1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 enum { 40 MPTCP_CMSG_TS = BIT(0), 41 MPTCP_CMSG_INQ = BIT(1), 42 }; 43 44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 45 46 static void __mptcp_destroy_sock(struct sock *sk); 47 static void mptcp_check_send_data_fin(struct sock *sk); 48 49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 50 static struct net_device mptcp_napi_dev; 51 52 /* Returns end sequence number of the receiver's advertised window */ 53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 54 { 55 return READ_ONCE(msk->wnd_end); 56 } 57 58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 59 { 60 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 61 if (sk->sk_prot == &tcpv6_prot) 62 return &inet6_stream_ops; 63 #endif 64 WARN_ON_ONCE(sk->sk_prot != &tcp_prot); 65 return &inet_stream_ops; 66 } 67 68 static int __mptcp_socket_create(struct mptcp_sock *msk) 69 { 70 struct mptcp_subflow_context *subflow; 71 struct sock *sk = (struct sock *)msk; 72 struct socket *ssock; 73 int err; 74 75 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 76 if (err) 77 return err; 78 79 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 80 WRITE_ONCE(msk->first, ssock->sk); 81 subflow = mptcp_subflow_ctx(ssock->sk); 82 list_add(&subflow->node, &msk->conn_list); 83 sock_hold(ssock->sk); 84 subflow->request_mptcp = 1; 85 subflow->subflow_id = msk->subflow_id++; 86 87 /* This is the first subflow, always with id 0 */ 88 WRITE_ONCE(subflow->local_id, 0); 89 mptcp_sock_graft(msk->first, sk->sk_socket); 90 iput(SOCK_INODE(ssock)); 91 92 return 0; 93 } 94 95 /* If the MPC handshake is not started, returns the first subflow, 96 * eventually allocating it. 97 */ 98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 99 { 100 struct sock *sk = (struct sock *)msk; 101 int ret; 102 103 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 104 return ERR_PTR(-EINVAL); 105 106 if (!msk->first) { 107 ret = __mptcp_socket_create(msk); 108 if (ret) 109 return ERR_PTR(ret); 110 111 mptcp_sockopt_sync(msk, msk->first); 112 } 113 114 return msk->first; 115 } 116 117 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 118 { 119 sk_drops_add(sk, skb); 120 __kfree_skb(skb); 121 } 122 123 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size) 124 { 125 WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc, 126 mptcp_sk(sk)->rmem_fwd_alloc + size); 127 } 128 129 static void mptcp_rmem_charge(struct sock *sk, int size) 130 { 131 mptcp_rmem_fwd_alloc_add(sk, -size); 132 } 133 134 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 135 struct sk_buff *from) 136 { 137 bool fragstolen; 138 int delta; 139 140 if (MPTCP_SKB_CB(from)->offset || 141 !skb_try_coalesce(to, from, &fragstolen, &delta)) 142 return false; 143 144 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 145 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 146 to->len, MPTCP_SKB_CB(from)->end_seq); 147 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 148 149 /* note the fwd memory can reach a negative value after accounting 150 * for the delta, but the later skb free will restore a non 151 * negative one 152 */ 153 atomic_add(delta, &sk->sk_rmem_alloc); 154 mptcp_rmem_charge(sk, delta); 155 kfree_skb_partial(from, fragstolen); 156 157 return true; 158 } 159 160 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 161 struct sk_buff *from) 162 { 163 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 164 return false; 165 166 return mptcp_try_coalesce((struct sock *)msk, to, from); 167 } 168 169 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 170 { 171 amount >>= PAGE_SHIFT; 172 mptcp_rmem_charge(sk, amount << PAGE_SHIFT); 173 __sk_mem_reduce_allocated(sk, amount); 174 } 175 176 static void mptcp_rmem_uncharge(struct sock *sk, int size) 177 { 178 struct mptcp_sock *msk = mptcp_sk(sk); 179 int reclaimable; 180 181 mptcp_rmem_fwd_alloc_add(sk, size); 182 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 183 184 /* see sk_mem_uncharge() for the rationale behind the following schema */ 185 if (unlikely(reclaimable >= PAGE_SIZE)) 186 __mptcp_rmem_reclaim(sk, reclaimable); 187 } 188 189 static void mptcp_rfree(struct sk_buff *skb) 190 { 191 unsigned int len = skb->truesize; 192 struct sock *sk = skb->sk; 193 194 atomic_sub(len, &sk->sk_rmem_alloc); 195 mptcp_rmem_uncharge(sk, len); 196 } 197 198 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 199 { 200 skb_orphan(skb); 201 skb->sk = sk; 202 skb->destructor = mptcp_rfree; 203 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 204 mptcp_rmem_charge(sk, skb->truesize); 205 } 206 207 /* "inspired" by tcp_data_queue_ofo(), main differences: 208 * - use mptcp seqs 209 * - don't cope with sacks 210 */ 211 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 212 { 213 struct sock *sk = (struct sock *)msk; 214 struct rb_node **p, *parent; 215 u64 seq, end_seq, max_seq; 216 struct sk_buff *skb1; 217 218 seq = MPTCP_SKB_CB(skb)->map_seq; 219 end_seq = MPTCP_SKB_CB(skb)->end_seq; 220 max_seq = atomic64_read(&msk->rcv_wnd_sent); 221 222 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 223 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 224 if (after64(end_seq, max_seq)) { 225 /* out of window */ 226 mptcp_drop(sk, skb); 227 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 228 (unsigned long long)end_seq - (unsigned long)max_seq, 229 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 230 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 231 return; 232 } 233 234 p = &msk->out_of_order_queue.rb_node; 235 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 236 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 237 rb_link_node(&skb->rbnode, NULL, p); 238 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 239 msk->ooo_last_skb = skb; 240 goto end; 241 } 242 243 /* with 2 subflows, adding at end of ooo queue is quite likely 244 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 245 */ 246 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 247 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 248 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 249 return; 250 } 251 252 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 253 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 254 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 255 parent = &msk->ooo_last_skb->rbnode; 256 p = &parent->rb_right; 257 goto insert; 258 } 259 260 /* Find place to insert this segment. Handle overlaps on the way. */ 261 parent = NULL; 262 while (*p) { 263 parent = *p; 264 skb1 = rb_to_skb(parent); 265 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 266 p = &parent->rb_left; 267 continue; 268 } 269 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 270 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 271 /* All the bits are present. Drop. */ 272 mptcp_drop(sk, skb); 273 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 274 return; 275 } 276 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 277 /* partial overlap: 278 * | skb | 279 * | skb1 | 280 * continue traversing 281 */ 282 } else { 283 /* skb's seq == skb1's seq and skb covers skb1. 284 * Replace skb1 with skb. 285 */ 286 rb_replace_node(&skb1->rbnode, &skb->rbnode, 287 &msk->out_of_order_queue); 288 mptcp_drop(sk, skb1); 289 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 290 goto merge_right; 291 } 292 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 293 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 294 return; 295 } 296 p = &parent->rb_right; 297 } 298 299 insert: 300 /* Insert segment into RB tree. */ 301 rb_link_node(&skb->rbnode, parent, p); 302 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 303 304 merge_right: 305 /* Remove other segments covered by skb. */ 306 while ((skb1 = skb_rb_next(skb)) != NULL) { 307 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 308 break; 309 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 310 mptcp_drop(sk, skb1); 311 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 312 } 313 /* If there is no skb after us, we are the last_skb ! */ 314 if (!skb1) 315 msk->ooo_last_skb = skb; 316 317 end: 318 skb_condense(skb); 319 mptcp_set_owner_r(skb, sk); 320 } 321 322 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 323 { 324 struct mptcp_sock *msk = mptcp_sk(sk); 325 int amt, amount; 326 327 if (size <= msk->rmem_fwd_alloc) 328 return true; 329 330 size -= msk->rmem_fwd_alloc; 331 amt = sk_mem_pages(size); 332 amount = amt << PAGE_SHIFT; 333 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 334 return false; 335 336 mptcp_rmem_fwd_alloc_add(sk, amount); 337 return true; 338 } 339 340 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 341 struct sk_buff *skb, unsigned int offset, 342 size_t copy_len) 343 { 344 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 345 struct sock *sk = (struct sock *)msk; 346 struct sk_buff *tail; 347 bool has_rxtstamp; 348 349 __skb_unlink(skb, &ssk->sk_receive_queue); 350 351 skb_ext_reset(skb); 352 skb_orphan(skb); 353 354 /* try to fetch required memory from subflow */ 355 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 356 goto drop; 357 358 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 359 360 /* the skb map_seq accounts for the skb offset: 361 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 362 * value 363 */ 364 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 365 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 366 MPTCP_SKB_CB(skb)->offset = offset; 367 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 368 369 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 370 /* in sequence */ 371 msk->bytes_received += copy_len; 372 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 373 tail = skb_peek_tail(&sk->sk_receive_queue); 374 if (tail && mptcp_try_coalesce(sk, tail, skb)) 375 return true; 376 377 mptcp_set_owner_r(skb, sk); 378 __skb_queue_tail(&sk->sk_receive_queue, skb); 379 return true; 380 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 381 mptcp_data_queue_ofo(msk, skb); 382 return false; 383 } 384 385 /* old data, keep it simple and drop the whole pkt, sender 386 * will retransmit as needed, if needed. 387 */ 388 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 389 drop: 390 mptcp_drop(sk, skb); 391 return false; 392 } 393 394 static void mptcp_stop_rtx_timer(struct sock *sk) 395 { 396 struct inet_connection_sock *icsk = inet_csk(sk); 397 398 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 399 mptcp_sk(sk)->timer_ival = 0; 400 } 401 402 static void mptcp_close_wake_up(struct sock *sk) 403 { 404 if (sock_flag(sk, SOCK_DEAD)) 405 return; 406 407 sk->sk_state_change(sk); 408 if (sk->sk_shutdown == SHUTDOWN_MASK || 409 sk->sk_state == TCP_CLOSE) 410 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 411 else 412 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 413 } 414 415 static bool mptcp_pending_data_fin_ack(struct sock *sk) 416 { 417 struct mptcp_sock *msk = mptcp_sk(sk); 418 419 return ((1 << sk->sk_state) & 420 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 421 msk->write_seq == READ_ONCE(msk->snd_una); 422 } 423 424 static void mptcp_check_data_fin_ack(struct sock *sk) 425 { 426 struct mptcp_sock *msk = mptcp_sk(sk); 427 428 /* Look for an acknowledged DATA_FIN */ 429 if (mptcp_pending_data_fin_ack(sk)) { 430 WRITE_ONCE(msk->snd_data_fin_enable, 0); 431 432 switch (sk->sk_state) { 433 case TCP_FIN_WAIT1: 434 mptcp_set_state(sk, TCP_FIN_WAIT2); 435 break; 436 case TCP_CLOSING: 437 case TCP_LAST_ACK: 438 mptcp_set_state(sk, TCP_CLOSE); 439 break; 440 } 441 442 mptcp_close_wake_up(sk); 443 } 444 } 445 446 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 447 { 448 struct mptcp_sock *msk = mptcp_sk(sk); 449 450 if (READ_ONCE(msk->rcv_data_fin) && 451 ((1 << sk->sk_state) & 452 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 453 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 454 455 if (msk->ack_seq == rcv_data_fin_seq) { 456 if (seq) 457 *seq = rcv_data_fin_seq; 458 459 return true; 460 } 461 } 462 463 return false; 464 } 465 466 static void mptcp_set_datafin_timeout(struct sock *sk) 467 { 468 struct inet_connection_sock *icsk = inet_csk(sk); 469 u32 retransmits; 470 471 retransmits = min_t(u32, icsk->icsk_retransmits, 472 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 473 474 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 475 } 476 477 static void __mptcp_set_timeout(struct sock *sk, long tout) 478 { 479 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 480 } 481 482 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 483 { 484 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 485 486 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 487 inet_csk(ssk)->icsk_timeout - jiffies : 0; 488 } 489 490 static void mptcp_set_timeout(struct sock *sk) 491 { 492 struct mptcp_subflow_context *subflow; 493 long tout = 0; 494 495 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 496 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 497 __mptcp_set_timeout(sk, tout); 498 } 499 500 static inline bool tcp_can_send_ack(const struct sock *ssk) 501 { 502 return !((1 << inet_sk_state_load(ssk)) & 503 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 504 } 505 506 void __mptcp_subflow_send_ack(struct sock *ssk) 507 { 508 if (tcp_can_send_ack(ssk)) 509 tcp_send_ack(ssk); 510 } 511 512 static void mptcp_subflow_send_ack(struct sock *ssk) 513 { 514 bool slow; 515 516 slow = lock_sock_fast(ssk); 517 __mptcp_subflow_send_ack(ssk); 518 unlock_sock_fast(ssk, slow); 519 } 520 521 static void mptcp_send_ack(struct mptcp_sock *msk) 522 { 523 struct mptcp_subflow_context *subflow; 524 525 mptcp_for_each_subflow(msk, subflow) 526 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 527 } 528 529 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 530 { 531 bool slow; 532 533 slow = lock_sock_fast(ssk); 534 if (tcp_can_send_ack(ssk)) 535 tcp_cleanup_rbuf(ssk, 1); 536 unlock_sock_fast(ssk, slow); 537 } 538 539 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 540 { 541 const struct inet_connection_sock *icsk = inet_csk(ssk); 542 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 543 const struct tcp_sock *tp = tcp_sk(ssk); 544 545 return (ack_pending & ICSK_ACK_SCHED) && 546 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 547 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 548 (rx_empty && ack_pending & 549 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 550 } 551 552 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 553 { 554 int old_space = READ_ONCE(msk->old_wspace); 555 struct mptcp_subflow_context *subflow; 556 struct sock *sk = (struct sock *)msk; 557 int space = __mptcp_space(sk); 558 bool cleanup, rx_empty; 559 560 cleanup = (space > 0) && (space >= (old_space << 1)); 561 rx_empty = !__mptcp_rmem(sk); 562 563 mptcp_for_each_subflow(msk, subflow) { 564 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 565 566 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 567 mptcp_subflow_cleanup_rbuf(ssk); 568 } 569 } 570 571 static bool mptcp_check_data_fin(struct sock *sk) 572 { 573 struct mptcp_sock *msk = mptcp_sk(sk); 574 u64 rcv_data_fin_seq; 575 bool ret = false; 576 577 /* Need to ack a DATA_FIN received from a peer while this side 578 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 579 * msk->rcv_data_fin was set when parsing the incoming options 580 * at the subflow level and the msk lock was not held, so this 581 * is the first opportunity to act on the DATA_FIN and change 582 * the msk state. 583 * 584 * If we are caught up to the sequence number of the incoming 585 * DATA_FIN, send the DATA_ACK now and do state transition. If 586 * not caught up, do nothing and let the recv code send DATA_ACK 587 * when catching up. 588 */ 589 590 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 591 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 592 WRITE_ONCE(msk->rcv_data_fin, 0); 593 594 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 595 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 596 597 switch (sk->sk_state) { 598 case TCP_ESTABLISHED: 599 mptcp_set_state(sk, TCP_CLOSE_WAIT); 600 break; 601 case TCP_FIN_WAIT1: 602 mptcp_set_state(sk, TCP_CLOSING); 603 break; 604 case TCP_FIN_WAIT2: 605 mptcp_set_state(sk, TCP_CLOSE); 606 break; 607 default: 608 /* Other states not expected */ 609 WARN_ON_ONCE(1); 610 break; 611 } 612 613 ret = true; 614 if (!__mptcp_check_fallback(msk)) 615 mptcp_send_ack(msk); 616 mptcp_close_wake_up(sk); 617 } 618 return ret; 619 } 620 621 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 622 struct sock *ssk, 623 unsigned int *bytes) 624 { 625 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 626 struct sock *sk = (struct sock *)msk; 627 unsigned int moved = 0; 628 bool more_data_avail; 629 struct tcp_sock *tp; 630 bool done = false; 631 int sk_rbuf; 632 633 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 634 635 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 636 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 637 638 if (unlikely(ssk_rbuf > sk_rbuf)) { 639 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 640 sk_rbuf = ssk_rbuf; 641 } 642 } 643 644 pr_debug("msk=%p ssk=%p", msk, ssk); 645 tp = tcp_sk(ssk); 646 do { 647 u32 map_remaining, offset; 648 u32 seq = tp->copied_seq; 649 struct sk_buff *skb; 650 bool fin; 651 652 /* try to move as much data as available */ 653 map_remaining = subflow->map_data_len - 654 mptcp_subflow_get_map_offset(subflow); 655 656 skb = skb_peek(&ssk->sk_receive_queue); 657 if (!skb) { 658 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(), 659 * a different CPU can have already processed the pending 660 * data, stop here or we can enter an infinite loop 661 */ 662 if (!moved) 663 done = true; 664 break; 665 } 666 667 if (__mptcp_check_fallback(msk)) { 668 /* Under fallback skbs have no MPTCP extension and TCP could 669 * collapse them between the dummy map creation and the 670 * current dequeue. Be sure to adjust the map size. 671 */ 672 map_remaining = skb->len; 673 subflow->map_data_len = skb->len; 674 } 675 676 offset = seq - TCP_SKB_CB(skb)->seq; 677 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 678 if (fin) { 679 done = true; 680 seq++; 681 } 682 683 if (offset < skb->len) { 684 size_t len = skb->len - offset; 685 686 if (tp->urg_data) 687 done = true; 688 689 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 690 moved += len; 691 seq += len; 692 693 if (WARN_ON_ONCE(map_remaining < len)) 694 break; 695 } else { 696 WARN_ON_ONCE(!fin); 697 sk_eat_skb(ssk, skb); 698 done = true; 699 } 700 701 WRITE_ONCE(tp->copied_seq, seq); 702 more_data_avail = mptcp_subflow_data_available(ssk); 703 704 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 705 done = true; 706 break; 707 } 708 } while (more_data_avail); 709 710 *bytes += moved; 711 return done; 712 } 713 714 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 715 { 716 struct sock *sk = (struct sock *)msk; 717 struct sk_buff *skb, *tail; 718 bool moved = false; 719 struct rb_node *p; 720 u64 end_seq; 721 722 p = rb_first(&msk->out_of_order_queue); 723 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 724 while (p) { 725 skb = rb_to_skb(p); 726 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 727 break; 728 729 p = rb_next(p); 730 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 731 732 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 733 msk->ack_seq))) { 734 mptcp_drop(sk, skb); 735 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 736 continue; 737 } 738 739 end_seq = MPTCP_SKB_CB(skb)->end_seq; 740 tail = skb_peek_tail(&sk->sk_receive_queue); 741 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 742 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 743 744 /* skip overlapping data, if any */ 745 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 746 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 747 delta); 748 MPTCP_SKB_CB(skb)->offset += delta; 749 MPTCP_SKB_CB(skb)->map_seq += delta; 750 __skb_queue_tail(&sk->sk_receive_queue, skb); 751 } 752 msk->bytes_received += end_seq - msk->ack_seq; 753 msk->ack_seq = end_seq; 754 moved = true; 755 } 756 return moved; 757 } 758 759 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 760 { 761 int err = sock_error(ssk); 762 int ssk_state; 763 764 if (!err) 765 return false; 766 767 /* only propagate errors on fallen-back sockets or 768 * on MPC connect 769 */ 770 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 771 return false; 772 773 /* We need to propagate only transition to CLOSE state. 774 * Orphaned socket will see such state change via 775 * subflow_sched_work_if_closed() and that path will properly 776 * destroy the msk as needed. 777 */ 778 ssk_state = inet_sk_state_load(ssk); 779 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 780 mptcp_set_state(sk, ssk_state); 781 WRITE_ONCE(sk->sk_err, -err); 782 783 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 784 smp_wmb(); 785 sk_error_report(sk); 786 return true; 787 } 788 789 void __mptcp_error_report(struct sock *sk) 790 { 791 struct mptcp_subflow_context *subflow; 792 struct mptcp_sock *msk = mptcp_sk(sk); 793 794 mptcp_for_each_subflow(msk, subflow) 795 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 796 break; 797 } 798 799 /* In most cases we will be able to lock the mptcp socket. If its already 800 * owned, we need to defer to the work queue to avoid ABBA deadlock. 801 */ 802 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 803 { 804 struct sock *sk = (struct sock *)msk; 805 unsigned int moved = 0; 806 807 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 808 __mptcp_ofo_queue(msk); 809 if (unlikely(ssk->sk_err)) { 810 if (!sock_owned_by_user(sk)) 811 __mptcp_error_report(sk); 812 else 813 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 814 } 815 816 /* If the moves have caught up with the DATA_FIN sequence number 817 * it's time to ack the DATA_FIN and change socket state, but 818 * this is not a good place to change state. Let the workqueue 819 * do it. 820 */ 821 if (mptcp_pending_data_fin(sk, NULL)) 822 mptcp_schedule_work(sk); 823 return moved > 0; 824 } 825 826 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 827 { 828 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 829 struct mptcp_sock *msk = mptcp_sk(sk); 830 int sk_rbuf, ssk_rbuf; 831 832 /* The peer can send data while we are shutting down this 833 * subflow at msk destruction time, but we must avoid enqueuing 834 * more data to the msk receive queue 835 */ 836 if (unlikely(subflow->disposable)) 837 return; 838 839 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 840 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 841 if (unlikely(ssk_rbuf > sk_rbuf)) 842 sk_rbuf = ssk_rbuf; 843 844 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 845 if (__mptcp_rmem(sk) > sk_rbuf) { 846 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 847 return; 848 } 849 850 /* Wake-up the reader only for in-sequence data */ 851 mptcp_data_lock(sk); 852 if (move_skbs_to_msk(msk, ssk)) 853 sk->sk_data_ready(sk); 854 855 mptcp_data_unlock(sk); 856 } 857 858 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 859 { 860 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 861 WRITE_ONCE(msk->allow_infinite_fallback, false); 862 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 863 } 864 865 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 866 { 867 struct sock *sk = (struct sock *)msk; 868 869 if (sk->sk_state != TCP_ESTABLISHED) 870 return false; 871 872 /* attach to msk socket only after we are sure we will deal with it 873 * at close time 874 */ 875 if (sk->sk_socket && !ssk->sk_socket) 876 mptcp_sock_graft(ssk, sk->sk_socket); 877 878 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 879 mptcp_sockopt_sync_locked(msk, ssk); 880 mptcp_subflow_joined(msk, ssk); 881 mptcp_stop_tout_timer(sk); 882 __mptcp_propagate_sndbuf(sk, ssk); 883 return true; 884 } 885 886 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 887 { 888 struct mptcp_subflow_context *tmp, *subflow; 889 struct mptcp_sock *msk = mptcp_sk(sk); 890 891 list_for_each_entry_safe(subflow, tmp, join_list, node) { 892 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 893 bool slow = lock_sock_fast(ssk); 894 895 list_move_tail(&subflow->node, &msk->conn_list); 896 if (!__mptcp_finish_join(msk, ssk)) 897 mptcp_subflow_reset(ssk); 898 unlock_sock_fast(ssk, slow); 899 } 900 } 901 902 static bool mptcp_rtx_timer_pending(struct sock *sk) 903 { 904 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 905 } 906 907 static void mptcp_reset_rtx_timer(struct sock *sk) 908 { 909 struct inet_connection_sock *icsk = inet_csk(sk); 910 unsigned long tout; 911 912 /* prevent rescheduling on close */ 913 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 914 return; 915 916 tout = mptcp_sk(sk)->timer_ival; 917 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 918 } 919 920 bool mptcp_schedule_work(struct sock *sk) 921 { 922 if (inet_sk_state_load(sk) != TCP_CLOSE && 923 schedule_work(&mptcp_sk(sk)->work)) { 924 /* each subflow already holds a reference to the sk, and the 925 * workqueue is invoked by a subflow, so sk can't go away here. 926 */ 927 sock_hold(sk); 928 return true; 929 } 930 return false; 931 } 932 933 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 934 { 935 struct mptcp_subflow_context *subflow; 936 937 msk_owned_by_me(msk); 938 939 mptcp_for_each_subflow(msk, subflow) { 940 if (READ_ONCE(subflow->data_avail)) 941 return mptcp_subflow_tcp_sock(subflow); 942 } 943 944 return NULL; 945 } 946 947 static bool mptcp_skb_can_collapse_to(u64 write_seq, 948 const struct sk_buff *skb, 949 const struct mptcp_ext *mpext) 950 { 951 if (!tcp_skb_can_collapse_to(skb)) 952 return false; 953 954 /* can collapse only if MPTCP level sequence is in order and this 955 * mapping has not been xmitted yet 956 */ 957 return mpext && mpext->data_seq + mpext->data_len == write_seq && 958 !mpext->frozen; 959 } 960 961 /* we can append data to the given data frag if: 962 * - there is space available in the backing page_frag 963 * - the data frag tail matches the current page_frag free offset 964 * - the data frag end sequence number matches the current write seq 965 */ 966 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 967 const struct page_frag *pfrag, 968 const struct mptcp_data_frag *df) 969 { 970 return df && pfrag->page == df->page && 971 pfrag->size - pfrag->offset > 0 && 972 pfrag->offset == (df->offset + df->data_len) && 973 df->data_seq + df->data_len == msk->write_seq; 974 } 975 976 static void dfrag_uncharge(struct sock *sk, int len) 977 { 978 sk_mem_uncharge(sk, len); 979 sk_wmem_queued_add(sk, -len); 980 } 981 982 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 983 { 984 int len = dfrag->data_len + dfrag->overhead; 985 986 list_del(&dfrag->list); 987 dfrag_uncharge(sk, len); 988 put_page(dfrag->page); 989 } 990 991 static void __mptcp_clean_una(struct sock *sk) 992 { 993 struct mptcp_sock *msk = mptcp_sk(sk); 994 struct mptcp_data_frag *dtmp, *dfrag; 995 u64 snd_una; 996 997 snd_una = msk->snd_una; 998 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 999 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1000 break; 1001 1002 if (unlikely(dfrag == msk->first_pending)) { 1003 /* in recovery mode can see ack after the current snd head */ 1004 if (WARN_ON_ONCE(!msk->recovery)) 1005 break; 1006 1007 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1008 } 1009 1010 dfrag_clear(sk, dfrag); 1011 } 1012 1013 dfrag = mptcp_rtx_head(sk); 1014 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1015 u64 delta = snd_una - dfrag->data_seq; 1016 1017 /* prevent wrap around in recovery mode */ 1018 if (unlikely(delta > dfrag->already_sent)) { 1019 if (WARN_ON_ONCE(!msk->recovery)) 1020 goto out; 1021 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1022 goto out; 1023 dfrag->already_sent += delta - dfrag->already_sent; 1024 } 1025 1026 dfrag->data_seq += delta; 1027 dfrag->offset += delta; 1028 dfrag->data_len -= delta; 1029 dfrag->already_sent -= delta; 1030 1031 dfrag_uncharge(sk, delta); 1032 } 1033 1034 /* all retransmitted data acked, recovery completed */ 1035 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1036 msk->recovery = false; 1037 1038 out: 1039 if (snd_una == READ_ONCE(msk->snd_nxt) && 1040 snd_una == READ_ONCE(msk->write_seq)) { 1041 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1042 mptcp_stop_rtx_timer(sk); 1043 } else { 1044 mptcp_reset_rtx_timer(sk); 1045 } 1046 } 1047 1048 static void __mptcp_clean_una_wakeup(struct sock *sk) 1049 { 1050 lockdep_assert_held_once(&sk->sk_lock.slock); 1051 1052 __mptcp_clean_una(sk); 1053 mptcp_write_space(sk); 1054 } 1055 1056 static void mptcp_clean_una_wakeup(struct sock *sk) 1057 { 1058 mptcp_data_lock(sk); 1059 __mptcp_clean_una_wakeup(sk); 1060 mptcp_data_unlock(sk); 1061 } 1062 1063 static void mptcp_enter_memory_pressure(struct sock *sk) 1064 { 1065 struct mptcp_subflow_context *subflow; 1066 struct mptcp_sock *msk = mptcp_sk(sk); 1067 bool first = true; 1068 1069 mptcp_for_each_subflow(msk, subflow) { 1070 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1071 1072 if (first) 1073 tcp_enter_memory_pressure(ssk); 1074 sk_stream_moderate_sndbuf(ssk); 1075 1076 first = false; 1077 } 1078 __mptcp_sync_sndbuf(sk); 1079 } 1080 1081 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1082 * data 1083 */ 1084 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1085 { 1086 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1087 pfrag, sk->sk_allocation))) 1088 return true; 1089 1090 mptcp_enter_memory_pressure(sk); 1091 return false; 1092 } 1093 1094 static struct mptcp_data_frag * 1095 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1096 int orig_offset) 1097 { 1098 int offset = ALIGN(orig_offset, sizeof(long)); 1099 struct mptcp_data_frag *dfrag; 1100 1101 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1102 dfrag->data_len = 0; 1103 dfrag->data_seq = msk->write_seq; 1104 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1105 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1106 dfrag->already_sent = 0; 1107 dfrag->page = pfrag->page; 1108 1109 return dfrag; 1110 } 1111 1112 struct mptcp_sendmsg_info { 1113 int mss_now; 1114 int size_goal; 1115 u16 limit; 1116 u16 sent; 1117 unsigned int flags; 1118 bool data_lock_held; 1119 }; 1120 1121 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1122 u64 data_seq, int avail_size) 1123 { 1124 u64 window_end = mptcp_wnd_end(msk); 1125 u64 mptcp_snd_wnd; 1126 1127 if (__mptcp_check_fallback(msk)) 1128 return avail_size; 1129 1130 mptcp_snd_wnd = window_end - data_seq; 1131 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1132 1133 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1134 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1135 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1136 } 1137 1138 return avail_size; 1139 } 1140 1141 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1142 { 1143 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1144 1145 if (!mpext) 1146 return false; 1147 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1148 return true; 1149 } 1150 1151 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1152 { 1153 struct sk_buff *skb; 1154 1155 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1156 if (likely(skb)) { 1157 if (likely(__mptcp_add_ext(skb, gfp))) { 1158 skb_reserve(skb, MAX_TCP_HEADER); 1159 skb->ip_summed = CHECKSUM_PARTIAL; 1160 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1161 return skb; 1162 } 1163 __kfree_skb(skb); 1164 } else { 1165 mptcp_enter_memory_pressure(sk); 1166 } 1167 return NULL; 1168 } 1169 1170 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1171 { 1172 struct sk_buff *skb; 1173 1174 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1175 if (!skb) 1176 return NULL; 1177 1178 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1179 tcp_skb_entail(ssk, skb); 1180 return skb; 1181 } 1182 tcp_skb_tsorted_anchor_cleanup(skb); 1183 kfree_skb(skb); 1184 return NULL; 1185 } 1186 1187 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1188 { 1189 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1190 1191 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1192 } 1193 1194 /* note: this always recompute the csum on the whole skb, even 1195 * if we just appended a single frag. More status info needed 1196 */ 1197 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1198 { 1199 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1200 __wsum csum = ~csum_unfold(mpext->csum); 1201 int offset = skb->len - added; 1202 1203 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1204 } 1205 1206 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1207 struct sock *ssk, 1208 struct mptcp_ext *mpext) 1209 { 1210 if (!mpext) 1211 return; 1212 1213 mpext->infinite_map = 1; 1214 mpext->data_len = 0; 1215 1216 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1217 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1218 pr_fallback(msk); 1219 mptcp_do_fallback(ssk); 1220 } 1221 1222 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1223 1224 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1225 struct mptcp_data_frag *dfrag, 1226 struct mptcp_sendmsg_info *info) 1227 { 1228 u64 data_seq = dfrag->data_seq + info->sent; 1229 int offset = dfrag->offset + info->sent; 1230 struct mptcp_sock *msk = mptcp_sk(sk); 1231 bool zero_window_probe = false; 1232 struct mptcp_ext *mpext = NULL; 1233 bool can_coalesce = false; 1234 bool reuse_skb = true; 1235 struct sk_buff *skb; 1236 size_t copy; 1237 int i; 1238 1239 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1240 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1241 1242 if (WARN_ON_ONCE(info->sent > info->limit || 1243 info->limit > dfrag->data_len)) 1244 return 0; 1245 1246 if (unlikely(!__tcp_can_send(ssk))) 1247 return -EAGAIN; 1248 1249 /* compute send limit */ 1250 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1251 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1252 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1253 copy = info->size_goal; 1254 1255 skb = tcp_write_queue_tail(ssk); 1256 if (skb && copy > skb->len) { 1257 /* Limit the write to the size available in the 1258 * current skb, if any, so that we create at most a new skb. 1259 * Explicitly tells TCP internals to avoid collapsing on later 1260 * queue management operation, to avoid breaking the ext <-> 1261 * SSN association set here 1262 */ 1263 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1264 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1265 TCP_SKB_CB(skb)->eor = 1; 1266 tcp_mark_push(tcp_sk(ssk), skb); 1267 goto alloc_skb; 1268 } 1269 1270 i = skb_shinfo(skb)->nr_frags; 1271 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1272 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1273 tcp_mark_push(tcp_sk(ssk), skb); 1274 goto alloc_skb; 1275 } 1276 1277 copy -= skb->len; 1278 } else { 1279 alloc_skb: 1280 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1281 if (!skb) 1282 return -ENOMEM; 1283 1284 i = skb_shinfo(skb)->nr_frags; 1285 reuse_skb = false; 1286 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1287 } 1288 1289 /* Zero window and all data acked? Probe. */ 1290 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1291 if (copy == 0) { 1292 u64 snd_una = READ_ONCE(msk->snd_una); 1293 1294 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) { 1295 tcp_remove_empty_skb(ssk); 1296 return 0; 1297 } 1298 1299 zero_window_probe = true; 1300 data_seq = snd_una - 1; 1301 copy = 1; 1302 } 1303 1304 copy = min_t(size_t, copy, info->limit - info->sent); 1305 if (!sk_wmem_schedule(ssk, copy)) { 1306 tcp_remove_empty_skb(ssk); 1307 return -ENOMEM; 1308 } 1309 1310 if (can_coalesce) { 1311 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1312 } else { 1313 get_page(dfrag->page); 1314 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1315 } 1316 1317 skb->len += copy; 1318 skb->data_len += copy; 1319 skb->truesize += copy; 1320 sk_wmem_queued_add(ssk, copy); 1321 sk_mem_charge(ssk, copy); 1322 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1323 TCP_SKB_CB(skb)->end_seq += copy; 1324 tcp_skb_pcount_set(skb, 0); 1325 1326 /* on skb reuse we just need to update the DSS len */ 1327 if (reuse_skb) { 1328 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1329 mpext->data_len += copy; 1330 goto out; 1331 } 1332 1333 memset(mpext, 0, sizeof(*mpext)); 1334 mpext->data_seq = data_seq; 1335 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1336 mpext->data_len = copy; 1337 mpext->use_map = 1; 1338 mpext->dsn64 = 1; 1339 1340 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1341 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1342 mpext->dsn64); 1343 1344 if (zero_window_probe) { 1345 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1346 mpext->frozen = 1; 1347 if (READ_ONCE(msk->csum_enabled)) 1348 mptcp_update_data_checksum(skb, copy); 1349 tcp_push_pending_frames(ssk); 1350 return 0; 1351 } 1352 out: 1353 if (READ_ONCE(msk->csum_enabled)) 1354 mptcp_update_data_checksum(skb, copy); 1355 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1356 mptcp_update_infinite_map(msk, ssk, mpext); 1357 trace_mptcp_sendmsg_frag(mpext); 1358 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1359 return copy; 1360 } 1361 1362 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1363 sizeof(struct tcphdr) - \ 1364 MAX_TCP_OPTION_SPACE - \ 1365 sizeof(struct ipv6hdr) - \ 1366 sizeof(struct frag_hdr)) 1367 1368 struct subflow_send_info { 1369 struct sock *ssk; 1370 u64 linger_time; 1371 }; 1372 1373 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1374 { 1375 if (!subflow->stale) 1376 return; 1377 1378 subflow->stale = 0; 1379 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1380 } 1381 1382 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1383 { 1384 if (unlikely(subflow->stale)) { 1385 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1386 1387 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1388 return false; 1389 1390 mptcp_subflow_set_active(subflow); 1391 } 1392 return __mptcp_subflow_active(subflow); 1393 } 1394 1395 #define SSK_MODE_ACTIVE 0 1396 #define SSK_MODE_BACKUP 1 1397 #define SSK_MODE_MAX 2 1398 1399 /* implement the mptcp packet scheduler; 1400 * returns the subflow that will transmit the next DSS 1401 * additionally updates the rtx timeout 1402 */ 1403 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1404 { 1405 struct subflow_send_info send_info[SSK_MODE_MAX]; 1406 struct mptcp_subflow_context *subflow; 1407 struct sock *sk = (struct sock *)msk; 1408 u32 pace, burst, wmem; 1409 int i, nr_active = 0; 1410 struct sock *ssk; 1411 u64 linger_time; 1412 long tout = 0; 1413 1414 /* pick the subflow with the lower wmem/wspace ratio */ 1415 for (i = 0; i < SSK_MODE_MAX; ++i) { 1416 send_info[i].ssk = NULL; 1417 send_info[i].linger_time = -1; 1418 } 1419 1420 mptcp_for_each_subflow(msk, subflow) { 1421 trace_mptcp_subflow_get_send(subflow); 1422 ssk = mptcp_subflow_tcp_sock(subflow); 1423 if (!mptcp_subflow_active(subflow)) 1424 continue; 1425 1426 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1427 nr_active += !subflow->backup; 1428 pace = subflow->avg_pacing_rate; 1429 if (unlikely(!pace)) { 1430 /* init pacing rate from socket */ 1431 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1432 pace = subflow->avg_pacing_rate; 1433 if (!pace) 1434 continue; 1435 } 1436 1437 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1438 if (linger_time < send_info[subflow->backup].linger_time) { 1439 send_info[subflow->backup].ssk = ssk; 1440 send_info[subflow->backup].linger_time = linger_time; 1441 } 1442 } 1443 __mptcp_set_timeout(sk, tout); 1444 1445 /* pick the best backup if no other subflow is active */ 1446 if (!nr_active) 1447 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1448 1449 /* According to the blest algorithm, to avoid HoL blocking for the 1450 * faster flow, we need to: 1451 * - estimate the faster flow linger time 1452 * - use the above to estimate the amount of byte transferred 1453 * by the faster flow 1454 * - check that the amount of queued data is greter than the above, 1455 * otherwise do not use the picked, slower, subflow 1456 * We select the subflow with the shorter estimated time to flush 1457 * the queued mem, which basically ensure the above. We just need 1458 * to check that subflow has a non empty cwin. 1459 */ 1460 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1461 if (!ssk || !sk_stream_memory_free(ssk)) 1462 return NULL; 1463 1464 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1465 wmem = READ_ONCE(ssk->sk_wmem_queued); 1466 if (!burst) 1467 return ssk; 1468 1469 subflow = mptcp_subflow_ctx(ssk); 1470 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1471 READ_ONCE(ssk->sk_pacing_rate) * burst, 1472 burst + wmem); 1473 msk->snd_burst = burst; 1474 return ssk; 1475 } 1476 1477 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1478 { 1479 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1480 release_sock(ssk); 1481 } 1482 1483 static void mptcp_update_post_push(struct mptcp_sock *msk, 1484 struct mptcp_data_frag *dfrag, 1485 u32 sent) 1486 { 1487 u64 snd_nxt_new = dfrag->data_seq; 1488 1489 dfrag->already_sent += sent; 1490 1491 msk->snd_burst -= sent; 1492 1493 snd_nxt_new += dfrag->already_sent; 1494 1495 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1496 * is recovering after a failover. In that event, this re-sends 1497 * old segments. 1498 * 1499 * Thus compute snd_nxt_new candidate based on 1500 * the dfrag->data_seq that was sent and the data 1501 * that has been handed to the subflow for transmission 1502 * and skip update in case it was old dfrag. 1503 */ 1504 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1505 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1506 msk->snd_nxt = snd_nxt_new; 1507 } 1508 } 1509 1510 void mptcp_check_and_set_pending(struct sock *sk) 1511 { 1512 if (mptcp_send_head(sk)) { 1513 mptcp_data_lock(sk); 1514 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1515 mptcp_data_unlock(sk); 1516 } 1517 } 1518 1519 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1520 struct mptcp_sendmsg_info *info) 1521 { 1522 struct mptcp_sock *msk = mptcp_sk(sk); 1523 struct mptcp_data_frag *dfrag; 1524 int len, copied = 0, err = 0; 1525 1526 while ((dfrag = mptcp_send_head(sk))) { 1527 info->sent = dfrag->already_sent; 1528 info->limit = dfrag->data_len; 1529 len = dfrag->data_len - dfrag->already_sent; 1530 while (len > 0) { 1531 int ret = 0; 1532 1533 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1534 if (ret <= 0) { 1535 err = copied ? : ret; 1536 goto out; 1537 } 1538 1539 info->sent += ret; 1540 copied += ret; 1541 len -= ret; 1542 1543 mptcp_update_post_push(msk, dfrag, ret); 1544 } 1545 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1546 1547 if (msk->snd_burst <= 0 || 1548 !sk_stream_memory_free(ssk) || 1549 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1550 err = copied; 1551 goto out; 1552 } 1553 mptcp_set_timeout(sk); 1554 } 1555 err = copied; 1556 1557 out: 1558 return err; 1559 } 1560 1561 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1562 { 1563 struct sock *prev_ssk = NULL, *ssk = NULL; 1564 struct mptcp_sock *msk = mptcp_sk(sk); 1565 struct mptcp_sendmsg_info info = { 1566 .flags = flags, 1567 }; 1568 bool do_check_data_fin = false; 1569 int push_count = 1; 1570 1571 while (mptcp_send_head(sk) && (push_count > 0)) { 1572 struct mptcp_subflow_context *subflow; 1573 int ret = 0; 1574 1575 if (mptcp_sched_get_send(msk)) 1576 break; 1577 1578 push_count = 0; 1579 1580 mptcp_for_each_subflow(msk, subflow) { 1581 if (READ_ONCE(subflow->scheduled)) { 1582 mptcp_subflow_set_scheduled(subflow, false); 1583 1584 prev_ssk = ssk; 1585 ssk = mptcp_subflow_tcp_sock(subflow); 1586 if (ssk != prev_ssk) { 1587 /* First check. If the ssk has changed since 1588 * the last round, release prev_ssk 1589 */ 1590 if (prev_ssk) 1591 mptcp_push_release(prev_ssk, &info); 1592 1593 /* Need to lock the new subflow only if different 1594 * from the previous one, otherwise we are still 1595 * helding the relevant lock 1596 */ 1597 lock_sock(ssk); 1598 } 1599 1600 push_count++; 1601 1602 ret = __subflow_push_pending(sk, ssk, &info); 1603 if (ret <= 0) { 1604 if (ret != -EAGAIN || 1605 (1 << ssk->sk_state) & 1606 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1607 push_count--; 1608 continue; 1609 } 1610 do_check_data_fin = true; 1611 } 1612 } 1613 } 1614 1615 /* at this point we held the socket lock for the last subflow we used */ 1616 if (ssk) 1617 mptcp_push_release(ssk, &info); 1618 1619 /* ensure the rtx timer is running */ 1620 if (!mptcp_rtx_timer_pending(sk)) 1621 mptcp_reset_rtx_timer(sk); 1622 if (do_check_data_fin) 1623 mptcp_check_send_data_fin(sk); 1624 } 1625 1626 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1627 { 1628 struct mptcp_sock *msk = mptcp_sk(sk); 1629 struct mptcp_sendmsg_info info = { 1630 .data_lock_held = true, 1631 }; 1632 bool keep_pushing = true; 1633 struct sock *xmit_ssk; 1634 int copied = 0; 1635 1636 info.flags = 0; 1637 while (mptcp_send_head(sk) && keep_pushing) { 1638 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1639 int ret = 0; 1640 1641 /* check for a different subflow usage only after 1642 * spooling the first chunk of data 1643 */ 1644 if (first) { 1645 mptcp_subflow_set_scheduled(subflow, false); 1646 ret = __subflow_push_pending(sk, ssk, &info); 1647 first = false; 1648 if (ret <= 0) 1649 break; 1650 copied += ret; 1651 continue; 1652 } 1653 1654 if (mptcp_sched_get_send(msk)) 1655 goto out; 1656 1657 if (READ_ONCE(subflow->scheduled)) { 1658 mptcp_subflow_set_scheduled(subflow, false); 1659 ret = __subflow_push_pending(sk, ssk, &info); 1660 if (ret <= 0) 1661 keep_pushing = false; 1662 copied += ret; 1663 } 1664 1665 mptcp_for_each_subflow(msk, subflow) { 1666 if (READ_ONCE(subflow->scheduled)) { 1667 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1668 if (xmit_ssk != ssk) { 1669 mptcp_subflow_delegate(subflow, 1670 MPTCP_DELEGATE_SEND); 1671 keep_pushing = false; 1672 } 1673 } 1674 } 1675 } 1676 1677 out: 1678 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1679 * not going to flush it via release_sock() 1680 */ 1681 if (copied) { 1682 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1683 info.size_goal); 1684 if (!mptcp_rtx_timer_pending(sk)) 1685 mptcp_reset_rtx_timer(sk); 1686 1687 if (msk->snd_data_fin_enable && 1688 msk->snd_nxt + 1 == msk->write_seq) 1689 mptcp_schedule_work(sk); 1690 } 1691 } 1692 1693 static void mptcp_set_nospace(struct sock *sk) 1694 { 1695 /* enable autotune */ 1696 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1697 1698 /* will be cleared on avail space */ 1699 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1700 } 1701 1702 static int mptcp_disconnect(struct sock *sk, int flags); 1703 1704 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1705 size_t len, int *copied_syn) 1706 { 1707 unsigned int saved_flags = msg->msg_flags; 1708 struct mptcp_sock *msk = mptcp_sk(sk); 1709 struct sock *ssk; 1710 int ret; 1711 1712 /* on flags based fastopen the mptcp is supposed to create the 1713 * first subflow right now. Otherwise we are in the defer_connect 1714 * path, and the first subflow must be already present. 1715 * Since the defer_connect flag is cleared after the first succsful 1716 * fastopen attempt, no need to check for additional subflow status. 1717 */ 1718 if (msg->msg_flags & MSG_FASTOPEN) { 1719 ssk = __mptcp_nmpc_sk(msk); 1720 if (IS_ERR(ssk)) 1721 return PTR_ERR(ssk); 1722 } 1723 if (!msk->first) 1724 return -EINVAL; 1725 1726 ssk = msk->first; 1727 1728 lock_sock(ssk); 1729 msg->msg_flags |= MSG_DONTWAIT; 1730 msk->fastopening = 1; 1731 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1732 msk->fastopening = 0; 1733 msg->msg_flags = saved_flags; 1734 release_sock(ssk); 1735 1736 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1737 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1738 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1739 msg->msg_namelen, msg->msg_flags, 1); 1740 1741 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1742 * case of any error, except timeout or signal 1743 */ 1744 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1745 *copied_syn = 0; 1746 } else if (ret && ret != -EINPROGRESS) { 1747 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1748 * __inet_stream_connect() can fail, due to looking check, 1749 * see mptcp_disconnect(). 1750 * Attempt it again outside the problematic scope. 1751 */ 1752 if (!mptcp_disconnect(sk, 0)) 1753 sk->sk_socket->state = SS_UNCONNECTED; 1754 } 1755 inet_clear_bit(DEFER_CONNECT, sk); 1756 1757 return ret; 1758 } 1759 1760 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1761 { 1762 struct mptcp_sock *msk = mptcp_sk(sk); 1763 struct page_frag *pfrag; 1764 size_t copied = 0; 1765 int ret = 0; 1766 long timeo; 1767 1768 /* silently ignore everything else */ 1769 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1770 1771 lock_sock(sk); 1772 1773 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1774 msg->msg_flags & MSG_FASTOPEN)) { 1775 int copied_syn = 0; 1776 1777 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1778 copied += copied_syn; 1779 if (ret == -EINPROGRESS && copied_syn > 0) 1780 goto out; 1781 else if (ret) 1782 goto do_error; 1783 } 1784 1785 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1786 1787 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1788 ret = sk_stream_wait_connect(sk, &timeo); 1789 if (ret) 1790 goto do_error; 1791 } 1792 1793 ret = -EPIPE; 1794 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1795 goto do_error; 1796 1797 pfrag = sk_page_frag(sk); 1798 1799 while (msg_data_left(msg)) { 1800 int total_ts, frag_truesize = 0; 1801 struct mptcp_data_frag *dfrag; 1802 bool dfrag_collapsed; 1803 size_t psize, offset; 1804 1805 /* reuse tail pfrag, if possible, or carve a new one from the 1806 * page allocator 1807 */ 1808 dfrag = mptcp_pending_tail(sk); 1809 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1810 if (!dfrag_collapsed) { 1811 if (!sk_stream_memory_free(sk)) 1812 goto wait_for_memory; 1813 1814 if (!mptcp_page_frag_refill(sk, pfrag)) 1815 goto wait_for_memory; 1816 1817 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1818 frag_truesize = dfrag->overhead; 1819 } 1820 1821 /* we do not bound vs wspace, to allow a single packet. 1822 * memory accounting will prevent execessive memory usage 1823 * anyway 1824 */ 1825 offset = dfrag->offset + dfrag->data_len; 1826 psize = pfrag->size - offset; 1827 psize = min_t(size_t, psize, msg_data_left(msg)); 1828 total_ts = psize + frag_truesize; 1829 1830 if (!sk_wmem_schedule(sk, total_ts)) 1831 goto wait_for_memory; 1832 1833 if (copy_page_from_iter(dfrag->page, offset, psize, 1834 &msg->msg_iter) != psize) { 1835 ret = -EFAULT; 1836 goto do_error; 1837 } 1838 1839 /* data successfully copied into the write queue */ 1840 sk_forward_alloc_add(sk, -total_ts); 1841 copied += psize; 1842 dfrag->data_len += psize; 1843 frag_truesize += psize; 1844 pfrag->offset += frag_truesize; 1845 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1846 1847 /* charge data on mptcp pending queue to the msk socket 1848 * Note: we charge such data both to sk and ssk 1849 */ 1850 sk_wmem_queued_add(sk, frag_truesize); 1851 if (!dfrag_collapsed) { 1852 get_page(dfrag->page); 1853 list_add_tail(&dfrag->list, &msk->rtx_queue); 1854 if (!msk->first_pending) 1855 WRITE_ONCE(msk->first_pending, dfrag); 1856 } 1857 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1858 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1859 !dfrag_collapsed); 1860 1861 continue; 1862 1863 wait_for_memory: 1864 mptcp_set_nospace(sk); 1865 __mptcp_push_pending(sk, msg->msg_flags); 1866 ret = sk_stream_wait_memory(sk, &timeo); 1867 if (ret) 1868 goto do_error; 1869 } 1870 1871 if (copied) 1872 __mptcp_push_pending(sk, msg->msg_flags); 1873 1874 out: 1875 release_sock(sk); 1876 return copied; 1877 1878 do_error: 1879 if (copied) 1880 goto out; 1881 1882 copied = sk_stream_error(sk, msg->msg_flags, ret); 1883 goto out; 1884 } 1885 1886 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1887 struct msghdr *msg, 1888 size_t len, int flags, 1889 struct scm_timestamping_internal *tss, 1890 int *cmsg_flags) 1891 { 1892 struct sk_buff *skb, *tmp; 1893 int copied = 0; 1894 1895 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1896 u32 offset = MPTCP_SKB_CB(skb)->offset; 1897 u32 data_len = skb->len - offset; 1898 u32 count = min_t(size_t, len - copied, data_len); 1899 int err; 1900 1901 if (!(flags & MSG_TRUNC)) { 1902 err = skb_copy_datagram_msg(skb, offset, msg, count); 1903 if (unlikely(err < 0)) { 1904 if (!copied) 1905 return err; 1906 break; 1907 } 1908 } 1909 1910 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1911 tcp_update_recv_tstamps(skb, tss); 1912 *cmsg_flags |= MPTCP_CMSG_TS; 1913 } 1914 1915 copied += count; 1916 1917 if (count < data_len) { 1918 if (!(flags & MSG_PEEK)) { 1919 MPTCP_SKB_CB(skb)->offset += count; 1920 MPTCP_SKB_CB(skb)->map_seq += count; 1921 } 1922 break; 1923 } 1924 1925 if (!(flags & MSG_PEEK)) { 1926 /* we will bulk release the skb memory later */ 1927 skb->destructor = NULL; 1928 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1929 __skb_unlink(skb, &msk->receive_queue); 1930 __kfree_skb(skb); 1931 } 1932 1933 if (copied >= len) 1934 break; 1935 } 1936 1937 return copied; 1938 } 1939 1940 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1941 * 1942 * Only difference: Use highest rtt estimate of the subflows in use. 1943 */ 1944 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1945 { 1946 struct mptcp_subflow_context *subflow; 1947 struct sock *sk = (struct sock *)msk; 1948 u8 scaling_ratio = U8_MAX; 1949 u32 time, advmss = 1; 1950 u64 rtt_us, mstamp; 1951 1952 msk_owned_by_me(msk); 1953 1954 if (copied <= 0) 1955 return; 1956 1957 if (!msk->rcvspace_init) 1958 mptcp_rcv_space_init(msk, msk->first); 1959 1960 msk->rcvq_space.copied += copied; 1961 1962 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1963 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1964 1965 rtt_us = msk->rcvq_space.rtt_us; 1966 if (rtt_us && time < (rtt_us >> 3)) 1967 return; 1968 1969 rtt_us = 0; 1970 mptcp_for_each_subflow(msk, subflow) { 1971 const struct tcp_sock *tp; 1972 u64 sf_rtt_us; 1973 u32 sf_advmss; 1974 1975 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1976 1977 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1978 sf_advmss = READ_ONCE(tp->advmss); 1979 1980 rtt_us = max(sf_rtt_us, rtt_us); 1981 advmss = max(sf_advmss, advmss); 1982 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 1983 } 1984 1985 msk->rcvq_space.rtt_us = rtt_us; 1986 msk->scaling_ratio = scaling_ratio; 1987 if (time < (rtt_us >> 3) || rtt_us == 0) 1988 return; 1989 1990 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1991 goto new_measure; 1992 1993 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 1994 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1995 u64 rcvwin, grow; 1996 int rcvbuf; 1997 1998 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1999 2000 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 2001 2002 do_div(grow, msk->rcvq_space.space); 2003 rcvwin += (grow << 1); 2004 2005 rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin), 2006 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 2007 2008 if (rcvbuf > sk->sk_rcvbuf) { 2009 u32 window_clamp; 2010 2011 window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf); 2012 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 2013 2014 /* Make subflows follow along. If we do not do this, we 2015 * get drops at subflow level if skbs can't be moved to 2016 * the mptcp rx queue fast enough (announced rcv_win can 2017 * exceed ssk->sk_rcvbuf). 2018 */ 2019 mptcp_for_each_subflow(msk, subflow) { 2020 struct sock *ssk; 2021 bool slow; 2022 2023 ssk = mptcp_subflow_tcp_sock(subflow); 2024 slow = lock_sock_fast(ssk); 2025 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 2026 tcp_sk(ssk)->window_clamp = window_clamp; 2027 tcp_cleanup_rbuf(ssk, 1); 2028 unlock_sock_fast(ssk, slow); 2029 } 2030 } 2031 } 2032 2033 msk->rcvq_space.space = msk->rcvq_space.copied; 2034 new_measure: 2035 msk->rcvq_space.copied = 0; 2036 msk->rcvq_space.time = mstamp; 2037 } 2038 2039 static void __mptcp_update_rmem(struct sock *sk) 2040 { 2041 struct mptcp_sock *msk = mptcp_sk(sk); 2042 2043 if (!msk->rmem_released) 2044 return; 2045 2046 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 2047 mptcp_rmem_uncharge(sk, msk->rmem_released); 2048 WRITE_ONCE(msk->rmem_released, 0); 2049 } 2050 2051 static void __mptcp_splice_receive_queue(struct sock *sk) 2052 { 2053 struct mptcp_sock *msk = mptcp_sk(sk); 2054 2055 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 2056 } 2057 2058 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 2059 { 2060 struct sock *sk = (struct sock *)msk; 2061 unsigned int moved = 0; 2062 bool ret, done; 2063 2064 do { 2065 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 2066 bool slowpath; 2067 2068 /* we can have data pending in the subflows only if the msk 2069 * receive buffer was full at subflow_data_ready() time, 2070 * that is an unlikely slow path. 2071 */ 2072 if (likely(!ssk)) 2073 break; 2074 2075 slowpath = lock_sock_fast(ssk); 2076 mptcp_data_lock(sk); 2077 __mptcp_update_rmem(sk); 2078 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 2079 mptcp_data_unlock(sk); 2080 2081 if (unlikely(ssk->sk_err)) 2082 __mptcp_error_report(sk); 2083 unlock_sock_fast(ssk, slowpath); 2084 } while (!done); 2085 2086 /* acquire the data lock only if some input data is pending */ 2087 ret = moved > 0; 2088 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 2089 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2090 mptcp_data_lock(sk); 2091 __mptcp_update_rmem(sk); 2092 ret |= __mptcp_ofo_queue(msk); 2093 __mptcp_splice_receive_queue(sk); 2094 mptcp_data_unlock(sk); 2095 } 2096 if (ret) 2097 mptcp_check_data_fin((struct sock *)msk); 2098 return !skb_queue_empty(&msk->receive_queue); 2099 } 2100 2101 static unsigned int mptcp_inq_hint(const struct sock *sk) 2102 { 2103 const struct mptcp_sock *msk = mptcp_sk(sk); 2104 const struct sk_buff *skb; 2105 2106 skb = skb_peek(&msk->receive_queue); 2107 if (skb) { 2108 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 2109 2110 if (hint_val >= INT_MAX) 2111 return INT_MAX; 2112 2113 return (unsigned int)hint_val; 2114 } 2115 2116 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2117 return 1; 2118 2119 return 0; 2120 } 2121 2122 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2123 int flags, int *addr_len) 2124 { 2125 struct mptcp_sock *msk = mptcp_sk(sk); 2126 struct scm_timestamping_internal tss; 2127 int copied = 0, cmsg_flags = 0; 2128 int target; 2129 long timeo; 2130 2131 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2132 if (unlikely(flags & MSG_ERRQUEUE)) 2133 return inet_recv_error(sk, msg, len, addr_len); 2134 2135 lock_sock(sk); 2136 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2137 copied = -ENOTCONN; 2138 goto out_err; 2139 } 2140 2141 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2142 2143 len = min_t(size_t, len, INT_MAX); 2144 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2145 2146 if (unlikely(msk->recvmsg_inq)) 2147 cmsg_flags = MPTCP_CMSG_INQ; 2148 2149 while (copied < len) { 2150 int bytes_read; 2151 2152 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2153 if (unlikely(bytes_read < 0)) { 2154 if (!copied) 2155 copied = bytes_read; 2156 goto out_err; 2157 } 2158 2159 copied += bytes_read; 2160 2161 /* be sure to advertise window change */ 2162 mptcp_cleanup_rbuf(msk); 2163 2164 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2165 continue; 2166 2167 /* only the master socket status is relevant here. The exit 2168 * conditions mirror closely tcp_recvmsg() 2169 */ 2170 if (copied >= target) 2171 break; 2172 2173 if (copied) { 2174 if (sk->sk_err || 2175 sk->sk_state == TCP_CLOSE || 2176 (sk->sk_shutdown & RCV_SHUTDOWN) || 2177 !timeo || 2178 signal_pending(current)) 2179 break; 2180 } else { 2181 if (sk->sk_err) { 2182 copied = sock_error(sk); 2183 break; 2184 } 2185 2186 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2187 /* race breaker: the shutdown could be after the 2188 * previous receive queue check 2189 */ 2190 if (__mptcp_move_skbs(msk)) 2191 continue; 2192 break; 2193 } 2194 2195 if (sk->sk_state == TCP_CLOSE) { 2196 copied = -ENOTCONN; 2197 break; 2198 } 2199 2200 if (!timeo) { 2201 copied = -EAGAIN; 2202 break; 2203 } 2204 2205 if (signal_pending(current)) { 2206 copied = sock_intr_errno(timeo); 2207 break; 2208 } 2209 } 2210 2211 pr_debug("block timeout %ld", timeo); 2212 sk_wait_data(sk, &timeo, NULL); 2213 } 2214 2215 out_err: 2216 if (cmsg_flags && copied >= 0) { 2217 if (cmsg_flags & MPTCP_CMSG_TS) 2218 tcp_recv_timestamp(msg, sk, &tss); 2219 2220 if (cmsg_flags & MPTCP_CMSG_INQ) { 2221 unsigned int inq = mptcp_inq_hint(sk); 2222 2223 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2224 } 2225 } 2226 2227 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2228 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2229 skb_queue_empty(&msk->receive_queue), copied); 2230 if (!(flags & MSG_PEEK)) 2231 mptcp_rcv_space_adjust(msk, copied); 2232 2233 release_sock(sk); 2234 return copied; 2235 } 2236 2237 static void mptcp_retransmit_timer(struct timer_list *t) 2238 { 2239 struct inet_connection_sock *icsk = from_timer(icsk, t, 2240 icsk_retransmit_timer); 2241 struct sock *sk = &icsk->icsk_inet.sk; 2242 struct mptcp_sock *msk = mptcp_sk(sk); 2243 2244 bh_lock_sock(sk); 2245 if (!sock_owned_by_user(sk)) { 2246 /* we need a process context to retransmit */ 2247 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2248 mptcp_schedule_work(sk); 2249 } else { 2250 /* delegate our work to tcp_release_cb() */ 2251 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2252 } 2253 bh_unlock_sock(sk); 2254 sock_put(sk); 2255 } 2256 2257 static void mptcp_tout_timer(struct timer_list *t) 2258 { 2259 struct sock *sk = from_timer(sk, t, sk_timer); 2260 2261 mptcp_schedule_work(sk); 2262 sock_put(sk); 2263 } 2264 2265 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2266 * level. 2267 * 2268 * A backup subflow is returned only if that is the only kind available. 2269 */ 2270 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2271 { 2272 struct sock *backup = NULL, *pick = NULL; 2273 struct mptcp_subflow_context *subflow; 2274 int min_stale_count = INT_MAX; 2275 2276 mptcp_for_each_subflow(msk, subflow) { 2277 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2278 2279 if (!__mptcp_subflow_active(subflow)) 2280 continue; 2281 2282 /* still data outstanding at TCP level? skip this */ 2283 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2284 mptcp_pm_subflow_chk_stale(msk, ssk); 2285 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2286 continue; 2287 } 2288 2289 if (subflow->backup) { 2290 if (!backup) 2291 backup = ssk; 2292 continue; 2293 } 2294 2295 if (!pick) 2296 pick = ssk; 2297 } 2298 2299 if (pick) 2300 return pick; 2301 2302 /* use backup only if there are no progresses anywhere */ 2303 return min_stale_count > 1 ? backup : NULL; 2304 } 2305 2306 bool __mptcp_retransmit_pending_data(struct sock *sk) 2307 { 2308 struct mptcp_data_frag *cur, *rtx_head; 2309 struct mptcp_sock *msk = mptcp_sk(sk); 2310 2311 if (__mptcp_check_fallback(msk)) 2312 return false; 2313 2314 /* the closing socket has some data untransmitted and/or unacked: 2315 * some data in the mptcp rtx queue has not really xmitted yet. 2316 * keep it simple and re-inject the whole mptcp level rtx queue 2317 */ 2318 mptcp_data_lock(sk); 2319 __mptcp_clean_una_wakeup(sk); 2320 rtx_head = mptcp_rtx_head(sk); 2321 if (!rtx_head) { 2322 mptcp_data_unlock(sk); 2323 return false; 2324 } 2325 2326 msk->recovery_snd_nxt = msk->snd_nxt; 2327 msk->recovery = true; 2328 mptcp_data_unlock(sk); 2329 2330 msk->first_pending = rtx_head; 2331 msk->snd_burst = 0; 2332 2333 /* be sure to clear the "sent status" on all re-injected fragments */ 2334 list_for_each_entry(cur, &msk->rtx_queue, list) { 2335 if (!cur->already_sent) 2336 break; 2337 cur->already_sent = 0; 2338 } 2339 2340 return true; 2341 } 2342 2343 /* flags for __mptcp_close_ssk() */ 2344 #define MPTCP_CF_PUSH BIT(1) 2345 #define MPTCP_CF_FASTCLOSE BIT(2) 2346 2347 /* be sure to send a reset only if the caller asked for it, also 2348 * clean completely the subflow status when the subflow reaches 2349 * TCP_CLOSE state 2350 */ 2351 static void __mptcp_subflow_disconnect(struct sock *ssk, 2352 struct mptcp_subflow_context *subflow, 2353 unsigned int flags) 2354 { 2355 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2356 (flags & MPTCP_CF_FASTCLOSE)) { 2357 /* The MPTCP code never wait on the subflow sockets, TCP-level 2358 * disconnect should never fail 2359 */ 2360 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2361 mptcp_subflow_ctx_reset(subflow); 2362 } else { 2363 tcp_shutdown(ssk, SEND_SHUTDOWN); 2364 } 2365 } 2366 2367 /* subflow sockets can be either outgoing (connect) or incoming 2368 * (accept). 2369 * 2370 * Outgoing subflows use in-kernel sockets. 2371 * Incoming subflows do not have their own 'struct socket' allocated, 2372 * so we need to use tcp_close() after detaching them from the mptcp 2373 * parent socket. 2374 */ 2375 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2376 struct mptcp_subflow_context *subflow, 2377 unsigned int flags) 2378 { 2379 struct mptcp_sock *msk = mptcp_sk(sk); 2380 bool dispose_it, need_push = false; 2381 2382 /* If the first subflow moved to a close state before accept, e.g. due 2383 * to an incoming reset or listener shutdown, the subflow socket is 2384 * already deleted by inet_child_forget() and the mptcp socket can't 2385 * survive too. 2386 */ 2387 if (msk->in_accept_queue && msk->first == ssk && 2388 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2389 /* ensure later check in mptcp_worker() will dispose the msk */ 2390 mptcp_set_close_tout(sk, tcp_jiffies32 - (TCP_TIMEWAIT_LEN + 1)); 2391 sock_set_flag(sk, SOCK_DEAD); 2392 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2393 mptcp_subflow_drop_ctx(ssk); 2394 goto out_release; 2395 } 2396 2397 dispose_it = msk->free_first || ssk != msk->first; 2398 if (dispose_it) 2399 list_del(&subflow->node); 2400 2401 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2402 2403 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2404 /* be sure to force the tcp_close path 2405 * to generate the egress reset 2406 */ 2407 ssk->sk_lingertime = 0; 2408 sock_set_flag(ssk, SOCK_LINGER); 2409 subflow->send_fastclose = 1; 2410 } 2411 2412 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2413 if (!dispose_it) { 2414 __mptcp_subflow_disconnect(ssk, subflow, flags); 2415 release_sock(ssk); 2416 2417 goto out; 2418 } 2419 2420 subflow->disposable = 1; 2421 2422 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2423 * the ssk has been already destroyed, we just need to release the 2424 * reference owned by msk; 2425 */ 2426 if (!inet_csk(ssk)->icsk_ulp_ops) { 2427 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2428 kfree_rcu(subflow, rcu); 2429 } else { 2430 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2431 __tcp_close(ssk, 0); 2432 2433 /* close acquired an extra ref */ 2434 __sock_put(ssk); 2435 } 2436 2437 out_release: 2438 __mptcp_subflow_error_report(sk, ssk); 2439 release_sock(ssk); 2440 2441 sock_put(ssk); 2442 2443 if (ssk == msk->first) 2444 WRITE_ONCE(msk->first, NULL); 2445 2446 out: 2447 __mptcp_sync_sndbuf(sk); 2448 if (need_push) 2449 __mptcp_push_pending(sk, 0); 2450 2451 /* Catch every 'all subflows closed' scenario, including peers silently 2452 * closing them, e.g. due to timeout. 2453 * For established sockets, allow an additional timeout before closing, 2454 * as the protocol can still create more subflows. 2455 */ 2456 if (list_is_singular(&msk->conn_list) && msk->first && 2457 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2458 if (sk->sk_state != TCP_ESTABLISHED || 2459 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2460 mptcp_set_state(sk, TCP_CLOSE); 2461 mptcp_close_wake_up(sk); 2462 } else { 2463 mptcp_start_tout_timer(sk); 2464 } 2465 } 2466 } 2467 2468 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2469 struct mptcp_subflow_context *subflow) 2470 { 2471 if (sk->sk_state == TCP_ESTABLISHED) 2472 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2473 2474 /* subflow aborted before reaching the fully_established status 2475 * attempt the creation of the next subflow 2476 */ 2477 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow); 2478 2479 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2480 } 2481 2482 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2483 { 2484 return 0; 2485 } 2486 2487 static void __mptcp_close_subflow(struct sock *sk) 2488 { 2489 struct mptcp_subflow_context *subflow, *tmp; 2490 struct mptcp_sock *msk = mptcp_sk(sk); 2491 2492 might_sleep(); 2493 2494 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2495 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2496 2497 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2498 continue; 2499 2500 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2501 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2502 continue; 2503 2504 mptcp_close_ssk(sk, ssk, subflow); 2505 } 2506 2507 } 2508 2509 static bool mptcp_close_tout_expired(const struct sock *sk) 2510 { 2511 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2512 sk->sk_state == TCP_CLOSE) 2513 return false; 2514 2515 return time_after32(tcp_jiffies32, 2516 inet_csk(sk)->icsk_mtup.probe_timestamp + TCP_TIMEWAIT_LEN); 2517 } 2518 2519 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2520 { 2521 struct mptcp_subflow_context *subflow, *tmp; 2522 struct sock *sk = (struct sock *)msk; 2523 2524 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2525 return; 2526 2527 mptcp_token_destroy(msk); 2528 2529 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2530 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2531 bool slow; 2532 2533 slow = lock_sock_fast(tcp_sk); 2534 if (tcp_sk->sk_state != TCP_CLOSE) { 2535 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2536 tcp_set_state(tcp_sk, TCP_CLOSE); 2537 } 2538 unlock_sock_fast(tcp_sk, slow); 2539 } 2540 2541 /* Mirror the tcp_reset() error propagation */ 2542 switch (sk->sk_state) { 2543 case TCP_SYN_SENT: 2544 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2545 break; 2546 case TCP_CLOSE_WAIT: 2547 WRITE_ONCE(sk->sk_err, EPIPE); 2548 break; 2549 case TCP_CLOSE: 2550 return; 2551 default: 2552 WRITE_ONCE(sk->sk_err, ECONNRESET); 2553 } 2554 2555 mptcp_set_state(sk, TCP_CLOSE); 2556 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2557 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2558 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2559 2560 /* the calling mptcp_worker will properly destroy the socket */ 2561 if (sock_flag(sk, SOCK_DEAD)) 2562 return; 2563 2564 sk->sk_state_change(sk); 2565 sk_error_report(sk); 2566 } 2567 2568 static void __mptcp_retrans(struct sock *sk) 2569 { 2570 struct mptcp_sock *msk = mptcp_sk(sk); 2571 struct mptcp_subflow_context *subflow; 2572 struct mptcp_sendmsg_info info = {}; 2573 struct mptcp_data_frag *dfrag; 2574 struct sock *ssk; 2575 int ret, err; 2576 u16 len = 0; 2577 2578 mptcp_clean_una_wakeup(sk); 2579 2580 /* first check ssk: need to kick "stale" logic */ 2581 err = mptcp_sched_get_retrans(msk); 2582 dfrag = mptcp_rtx_head(sk); 2583 if (!dfrag) { 2584 if (mptcp_data_fin_enabled(msk)) { 2585 struct inet_connection_sock *icsk = inet_csk(sk); 2586 2587 icsk->icsk_retransmits++; 2588 mptcp_set_datafin_timeout(sk); 2589 mptcp_send_ack(msk); 2590 2591 goto reset_timer; 2592 } 2593 2594 if (!mptcp_send_head(sk)) 2595 return; 2596 2597 goto reset_timer; 2598 } 2599 2600 if (err) 2601 goto reset_timer; 2602 2603 mptcp_for_each_subflow(msk, subflow) { 2604 if (READ_ONCE(subflow->scheduled)) { 2605 u16 copied = 0; 2606 2607 mptcp_subflow_set_scheduled(subflow, false); 2608 2609 ssk = mptcp_subflow_tcp_sock(subflow); 2610 2611 lock_sock(ssk); 2612 2613 /* limit retransmission to the bytes already sent on some subflows */ 2614 info.sent = 0; 2615 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2616 dfrag->already_sent; 2617 while (info.sent < info.limit) { 2618 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2619 if (ret <= 0) 2620 break; 2621 2622 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2623 copied += ret; 2624 info.sent += ret; 2625 } 2626 if (copied) { 2627 len = max(copied, len); 2628 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2629 info.size_goal); 2630 WRITE_ONCE(msk->allow_infinite_fallback, false); 2631 } 2632 2633 release_sock(ssk); 2634 } 2635 } 2636 2637 msk->bytes_retrans += len; 2638 dfrag->already_sent = max(dfrag->already_sent, len); 2639 2640 reset_timer: 2641 mptcp_check_and_set_pending(sk); 2642 2643 if (!mptcp_rtx_timer_pending(sk)) 2644 mptcp_reset_rtx_timer(sk); 2645 } 2646 2647 /* schedule the timeout timer for the relevant event: either close timeout 2648 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2649 */ 2650 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2651 { 2652 struct sock *sk = (struct sock *)msk; 2653 unsigned long timeout, close_timeout; 2654 2655 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2656 return; 2657 2658 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + 2659 TCP_TIMEWAIT_LEN; 2660 2661 /* the close timeout takes precedence on the fail one, and here at least one of 2662 * them is active 2663 */ 2664 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2665 2666 sk_reset_timer(sk, &sk->sk_timer, timeout); 2667 } 2668 2669 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2670 { 2671 struct sock *ssk = msk->first; 2672 bool slow; 2673 2674 if (!ssk) 2675 return; 2676 2677 pr_debug("MP_FAIL doesn't respond, reset the subflow"); 2678 2679 slow = lock_sock_fast(ssk); 2680 mptcp_subflow_reset(ssk); 2681 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2682 unlock_sock_fast(ssk, slow); 2683 } 2684 2685 static void mptcp_do_fastclose(struct sock *sk) 2686 { 2687 struct mptcp_subflow_context *subflow, *tmp; 2688 struct mptcp_sock *msk = mptcp_sk(sk); 2689 2690 mptcp_set_state(sk, TCP_CLOSE); 2691 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2692 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2693 subflow, MPTCP_CF_FASTCLOSE); 2694 } 2695 2696 static void mptcp_worker(struct work_struct *work) 2697 { 2698 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2699 struct sock *sk = (struct sock *)msk; 2700 unsigned long fail_tout; 2701 int state; 2702 2703 lock_sock(sk); 2704 state = sk->sk_state; 2705 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2706 goto unlock; 2707 2708 mptcp_check_fastclose(msk); 2709 2710 mptcp_pm_nl_work(msk); 2711 2712 mptcp_check_send_data_fin(sk); 2713 mptcp_check_data_fin_ack(sk); 2714 mptcp_check_data_fin(sk); 2715 2716 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2717 __mptcp_close_subflow(sk); 2718 2719 if (mptcp_close_tout_expired(sk)) { 2720 mptcp_do_fastclose(sk); 2721 mptcp_close_wake_up(sk); 2722 } 2723 2724 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2725 __mptcp_destroy_sock(sk); 2726 goto unlock; 2727 } 2728 2729 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2730 __mptcp_retrans(sk); 2731 2732 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2733 if (fail_tout && time_after(jiffies, fail_tout)) 2734 mptcp_mp_fail_no_response(msk); 2735 2736 unlock: 2737 release_sock(sk); 2738 sock_put(sk); 2739 } 2740 2741 static void __mptcp_init_sock(struct sock *sk) 2742 { 2743 struct mptcp_sock *msk = mptcp_sk(sk); 2744 2745 INIT_LIST_HEAD(&msk->conn_list); 2746 INIT_LIST_HEAD(&msk->join_list); 2747 INIT_LIST_HEAD(&msk->rtx_queue); 2748 INIT_WORK(&msk->work, mptcp_worker); 2749 __skb_queue_head_init(&msk->receive_queue); 2750 msk->out_of_order_queue = RB_ROOT; 2751 msk->first_pending = NULL; 2752 msk->rmem_fwd_alloc = 0; 2753 WRITE_ONCE(msk->rmem_released, 0); 2754 msk->timer_ival = TCP_RTO_MIN; 2755 2756 WRITE_ONCE(msk->first, NULL); 2757 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2758 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2759 WRITE_ONCE(msk->allow_infinite_fallback, true); 2760 msk->recovery = false; 2761 msk->subflow_id = 1; 2762 2763 mptcp_pm_data_init(msk); 2764 2765 /* re-use the csk retrans timer for MPTCP-level retrans */ 2766 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2767 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2768 } 2769 2770 static void mptcp_ca_reset(struct sock *sk) 2771 { 2772 struct inet_connection_sock *icsk = inet_csk(sk); 2773 2774 tcp_assign_congestion_control(sk); 2775 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2776 2777 /* no need to keep a reference to the ops, the name will suffice */ 2778 tcp_cleanup_congestion_control(sk); 2779 icsk->icsk_ca_ops = NULL; 2780 } 2781 2782 static int mptcp_init_sock(struct sock *sk) 2783 { 2784 struct net *net = sock_net(sk); 2785 int ret; 2786 2787 __mptcp_init_sock(sk); 2788 2789 if (!mptcp_is_enabled(net)) 2790 return -ENOPROTOOPT; 2791 2792 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2793 return -ENOMEM; 2794 2795 ret = mptcp_init_sched(mptcp_sk(sk), 2796 mptcp_sched_find(mptcp_get_scheduler(net))); 2797 if (ret) 2798 return ret; 2799 2800 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2801 2802 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2803 * propagate the correct value 2804 */ 2805 mptcp_ca_reset(sk); 2806 2807 sk_sockets_allocated_inc(sk); 2808 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2809 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2810 2811 return 0; 2812 } 2813 2814 static void __mptcp_clear_xmit(struct sock *sk) 2815 { 2816 struct mptcp_sock *msk = mptcp_sk(sk); 2817 struct mptcp_data_frag *dtmp, *dfrag; 2818 2819 WRITE_ONCE(msk->first_pending, NULL); 2820 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2821 dfrag_clear(sk, dfrag); 2822 } 2823 2824 void mptcp_cancel_work(struct sock *sk) 2825 { 2826 struct mptcp_sock *msk = mptcp_sk(sk); 2827 2828 if (cancel_work_sync(&msk->work)) 2829 __sock_put(sk); 2830 } 2831 2832 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2833 { 2834 lock_sock(ssk); 2835 2836 switch (ssk->sk_state) { 2837 case TCP_LISTEN: 2838 if (!(how & RCV_SHUTDOWN)) 2839 break; 2840 fallthrough; 2841 case TCP_SYN_SENT: 2842 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2843 break; 2844 default: 2845 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2846 pr_debug("Fallback"); 2847 ssk->sk_shutdown |= how; 2848 tcp_shutdown(ssk, how); 2849 2850 /* simulate the data_fin ack reception to let the state 2851 * machine move forward 2852 */ 2853 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2854 mptcp_schedule_work(sk); 2855 } else { 2856 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2857 tcp_send_ack(ssk); 2858 if (!mptcp_rtx_timer_pending(sk)) 2859 mptcp_reset_rtx_timer(sk); 2860 } 2861 break; 2862 } 2863 2864 release_sock(ssk); 2865 } 2866 2867 void mptcp_set_state(struct sock *sk, int state) 2868 { 2869 int oldstate = sk->sk_state; 2870 2871 switch (state) { 2872 case TCP_ESTABLISHED: 2873 if (oldstate != TCP_ESTABLISHED) 2874 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2875 break; 2876 case TCP_CLOSE_WAIT: 2877 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state: 2878 * MPTCP "accepted" sockets will be created later on. So no 2879 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT. 2880 */ 2881 break; 2882 default: 2883 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2884 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2885 } 2886 2887 inet_sk_state_store(sk, state); 2888 } 2889 2890 static const unsigned char new_state[16] = { 2891 /* current state: new state: action: */ 2892 [0 /* (Invalid) */] = TCP_CLOSE, 2893 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2894 [TCP_SYN_SENT] = TCP_CLOSE, 2895 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2896 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2897 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2898 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2899 [TCP_CLOSE] = TCP_CLOSE, 2900 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2901 [TCP_LAST_ACK] = TCP_LAST_ACK, 2902 [TCP_LISTEN] = TCP_CLOSE, 2903 [TCP_CLOSING] = TCP_CLOSING, 2904 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2905 }; 2906 2907 static int mptcp_close_state(struct sock *sk) 2908 { 2909 int next = (int)new_state[sk->sk_state]; 2910 int ns = next & TCP_STATE_MASK; 2911 2912 mptcp_set_state(sk, ns); 2913 2914 return next & TCP_ACTION_FIN; 2915 } 2916 2917 static void mptcp_check_send_data_fin(struct sock *sk) 2918 { 2919 struct mptcp_subflow_context *subflow; 2920 struct mptcp_sock *msk = mptcp_sk(sk); 2921 2922 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2923 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2924 msk->snd_nxt, msk->write_seq); 2925 2926 /* we still need to enqueue subflows or not really shutting down, 2927 * skip this 2928 */ 2929 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2930 mptcp_send_head(sk)) 2931 return; 2932 2933 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2934 2935 mptcp_for_each_subflow(msk, subflow) { 2936 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2937 2938 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2939 } 2940 } 2941 2942 static void __mptcp_wr_shutdown(struct sock *sk) 2943 { 2944 struct mptcp_sock *msk = mptcp_sk(sk); 2945 2946 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2947 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2948 !!mptcp_send_head(sk)); 2949 2950 /* will be ignored by fallback sockets */ 2951 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2952 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2953 2954 mptcp_check_send_data_fin(sk); 2955 } 2956 2957 static void __mptcp_destroy_sock(struct sock *sk) 2958 { 2959 struct mptcp_sock *msk = mptcp_sk(sk); 2960 2961 pr_debug("msk=%p", msk); 2962 2963 might_sleep(); 2964 2965 mptcp_stop_rtx_timer(sk); 2966 sk_stop_timer(sk, &sk->sk_timer); 2967 msk->pm.status = 0; 2968 mptcp_release_sched(msk); 2969 2970 sk->sk_prot->destroy(sk); 2971 2972 WARN_ON_ONCE(msk->rmem_fwd_alloc); 2973 WARN_ON_ONCE(msk->rmem_released); 2974 sk_stream_kill_queues(sk); 2975 xfrm_sk_free_policy(sk); 2976 2977 sock_put(sk); 2978 } 2979 2980 void __mptcp_unaccepted_force_close(struct sock *sk) 2981 { 2982 sock_set_flag(sk, SOCK_DEAD); 2983 mptcp_do_fastclose(sk); 2984 __mptcp_destroy_sock(sk); 2985 } 2986 2987 static __poll_t mptcp_check_readable(struct mptcp_sock *msk) 2988 { 2989 /* Concurrent splices from sk_receive_queue into receive_queue will 2990 * always show at least one non-empty queue when checked in this order. 2991 */ 2992 if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) && 2993 skb_queue_empty_lockless(&msk->receive_queue)) 2994 return 0; 2995 2996 return EPOLLIN | EPOLLRDNORM; 2997 } 2998 2999 static void mptcp_check_listen_stop(struct sock *sk) 3000 { 3001 struct sock *ssk; 3002 3003 if (inet_sk_state_load(sk) != TCP_LISTEN) 3004 return; 3005 3006 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3007 ssk = mptcp_sk(sk)->first; 3008 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3009 return; 3010 3011 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3012 tcp_set_state(ssk, TCP_CLOSE); 3013 mptcp_subflow_queue_clean(sk, ssk); 3014 inet_csk_listen_stop(ssk); 3015 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3016 release_sock(ssk); 3017 } 3018 3019 bool __mptcp_close(struct sock *sk, long timeout) 3020 { 3021 struct mptcp_subflow_context *subflow; 3022 struct mptcp_sock *msk = mptcp_sk(sk); 3023 bool do_cancel_work = false; 3024 int subflows_alive = 0; 3025 3026 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3027 3028 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3029 mptcp_check_listen_stop(sk); 3030 mptcp_set_state(sk, TCP_CLOSE); 3031 goto cleanup; 3032 } 3033 3034 if (mptcp_check_readable(msk) || timeout < 0) { 3035 /* If the msk has read data, or the caller explicitly ask it, 3036 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3037 */ 3038 mptcp_do_fastclose(sk); 3039 timeout = 0; 3040 } else if (mptcp_close_state(sk)) { 3041 __mptcp_wr_shutdown(sk); 3042 } 3043 3044 sk_stream_wait_close(sk, timeout); 3045 3046 cleanup: 3047 /* orphan all the subflows */ 3048 mptcp_for_each_subflow(msk, subflow) { 3049 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3050 bool slow = lock_sock_fast_nested(ssk); 3051 3052 subflows_alive += ssk->sk_state != TCP_CLOSE; 3053 3054 /* since the close timeout takes precedence on the fail one, 3055 * cancel the latter 3056 */ 3057 if (ssk == msk->first) 3058 subflow->fail_tout = 0; 3059 3060 /* detach from the parent socket, but allow data_ready to 3061 * push incoming data into the mptcp stack, to properly ack it 3062 */ 3063 ssk->sk_socket = NULL; 3064 ssk->sk_wq = NULL; 3065 unlock_sock_fast(ssk, slow); 3066 } 3067 sock_orphan(sk); 3068 3069 /* all the subflows are closed, only timeout can change the msk 3070 * state, let's not keep resources busy for no reasons 3071 */ 3072 if (subflows_alive == 0) 3073 mptcp_set_state(sk, TCP_CLOSE); 3074 3075 sock_hold(sk); 3076 pr_debug("msk=%p state=%d", sk, sk->sk_state); 3077 if (msk->token) 3078 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3079 3080 if (sk->sk_state == TCP_CLOSE) { 3081 __mptcp_destroy_sock(sk); 3082 do_cancel_work = true; 3083 } else { 3084 mptcp_start_tout_timer(sk); 3085 } 3086 3087 return do_cancel_work; 3088 } 3089 3090 static void mptcp_close(struct sock *sk, long timeout) 3091 { 3092 bool do_cancel_work; 3093 3094 lock_sock(sk); 3095 3096 do_cancel_work = __mptcp_close(sk, timeout); 3097 release_sock(sk); 3098 if (do_cancel_work) 3099 mptcp_cancel_work(sk); 3100 3101 sock_put(sk); 3102 } 3103 3104 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3105 { 3106 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3107 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3108 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3109 3110 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3111 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3112 3113 if (msk6 && ssk6) { 3114 msk6->saddr = ssk6->saddr; 3115 msk6->flow_label = ssk6->flow_label; 3116 } 3117 #endif 3118 3119 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3120 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3121 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3122 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3123 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3124 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3125 } 3126 3127 static int mptcp_disconnect(struct sock *sk, int flags) 3128 { 3129 struct mptcp_sock *msk = mptcp_sk(sk); 3130 3131 /* We are on the fastopen error path. We can't call straight into the 3132 * subflows cleanup code due to lock nesting (we are already under 3133 * msk->firstsocket lock). 3134 */ 3135 if (msk->fastopening) 3136 return -EBUSY; 3137 3138 mptcp_check_listen_stop(sk); 3139 mptcp_set_state(sk, TCP_CLOSE); 3140 3141 mptcp_stop_rtx_timer(sk); 3142 mptcp_stop_tout_timer(sk); 3143 3144 if (msk->token) 3145 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3146 3147 /* msk->subflow is still intact, the following will not free the first 3148 * subflow 3149 */ 3150 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3151 WRITE_ONCE(msk->flags, 0); 3152 msk->cb_flags = 0; 3153 msk->recovery = false; 3154 msk->can_ack = false; 3155 msk->fully_established = false; 3156 msk->rcv_data_fin = false; 3157 msk->snd_data_fin_enable = false; 3158 msk->rcv_fastclose = false; 3159 msk->use_64bit_ack = false; 3160 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3161 mptcp_pm_data_reset(msk); 3162 mptcp_ca_reset(sk); 3163 msk->bytes_acked = 0; 3164 msk->bytes_received = 0; 3165 msk->bytes_sent = 0; 3166 msk->bytes_retrans = 0; 3167 msk->rcvspace_init = 0; 3168 3169 WRITE_ONCE(sk->sk_shutdown, 0); 3170 sk_error_report(sk); 3171 return 0; 3172 } 3173 3174 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3175 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3176 { 3177 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 3178 3179 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 3180 } 3181 3182 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3183 { 3184 const struct ipv6_pinfo *np = inet6_sk(sk); 3185 struct ipv6_txoptions *opt; 3186 struct ipv6_pinfo *newnp; 3187 3188 newnp = inet6_sk(newsk); 3189 3190 rcu_read_lock(); 3191 opt = rcu_dereference(np->opt); 3192 if (opt) { 3193 opt = ipv6_dup_options(newsk, opt); 3194 if (!opt) 3195 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3196 } 3197 RCU_INIT_POINTER(newnp->opt, opt); 3198 rcu_read_unlock(); 3199 } 3200 #endif 3201 3202 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3203 { 3204 struct ip_options_rcu *inet_opt, *newopt = NULL; 3205 const struct inet_sock *inet = inet_sk(sk); 3206 struct inet_sock *newinet; 3207 3208 newinet = inet_sk(newsk); 3209 3210 rcu_read_lock(); 3211 inet_opt = rcu_dereference(inet->inet_opt); 3212 if (inet_opt) { 3213 newopt = sock_kmalloc(newsk, sizeof(*inet_opt) + 3214 inet_opt->opt.optlen, GFP_ATOMIC); 3215 if (newopt) 3216 memcpy(newopt, inet_opt, sizeof(*inet_opt) + 3217 inet_opt->opt.optlen); 3218 else 3219 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3220 } 3221 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3222 rcu_read_unlock(); 3223 } 3224 3225 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3226 const struct mptcp_options_received *mp_opt, 3227 struct sock *ssk, 3228 struct request_sock *req) 3229 { 3230 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3231 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3232 struct mptcp_subflow_context *subflow; 3233 struct mptcp_sock *msk; 3234 3235 if (!nsk) 3236 return NULL; 3237 3238 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3239 if (nsk->sk_family == AF_INET6) 3240 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3241 #endif 3242 3243 __mptcp_init_sock(nsk); 3244 3245 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3246 if (nsk->sk_family == AF_INET6) 3247 mptcp_copy_ip6_options(nsk, sk); 3248 else 3249 #endif 3250 mptcp_copy_ip_options(nsk, sk); 3251 3252 msk = mptcp_sk(nsk); 3253 msk->local_key = subflow_req->local_key; 3254 msk->token = subflow_req->token; 3255 msk->in_accept_queue = 1; 3256 WRITE_ONCE(msk->fully_established, false); 3257 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3258 WRITE_ONCE(msk->csum_enabled, true); 3259 3260 msk->write_seq = subflow_req->idsn + 1; 3261 msk->snd_nxt = msk->write_seq; 3262 msk->snd_una = msk->write_seq; 3263 msk->wnd_end = msk->snd_nxt + tcp_sk(ssk)->snd_wnd; 3264 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3265 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3266 3267 /* passive msk is created after the first/MPC subflow */ 3268 msk->subflow_id = 2; 3269 3270 sock_reset_flag(nsk, SOCK_RCU_FREE); 3271 security_inet_csk_clone(nsk, req); 3272 3273 /* this can't race with mptcp_close(), as the msk is 3274 * not yet exposted to user-space 3275 */ 3276 mptcp_set_state(nsk, TCP_ESTABLISHED); 3277 3278 /* The msk maintain a ref to each subflow in the connections list */ 3279 WRITE_ONCE(msk->first, ssk); 3280 subflow = mptcp_subflow_ctx(ssk); 3281 list_add(&subflow->node, &msk->conn_list); 3282 sock_hold(ssk); 3283 3284 /* new mpc subflow takes ownership of the newly 3285 * created mptcp socket 3286 */ 3287 mptcp_token_accept(subflow_req, msk); 3288 3289 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3290 * uses the correct data 3291 */ 3292 mptcp_copy_inaddrs(nsk, ssk); 3293 __mptcp_propagate_sndbuf(nsk, ssk); 3294 3295 mptcp_rcv_space_init(msk, ssk); 3296 3297 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3298 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3299 bh_unlock_sock(nsk); 3300 3301 /* note: the newly allocated socket refcount is 2 now */ 3302 return nsk; 3303 } 3304 3305 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3306 { 3307 const struct tcp_sock *tp = tcp_sk(ssk); 3308 3309 msk->rcvspace_init = 1; 3310 msk->rcvq_space.copied = 0; 3311 msk->rcvq_space.rtt_us = 0; 3312 3313 msk->rcvq_space.time = tp->tcp_mstamp; 3314 3315 /* initial rcv_space offering made to peer */ 3316 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3317 TCP_INIT_CWND * tp->advmss); 3318 if (msk->rcvq_space.space == 0) 3319 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3320 } 3321 3322 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3323 { 3324 struct mptcp_subflow_context *subflow, *tmp; 3325 struct sock *sk = (struct sock *)msk; 3326 3327 __mptcp_clear_xmit(sk); 3328 3329 /* join list will be eventually flushed (with rst) at sock lock release time */ 3330 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3331 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3332 3333 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3334 mptcp_data_lock(sk); 3335 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3336 __skb_queue_purge(&sk->sk_receive_queue); 3337 skb_rbtree_purge(&msk->out_of_order_queue); 3338 mptcp_data_unlock(sk); 3339 3340 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3341 * inet_sock_destruct() will dispose it 3342 */ 3343 sk_forward_alloc_add(sk, msk->rmem_fwd_alloc); 3344 WRITE_ONCE(msk->rmem_fwd_alloc, 0); 3345 mptcp_token_destroy(msk); 3346 mptcp_pm_free_anno_list(msk); 3347 mptcp_free_local_addr_list(msk); 3348 } 3349 3350 static void mptcp_destroy(struct sock *sk) 3351 { 3352 struct mptcp_sock *msk = mptcp_sk(sk); 3353 3354 /* allow the following to close even the initial subflow */ 3355 msk->free_first = 1; 3356 mptcp_destroy_common(msk, 0); 3357 sk_sockets_allocated_dec(sk); 3358 } 3359 3360 void __mptcp_data_acked(struct sock *sk) 3361 { 3362 if (!sock_owned_by_user(sk)) 3363 __mptcp_clean_una(sk); 3364 else 3365 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3366 3367 if (mptcp_pending_data_fin_ack(sk)) 3368 mptcp_schedule_work(sk); 3369 } 3370 3371 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3372 { 3373 if (!mptcp_send_head(sk)) 3374 return; 3375 3376 if (!sock_owned_by_user(sk)) 3377 __mptcp_subflow_push_pending(sk, ssk, false); 3378 else 3379 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3380 } 3381 3382 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3383 BIT(MPTCP_RETRANSMIT) | \ 3384 BIT(MPTCP_FLUSH_JOIN_LIST)) 3385 3386 /* processes deferred events and flush wmem */ 3387 static void mptcp_release_cb(struct sock *sk) 3388 __must_hold(&sk->sk_lock.slock) 3389 { 3390 struct mptcp_sock *msk = mptcp_sk(sk); 3391 3392 for (;;) { 3393 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3394 struct list_head join_list; 3395 3396 if (!flags) 3397 break; 3398 3399 INIT_LIST_HEAD(&join_list); 3400 list_splice_init(&msk->join_list, &join_list); 3401 3402 /* the following actions acquire the subflow socket lock 3403 * 3404 * 1) can't be invoked in atomic scope 3405 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3406 * datapath acquires the msk socket spinlock while helding 3407 * the subflow socket lock 3408 */ 3409 msk->cb_flags &= ~flags; 3410 spin_unlock_bh(&sk->sk_lock.slock); 3411 3412 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3413 __mptcp_flush_join_list(sk, &join_list); 3414 if (flags & BIT(MPTCP_PUSH_PENDING)) 3415 __mptcp_push_pending(sk, 0); 3416 if (flags & BIT(MPTCP_RETRANSMIT)) 3417 __mptcp_retrans(sk); 3418 3419 cond_resched(); 3420 spin_lock_bh(&sk->sk_lock.slock); 3421 } 3422 3423 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3424 __mptcp_clean_una_wakeup(sk); 3425 if (unlikely(msk->cb_flags)) { 3426 /* be sure to sync the msk state before taking actions 3427 * depending on sk_state (MPTCP_ERROR_REPORT) 3428 * On sk release avoid actions depending on the first subflow 3429 */ 3430 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3431 __mptcp_sync_state(sk, msk->pending_state); 3432 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3433 __mptcp_error_report(sk); 3434 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3435 __mptcp_sync_sndbuf(sk); 3436 } 3437 3438 __mptcp_update_rmem(sk); 3439 } 3440 3441 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3442 * TCP can't schedule delack timer before the subflow is fully established. 3443 * MPTCP uses the delack timer to do 3rd ack retransmissions 3444 */ 3445 static void schedule_3rdack_retransmission(struct sock *ssk) 3446 { 3447 struct inet_connection_sock *icsk = inet_csk(ssk); 3448 struct tcp_sock *tp = tcp_sk(ssk); 3449 unsigned long timeout; 3450 3451 if (mptcp_subflow_ctx(ssk)->fully_established) 3452 return; 3453 3454 /* reschedule with a timeout above RTT, as we must look only for drop */ 3455 if (tp->srtt_us) 3456 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3457 else 3458 timeout = TCP_TIMEOUT_INIT; 3459 timeout += jiffies; 3460 3461 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3462 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3463 icsk->icsk_ack.timeout = timeout; 3464 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3465 } 3466 3467 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3468 { 3469 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3470 struct sock *sk = subflow->conn; 3471 3472 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3473 mptcp_data_lock(sk); 3474 if (!sock_owned_by_user(sk)) 3475 __mptcp_subflow_push_pending(sk, ssk, true); 3476 else 3477 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3478 mptcp_data_unlock(sk); 3479 } 3480 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3481 mptcp_data_lock(sk); 3482 if (!sock_owned_by_user(sk)) 3483 __mptcp_sync_sndbuf(sk); 3484 else 3485 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3486 mptcp_data_unlock(sk); 3487 } 3488 if (status & BIT(MPTCP_DELEGATE_ACK)) 3489 schedule_3rdack_retransmission(ssk); 3490 } 3491 3492 static int mptcp_hash(struct sock *sk) 3493 { 3494 /* should never be called, 3495 * we hash the TCP subflows not the master socket 3496 */ 3497 WARN_ON_ONCE(1); 3498 return 0; 3499 } 3500 3501 static void mptcp_unhash(struct sock *sk) 3502 { 3503 /* called from sk_common_release(), but nothing to do here */ 3504 } 3505 3506 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3507 { 3508 struct mptcp_sock *msk = mptcp_sk(sk); 3509 3510 pr_debug("msk=%p, ssk=%p", msk, msk->first); 3511 if (WARN_ON_ONCE(!msk->first)) 3512 return -EINVAL; 3513 3514 return inet_csk_get_port(msk->first, snum); 3515 } 3516 3517 void mptcp_finish_connect(struct sock *ssk) 3518 { 3519 struct mptcp_subflow_context *subflow; 3520 struct mptcp_sock *msk; 3521 struct sock *sk; 3522 3523 subflow = mptcp_subflow_ctx(ssk); 3524 sk = subflow->conn; 3525 msk = mptcp_sk(sk); 3526 3527 pr_debug("msk=%p, token=%u", sk, subflow->token); 3528 3529 subflow->map_seq = subflow->iasn; 3530 subflow->map_subflow_seq = 1; 3531 3532 /* the socket is not connected yet, no msk/subflow ops can access/race 3533 * accessing the field below 3534 */ 3535 WRITE_ONCE(msk->local_key, subflow->local_key); 3536 3537 mptcp_pm_new_connection(msk, ssk, 0); 3538 } 3539 3540 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3541 { 3542 write_lock_bh(&sk->sk_callback_lock); 3543 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3544 sk_set_socket(sk, parent); 3545 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3546 write_unlock_bh(&sk->sk_callback_lock); 3547 } 3548 3549 bool mptcp_finish_join(struct sock *ssk) 3550 { 3551 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3552 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3553 struct sock *parent = (void *)msk; 3554 bool ret = true; 3555 3556 pr_debug("msk=%p, subflow=%p", msk, subflow); 3557 3558 /* mptcp socket already closing? */ 3559 if (!mptcp_is_fully_established(parent)) { 3560 subflow->reset_reason = MPTCP_RST_EMPTCP; 3561 return false; 3562 } 3563 3564 /* active subflow, already present inside the conn_list */ 3565 if (!list_empty(&subflow->node)) { 3566 mptcp_subflow_joined(msk, ssk); 3567 mptcp_propagate_sndbuf(parent, ssk); 3568 return true; 3569 } 3570 3571 if (!mptcp_pm_allow_new_subflow(msk)) 3572 goto err_prohibited; 3573 3574 /* If we can't acquire msk socket lock here, let the release callback 3575 * handle it 3576 */ 3577 mptcp_data_lock(parent); 3578 if (!sock_owned_by_user(parent)) { 3579 ret = __mptcp_finish_join(msk, ssk); 3580 if (ret) { 3581 sock_hold(ssk); 3582 list_add_tail(&subflow->node, &msk->conn_list); 3583 } 3584 } else { 3585 sock_hold(ssk); 3586 list_add_tail(&subflow->node, &msk->join_list); 3587 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3588 } 3589 mptcp_data_unlock(parent); 3590 3591 if (!ret) { 3592 err_prohibited: 3593 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3594 return false; 3595 } 3596 3597 return true; 3598 } 3599 3600 static void mptcp_shutdown(struct sock *sk, int how) 3601 { 3602 pr_debug("sk=%p, how=%d", sk, how); 3603 3604 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3605 __mptcp_wr_shutdown(sk); 3606 } 3607 3608 static int mptcp_forward_alloc_get(const struct sock *sk) 3609 { 3610 return READ_ONCE(sk->sk_forward_alloc) + 3611 READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc); 3612 } 3613 3614 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3615 { 3616 const struct sock *sk = (void *)msk; 3617 u64 delta; 3618 3619 if (sk->sk_state == TCP_LISTEN) 3620 return -EINVAL; 3621 3622 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3623 return 0; 3624 3625 delta = msk->write_seq - v; 3626 if (__mptcp_check_fallback(msk) && msk->first) { 3627 struct tcp_sock *tp = tcp_sk(msk->first); 3628 3629 /* the first subflow is disconnected after close - see 3630 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3631 * so ignore that status, too. 3632 */ 3633 if (!((1 << msk->first->sk_state) & 3634 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3635 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3636 } 3637 if (delta > INT_MAX) 3638 delta = INT_MAX; 3639 3640 return (int)delta; 3641 } 3642 3643 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3644 { 3645 struct mptcp_sock *msk = mptcp_sk(sk); 3646 bool slow; 3647 3648 switch (cmd) { 3649 case SIOCINQ: 3650 if (sk->sk_state == TCP_LISTEN) 3651 return -EINVAL; 3652 3653 lock_sock(sk); 3654 __mptcp_move_skbs(msk); 3655 *karg = mptcp_inq_hint(sk); 3656 release_sock(sk); 3657 break; 3658 case SIOCOUTQ: 3659 slow = lock_sock_fast(sk); 3660 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3661 unlock_sock_fast(sk, slow); 3662 break; 3663 case SIOCOUTQNSD: 3664 slow = lock_sock_fast(sk); 3665 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3666 unlock_sock_fast(sk, slow); 3667 break; 3668 default: 3669 return -ENOIOCTLCMD; 3670 } 3671 3672 return 0; 3673 } 3674 3675 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3676 struct mptcp_subflow_context *subflow) 3677 { 3678 subflow->request_mptcp = 0; 3679 __mptcp_do_fallback(msk); 3680 } 3681 3682 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3683 { 3684 struct mptcp_subflow_context *subflow; 3685 struct mptcp_sock *msk = mptcp_sk(sk); 3686 int err = -EINVAL; 3687 struct sock *ssk; 3688 3689 ssk = __mptcp_nmpc_sk(msk); 3690 if (IS_ERR(ssk)) 3691 return PTR_ERR(ssk); 3692 3693 mptcp_set_state(sk, TCP_SYN_SENT); 3694 subflow = mptcp_subflow_ctx(ssk); 3695 #ifdef CONFIG_TCP_MD5SIG 3696 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3697 * TCP option space. 3698 */ 3699 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3700 mptcp_subflow_early_fallback(msk, subflow); 3701 #endif 3702 if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) { 3703 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT); 3704 mptcp_subflow_early_fallback(msk, subflow); 3705 } 3706 3707 WRITE_ONCE(msk->write_seq, subflow->idsn); 3708 WRITE_ONCE(msk->snd_nxt, subflow->idsn); 3709 WRITE_ONCE(msk->snd_una, subflow->idsn); 3710 if (likely(!__mptcp_check_fallback(msk))) 3711 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3712 3713 /* if reaching here via the fastopen/sendmsg path, the caller already 3714 * acquired the subflow socket lock, too. 3715 */ 3716 if (!msk->fastopening) 3717 lock_sock(ssk); 3718 3719 /* the following mirrors closely a very small chunk of code from 3720 * __inet_stream_connect() 3721 */ 3722 if (ssk->sk_state != TCP_CLOSE) 3723 goto out; 3724 3725 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3726 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3727 if (err) 3728 goto out; 3729 } 3730 3731 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3732 if (err < 0) 3733 goto out; 3734 3735 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3736 3737 out: 3738 if (!msk->fastopening) 3739 release_sock(ssk); 3740 3741 /* on successful connect, the msk state will be moved to established by 3742 * subflow_finish_connect() 3743 */ 3744 if (unlikely(err)) { 3745 /* avoid leaving a dangling token in an unconnected socket */ 3746 mptcp_token_destroy(msk); 3747 mptcp_set_state(sk, TCP_CLOSE); 3748 return err; 3749 } 3750 3751 mptcp_copy_inaddrs(sk, ssk); 3752 return 0; 3753 } 3754 3755 static struct proto mptcp_prot = { 3756 .name = "MPTCP", 3757 .owner = THIS_MODULE, 3758 .init = mptcp_init_sock, 3759 .connect = mptcp_connect, 3760 .disconnect = mptcp_disconnect, 3761 .close = mptcp_close, 3762 .setsockopt = mptcp_setsockopt, 3763 .getsockopt = mptcp_getsockopt, 3764 .shutdown = mptcp_shutdown, 3765 .destroy = mptcp_destroy, 3766 .sendmsg = mptcp_sendmsg, 3767 .ioctl = mptcp_ioctl, 3768 .recvmsg = mptcp_recvmsg, 3769 .release_cb = mptcp_release_cb, 3770 .hash = mptcp_hash, 3771 .unhash = mptcp_unhash, 3772 .get_port = mptcp_get_port, 3773 .forward_alloc_get = mptcp_forward_alloc_get, 3774 .sockets_allocated = &mptcp_sockets_allocated, 3775 3776 .memory_allocated = &tcp_memory_allocated, 3777 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3778 3779 .memory_pressure = &tcp_memory_pressure, 3780 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3781 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3782 .sysctl_mem = sysctl_tcp_mem, 3783 .obj_size = sizeof(struct mptcp_sock), 3784 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3785 .no_autobind = true, 3786 }; 3787 3788 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3789 { 3790 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3791 struct sock *ssk, *sk = sock->sk; 3792 int err = -EINVAL; 3793 3794 lock_sock(sk); 3795 ssk = __mptcp_nmpc_sk(msk); 3796 if (IS_ERR(ssk)) { 3797 err = PTR_ERR(ssk); 3798 goto unlock; 3799 } 3800 3801 if (sk->sk_family == AF_INET) 3802 err = inet_bind_sk(ssk, uaddr, addr_len); 3803 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3804 else if (sk->sk_family == AF_INET6) 3805 err = inet6_bind_sk(ssk, uaddr, addr_len); 3806 #endif 3807 if (!err) 3808 mptcp_copy_inaddrs(sk, ssk); 3809 3810 unlock: 3811 release_sock(sk); 3812 return err; 3813 } 3814 3815 static int mptcp_listen(struct socket *sock, int backlog) 3816 { 3817 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3818 struct sock *sk = sock->sk; 3819 struct sock *ssk; 3820 int err; 3821 3822 pr_debug("msk=%p", msk); 3823 3824 lock_sock(sk); 3825 3826 err = -EINVAL; 3827 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3828 goto unlock; 3829 3830 ssk = __mptcp_nmpc_sk(msk); 3831 if (IS_ERR(ssk)) { 3832 err = PTR_ERR(ssk); 3833 goto unlock; 3834 } 3835 3836 mptcp_set_state(sk, TCP_LISTEN); 3837 sock_set_flag(sk, SOCK_RCU_FREE); 3838 3839 lock_sock(ssk); 3840 err = __inet_listen_sk(ssk, backlog); 3841 release_sock(ssk); 3842 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3843 3844 if (!err) { 3845 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3846 mptcp_copy_inaddrs(sk, ssk); 3847 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3848 } 3849 3850 unlock: 3851 release_sock(sk); 3852 return err; 3853 } 3854 3855 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3856 int flags, bool kern) 3857 { 3858 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3859 struct sock *ssk, *newsk; 3860 int err; 3861 3862 pr_debug("msk=%p", msk); 3863 3864 /* Buggy applications can call accept on socket states other then LISTEN 3865 * but no need to allocate the first subflow just to error out. 3866 */ 3867 ssk = READ_ONCE(msk->first); 3868 if (!ssk) 3869 return -EINVAL; 3870 3871 pr_debug("ssk=%p, listener=%p", ssk, mptcp_subflow_ctx(ssk)); 3872 newsk = inet_csk_accept(ssk, flags, &err, kern); 3873 if (!newsk) 3874 return err; 3875 3876 pr_debug("newsk=%p, subflow is mptcp=%d", newsk, sk_is_mptcp(newsk)); 3877 if (sk_is_mptcp(newsk)) { 3878 struct mptcp_subflow_context *subflow; 3879 struct sock *new_mptcp_sock; 3880 3881 subflow = mptcp_subflow_ctx(newsk); 3882 new_mptcp_sock = subflow->conn; 3883 3884 /* is_mptcp should be false if subflow->conn is missing, see 3885 * subflow_syn_recv_sock() 3886 */ 3887 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3888 tcp_sk(newsk)->is_mptcp = 0; 3889 goto tcpfallback; 3890 } 3891 3892 newsk = new_mptcp_sock; 3893 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3894 3895 newsk->sk_kern_sock = kern; 3896 lock_sock(newsk); 3897 __inet_accept(sock, newsock, newsk); 3898 3899 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3900 msk = mptcp_sk(newsk); 3901 msk->in_accept_queue = 0; 3902 3903 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3904 * This is needed so NOSPACE flag can be set from tcp stack. 3905 */ 3906 mptcp_for_each_subflow(msk, subflow) { 3907 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3908 3909 if (!ssk->sk_socket) 3910 mptcp_sock_graft(ssk, newsock); 3911 } 3912 3913 /* Do late cleanup for the first subflow as necessary. Also 3914 * deal with bad peers not doing a complete shutdown. 3915 */ 3916 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3917 __mptcp_close_ssk(newsk, msk->first, 3918 mptcp_subflow_ctx(msk->first), 0); 3919 if (unlikely(list_is_singular(&msk->conn_list))) 3920 mptcp_set_state(newsk, TCP_CLOSE); 3921 } 3922 } else { 3923 tcpfallback: 3924 newsk->sk_kern_sock = kern; 3925 lock_sock(newsk); 3926 __inet_accept(sock, newsock, newsk); 3927 /* we are being invoked after accepting a non-mp-capable 3928 * flow: sk is a tcp_sk, not an mptcp one. 3929 * 3930 * Hand the socket over to tcp so all further socket ops 3931 * bypass mptcp. 3932 */ 3933 WRITE_ONCE(newsock->sk->sk_socket->ops, 3934 mptcp_fallback_tcp_ops(newsock->sk)); 3935 } 3936 release_sock(newsk); 3937 3938 return 0; 3939 } 3940 3941 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3942 { 3943 struct sock *sk = (struct sock *)msk; 3944 3945 if (sk_stream_is_writeable(sk)) 3946 return EPOLLOUT | EPOLLWRNORM; 3947 3948 mptcp_set_nospace(sk); 3949 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3950 if (sk_stream_is_writeable(sk)) 3951 return EPOLLOUT | EPOLLWRNORM; 3952 3953 return 0; 3954 } 3955 3956 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3957 struct poll_table_struct *wait) 3958 { 3959 struct sock *sk = sock->sk; 3960 struct mptcp_sock *msk; 3961 __poll_t mask = 0; 3962 u8 shutdown; 3963 int state; 3964 3965 msk = mptcp_sk(sk); 3966 sock_poll_wait(file, sock, wait); 3967 3968 state = inet_sk_state_load(sk); 3969 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3970 if (state == TCP_LISTEN) { 3971 struct sock *ssk = READ_ONCE(msk->first); 3972 3973 if (WARN_ON_ONCE(!ssk)) 3974 return 0; 3975 3976 return inet_csk_listen_poll(ssk); 3977 } 3978 3979 shutdown = READ_ONCE(sk->sk_shutdown); 3980 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3981 mask |= EPOLLHUP; 3982 if (shutdown & RCV_SHUTDOWN) 3983 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3984 3985 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3986 mask |= mptcp_check_readable(msk); 3987 if (shutdown & SEND_SHUTDOWN) 3988 mask |= EPOLLOUT | EPOLLWRNORM; 3989 else 3990 mask |= mptcp_check_writeable(msk); 3991 } else if (state == TCP_SYN_SENT && 3992 inet_test_bit(DEFER_CONNECT, sk)) { 3993 /* cf tcp_poll() note about TFO */ 3994 mask |= EPOLLOUT | EPOLLWRNORM; 3995 } 3996 3997 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 3998 smp_rmb(); 3999 if (READ_ONCE(sk->sk_err)) 4000 mask |= EPOLLERR; 4001 4002 return mask; 4003 } 4004 4005 static const struct proto_ops mptcp_stream_ops = { 4006 .family = PF_INET, 4007 .owner = THIS_MODULE, 4008 .release = inet_release, 4009 .bind = mptcp_bind, 4010 .connect = inet_stream_connect, 4011 .socketpair = sock_no_socketpair, 4012 .accept = mptcp_stream_accept, 4013 .getname = inet_getname, 4014 .poll = mptcp_poll, 4015 .ioctl = inet_ioctl, 4016 .gettstamp = sock_gettstamp, 4017 .listen = mptcp_listen, 4018 .shutdown = inet_shutdown, 4019 .setsockopt = sock_common_setsockopt, 4020 .getsockopt = sock_common_getsockopt, 4021 .sendmsg = inet_sendmsg, 4022 .recvmsg = inet_recvmsg, 4023 .mmap = sock_no_mmap, 4024 }; 4025 4026 static struct inet_protosw mptcp_protosw = { 4027 .type = SOCK_STREAM, 4028 .protocol = IPPROTO_MPTCP, 4029 .prot = &mptcp_prot, 4030 .ops = &mptcp_stream_ops, 4031 .flags = INET_PROTOSW_ICSK, 4032 }; 4033 4034 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4035 { 4036 struct mptcp_delegated_action *delegated; 4037 struct mptcp_subflow_context *subflow; 4038 int work_done = 0; 4039 4040 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4041 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4042 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4043 4044 bh_lock_sock_nested(ssk); 4045 if (!sock_owned_by_user(ssk)) { 4046 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4047 } else { 4048 /* tcp_release_cb_override already processed 4049 * the action or will do at next release_sock(). 4050 * In both case must dequeue the subflow here - on the same 4051 * CPU that scheduled it. 4052 */ 4053 smp_wmb(); 4054 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4055 } 4056 bh_unlock_sock(ssk); 4057 sock_put(ssk); 4058 4059 if (++work_done == budget) 4060 return budget; 4061 } 4062 4063 /* always provide a 0 'work_done' argument, so that napi_complete_done 4064 * will not try accessing the NULL napi->dev ptr 4065 */ 4066 napi_complete_done(napi, 0); 4067 return work_done; 4068 } 4069 4070 void __init mptcp_proto_init(void) 4071 { 4072 struct mptcp_delegated_action *delegated; 4073 int cpu; 4074 4075 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4076 4077 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4078 panic("Failed to allocate MPTCP pcpu counter\n"); 4079 4080 init_dummy_netdev(&mptcp_napi_dev); 4081 for_each_possible_cpu(cpu) { 4082 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4083 INIT_LIST_HEAD(&delegated->head); 4084 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 4085 mptcp_napi_poll); 4086 napi_enable(&delegated->napi); 4087 } 4088 4089 mptcp_subflow_init(); 4090 mptcp_pm_init(); 4091 mptcp_sched_init(); 4092 mptcp_token_init(); 4093 4094 if (proto_register(&mptcp_prot, 1) != 0) 4095 panic("Failed to register MPTCP proto.\n"); 4096 4097 inet_register_protosw(&mptcp_protosw); 4098 4099 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4100 } 4101 4102 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4103 static const struct proto_ops mptcp_v6_stream_ops = { 4104 .family = PF_INET6, 4105 .owner = THIS_MODULE, 4106 .release = inet6_release, 4107 .bind = mptcp_bind, 4108 .connect = inet_stream_connect, 4109 .socketpair = sock_no_socketpair, 4110 .accept = mptcp_stream_accept, 4111 .getname = inet6_getname, 4112 .poll = mptcp_poll, 4113 .ioctl = inet6_ioctl, 4114 .gettstamp = sock_gettstamp, 4115 .listen = mptcp_listen, 4116 .shutdown = inet_shutdown, 4117 .setsockopt = sock_common_setsockopt, 4118 .getsockopt = sock_common_getsockopt, 4119 .sendmsg = inet6_sendmsg, 4120 .recvmsg = inet6_recvmsg, 4121 .mmap = sock_no_mmap, 4122 #ifdef CONFIG_COMPAT 4123 .compat_ioctl = inet6_compat_ioctl, 4124 #endif 4125 }; 4126 4127 static struct proto mptcp_v6_prot; 4128 4129 static struct inet_protosw mptcp_v6_protosw = { 4130 .type = SOCK_STREAM, 4131 .protocol = IPPROTO_MPTCP, 4132 .prot = &mptcp_v6_prot, 4133 .ops = &mptcp_v6_stream_ops, 4134 .flags = INET_PROTOSW_ICSK, 4135 }; 4136 4137 int __init mptcp_proto_v6_init(void) 4138 { 4139 int err; 4140 4141 mptcp_v6_prot = mptcp_prot; 4142 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 4143 mptcp_v6_prot.slab = NULL; 4144 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4145 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4146 4147 err = proto_register(&mptcp_v6_prot, 1); 4148 if (err) 4149 return err; 4150 4151 err = inet6_register_protosw(&mptcp_v6_protosw); 4152 if (err) 4153 proto_unregister(&mptcp_v6_prot); 4154 4155 return err; 4156 } 4157 #endif 4158