xref: /openbmc/linux/net/mptcp/protocol.c (revision 4d016ae42efb214d4b441b0654771ddf34c72891)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31 
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 	struct mptcp_sock msk;
35 	struct ipv6_pinfo np;
36 };
37 #endif
38 
39 enum {
40 	MPTCP_CMSG_TS = BIT(0),
41 	MPTCP_CMSG_INQ = BIT(1),
42 };
43 
44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
45 
46 static void __mptcp_destroy_sock(struct sock *sk);
47 static void mptcp_check_send_data_fin(struct sock *sk);
48 
49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
50 static struct net_device mptcp_napi_dev;
51 
52 /* Returns end sequence number of the receiver's advertised window */
53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
54 {
55 	return READ_ONCE(msk->wnd_end);
56 }
57 
58 static bool mptcp_is_tcpsk(struct sock *sk)
59 {
60 	struct socket *sock = sk->sk_socket;
61 
62 	if (unlikely(sk->sk_prot == &tcp_prot)) {
63 		/* we are being invoked after mptcp_accept() has
64 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
65 		 * not an mptcp one.
66 		 *
67 		 * Hand the socket over to tcp so all further socket ops
68 		 * bypass mptcp.
69 		 */
70 		WRITE_ONCE(sock->ops, &inet_stream_ops);
71 		return true;
72 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
73 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
74 		WRITE_ONCE(sock->ops, &inet6_stream_ops);
75 		return true;
76 #endif
77 	}
78 
79 	return false;
80 }
81 
82 static int __mptcp_socket_create(struct mptcp_sock *msk)
83 {
84 	struct mptcp_subflow_context *subflow;
85 	struct sock *sk = (struct sock *)msk;
86 	struct socket *ssock;
87 	int err;
88 
89 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
90 	if (err)
91 		return err;
92 
93 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
94 	WRITE_ONCE(msk->first, ssock->sk);
95 	WRITE_ONCE(msk->subflow, ssock);
96 	subflow = mptcp_subflow_ctx(ssock->sk);
97 	list_add(&subflow->node, &msk->conn_list);
98 	sock_hold(ssock->sk);
99 	subflow->request_mptcp = 1;
100 	subflow->subflow_id = msk->subflow_id++;
101 
102 	/* This is the first subflow, always with id 0 */
103 	subflow->local_id_valid = 1;
104 	mptcp_sock_graft(msk->first, sk->sk_socket);
105 
106 	return 0;
107 }
108 
109 /* If the MPC handshake is not started, returns the first subflow,
110  * eventually allocating it.
111  */
112 struct socket *__mptcp_nmpc_socket(struct mptcp_sock *msk)
113 {
114 	struct sock *sk = (struct sock *)msk;
115 	int ret;
116 
117 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
118 		return ERR_PTR(-EINVAL);
119 
120 	if (!msk->subflow) {
121 		if (msk->first)
122 			return ERR_PTR(-EINVAL);
123 
124 		ret = __mptcp_socket_create(msk);
125 		if (ret)
126 			return ERR_PTR(ret);
127 
128 		mptcp_sockopt_sync(msk, msk->first);
129 	}
130 
131 	return msk->subflow;
132 }
133 
134 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
135 {
136 	sk_drops_add(sk, skb);
137 	__kfree_skb(skb);
138 }
139 
140 static void mptcp_rmem_charge(struct sock *sk, int size)
141 {
142 	mptcp_sk(sk)->rmem_fwd_alloc -= size;
143 }
144 
145 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
146 			       struct sk_buff *from)
147 {
148 	bool fragstolen;
149 	int delta;
150 
151 	if (MPTCP_SKB_CB(from)->offset ||
152 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
153 		return false;
154 
155 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
156 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
157 		 to->len, MPTCP_SKB_CB(from)->end_seq);
158 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
159 
160 	/* note the fwd memory can reach a negative value after accounting
161 	 * for the delta, but the later skb free will restore a non
162 	 * negative one
163 	 */
164 	atomic_add(delta, &sk->sk_rmem_alloc);
165 	mptcp_rmem_charge(sk, delta);
166 	kfree_skb_partial(from, fragstolen);
167 
168 	return true;
169 }
170 
171 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
172 				   struct sk_buff *from)
173 {
174 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
175 		return false;
176 
177 	return mptcp_try_coalesce((struct sock *)msk, to, from);
178 }
179 
180 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
181 {
182 	amount >>= PAGE_SHIFT;
183 	mptcp_sk(sk)->rmem_fwd_alloc -= amount << PAGE_SHIFT;
184 	__sk_mem_reduce_allocated(sk, amount);
185 }
186 
187 static void mptcp_rmem_uncharge(struct sock *sk, int size)
188 {
189 	struct mptcp_sock *msk = mptcp_sk(sk);
190 	int reclaimable;
191 
192 	msk->rmem_fwd_alloc += size;
193 	reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
194 
195 	/* see sk_mem_uncharge() for the rationale behind the following schema */
196 	if (unlikely(reclaimable >= PAGE_SIZE))
197 		__mptcp_rmem_reclaim(sk, reclaimable);
198 }
199 
200 static void mptcp_rfree(struct sk_buff *skb)
201 {
202 	unsigned int len = skb->truesize;
203 	struct sock *sk = skb->sk;
204 
205 	atomic_sub(len, &sk->sk_rmem_alloc);
206 	mptcp_rmem_uncharge(sk, len);
207 }
208 
209 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
210 {
211 	skb_orphan(skb);
212 	skb->sk = sk;
213 	skb->destructor = mptcp_rfree;
214 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
215 	mptcp_rmem_charge(sk, skb->truesize);
216 }
217 
218 /* "inspired" by tcp_data_queue_ofo(), main differences:
219  * - use mptcp seqs
220  * - don't cope with sacks
221  */
222 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
223 {
224 	struct sock *sk = (struct sock *)msk;
225 	struct rb_node **p, *parent;
226 	u64 seq, end_seq, max_seq;
227 	struct sk_buff *skb1;
228 
229 	seq = MPTCP_SKB_CB(skb)->map_seq;
230 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
231 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
232 
233 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
234 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
235 	if (after64(end_seq, max_seq)) {
236 		/* out of window */
237 		mptcp_drop(sk, skb);
238 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
239 			 (unsigned long long)end_seq - (unsigned long)max_seq,
240 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
241 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
242 		return;
243 	}
244 
245 	p = &msk->out_of_order_queue.rb_node;
246 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
247 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
248 		rb_link_node(&skb->rbnode, NULL, p);
249 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
250 		msk->ooo_last_skb = skb;
251 		goto end;
252 	}
253 
254 	/* with 2 subflows, adding at end of ooo queue is quite likely
255 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
256 	 */
257 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
258 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
259 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
260 		return;
261 	}
262 
263 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
264 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
265 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
266 		parent = &msk->ooo_last_skb->rbnode;
267 		p = &parent->rb_right;
268 		goto insert;
269 	}
270 
271 	/* Find place to insert this segment. Handle overlaps on the way. */
272 	parent = NULL;
273 	while (*p) {
274 		parent = *p;
275 		skb1 = rb_to_skb(parent);
276 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
277 			p = &parent->rb_left;
278 			continue;
279 		}
280 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
281 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
282 				/* All the bits are present. Drop. */
283 				mptcp_drop(sk, skb);
284 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
285 				return;
286 			}
287 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
288 				/* partial overlap:
289 				 *     |     skb      |
290 				 *  |     skb1    |
291 				 * continue traversing
292 				 */
293 			} else {
294 				/* skb's seq == skb1's seq and skb covers skb1.
295 				 * Replace skb1 with skb.
296 				 */
297 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
298 						&msk->out_of_order_queue);
299 				mptcp_drop(sk, skb1);
300 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
301 				goto merge_right;
302 			}
303 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
304 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
305 			return;
306 		}
307 		p = &parent->rb_right;
308 	}
309 
310 insert:
311 	/* Insert segment into RB tree. */
312 	rb_link_node(&skb->rbnode, parent, p);
313 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
314 
315 merge_right:
316 	/* Remove other segments covered by skb. */
317 	while ((skb1 = skb_rb_next(skb)) != NULL) {
318 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
319 			break;
320 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
321 		mptcp_drop(sk, skb1);
322 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
323 	}
324 	/* If there is no skb after us, we are the last_skb ! */
325 	if (!skb1)
326 		msk->ooo_last_skb = skb;
327 
328 end:
329 	skb_condense(skb);
330 	mptcp_set_owner_r(skb, sk);
331 }
332 
333 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
334 {
335 	struct mptcp_sock *msk = mptcp_sk(sk);
336 	int amt, amount;
337 
338 	if (size <= msk->rmem_fwd_alloc)
339 		return true;
340 
341 	size -= msk->rmem_fwd_alloc;
342 	amt = sk_mem_pages(size);
343 	amount = amt << PAGE_SHIFT;
344 	if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
345 		return false;
346 
347 	msk->rmem_fwd_alloc += amount;
348 	return true;
349 }
350 
351 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
352 			     struct sk_buff *skb, unsigned int offset,
353 			     size_t copy_len)
354 {
355 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
356 	struct sock *sk = (struct sock *)msk;
357 	struct sk_buff *tail;
358 	bool has_rxtstamp;
359 
360 	__skb_unlink(skb, &ssk->sk_receive_queue);
361 
362 	skb_ext_reset(skb);
363 	skb_orphan(skb);
364 
365 	/* try to fetch required memory from subflow */
366 	if (!mptcp_rmem_schedule(sk, ssk, skb->truesize))
367 		goto drop;
368 
369 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
370 
371 	/* the skb map_seq accounts for the skb offset:
372 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
373 	 * value
374 	 */
375 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
376 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
377 	MPTCP_SKB_CB(skb)->offset = offset;
378 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
379 
380 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
381 		/* in sequence */
382 		msk->bytes_received += copy_len;
383 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
384 		tail = skb_peek_tail(&sk->sk_receive_queue);
385 		if (tail && mptcp_try_coalesce(sk, tail, skb))
386 			return true;
387 
388 		mptcp_set_owner_r(skb, sk);
389 		__skb_queue_tail(&sk->sk_receive_queue, skb);
390 		return true;
391 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
392 		mptcp_data_queue_ofo(msk, skb);
393 		return false;
394 	}
395 
396 	/* old data, keep it simple and drop the whole pkt, sender
397 	 * will retransmit as needed, if needed.
398 	 */
399 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
400 drop:
401 	mptcp_drop(sk, skb);
402 	return false;
403 }
404 
405 static void mptcp_stop_timer(struct sock *sk)
406 {
407 	struct inet_connection_sock *icsk = inet_csk(sk);
408 
409 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
410 	mptcp_sk(sk)->timer_ival = 0;
411 }
412 
413 static void mptcp_close_wake_up(struct sock *sk)
414 {
415 	if (sock_flag(sk, SOCK_DEAD))
416 		return;
417 
418 	sk->sk_state_change(sk);
419 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
420 	    sk->sk_state == TCP_CLOSE)
421 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
422 	else
423 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
424 }
425 
426 static bool mptcp_pending_data_fin_ack(struct sock *sk)
427 {
428 	struct mptcp_sock *msk = mptcp_sk(sk);
429 
430 	return ((1 << sk->sk_state) &
431 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
432 	       msk->write_seq == READ_ONCE(msk->snd_una);
433 }
434 
435 static void mptcp_check_data_fin_ack(struct sock *sk)
436 {
437 	struct mptcp_sock *msk = mptcp_sk(sk);
438 
439 	/* Look for an acknowledged DATA_FIN */
440 	if (mptcp_pending_data_fin_ack(sk)) {
441 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
442 
443 		switch (sk->sk_state) {
444 		case TCP_FIN_WAIT1:
445 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
446 			break;
447 		case TCP_CLOSING:
448 		case TCP_LAST_ACK:
449 			inet_sk_state_store(sk, TCP_CLOSE);
450 			break;
451 		}
452 
453 		mptcp_close_wake_up(sk);
454 	}
455 }
456 
457 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
458 {
459 	struct mptcp_sock *msk = mptcp_sk(sk);
460 
461 	if (READ_ONCE(msk->rcv_data_fin) &&
462 	    ((1 << sk->sk_state) &
463 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
464 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
465 
466 		if (msk->ack_seq == rcv_data_fin_seq) {
467 			if (seq)
468 				*seq = rcv_data_fin_seq;
469 
470 			return true;
471 		}
472 	}
473 
474 	return false;
475 }
476 
477 static void mptcp_set_datafin_timeout(struct sock *sk)
478 {
479 	struct inet_connection_sock *icsk = inet_csk(sk);
480 	u32 retransmits;
481 
482 	retransmits = min_t(u32, icsk->icsk_retransmits,
483 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
484 
485 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
486 }
487 
488 static void __mptcp_set_timeout(struct sock *sk, long tout)
489 {
490 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
491 }
492 
493 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
494 {
495 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
496 
497 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
498 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
499 }
500 
501 static void mptcp_set_timeout(struct sock *sk)
502 {
503 	struct mptcp_subflow_context *subflow;
504 	long tout = 0;
505 
506 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
507 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
508 	__mptcp_set_timeout(sk, tout);
509 }
510 
511 static inline bool tcp_can_send_ack(const struct sock *ssk)
512 {
513 	return !((1 << inet_sk_state_load(ssk)) &
514 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
515 }
516 
517 void __mptcp_subflow_send_ack(struct sock *ssk)
518 {
519 	if (tcp_can_send_ack(ssk))
520 		tcp_send_ack(ssk);
521 }
522 
523 static void mptcp_subflow_send_ack(struct sock *ssk)
524 {
525 	bool slow;
526 
527 	slow = lock_sock_fast(ssk);
528 	__mptcp_subflow_send_ack(ssk);
529 	unlock_sock_fast(ssk, slow);
530 }
531 
532 static void mptcp_send_ack(struct mptcp_sock *msk)
533 {
534 	struct mptcp_subflow_context *subflow;
535 
536 	mptcp_for_each_subflow(msk, subflow)
537 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
538 }
539 
540 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
541 {
542 	bool slow;
543 
544 	slow = lock_sock_fast(ssk);
545 	if (tcp_can_send_ack(ssk))
546 		tcp_cleanup_rbuf(ssk, 1);
547 	unlock_sock_fast(ssk, slow);
548 }
549 
550 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
551 {
552 	const struct inet_connection_sock *icsk = inet_csk(ssk);
553 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
554 	const struct tcp_sock *tp = tcp_sk(ssk);
555 
556 	return (ack_pending & ICSK_ACK_SCHED) &&
557 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
558 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
559 		 (rx_empty && ack_pending &
560 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
561 }
562 
563 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
564 {
565 	int old_space = READ_ONCE(msk->old_wspace);
566 	struct mptcp_subflow_context *subflow;
567 	struct sock *sk = (struct sock *)msk;
568 	int space =  __mptcp_space(sk);
569 	bool cleanup, rx_empty;
570 
571 	cleanup = (space > 0) && (space >= (old_space << 1));
572 	rx_empty = !__mptcp_rmem(sk);
573 
574 	mptcp_for_each_subflow(msk, subflow) {
575 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
576 
577 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
578 			mptcp_subflow_cleanup_rbuf(ssk);
579 	}
580 }
581 
582 static bool mptcp_check_data_fin(struct sock *sk)
583 {
584 	struct mptcp_sock *msk = mptcp_sk(sk);
585 	u64 rcv_data_fin_seq;
586 	bool ret = false;
587 
588 	/* Need to ack a DATA_FIN received from a peer while this side
589 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
590 	 * msk->rcv_data_fin was set when parsing the incoming options
591 	 * at the subflow level and the msk lock was not held, so this
592 	 * is the first opportunity to act on the DATA_FIN and change
593 	 * the msk state.
594 	 *
595 	 * If we are caught up to the sequence number of the incoming
596 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
597 	 * not caught up, do nothing and let the recv code send DATA_ACK
598 	 * when catching up.
599 	 */
600 
601 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
602 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
603 		WRITE_ONCE(msk->rcv_data_fin, 0);
604 
605 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
606 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
607 
608 		switch (sk->sk_state) {
609 		case TCP_ESTABLISHED:
610 			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
611 			break;
612 		case TCP_FIN_WAIT1:
613 			inet_sk_state_store(sk, TCP_CLOSING);
614 			break;
615 		case TCP_FIN_WAIT2:
616 			inet_sk_state_store(sk, TCP_CLOSE);
617 			break;
618 		default:
619 			/* Other states not expected */
620 			WARN_ON_ONCE(1);
621 			break;
622 		}
623 
624 		ret = true;
625 		if (!__mptcp_check_fallback(msk))
626 			mptcp_send_ack(msk);
627 		mptcp_close_wake_up(sk);
628 	}
629 	return ret;
630 }
631 
632 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
633 					   struct sock *ssk,
634 					   unsigned int *bytes)
635 {
636 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
637 	struct sock *sk = (struct sock *)msk;
638 	unsigned int moved = 0;
639 	bool more_data_avail;
640 	struct tcp_sock *tp;
641 	bool done = false;
642 	int sk_rbuf;
643 
644 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
645 
646 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
647 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
648 
649 		if (unlikely(ssk_rbuf > sk_rbuf)) {
650 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
651 			sk_rbuf = ssk_rbuf;
652 		}
653 	}
654 
655 	pr_debug("msk=%p ssk=%p", msk, ssk);
656 	tp = tcp_sk(ssk);
657 	do {
658 		u32 map_remaining, offset;
659 		u32 seq = tp->copied_seq;
660 		struct sk_buff *skb;
661 		bool fin;
662 
663 		/* try to move as much data as available */
664 		map_remaining = subflow->map_data_len -
665 				mptcp_subflow_get_map_offset(subflow);
666 
667 		skb = skb_peek(&ssk->sk_receive_queue);
668 		if (!skb) {
669 			/* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
670 			 * a different CPU can have already processed the pending
671 			 * data, stop here or we can enter an infinite loop
672 			 */
673 			if (!moved)
674 				done = true;
675 			break;
676 		}
677 
678 		if (__mptcp_check_fallback(msk)) {
679 			/* Under fallback skbs have no MPTCP extension and TCP could
680 			 * collapse them between the dummy map creation and the
681 			 * current dequeue. Be sure to adjust the map size.
682 			 */
683 			map_remaining = skb->len;
684 			subflow->map_data_len = skb->len;
685 		}
686 
687 		offset = seq - TCP_SKB_CB(skb)->seq;
688 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
689 		if (fin) {
690 			done = true;
691 			seq++;
692 		}
693 
694 		if (offset < skb->len) {
695 			size_t len = skb->len - offset;
696 
697 			if (tp->urg_data)
698 				done = true;
699 
700 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
701 				moved += len;
702 			seq += len;
703 
704 			if (WARN_ON_ONCE(map_remaining < len))
705 				break;
706 		} else {
707 			WARN_ON_ONCE(!fin);
708 			sk_eat_skb(ssk, skb);
709 			done = true;
710 		}
711 
712 		WRITE_ONCE(tp->copied_seq, seq);
713 		more_data_avail = mptcp_subflow_data_available(ssk);
714 
715 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
716 			done = true;
717 			break;
718 		}
719 	} while (more_data_avail);
720 
721 	*bytes += moved;
722 	return done;
723 }
724 
725 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
726 {
727 	struct sock *sk = (struct sock *)msk;
728 	struct sk_buff *skb, *tail;
729 	bool moved = false;
730 	struct rb_node *p;
731 	u64 end_seq;
732 
733 	p = rb_first(&msk->out_of_order_queue);
734 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
735 	while (p) {
736 		skb = rb_to_skb(p);
737 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
738 			break;
739 
740 		p = rb_next(p);
741 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
742 
743 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
744 				      msk->ack_seq))) {
745 			mptcp_drop(sk, skb);
746 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
747 			continue;
748 		}
749 
750 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
751 		tail = skb_peek_tail(&sk->sk_receive_queue);
752 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
753 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
754 
755 			/* skip overlapping data, if any */
756 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
757 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
758 				 delta);
759 			MPTCP_SKB_CB(skb)->offset += delta;
760 			MPTCP_SKB_CB(skb)->map_seq += delta;
761 			__skb_queue_tail(&sk->sk_receive_queue, skb);
762 		}
763 		msk->bytes_received += end_seq - msk->ack_seq;
764 		msk->ack_seq = end_seq;
765 		moved = true;
766 	}
767 	return moved;
768 }
769 
770 /* In most cases we will be able to lock the mptcp socket.  If its already
771  * owned, we need to defer to the work queue to avoid ABBA deadlock.
772  */
773 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
774 {
775 	struct sock *sk = (struct sock *)msk;
776 	unsigned int moved = 0;
777 
778 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
779 	__mptcp_ofo_queue(msk);
780 	if (unlikely(ssk->sk_err)) {
781 		if (!sock_owned_by_user(sk))
782 			__mptcp_error_report(sk);
783 		else
784 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
785 	}
786 
787 	/* If the moves have caught up with the DATA_FIN sequence number
788 	 * it's time to ack the DATA_FIN and change socket state, but
789 	 * this is not a good place to change state. Let the workqueue
790 	 * do it.
791 	 */
792 	if (mptcp_pending_data_fin(sk, NULL))
793 		mptcp_schedule_work(sk);
794 	return moved > 0;
795 }
796 
797 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
798 {
799 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
800 	struct mptcp_sock *msk = mptcp_sk(sk);
801 	int sk_rbuf, ssk_rbuf;
802 
803 	/* The peer can send data while we are shutting down this
804 	 * subflow at msk destruction time, but we must avoid enqueuing
805 	 * more data to the msk receive queue
806 	 */
807 	if (unlikely(subflow->disposable))
808 		return;
809 
810 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
811 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
812 	if (unlikely(ssk_rbuf > sk_rbuf))
813 		sk_rbuf = ssk_rbuf;
814 
815 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
816 	if (__mptcp_rmem(sk) > sk_rbuf) {
817 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
818 		return;
819 	}
820 
821 	/* Wake-up the reader only for in-sequence data */
822 	mptcp_data_lock(sk);
823 	if (move_skbs_to_msk(msk, ssk))
824 		sk->sk_data_ready(sk);
825 
826 	mptcp_data_unlock(sk);
827 }
828 
829 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
830 {
831 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
832 	WRITE_ONCE(msk->allow_infinite_fallback, false);
833 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
834 }
835 
836 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
837 {
838 	struct sock *sk = (struct sock *)msk;
839 
840 	if (sk->sk_state != TCP_ESTABLISHED)
841 		return false;
842 
843 	/* attach to msk socket only after we are sure we will deal with it
844 	 * at close time
845 	 */
846 	if (sk->sk_socket && !ssk->sk_socket)
847 		mptcp_sock_graft(ssk, sk->sk_socket);
848 
849 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
850 	mptcp_sockopt_sync_locked(msk, ssk);
851 	mptcp_subflow_joined(msk, ssk);
852 	return true;
853 }
854 
855 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
856 {
857 	struct mptcp_subflow_context *tmp, *subflow;
858 	struct mptcp_sock *msk = mptcp_sk(sk);
859 
860 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
861 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
862 		bool slow = lock_sock_fast(ssk);
863 
864 		list_move_tail(&subflow->node, &msk->conn_list);
865 		if (!__mptcp_finish_join(msk, ssk))
866 			mptcp_subflow_reset(ssk);
867 		unlock_sock_fast(ssk, slow);
868 	}
869 }
870 
871 static bool mptcp_timer_pending(struct sock *sk)
872 {
873 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
874 }
875 
876 static void mptcp_reset_timer(struct sock *sk)
877 {
878 	struct inet_connection_sock *icsk = inet_csk(sk);
879 	unsigned long tout;
880 
881 	/* prevent rescheduling on close */
882 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
883 		return;
884 
885 	tout = mptcp_sk(sk)->timer_ival;
886 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
887 }
888 
889 bool mptcp_schedule_work(struct sock *sk)
890 {
891 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
892 	    schedule_work(&mptcp_sk(sk)->work)) {
893 		/* each subflow already holds a reference to the sk, and the
894 		 * workqueue is invoked by a subflow, so sk can't go away here.
895 		 */
896 		sock_hold(sk);
897 		return true;
898 	}
899 	return false;
900 }
901 
902 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
903 {
904 	struct mptcp_subflow_context *subflow;
905 
906 	msk_owned_by_me(msk);
907 
908 	mptcp_for_each_subflow(msk, subflow) {
909 		if (READ_ONCE(subflow->data_avail))
910 			return mptcp_subflow_tcp_sock(subflow);
911 	}
912 
913 	return NULL;
914 }
915 
916 static bool mptcp_skb_can_collapse_to(u64 write_seq,
917 				      const struct sk_buff *skb,
918 				      const struct mptcp_ext *mpext)
919 {
920 	if (!tcp_skb_can_collapse_to(skb))
921 		return false;
922 
923 	/* can collapse only if MPTCP level sequence is in order and this
924 	 * mapping has not been xmitted yet
925 	 */
926 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
927 	       !mpext->frozen;
928 }
929 
930 /* we can append data to the given data frag if:
931  * - there is space available in the backing page_frag
932  * - the data frag tail matches the current page_frag free offset
933  * - the data frag end sequence number matches the current write seq
934  */
935 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
936 				       const struct page_frag *pfrag,
937 				       const struct mptcp_data_frag *df)
938 {
939 	return df && pfrag->page == df->page &&
940 		pfrag->size - pfrag->offset > 0 &&
941 		pfrag->offset == (df->offset + df->data_len) &&
942 		df->data_seq + df->data_len == msk->write_seq;
943 }
944 
945 static void dfrag_uncharge(struct sock *sk, int len)
946 {
947 	sk_mem_uncharge(sk, len);
948 	sk_wmem_queued_add(sk, -len);
949 }
950 
951 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
952 {
953 	int len = dfrag->data_len + dfrag->overhead;
954 
955 	list_del(&dfrag->list);
956 	dfrag_uncharge(sk, len);
957 	put_page(dfrag->page);
958 }
959 
960 static void __mptcp_clean_una(struct sock *sk)
961 {
962 	struct mptcp_sock *msk = mptcp_sk(sk);
963 	struct mptcp_data_frag *dtmp, *dfrag;
964 	u64 snd_una;
965 
966 	snd_una = msk->snd_una;
967 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
968 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
969 			break;
970 
971 		if (unlikely(dfrag == msk->first_pending)) {
972 			/* in recovery mode can see ack after the current snd head */
973 			if (WARN_ON_ONCE(!msk->recovery))
974 				break;
975 
976 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
977 		}
978 
979 		dfrag_clear(sk, dfrag);
980 	}
981 
982 	dfrag = mptcp_rtx_head(sk);
983 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
984 		u64 delta = snd_una - dfrag->data_seq;
985 
986 		/* prevent wrap around in recovery mode */
987 		if (unlikely(delta > dfrag->already_sent)) {
988 			if (WARN_ON_ONCE(!msk->recovery))
989 				goto out;
990 			if (WARN_ON_ONCE(delta > dfrag->data_len))
991 				goto out;
992 			dfrag->already_sent += delta - dfrag->already_sent;
993 		}
994 
995 		dfrag->data_seq += delta;
996 		dfrag->offset += delta;
997 		dfrag->data_len -= delta;
998 		dfrag->already_sent -= delta;
999 
1000 		dfrag_uncharge(sk, delta);
1001 	}
1002 
1003 	/* all retransmitted data acked, recovery completed */
1004 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1005 		msk->recovery = false;
1006 
1007 out:
1008 	if (snd_una == READ_ONCE(msk->snd_nxt) &&
1009 	    snd_una == READ_ONCE(msk->write_seq)) {
1010 		if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1011 			mptcp_stop_timer(sk);
1012 	} else {
1013 		mptcp_reset_timer(sk);
1014 	}
1015 }
1016 
1017 static void __mptcp_clean_una_wakeup(struct sock *sk)
1018 {
1019 	lockdep_assert_held_once(&sk->sk_lock.slock);
1020 
1021 	__mptcp_clean_una(sk);
1022 	mptcp_write_space(sk);
1023 }
1024 
1025 static void mptcp_clean_una_wakeup(struct sock *sk)
1026 {
1027 	mptcp_data_lock(sk);
1028 	__mptcp_clean_una_wakeup(sk);
1029 	mptcp_data_unlock(sk);
1030 }
1031 
1032 static void mptcp_enter_memory_pressure(struct sock *sk)
1033 {
1034 	struct mptcp_subflow_context *subflow;
1035 	struct mptcp_sock *msk = mptcp_sk(sk);
1036 	bool first = true;
1037 
1038 	sk_stream_moderate_sndbuf(sk);
1039 	mptcp_for_each_subflow(msk, subflow) {
1040 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1041 
1042 		if (first)
1043 			tcp_enter_memory_pressure(ssk);
1044 		sk_stream_moderate_sndbuf(ssk);
1045 		first = false;
1046 	}
1047 }
1048 
1049 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1050  * data
1051  */
1052 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1053 {
1054 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1055 					pfrag, sk->sk_allocation)))
1056 		return true;
1057 
1058 	mptcp_enter_memory_pressure(sk);
1059 	return false;
1060 }
1061 
1062 static struct mptcp_data_frag *
1063 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1064 		      int orig_offset)
1065 {
1066 	int offset = ALIGN(orig_offset, sizeof(long));
1067 	struct mptcp_data_frag *dfrag;
1068 
1069 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1070 	dfrag->data_len = 0;
1071 	dfrag->data_seq = msk->write_seq;
1072 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1073 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1074 	dfrag->already_sent = 0;
1075 	dfrag->page = pfrag->page;
1076 
1077 	return dfrag;
1078 }
1079 
1080 struct mptcp_sendmsg_info {
1081 	int mss_now;
1082 	int size_goal;
1083 	u16 limit;
1084 	u16 sent;
1085 	unsigned int flags;
1086 	bool data_lock_held;
1087 };
1088 
1089 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1090 				    u64 data_seq, int avail_size)
1091 {
1092 	u64 window_end = mptcp_wnd_end(msk);
1093 	u64 mptcp_snd_wnd;
1094 
1095 	if (__mptcp_check_fallback(msk))
1096 		return avail_size;
1097 
1098 	mptcp_snd_wnd = window_end - data_seq;
1099 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1100 
1101 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1102 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1103 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1104 	}
1105 
1106 	return avail_size;
1107 }
1108 
1109 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1110 {
1111 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1112 
1113 	if (!mpext)
1114 		return false;
1115 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1116 	return true;
1117 }
1118 
1119 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1120 {
1121 	struct sk_buff *skb;
1122 
1123 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1124 	if (likely(skb)) {
1125 		if (likely(__mptcp_add_ext(skb, gfp))) {
1126 			skb_reserve(skb, MAX_TCP_HEADER);
1127 			skb->ip_summed = CHECKSUM_PARTIAL;
1128 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1129 			return skb;
1130 		}
1131 		__kfree_skb(skb);
1132 	} else {
1133 		mptcp_enter_memory_pressure(sk);
1134 	}
1135 	return NULL;
1136 }
1137 
1138 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1139 {
1140 	struct sk_buff *skb;
1141 
1142 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1143 	if (!skb)
1144 		return NULL;
1145 
1146 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1147 		tcp_skb_entail(ssk, skb);
1148 		return skb;
1149 	}
1150 	tcp_skb_tsorted_anchor_cleanup(skb);
1151 	kfree_skb(skb);
1152 	return NULL;
1153 }
1154 
1155 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1156 {
1157 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1158 
1159 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1160 }
1161 
1162 /* note: this always recompute the csum on the whole skb, even
1163  * if we just appended a single frag. More status info needed
1164  */
1165 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1166 {
1167 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1168 	__wsum csum = ~csum_unfold(mpext->csum);
1169 	int offset = skb->len - added;
1170 
1171 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1172 }
1173 
1174 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1175 				      struct sock *ssk,
1176 				      struct mptcp_ext *mpext)
1177 {
1178 	if (!mpext)
1179 		return;
1180 
1181 	mpext->infinite_map = 1;
1182 	mpext->data_len = 0;
1183 
1184 	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
1185 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1186 	pr_fallback(msk);
1187 	mptcp_do_fallback(ssk);
1188 }
1189 
1190 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1191 			      struct mptcp_data_frag *dfrag,
1192 			      struct mptcp_sendmsg_info *info)
1193 {
1194 	u64 data_seq = dfrag->data_seq + info->sent;
1195 	int offset = dfrag->offset + info->sent;
1196 	struct mptcp_sock *msk = mptcp_sk(sk);
1197 	bool zero_window_probe = false;
1198 	struct mptcp_ext *mpext = NULL;
1199 	bool can_coalesce = false;
1200 	bool reuse_skb = true;
1201 	struct sk_buff *skb;
1202 	size_t copy;
1203 	int i;
1204 
1205 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1206 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1207 
1208 	if (WARN_ON_ONCE(info->sent > info->limit ||
1209 			 info->limit > dfrag->data_len))
1210 		return 0;
1211 
1212 	if (unlikely(!__tcp_can_send(ssk)))
1213 		return -EAGAIN;
1214 
1215 	/* compute send limit */
1216 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1217 	copy = info->size_goal;
1218 
1219 	skb = tcp_write_queue_tail(ssk);
1220 	if (skb && copy > skb->len) {
1221 		/* Limit the write to the size available in the
1222 		 * current skb, if any, so that we create at most a new skb.
1223 		 * Explicitly tells TCP internals to avoid collapsing on later
1224 		 * queue management operation, to avoid breaking the ext <->
1225 		 * SSN association set here
1226 		 */
1227 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1228 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1229 			TCP_SKB_CB(skb)->eor = 1;
1230 			goto alloc_skb;
1231 		}
1232 
1233 		i = skb_shinfo(skb)->nr_frags;
1234 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1235 		if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1236 			tcp_mark_push(tcp_sk(ssk), skb);
1237 			goto alloc_skb;
1238 		}
1239 
1240 		copy -= skb->len;
1241 	} else {
1242 alloc_skb:
1243 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1244 		if (!skb)
1245 			return -ENOMEM;
1246 
1247 		i = skb_shinfo(skb)->nr_frags;
1248 		reuse_skb = false;
1249 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1250 	}
1251 
1252 	/* Zero window and all data acked? Probe. */
1253 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1254 	if (copy == 0) {
1255 		u64 snd_una = READ_ONCE(msk->snd_una);
1256 
1257 		if (snd_una != msk->snd_nxt) {
1258 			tcp_remove_empty_skb(ssk);
1259 			return 0;
1260 		}
1261 
1262 		zero_window_probe = true;
1263 		data_seq = snd_una - 1;
1264 		copy = 1;
1265 
1266 		/* all mptcp-level data is acked, no skbs should be present into the
1267 		 * ssk write queue
1268 		 */
1269 		WARN_ON_ONCE(reuse_skb);
1270 	}
1271 
1272 	copy = min_t(size_t, copy, info->limit - info->sent);
1273 	if (!sk_wmem_schedule(ssk, copy)) {
1274 		tcp_remove_empty_skb(ssk);
1275 		return -ENOMEM;
1276 	}
1277 
1278 	if (can_coalesce) {
1279 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1280 	} else {
1281 		get_page(dfrag->page);
1282 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1283 	}
1284 
1285 	skb->len += copy;
1286 	skb->data_len += copy;
1287 	skb->truesize += copy;
1288 	sk_wmem_queued_add(ssk, copy);
1289 	sk_mem_charge(ssk, copy);
1290 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1291 	TCP_SKB_CB(skb)->end_seq += copy;
1292 	tcp_skb_pcount_set(skb, 0);
1293 
1294 	/* on skb reuse we just need to update the DSS len */
1295 	if (reuse_skb) {
1296 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1297 		mpext->data_len += copy;
1298 		WARN_ON_ONCE(zero_window_probe);
1299 		goto out;
1300 	}
1301 
1302 	memset(mpext, 0, sizeof(*mpext));
1303 	mpext->data_seq = data_seq;
1304 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1305 	mpext->data_len = copy;
1306 	mpext->use_map = 1;
1307 	mpext->dsn64 = 1;
1308 
1309 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1310 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1311 		 mpext->dsn64);
1312 
1313 	if (zero_window_probe) {
1314 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1315 		mpext->frozen = 1;
1316 		if (READ_ONCE(msk->csum_enabled))
1317 			mptcp_update_data_checksum(skb, copy);
1318 		tcp_push_pending_frames(ssk);
1319 		return 0;
1320 	}
1321 out:
1322 	if (READ_ONCE(msk->csum_enabled))
1323 		mptcp_update_data_checksum(skb, copy);
1324 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1325 		mptcp_update_infinite_map(msk, ssk, mpext);
1326 	trace_mptcp_sendmsg_frag(mpext);
1327 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1328 	return copy;
1329 }
1330 
1331 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1332 					 sizeof(struct tcphdr) - \
1333 					 MAX_TCP_OPTION_SPACE - \
1334 					 sizeof(struct ipv6hdr) - \
1335 					 sizeof(struct frag_hdr))
1336 
1337 struct subflow_send_info {
1338 	struct sock *ssk;
1339 	u64 linger_time;
1340 };
1341 
1342 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1343 {
1344 	if (!subflow->stale)
1345 		return;
1346 
1347 	subflow->stale = 0;
1348 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1349 }
1350 
1351 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1352 {
1353 	if (unlikely(subflow->stale)) {
1354 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1355 
1356 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1357 			return false;
1358 
1359 		mptcp_subflow_set_active(subflow);
1360 	}
1361 	return __mptcp_subflow_active(subflow);
1362 }
1363 
1364 #define SSK_MODE_ACTIVE	0
1365 #define SSK_MODE_BACKUP	1
1366 #define SSK_MODE_MAX	2
1367 
1368 /* implement the mptcp packet scheduler;
1369  * returns the subflow that will transmit the next DSS
1370  * additionally updates the rtx timeout
1371  */
1372 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1373 {
1374 	struct subflow_send_info send_info[SSK_MODE_MAX];
1375 	struct mptcp_subflow_context *subflow;
1376 	struct sock *sk = (struct sock *)msk;
1377 	u32 pace, burst, wmem;
1378 	int i, nr_active = 0;
1379 	struct sock *ssk;
1380 	u64 linger_time;
1381 	long tout = 0;
1382 
1383 	msk_owned_by_me(msk);
1384 
1385 	if (__mptcp_check_fallback(msk)) {
1386 		if (!msk->first)
1387 			return NULL;
1388 		return __tcp_can_send(msk->first) &&
1389 		       sk_stream_memory_free(msk->first) ? msk->first : NULL;
1390 	}
1391 
1392 	/* re-use last subflow, if the burst allow that */
1393 	if (msk->last_snd && msk->snd_burst > 0 &&
1394 	    sk_stream_memory_free(msk->last_snd) &&
1395 	    mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) {
1396 		mptcp_set_timeout(sk);
1397 		return msk->last_snd;
1398 	}
1399 
1400 	/* pick the subflow with the lower wmem/wspace ratio */
1401 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1402 		send_info[i].ssk = NULL;
1403 		send_info[i].linger_time = -1;
1404 	}
1405 
1406 	mptcp_for_each_subflow(msk, subflow) {
1407 		trace_mptcp_subflow_get_send(subflow);
1408 		ssk =  mptcp_subflow_tcp_sock(subflow);
1409 		if (!mptcp_subflow_active(subflow))
1410 			continue;
1411 
1412 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1413 		nr_active += !subflow->backup;
1414 		pace = subflow->avg_pacing_rate;
1415 		if (unlikely(!pace)) {
1416 			/* init pacing rate from socket */
1417 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1418 			pace = subflow->avg_pacing_rate;
1419 			if (!pace)
1420 				continue;
1421 		}
1422 
1423 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1424 		if (linger_time < send_info[subflow->backup].linger_time) {
1425 			send_info[subflow->backup].ssk = ssk;
1426 			send_info[subflow->backup].linger_time = linger_time;
1427 		}
1428 	}
1429 	__mptcp_set_timeout(sk, tout);
1430 
1431 	/* pick the best backup if no other subflow is active */
1432 	if (!nr_active)
1433 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1434 
1435 	/* According to the blest algorithm, to avoid HoL blocking for the
1436 	 * faster flow, we need to:
1437 	 * - estimate the faster flow linger time
1438 	 * - use the above to estimate the amount of byte transferred
1439 	 *   by the faster flow
1440 	 * - check that the amount of queued data is greter than the above,
1441 	 *   otherwise do not use the picked, slower, subflow
1442 	 * We select the subflow with the shorter estimated time to flush
1443 	 * the queued mem, which basically ensure the above. We just need
1444 	 * to check that subflow has a non empty cwin.
1445 	 */
1446 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1447 	if (!ssk || !sk_stream_memory_free(ssk))
1448 		return NULL;
1449 
1450 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1451 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1452 	if (!burst) {
1453 		msk->last_snd = NULL;
1454 		return ssk;
1455 	}
1456 
1457 	subflow = mptcp_subflow_ctx(ssk);
1458 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1459 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1460 					   burst + wmem);
1461 	msk->last_snd = ssk;
1462 	msk->snd_burst = burst;
1463 	return ssk;
1464 }
1465 
1466 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1467 {
1468 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1469 	release_sock(ssk);
1470 }
1471 
1472 static void mptcp_update_post_push(struct mptcp_sock *msk,
1473 				   struct mptcp_data_frag *dfrag,
1474 				   u32 sent)
1475 {
1476 	u64 snd_nxt_new = dfrag->data_seq;
1477 
1478 	dfrag->already_sent += sent;
1479 
1480 	msk->snd_burst -= sent;
1481 
1482 	snd_nxt_new += dfrag->already_sent;
1483 
1484 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1485 	 * is recovering after a failover. In that event, this re-sends
1486 	 * old segments.
1487 	 *
1488 	 * Thus compute snd_nxt_new candidate based on
1489 	 * the dfrag->data_seq that was sent and the data
1490 	 * that has been handed to the subflow for transmission
1491 	 * and skip update in case it was old dfrag.
1492 	 */
1493 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1494 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1495 		msk->snd_nxt = snd_nxt_new;
1496 	}
1497 }
1498 
1499 void mptcp_check_and_set_pending(struct sock *sk)
1500 {
1501 	if (mptcp_send_head(sk))
1502 		mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING);
1503 }
1504 
1505 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1506 {
1507 	struct sock *prev_ssk = NULL, *ssk = NULL;
1508 	struct mptcp_sock *msk = mptcp_sk(sk);
1509 	struct mptcp_sendmsg_info info = {
1510 				.flags = flags,
1511 	};
1512 	bool do_check_data_fin = false;
1513 	struct mptcp_data_frag *dfrag;
1514 	int len;
1515 
1516 	while ((dfrag = mptcp_send_head(sk))) {
1517 		info.sent = dfrag->already_sent;
1518 		info.limit = dfrag->data_len;
1519 		len = dfrag->data_len - dfrag->already_sent;
1520 		while (len > 0) {
1521 			int ret = 0;
1522 
1523 			prev_ssk = ssk;
1524 			ssk = mptcp_subflow_get_send(msk);
1525 
1526 			/* First check. If the ssk has changed since
1527 			 * the last round, release prev_ssk
1528 			 */
1529 			if (ssk != prev_ssk && prev_ssk)
1530 				mptcp_push_release(prev_ssk, &info);
1531 			if (!ssk)
1532 				goto out;
1533 
1534 			/* Need to lock the new subflow only if different
1535 			 * from the previous one, otherwise we are still
1536 			 * helding the relevant lock
1537 			 */
1538 			if (ssk != prev_ssk)
1539 				lock_sock(ssk);
1540 
1541 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1542 			if (ret <= 0) {
1543 				if (ret == -EAGAIN)
1544 					continue;
1545 				mptcp_push_release(ssk, &info);
1546 				goto out;
1547 			}
1548 
1549 			do_check_data_fin = true;
1550 			info.sent += ret;
1551 			len -= ret;
1552 
1553 			mptcp_update_post_push(msk, dfrag, ret);
1554 		}
1555 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1556 	}
1557 
1558 	/* at this point we held the socket lock for the last subflow we used */
1559 	if (ssk)
1560 		mptcp_push_release(ssk, &info);
1561 
1562 out:
1563 	/* ensure the rtx timer is running */
1564 	if (!mptcp_timer_pending(sk))
1565 		mptcp_reset_timer(sk);
1566 	if (do_check_data_fin)
1567 		mptcp_check_send_data_fin(sk);
1568 }
1569 
1570 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1571 {
1572 	struct mptcp_sock *msk = mptcp_sk(sk);
1573 	struct mptcp_sendmsg_info info = {
1574 		.data_lock_held = true,
1575 	};
1576 	struct mptcp_data_frag *dfrag;
1577 	struct sock *xmit_ssk;
1578 	int len, copied = 0;
1579 
1580 	info.flags = 0;
1581 	while ((dfrag = mptcp_send_head(sk))) {
1582 		info.sent = dfrag->already_sent;
1583 		info.limit = dfrag->data_len;
1584 		len = dfrag->data_len - dfrag->already_sent;
1585 		while (len > 0) {
1586 			int ret = 0;
1587 
1588 			/* check for a different subflow usage only after
1589 			 * spooling the first chunk of data
1590 			 */
1591 			xmit_ssk = first ? ssk : mptcp_subflow_get_send(msk);
1592 			if (!xmit_ssk)
1593 				goto out;
1594 			if (xmit_ssk != ssk) {
1595 				mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk),
1596 						       MPTCP_DELEGATE_SEND);
1597 				goto out;
1598 			}
1599 
1600 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1601 			if (ret <= 0)
1602 				goto out;
1603 
1604 			info.sent += ret;
1605 			copied += ret;
1606 			len -= ret;
1607 			first = false;
1608 
1609 			mptcp_update_post_push(msk, dfrag, ret);
1610 		}
1611 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1612 	}
1613 
1614 out:
1615 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1616 	 * not going to flush it via release_sock()
1617 	 */
1618 	if (copied) {
1619 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1620 			 info.size_goal);
1621 		if (!mptcp_timer_pending(sk))
1622 			mptcp_reset_timer(sk);
1623 
1624 		if (msk->snd_data_fin_enable &&
1625 		    msk->snd_nxt + 1 == msk->write_seq)
1626 			mptcp_schedule_work(sk);
1627 	}
1628 }
1629 
1630 static void mptcp_set_nospace(struct sock *sk)
1631 {
1632 	/* enable autotune */
1633 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1634 
1635 	/* will be cleared on avail space */
1636 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1637 }
1638 
1639 static int mptcp_disconnect(struct sock *sk, int flags);
1640 
1641 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1642 				  size_t len, int *copied_syn)
1643 {
1644 	unsigned int saved_flags = msg->msg_flags;
1645 	struct mptcp_sock *msk = mptcp_sk(sk);
1646 	struct socket *ssock;
1647 	struct sock *ssk;
1648 	int ret;
1649 
1650 	/* on flags based fastopen the mptcp is supposed to create the
1651 	 * first subflow right now. Otherwise we are in the defer_connect
1652 	 * path, and the first subflow must be already present.
1653 	 * Since the defer_connect flag is cleared after the first succsful
1654 	 * fastopen attempt, no need to check for additional subflow status.
1655 	 */
1656 	if (msg->msg_flags & MSG_FASTOPEN) {
1657 		ssock = __mptcp_nmpc_socket(msk);
1658 		if (IS_ERR(ssock))
1659 			return PTR_ERR(ssock);
1660 	}
1661 	if (!msk->first)
1662 		return -EINVAL;
1663 
1664 	ssk = msk->first;
1665 
1666 	lock_sock(ssk);
1667 	msg->msg_flags |= MSG_DONTWAIT;
1668 	msk->fastopening = 1;
1669 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1670 	msk->fastopening = 0;
1671 	msg->msg_flags = saved_flags;
1672 	release_sock(ssk);
1673 
1674 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1675 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1676 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1677 					    msg->msg_namelen, msg->msg_flags, 1);
1678 
1679 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1680 		 * case of any error, except timeout or signal
1681 		 */
1682 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1683 			*copied_syn = 0;
1684 	} else if (ret && ret != -EINPROGRESS) {
1685 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1686 		 * __inet_stream_connect() can fail, due to looking check,
1687 		 * see mptcp_disconnect().
1688 		 * Attempt it again outside the problematic scope.
1689 		 */
1690 		if (!mptcp_disconnect(sk, 0))
1691 			sk->sk_socket->state = SS_UNCONNECTED;
1692 	}
1693 	inet_sk(sk)->defer_connect = 0;
1694 
1695 	return ret;
1696 }
1697 
1698 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1699 {
1700 	struct mptcp_sock *msk = mptcp_sk(sk);
1701 	struct page_frag *pfrag;
1702 	size_t copied = 0;
1703 	int ret = 0;
1704 	long timeo;
1705 
1706 	/* silently ignore everything else */
1707 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1708 
1709 	lock_sock(sk);
1710 
1711 	if (unlikely(inet_sk(sk)->defer_connect || msg->msg_flags & MSG_FASTOPEN)) {
1712 		int copied_syn = 0;
1713 
1714 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1715 		copied += copied_syn;
1716 		if (ret == -EINPROGRESS && copied_syn > 0)
1717 			goto out;
1718 		else if (ret)
1719 			goto do_error;
1720 	}
1721 
1722 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1723 
1724 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1725 		ret = sk_stream_wait_connect(sk, &timeo);
1726 		if (ret)
1727 			goto do_error;
1728 	}
1729 
1730 	ret = -EPIPE;
1731 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1732 		goto do_error;
1733 
1734 	pfrag = sk_page_frag(sk);
1735 
1736 	while (msg_data_left(msg)) {
1737 		int total_ts, frag_truesize = 0;
1738 		struct mptcp_data_frag *dfrag;
1739 		bool dfrag_collapsed;
1740 		size_t psize, offset;
1741 
1742 		/* reuse tail pfrag, if possible, or carve a new one from the
1743 		 * page allocator
1744 		 */
1745 		dfrag = mptcp_pending_tail(sk);
1746 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1747 		if (!dfrag_collapsed) {
1748 			if (!sk_stream_memory_free(sk))
1749 				goto wait_for_memory;
1750 
1751 			if (!mptcp_page_frag_refill(sk, pfrag))
1752 				goto wait_for_memory;
1753 
1754 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1755 			frag_truesize = dfrag->overhead;
1756 		}
1757 
1758 		/* we do not bound vs wspace, to allow a single packet.
1759 		 * memory accounting will prevent execessive memory usage
1760 		 * anyway
1761 		 */
1762 		offset = dfrag->offset + dfrag->data_len;
1763 		psize = pfrag->size - offset;
1764 		psize = min_t(size_t, psize, msg_data_left(msg));
1765 		total_ts = psize + frag_truesize;
1766 
1767 		if (!sk_wmem_schedule(sk, total_ts))
1768 			goto wait_for_memory;
1769 
1770 		if (copy_page_from_iter(dfrag->page, offset, psize,
1771 					&msg->msg_iter) != psize) {
1772 			ret = -EFAULT;
1773 			goto do_error;
1774 		}
1775 
1776 		/* data successfully copied into the write queue */
1777 		sk->sk_forward_alloc -= total_ts;
1778 		copied += psize;
1779 		dfrag->data_len += psize;
1780 		frag_truesize += psize;
1781 		pfrag->offset += frag_truesize;
1782 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1783 
1784 		/* charge data on mptcp pending queue to the msk socket
1785 		 * Note: we charge such data both to sk and ssk
1786 		 */
1787 		sk_wmem_queued_add(sk, frag_truesize);
1788 		if (!dfrag_collapsed) {
1789 			get_page(dfrag->page);
1790 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1791 			if (!msk->first_pending)
1792 				WRITE_ONCE(msk->first_pending, dfrag);
1793 		}
1794 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1795 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1796 			 !dfrag_collapsed);
1797 
1798 		continue;
1799 
1800 wait_for_memory:
1801 		mptcp_set_nospace(sk);
1802 		__mptcp_push_pending(sk, msg->msg_flags);
1803 		ret = sk_stream_wait_memory(sk, &timeo);
1804 		if (ret)
1805 			goto do_error;
1806 	}
1807 
1808 	if (copied)
1809 		__mptcp_push_pending(sk, msg->msg_flags);
1810 
1811 out:
1812 	release_sock(sk);
1813 	return copied;
1814 
1815 do_error:
1816 	if (copied)
1817 		goto out;
1818 
1819 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1820 	goto out;
1821 }
1822 
1823 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1824 				struct msghdr *msg,
1825 				size_t len, int flags,
1826 				struct scm_timestamping_internal *tss,
1827 				int *cmsg_flags)
1828 {
1829 	struct sk_buff *skb, *tmp;
1830 	int copied = 0;
1831 
1832 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1833 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1834 		u32 data_len = skb->len - offset;
1835 		u32 count = min_t(size_t, len - copied, data_len);
1836 		int err;
1837 
1838 		if (!(flags & MSG_TRUNC)) {
1839 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1840 			if (unlikely(err < 0)) {
1841 				if (!copied)
1842 					return err;
1843 				break;
1844 			}
1845 		}
1846 
1847 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1848 			tcp_update_recv_tstamps(skb, tss);
1849 			*cmsg_flags |= MPTCP_CMSG_TS;
1850 		}
1851 
1852 		copied += count;
1853 
1854 		if (count < data_len) {
1855 			if (!(flags & MSG_PEEK)) {
1856 				MPTCP_SKB_CB(skb)->offset += count;
1857 				MPTCP_SKB_CB(skb)->map_seq += count;
1858 			}
1859 			break;
1860 		}
1861 
1862 		if (!(flags & MSG_PEEK)) {
1863 			/* we will bulk release the skb memory later */
1864 			skb->destructor = NULL;
1865 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1866 			__skb_unlink(skb, &msk->receive_queue);
1867 			__kfree_skb(skb);
1868 		}
1869 
1870 		if (copied >= len)
1871 			break;
1872 	}
1873 
1874 	return copied;
1875 }
1876 
1877 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1878  *
1879  * Only difference: Use highest rtt estimate of the subflows in use.
1880  */
1881 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1882 {
1883 	struct mptcp_subflow_context *subflow;
1884 	struct sock *sk = (struct sock *)msk;
1885 	u8 scaling_ratio = U8_MAX;
1886 	u32 time, advmss = 1;
1887 	u64 rtt_us, mstamp;
1888 
1889 	msk_owned_by_me(msk);
1890 
1891 	if (copied <= 0)
1892 		return;
1893 
1894 	msk->rcvq_space.copied += copied;
1895 
1896 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1897 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1898 
1899 	rtt_us = msk->rcvq_space.rtt_us;
1900 	if (rtt_us && time < (rtt_us >> 3))
1901 		return;
1902 
1903 	rtt_us = 0;
1904 	mptcp_for_each_subflow(msk, subflow) {
1905 		const struct tcp_sock *tp;
1906 		u64 sf_rtt_us;
1907 		u32 sf_advmss;
1908 
1909 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1910 
1911 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1912 		sf_advmss = READ_ONCE(tp->advmss);
1913 
1914 		rtt_us = max(sf_rtt_us, rtt_us);
1915 		advmss = max(sf_advmss, advmss);
1916 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
1917 	}
1918 
1919 	msk->rcvq_space.rtt_us = rtt_us;
1920 	msk->scaling_ratio = scaling_ratio;
1921 	if (time < (rtt_us >> 3) || rtt_us == 0)
1922 		return;
1923 
1924 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1925 		goto new_measure;
1926 
1927 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
1928 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1929 		u64 rcvwin, grow;
1930 		int rcvbuf;
1931 
1932 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1933 
1934 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1935 
1936 		do_div(grow, msk->rcvq_space.space);
1937 		rcvwin += (grow << 1);
1938 
1939 		rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin),
1940 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
1941 
1942 		if (rcvbuf > sk->sk_rcvbuf) {
1943 			u32 window_clamp;
1944 
1945 			window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf);
1946 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1947 
1948 			/* Make subflows follow along.  If we do not do this, we
1949 			 * get drops at subflow level if skbs can't be moved to
1950 			 * the mptcp rx queue fast enough (announced rcv_win can
1951 			 * exceed ssk->sk_rcvbuf).
1952 			 */
1953 			mptcp_for_each_subflow(msk, subflow) {
1954 				struct sock *ssk;
1955 				bool slow;
1956 
1957 				ssk = mptcp_subflow_tcp_sock(subflow);
1958 				slow = lock_sock_fast(ssk);
1959 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1960 				tcp_sk(ssk)->window_clamp = window_clamp;
1961 				tcp_cleanup_rbuf(ssk, 1);
1962 				unlock_sock_fast(ssk, slow);
1963 			}
1964 		}
1965 	}
1966 
1967 	msk->rcvq_space.space = msk->rcvq_space.copied;
1968 new_measure:
1969 	msk->rcvq_space.copied = 0;
1970 	msk->rcvq_space.time = mstamp;
1971 }
1972 
1973 static void __mptcp_update_rmem(struct sock *sk)
1974 {
1975 	struct mptcp_sock *msk = mptcp_sk(sk);
1976 
1977 	if (!msk->rmem_released)
1978 		return;
1979 
1980 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
1981 	mptcp_rmem_uncharge(sk, msk->rmem_released);
1982 	WRITE_ONCE(msk->rmem_released, 0);
1983 }
1984 
1985 static void __mptcp_splice_receive_queue(struct sock *sk)
1986 {
1987 	struct mptcp_sock *msk = mptcp_sk(sk);
1988 
1989 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
1990 }
1991 
1992 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
1993 {
1994 	struct sock *sk = (struct sock *)msk;
1995 	unsigned int moved = 0;
1996 	bool ret, done;
1997 
1998 	do {
1999 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
2000 		bool slowpath;
2001 
2002 		/* we can have data pending in the subflows only if the msk
2003 		 * receive buffer was full at subflow_data_ready() time,
2004 		 * that is an unlikely slow path.
2005 		 */
2006 		if (likely(!ssk))
2007 			break;
2008 
2009 		slowpath = lock_sock_fast(ssk);
2010 		mptcp_data_lock(sk);
2011 		__mptcp_update_rmem(sk);
2012 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
2013 		mptcp_data_unlock(sk);
2014 
2015 		if (unlikely(ssk->sk_err))
2016 			__mptcp_error_report(sk);
2017 		unlock_sock_fast(ssk, slowpath);
2018 	} while (!done);
2019 
2020 	/* acquire the data lock only if some input data is pending */
2021 	ret = moved > 0;
2022 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
2023 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
2024 		mptcp_data_lock(sk);
2025 		__mptcp_update_rmem(sk);
2026 		ret |= __mptcp_ofo_queue(msk);
2027 		__mptcp_splice_receive_queue(sk);
2028 		mptcp_data_unlock(sk);
2029 	}
2030 	if (ret)
2031 		mptcp_check_data_fin((struct sock *)msk);
2032 	return !skb_queue_empty(&msk->receive_queue);
2033 }
2034 
2035 static unsigned int mptcp_inq_hint(const struct sock *sk)
2036 {
2037 	const struct mptcp_sock *msk = mptcp_sk(sk);
2038 	const struct sk_buff *skb;
2039 
2040 	skb = skb_peek(&msk->receive_queue);
2041 	if (skb) {
2042 		u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
2043 
2044 		if (hint_val >= INT_MAX)
2045 			return INT_MAX;
2046 
2047 		return (unsigned int)hint_val;
2048 	}
2049 
2050 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2051 		return 1;
2052 
2053 	return 0;
2054 }
2055 
2056 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2057 			 int flags, int *addr_len)
2058 {
2059 	struct mptcp_sock *msk = mptcp_sk(sk);
2060 	struct scm_timestamping_internal tss;
2061 	int copied = 0, cmsg_flags = 0;
2062 	int target;
2063 	long timeo;
2064 
2065 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2066 	if (unlikely(flags & MSG_ERRQUEUE))
2067 		return inet_recv_error(sk, msg, len, addr_len);
2068 
2069 	lock_sock(sk);
2070 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2071 		copied = -ENOTCONN;
2072 		goto out_err;
2073 	}
2074 
2075 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2076 
2077 	len = min_t(size_t, len, INT_MAX);
2078 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2079 
2080 	if (unlikely(msk->recvmsg_inq))
2081 		cmsg_flags = MPTCP_CMSG_INQ;
2082 
2083 	while (copied < len) {
2084 		int bytes_read;
2085 
2086 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2087 		if (unlikely(bytes_read < 0)) {
2088 			if (!copied)
2089 				copied = bytes_read;
2090 			goto out_err;
2091 		}
2092 
2093 		copied += bytes_read;
2094 
2095 		/* be sure to advertise window change */
2096 		mptcp_cleanup_rbuf(msk);
2097 
2098 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2099 			continue;
2100 
2101 		/* only the master socket status is relevant here. The exit
2102 		 * conditions mirror closely tcp_recvmsg()
2103 		 */
2104 		if (copied >= target)
2105 			break;
2106 
2107 		if (copied) {
2108 			if (sk->sk_err ||
2109 			    sk->sk_state == TCP_CLOSE ||
2110 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2111 			    !timeo ||
2112 			    signal_pending(current))
2113 				break;
2114 		} else {
2115 			if (sk->sk_err) {
2116 				copied = sock_error(sk);
2117 				break;
2118 			}
2119 
2120 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2121 				/* race breaker: the shutdown could be after the
2122 				 * previous receive queue check
2123 				 */
2124 				if (__mptcp_move_skbs(msk))
2125 					continue;
2126 				break;
2127 			}
2128 
2129 			if (sk->sk_state == TCP_CLOSE) {
2130 				copied = -ENOTCONN;
2131 				break;
2132 			}
2133 
2134 			if (!timeo) {
2135 				copied = -EAGAIN;
2136 				break;
2137 			}
2138 
2139 			if (signal_pending(current)) {
2140 				copied = sock_intr_errno(timeo);
2141 				break;
2142 			}
2143 		}
2144 
2145 		pr_debug("block timeout %ld", timeo);
2146 		sk_wait_data(sk, &timeo, NULL);
2147 	}
2148 
2149 out_err:
2150 	if (cmsg_flags && copied >= 0) {
2151 		if (cmsg_flags & MPTCP_CMSG_TS)
2152 			tcp_recv_timestamp(msg, sk, &tss);
2153 
2154 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2155 			unsigned int inq = mptcp_inq_hint(sk);
2156 
2157 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2158 		}
2159 	}
2160 
2161 	pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
2162 		 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2163 		 skb_queue_empty(&msk->receive_queue), copied);
2164 	if (!(flags & MSG_PEEK))
2165 		mptcp_rcv_space_adjust(msk, copied);
2166 
2167 	release_sock(sk);
2168 	return copied;
2169 }
2170 
2171 static void mptcp_retransmit_timer(struct timer_list *t)
2172 {
2173 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2174 						       icsk_retransmit_timer);
2175 	struct sock *sk = &icsk->icsk_inet.sk;
2176 	struct mptcp_sock *msk = mptcp_sk(sk);
2177 
2178 	bh_lock_sock(sk);
2179 	if (!sock_owned_by_user(sk)) {
2180 		/* we need a process context to retransmit */
2181 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2182 			mptcp_schedule_work(sk);
2183 	} else {
2184 		/* delegate our work to tcp_release_cb() */
2185 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2186 	}
2187 	bh_unlock_sock(sk);
2188 	sock_put(sk);
2189 }
2190 
2191 static void mptcp_timeout_timer(struct timer_list *t)
2192 {
2193 	struct sock *sk = from_timer(sk, t, sk_timer);
2194 
2195 	mptcp_schedule_work(sk);
2196 	sock_put(sk);
2197 }
2198 
2199 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2200  * level.
2201  *
2202  * A backup subflow is returned only if that is the only kind available.
2203  */
2204 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2205 {
2206 	struct sock *backup = NULL, *pick = NULL;
2207 	struct mptcp_subflow_context *subflow;
2208 	int min_stale_count = INT_MAX;
2209 
2210 	msk_owned_by_me(msk);
2211 
2212 	if (__mptcp_check_fallback(msk))
2213 		return NULL;
2214 
2215 	mptcp_for_each_subflow(msk, subflow) {
2216 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2217 
2218 		if (!__mptcp_subflow_active(subflow))
2219 			continue;
2220 
2221 		/* still data outstanding at TCP level? skip this */
2222 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2223 			mptcp_pm_subflow_chk_stale(msk, ssk);
2224 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2225 			continue;
2226 		}
2227 
2228 		if (subflow->backup) {
2229 			if (!backup)
2230 				backup = ssk;
2231 			continue;
2232 		}
2233 
2234 		if (!pick)
2235 			pick = ssk;
2236 	}
2237 
2238 	if (pick)
2239 		return pick;
2240 
2241 	/* use backup only if there are no progresses anywhere */
2242 	return min_stale_count > 1 ? backup : NULL;
2243 }
2244 
2245 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk)
2246 {
2247 	if (msk->subflow) {
2248 		iput(SOCK_INODE(msk->subflow));
2249 		WRITE_ONCE(msk->subflow, NULL);
2250 	}
2251 }
2252 
2253 bool __mptcp_retransmit_pending_data(struct sock *sk)
2254 {
2255 	struct mptcp_data_frag *cur, *rtx_head;
2256 	struct mptcp_sock *msk = mptcp_sk(sk);
2257 
2258 	if (__mptcp_check_fallback(msk))
2259 		return false;
2260 
2261 	if (tcp_rtx_and_write_queues_empty(sk))
2262 		return false;
2263 
2264 	/* the closing socket has some data untransmitted and/or unacked:
2265 	 * some data in the mptcp rtx queue has not really xmitted yet.
2266 	 * keep it simple and re-inject the whole mptcp level rtx queue
2267 	 */
2268 	mptcp_data_lock(sk);
2269 	__mptcp_clean_una_wakeup(sk);
2270 	rtx_head = mptcp_rtx_head(sk);
2271 	if (!rtx_head) {
2272 		mptcp_data_unlock(sk);
2273 		return false;
2274 	}
2275 
2276 	msk->recovery_snd_nxt = msk->snd_nxt;
2277 	msk->recovery = true;
2278 	mptcp_data_unlock(sk);
2279 
2280 	msk->first_pending = rtx_head;
2281 	msk->snd_burst = 0;
2282 
2283 	/* be sure to clear the "sent status" on all re-injected fragments */
2284 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2285 		if (!cur->already_sent)
2286 			break;
2287 		cur->already_sent = 0;
2288 	}
2289 
2290 	return true;
2291 }
2292 
2293 /* flags for __mptcp_close_ssk() */
2294 #define MPTCP_CF_PUSH		BIT(1)
2295 #define MPTCP_CF_FASTCLOSE	BIT(2)
2296 
2297 /* subflow sockets can be either outgoing (connect) or incoming
2298  * (accept).
2299  *
2300  * Outgoing subflows use in-kernel sockets.
2301  * Incoming subflows do not have their own 'struct socket' allocated,
2302  * so we need to use tcp_close() after detaching them from the mptcp
2303  * parent socket.
2304  */
2305 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2306 			      struct mptcp_subflow_context *subflow,
2307 			      unsigned int flags)
2308 {
2309 	struct mptcp_sock *msk = mptcp_sk(sk);
2310 	bool dispose_it, need_push = false;
2311 
2312 	/* If the first subflow moved to a close state before accept, e.g. due
2313 	 * to an incoming reset, mptcp either:
2314 	 * - if either the subflow or the msk are dead, destroy the context
2315 	 *   (the subflow socket is deleted by inet_child_forget) and the msk
2316 	 * - otherwise do nothing at the moment and take action at accept and/or
2317 	 *   listener shutdown - user-space must be able to accept() the closed
2318 	 *   socket.
2319 	 */
2320 	if (msk->in_accept_queue && msk->first == ssk) {
2321 		if (!sock_flag(sk, SOCK_DEAD) && !sock_flag(ssk, SOCK_DEAD))
2322 			return;
2323 
2324 		/* ensure later check in mptcp_worker() will dispose the msk */
2325 		sock_set_flag(sk, SOCK_DEAD);
2326 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2327 		mptcp_subflow_drop_ctx(ssk);
2328 		goto out_release;
2329 	}
2330 
2331 	dispose_it = !msk->subflow || ssk != msk->subflow->sk;
2332 	if (dispose_it)
2333 		list_del(&subflow->node);
2334 
2335 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2336 
2337 	if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
2338 		/* be sure to force the tcp_disconnect() path,
2339 		 * to generate the egress reset
2340 		 */
2341 		ssk->sk_lingertime = 0;
2342 		sock_set_flag(ssk, SOCK_LINGER);
2343 		subflow->send_fastclose = 1;
2344 	}
2345 
2346 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2347 	if (!dispose_it) {
2348 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2349 		 * disconnect should never fail
2350 		 */
2351 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2352 		msk->subflow->state = SS_UNCONNECTED;
2353 		mptcp_subflow_ctx_reset(subflow);
2354 		release_sock(ssk);
2355 
2356 		goto out;
2357 	}
2358 
2359 	subflow->disposable = 1;
2360 
2361 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2362 	 * the ssk has been already destroyed, we just need to release the
2363 	 * reference owned by msk;
2364 	 */
2365 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2366 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2367 		kfree_rcu(subflow, rcu);
2368 	} else {
2369 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2370 		__tcp_close(ssk, 0);
2371 
2372 		/* close acquired an extra ref */
2373 		__sock_put(ssk);
2374 	}
2375 
2376 out_release:
2377 	release_sock(ssk);
2378 
2379 	sock_put(ssk);
2380 
2381 	if (ssk == msk->first)
2382 		WRITE_ONCE(msk->first, NULL);
2383 
2384 out:
2385 	if (ssk == msk->last_snd)
2386 		msk->last_snd = NULL;
2387 
2388 	if (need_push)
2389 		__mptcp_push_pending(sk, 0);
2390 }
2391 
2392 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2393 		     struct mptcp_subflow_context *subflow)
2394 {
2395 	if (sk->sk_state == TCP_ESTABLISHED)
2396 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2397 
2398 	/* subflow aborted before reaching the fully_established status
2399 	 * attempt the creation of the next subflow
2400 	 */
2401 	mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow);
2402 
2403 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2404 }
2405 
2406 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2407 {
2408 	return 0;
2409 }
2410 
2411 static void __mptcp_close_subflow(struct sock *sk)
2412 {
2413 	struct mptcp_subflow_context *subflow, *tmp;
2414 	struct mptcp_sock *msk = mptcp_sk(sk);
2415 
2416 	might_sleep();
2417 
2418 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2419 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2420 
2421 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2422 			continue;
2423 
2424 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2425 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2426 			continue;
2427 
2428 		mptcp_close_ssk(sk, ssk, subflow);
2429 	}
2430 
2431 }
2432 
2433 static bool mptcp_should_close(const struct sock *sk)
2434 {
2435 	s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp;
2436 	struct mptcp_subflow_context *subflow;
2437 
2438 	if (delta >= TCP_TIMEWAIT_LEN || mptcp_sk(sk)->in_accept_queue)
2439 		return true;
2440 
2441 	/* if all subflows are in closed status don't bother with additional
2442 	 * timeout
2443 	 */
2444 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2445 		if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) !=
2446 		    TCP_CLOSE)
2447 			return false;
2448 	}
2449 	return true;
2450 }
2451 
2452 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2453 {
2454 	struct mptcp_subflow_context *subflow, *tmp;
2455 	struct sock *sk = (struct sock *)msk;
2456 
2457 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2458 		return;
2459 
2460 	mptcp_token_destroy(msk);
2461 
2462 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2463 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2464 		bool slow;
2465 
2466 		slow = lock_sock_fast(tcp_sk);
2467 		if (tcp_sk->sk_state != TCP_CLOSE) {
2468 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2469 			tcp_set_state(tcp_sk, TCP_CLOSE);
2470 		}
2471 		unlock_sock_fast(tcp_sk, slow);
2472 	}
2473 
2474 	/* Mirror the tcp_reset() error propagation */
2475 	switch (sk->sk_state) {
2476 	case TCP_SYN_SENT:
2477 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2478 		break;
2479 	case TCP_CLOSE_WAIT:
2480 		WRITE_ONCE(sk->sk_err, EPIPE);
2481 		break;
2482 	case TCP_CLOSE:
2483 		return;
2484 	default:
2485 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2486 	}
2487 
2488 	inet_sk_state_store(sk, TCP_CLOSE);
2489 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2490 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2491 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2492 
2493 	/* the calling mptcp_worker will properly destroy the socket */
2494 	if (sock_flag(sk, SOCK_DEAD))
2495 		return;
2496 
2497 	sk->sk_state_change(sk);
2498 	sk_error_report(sk);
2499 }
2500 
2501 static void __mptcp_retrans(struct sock *sk)
2502 {
2503 	struct mptcp_sock *msk = mptcp_sk(sk);
2504 	struct mptcp_sendmsg_info info = {};
2505 	struct mptcp_data_frag *dfrag;
2506 	size_t copied = 0;
2507 	struct sock *ssk;
2508 	int ret;
2509 
2510 	mptcp_clean_una_wakeup(sk);
2511 
2512 	/* first check ssk: need to kick "stale" logic */
2513 	ssk = mptcp_subflow_get_retrans(msk);
2514 	dfrag = mptcp_rtx_head(sk);
2515 	if (!dfrag) {
2516 		if (mptcp_data_fin_enabled(msk)) {
2517 			struct inet_connection_sock *icsk = inet_csk(sk);
2518 
2519 			icsk->icsk_retransmits++;
2520 			mptcp_set_datafin_timeout(sk);
2521 			mptcp_send_ack(msk);
2522 
2523 			goto reset_timer;
2524 		}
2525 
2526 		if (!mptcp_send_head(sk))
2527 			return;
2528 
2529 		goto reset_timer;
2530 	}
2531 
2532 	if (!ssk)
2533 		goto reset_timer;
2534 
2535 	lock_sock(ssk);
2536 
2537 	/* limit retransmission to the bytes already sent on some subflows */
2538 	info.sent = 0;
2539 	info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent;
2540 	while (info.sent < info.limit) {
2541 		ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2542 		if (ret <= 0)
2543 			break;
2544 
2545 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2546 		copied += ret;
2547 		info.sent += ret;
2548 	}
2549 	if (copied) {
2550 		dfrag->already_sent = max(dfrag->already_sent, info.sent);
2551 		msk->bytes_retrans += copied;
2552 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2553 			 info.size_goal);
2554 		WRITE_ONCE(msk->allow_infinite_fallback, false);
2555 	}
2556 
2557 	release_sock(ssk);
2558 
2559 reset_timer:
2560 	mptcp_check_and_set_pending(sk);
2561 
2562 	if (!mptcp_timer_pending(sk))
2563 		mptcp_reset_timer(sk);
2564 }
2565 
2566 /* schedule the timeout timer for the relevant event: either close timeout
2567  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2568  */
2569 void mptcp_reset_timeout(struct mptcp_sock *msk, unsigned long fail_tout)
2570 {
2571 	struct sock *sk = (struct sock *)msk;
2572 	unsigned long timeout, close_timeout;
2573 
2574 	if (!fail_tout && !sock_flag(sk, SOCK_DEAD))
2575 		return;
2576 
2577 	close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + TCP_TIMEWAIT_LEN;
2578 
2579 	/* the close timeout takes precedence on the fail one, and here at least one of
2580 	 * them is active
2581 	 */
2582 	timeout = sock_flag(sk, SOCK_DEAD) ? close_timeout : fail_tout;
2583 
2584 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2585 }
2586 
2587 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2588 {
2589 	struct sock *ssk = msk->first;
2590 	bool slow;
2591 
2592 	if (!ssk)
2593 		return;
2594 
2595 	pr_debug("MP_FAIL doesn't respond, reset the subflow");
2596 
2597 	slow = lock_sock_fast(ssk);
2598 	mptcp_subflow_reset(ssk);
2599 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2600 	unlock_sock_fast(ssk, slow);
2601 
2602 	mptcp_reset_timeout(msk, 0);
2603 }
2604 
2605 static void mptcp_do_fastclose(struct sock *sk)
2606 {
2607 	struct mptcp_subflow_context *subflow, *tmp;
2608 	struct mptcp_sock *msk = mptcp_sk(sk);
2609 
2610 	inet_sk_state_store(sk, TCP_CLOSE);
2611 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
2612 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
2613 				  subflow, MPTCP_CF_FASTCLOSE);
2614 }
2615 
2616 static void mptcp_worker(struct work_struct *work)
2617 {
2618 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2619 	struct sock *sk = (struct sock *)msk;
2620 	unsigned long fail_tout;
2621 	int state;
2622 
2623 	lock_sock(sk);
2624 	state = sk->sk_state;
2625 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2626 		goto unlock;
2627 
2628 	mptcp_check_fastclose(msk);
2629 
2630 	mptcp_pm_nl_work(msk);
2631 
2632 	mptcp_check_send_data_fin(sk);
2633 	mptcp_check_data_fin_ack(sk);
2634 	mptcp_check_data_fin(sk);
2635 
2636 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2637 		__mptcp_close_subflow(sk);
2638 
2639 	/* There is no point in keeping around an orphaned sk timedout or
2640 	 * closed, but we need the msk around to reply to incoming DATA_FIN,
2641 	 * even if it is orphaned and in FIN_WAIT2 state
2642 	 */
2643 	if (sock_flag(sk, SOCK_DEAD)) {
2644 		if (mptcp_should_close(sk))
2645 			mptcp_do_fastclose(sk);
2646 
2647 		if (sk->sk_state == TCP_CLOSE) {
2648 			__mptcp_destroy_sock(sk);
2649 			goto unlock;
2650 		}
2651 	}
2652 
2653 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2654 		__mptcp_retrans(sk);
2655 
2656 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2657 	if (fail_tout && time_after(jiffies, fail_tout))
2658 		mptcp_mp_fail_no_response(msk);
2659 
2660 unlock:
2661 	release_sock(sk);
2662 	sock_put(sk);
2663 }
2664 
2665 static int __mptcp_init_sock(struct sock *sk)
2666 {
2667 	struct mptcp_sock *msk = mptcp_sk(sk);
2668 
2669 	INIT_LIST_HEAD(&msk->conn_list);
2670 	INIT_LIST_HEAD(&msk->join_list);
2671 	INIT_LIST_HEAD(&msk->rtx_queue);
2672 	INIT_WORK(&msk->work, mptcp_worker);
2673 	__skb_queue_head_init(&msk->receive_queue);
2674 	msk->out_of_order_queue = RB_ROOT;
2675 	msk->first_pending = NULL;
2676 	msk->rmem_fwd_alloc = 0;
2677 	WRITE_ONCE(msk->rmem_released, 0);
2678 	msk->timer_ival = TCP_RTO_MIN;
2679 
2680 	WRITE_ONCE(msk->first, NULL);
2681 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2682 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2683 	WRITE_ONCE(msk->allow_infinite_fallback, true);
2684 	msk->recovery = false;
2685 	msk->subflow_id = 1;
2686 
2687 	mptcp_pm_data_init(msk);
2688 
2689 	/* re-use the csk retrans timer for MPTCP-level retrans */
2690 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2691 	timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0);
2692 
2693 	return 0;
2694 }
2695 
2696 static void mptcp_ca_reset(struct sock *sk)
2697 {
2698 	struct inet_connection_sock *icsk = inet_csk(sk);
2699 
2700 	tcp_assign_congestion_control(sk);
2701 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2702 
2703 	/* no need to keep a reference to the ops, the name will suffice */
2704 	tcp_cleanup_congestion_control(sk);
2705 	icsk->icsk_ca_ops = NULL;
2706 }
2707 
2708 static int mptcp_init_sock(struct sock *sk)
2709 {
2710 	struct net *net = sock_net(sk);
2711 	int ret;
2712 
2713 	ret = __mptcp_init_sock(sk);
2714 	if (ret)
2715 		return ret;
2716 
2717 	if (!mptcp_is_enabled(net))
2718 		return -ENOPROTOOPT;
2719 
2720 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2721 		return -ENOMEM;
2722 
2723 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2724 
2725 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2726 	 * propagate the correct value
2727 	 */
2728 	mptcp_ca_reset(sk);
2729 
2730 	sk_sockets_allocated_inc(sk);
2731 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2732 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2733 
2734 	return 0;
2735 }
2736 
2737 static void __mptcp_clear_xmit(struct sock *sk)
2738 {
2739 	struct mptcp_sock *msk = mptcp_sk(sk);
2740 	struct mptcp_data_frag *dtmp, *dfrag;
2741 
2742 	WRITE_ONCE(msk->first_pending, NULL);
2743 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2744 		dfrag_clear(sk, dfrag);
2745 }
2746 
2747 void mptcp_cancel_work(struct sock *sk)
2748 {
2749 	struct mptcp_sock *msk = mptcp_sk(sk);
2750 
2751 	if (cancel_work_sync(&msk->work))
2752 		__sock_put(sk);
2753 }
2754 
2755 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2756 {
2757 	lock_sock(ssk);
2758 
2759 	switch (ssk->sk_state) {
2760 	case TCP_LISTEN:
2761 		if (!(how & RCV_SHUTDOWN))
2762 			break;
2763 		fallthrough;
2764 	case TCP_SYN_SENT:
2765 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2766 		break;
2767 	default:
2768 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2769 			pr_debug("Fallback");
2770 			ssk->sk_shutdown |= how;
2771 			tcp_shutdown(ssk, how);
2772 
2773 			/* simulate the data_fin ack reception to let the state
2774 			 * machine move forward
2775 			 */
2776 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2777 			mptcp_schedule_work(sk);
2778 		} else {
2779 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2780 			tcp_send_ack(ssk);
2781 			if (!mptcp_timer_pending(sk))
2782 				mptcp_reset_timer(sk);
2783 		}
2784 		break;
2785 	}
2786 
2787 	release_sock(ssk);
2788 }
2789 
2790 static const unsigned char new_state[16] = {
2791 	/* current state:     new state:      action:	*/
2792 	[0 /* (Invalid) */] = TCP_CLOSE,
2793 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2794 	[TCP_SYN_SENT]      = TCP_CLOSE,
2795 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2796 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2797 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2798 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2799 	[TCP_CLOSE]         = TCP_CLOSE,
2800 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2801 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2802 	[TCP_LISTEN]        = TCP_CLOSE,
2803 	[TCP_CLOSING]       = TCP_CLOSING,
2804 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2805 };
2806 
2807 static int mptcp_close_state(struct sock *sk)
2808 {
2809 	int next = (int)new_state[sk->sk_state];
2810 	int ns = next & TCP_STATE_MASK;
2811 
2812 	inet_sk_state_store(sk, ns);
2813 
2814 	return next & TCP_ACTION_FIN;
2815 }
2816 
2817 static void mptcp_check_send_data_fin(struct sock *sk)
2818 {
2819 	struct mptcp_subflow_context *subflow;
2820 	struct mptcp_sock *msk = mptcp_sk(sk);
2821 
2822 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2823 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2824 		 msk->snd_nxt, msk->write_seq);
2825 
2826 	/* we still need to enqueue subflows or not really shutting down,
2827 	 * skip this
2828 	 */
2829 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2830 	    mptcp_send_head(sk))
2831 		return;
2832 
2833 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2834 
2835 	mptcp_for_each_subflow(msk, subflow) {
2836 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2837 
2838 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2839 	}
2840 }
2841 
2842 static void __mptcp_wr_shutdown(struct sock *sk)
2843 {
2844 	struct mptcp_sock *msk = mptcp_sk(sk);
2845 
2846 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2847 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2848 		 !!mptcp_send_head(sk));
2849 
2850 	/* will be ignored by fallback sockets */
2851 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2852 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2853 
2854 	mptcp_check_send_data_fin(sk);
2855 }
2856 
2857 static void __mptcp_destroy_sock(struct sock *sk)
2858 {
2859 	struct mptcp_sock *msk = mptcp_sk(sk);
2860 
2861 	pr_debug("msk=%p", msk);
2862 
2863 	might_sleep();
2864 
2865 	mptcp_stop_timer(sk);
2866 	sk_stop_timer(sk, &sk->sk_timer);
2867 	msk->pm.status = 0;
2868 
2869 	sk->sk_prot->destroy(sk);
2870 
2871 	WARN_ON_ONCE(msk->rmem_fwd_alloc);
2872 	WARN_ON_ONCE(msk->rmem_released);
2873 	sk_stream_kill_queues(sk);
2874 	xfrm_sk_free_policy(sk);
2875 
2876 	sock_put(sk);
2877 }
2878 
2879 void __mptcp_unaccepted_force_close(struct sock *sk)
2880 {
2881 	sock_set_flag(sk, SOCK_DEAD);
2882 	mptcp_do_fastclose(sk);
2883 	__mptcp_destroy_sock(sk);
2884 }
2885 
2886 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
2887 {
2888 	/* Concurrent splices from sk_receive_queue into receive_queue will
2889 	 * always show at least one non-empty queue when checked in this order.
2890 	 */
2891 	if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) &&
2892 	    skb_queue_empty_lockless(&msk->receive_queue))
2893 		return 0;
2894 
2895 	return EPOLLIN | EPOLLRDNORM;
2896 }
2897 
2898 static void mptcp_check_listen_stop(struct sock *sk)
2899 {
2900 	struct sock *ssk;
2901 
2902 	if (inet_sk_state_load(sk) != TCP_LISTEN)
2903 		return;
2904 
2905 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2906 	ssk = mptcp_sk(sk)->first;
2907 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
2908 		return;
2909 
2910 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2911 	tcp_set_state(ssk, TCP_CLOSE);
2912 	mptcp_subflow_queue_clean(sk, ssk);
2913 	inet_csk_listen_stop(ssk);
2914 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
2915 	release_sock(ssk);
2916 }
2917 
2918 bool __mptcp_close(struct sock *sk, long timeout)
2919 {
2920 	struct mptcp_subflow_context *subflow;
2921 	struct mptcp_sock *msk = mptcp_sk(sk);
2922 	bool do_cancel_work = false;
2923 	int subflows_alive = 0;
2924 
2925 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2926 
2927 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
2928 		mptcp_check_listen_stop(sk);
2929 		inet_sk_state_store(sk, TCP_CLOSE);
2930 		goto cleanup;
2931 	}
2932 
2933 	if (mptcp_check_readable(msk) || timeout < 0) {
2934 		/* If the msk has read data, or the caller explicitly ask it,
2935 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
2936 		 */
2937 		mptcp_do_fastclose(sk);
2938 		timeout = 0;
2939 	} else if (mptcp_close_state(sk)) {
2940 		__mptcp_wr_shutdown(sk);
2941 	}
2942 
2943 	sk_stream_wait_close(sk, timeout);
2944 
2945 cleanup:
2946 	/* orphan all the subflows */
2947 	inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32;
2948 	mptcp_for_each_subflow(msk, subflow) {
2949 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2950 		bool slow = lock_sock_fast_nested(ssk);
2951 
2952 		subflows_alive += ssk->sk_state != TCP_CLOSE;
2953 
2954 		/* since the close timeout takes precedence on the fail one,
2955 		 * cancel the latter
2956 		 */
2957 		if (ssk == msk->first)
2958 			subflow->fail_tout = 0;
2959 
2960 		/* detach from the parent socket, but allow data_ready to
2961 		 * push incoming data into the mptcp stack, to properly ack it
2962 		 */
2963 		ssk->sk_socket = NULL;
2964 		ssk->sk_wq = NULL;
2965 		unlock_sock_fast(ssk, slow);
2966 	}
2967 	sock_orphan(sk);
2968 
2969 	/* all the subflows are closed, only timeout can change the msk
2970 	 * state, let's not keep resources busy for no reasons
2971 	 */
2972 	if (subflows_alive == 0)
2973 		inet_sk_state_store(sk, TCP_CLOSE);
2974 
2975 	sock_hold(sk);
2976 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
2977 	if (msk->token)
2978 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
2979 
2980 	if (sk->sk_state == TCP_CLOSE) {
2981 		__mptcp_destroy_sock(sk);
2982 		do_cancel_work = true;
2983 	} else {
2984 		mptcp_reset_timeout(msk, 0);
2985 	}
2986 
2987 	return do_cancel_work;
2988 }
2989 
2990 static void mptcp_close(struct sock *sk, long timeout)
2991 {
2992 	bool do_cancel_work;
2993 
2994 	lock_sock(sk);
2995 
2996 	do_cancel_work = __mptcp_close(sk, timeout);
2997 	release_sock(sk);
2998 	if (do_cancel_work)
2999 		mptcp_cancel_work(sk);
3000 
3001 	sock_put(sk);
3002 }
3003 
3004 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3005 {
3006 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3007 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3008 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3009 
3010 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3011 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3012 
3013 	if (msk6 && ssk6) {
3014 		msk6->saddr = ssk6->saddr;
3015 		msk6->flow_label = ssk6->flow_label;
3016 	}
3017 #endif
3018 
3019 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3020 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3021 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3022 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3023 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3024 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3025 }
3026 
3027 static int mptcp_disconnect(struct sock *sk, int flags)
3028 {
3029 	struct mptcp_sock *msk = mptcp_sk(sk);
3030 
3031 	/* Deny disconnect if other threads are blocked in sk_wait_event()
3032 	 * or inet_wait_for_connect().
3033 	 */
3034 	if (sk->sk_wait_pending)
3035 		return -EBUSY;
3036 
3037 	/* We are on the fastopen error path. We can't call straight into the
3038 	 * subflows cleanup code due to lock nesting (we are already under
3039 	 * msk->firstsocket lock).
3040 	 */
3041 	if (msk->fastopening)
3042 		return -EBUSY;
3043 
3044 	mptcp_check_listen_stop(sk);
3045 	inet_sk_state_store(sk, TCP_CLOSE);
3046 
3047 	mptcp_stop_timer(sk);
3048 	sk_stop_timer(sk, &sk->sk_timer);
3049 
3050 	if (msk->token)
3051 		mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
3052 
3053 	/* msk->subflow is still intact, the following will not free the first
3054 	 * subflow
3055 	 */
3056 	mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
3057 	msk->last_snd = NULL;
3058 	WRITE_ONCE(msk->flags, 0);
3059 	msk->cb_flags = 0;
3060 	msk->push_pending = 0;
3061 	msk->recovery = false;
3062 	msk->can_ack = false;
3063 	msk->fully_established = false;
3064 	msk->rcv_data_fin = false;
3065 	msk->snd_data_fin_enable = false;
3066 	msk->rcv_fastclose = false;
3067 	msk->use_64bit_ack = false;
3068 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3069 	mptcp_pm_data_reset(msk);
3070 	mptcp_ca_reset(sk);
3071 	msk->bytes_acked = 0;
3072 	msk->bytes_received = 0;
3073 	msk->bytes_sent = 0;
3074 	msk->bytes_retrans = 0;
3075 
3076 	WRITE_ONCE(sk->sk_shutdown, 0);
3077 	sk_error_report(sk);
3078 	return 0;
3079 }
3080 
3081 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3082 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3083 {
3084 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
3085 
3086 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
3087 }
3088 #endif
3089 
3090 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3091 				 const struct mptcp_options_received *mp_opt,
3092 				 struct sock *ssk,
3093 				 struct request_sock *req)
3094 {
3095 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3096 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3097 	struct mptcp_sock *msk;
3098 
3099 	if (!nsk)
3100 		return NULL;
3101 
3102 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3103 	if (nsk->sk_family == AF_INET6)
3104 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3105 #endif
3106 
3107 	nsk->sk_wait_pending = 0;
3108 	__mptcp_init_sock(nsk);
3109 
3110 	msk = mptcp_sk(nsk);
3111 	msk->local_key = subflow_req->local_key;
3112 	msk->token = subflow_req->token;
3113 	WRITE_ONCE(msk->subflow, NULL);
3114 	msk->in_accept_queue = 1;
3115 	WRITE_ONCE(msk->fully_established, false);
3116 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3117 		WRITE_ONCE(msk->csum_enabled, true);
3118 
3119 	msk->write_seq = subflow_req->idsn + 1;
3120 	msk->snd_nxt = msk->write_seq;
3121 	msk->snd_una = msk->write_seq;
3122 	msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
3123 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3124 
3125 	/* passive msk is created after the first/MPC subflow */
3126 	msk->subflow_id = 2;
3127 
3128 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3129 	security_inet_csk_clone(nsk, req);
3130 
3131 	/* this can't race with mptcp_close(), as the msk is
3132 	 * not yet exposted to user-space
3133 	 */
3134 	inet_sk_state_store(nsk, TCP_ESTABLISHED);
3135 
3136 	/* The msk maintain a ref to each subflow in the connections list */
3137 	WRITE_ONCE(msk->first, ssk);
3138 	list_add(&mptcp_subflow_ctx(ssk)->node, &msk->conn_list);
3139 	sock_hold(ssk);
3140 
3141 	/* new mpc subflow takes ownership of the newly
3142 	 * created mptcp socket
3143 	 */
3144 	mptcp_token_accept(subflow_req, msk);
3145 
3146 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3147 	 * uses the correct data
3148 	 */
3149 	mptcp_copy_inaddrs(nsk, ssk);
3150 	mptcp_propagate_sndbuf(nsk, ssk);
3151 
3152 	mptcp_rcv_space_init(msk, ssk);
3153 	bh_unlock_sock(nsk);
3154 
3155 	/* note: the newly allocated socket refcount is 2 now */
3156 	return nsk;
3157 }
3158 
3159 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3160 {
3161 	const struct tcp_sock *tp = tcp_sk(ssk);
3162 
3163 	msk->rcvq_space.copied = 0;
3164 	msk->rcvq_space.rtt_us = 0;
3165 
3166 	msk->rcvq_space.time = tp->tcp_mstamp;
3167 
3168 	/* initial rcv_space offering made to peer */
3169 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3170 				      TCP_INIT_CWND * tp->advmss);
3171 	if (msk->rcvq_space.space == 0)
3172 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3173 
3174 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3175 }
3176 
3177 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
3178 				 bool kern)
3179 {
3180 	struct mptcp_sock *msk = mptcp_sk(sk);
3181 	struct socket *listener;
3182 	struct sock *newsk;
3183 
3184 	listener = READ_ONCE(msk->subflow);
3185 	if (WARN_ON_ONCE(!listener)) {
3186 		*err = -EINVAL;
3187 		return NULL;
3188 	}
3189 
3190 	pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
3191 	newsk = inet_csk_accept(listener->sk, flags, err, kern);
3192 	if (!newsk)
3193 		return NULL;
3194 
3195 	pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
3196 	if (sk_is_mptcp(newsk)) {
3197 		struct mptcp_subflow_context *subflow;
3198 		struct sock *new_mptcp_sock;
3199 
3200 		subflow = mptcp_subflow_ctx(newsk);
3201 		new_mptcp_sock = subflow->conn;
3202 
3203 		/* is_mptcp should be false if subflow->conn is missing, see
3204 		 * subflow_syn_recv_sock()
3205 		 */
3206 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3207 			tcp_sk(newsk)->is_mptcp = 0;
3208 			goto out;
3209 		}
3210 
3211 		newsk = new_mptcp_sock;
3212 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3213 	} else {
3214 		MPTCP_INC_STATS(sock_net(sk),
3215 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
3216 	}
3217 
3218 out:
3219 	newsk->sk_kern_sock = kern;
3220 	return newsk;
3221 }
3222 
3223 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
3224 {
3225 	struct mptcp_subflow_context *subflow, *tmp;
3226 	struct sock *sk = (struct sock *)msk;
3227 
3228 	__mptcp_clear_xmit(sk);
3229 
3230 	/* join list will be eventually flushed (with rst) at sock lock release time */
3231 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3232 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
3233 
3234 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3235 	mptcp_data_lock(sk);
3236 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3237 	__skb_queue_purge(&sk->sk_receive_queue);
3238 	skb_rbtree_purge(&msk->out_of_order_queue);
3239 	mptcp_data_unlock(sk);
3240 
3241 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3242 	 * inet_sock_destruct() will dispose it
3243 	 */
3244 	sk->sk_forward_alloc += msk->rmem_fwd_alloc;
3245 	msk->rmem_fwd_alloc = 0;
3246 	mptcp_token_destroy(msk);
3247 	mptcp_pm_free_anno_list(msk);
3248 	mptcp_free_local_addr_list(msk);
3249 }
3250 
3251 static void mptcp_destroy(struct sock *sk)
3252 {
3253 	struct mptcp_sock *msk = mptcp_sk(sk);
3254 
3255 	/* clears msk->subflow, allowing the following to close
3256 	 * even the initial subflow
3257 	 */
3258 	mptcp_dispose_initial_subflow(msk);
3259 	mptcp_destroy_common(msk, 0);
3260 	sk_sockets_allocated_dec(sk);
3261 }
3262 
3263 void __mptcp_data_acked(struct sock *sk)
3264 {
3265 	if (!sock_owned_by_user(sk))
3266 		__mptcp_clean_una(sk);
3267 	else
3268 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3269 
3270 	if (mptcp_pending_data_fin_ack(sk))
3271 		mptcp_schedule_work(sk);
3272 }
3273 
3274 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3275 {
3276 	if (!mptcp_send_head(sk))
3277 		return;
3278 
3279 	if (!sock_owned_by_user(sk))
3280 		__mptcp_subflow_push_pending(sk, ssk, false);
3281 	else
3282 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3283 }
3284 
3285 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3286 				      BIT(MPTCP_RETRANSMIT) | \
3287 				      BIT(MPTCP_FLUSH_JOIN_LIST))
3288 
3289 /* processes deferred events and flush wmem */
3290 static void mptcp_release_cb(struct sock *sk)
3291 	__must_hold(&sk->sk_lock.slock)
3292 {
3293 	struct mptcp_sock *msk = mptcp_sk(sk);
3294 
3295 	for (;;) {
3296 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) |
3297 				      msk->push_pending;
3298 		struct list_head join_list;
3299 
3300 		if (!flags)
3301 			break;
3302 
3303 		INIT_LIST_HEAD(&join_list);
3304 		list_splice_init(&msk->join_list, &join_list);
3305 
3306 		/* the following actions acquire the subflow socket lock
3307 		 *
3308 		 * 1) can't be invoked in atomic scope
3309 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3310 		 *    datapath acquires the msk socket spinlock while helding
3311 		 *    the subflow socket lock
3312 		 */
3313 		msk->push_pending = 0;
3314 		msk->cb_flags &= ~flags;
3315 		spin_unlock_bh(&sk->sk_lock.slock);
3316 
3317 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3318 			__mptcp_flush_join_list(sk, &join_list);
3319 		if (flags & BIT(MPTCP_PUSH_PENDING))
3320 			__mptcp_push_pending(sk, 0);
3321 		if (flags & BIT(MPTCP_RETRANSMIT))
3322 			__mptcp_retrans(sk);
3323 
3324 		cond_resched();
3325 		spin_lock_bh(&sk->sk_lock.slock);
3326 	}
3327 
3328 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3329 		__mptcp_clean_una_wakeup(sk);
3330 	if (unlikely(msk->cb_flags)) {
3331 		/* be sure to set the current sk state before tacking actions
3332 		 * depending on sk_state, that is processing MPTCP_ERROR_REPORT
3333 		 */
3334 		if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags))
3335 			__mptcp_set_connected(sk);
3336 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3337 			__mptcp_error_report(sk);
3338 		if (__test_and_clear_bit(MPTCP_RESET_SCHEDULER, &msk->cb_flags))
3339 			msk->last_snd = NULL;
3340 	}
3341 
3342 	__mptcp_update_rmem(sk);
3343 }
3344 
3345 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3346  * TCP can't schedule delack timer before the subflow is fully established.
3347  * MPTCP uses the delack timer to do 3rd ack retransmissions
3348  */
3349 static void schedule_3rdack_retransmission(struct sock *ssk)
3350 {
3351 	struct inet_connection_sock *icsk = inet_csk(ssk);
3352 	struct tcp_sock *tp = tcp_sk(ssk);
3353 	unsigned long timeout;
3354 
3355 	if (mptcp_subflow_ctx(ssk)->fully_established)
3356 		return;
3357 
3358 	/* reschedule with a timeout above RTT, as we must look only for drop */
3359 	if (tp->srtt_us)
3360 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3361 	else
3362 		timeout = TCP_TIMEOUT_INIT;
3363 	timeout += jiffies;
3364 
3365 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3366 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3367 	icsk->icsk_ack.timeout = timeout;
3368 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3369 }
3370 
3371 void mptcp_subflow_process_delegated(struct sock *ssk)
3372 {
3373 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3374 	struct sock *sk = subflow->conn;
3375 
3376 	if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) {
3377 		mptcp_data_lock(sk);
3378 		if (!sock_owned_by_user(sk))
3379 			__mptcp_subflow_push_pending(sk, ssk, true);
3380 		else
3381 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3382 		mptcp_data_unlock(sk);
3383 		mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND);
3384 	}
3385 	if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) {
3386 		schedule_3rdack_retransmission(ssk);
3387 		mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK);
3388 	}
3389 }
3390 
3391 static int mptcp_hash(struct sock *sk)
3392 {
3393 	/* should never be called,
3394 	 * we hash the TCP subflows not the master socket
3395 	 */
3396 	WARN_ON_ONCE(1);
3397 	return 0;
3398 }
3399 
3400 static void mptcp_unhash(struct sock *sk)
3401 {
3402 	/* called from sk_common_release(), but nothing to do here */
3403 }
3404 
3405 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3406 {
3407 	struct mptcp_sock *msk = mptcp_sk(sk);
3408 	struct socket *ssock;
3409 
3410 	ssock = msk->subflow;
3411 	pr_debug("msk=%p, subflow=%p", msk, ssock);
3412 	if (WARN_ON_ONCE(!ssock))
3413 		return -EINVAL;
3414 
3415 	return inet_csk_get_port(ssock->sk, snum);
3416 }
3417 
3418 void mptcp_finish_connect(struct sock *ssk)
3419 {
3420 	struct mptcp_subflow_context *subflow;
3421 	struct mptcp_sock *msk;
3422 	struct sock *sk;
3423 
3424 	subflow = mptcp_subflow_ctx(ssk);
3425 	sk = subflow->conn;
3426 	msk = mptcp_sk(sk);
3427 
3428 	pr_debug("msk=%p, token=%u", sk, subflow->token);
3429 
3430 	subflow->map_seq = subflow->iasn;
3431 	subflow->map_subflow_seq = 1;
3432 
3433 	/* the socket is not connected yet, no msk/subflow ops can access/race
3434 	 * accessing the field below
3435 	 */
3436 	WRITE_ONCE(msk->local_key, subflow->local_key);
3437 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
3438 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3439 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3440 
3441 	mptcp_pm_new_connection(msk, ssk, 0);
3442 
3443 	mptcp_rcv_space_init(msk, ssk);
3444 }
3445 
3446 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3447 {
3448 	write_lock_bh(&sk->sk_callback_lock);
3449 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3450 	sk_set_socket(sk, parent);
3451 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3452 	write_unlock_bh(&sk->sk_callback_lock);
3453 }
3454 
3455 bool mptcp_finish_join(struct sock *ssk)
3456 {
3457 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3458 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3459 	struct sock *parent = (void *)msk;
3460 	bool ret = true;
3461 
3462 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3463 
3464 	/* mptcp socket already closing? */
3465 	if (!mptcp_is_fully_established(parent)) {
3466 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3467 		return false;
3468 	}
3469 
3470 	/* active subflow, already present inside the conn_list */
3471 	if (!list_empty(&subflow->node)) {
3472 		mptcp_subflow_joined(msk, ssk);
3473 		return true;
3474 	}
3475 
3476 	if (!mptcp_pm_allow_new_subflow(msk))
3477 		goto err_prohibited;
3478 
3479 	/* If we can't acquire msk socket lock here, let the release callback
3480 	 * handle it
3481 	 */
3482 	mptcp_data_lock(parent);
3483 	if (!sock_owned_by_user(parent)) {
3484 		ret = __mptcp_finish_join(msk, ssk);
3485 		if (ret) {
3486 			sock_hold(ssk);
3487 			list_add_tail(&subflow->node, &msk->conn_list);
3488 		}
3489 	} else {
3490 		sock_hold(ssk);
3491 		list_add_tail(&subflow->node, &msk->join_list);
3492 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3493 	}
3494 	mptcp_data_unlock(parent);
3495 
3496 	if (!ret) {
3497 err_prohibited:
3498 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3499 		return false;
3500 	}
3501 
3502 	return true;
3503 }
3504 
3505 static void mptcp_shutdown(struct sock *sk, int how)
3506 {
3507 	pr_debug("sk=%p, how=%d", sk, how);
3508 
3509 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3510 		__mptcp_wr_shutdown(sk);
3511 }
3512 
3513 static int mptcp_forward_alloc_get(const struct sock *sk)
3514 {
3515 	return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc;
3516 }
3517 
3518 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3519 {
3520 	const struct sock *sk = (void *)msk;
3521 	u64 delta;
3522 
3523 	if (sk->sk_state == TCP_LISTEN)
3524 		return -EINVAL;
3525 
3526 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3527 		return 0;
3528 
3529 	delta = msk->write_seq - v;
3530 	if (__mptcp_check_fallback(msk) && msk->first) {
3531 		struct tcp_sock *tp = tcp_sk(msk->first);
3532 
3533 		/* the first subflow is disconnected after close - see
3534 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3535 		 * so ignore that status, too.
3536 		 */
3537 		if (!((1 << msk->first->sk_state) &
3538 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3539 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3540 	}
3541 	if (delta > INT_MAX)
3542 		delta = INT_MAX;
3543 
3544 	return (int)delta;
3545 }
3546 
3547 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3548 {
3549 	struct mptcp_sock *msk = mptcp_sk(sk);
3550 	bool slow;
3551 
3552 	switch (cmd) {
3553 	case SIOCINQ:
3554 		if (sk->sk_state == TCP_LISTEN)
3555 			return -EINVAL;
3556 
3557 		lock_sock(sk);
3558 		__mptcp_move_skbs(msk);
3559 		*karg = mptcp_inq_hint(sk);
3560 		release_sock(sk);
3561 		break;
3562 	case SIOCOUTQ:
3563 		slow = lock_sock_fast(sk);
3564 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3565 		unlock_sock_fast(sk, slow);
3566 		break;
3567 	case SIOCOUTQNSD:
3568 		slow = lock_sock_fast(sk);
3569 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3570 		unlock_sock_fast(sk, slow);
3571 		break;
3572 	default:
3573 		return -ENOIOCTLCMD;
3574 	}
3575 
3576 	return 0;
3577 }
3578 
3579 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3580 					 struct mptcp_subflow_context *subflow)
3581 {
3582 	subflow->request_mptcp = 0;
3583 	__mptcp_do_fallback(msk);
3584 }
3585 
3586 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3587 {
3588 	struct mptcp_subflow_context *subflow;
3589 	struct mptcp_sock *msk = mptcp_sk(sk);
3590 	struct socket *ssock;
3591 	int err = -EINVAL;
3592 
3593 	ssock = __mptcp_nmpc_socket(msk);
3594 	if (IS_ERR(ssock))
3595 		return PTR_ERR(ssock);
3596 
3597 	mptcp_token_destroy(msk);
3598 	inet_sk_state_store(sk, TCP_SYN_SENT);
3599 	subflow = mptcp_subflow_ctx(ssock->sk);
3600 #ifdef CONFIG_TCP_MD5SIG
3601 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3602 	 * TCP option space.
3603 	 */
3604 	if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
3605 		mptcp_subflow_early_fallback(msk, subflow);
3606 #endif
3607 	if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) {
3608 		MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT);
3609 		mptcp_subflow_early_fallback(msk, subflow);
3610 	}
3611 	if (likely(!__mptcp_check_fallback(msk)))
3612 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3613 
3614 	/* if reaching here via the fastopen/sendmsg path, the caller already
3615 	 * acquired the subflow socket lock, too.
3616 	 */
3617 	if (msk->fastopening)
3618 		err = __inet_stream_connect(ssock, uaddr, addr_len, O_NONBLOCK, 1);
3619 	else
3620 		err = inet_stream_connect(ssock, uaddr, addr_len, O_NONBLOCK);
3621 	inet_sk(sk)->defer_connect = inet_sk(ssock->sk)->defer_connect;
3622 
3623 	/* on successful connect, the msk state will be moved to established by
3624 	 * subflow_finish_connect()
3625 	 */
3626 	if (unlikely(err && err != -EINPROGRESS)) {
3627 		inet_sk_state_store(sk, inet_sk_state_load(ssock->sk));
3628 		return err;
3629 	}
3630 
3631 	mptcp_copy_inaddrs(sk, ssock->sk);
3632 
3633 	/* silence EINPROGRESS and let the caller inet_stream_connect
3634 	 * handle the connection in progress
3635 	 */
3636 	return 0;
3637 }
3638 
3639 static struct proto mptcp_prot = {
3640 	.name		= "MPTCP",
3641 	.owner		= THIS_MODULE,
3642 	.init		= mptcp_init_sock,
3643 	.connect	= mptcp_connect,
3644 	.disconnect	= mptcp_disconnect,
3645 	.close		= mptcp_close,
3646 	.accept		= mptcp_accept,
3647 	.setsockopt	= mptcp_setsockopt,
3648 	.getsockopt	= mptcp_getsockopt,
3649 	.shutdown	= mptcp_shutdown,
3650 	.destroy	= mptcp_destroy,
3651 	.sendmsg	= mptcp_sendmsg,
3652 	.ioctl		= mptcp_ioctl,
3653 	.recvmsg	= mptcp_recvmsg,
3654 	.release_cb	= mptcp_release_cb,
3655 	.hash		= mptcp_hash,
3656 	.unhash		= mptcp_unhash,
3657 	.get_port	= mptcp_get_port,
3658 	.forward_alloc_get	= mptcp_forward_alloc_get,
3659 	.sockets_allocated	= &mptcp_sockets_allocated,
3660 
3661 	.memory_allocated	= &tcp_memory_allocated,
3662 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3663 
3664 	.memory_pressure	= &tcp_memory_pressure,
3665 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3666 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3667 	.sysctl_mem	= sysctl_tcp_mem,
3668 	.obj_size	= sizeof(struct mptcp_sock),
3669 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3670 	.no_autobind	= true,
3671 };
3672 
3673 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3674 {
3675 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3676 	struct socket *ssock;
3677 	int err;
3678 
3679 	lock_sock(sock->sk);
3680 	ssock = __mptcp_nmpc_socket(msk);
3681 	if (IS_ERR(ssock)) {
3682 		err = PTR_ERR(ssock);
3683 		goto unlock;
3684 	}
3685 
3686 	err = READ_ONCE(ssock->ops)->bind(ssock, uaddr, addr_len);
3687 	if (!err)
3688 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3689 
3690 unlock:
3691 	release_sock(sock->sk);
3692 	return err;
3693 }
3694 
3695 static int mptcp_listen(struct socket *sock, int backlog)
3696 {
3697 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3698 	struct sock *sk = sock->sk;
3699 	struct socket *ssock;
3700 	int err;
3701 
3702 	pr_debug("msk=%p", msk);
3703 
3704 	lock_sock(sk);
3705 
3706 	err = -EINVAL;
3707 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3708 		goto unlock;
3709 
3710 	ssock = __mptcp_nmpc_socket(msk);
3711 	if (IS_ERR(ssock)) {
3712 		err = PTR_ERR(ssock);
3713 		goto unlock;
3714 	}
3715 
3716 	mptcp_token_destroy(msk);
3717 	inet_sk_state_store(sk, TCP_LISTEN);
3718 	sock_set_flag(sk, SOCK_RCU_FREE);
3719 
3720 	err = READ_ONCE(ssock->ops)->listen(ssock, backlog);
3721 	inet_sk_state_store(sk, inet_sk_state_load(ssock->sk));
3722 	if (!err) {
3723 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3724 		mptcp_copy_inaddrs(sk, ssock->sk);
3725 		mptcp_event_pm_listener(ssock->sk, MPTCP_EVENT_LISTENER_CREATED);
3726 	}
3727 
3728 unlock:
3729 	release_sock(sk);
3730 	return err;
3731 }
3732 
3733 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3734 			       int flags, bool kern)
3735 {
3736 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3737 	struct socket *ssock;
3738 	struct sock *newsk;
3739 	int err;
3740 
3741 	pr_debug("msk=%p", msk);
3742 
3743 	/* Buggy applications can call accept on socket states other then LISTEN
3744 	 * but no need to allocate the first subflow just to error out.
3745 	 */
3746 	ssock = READ_ONCE(msk->subflow);
3747 	if (!ssock)
3748 		return -EINVAL;
3749 
3750 	newsk = mptcp_accept(sock->sk, flags, &err, kern);
3751 	if (!newsk)
3752 		return err;
3753 
3754 	lock_sock(newsk);
3755 
3756 	__inet_accept(sock, newsock, newsk);
3757 	if (!mptcp_is_tcpsk(newsock->sk)) {
3758 		struct mptcp_sock *msk = mptcp_sk(newsk);
3759 		struct mptcp_subflow_context *subflow;
3760 
3761 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3762 		msk->in_accept_queue = 0;
3763 
3764 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3765 		 * This is needed so NOSPACE flag can be set from tcp stack.
3766 		 */
3767 		mptcp_for_each_subflow(msk, subflow) {
3768 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3769 
3770 			if (!ssk->sk_socket)
3771 				mptcp_sock_graft(ssk, newsock);
3772 		}
3773 
3774 		/* Do late cleanup for the first subflow as necessary. Also
3775 		 * deal with bad peers not doing a complete shutdown.
3776 		 */
3777 		if (msk->first &&
3778 		    unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
3779 			__mptcp_close_ssk(newsk, msk->first,
3780 					  mptcp_subflow_ctx(msk->first), 0);
3781 			if (unlikely(list_empty(&msk->conn_list)))
3782 				inet_sk_state_store(newsk, TCP_CLOSE);
3783 		}
3784 	}
3785 	release_sock(newsk);
3786 
3787 	return 0;
3788 }
3789 
3790 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3791 {
3792 	struct sock *sk = (struct sock *)msk;
3793 
3794 	if (sk_stream_is_writeable(sk))
3795 		return EPOLLOUT | EPOLLWRNORM;
3796 
3797 	mptcp_set_nospace(sk);
3798 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3799 	if (sk_stream_is_writeable(sk))
3800 		return EPOLLOUT | EPOLLWRNORM;
3801 
3802 	return 0;
3803 }
3804 
3805 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3806 			   struct poll_table_struct *wait)
3807 {
3808 	struct sock *sk = sock->sk;
3809 	struct mptcp_sock *msk;
3810 	__poll_t mask = 0;
3811 	u8 shutdown;
3812 	int state;
3813 
3814 	msk = mptcp_sk(sk);
3815 	sock_poll_wait(file, sock, wait);
3816 
3817 	state = inet_sk_state_load(sk);
3818 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3819 	if (state == TCP_LISTEN) {
3820 		struct socket *ssock = READ_ONCE(msk->subflow);
3821 
3822 		if (WARN_ON_ONCE(!ssock || !ssock->sk))
3823 			return 0;
3824 
3825 		return inet_csk_listen_poll(ssock->sk);
3826 	}
3827 
3828 	shutdown = READ_ONCE(sk->sk_shutdown);
3829 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3830 		mask |= EPOLLHUP;
3831 	if (shutdown & RCV_SHUTDOWN)
3832 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3833 
3834 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3835 		mask |= mptcp_check_readable(msk);
3836 		if (shutdown & SEND_SHUTDOWN)
3837 			mask |= EPOLLOUT | EPOLLWRNORM;
3838 		else
3839 			mask |= mptcp_check_writeable(msk);
3840 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
3841 		/* cf tcp_poll() note about TFO */
3842 		mask |= EPOLLOUT | EPOLLWRNORM;
3843 	}
3844 
3845 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
3846 	smp_rmb();
3847 	if (READ_ONCE(sk->sk_err))
3848 		mask |= EPOLLERR;
3849 
3850 	return mask;
3851 }
3852 
3853 static const struct proto_ops mptcp_stream_ops = {
3854 	.family		   = PF_INET,
3855 	.owner		   = THIS_MODULE,
3856 	.release	   = inet_release,
3857 	.bind		   = mptcp_bind,
3858 	.connect	   = inet_stream_connect,
3859 	.socketpair	   = sock_no_socketpair,
3860 	.accept		   = mptcp_stream_accept,
3861 	.getname	   = inet_getname,
3862 	.poll		   = mptcp_poll,
3863 	.ioctl		   = inet_ioctl,
3864 	.gettstamp	   = sock_gettstamp,
3865 	.listen		   = mptcp_listen,
3866 	.shutdown	   = inet_shutdown,
3867 	.setsockopt	   = sock_common_setsockopt,
3868 	.getsockopt	   = sock_common_getsockopt,
3869 	.sendmsg	   = inet_sendmsg,
3870 	.recvmsg	   = inet_recvmsg,
3871 	.mmap		   = sock_no_mmap,
3872 };
3873 
3874 static struct inet_protosw mptcp_protosw = {
3875 	.type		= SOCK_STREAM,
3876 	.protocol	= IPPROTO_MPTCP,
3877 	.prot		= &mptcp_prot,
3878 	.ops		= &mptcp_stream_ops,
3879 	.flags		= INET_PROTOSW_ICSK,
3880 };
3881 
3882 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3883 {
3884 	struct mptcp_delegated_action *delegated;
3885 	struct mptcp_subflow_context *subflow;
3886 	int work_done = 0;
3887 
3888 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3889 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3890 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3891 
3892 		bh_lock_sock_nested(ssk);
3893 		if (!sock_owned_by_user(ssk) &&
3894 		    mptcp_subflow_has_delegated_action(subflow))
3895 			mptcp_subflow_process_delegated(ssk);
3896 		/* ... elsewhere tcp_release_cb_override already processed
3897 		 * the action or will do at next release_sock().
3898 		 * In both case must dequeue the subflow here - on the same
3899 		 * CPU that scheduled it.
3900 		 */
3901 		bh_unlock_sock(ssk);
3902 		sock_put(ssk);
3903 
3904 		if (++work_done == budget)
3905 			return budget;
3906 	}
3907 
3908 	/* always provide a 0 'work_done' argument, so that napi_complete_done
3909 	 * will not try accessing the NULL napi->dev ptr
3910 	 */
3911 	napi_complete_done(napi, 0);
3912 	return work_done;
3913 }
3914 
3915 void __init mptcp_proto_init(void)
3916 {
3917 	struct mptcp_delegated_action *delegated;
3918 	int cpu;
3919 
3920 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
3921 
3922 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
3923 		panic("Failed to allocate MPTCP pcpu counter\n");
3924 
3925 	init_dummy_netdev(&mptcp_napi_dev);
3926 	for_each_possible_cpu(cpu) {
3927 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
3928 		INIT_LIST_HEAD(&delegated->head);
3929 		netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
3930 				  mptcp_napi_poll);
3931 		napi_enable(&delegated->napi);
3932 	}
3933 
3934 	mptcp_subflow_init();
3935 	mptcp_pm_init();
3936 	mptcp_token_init();
3937 
3938 	if (proto_register(&mptcp_prot, 1) != 0)
3939 		panic("Failed to register MPTCP proto.\n");
3940 
3941 	inet_register_protosw(&mptcp_protosw);
3942 
3943 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
3944 }
3945 
3946 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3947 static const struct proto_ops mptcp_v6_stream_ops = {
3948 	.family		   = PF_INET6,
3949 	.owner		   = THIS_MODULE,
3950 	.release	   = inet6_release,
3951 	.bind		   = mptcp_bind,
3952 	.connect	   = inet_stream_connect,
3953 	.socketpair	   = sock_no_socketpair,
3954 	.accept		   = mptcp_stream_accept,
3955 	.getname	   = inet6_getname,
3956 	.poll		   = mptcp_poll,
3957 	.ioctl		   = inet6_ioctl,
3958 	.gettstamp	   = sock_gettstamp,
3959 	.listen		   = mptcp_listen,
3960 	.shutdown	   = inet_shutdown,
3961 	.setsockopt	   = sock_common_setsockopt,
3962 	.getsockopt	   = sock_common_getsockopt,
3963 	.sendmsg	   = inet6_sendmsg,
3964 	.recvmsg	   = inet6_recvmsg,
3965 	.mmap		   = sock_no_mmap,
3966 #ifdef CONFIG_COMPAT
3967 	.compat_ioctl	   = inet6_compat_ioctl,
3968 #endif
3969 };
3970 
3971 static struct proto mptcp_v6_prot;
3972 
3973 static struct inet_protosw mptcp_v6_protosw = {
3974 	.type		= SOCK_STREAM,
3975 	.protocol	= IPPROTO_MPTCP,
3976 	.prot		= &mptcp_v6_prot,
3977 	.ops		= &mptcp_v6_stream_ops,
3978 	.flags		= INET_PROTOSW_ICSK,
3979 };
3980 
3981 int __init mptcp_proto_v6_init(void)
3982 {
3983 	int err;
3984 
3985 	mptcp_v6_prot = mptcp_prot;
3986 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
3987 	mptcp_v6_prot.slab = NULL;
3988 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
3989 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
3990 
3991 	err = proto_register(&mptcp_v6_prot, 1);
3992 	if (err)
3993 		return err;
3994 
3995 	err = inet6_register_protosw(&mptcp_v6_protosw);
3996 	if (err)
3997 		proto_unregister(&mptcp_v6_prot);
3998 
3999 	return err;
4000 }
4001 #endif
4002