1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <linux/igmp.h> 15 #include <net/sock.h> 16 #include <net/inet_common.h> 17 #include <net/inet_hashtables.h> 18 #include <net/protocol.h> 19 #include <net/tcp.h> 20 #include <net/tcp_states.h> 21 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 22 #include <net/transp_v6.h> 23 #include <net/addrconf.h> 24 #endif 25 #include <net/mptcp.h> 26 #include <net/xfrm.h> 27 #include "protocol.h" 28 #include "mib.h" 29 30 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 31 struct mptcp6_sock { 32 struct mptcp_sock msk; 33 struct ipv6_pinfo np; 34 }; 35 #endif 36 37 struct mptcp_skb_cb { 38 u64 map_seq; 39 u64 end_seq; 40 u32 offset; 41 }; 42 43 #define MPTCP_SKB_CB(__skb) ((struct mptcp_skb_cb *)&((__skb)->cb[0])) 44 45 static struct percpu_counter mptcp_sockets_allocated; 46 47 static void __mptcp_destroy_sock(struct sock *sk); 48 static void __mptcp_check_send_data_fin(struct sock *sk); 49 50 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 51 static struct net_device mptcp_napi_dev; 52 53 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not 54 * completed yet or has failed, return the subflow socket. 55 * Otherwise return NULL. 56 */ 57 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk) 58 { 59 if (!msk->subflow || READ_ONCE(msk->can_ack)) 60 return NULL; 61 62 return msk->subflow; 63 } 64 65 /* Returns end sequence number of the receiver's advertised window */ 66 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 67 { 68 return READ_ONCE(msk->wnd_end); 69 } 70 71 static bool mptcp_is_tcpsk(struct sock *sk) 72 { 73 struct socket *sock = sk->sk_socket; 74 75 if (unlikely(sk->sk_prot == &tcp_prot)) { 76 /* we are being invoked after mptcp_accept() has 77 * accepted a non-mp-capable flow: sk is a tcp_sk, 78 * not an mptcp one. 79 * 80 * Hand the socket over to tcp so all further socket ops 81 * bypass mptcp. 82 */ 83 sock->ops = &inet_stream_ops; 84 return true; 85 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 86 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { 87 sock->ops = &inet6_stream_ops; 88 return true; 89 #endif 90 } 91 92 return false; 93 } 94 95 static struct sock *__mptcp_tcp_fallback(struct mptcp_sock *msk) 96 { 97 sock_owned_by_me((const struct sock *)msk); 98 99 if (likely(!__mptcp_check_fallback(msk))) 100 return NULL; 101 102 return msk->first; 103 } 104 105 static int __mptcp_socket_create(struct mptcp_sock *msk) 106 { 107 struct mptcp_subflow_context *subflow; 108 struct sock *sk = (struct sock *)msk; 109 struct socket *ssock; 110 int err; 111 112 err = mptcp_subflow_create_socket(sk, &ssock); 113 if (err) 114 return err; 115 116 msk->first = ssock->sk; 117 msk->subflow = ssock; 118 subflow = mptcp_subflow_ctx(ssock->sk); 119 list_add(&subflow->node, &msk->conn_list); 120 sock_hold(ssock->sk); 121 subflow->request_mptcp = 1; 122 mptcp_sock_graft(msk->first, sk->sk_socket); 123 124 return 0; 125 } 126 127 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 128 { 129 sk_drops_add(sk, skb); 130 __kfree_skb(skb); 131 } 132 133 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 134 struct sk_buff *from) 135 { 136 bool fragstolen; 137 int delta; 138 139 if (MPTCP_SKB_CB(from)->offset || 140 !skb_try_coalesce(to, from, &fragstolen, &delta)) 141 return false; 142 143 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 144 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 145 to->len, MPTCP_SKB_CB(from)->end_seq); 146 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 147 kfree_skb_partial(from, fragstolen); 148 atomic_add(delta, &sk->sk_rmem_alloc); 149 sk_mem_charge(sk, delta); 150 return true; 151 } 152 153 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 154 struct sk_buff *from) 155 { 156 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 157 return false; 158 159 return mptcp_try_coalesce((struct sock *)msk, to, from); 160 } 161 162 /* "inspired" by tcp_data_queue_ofo(), main differences: 163 * - use mptcp seqs 164 * - don't cope with sacks 165 */ 166 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 167 { 168 struct sock *sk = (struct sock *)msk; 169 struct rb_node **p, *parent; 170 u64 seq, end_seq, max_seq; 171 struct sk_buff *skb1; 172 173 seq = MPTCP_SKB_CB(skb)->map_seq; 174 end_seq = MPTCP_SKB_CB(skb)->end_seq; 175 max_seq = READ_ONCE(msk->rcv_wnd_sent); 176 177 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 178 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 179 if (after64(end_seq, max_seq)) { 180 /* out of window */ 181 mptcp_drop(sk, skb); 182 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 183 (unsigned long long)end_seq - (unsigned long)max_seq, 184 (unsigned long long)msk->rcv_wnd_sent); 185 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 186 return; 187 } 188 189 p = &msk->out_of_order_queue.rb_node; 190 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 191 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 192 rb_link_node(&skb->rbnode, NULL, p); 193 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 194 msk->ooo_last_skb = skb; 195 goto end; 196 } 197 198 /* with 2 subflows, adding at end of ooo queue is quite likely 199 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 200 */ 201 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 202 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 203 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 204 return; 205 } 206 207 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 208 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 209 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 210 parent = &msk->ooo_last_skb->rbnode; 211 p = &parent->rb_right; 212 goto insert; 213 } 214 215 /* Find place to insert this segment. Handle overlaps on the way. */ 216 parent = NULL; 217 while (*p) { 218 parent = *p; 219 skb1 = rb_to_skb(parent); 220 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 221 p = &parent->rb_left; 222 continue; 223 } 224 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 225 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 226 /* All the bits are present. Drop. */ 227 mptcp_drop(sk, skb); 228 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 229 return; 230 } 231 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 232 /* partial overlap: 233 * | skb | 234 * | skb1 | 235 * continue traversing 236 */ 237 } else { 238 /* skb's seq == skb1's seq and skb covers skb1. 239 * Replace skb1 with skb. 240 */ 241 rb_replace_node(&skb1->rbnode, &skb->rbnode, 242 &msk->out_of_order_queue); 243 mptcp_drop(sk, skb1); 244 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 245 goto merge_right; 246 } 247 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 248 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 249 return; 250 } 251 p = &parent->rb_right; 252 } 253 254 insert: 255 /* Insert segment into RB tree. */ 256 rb_link_node(&skb->rbnode, parent, p); 257 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 258 259 merge_right: 260 /* Remove other segments covered by skb. */ 261 while ((skb1 = skb_rb_next(skb)) != NULL) { 262 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 263 break; 264 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 265 mptcp_drop(sk, skb1); 266 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 267 } 268 /* If there is no skb after us, we are the last_skb ! */ 269 if (!skb1) 270 msk->ooo_last_skb = skb; 271 272 end: 273 skb_condense(skb); 274 skb_set_owner_r(skb, sk); 275 } 276 277 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 278 struct sk_buff *skb, unsigned int offset, 279 size_t copy_len) 280 { 281 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 282 struct sock *sk = (struct sock *)msk; 283 struct sk_buff *tail; 284 285 __skb_unlink(skb, &ssk->sk_receive_queue); 286 287 skb_ext_reset(skb); 288 skb_orphan(skb); 289 290 /* try to fetch required memory from subflow */ 291 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 292 if (ssk->sk_forward_alloc < skb->truesize) 293 goto drop; 294 __sk_mem_reclaim(ssk, skb->truesize); 295 if (!sk_rmem_schedule(sk, skb, skb->truesize)) 296 goto drop; 297 } 298 299 /* the skb map_seq accounts for the skb offset: 300 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 301 * value 302 */ 303 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 304 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 305 MPTCP_SKB_CB(skb)->offset = offset; 306 307 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 308 /* in sequence */ 309 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 310 tail = skb_peek_tail(&sk->sk_receive_queue); 311 if (tail && mptcp_try_coalesce(sk, tail, skb)) 312 return true; 313 314 skb_set_owner_r(skb, sk); 315 __skb_queue_tail(&sk->sk_receive_queue, skb); 316 return true; 317 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 318 mptcp_data_queue_ofo(msk, skb); 319 return false; 320 } 321 322 /* old data, keep it simple and drop the whole pkt, sender 323 * will retransmit as needed, if needed. 324 */ 325 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 326 drop: 327 mptcp_drop(sk, skb); 328 return false; 329 } 330 331 static void mptcp_stop_timer(struct sock *sk) 332 { 333 struct inet_connection_sock *icsk = inet_csk(sk); 334 335 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 336 mptcp_sk(sk)->timer_ival = 0; 337 } 338 339 static void mptcp_close_wake_up(struct sock *sk) 340 { 341 if (sock_flag(sk, SOCK_DEAD)) 342 return; 343 344 sk->sk_state_change(sk); 345 if (sk->sk_shutdown == SHUTDOWN_MASK || 346 sk->sk_state == TCP_CLOSE) 347 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 348 else 349 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 350 } 351 352 static bool mptcp_pending_data_fin_ack(struct sock *sk) 353 { 354 struct mptcp_sock *msk = mptcp_sk(sk); 355 356 return !__mptcp_check_fallback(msk) && 357 ((1 << sk->sk_state) & 358 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 359 msk->write_seq == READ_ONCE(msk->snd_una); 360 } 361 362 static void mptcp_check_data_fin_ack(struct sock *sk) 363 { 364 struct mptcp_sock *msk = mptcp_sk(sk); 365 366 /* Look for an acknowledged DATA_FIN */ 367 if (mptcp_pending_data_fin_ack(sk)) { 368 WRITE_ONCE(msk->snd_data_fin_enable, 0); 369 370 switch (sk->sk_state) { 371 case TCP_FIN_WAIT1: 372 inet_sk_state_store(sk, TCP_FIN_WAIT2); 373 break; 374 case TCP_CLOSING: 375 case TCP_LAST_ACK: 376 inet_sk_state_store(sk, TCP_CLOSE); 377 break; 378 } 379 380 mptcp_close_wake_up(sk); 381 } 382 } 383 384 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 385 { 386 struct mptcp_sock *msk = mptcp_sk(sk); 387 388 if (READ_ONCE(msk->rcv_data_fin) && 389 ((1 << sk->sk_state) & 390 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 391 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 392 393 if (msk->ack_seq == rcv_data_fin_seq) { 394 if (seq) 395 *seq = rcv_data_fin_seq; 396 397 return true; 398 } 399 } 400 401 return false; 402 } 403 404 static void mptcp_set_timeout(const struct sock *sk, const struct sock *ssk) 405 { 406 long tout = ssk && inet_csk(ssk)->icsk_pending ? 407 inet_csk(ssk)->icsk_timeout - jiffies : 0; 408 409 if (tout <= 0) 410 tout = mptcp_sk(sk)->timer_ival; 411 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 412 } 413 414 static bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 415 { 416 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 417 418 /* can't send if JOIN hasn't completed yet (i.e. is usable for mptcp) */ 419 if (subflow->request_join && !subflow->fully_established) 420 return false; 421 422 /* only send if our side has not closed yet */ 423 return ((1 << ssk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)); 424 } 425 426 static bool tcp_can_send_ack(const struct sock *ssk) 427 { 428 return !((1 << inet_sk_state_load(ssk)) & 429 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 430 } 431 432 static void mptcp_send_ack(struct mptcp_sock *msk) 433 { 434 struct mptcp_subflow_context *subflow; 435 436 mptcp_for_each_subflow(msk, subflow) { 437 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 438 439 lock_sock(ssk); 440 if (tcp_can_send_ack(ssk)) 441 tcp_send_ack(ssk); 442 release_sock(ssk); 443 } 444 } 445 446 static bool mptcp_subflow_cleanup_rbuf(struct sock *ssk) 447 { 448 int ret; 449 450 lock_sock(ssk); 451 ret = tcp_can_send_ack(ssk); 452 if (ret) 453 tcp_cleanup_rbuf(ssk, 1); 454 release_sock(ssk); 455 return ret; 456 } 457 458 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 459 { 460 struct sock *ack_hint = READ_ONCE(msk->ack_hint); 461 int old_space = READ_ONCE(msk->old_wspace); 462 struct mptcp_subflow_context *subflow; 463 struct sock *sk = (struct sock *)msk; 464 bool cleanup; 465 466 /* this is a simple superset of what tcp_cleanup_rbuf() implements 467 * so that we don't have to acquire the ssk socket lock most of the time 468 * to do actually nothing 469 */ 470 cleanup = __mptcp_space(sk) - old_space >= max(0, old_space); 471 if (!cleanup) 472 return; 473 474 /* if the hinted ssk is still active, try to use it */ 475 if (likely(ack_hint)) { 476 mptcp_for_each_subflow(msk, subflow) { 477 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 478 479 if (ack_hint == ssk && mptcp_subflow_cleanup_rbuf(ssk)) 480 return; 481 } 482 } 483 484 /* otherwise pick the first active subflow */ 485 mptcp_for_each_subflow(msk, subflow) 486 if (mptcp_subflow_cleanup_rbuf(mptcp_subflow_tcp_sock(subflow))) 487 return; 488 } 489 490 static bool mptcp_check_data_fin(struct sock *sk) 491 { 492 struct mptcp_sock *msk = mptcp_sk(sk); 493 u64 rcv_data_fin_seq; 494 bool ret = false; 495 496 if (__mptcp_check_fallback(msk) || !msk->first) 497 return ret; 498 499 /* Need to ack a DATA_FIN received from a peer while this side 500 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 501 * msk->rcv_data_fin was set when parsing the incoming options 502 * at the subflow level and the msk lock was not held, so this 503 * is the first opportunity to act on the DATA_FIN and change 504 * the msk state. 505 * 506 * If we are caught up to the sequence number of the incoming 507 * DATA_FIN, send the DATA_ACK now and do state transition. If 508 * not caught up, do nothing and let the recv code send DATA_ACK 509 * when catching up. 510 */ 511 512 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 513 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 514 WRITE_ONCE(msk->rcv_data_fin, 0); 515 516 sk->sk_shutdown |= RCV_SHUTDOWN; 517 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 518 set_bit(MPTCP_DATA_READY, &msk->flags); 519 520 switch (sk->sk_state) { 521 case TCP_ESTABLISHED: 522 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 523 break; 524 case TCP_FIN_WAIT1: 525 inet_sk_state_store(sk, TCP_CLOSING); 526 break; 527 case TCP_FIN_WAIT2: 528 inet_sk_state_store(sk, TCP_CLOSE); 529 break; 530 default: 531 /* Other states not expected */ 532 WARN_ON_ONCE(1); 533 break; 534 } 535 536 ret = true; 537 mptcp_set_timeout(sk, NULL); 538 mptcp_send_ack(msk); 539 mptcp_close_wake_up(sk); 540 } 541 return ret; 542 } 543 544 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 545 struct sock *ssk, 546 unsigned int *bytes) 547 { 548 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 549 struct sock *sk = (struct sock *)msk; 550 unsigned int moved = 0; 551 bool more_data_avail; 552 struct tcp_sock *tp; 553 bool done = false; 554 int sk_rbuf; 555 556 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 557 558 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 559 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 560 561 if (unlikely(ssk_rbuf > sk_rbuf)) { 562 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 563 sk_rbuf = ssk_rbuf; 564 } 565 } 566 567 pr_debug("msk=%p ssk=%p", msk, ssk); 568 tp = tcp_sk(ssk); 569 do { 570 u32 map_remaining, offset; 571 u32 seq = tp->copied_seq; 572 struct sk_buff *skb; 573 bool fin; 574 575 /* try to move as much data as available */ 576 map_remaining = subflow->map_data_len - 577 mptcp_subflow_get_map_offset(subflow); 578 579 skb = skb_peek(&ssk->sk_receive_queue); 580 if (!skb) { 581 /* if no data is found, a racing workqueue/recvmsg 582 * already processed the new data, stop here or we 583 * can enter an infinite loop 584 */ 585 if (!moved) 586 done = true; 587 break; 588 } 589 590 if (__mptcp_check_fallback(msk)) { 591 /* if we are running under the workqueue, TCP could have 592 * collapsed skbs between dummy map creation and now 593 * be sure to adjust the size 594 */ 595 map_remaining = skb->len; 596 subflow->map_data_len = skb->len; 597 } 598 599 offset = seq - TCP_SKB_CB(skb)->seq; 600 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 601 if (fin) { 602 done = true; 603 seq++; 604 } 605 606 if (offset < skb->len) { 607 size_t len = skb->len - offset; 608 609 if (tp->urg_data) 610 done = true; 611 612 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 613 moved += len; 614 seq += len; 615 616 if (WARN_ON_ONCE(map_remaining < len)) 617 break; 618 } else { 619 WARN_ON_ONCE(!fin); 620 sk_eat_skb(ssk, skb); 621 done = true; 622 } 623 624 WRITE_ONCE(tp->copied_seq, seq); 625 more_data_avail = mptcp_subflow_data_available(ssk); 626 627 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 628 done = true; 629 break; 630 } 631 } while (more_data_avail); 632 WRITE_ONCE(msk->ack_hint, ssk); 633 634 *bytes += moved; 635 return done; 636 } 637 638 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 639 { 640 struct sock *sk = (struct sock *)msk; 641 struct sk_buff *skb, *tail; 642 bool moved = false; 643 struct rb_node *p; 644 u64 end_seq; 645 646 p = rb_first(&msk->out_of_order_queue); 647 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 648 while (p) { 649 skb = rb_to_skb(p); 650 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 651 break; 652 653 p = rb_next(p); 654 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 655 656 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 657 msk->ack_seq))) { 658 mptcp_drop(sk, skb); 659 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 660 continue; 661 } 662 663 end_seq = MPTCP_SKB_CB(skb)->end_seq; 664 tail = skb_peek_tail(&sk->sk_receive_queue); 665 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 666 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 667 668 /* skip overlapping data, if any */ 669 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 670 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 671 delta); 672 MPTCP_SKB_CB(skb)->offset += delta; 673 __skb_queue_tail(&sk->sk_receive_queue, skb); 674 } 675 msk->ack_seq = end_seq; 676 moved = true; 677 } 678 return moved; 679 } 680 681 /* In most cases we will be able to lock the mptcp socket. If its already 682 * owned, we need to defer to the work queue to avoid ABBA deadlock. 683 */ 684 static void move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 685 { 686 struct sock *sk = (struct sock *)msk; 687 unsigned int moved = 0; 688 689 if (inet_sk_state_load(sk) == TCP_CLOSE) 690 return; 691 692 mptcp_data_lock(sk); 693 694 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 695 __mptcp_ofo_queue(msk); 696 697 /* If the moves have caught up with the DATA_FIN sequence number 698 * it's time to ack the DATA_FIN and change socket state, but 699 * this is not a good place to change state. Let the workqueue 700 * do it. 701 */ 702 if (mptcp_pending_data_fin(sk, NULL)) 703 mptcp_schedule_work(sk); 704 mptcp_data_unlock(sk); 705 } 706 707 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 708 { 709 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 710 struct mptcp_sock *msk = mptcp_sk(sk); 711 int sk_rbuf, ssk_rbuf; 712 bool wake; 713 714 /* The peer can send data while we are shutting down this 715 * subflow at msk destruction time, but we must avoid enqueuing 716 * more data to the msk receive queue 717 */ 718 if (unlikely(subflow->disposable)) 719 return; 720 721 /* move_skbs_to_msk below can legitly clear the data_avail flag, 722 * but we will need later to properly woke the reader, cache its 723 * value 724 */ 725 wake = subflow->data_avail == MPTCP_SUBFLOW_DATA_AVAIL; 726 if (wake) 727 set_bit(MPTCP_DATA_READY, &msk->flags); 728 729 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 730 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 731 if (unlikely(ssk_rbuf > sk_rbuf)) 732 sk_rbuf = ssk_rbuf; 733 734 /* over limit? can't append more skbs to msk */ 735 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) 736 goto wake; 737 738 move_skbs_to_msk(msk, ssk); 739 740 wake: 741 if (wake) 742 sk->sk_data_ready(sk); 743 } 744 745 void __mptcp_flush_join_list(struct mptcp_sock *msk) 746 { 747 struct mptcp_subflow_context *subflow; 748 749 if (likely(list_empty(&msk->join_list))) 750 return; 751 752 spin_lock_bh(&msk->join_list_lock); 753 list_for_each_entry(subflow, &msk->join_list, node) 754 mptcp_propagate_sndbuf((struct sock *)msk, mptcp_subflow_tcp_sock(subflow)); 755 list_splice_tail_init(&msk->join_list, &msk->conn_list); 756 spin_unlock_bh(&msk->join_list_lock); 757 } 758 759 static bool mptcp_timer_pending(struct sock *sk) 760 { 761 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 762 } 763 764 static void mptcp_reset_timer(struct sock *sk) 765 { 766 struct inet_connection_sock *icsk = inet_csk(sk); 767 unsigned long tout; 768 769 /* prevent rescheduling on close */ 770 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 771 return; 772 773 /* should never be called with mptcp level timer cleared */ 774 tout = READ_ONCE(mptcp_sk(sk)->timer_ival); 775 if (WARN_ON_ONCE(!tout)) 776 tout = TCP_RTO_MIN; 777 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 778 } 779 780 bool mptcp_schedule_work(struct sock *sk) 781 { 782 if (inet_sk_state_load(sk) != TCP_CLOSE && 783 schedule_work(&mptcp_sk(sk)->work)) { 784 /* each subflow already holds a reference to the sk, and the 785 * workqueue is invoked by a subflow, so sk can't go away here. 786 */ 787 sock_hold(sk); 788 return true; 789 } 790 return false; 791 } 792 793 void mptcp_subflow_eof(struct sock *sk) 794 { 795 if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags)) 796 mptcp_schedule_work(sk); 797 } 798 799 static void mptcp_check_for_eof(struct mptcp_sock *msk) 800 { 801 struct mptcp_subflow_context *subflow; 802 struct sock *sk = (struct sock *)msk; 803 int receivers = 0; 804 805 mptcp_for_each_subflow(msk, subflow) 806 receivers += !subflow->rx_eof; 807 if (receivers) 808 return; 809 810 if (!(sk->sk_shutdown & RCV_SHUTDOWN)) { 811 /* hopefully temporary hack: propagate shutdown status 812 * to msk, when all subflows agree on it 813 */ 814 sk->sk_shutdown |= RCV_SHUTDOWN; 815 816 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 817 set_bit(MPTCP_DATA_READY, &msk->flags); 818 sk->sk_data_ready(sk); 819 } 820 821 switch (sk->sk_state) { 822 case TCP_ESTABLISHED: 823 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 824 break; 825 case TCP_FIN_WAIT1: 826 inet_sk_state_store(sk, TCP_CLOSING); 827 break; 828 case TCP_FIN_WAIT2: 829 inet_sk_state_store(sk, TCP_CLOSE); 830 break; 831 default: 832 return; 833 } 834 mptcp_close_wake_up(sk); 835 } 836 837 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 838 { 839 struct mptcp_subflow_context *subflow; 840 struct sock *sk = (struct sock *)msk; 841 842 sock_owned_by_me(sk); 843 844 mptcp_for_each_subflow(msk, subflow) { 845 if (subflow->data_avail) 846 return mptcp_subflow_tcp_sock(subflow); 847 } 848 849 return NULL; 850 } 851 852 static bool mptcp_skb_can_collapse_to(u64 write_seq, 853 const struct sk_buff *skb, 854 const struct mptcp_ext *mpext) 855 { 856 if (!tcp_skb_can_collapse_to(skb)) 857 return false; 858 859 /* can collapse only if MPTCP level sequence is in order and this 860 * mapping has not been xmitted yet 861 */ 862 return mpext && mpext->data_seq + mpext->data_len == write_seq && 863 !mpext->frozen; 864 } 865 866 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 867 const struct page_frag *pfrag, 868 const struct mptcp_data_frag *df) 869 { 870 return df && pfrag->page == df->page && 871 pfrag->size - pfrag->offset > 0 && 872 df->data_seq + df->data_len == msk->write_seq; 873 } 874 875 static int mptcp_wmem_with_overhead(struct sock *sk, int size) 876 { 877 struct mptcp_sock *msk = mptcp_sk(sk); 878 int ret, skbs; 879 880 ret = size + ((sizeof(struct mptcp_data_frag) * size) >> PAGE_SHIFT); 881 skbs = (msk->tx_pending_data + size) / msk->size_goal_cache; 882 if (skbs < msk->skb_tx_cache.qlen) 883 return ret; 884 885 return ret + (skbs - msk->skb_tx_cache.qlen) * SKB_TRUESIZE(MAX_TCP_HEADER); 886 } 887 888 static void __mptcp_wmem_reserve(struct sock *sk, int size) 889 { 890 int amount = mptcp_wmem_with_overhead(sk, size); 891 struct mptcp_sock *msk = mptcp_sk(sk); 892 893 WARN_ON_ONCE(msk->wmem_reserved); 894 if (WARN_ON_ONCE(amount < 0)) 895 amount = 0; 896 897 if (amount <= sk->sk_forward_alloc) 898 goto reserve; 899 900 /* under memory pressure try to reserve at most a single page 901 * otherwise try to reserve the full estimate and fallback 902 * to a single page before entering the error path 903 */ 904 if ((tcp_under_memory_pressure(sk) && amount > PAGE_SIZE) || 905 !sk_wmem_schedule(sk, amount)) { 906 if (amount <= PAGE_SIZE) 907 goto nomem; 908 909 amount = PAGE_SIZE; 910 if (!sk_wmem_schedule(sk, amount)) 911 goto nomem; 912 } 913 914 reserve: 915 msk->wmem_reserved = amount; 916 sk->sk_forward_alloc -= amount; 917 return; 918 919 nomem: 920 /* we will wait for memory on next allocation */ 921 msk->wmem_reserved = -1; 922 } 923 924 static void __mptcp_update_wmem(struct sock *sk) 925 { 926 struct mptcp_sock *msk = mptcp_sk(sk); 927 928 if (!msk->wmem_reserved) 929 return; 930 931 if (msk->wmem_reserved < 0) 932 msk->wmem_reserved = 0; 933 if (msk->wmem_reserved > 0) { 934 sk->sk_forward_alloc += msk->wmem_reserved; 935 msk->wmem_reserved = 0; 936 } 937 } 938 939 static bool mptcp_wmem_alloc(struct sock *sk, int size) 940 { 941 struct mptcp_sock *msk = mptcp_sk(sk); 942 943 /* check for pre-existing error condition */ 944 if (msk->wmem_reserved < 0) 945 return false; 946 947 if (msk->wmem_reserved >= size) 948 goto account; 949 950 mptcp_data_lock(sk); 951 if (!sk_wmem_schedule(sk, size)) { 952 mptcp_data_unlock(sk); 953 return false; 954 } 955 956 sk->sk_forward_alloc -= size; 957 msk->wmem_reserved += size; 958 mptcp_data_unlock(sk); 959 960 account: 961 msk->wmem_reserved -= size; 962 return true; 963 } 964 965 static void mptcp_wmem_uncharge(struct sock *sk, int size) 966 { 967 struct mptcp_sock *msk = mptcp_sk(sk); 968 969 if (msk->wmem_reserved < 0) 970 msk->wmem_reserved = 0; 971 msk->wmem_reserved += size; 972 } 973 974 static void mptcp_mem_reclaim_partial(struct sock *sk) 975 { 976 struct mptcp_sock *msk = mptcp_sk(sk); 977 978 /* if we are experiencing a transint allocation error, 979 * the forward allocation memory has been already 980 * released 981 */ 982 if (msk->wmem_reserved < 0) 983 return; 984 985 mptcp_data_lock(sk); 986 sk->sk_forward_alloc += msk->wmem_reserved; 987 sk_mem_reclaim_partial(sk); 988 msk->wmem_reserved = sk->sk_forward_alloc; 989 sk->sk_forward_alloc = 0; 990 mptcp_data_unlock(sk); 991 } 992 993 static void dfrag_uncharge(struct sock *sk, int len) 994 { 995 sk_mem_uncharge(sk, len); 996 sk_wmem_queued_add(sk, -len); 997 } 998 999 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 1000 { 1001 int len = dfrag->data_len + dfrag->overhead; 1002 1003 list_del(&dfrag->list); 1004 dfrag_uncharge(sk, len); 1005 put_page(dfrag->page); 1006 } 1007 1008 static void __mptcp_clean_una(struct sock *sk) 1009 { 1010 struct mptcp_sock *msk = mptcp_sk(sk); 1011 struct mptcp_data_frag *dtmp, *dfrag; 1012 bool cleaned = false; 1013 u64 snd_una; 1014 1015 /* on fallback we just need to ignore snd_una, as this is really 1016 * plain TCP 1017 */ 1018 if (__mptcp_check_fallback(msk)) 1019 msk->snd_una = READ_ONCE(msk->snd_nxt); 1020 1021 snd_una = msk->snd_una; 1022 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1023 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1024 break; 1025 1026 if (WARN_ON_ONCE(dfrag == msk->first_pending)) 1027 break; 1028 dfrag_clear(sk, dfrag); 1029 cleaned = true; 1030 } 1031 1032 dfrag = mptcp_rtx_head(sk); 1033 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1034 u64 delta = snd_una - dfrag->data_seq; 1035 1036 if (WARN_ON_ONCE(delta > dfrag->already_sent)) 1037 goto out; 1038 1039 dfrag->data_seq += delta; 1040 dfrag->offset += delta; 1041 dfrag->data_len -= delta; 1042 dfrag->already_sent -= delta; 1043 1044 dfrag_uncharge(sk, delta); 1045 cleaned = true; 1046 } 1047 1048 out: 1049 if (cleaned) { 1050 if (tcp_under_memory_pressure(sk)) { 1051 __mptcp_update_wmem(sk); 1052 sk_mem_reclaim_partial(sk); 1053 } 1054 } 1055 1056 if (snd_una == READ_ONCE(msk->snd_nxt)) { 1057 if (msk->timer_ival) 1058 mptcp_stop_timer(sk); 1059 } else { 1060 mptcp_reset_timer(sk); 1061 } 1062 } 1063 1064 static void mptcp_enter_memory_pressure(struct sock *sk) 1065 { 1066 struct mptcp_subflow_context *subflow; 1067 struct mptcp_sock *msk = mptcp_sk(sk); 1068 bool first = true; 1069 1070 sk_stream_moderate_sndbuf(sk); 1071 mptcp_for_each_subflow(msk, subflow) { 1072 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1073 1074 if (first) 1075 tcp_enter_memory_pressure(ssk); 1076 sk_stream_moderate_sndbuf(ssk); 1077 first = false; 1078 } 1079 } 1080 1081 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1082 * data 1083 */ 1084 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1085 { 1086 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1087 pfrag, sk->sk_allocation))) 1088 return true; 1089 1090 mptcp_enter_memory_pressure(sk); 1091 return false; 1092 } 1093 1094 static struct mptcp_data_frag * 1095 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1096 int orig_offset) 1097 { 1098 int offset = ALIGN(orig_offset, sizeof(long)); 1099 struct mptcp_data_frag *dfrag; 1100 1101 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1102 dfrag->data_len = 0; 1103 dfrag->data_seq = msk->write_seq; 1104 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1105 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1106 dfrag->already_sent = 0; 1107 dfrag->page = pfrag->page; 1108 1109 return dfrag; 1110 } 1111 1112 struct mptcp_sendmsg_info { 1113 int mss_now; 1114 int size_goal; 1115 u16 limit; 1116 u16 sent; 1117 unsigned int flags; 1118 }; 1119 1120 static int mptcp_check_allowed_size(struct mptcp_sock *msk, u64 data_seq, 1121 int avail_size) 1122 { 1123 u64 window_end = mptcp_wnd_end(msk); 1124 1125 if (__mptcp_check_fallback(msk)) 1126 return avail_size; 1127 1128 if (!before64(data_seq + avail_size, window_end)) { 1129 u64 allowed_size = window_end - data_seq; 1130 1131 return min_t(unsigned int, allowed_size, avail_size); 1132 } 1133 1134 return avail_size; 1135 } 1136 1137 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1138 { 1139 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1140 1141 if (!mpext) 1142 return false; 1143 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1144 return true; 1145 } 1146 1147 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1148 { 1149 struct sk_buff *skb; 1150 1151 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1152 if (likely(skb)) { 1153 if (likely(__mptcp_add_ext(skb, gfp))) { 1154 skb_reserve(skb, MAX_TCP_HEADER); 1155 skb->reserved_tailroom = skb->end - skb->tail; 1156 return skb; 1157 } 1158 __kfree_skb(skb); 1159 } else { 1160 mptcp_enter_memory_pressure(sk); 1161 } 1162 return NULL; 1163 } 1164 1165 static bool mptcp_tx_cache_refill(struct sock *sk, int size, 1166 struct sk_buff_head *skbs, int *total_ts) 1167 { 1168 struct mptcp_sock *msk = mptcp_sk(sk); 1169 struct sk_buff *skb; 1170 int space_needed; 1171 1172 if (unlikely(tcp_under_memory_pressure(sk))) { 1173 mptcp_mem_reclaim_partial(sk); 1174 1175 /* under pressure pre-allocate at most a single skb */ 1176 if (msk->skb_tx_cache.qlen) 1177 return true; 1178 space_needed = msk->size_goal_cache; 1179 } else { 1180 space_needed = msk->tx_pending_data + size - 1181 msk->skb_tx_cache.qlen * msk->size_goal_cache; 1182 } 1183 1184 while (space_needed > 0) { 1185 skb = __mptcp_do_alloc_tx_skb(sk, sk->sk_allocation); 1186 if (unlikely(!skb)) { 1187 /* under memory pressure, try to pass the caller a 1188 * single skb to allow forward progress 1189 */ 1190 while (skbs->qlen > 1) { 1191 skb = __skb_dequeue_tail(skbs); 1192 __kfree_skb(skb); 1193 } 1194 return skbs->qlen > 0; 1195 } 1196 1197 *total_ts += skb->truesize; 1198 __skb_queue_tail(skbs, skb); 1199 space_needed -= msk->size_goal_cache; 1200 } 1201 return true; 1202 } 1203 1204 static bool __mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1205 { 1206 struct mptcp_sock *msk = mptcp_sk(sk); 1207 struct sk_buff *skb; 1208 1209 if (ssk->sk_tx_skb_cache) { 1210 skb = ssk->sk_tx_skb_cache; 1211 if (unlikely(!skb_ext_find(skb, SKB_EXT_MPTCP) && 1212 !__mptcp_add_ext(skb, gfp))) 1213 return false; 1214 return true; 1215 } 1216 1217 skb = skb_peek(&msk->skb_tx_cache); 1218 if (skb) { 1219 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1220 skb = __skb_dequeue(&msk->skb_tx_cache); 1221 if (WARN_ON_ONCE(!skb)) 1222 return false; 1223 1224 mptcp_wmem_uncharge(sk, skb->truesize); 1225 ssk->sk_tx_skb_cache = skb; 1226 return true; 1227 } 1228 1229 /* over memory limit, no point to try to allocate a new skb */ 1230 return false; 1231 } 1232 1233 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1234 if (!skb) 1235 return false; 1236 1237 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1238 ssk->sk_tx_skb_cache = skb; 1239 return true; 1240 } 1241 kfree_skb(skb); 1242 return false; 1243 } 1244 1245 static bool mptcp_must_reclaim_memory(struct sock *sk, struct sock *ssk) 1246 { 1247 return !ssk->sk_tx_skb_cache && 1248 !skb_peek(&mptcp_sk(sk)->skb_tx_cache) && 1249 tcp_under_memory_pressure(sk); 1250 } 1251 1252 static bool mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk) 1253 { 1254 if (unlikely(mptcp_must_reclaim_memory(sk, ssk))) 1255 mptcp_mem_reclaim_partial(sk); 1256 return __mptcp_alloc_tx_skb(sk, ssk, sk->sk_allocation); 1257 } 1258 1259 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1260 struct mptcp_data_frag *dfrag, 1261 struct mptcp_sendmsg_info *info) 1262 { 1263 u64 data_seq = dfrag->data_seq + info->sent; 1264 struct mptcp_sock *msk = mptcp_sk(sk); 1265 bool zero_window_probe = false; 1266 struct mptcp_ext *mpext = NULL; 1267 struct sk_buff *skb, *tail; 1268 bool can_collapse = false; 1269 int size_bias = 0; 1270 int avail_size; 1271 size_t ret = 0; 1272 1273 pr_debug("msk=%p ssk=%p sending dfrag at seq=%lld len=%d already sent=%d", 1274 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1275 1276 /* compute send limit */ 1277 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1278 avail_size = info->size_goal; 1279 msk->size_goal_cache = info->size_goal; 1280 skb = tcp_write_queue_tail(ssk); 1281 if (skb) { 1282 /* Limit the write to the size available in the 1283 * current skb, if any, so that we create at most a new skb. 1284 * Explicitly tells TCP internals to avoid collapsing on later 1285 * queue management operation, to avoid breaking the ext <-> 1286 * SSN association set here 1287 */ 1288 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1289 can_collapse = (info->size_goal - skb->len > 0) && 1290 mptcp_skb_can_collapse_to(data_seq, skb, mpext); 1291 if (!can_collapse) { 1292 TCP_SKB_CB(skb)->eor = 1; 1293 } else { 1294 size_bias = skb->len; 1295 avail_size = info->size_goal - skb->len; 1296 } 1297 } 1298 1299 /* Zero window and all data acked? Probe. */ 1300 avail_size = mptcp_check_allowed_size(msk, data_seq, avail_size); 1301 if (avail_size == 0) { 1302 u64 snd_una = READ_ONCE(msk->snd_una); 1303 1304 if (skb || snd_una != msk->snd_nxt) 1305 return 0; 1306 zero_window_probe = true; 1307 data_seq = snd_una - 1; 1308 avail_size = 1; 1309 } 1310 1311 if (WARN_ON_ONCE(info->sent > info->limit || 1312 info->limit > dfrag->data_len)) 1313 return 0; 1314 1315 ret = info->limit - info->sent; 1316 tail = tcp_build_frag(ssk, avail_size + size_bias, info->flags, 1317 dfrag->page, dfrag->offset + info->sent, &ret); 1318 if (!tail) { 1319 tcp_remove_empty_skb(sk, tcp_write_queue_tail(ssk)); 1320 return -ENOMEM; 1321 } 1322 1323 /* if the tail skb is still the cached one, collapsing really happened. 1324 */ 1325 if (skb == tail) { 1326 TCP_SKB_CB(tail)->tcp_flags &= ~TCPHDR_PSH; 1327 mpext->data_len += ret; 1328 WARN_ON_ONCE(!can_collapse); 1329 WARN_ON_ONCE(zero_window_probe); 1330 goto out; 1331 } 1332 1333 mpext = skb_ext_find(tail, SKB_EXT_MPTCP); 1334 if (WARN_ON_ONCE(!mpext)) { 1335 /* should never reach here, stream corrupted */ 1336 return -EINVAL; 1337 } 1338 1339 memset(mpext, 0, sizeof(*mpext)); 1340 mpext->data_seq = data_seq; 1341 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1342 mpext->data_len = ret; 1343 mpext->use_map = 1; 1344 mpext->dsn64 = 1; 1345 1346 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1347 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1348 mpext->dsn64); 1349 1350 if (zero_window_probe) { 1351 mptcp_subflow_ctx(ssk)->rel_write_seq += ret; 1352 mpext->frozen = 1; 1353 ret = 0; 1354 tcp_push_pending_frames(ssk); 1355 } 1356 out: 1357 mptcp_subflow_ctx(ssk)->rel_write_seq += ret; 1358 return ret; 1359 } 1360 1361 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1362 sizeof(struct tcphdr) - \ 1363 MAX_TCP_OPTION_SPACE - \ 1364 sizeof(struct ipv6hdr) - \ 1365 sizeof(struct frag_hdr)) 1366 1367 struct subflow_send_info { 1368 struct sock *ssk; 1369 u64 ratio; 1370 }; 1371 1372 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1373 { 1374 struct subflow_send_info send_info[2]; 1375 struct mptcp_subflow_context *subflow; 1376 int i, nr_active = 0; 1377 struct sock *ssk; 1378 u64 ratio; 1379 u32 pace; 1380 1381 sock_owned_by_me((struct sock *)msk); 1382 1383 if (__mptcp_check_fallback(msk)) { 1384 if (!msk->first) 1385 return NULL; 1386 return sk_stream_memory_free(msk->first) ? msk->first : NULL; 1387 } 1388 1389 /* re-use last subflow, if the burst allow that */ 1390 if (msk->last_snd && msk->snd_burst > 0 && 1391 sk_stream_memory_free(msk->last_snd) && 1392 mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) 1393 return msk->last_snd; 1394 1395 /* pick the subflow with the lower wmem/wspace ratio */ 1396 for (i = 0; i < 2; ++i) { 1397 send_info[i].ssk = NULL; 1398 send_info[i].ratio = -1; 1399 } 1400 mptcp_for_each_subflow(msk, subflow) { 1401 ssk = mptcp_subflow_tcp_sock(subflow); 1402 if (!mptcp_subflow_active(subflow)) 1403 continue; 1404 1405 nr_active += !subflow->backup; 1406 if (!sk_stream_memory_free(subflow->tcp_sock) || !tcp_sk(ssk)->snd_wnd) 1407 continue; 1408 1409 pace = READ_ONCE(ssk->sk_pacing_rate); 1410 if (!pace) 1411 continue; 1412 1413 ratio = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, 1414 pace); 1415 if (ratio < send_info[subflow->backup].ratio) { 1416 send_info[subflow->backup].ssk = ssk; 1417 send_info[subflow->backup].ratio = ratio; 1418 } 1419 } 1420 1421 pr_debug("msk=%p nr_active=%d ssk=%p:%lld backup=%p:%lld", 1422 msk, nr_active, send_info[0].ssk, send_info[0].ratio, 1423 send_info[1].ssk, send_info[1].ratio); 1424 1425 /* pick the best backup if no other subflow is active */ 1426 if (!nr_active) 1427 send_info[0].ssk = send_info[1].ssk; 1428 1429 if (send_info[0].ssk) { 1430 msk->last_snd = send_info[0].ssk; 1431 msk->snd_burst = min_t(int, MPTCP_SEND_BURST_SIZE, 1432 tcp_sk(msk->last_snd)->snd_wnd); 1433 return msk->last_snd; 1434 } 1435 1436 return NULL; 1437 } 1438 1439 static void mptcp_push_release(struct sock *sk, struct sock *ssk, 1440 struct mptcp_sendmsg_info *info) 1441 { 1442 mptcp_set_timeout(sk, ssk); 1443 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1444 release_sock(ssk); 1445 } 1446 1447 static void mptcp_push_pending(struct sock *sk, unsigned int flags) 1448 { 1449 struct sock *prev_ssk = NULL, *ssk = NULL; 1450 struct mptcp_sock *msk = mptcp_sk(sk); 1451 struct mptcp_sendmsg_info info = { 1452 .flags = flags, 1453 }; 1454 struct mptcp_data_frag *dfrag; 1455 int len, copied = 0; 1456 1457 while ((dfrag = mptcp_send_head(sk))) { 1458 info.sent = dfrag->already_sent; 1459 info.limit = dfrag->data_len; 1460 len = dfrag->data_len - dfrag->already_sent; 1461 while (len > 0) { 1462 int ret = 0; 1463 1464 prev_ssk = ssk; 1465 __mptcp_flush_join_list(msk); 1466 ssk = mptcp_subflow_get_send(msk); 1467 1468 /* try to keep the subflow socket lock across 1469 * consecutive xmit on the same socket 1470 */ 1471 if (ssk != prev_ssk && prev_ssk) 1472 mptcp_push_release(sk, prev_ssk, &info); 1473 if (!ssk) 1474 goto out; 1475 1476 if (ssk != prev_ssk || !prev_ssk) 1477 lock_sock(ssk); 1478 1479 /* keep it simple and always provide a new skb for the 1480 * subflow, even if we will not use it when collapsing 1481 * on the pending one 1482 */ 1483 if (!mptcp_alloc_tx_skb(sk, ssk)) { 1484 mptcp_push_release(sk, ssk, &info); 1485 goto out; 1486 } 1487 1488 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1489 if (ret <= 0) { 1490 mptcp_push_release(sk, ssk, &info); 1491 goto out; 1492 } 1493 1494 info.sent += ret; 1495 dfrag->already_sent += ret; 1496 msk->snd_nxt += ret; 1497 msk->snd_burst -= ret; 1498 msk->tx_pending_data -= ret; 1499 copied += ret; 1500 len -= ret; 1501 } 1502 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1503 } 1504 1505 /* at this point we held the socket lock for the last subflow we used */ 1506 if (ssk) 1507 mptcp_push_release(sk, ssk, &info); 1508 1509 out: 1510 if (copied) { 1511 /* start the timer, if it's not pending */ 1512 if (!mptcp_timer_pending(sk)) 1513 mptcp_reset_timer(sk); 1514 __mptcp_check_send_data_fin(sk); 1515 } 1516 } 1517 1518 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk) 1519 { 1520 struct mptcp_sock *msk = mptcp_sk(sk); 1521 struct mptcp_sendmsg_info info; 1522 struct mptcp_data_frag *dfrag; 1523 struct sock *xmit_ssk; 1524 int len, copied = 0; 1525 bool first = true; 1526 1527 info.flags = 0; 1528 while ((dfrag = mptcp_send_head(sk))) { 1529 info.sent = dfrag->already_sent; 1530 info.limit = dfrag->data_len; 1531 len = dfrag->data_len - dfrag->already_sent; 1532 while (len > 0) { 1533 int ret = 0; 1534 1535 /* the caller already invoked the packet scheduler, 1536 * check for a different subflow usage only after 1537 * spooling the first chunk of data 1538 */ 1539 xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk)); 1540 if (!xmit_ssk) 1541 goto out; 1542 if (xmit_ssk != ssk) { 1543 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk)); 1544 goto out; 1545 } 1546 1547 if (unlikely(mptcp_must_reclaim_memory(sk, ssk))) { 1548 __mptcp_update_wmem(sk); 1549 sk_mem_reclaim_partial(sk); 1550 } 1551 if (!__mptcp_alloc_tx_skb(sk, ssk, GFP_ATOMIC)) 1552 goto out; 1553 1554 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1555 if (ret <= 0) 1556 goto out; 1557 1558 info.sent += ret; 1559 dfrag->already_sent += ret; 1560 msk->snd_nxt += ret; 1561 msk->snd_burst -= ret; 1562 msk->tx_pending_data -= ret; 1563 copied += ret; 1564 len -= ret; 1565 first = false; 1566 } 1567 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1568 } 1569 1570 out: 1571 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1572 * not going to flush it via release_sock() 1573 */ 1574 __mptcp_update_wmem(sk); 1575 if (copied) { 1576 mptcp_set_timeout(sk, ssk); 1577 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1578 info.size_goal); 1579 if (!mptcp_timer_pending(sk)) 1580 mptcp_reset_timer(sk); 1581 1582 if (msk->snd_data_fin_enable && 1583 msk->snd_nxt + 1 == msk->write_seq) 1584 mptcp_schedule_work(sk); 1585 } 1586 } 1587 1588 static void mptcp_set_nospace(struct sock *sk) 1589 { 1590 /* enable autotune */ 1591 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1592 1593 /* will be cleared on avail space */ 1594 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1595 } 1596 1597 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1598 { 1599 struct mptcp_sock *msk = mptcp_sk(sk); 1600 struct page_frag *pfrag; 1601 size_t copied = 0; 1602 int ret = 0; 1603 long timeo; 1604 1605 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) 1606 return -EOPNOTSUPP; 1607 1608 mptcp_lock_sock(sk, __mptcp_wmem_reserve(sk, min_t(size_t, 1 << 20, len))); 1609 1610 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1611 1612 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1613 ret = sk_stream_wait_connect(sk, &timeo); 1614 if (ret) 1615 goto out; 1616 } 1617 1618 pfrag = sk_page_frag(sk); 1619 1620 while (msg_data_left(msg)) { 1621 int total_ts, frag_truesize = 0; 1622 struct mptcp_data_frag *dfrag; 1623 struct sk_buff_head skbs; 1624 bool dfrag_collapsed; 1625 size_t psize, offset; 1626 1627 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) { 1628 ret = -EPIPE; 1629 goto out; 1630 } 1631 1632 /* reuse tail pfrag, if possible, or carve a new one from the 1633 * page allocator 1634 */ 1635 dfrag = mptcp_pending_tail(sk); 1636 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1637 if (!dfrag_collapsed) { 1638 if (!sk_stream_memory_free(sk)) 1639 goto wait_for_memory; 1640 1641 if (!mptcp_page_frag_refill(sk, pfrag)) 1642 goto wait_for_memory; 1643 1644 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1645 frag_truesize = dfrag->overhead; 1646 } 1647 1648 /* we do not bound vs wspace, to allow a single packet. 1649 * memory accounting will prevent execessive memory usage 1650 * anyway 1651 */ 1652 offset = dfrag->offset + dfrag->data_len; 1653 psize = pfrag->size - offset; 1654 psize = min_t(size_t, psize, msg_data_left(msg)); 1655 total_ts = psize + frag_truesize; 1656 __skb_queue_head_init(&skbs); 1657 if (!mptcp_tx_cache_refill(sk, psize, &skbs, &total_ts)) 1658 goto wait_for_memory; 1659 1660 if (!mptcp_wmem_alloc(sk, total_ts)) { 1661 __skb_queue_purge(&skbs); 1662 goto wait_for_memory; 1663 } 1664 1665 skb_queue_splice_tail(&skbs, &msk->skb_tx_cache); 1666 if (copy_page_from_iter(dfrag->page, offset, psize, 1667 &msg->msg_iter) != psize) { 1668 mptcp_wmem_uncharge(sk, psize + frag_truesize); 1669 ret = -EFAULT; 1670 goto out; 1671 } 1672 1673 /* data successfully copied into the write queue */ 1674 copied += psize; 1675 dfrag->data_len += psize; 1676 frag_truesize += psize; 1677 pfrag->offset += frag_truesize; 1678 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1679 msk->tx_pending_data += psize; 1680 1681 /* charge data on mptcp pending queue to the msk socket 1682 * Note: we charge such data both to sk and ssk 1683 */ 1684 sk_wmem_queued_add(sk, frag_truesize); 1685 if (!dfrag_collapsed) { 1686 get_page(dfrag->page); 1687 list_add_tail(&dfrag->list, &msk->rtx_queue); 1688 if (!msk->first_pending) 1689 WRITE_ONCE(msk->first_pending, dfrag); 1690 } 1691 pr_debug("msk=%p dfrag at seq=%lld len=%d sent=%d new=%d", msk, 1692 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1693 !dfrag_collapsed); 1694 1695 continue; 1696 1697 wait_for_memory: 1698 mptcp_set_nospace(sk); 1699 mptcp_push_pending(sk, msg->msg_flags); 1700 ret = sk_stream_wait_memory(sk, &timeo); 1701 if (ret) 1702 goto out; 1703 } 1704 1705 if (copied) 1706 mptcp_push_pending(sk, msg->msg_flags); 1707 1708 out: 1709 release_sock(sk); 1710 return copied ? : ret; 1711 } 1712 1713 static void mptcp_wait_data(struct sock *sk, long *timeo) 1714 { 1715 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1716 struct mptcp_sock *msk = mptcp_sk(sk); 1717 1718 add_wait_queue(sk_sleep(sk), &wait); 1719 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1720 1721 sk_wait_event(sk, timeo, 1722 test_and_clear_bit(MPTCP_DATA_READY, &msk->flags), &wait); 1723 1724 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1725 remove_wait_queue(sk_sleep(sk), &wait); 1726 } 1727 1728 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1729 struct msghdr *msg, 1730 size_t len) 1731 { 1732 struct sk_buff *skb; 1733 int copied = 0; 1734 1735 while ((skb = skb_peek(&msk->receive_queue)) != NULL) { 1736 u32 offset = MPTCP_SKB_CB(skb)->offset; 1737 u32 data_len = skb->len - offset; 1738 u32 count = min_t(size_t, len - copied, data_len); 1739 int err; 1740 1741 err = skb_copy_datagram_msg(skb, offset, msg, count); 1742 if (unlikely(err < 0)) { 1743 if (!copied) 1744 return err; 1745 break; 1746 } 1747 1748 copied += count; 1749 1750 if (count < data_len) { 1751 MPTCP_SKB_CB(skb)->offset += count; 1752 break; 1753 } 1754 1755 /* we will bulk release the skb memory later */ 1756 skb->destructor = NULL; 1757 msk->rmem_released += skb->truesize; 1758 __skb_unlink(skb, &msk->receive_queue); 1759 __kfree_skb(skb); 1760 1761 if (copied >= len) 1762 break; 1763 } 1764 1765 return copied; 1766 } 1767 1768 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1769 * 1770 * Only difference: Use highest rtt estimate of the subflows in use. 1771 */ 1772 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1773 { 1774 struct mptcp_subflow_context *subflow; 1775 struct sock *sk = (struct sock *)msk; 1776 u32 time, advmss = 1; 1777 u64 rtt_us, mstamp; 1778 1779 sock_owned_by_me(sk); 1780 1781 if (copied <= 0) 1782 return; 1783 1784 msk->rcvq_space.copied += copied; 1785 1786 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1787 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1788 1789 rtt_us = msk->rcvq_space.rtt_us; 1790 if (rtt_us && time < (rtt_us >> 3)) 1791 return; 1792 1793 rtt_us = 0; 1794 mptcp_for_each_subflow(msk, subflow) { 1795 const struct tcp_sock *tp; 1796 u64 sf_rtt_us; 1797 u32 sf_advmss; 1798 1799 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1800 1801 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1802 sf_advmss = READ_ONCE(tp->advmss); 1803 1804 rtt_us = max(sf_rtt_us, rtt_us); 1805 advmss = max(sf_advmss, advmss); 1806 } 1807 1808 msk->rcvq_space.rtt_us = rtt_us; 1809 if (time < (rtt_us >> 3) || rtt_us == 0) 1810 return; 1811 1812 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1813 goto new_measure; 1814 1815 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 1816 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1817 int rcvmem, rcvbuf; 1818 u64 rcvwin, grow; 1819 1820 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1821 1822 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1823 1824 do_div(grow, msk->rcvq_space.space); 1825 rcvwin += (grow << 1); 1826 1827 rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER); 1828 while (tcp_win_from_space(sk, rcvmem) < advmss) 1829 rcvmem += 128; 1830 1831 do_div(rcvwin, advmss); 1832 rcvbuf = min_t(u64, rcvwin * rcvmem, 1833 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 1834 1835 if (rcvbuf > sk->sk_rcvbuf) { 1836 u32 window_clamp; 1837 1838 window_clamp = tcp_win_from_space(sk, rcvbuf); 1839 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 1840 1841 /* Make subflows follow along. If we do not do this, we 1842 * get drops at subflow level if skbs can't be moved to 1843 * the mptcp rx queue fast enough (announced rcv_win can 1844 * exceed ssk->sk_rcvbuf). 1845 */ 1846 mptcp_for_each_subflow(msk, subflow) { 1847 struct sock *ssk; 1848 bool slow; 1849 1850 ssk = mptcp_subflow_tcp_sock(subflow); 1851 slow = lock_sock_fast(ssk); 1852 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 1853 tcp_sk(ssk)->window_clamp = window_clamp; 1854 tcp_cleanup_rbuf(ssk, 1); 1855 unlock_sock_fast(ssk, slow); 1856 } 1857 } 1858 } 1859 1860 msk->rcvq_space.space = msk->rcvq_space.copied; 1861 new_measure: 1862 msk->rcvq_space.copied = 0; 1863 msk->rcvq_space.time = mstamp; 1864 } 1865 1866 static void __mptcp_update_rmem(struct sock *sk) 1867 { 1868 struct mptcp_sock *msk = mptcp_sk(sk); 1869 1870 if (!msk->rmem_released) 1871 return; 1872 1873 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 1874 sk_mem_uncharge(sk, msk->rmem_released); 1875 msk->rmem_released = 0; 1876 } 1877 1878 static void __mptcp_splice_receive_queue(struct sock *sk) 1879 { 1880 struct mptcp_sock *msk = mptcp_sk(sk); 1881 1882 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 1883 } 1884 1885 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 1886 { 1887 struct sock *sk = (struct sock *)msk; 1888 unsigned int moved = 0; 1889 bool ret, done; 1890 1891 __mptcp_flush_join_list(msk); 1892 do { 1893 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 1894 bool slowpath; 1895 1896 /* we can have data pending in the subflows only if the msk 1897 * receive buffer was full at subflow_data_ready() time, 1898 * that is an unlikely slow path. 1899 */ 1900 if (likely(!ssk)) 1901 break; 1902 1903 slowpath = lock_sock_fast(ssk); 1904 mptcp_data_lock(sk); 1905 __mptcp_update_rmem(sk); 1906 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 1907 mptcp_data_unlock(sk); 1908 tcp_cleanup_rbuf(ssk, moved); 1909 unlock_sock_fast(ssk, slowpath); 1910 } while (!done); 1911 1912 /* acquire the data lock only if some input data is pending */ 1913 ret = moved > 0; 1914 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 1915 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 1916 mptcp_data_lock(sk); 1917 __mptcp_update_rmem(sk); 1918 ret |= __mptcp_ofo_queue(msk); 1919 __mptcp_splice_receive_queue(sk); 1920 mptcp_data_unlock(sk); 1921 mptcp_cleanup_rbuf(msk); 1922 } 1923 if (ret) 1924 mptcp_check_data_fin((struct sock *)msk); 1925 return !skb_queue_empty(&msk->receive_queue); 1926 } 1927 1928 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 1929 int nonblock, int flags, int *addr_len) 1930 { 1931 struct mptcp_sock *msk = mptcp_sk(sk); 1932 int copied = 0; 1933 int target; 1934 long timeo; 1935 1936 if (msg->msg_flags & ~(MSG_WAITALL | MSG_DONTWAIT)) 1937 return -EOPNOTSUPP; 1938 1939 mptcp_lock_sock(sk, __mptcp_splice_receive_queue(sk)); 1940 if (unlikely(sk->sk_state == TCP_LISTEN)) { 1941 copied = -ENOTCONN; 1942 goto out_err; 1943 } 1944 1945 timeo = sock_rcvtimeo(sk, nonblock); 1946 1947 len = min_t(size_t, len, INT_MAX); 1948 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1949 1950 while (copied < len) { 1951 int bytes_read; 1952 1953 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied); 1954 if (unlikely(bytes_read < 0)) { 1955 if (!copied) 1956 copied = bytes_read; 1957 goto out_err; 1958 } 1959 1960 copied += bytes_read; 1961 1962 /* be sure to advertise window change */ 1963 mptcp_cleanup_rbuf(msk); 1964 1965 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 1966 continue; 1967 1968 /* only the master socket status is relevant here. The exit 1969 * conditions mirror closely tcp_recvmsg() 1970 */ 1971 if (copied >= target) 1972 break; 1973 1974 if (copied) { 1975 if (sk->sk_err || 1976 sk->sk_state == TCP_CLOSE || 1977 (sk->sk_shutdown & RCV_SHUTDOWN) || 1978 !timeo || 1979 signal_pending(current)) 1980 break; 1981 } else { 1982 if (sk->sk_err) { 1983 copied = sock_error(sk); 1984 break; 1985 } 1986 1987 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 1988 mptcp_check_for_eof(msk); 1989 1990 if (sk->sk_shutdown & RCV_SHUTDOWN) { 1991 /* race breaker: the shutdown could be after the 1992 * previous receive queue check 1993 */ 1994 if (__mptcp_move_skbs(msk)) 1995 continue; 1996 break; 1997 } 1998 1999 if (sk->sk_state == TCP_CLOSE) { 2000 copied = -ENOTCONN; 2001 break; 2002 } 2003 2004 if (!timeo) { 2005 copied = -EAGAIN; 2006 break; 2007 } 2008 2009 if (signal_pending(current)) { 2010 copied = sock_intr_errno(timeo); 2011 break; 2012 } 2013 } 2014 2015 pr_debug("block timeout %ld", timeo); 2016 mptcp_wait_data(sk, &timeo); 2017 } 2018 2019 if (skb_queue_empty_lockless(&sk->sk_receive_queue) && 2020 skb_queue_empty(&msk->receive_queue)) { 2021 /* entire backlog drained, clear DATA_READY. */ 2022 clear_bit(MPTCP_DATA_READY, &msk->flags); 2023 2024 /* .. race-breaker: ssk might have gotten new data 2025 * after last __mptcp_move_skbs() returned false. 2026 */ 2027 if (unlikely(__mptcp_move_skbs(msk))) 2028 set_bit(MPTCP_DATA_READY, &msk->flags); 2029 } else if (unlikely(!test_bit(MPTCP_DATA_READY, &msk->flags))) { 2030 /* data to read but mptcp_wait_data() cleared DATA_READY */ 2031 set_bit(MPTCP_DATA_READY, &msk->flags); 2032 } 2033 out_err: 2034 pr_debug("msk=%p data_ready=%d rx queue empty=%d copied=%d", 2035 msk, test_bit(MPTCP_DATA_READY, &msk->flags), 2036 skb_queue_empty_lockless(&sk->sk_receive_queue), copied); 2037 mptcp_rcv_space_adjust(msk, copied); 2038 2039 release_sock(sk); 2040 return copied; 2041 } 2042 2043 static void mptcp_retransmit_handler(struct sock *sk) 2044 { 2045 struct mptcp_sock *msk = mptcp_sk(sk); 2046 2047 set_bit(MPTCP_WORK_RTX, &msk->flags); 2048 mptcp_schedule_work(sk); 2049 } 2050 2051 static void mptcp_retransmit_timer(struct timer_list *t) 2052 { 2053 struct inet_connection_sock *icsk = from_timer(icsk, t, 2054 icsk_retransmit_timer); 2055 struct sock *sk = &icsk->icsk_inet.sk; 2056 2057 bh_lock_sock(sk); 2058 if (!sock_owned_by_user(sk)) { 2059 mptcp_retransmit_handler(sk); 2060 } else { 2061 /* delegate our work to tcp_release_cb() */ 2062 if (!test_and_set_bit(TCP_WRITE_TIMER_DEFERRED, 2063 &sk->sk_tsq_flags)) 2064 sock_hold(sk); 2065 } 2066 bh_unlock_sock(sk); 2067 sock_put(sk); 2068 } 2069 2070 static void mptcp_timeout_timer(struct timer_list *t) 2071 { 2072 struct sock *sk = from_timer(sk, t, sk_timer); 2073 2074 mptcp_schedule_work(sk); 2075 sock_put(sk); 2076 } 2077 2078 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2079 * level. 2080 * 2081 * A backup subflow is returned only if that is the only kind available. 2082 */ 2083 static struct sock *mptcp_subflow_get_retrans(const struct mptcp_sock *msk) 2084 { 2085 struct mptcp_subflow_context *subflow; 2086 struct sock *backup = NULL; 2087 2088 sock_owned_by_me((const struct sock *)msk); 2089 2090 if (__mptcp_check_fallback(msk)) 2091 return NULL; 2092 2093 mptcp_for_each_subflow(msk, subflow) { 2094 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2095 2096 if (!mptcp_subflow_active(subflow)) 2097 continue; 2098 2099 /* still data outstanding at TCP level? Don't retransmit. */ 2100 if (!tcp_write_queue_empty(ssk)) { 2101 if (inet_csk(ssk)->icsk_ca_state >= TCP_CA_Loss) 2102 continue; 2103 return NULL; 2104 } 2105 2106 if (subflow->backup) { 2107 if (!backup) 2108 backup = ssk; 2109 continue; 2110 } 2111 2112 return ssk; 2113 } 2114 2115 return backup; 2116 } 2117 2118 /* subflow sockets can be either outgoing (connect) or incoming 2119 * (accept). 2120 * 2121 * Outgoing subflows use in-kernel sockets. 2122 * Incoming subflows do not have their own 'struct socket' allocated, 2123 * so we need to use tcp_close() after detaching them from the mptcp 2124 * parent socket. 2125 */ 2126 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2127 struct mptcp_subflow_context *subflow) 2128 { 2129 list_del(&subflow->node); 2130 2131 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2132 2133 /* if we are invoked by the msk cleanup code, the subflow is 2134 * already orphaned 2135 */ 2136 if (ssk->sk_socket) 2137 sock_orphan(ssk); 2138 2139 subflow->disposable = 1; 2140 2141 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2142 * the ssk has been already destroyed, we just need to release the 2143 * reference owned by msk; 2144 */ 2145 if (!inet_csk(ssk)->icsk_ulp_ops) { 2146 kfree_rcu(subflow, rcu); 2147 } else { 2148 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2149 __tcp_close(ssk, 0); 2150 2151 /* close acquired an extra ref */ 2152 __sock_put(ssk); 2153 } 2154 release_sock(ssk); 2155 2156 sock_put(ssk); 2157 } 2158 2159 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2160 struct mptcp_subflow_context *subflow) 2161 { 2162 if (sk->sk_state == TCP_ESTABLISHED) 2163 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2164 __mptcp_close_ssk(sk, ssk, subflow); 2165 } 2166 2167 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2168 { 2169 return 0; 2170 } 2171 2172 static void __mptcp_close_subflow(struct mptcp_sock *msk) 2173 { 2174 struct mptcp_subflow_context *subflow, *tmp; 2175 2176 might_sleep(); 2177 2178 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { 2179 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2180 2181 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2182 continue; 2183 2184 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2185 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2186 continue; 2187 2188 mptcp_close_ssk((struct sock *)msk, ssk, subflow); 2189 } 2190 } 2191 2192 static bool mptcp_check_close_timeout(const struct sock *sk) 2193 { 2194 s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp; 2195 struct mptcp_subflow_context *subflow; 2196 2197 if (delta >= TCP_TIMEWAIT_LEN) 2198 return true; 2199 2200 /* if all subflows are in closed status don't bother with additional 2201 * timeout 2202 */ 2203 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2204 if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) != 2205 TCP_CLOSE) 2206 return false; 2207 } 2208 return true; 2209 } 2210 2211 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2212 { 2213 struct mptcp_subflow_context *subflow, *tmp; 2214 struct sock *sk = &msk->sk.icsk_inet.sk; 2215 2216 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2217 return; 2218 2219 mptcp_token_destroy(msk); 2220 2221 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { 2222 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2223 2224 lock_sock(tcp_sk); 2225 if (tcp_sk->sk_state != TCP_CLOSE) { 2226 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2227 tcp_set_state(tcp_sk, TCP_CLOSE); 2228 } 2229 release_sock(tcp_sk); 2230 } 2231 2232 inet_sk_state_store(sk, TCP_CLOSE); 2233 sk->sk_shutdown = SHUTDOWN_MASK; 2234 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2235 set_bit(MPTCP_DATA_READY, &msk->flags); 2236 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2237 2238 mptcp_close_wake_up(sk); 2239 } 2240 2241 static void mptcp_worker(struct work_struct *work) 2242 { 2243 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2244 struct sock *ssk, *sk = &msk->sk.icsk_inet.sk; 2245 struct mptcp_sendmsg_info info = {}; 2246 struct mptcp_data_frag *dfrag; 2247 size_t copied = 0; 2248 int state, ret; 2249 2250 lock_sock(sk); 2251 state = sk->sk_state; 2252 if (unlikely(state == TCP_CLOSE)) 2253 goto unlock; 2254 2255 mptcp_check_data_fin_ack(sk); 2256 __mptcp_flush_join_list(msk); 2257 2258 mptcp_check_fastclose(msk); 2259 2260 if (msk->pm.status) 2261 mptcp_pm_nl_work(msk); 2262 2263 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2264 mptcp_check_for_eof(msk); 2265 2266 __mptcp_check_send_data_fin(sk); 2267 mptcp_check_data_fin(sk); 2268 2269 /* There is no point in keeping around an orphaned sk timedout or 2270 * closed, but we need the msk around to reply to incoming DATA_FIN, 2271 * even if it is orphaned and in FIN_WAIT2 state 2272 */ 2273 if (sock_flag(sk, SOCK_DEAD) && 2274 (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) { 2275 inet_sk_state_store(sk, TCP_CLOSE); 2276 __mptcp_destroy_sock(sk); 2277 goto unlock; 2278 } 2279 2280 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2281 __mptcp_close_subflow(msk); 2282 2283 if (!test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2284 goto unlock; 2285 2286 __mptcp_clean_una(sk); 2287 dfrag = mptcp_rtx_head(sk); 2288 if (!dfrag) 2289 goto unlock; 2290 2291 ssk = mptcp_subflow_get_retrans(msk); 2292 if (!ssk) 2293 goto reset_unlock; 2294 2295 lock_sock(ssk); 2296 2297 /* limit retransmission to the bytes already sent on some subflows */ 2298 info.sent = 0; 2299 info.limit = dfrag->already_sent; 2300 while (info.sent < dfrag->already_sent) { 2301 if (!mptcp_alloc_tx_skb(sk, ssk)) 2302 break; 2303 2304 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2305 if (ret <= 0) 2306 break; 2307 2308 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2309 copied += ret; 2310 info.sent += ret; 2311 } 2312 if (copied) 2313 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2314 info.size_goal); 2315 2316 mptcp_set_timeout(sk, ssk); 2317 release_sock(ssk); 2318 2319 reset_unlock: 2320 if (!mptcp_timer_pending(sk)) 2321 mptcp_reset_timer(sk); 2322 2323 unlock: 2324 release_sock(sk); 2325 sock_put(sk); 2326 } 2327 2328 static int __mptcp_init_sock(struct sock *sk) 2329 { 2330 struct mptcp_sock *msk = mptcp_sk(sk); 2331 2332 spin_lock_init(&msk->join_list_lock); 2333 2334 INIT_LIST_HEAD(&msk->conn_list); 2335 INIT_LIST_HEAD(&msk->join_list); 2336 INIT_LIST_HEAD(&msk->rtx_queue); 2337 INIT_WORK(&msk->work, mptcp_worker); 2338 __skb_queue_head_init(&msk->receive_queue); 2339 __skb_queue_head_init(&msk->skb_tx_cache); 2340 msk->out_of_order_queue = RB_ROOT; 2341 msk->first_pending = NULL; 2342 msk->wmem_reserved = 0; 2343 msk->rmem_released = 0; 2344 msk->tx_pending_data = 0; 2345 msk->size_goal_cache = TCP_BASE_MSS; 2346 2347 msk->ack_hint = NULL; 2348 msk->first = NULL; 2349 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2350 2351 mptcp_pm_data_init(msk); 2352 2353 /* re-use the csk retrans timer for MPTCP-level retrans */ 2354 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2355 timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0); 2356 return 0; 2357 } 2358 2359 static int mptcp_init_sock(struct sock *sk) 2360 { 2361 struct net *net = sock_net(sk); 2362 int ret; 2363 2364 ret = __mptcp_init_sock(sk); 2365 if (ret) 2366 return ret; 2367 2368 if (!mptcp_is_enabled(net)) 2369 return -ENOPROTOOPT; 2370 2371 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2372 return -ENOMEM; 2373 2374 ret = __mptcp_socket_create(mptcp_sk(sk)); 2375 if (ret) 2376 return ret; 2377 2378 sk_sockets_allocated_inc(sk); 2379 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 2380 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 2381 2382 return 0; 2383 } 2384 2385 static void __mptcp_clear_xmit(struct sock *sk) 2386 { 2387 struct mptcp_sock *msk = mptcp_sk(sk); 2388 struct mptcp_data_frag *dtmp, *dfrag; 2389 struct sk_buff *skb; 2390 2391 WRITE_ONCE(msk->first_pending, NULL); 2392 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2393 dfrag_clear(sk, dfrag); 2394 while ((skb = __skb_dequeue(&msk->skb_tx_cache)) != NULL) { 2395 sk->sk_forward_alloc += skb->truesize; 2396 kfree_skb(skb); 2397 } 2398 } 2399 2400 static void mptcp_cancel_work(struct sock *sk) 2401 { 2402 struct mptcp_sock *msk = mptcp_sk(sk); 2403 2404 if (cancel_work_sync(&msk->work)) 2405 __sock_put(sk); 2406 } 2407 2408 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2409 { 2410 lock_sock(ssk); 2411 2412 switch (ssk->sk_state) { 2413 case TCP_LISTEN: 2414 if (!(how & RCV_SHUTDOWN)) 2415 break; 2416 fallthrough; 2417 case TCP_SYN_SENT: 2418 tcp_disconnect(ssk, O_NONBLOCK); 2419 break; 2420 default: 2421 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2422 pr_debug("Fallback"); 2423 ssk->sk_shutdown |= how; 2424 tcp_shutdown(ssk, how); 2425 } else { 2426 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2427 mptcp_set_timeout(sk, ssk); 2428 tcp_send_ack(ssk); 2429 } 2430 break; 2431 } 2432 2433 release_sock(ssk); 2434 } 2435 2436 static const unsigned char new_state[16] = { 2437 /* current state: new state: action: */ 2438 [0 /* (Invalid) */] = TCP_CLOSE, 2439 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2440 [TCP_SYN_SENT] = TCP_CLOSE, 2441 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2442 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2443 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2444 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2445 [TCP_CLOSE] = TCP_CLOSE, 2446 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2447 [TCP_LAST_ACK] = TCP_LAST_ACK, 2448 [TCP_LISTEN] = TCP_CLOSE, 2449 [TCP_CLOSING] = TCP_CLOSING, 2450 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2451 }; 2452 2453 static int mptcp_close_state(struct sock *sk) 2454 { 2455 int next = (int)new_state[sk->sk_state]; 2456 int ns = next & TCP_STATE_MASK; 2457 2458 inet_sk_state_store(sk, ns); 2459 2460 return next & TCP_ACTION_FIN; 2461 } 2462 2463 static void __mptcp_check_send_data_fin(struct sock *sk) 2464 { 2465 struct mptcp_subflow_context *subflow; 2466 struct mptcp_sock *msk = mptcp_sk(sk); 2467 2468 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2469 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2470 msk->snd_nxt, msk->write_seq); 2471 2472 /* we still need to enqueue subflows or not really shutting down, 2473 * skip this 2474 */ 2475 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2476 mptcp_send_head(sk)) 2477 return; 2478 2479 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2480 2481 /* fallback socket will not get data_fin/ack, can move to the next 2482 * state now 2483 */ 2484 if (__mptcp_check_fallback(msk)) { 2485 if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { 2486 inet_sk_state_store(sk, TCP_CLOSE); 2487 mptcp_close_wake_up(sk); 2488 } else if (sk->sk_state == TCP_FIN_WAIT1) { 2489 inet_sk_state_store(sk, TCP_FIN_WAIT2); 2490 } 2491 } 2492 2493 __mptcp_flush_join_list(msk); 2494 mptcp_for_each_subflow(msk, subflow) { 2495 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2496 2497 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2498 } 2499 } 2500 2501 static void __mptcp_wr_shutdown(struct sock *sk) 2502 { 2503 struct mptcp_sock *msk = mptcp_sk(sk); 2504 2505 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2506 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2507 !!mptcp_send_head(sk)); 2508 2509 /* will be ignored by fallback sockets */ 2510 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2511 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2512 2513 __mptcp_check_send_data_fin(sk); 2514 } 2515 2516 static void __mptcp_destroy_sock(struct sock *sk) 2517 { 2518 struct mptcp_subflow_context *subflow, *tmp; 2519 struct mptcp_sock *msk = mptcp_sk(sk); 2520 LIST_HEAD(conn_list); 2521 2522 pr_debug("msk=%p", msk); 2523 2524 might_sleep(); 2525 2526 /* dispose the ancillatory tcp socket, if any */ 2527 if (msk->subflow) { 2528 iput(SOCK_INODE(msk->subflow)); 2529 msk->subflow = NULL; 2530 } 2531 2532 /* be sure to always acquire the join list lock, to sync vs 2533 * mptcp_finish_join(). 2534 */ 2535 spin_lock_bh(&msk->join_list_lock); 2536 list_splice_tail_init(&msk->join_list, &msk->conn_list); 2537 spin_unlock_bh(&msk->join_list_lock); 2538 list_splice_init(&msk->conn_list, &conn_list); 2539 2540 sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer); 2541 sk_stop_timer(sk, &sk->sk_timer); 2542 msk->pm.status = 0; 2543 2544 list_for_each_entry_safe(subflow, tmp, &conn_list, node) { 2545 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2546 __mptcp_close_ssk(sk, ssk, subflow); 2547 } 2548 2549 sk->sk_prot->destroy(sk); 2550 2551 WARN_ON_ONCE(msk->wmem_reserved); 2552 WARN_ON_ONCE(msk->rmem_released); 2553 sk_stream_kill_queues(sk); 2554 xfrm_sk_free_policy(sk); 2555 sk_refcnt_debug_release(sk); 2556 sock_put(sk); 2557 } 2558 2559 static void mptcp_close(struct sock *sk, long timeout) 2560 { 2561 struct mptcp_subflow_context *subflow; 2562 bool do_cancel_work = false; 2563 2564 lock_sock(sk); 2565 sk->sk_shutdown = SHUTDOWN_MASK; 2566 2567 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 2568 inet_sk_state_store(sk, TCP_CLOSE); 2569 goto cleanup; 2570 } 2571 2572 if (mptcp_close_state(sk)) 2573 __mptcp_wr_shutdown(sk); 2574 2575 sk_stream_wait_close(sk, timeout); 2576 2577 cleanup: 2578 /* orphan all the subflows */ 2579 inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32; 2580 list_for_each_entry(subflow, &mptcp_sk(sk)->conn_list, node) { 2581 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2582 bool slow = lock_sock_fast(ssk); 2583 2584 sock_orphan(ssk); 2585 unlock_sock_fast(ssk, slow); 2586 } 2587 sock_orphan(sk); 2588 2589 sock_hold(sk); 2590 pr_debug("msk=%p state=%d", sk, sk->sk_state); 2591 if (sk->sk_state == TCP_CLOSE) { 2592 __mptcp_destroy_sock(sk); 2593 do_cancel_work = true; 2594 } else { 2595 sk_reset_timer(sk, &sk->sk_timer, jiffies + TCP_TIMEWAIT_LEN); 2596 } 2597 release_sock(sk); 2598 if (do_cancel_work) 2599 mptcp_cancel_work(sk); 2600 2601 if (mptcp_sk(sk)->token) 2602 mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL); 2603 2604 sock_put(sk); 2605 } 2606 2607 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 2608 { 2609 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2610 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 2611 struct ipv6_pinfo *msk6 = inet6_sk(msk); 2612 2613 msk->sk_v6_daddr = ssk->sk_v6_daddr; 2614 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 2615 2616 if (msk6 && ssk6) { 2617 msk6->saddr = ssk6->saddr; 2618 msk6->flow_label = ssk6->flow_label; 2619 } 2620 #endif 2621 2622 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 2623 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 2624 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 2625 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 2626 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 2627 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 2628 } 2629 2630 static int mptcp_disconnect(struct sock *sk, int flags) 2631 { 2632 struct mptcp_subflow_context *subflow; 2633 struct mptcp_sock *msk = mptcp_sk(sk); 2634 2635 __mptcp_flush_join_list(msk); 2636 mptcp_for_each_subflow(msk, subflow) { 2637 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2638 2639 lock_sock(ssk); 2640 tcp_disconnect(ssk, flags); 2641 release_sock(ssk); 2642 } 2643 return 0; 2644 } 2645 2646 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2647 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 2648 { 2649 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 2650 2651 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 2652 } 2653 #endif 2654 2655 struct sock *mptcp_sk_clone(const struct sock *sk, 2656 const struct mptcp_options_received *mp_opt, 2657 struct request_sock *req) 2658 { 2659 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 2660 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 2661 struct mptcp_sock *msk; 2662 u64 ack_seq; 2663 2664 if (!nsk) 2665 return NULL; 2666 2667 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2668 if (nsk->sk_family == AF_INET6) 2669 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 2670 #endif 2671 2672 __mptcp_init_sock(nsk); 2673 2674 msk = mptcp_sk(nsk); 2675 msk->local_key = subflow_req->local_key; 2676 msk->token = subflow_req->token; 2677 msk->subflow = NULL; 2678 WRITE_ONCE(msk->fully_established, false); 2679 2680 msk->write_seq = subflow_req->idsn + 1; 2681 msk->snd_nxt = msk->write_seq; 2682 msk->snd_una = msk->write_seq; 2683 msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd; 2684 2685 if (mp_opt->mp_capable) { 2686 msk->can_ack = true; 2687 msk->remote_key = mp_opt->sndr_key; 2688 mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq); 2689 ack_seq++; 2690 WRITE_ONCE(msk->ack_seq, ack_seq); 2691 WRITE_ONCE(msk->rcv_wnd_sent, ack_seq); 2692 } 2693 2694 sock_reset_flag(nsk, SOCK_RCU_FREE); 2695 /* will be fully established after successful MPC subflow creation */ 2696 inet_sk_state_store(nsk, TCP_SYN_RECV); 2697 2698 security_inet_csk_clone(nsk, req); 2699 bh_unlock_sock(nsk); 2700 2701 /* keep a single reference */ 2702 __sock_put(nsk); 2703 return nsk; 2704 } 2705 2706 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 2707 { 2708 const struct tcp_sock *tp = tcp_sk(ssk); 2709 2710 msk->rcvq_space.copied = 0; 2711 msk->rcvq_space.rtt_us = 0; 2712 2713 msk->rcvq_space.time = tp->tcp_mstamp; 2714 2715 /* initial rcv_space offering made to peer */ 2716 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 2717 TCP_INIT_CWND * tp->advmss); 2718 if (msk->rcvq_space.space == 0) 2719 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 2720 2721 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 2722 } 2723 2724 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err, 2725 bool kern) 2726 { 2727 struct mptcp_sock *msk = mptcp_sk(sk); 2728 struct socket *listener; 2729 struct sock *newsk; 2730 2731 listener = __mptcp_nmpc_socket(msk); 2732 if (WARN_ON_ONCE(!listener)) { 2733 *err = -EINVAL; 2734 return NULL; 2735 } 2736 2737 pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk)); 2738 newsk = inet_csk_accept(listener->sk, flags, err, kern); 2739 if (!newsk) 2740 return NULL; 2741 2742 pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk)); 2743 if (sk_is_mptcp(newsk)) { 2744 struct mptcp_subflow_context *subflow; 2745 struct sock *new_mptcp_sock; 2746 2747 subflow = mptcp_subflow_ctx(newsk); 2748 new_mptcp_sock = subflow->conn; 2749 2750 /* is_mptcp should be false if subflow->conn is missing, see 2751 * subflow_syn_recv_sock() 2752 */ 2753 if (WARN_ON_ONCE(!new_mptcp_sock)) { 2754 tcp_sk(newsk)->is_mptcp = 0; 2755 return newsk; 2756 } 2757 2758 /* acquire the 2nd reference for the owning socket */ 2759 sock_hold(new_mptcp_sock); 2760 newsk = new_mptcp_sock; 2761 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 2762 } else { 2763 MPTCP_INC_STATS(sock_net(sk), 2764 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 2765 } 2766 2767 return newsk; 2768 } 2769 2770 void mptcp_destroy_common(struct mptcp_sock *msk) 2771 { 2772 struct sock *sk = (struct sock *)msk; 2773 2774 __mptcp_clear_xmit(sk); 2775 2776 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 2777 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 2778 2779 skb_rbtree_purge(&msk->out_of_order_queue); 2780 mptcp_token_destroy(msk); 2781 mptcp_pm_free_anno_list(msk); 2782 } 2783 2784 static void mptcp_destroy(struct sock *sk) 2785 { 2786 struct mptcp_sock *msk = mptcp_sk(sk); 2787 2788 mptcp_destroy_common(msk); 2789 sk_sockets_allocated_dec(sk); 2790 } 2791 2792 static int mptcp_setsockopt_sol_socket(struct mptcp_sock *msk, int optname, 2793 sockptr_t optval, unsigned int optlen) 2794 { 2795 struct sock *sk = (struct sock *)msk; 2796 struct socket *ssock; 2797 int ret; 2798 2799 switch (optname) { 2800 case SO_REUSEPORT: 2801 case SO_REUSEADDR: 2802 lock_sock(sk); 2803 ssock = __mptcp_nmpc_socket(msk); 2804 if (!ssock) { 2805 release_sock(sk); 2806 return -EINVAL; 2807 } 2808 2809 ret = sock_setsockopt(ssock, SOL_SOCKET, optname, optval, optlen); 2810 if (ret == 0) { 2811 if (optname == SO_REUSEPORT) 2812 sk->sk_reuseport = ssock->sk->sk_reuseport; 2813 else if (optname == SO_REUSEADDR) 2814 sk->sk_reuse = ssock->sk->sk_reuse; 2815 } 2816 release_sock(sk); 2817 return ret; 2818 } 2819 2820 return sock_setsockopt(sk->sk_socket, SOL_SOCKET, optname, optval, optlen); 2821 } 2822 2823 static int mptcp_setsockopt_v6(struct mptcp_sock *msk, int optname, 2824 sockptr_t optval, unsigned int optlen) 2825 { 2826 struct sock *sk = (struct sock *)msk; 2827 int ret = -EOPNOTSUPP; 2828 struct socket *ssock; 2829 2830 switch (optname) { 2831 case IPV6_V6ONLY: 2832 lock_sock(sk); 2833 ssock = __mptcp_nmpc_socket(msk); 2834 if (!ssock) { 2835 release_sock(sk); 2836 return -EINVAL; 2837 } 2838 2839 ret = tcp_setsockopt(ssock->sk, SOL_IPV6, optname, optval, optlen); 2840 if (ret == 0) 2841 sk->sk_ipv6only = ssock->sk->sk_ipv6only; 2842 2843 release_sock(sk); 2844 break; 2845 } 2846 2847 return ret; 2848 } 2849 2850 static int mptcp_setsockopt(struct sock *sk, int level, int optname, 2851 sockptr_t optval, unsigned int optlen) 2852 { 2853 struct mptcp_sock *msk = mptcp_sk(sk); 2854 struct sock *ssk; 2855 2856 pr_debug("msk=%p", msk); 2857 2858 if (level == SOL_SOCKET) 2859 return mptcp_setsockopt_sol_socket(msk, optname, optval, optlen); 2860 2861 /* @@ the meaning of setsockopt() when the socket is connected and 2862 * there are multiple subflows is not yet defined. It is up to the 2863 * MPTCP-level socket to configure the subflows until the subflow 2864 * is in TCP fallback, when TCP socket options are passed through 2865 * to the one remaining subflow. 2866 */ 2867 lock_sock(sk); 2868 ssk = __mptcp_tcp_fallback(msk); 2869 release_sock(sk); 2870 if (ssk) 2871 return tcp_setsockopt(ssk, level, optname, optval, optlen); 2872 2873 if (level == SOL_IPV6) 2874 return mptcp_setsockopt_v6(msk, optname, optval, optlen); 2875 2876 return -EOPNOTSUPP; 2877 } 2878 2879 static int mptcp_getsockopt(struct sock *sk, int level, int optname, 2880 char __user *optval, int __user *option) 2881 { 2882 struct mptcp_sock *msk = mptcp_sk(sk); 2883 struct sock *ssk; 2884 2885 pr_debug("msk=%p", msk); 2886 2887 /* @@ the meaning of setsockopt() when the socket is connected and 2888 * there are multiple subflows is not yet defined. It is up to the 2889 * MPTCP-level socket to configure the subflows until the subflow 2890 * is in TCP fallback, when socket options are passed through 2891 * to the one remaining subflow. 2892 */ 2893 lock_sock(sk); 2894 ssk = __mptcp_tcp_fallback(msk); 2895 release_sock(sk); 2896 if (ssk) 2897 return tcp_getsockopt(ssk, level, optname, optval, option); 2898 2899 return -EOPNOTSUPP; 2900 } 2901 2902 void __mptcp_data_acked(struct sock *sk) 2903 { 2904 if (!sock_owned_by_user(sk)) 2905 __mptcp_clean_una(sk); 2906 else 2907 set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags); 2908 2909 if (mptcp_pending_data_fin_ack(sk)) 2910 mptcp_schedule_work(sk); 2911 } 2912 2913 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 2914 { 2915 if (!mptcp_send_head(sk)) 2916 return; 2917 2918 if (!sock_owned_by_user(sk)) { 2919 struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk)); 2920 2921 if (xmit_ssk == ssk) 2922 __mptcp_subflow_push_pending(sk, ssk); 2923 else if (xmit_ssk) 2924 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk)); 2925 } else { 2926 set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags); 2927 } 2928 } 2929 2930 #define MPTCP_DEFERRED_ALL (TCPF_WRITE_TIMER_DEFERRED) 2931 2932 /* processes deferred events and flush wmem */ 2933 static void mptcp_release_cb(struct sock *sk) 2934 { 2935 unsigned long flags, nflags; 2936 2937 /* push_pending may touch wmem_reserved, do it before the later 2938 * cleanup 2939 */ 2940 if (test_and_clear_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags)) 2941 __mptcp_clean_una(sk); 2942 if (test_and_clear_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags)) { 2943 /* mptcp_push_pending() acquires the subflow socket lock 2944 * 2945 * 1) can't be invoked in atomic scope 2946 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 2947 * datapath acquires the msk socket spinlock while helding 2948 * the subflow socket lock 2949 */ 2950 2951 spin_unlock_bh(&sk->sk_lock.slock); 2952 mptcp_push_pending(sk, 0); 2953 spin_lock_bh(&sk->sk_lock.slock); 2954 } 2955 if (test_and_clear_bit(MPTCP_ERROR_REPORT, &mptcp_sk(sk)->flags)) 2956 __mptcp_error_report(sk); 2957 2958 /* clear any wmem reservation and errors */ 2959 __mptcp_update_wmem(sk); 2960 __mptcp_update_rmem(sk); 2961 2962 do { 2963 flags = sk->sk_tsq_flags; 2964 if (!(flags & MPTCP_DEFERRED_ALL)) 2965 return; 2966 nflags = flags & ~MPTCP_DEFERRED_ALL; 2967 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 2968 2969 sock_release_ownership(sk); 2970 2971 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 2972 mptcp_retransmit_handler(sk); 2973 __sock_put(sk); 2974 } 2975 } 2976 2977 void mptcp_subflow_process_delegated(struct sock *ssk) 2978 { 2979 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 2980 struct sock *sk = subflow->conn; 2981 2982 mptcp_data_lock(sk); 2983 if (!sock_owned_by_user(sk)) 2984 __mptcp_subflow_push_pending(sk, ssk); 2985 else 2986 set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags); 2987 mptcp_data_unlock(sk); 2988 mptcp_subflow_delegated_done(subflow); 2989 } 2990 2991 static int mptcp_hash(struct sock *sk) 2992 { 2993 /* should never be called, 2994 * we hash the TCP subflows not the master socket 2995 */ 2996 WARN_ON_ONCE(1); 2997 return 0; 2998 } 2999 3000 static void mptcp_unhash(struct sock *sk) 3001 { 3002 /* called from sk_common_release(), but nothing to do here */ 3003 } 3004 3005 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3006 { 3007 struct mptcp_sock *msk = mptcp_sk(sk); 3008 struct socket *ssock; 3009 3010 ssock = __mptcp_nmpc_socket(msk); 3011 pr_debug("msk=%p, subflow=%p", msk, ssock); 3012 if (WARN_ON_ONCE(!ssock)) 3013 return -EINVAL; 3014 3015 return inet_csk_get_port(ssock->sk, snum); 3016 } 3017 3018 void mptcp_finish_connect(struct sock *ssk) 3019 { 3020 struct mptcp_subflow_context *subflow; 3021 struct mptcp_sock *msk; 3022 struct sock *sk; 3023 u64 ack_seq; 3024 3025 subflow = mptcp_subflow_ctx(ssk); 3026 sk = subflow->conn; 3027 msk = mptcp_sk(sk); 3028 3029 pr_debug("msk=%p, token=%u", sk, subflow->token); 3030 3031 mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq); 3032 ack_seq++; 3033 subflow->map_seq = ack_seq; 3034 subflow->map_subflow_seq = 1; 3035 3036 /* the socket is not connected yet, no msk/subflow ops can access/race 3037 * accessing the field below 3038 */ 3039 WRITE_ONCE(msk->remote_key, subflow->remote_key); 3040 WRITE_ONCE(msk->local_key, subflow->local_key); 3041 WRITE_ONCE(msk->write_seq, subflow->idsn + 1); 3042 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3043 WRITE_ONCE(msk->ack_seq, ack_seq); 3044 WRITE_ONCE(msk->rcv_wnd_sent, ack_seq); 3045 WRITE_ONCE(msk->can_ack, 1); 3046 WRITE_ONCE(msk->snd_una, msk->write_seq); 3047 3048 mptcp_pm_new_connection(msk, ssk, 0); 3049 3050 mptcp_rcv_space_init(msk, ssk); 3051 } 3052 3053 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3054 { 3055 write_lock_bh(&sk->sk_callback_lock); 3056 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3057 sk_set_socket(sk, parent); 3058 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3059 write_unlock_bh(&sk->sk_callback_lock); 3060 } 3061 3062 bool mptcp_finish_join(struct sock *ssk) 3063 { 3064 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3065 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3066 struct sock *parent = (void *)msk; 3067 struct socket *parent_sock; 3068 bool ret; 3069 3070 pr_debug("msk=%p, subflow=%p", msk, subflow); 3071 3072 /* mptcp socket already closing? */ 3073 if (!mptcp_is_fully_established(parent)) 3074 return false; 3075 3076 if (!msk->pm.server_side) 3077 goto out; 3078 3079 if (!mptcp_pm_allow_new_subflow(msk)) 3080 return false; 3081 3082 /* active connections are already on conn_list, and we can't acquire 3083 * msk lock here. 3084 * use the join list lock as synchronization point and double-check 3085 * msk status to avoid racing with __mptcp_destroy_sock() 3086 */ 3087 spin_lock_bh(&msk->join_list_lock); 3088 ret = inet_sk_state_load(parent) == TCP_ESTABLISHED; 3089 if (ret && !WARN_ON_ONCE(!list_empty(&subflow->node))) { 3090 list_add_tail(&subflow->node, &msk->join_list); 3091 sock_hold(ssk); 3092 } 3093 spin_unlock_bh(&msk->join_list_lock); 3094 if (!ret) 3095 return false; 3096 3097 /* attach to msk socket only after we are sure he will deal with us 3098 * at close time 3099 */ 3100 parent_sock = READ_ONCE(parent->sk_socket); 3101 if (parent_sock && !ssk->sk_socket) 3102 mptcp_sock_graft(ssk, parent_sock); 3103 subflow->map_seq = READ_ONCE(msk->ack_seq); 3104 out: 3105 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 3106 return true; 3107 } 3108 3109 static void mptcp_shutdown(struct sock *sk, int how) 3110 { 3111 pr_debug("sk=%p, how=%d", sk, how); 3112 3113 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3114 __mptcp_wr_shutdown(sk); 3115 } 3116 3117 static struct proto mptcp_prot = { 3118 .name = "MPTCP", 3119 .owner = THIS_MODULE, 3120 .init = mptcp_init_sock, 3121 .disconnect = mptcp_disconnect, 3122 .close = mptcp_close, 3123 .accept = mptcp_accept, 3124 .setsockopt = mptcp_setsockopt, 3125 .getsockopt = mptcp_getsockopt, 3126 .shutdown = mptcp_shutdown, 3127 .destroy = mptcp_destroy, 3128 .sendmsg = mptcp_sendmsg, 3129 .recvmsg = mptcp_recvmsg, 3130 .release_cb = mptcp_release_cb, 3131 .hash = mptcp_hash, 3132 .unhash = mptcp_unhash, 3133 .get_port = mptcp_get_port, 3134 .sockets_allocated = &mptcp_sockets_allocated, 3135 .memory_allocated = &tcp_memory_allocated, 3136 .memory_pressure = &tcp_memory_pressure, 3137 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3138 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3139 .sysctl_mem = sysctl_tcp_mem, 3140 .obj_size = sizeof(struct mptcp_sock), 3141 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3142 .no_autobind = true, 3143 }; 3144 3145 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3146 { 3147 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3148 struct socket *ssock; 3149 int err; 3150 3151 lock_sock(sock->sk); 3152 ssock = __mptcp_nmpc_socket(msk); 3153 if (!ssock) { 3154 err = -EINVAL; 3155 goto unlock; 3156 } 3157 3158 err = ssock->ops->bind(ssock, uaddr, addr_len); 3159 if (!err) 3160 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3161 3162 unlock: 3163 release_sock(sock->sk); 3164 return err; 3165 } 3166 3167 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3168 struct mptcp_subflow_context *subflow) 3169 { 3170 subflow->request_mptcp = 0; 3171 __mptcp_do_fallback(msk); 3172 } 3173 3174 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr, 3175 int addr_len, int flags) 3176 { 3177 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3178 struct mptcp_subflow_context *subflow; 3179 struct socket *ssock; 3180 int err; 3181 3182 lock_sock(sock->sk); 3183 if (sock->state != SS_UNCONNECTED && msk->subflow) { 3184 /* pending connection or invalid state, let existing subflow 3185 * cope with that 3186 */ 3187 ssock = msk->subflow; 3188 goto do_connect; 3189 } 3190 3191 ssock = __mptcp_nmpc_socket(msk); 3192 if (!ssock) { 3193 err = -EINVAL; 3194 goto unlock; 3195 } 3196 3197 mptcp_token_destroy(msk); 3198 inet_sk_state_store(sock->sk, TCP_SYN_SENT); 3199 subflow = mptcp_subflow_ctx(ssock->sk); 3200 #ifdef CONFIG_TCP_MD5SIG 3201 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3202 * TCP option space. 3203 */ 3204 if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info)) 3205 mptcp_subflow_early_fallback(msk, subflow); 3206 #endif 3207 if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) 3208 mptcp_subflow_early_fallback(msk, subflow); 3209 3210 do_connect: 3211 err = ssock->ops->connect(ssock, uaddr, addr_len, flags); 3212 sock->state = ssock->state; 3213 3214 /* on successful connect, the msk state will be moved to established by 3215 * subflow_finish_connect() 3216 */ 3217 if (!err || err == -EINPROGRESS) 3218 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3219 else 3220 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 3221 3222 unlock: 3223 release_sock(sock->sk); 3224 return err; 3225 } 3226 3227 static int mptcp_listen(struct socket *sock, int backlog) 3228 { 3229 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3230 struct socket *ssock; 3231 int err; 3232 3233 pr_debug("msk=%p", msk); 3234 3235 lock_sock(sock->sk); 3236 ssock = __mptcp_nmpc_socket(msk); 3237 if (!ssock) { 3238 err = -EINVAL; 3239 goto unlock; 3240 } 3241 3242 mptcp_token_destroy(msk); 3243 inet_sk_state_store(sock->sk, TCP_LISTEN); 3244 sock_set_flag(sock->sk, SOCK_RCU_FREE); 3245 3246 err = ssock->ops->listen(ssock, backlog); 3247 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 3248 if (!err) 3249 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3250 3251 unlock: 3252 release_sock(sock->sk); 3253 return err; 3254 } 3255 3256 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3257 int flags, bool kern) 3258 { 3259 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3260 struct socket *ssock; 3261 int err; 3262 3263 pr_debug("msk=%p", msk); 3264 3265 lock_sock(sock->sk); 3266 if (sock->sk->sk_state != TCP_LISTEN) 3267 goto unlock_fail; 3268 3269 ssock = __mptcp_nmpc_socket(msk); 3270 if (!ssock) 3271 goto unlock_fail; 3272 3273 clear_bit(MPTCP_DATA_READY, &msk->flags); 3274 sock_hold(ssock->sk); 3275 release_sock(sock->sk); 3276 3277 err = ssock->ops->accept(sock, newsock, flags, kern); 3278 if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) { 3279 struct mptcp_sock *msk = mptcp_sk(newsock->sk); 3280 struct mptcp_subflow_context *subflow; 3281 struct sock *newsk = newsock->sk; 3282 3283 lock_sock(newsk); 3284 3285 /* PM/worker can now acquire the first subflow socket 3286 * lock without racing with listener queue cleanup, 3287 * we can notify it, if needed. 3288 */ 3289 subflow = mptcp_subflow_ctx(msk->first); 3290 list_add(&subflow->node, &msk->conn_list); 3291 sock_hold(msk->first); 3292 if (mptcp_is_fully_established(newsk)) 3293 mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL); 3294 3295 mptcp_copy_inaddrs(newsk, msk->first); 3296 mptcp_rcv_space_init(msk, msk->first); 3297 mptcp_propagate_sndbuf(newsk, msk->first); 3298 3299 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3300 * This is needed so NOSPACE flag can be set from tcp stack. 3301 */ 3302 __mptcp_flush_join_list(msk); 3303 mptcp_for_each_subflow(msk, subflow) { 3304 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3305 3306 if (!ssk->sk_socket) 3307 mptcp_sock_graft(ssk, newsock); 3308 } 3309 release_sock(newsk); 3310 } 3311 3312 if (inet_csk_listen_poll(ssock->sk)) 3313 set_bit(MPTCP_DATA_READY, &msk->flags); 3314 sock_put(ssock->sk); 3315 return err; 3316 3317 unlock_fail: 3318 release_sock(sock->sk); 3319 return -EINVAL; 3320 } 3321 3322 static __poll_t mptcp_check_readable(struct mptcp_sock *msk) 3323 { 3324 return test_bit(MPTCP_DATA_READY, &msk->flags) ? EPOLLIN | EPOLLRDNORM : 3325 0; 3326 } 3327 3328 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3329 { 3330 struct sock *sk = (struct sock *)msk; 3331 3332 if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN)) 3333 return EPOLLOUT | EPOLLWRNORM; 3334 3335 if (sk_stream_is_writeable(sk)) 3336 return EPOLLOUT | EPOLLWRNORM; 3337 3338 mptcp_set_nospace(sk); 3339 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3340 if (sk_stream_is_writeable(sk)) 3341 return EPOLLOUT | EPOLLWRNORM; 3342 3343 return 0; 3344 } 3345 3346 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3347 struct poll_table_struct *wait) 3348 { 3349 struct sock *sk = sock->sk; 3350 struct mptcp_sock *msk; 3351 __poll_t mask = 0; 3352 int state; 3353 3354 msk = mptcp_sk(sk); 3355 sock_poll_wait(file, sock, wait); 3356 3357 state = inet_sk_state_load(sk); 3358 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3359 if (state == TCP_LISTEN) 3360 return mptcp_check_readable(msk); 3361 3362 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3363 mask |= mptcp_check_readable(msk); 3364 mask |= mptcp_check_writeable(msk); 3365 } 3366 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3367 mask |= EPOLLHUP; 3368 if (sk->sk_shutdown & RCV_SHUTDOWN) 3369 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3370 3371 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 3372 smp_rmb(); 3373 if (sk->sk_err) 3374 mask |= EPOLLERR; 3375 3376 return mask; 3377 } 3378 3379 static int mptcp_release(struct socket *sock) 3380 { 3381 struct mptcp_subflow_context *subflow; 3382 struct sock *sk = sock->sk; 3383 struct mptcp_sock *msk; 3384 3385 if (!sk) 3386 return 0; 3387 3388 lock_sock(sk); 3389 3390 msk = mptcp_sk(sk); 3391 3392 mptcp_for_each_subflow(msk, subflow) { 3393 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3394 3395 ip_mc_drop_socket(ssk); 3396 } 3397 3398 release_sock(sk); 3399 3400 return inet_release(sock); 3401 } 3402 3403 static const struct proto_ops mptcp_stream_ops = { 3404 .family = PF_INET, 3405 .owner = THIS_MODULE, 3406 .release = mptcp_release, 3407 .bind = mptcp_bind, 3408 .connect = mptcp_stream_connect, 3409 .socketpair = sock_no_socketpair, 3410 .accept = mptcp_stream_accept, 3411 .getname = inet_getname, 3412 .poll = mptcp_poll, 3413 .ioctl = inet_ioctl, 3414 .gettstamp = sock_gettstamp, 3415 .listen = mptcp_listen, 3416 .shutdown = inet_shutdown, 3417 .setsockopt = sock_common_setsockopt, 3418 .getsockopt = sock_common_getsockopt, 3419 .sendmsg = inet_sendmsg, 3420 .recvmsg = inet_recvmsg, 3421 .mmap = sock_no_mmap, 3422 .sendpage = inet_sendpage, 3423 }; 3424 3425 static struct inet_protosw mptcp_protosw = { 3426 .type = SOCK_STREAM, 3427 .protocol = IPPROTO_MPTCP, 3428 .prot = &mptcp_prot, 3429 .ops = &mptcp_stream_ops, 3430 .flags = INET_PROTOSW_ICSK, 3431 }; 3432 3433 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 3434 { 3435 struct mptcp_delegated_action *delegated; 3436 struct mptcp_subflow_context *subflow; 3437 int work_done = 0; 3438 3439 delegated = container_of(napi, struct mptcp_delegated_action, napi); 3440 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 3441 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3442 3443 bh_lock_sock_nested(ssk); 3444 if (!sock_owned_by_user(ssk) && 3445 mptcp_subflow_has_delegated_action(subflow)) 3446 mptcp_subflow_process_delegated(ssk); 3447 /* ... elsewhere tcp_release_cb_override already processed 3448 * the action or will do at next release_sock(). 3449 * In both case must dequeue the subflow here - on the same 3450 * CPU that scheduled it. 3451 */ 3452 bh_unlock_sock(ssk); 3453 sock_put(ssk); 3454 3455 if (++work_done == budget) 3456 return budget; 3457 } 3458 3459 /* always provide a 0 'work_done' argument, so that napi_complete_done 3460 * will not try accessing the NULL napi->dev ptr 3461 */ 3462 napi_complete_done(napi, 0); 3463 return work_done; 3464 } 3465 3466 void __init mptcp_proto_init(void) 3467 { 3468 struct mptcp_delegated_action *delegated; 3469 int cpu; 3470 3471 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 3472 3473 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 3474 panic("Failed to allocate MPTCP pcpu counter\n"); 3475 3476 init_dummy_netdev(&mptcp_napi_dev); 3477 for_each_possible_cpu(cpu) { 3478 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 3479 INIT_LIST_HEAD(&delegated->head); 3480 netif_tx_napi_add(&mptcp_napi_dev, &delegated->napi, mptcp_napi_poll, 3481 NAPI_POLL_WEIGHT); 3482 napi_enable(&delegated->napi); 3483 } 3484 3485 mptcp_subflow_init(); 3486 mptcp_pm_init(); 3487 mptcp_token_init(); 3488 3489 if (proto_register(&mptcp_prot, 1) != 0) 3490 panic("Failed to register MPTCP proto.\n"); 3491 3492 inet_register_protosw(&mptcp_protosw); 3493 3494 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 3495 } 3496 3497 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3498 static int mptcp6_release(struct socket *sock) 3499 { 3500 struct mptcp_subflow_context *subflow; 3501 struct mptcp_sock *msk; 3502 struct sock *sk = sock->sk; 3503 3504 if (!sk) 3505 return 0; 3506 3507 lock_sock(sk); 3508 3509 msk = mptcp_sk(sk); 3510 3511 mptcp_for_each_subflow(msk, subflow) { 3512 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3513 3514 ip_mc_drop_socket(ssk); 3515 ipv6_sock_mc_close(ssk); 3516 ipv6_sock_ac_close(ssk); 3517 } 3518 3519 release_sock(sk); 3520 return inet6_release(sock); 3521 } 3522 3523 static const struct proto_ops mptcp_v6_stream_ops = { 3524 .family = PF_INET6, 3525 .owner = THIS_MODULE, 3526 .release = mptcp6_release, 3527 .bind = mptcp_bind, 3528 .connect = mptcp_stream_connect, 3529 .socketpair = sock_no_socketpair, 3530 .accept = mptcp_stream_accept, 3531 .getname = inet6_getname, 3532 .poll = mptcp_poll, 3533 .ioctl = inet6_ioctl, 3534 .gettstamp = sock_gettstamp, 3535 .listen = mptcp_listen, 3536 .shutdown = inet_shutdown, 3537 .setsockopt = sock_common_setsockopt, 3538 .getsockopt = sock_common_getsockopt, 3539 .sendmsg = inet6_sendmsg, 3540 .recvmsg = inet6_recvmsg, 3541 .mmap = sock_no_mmap, 3542 .sendpage = inet_sendpage, 3543 #ifdef CONFIG_COMPAT 3544 .compat_ioctl = inet6_compat_ioctl, 3545 #endif 3546 }; 3547 3548 static struct proto mptcp_v6_prot; 3549 3550 static void mptcp_v6_destroy(struct sock *sk) 3551 { 3552 mptcp_destroy(sk); 3553 inet6_destroy_sock(sk); 3554 } 3555 3556 static struct inet_protosw mptcp_v6_protosw = { 3557 .type = SOCK_STREAM, 3558 .protocol = IPPROTO_MPTCP, 3559 .prot = &mptcp_v6_prot, 3560 .ops = &mptcp_v6_stream_ops, 3561 .flags = INET_PROTOSW_ICSK, 3562 }; 3563 3564 int __init mptcp_proto_v6_init(void) 3565 { 3566 int err; 3567 3568 mptcp_v6_prot = mptcp_prot; 3569 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 3570 mptcp_v6_prot.slab = NULL; 3571 mptcp_v6_prot.destroy = mptcp_v6_destroy; 3572 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 3573 3574 err = proto_register(&mptcp_v6_prot, 1); 3575 if (err) 3576 return err; 3577 3578 err = inet6_register_protosw(&mptcp_v6_protosw); 3579 if (err) 3580 proto_unregister(&mptcp_v6_prot); 3581 3582 return err; 3583 } 3584 #endif 3585