ops->listen(ssock, backlog); 3481 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 3482 if (!err) 3483 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3484 3485 unlock: 3486 release_sock(sock->sk); 3487 return err; 3488 } 3489 3490 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3491 int flags, bool kern) 3492 { 3493 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3494 struct socket *ssock; 3495 int err; 3496 3497 pr_debug("msk=%p", msk); 3498 3499 ssock = __mptcp_nmpc_socket(msk); 3500 if (!ssock) 3501 return -EINVAL; 3502 3503 err = ssock->ops->accept(sock, newsock, flags, kern); 3504 if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) { 3505 struct mptcp_sock *msk = mptcp_sk(newsock->sk); 3506 struct mptcp_subflow_context *subflow; 3507 struct sock *newsk = newsock->sk; 3508 3509 lock_sock(newsk); 3510 3511 /* PM/worker can now acquire the first subflow socket 3512 * lock without racing with listener queue cleanup, 3513 * we can notify it, if needed. 3514 * 3515 * Even if remote has reset the initial subflow by now 3516 * the refcnt is still at least one. 3517 */ 3518 subflow = mptcp_subflow_ctx(msk->first); 3519 list_add(&subflow->node, &msk->conn_list); 3520 sock_hold(msk->first); 3521 if (mptcp_is_fully_established(newsk)) 3522 mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL); 3523 3524 mptcp_copy_inaddrs(newsk, msk->first); 3525 mptcp_rcv_space_init(msk, msk->first); 3526 mptcp_propagate_sndbuf(newsk, msk->first); 3527 3528 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3529 * This is needed so NOSPACE flag can be set from tcp stack. 3530 */ 3531 mptcp_for_each_subflow(msk, subflow) { 3532 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3533 3534 if (!ssk->sk_socket) 3535 mptcp_sock_graft(ssk, newsock); 3536 } 3537 release_sock(newsk); 3538 } 3539 3540 return err; 3541 } 3542 3543 static __poll_t mptcp_check_readable(struct mptcp_sock *msk) 3544 { 3545 /* Concurrent splices from sk_receive_queue into receive_queue will 3546 * always show at least one non-empty queue when checked in this order. 3547 */ 3548 if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) && 3549 skb_queue_empty_lockless(&msk->receive_queue)) 3550 return 0; 3551 3552 return EPOLLIN | EPOLLRDNORM; 3553 } 3554 3555 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3556 { 3557 struct sock *sk = (struct sock *)msk; 3558 3559 if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN)) 3560 return EPOLLOUT | EPOLLWRNORM; 3561 3562 if (sk_stream_is_writeable(sk)) 3563 return EPOLLOUT | EPOLLWRNORM; 3564 3565 mptcp_set_nospace(sk); 3566 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3567 if (sk_stream_is_writeable(sk)) 3568 return EPOLLOUT | EPOLLWRNORM; 3569 3570 return 0; 3571 } 3572 3573 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3574 struct poll_table_struct *wait) 3575 { 3576 struct sock *sk = sock->sk; 3577 struct mptcp_sock *msk; 3578 __poll_t mask = 0; 3579 int state; 3580 3581 msk = mptcp_sk(sk); 3582 sock_poll_wait(file, sock, wait); 3583 3584 state = inet_sk_state_load(sk); 3585 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3586 if (state == TCP_LISTEN) { 3587 if (WARN_ON_ONCE(!msk->subflow || !msk->subflow->sk)) 3588 return 0; 3589 3590 return inet_csk_listen_poll(msk->subflow->sk); 3591 } 3592 3593 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3594 mask |= mptcp_check_readable(msk); 3595 mask |= mptcp_check_writeable(msk); 3596 } 3597 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3598 mask |= EPOLLHUP; 3599 if (sk->sk_shutdown & RCV_SHUTDOWN) 3600 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3601 3602 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 3603 smp_rmb(); 3604 if (sk->sk_err) 3605 mask |= EPOLLERR; 3606 3607 return mask; 3608 } 3609 3610 static const struct proto_ops mptcp_stream_ops = { 3611 .family = PF_INET, 3612 .owner = THIS_MODULE, 3613 .release = inet_release, 3614 .bind = mptcp_bind, 3615 .connect = mptcp_stream_connect, 3616 .socketpair = sock_no_socketpair, 3617 .accept = mptcp_stream_accept, 3618 .getname = inet_getname, 3619 .poll = mptcp_poll, 3620 .ioctl = inet_ioctl, 3621 .gettstamp = sock_gettstamp, 3622 .listen = mptcp_listen, 3623 .shutdown = inet_shutdown, 3624 .setsockopt = sock_common_setsockopt, 3625 .getsockopt = sock_common_getsockopt, 3626 .sendmsg = inet_sendmsg, 3627 .recvmsg = inet_recvmsg, 3628 .mmap = sock_no_mmap, 3629 .sendpage = inet_sendpage, 3630 }; 3631 3632 static struct inet_protosw mptcp_protosw = { 3633 .type = SOCK_STREAM, 3634 .protocol = IPPROTO_MPTCP, 3635 .prot = &mptcp_prot, 3636 .ops = &mptcp_stream_ops, 3637 .flags = INET_PROTOSW_ICSK, 3638 }; 3639 3640 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 3641 { 3642 struct mptcp_delegated_action *delegated; 3643 struct mptcp_subflow_context *subflow; 3644 int work_done = 0; 3645 3646 delegated = container_of(napi, struct mptcp_delegated_action, napi); 3647 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 3648 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3649 3650 bh_lock_sock_nested(ssk); 3651 if (!sock_owned_by_user(ssk) && 3652 mptcp_subflow_has_delegated_action(subflow)) 3653 mptcp_subflow_process_delegated(ssk); 3654 /* ... elsewhere tcp_release_cb_override already processed 3655 * the action or will do at next release_sock(). 3656 * In both case must dequeue the subflow here - on the same 3657 * CPU that scheduled it. 3658 */ 3659 bh_unlock_sock(ssk); 3660 sock_put(ssk); 3661 3662 if (++work_done == budget) 3663 return budget; 3664 } 3665 3666 /* always provide a 0 'work_done' argument, so that napi_complete_done 3667 * will not try accessing the NULL napi->dev ptr 3668 */ 3669 napi_complete_done(napi, 0); 3670 return work_done; 3671 } 3672 3673 void __init mptcp_proto_init(void) 3674 { 3675 struct mptcp_delegated_action *delegated; 3676 int cpu; 3677 3678 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 3679 3680 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 3681 panic("Failed to allocate MPTCP pcpu counter\n"); 3682 3683 init_dummy_netdev(&mptcp_napi_dev); 3684 for_each_possible_cpu(cpu) { 3685 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 3686 INIT_LIST_HEAD(&delegated->head); 3687 netif_tx_napi_add(&mptcp_napi_dev, &delegated->napi, mptcp_napi_poll, 3688 NAPI_POLL_WEIGHT); 3689 napi_enable(&delegated->napi); 3690 } 3691 3692 mptcp_subflow_init(); 3693 mptcp_pm_init(); 3694 mptcp_token_init(); 3695 3696 if (proto_register(&mptcp_prot, 1) != 0) 3697 panic("Failed to register MPTCP proto.\n"); 3698 3699 inet_register_protosw(&mptcp_protosw); 3700 3701 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 3702 } 3703 3704 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3705 static const struct proto_ops mptcp_v6_stream_ops = { 3706 .family = PF_INET6, 3707 .owner = THIS_MODULE, 3708 .release = inet6_release, 3709 .bind = mptcp_bind, 3710 .connect = mptcp_stream_connect, 3711 .socketpair = sock_no_socketpair, 3712 .accept = mptcp_stream_accept, 3713 .getname = inet6_getname, 3714 .poll = mptcp_poll, 3715 .ioctl = inet6_ioctl, 3716 .gettstamp = sock_gettstamp, 3717 .listen = mptcp_listen, 3718 .shutdown = inet_shutdown, 3719 .setsockopt = sock_common_setsockopt, 3720 .getsockopt = sock_common_getsockopt, 3721 .sendmsg = inet6_sendmsg, 3722 .recvmsg = inet6_recvmsg, 3723 .mmap = sock_no_mmap, 3724 .sendpage = inet_sendpage, 3725 #ifdef CONFIG_COMPAT 3726 .compat_ioctl = inet6_compat_ioctl, 3727 #endif 3728 }; 3729 3730 static struct proto mptcp_v6_prot; 3731 3732 static void mptcp_v6_destroy(struct sock *sk) 3733 { 3734 mptcp_destroy(sk); 3735 inet6_destroy_sock(sk); 3736 } 3737 3738 static struct inet_protosw mptcp_v6_protosw = { 3739 .type = SOCK_STREAM, 3740 .protocol = IPPROTO_MPTCP, 3741 .prot = &mptcp_v6_prot, 3742 .ops = &mptcp_v6_stream_ops, 3743 .flags = INET_PROTOSW_ICSK, 3744 }; 3745 3746 int __init mptcp_proto_v6_init(void) 3747 { 3748 int err; 3749 3750 mptcp_v6_prot = mptcp_prot; 3751 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 3752 mptcp_v6_prot.slab = NULL; 3753 mptcp_v6_prot.destroy = mptcp_v6_destroy; 3754 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 3755 3756 err = proto_register(&mptcp_v6_prot, 1); 3757 if (err) 3758 return err; 3759 3760 err = inet6_register_protosw(&mptcp_v6_protosw); 3761 if (err) 3762 proto_unregister(&mptcp_v6_prot); 3763 3764 return err; 3765 } 3766 #endif 3767