xref: /openbmc/linux/net/mptcp/protocol.c (revision 47010c04)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include <asm/ioctls.h>
26 #include "protocol.h"
27 #include "mib.h"
28 
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/mptcp.h>
31 
32 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
33 struct mptcp6_sock {
34 	struct mptcp_sock msk;
35 	struct ipv6_pinfo np;
36 };
37 #endif
38 
39 struct mptcp_skb_cb {
40 	u64 map_seq;
41 	u64 end_seq;
42 	u32 offset;
43 	u8  has_rxtstamp:1;
44 };
45 
46 #define MPTCP_SKB_CB(__skb)	((struct mptcp_skb_cb *)&((__skb)->cb[0]))
47 
48 enum {
49 	MPTCP_CMSG_TS = BIT(0),
50 	MPTCP_CMSG_INQ = BIT(1),
51 };
52 
53 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
54 
55 static void __mptcp_destroy_sock(struct sock *sk);
56 static void __mptcp_check_send_data_fin(struct sock *sk);
57 
58 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
59 static struct net_device mptcp_napi_dev;
60 
61 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
62  * completed yet or has failed, return the subflow socket.
63  * Otherwise return NULL.
64  */
65 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
66 {
67 	if (!msk->subflow || READ_ONCE(msk->can_ack))
68 		return NULL;
69 
70 	return msk->subflow;
71 }
72 
73 /* Returns end sequence number of the receiver's advertised window */
74 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
75 {
76 	return READ_ONCE(msk->wnd_end);
77 }
78 
79 static bool mptcp_is_tcpsk(struct sock *sk)
80 {
81 	struct socket *sock = sk->sk_socket;
82 
83 	if (unlikely(sk->sk_prot == &tcp_prot)) {
84 		/* we are being invoked after mptcp_accept() has
85 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
86 		 * not an mptcp one.
87 		 *
88 		 * Hand the socket over to tcp so all further socket ops
89 		 * bypass mptcp.
90 		 */
91 		sock->ops = &inet_stream_ops;
92 		return true;
93 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
94 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
95 		sock->ops = &inet6_stream_ops;
96 		return true;
97 #endif
98 	}
99 
100 	return false;
101 }
102 
103 static int __mptcp_socket_create(struct mptcp_sock *msk)
104 {
105 	struct mptcp_subflow_context *subflow;
106 	struct sock *sk = (struct sock *)msk;
107 	struct socket *ssock;
108 	int err;
109 
110 	err = mptcp_subflow_create_socket(sk, &ssock);
111 	if (err)
112 		return err;
113 
114 	msk->first = ssock->sk;
115 	msk->subflow = ssock;
116 	subflow = mptcp_subflow_ctx(ssock->sk);
117 	list_add(&subflow->node, &msk->conn_list);
118 	sock_hold(ssock->sk);
119 	subflow->request_mptcp = 1;
120 
121 	/* This is the first subflow, always with id 0 */
122 	subflow->local_id_valid = 1;
123 	mptcp_sock_graft(msk->first, sk->sk_socket);
124 
125 	return 0;
126 }
127 
128 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
129 {
130 	sk_drops_add(sk, skb);
131 	__kfree_skb(skb);
132 }
133 
134 static void mptcp_rmem_charge(struct sock *sk, int size)
135 {
136 	mptcp_sk(sk)->rmem_fwd_alloc -= size;
137 }
138 
139 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
140 			       struct sk_buff *from)
141 {
142 	bool fragstolen;
143 	int delta;
144 
145 	if (MPTCP_SKB_CB(from)->offset ||
146 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
147 		return false;
148 
149 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
150 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
151 		 to->len, MPTCP_SKB_CB(from)->end_seq);
152 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
153 	kfree_skb_partial(from, fragstolen);
154 	atomic_add(delta, &sk->sk_rmem_alloc);
155 	mptcp_rmem_charge(sk, delta);
156 	return true;
157 }
158 
159 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
160 				   struct sk_buff *from)
161 {
162 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
163 		return false;
164 
165 	return mptcp_try_coalesce((struct sock *)msk, to, from);
166 }
167 
168 static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
169 {
170 	amount >>= SK_MEM_QUANTUM_SHIFT;
171 	mptcp_sk(sk)->rmem_fwd_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
172 	__sk_mem_reduce_allocated(sk, amount);
173 }
174 
175 static void mptcp_rmem_uncharge(struct sock *sk, int size)
176 {
177 	struct mptcp_sock *msk = mptcp_sk(sk);
178 	int reclaimable;
179 
180 	msk->rmem_fwd_alloc += size;
181 	reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
182 
183 	/* see sk_mem_uncharge() for the rationale behind the following schema */
184 	if (unlikely(reclaimable >= SK_RECLAIM_THRESHOLD))
185 		__mptcp_rmem_reclaim(sk, SK_RECLAIM_CHUNK);
186 }
187 
188 static void mptcp_rfree(struct sk_buff *skb)
189 {
190 	unsigned int len = skb->truesize;
191 	struct sock *sk = skb->sk;
192 
193 	atomic_sub(len, &sk->sk_rmem_alloc);
194 	mptcp_rmem_uncharge(sk, len);
195 }
196 
197 static void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
198 {
199 	skb_orphan(skb);
200 	skb->sk = sk;
201 	skb->destructor = mptcp_rfree;
202 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
203 	mptcp_rmem_charge(sk, skb->truesize);
204 }
205 
206 /* "inspired" by tcp_data_queue_ofo(), main differences:
207  * - use mptcp seqs
208  * - don't cope with sacks
209  */
210 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
211 {
212 	struct sock *sk = (struct sock *)msk;
213 	struct rb_node **p, *parent;
214 	u64 seq, end_seq, max_seq;
215 	struct sk_buff *skb1;
216 
217 	seq = MPTCP_SKB_CB(skb)->map_seq;
218 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
219 	max_seq = READ_ONCE(msk->rcv_wnd_sent);
220 
221 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
222 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
223 	if (after64(end_seq, max_seq)) {
224 		/* out of window */
225 		mptcp_drop(sk, skb);
226 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
227 			 (unsigned long long)end_seq - (unsigned long)max_seq,
228 			 (unsigned long long)msk->rcv_wnd_sent);
229 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
230 		return;
231 	}
232 
233 	p = &msk->out_of_order_queue.rb_node;
234 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
235 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
236 		rb_link_node(&skb->rbnode, NULL, p);
237 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
238 		msk->ooo_last_skb = skb;
239 		goto end;
240 	}
241 
242 	/* with 2 subflows, adding at end of ooo queue is quite likely
243 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
244 	 */
245 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
246 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
247 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
248 		return;
249 	}
250 
251 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
252 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
253 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
254 		parent = &msk->ooo_last_skb->rbnode;
255 		p = &parent->rb_right;
256 		goto insert;
257 	}
258 
259 	/* Find place to insert this segment. Handle overlaps on the way. */
260 	parent = NULL;
261 	while (*p) {
262 		parent = *p;
263 		skb1 = rb_to_skb(parent);
264 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
265 			p = &parent->rb_left;
266 			continue;
267 		}
268 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
269 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
270 				/* All the bits are present. Drop. */
271 				mptcp_drop(sk, skb);
272 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
273 				return;
274 			}
275 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
276 				/* partial overlap:
277 				 *     |     skb      |
278 				 *  |     skb1    |
279 				 * continue traversing
280 				 */
281 			} else {
282 				/* skb's seq == skb1's seq and skb covers skb1.
283 				 * Replace skb1 with skb.
284 				 */
285 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
286 						&msk->out_of_order_queue);
287 				mptcp_drop(sk, skb1);
288 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
289 				goto merge_right;
290 			}
291 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
292 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
293 			return;
294 		}
295 		p = &parent->rb_right;
296 	}
297 
298 insert:
299 	/* Insert segment into RB tree. */
300 	rb_link_node(&skb->rbnode, parent, p);
301 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
302 
303 merge_right:
304 	/* Remove other segments covered by skb. */
305 	while ((skb1 = skb_rb_next(skb)) != NULL) {
306 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
307 			break;
308 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
309 		mptcp_drop(sk, skb1);
310 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
311 	}
312 	/* If there is no skb after us, we are the last_skb ! */
313 	if (!skb1)
314 		msk->ooo_last_skb = skb;
315 
316 end:
317 	skb_condense(skb);
318 	mptcp_set_owner_r(skb, sk);
319 }
320 
321 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
322 {
323 	struct mptcp_sock *msk = mptcp_sk(sk);
324 	int amt, amount;
325 
326 	if (size < msk->rmem_fwd_alloc)
327 		return true;
328 
329 	amt = sk_mem_pages(size);
330 	amount = amt << SK_MEM_QUANTUM_SHIFT;
331 	msk->rmem_fwd_alloc += amount;
332 	if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) {
333 		if (ssk->sk_forward_alloc < amount) {
334 			msk->rmem_fwd_alloc -= amount;
335 			return false;
336 		}
337 
338 		ssk->sk_forward_alloc -= amount;
339 	}
340 	return true;
341 }
342 
343 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
344 			     struct sk_buff *skb, unsigned int offset,
345 			     size_t copy_len)
346 {
347 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
348 	struct sock *sk = (struct sock *)msk;
349 	struct sk_buff *tail;
350 	bool has_rxtstamp;
351 
352 	__skb_unlink(skb, &ssk->sk_receive_queue);
353 
354 	skb_ext_reset(skb);
355 	skb_orphan(skb);
356 
357 	/* try to fetch required memory from subflow */
358 	if (!mptcp_rmem_schedule(sk, ssk, skb->truesize))
359 		goto drop;
360 
361 	has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
362 
363 	/* the skb map_seq accounts for the skb offset:
364 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
365 	 * value
366 	 */
367 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
368 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
369 	MPTCP_SKB_CB(skb)->offset = offset;
370 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
371 
372 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
373 		/* in sequence */
374 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
375 		tail = skb_peek_tail(&sk->sk_receive_queue);
376 		if (tail && mptcp_try_coalesce(sk, tail, skb))
377 			return true;
378 
379 		mptcp_set_owner_r(skb, sk);
380 		__skb_queue_tail(&sk->sk_receive_queue, skb);
381 		return true;
382 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
383 		mptcp_data_queue_ofo(msk, skb);
384 		return false;
385 	}
386 
387 	/* old data, keep it simple and drop the whole pkt, sender
388 	 * will retransmit as needed, if needed.
389 	 */
390 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
391 drop:
392 	mptcp_drop(sk, skb);
393 	return false;
394 }
395 
396 static void mptcp_stop_timer(struct sock *sk)
397 {
398 	struct inet_connection_sock *icsk = inet_csk(sk);
399 
400 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
401 	mptcp_sk(sk)->timer_ival = 0;
402 }
403 
404 static void mptcp_close_wake_up(struct sock *sk)
405 {
406 	if (sock_flag(sk, SOCK_DEAD))
407 		return;
408 
409 	sk->sk_state_change(sk);
410 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
411 	    sk->sk_state == TCP_CLOSE)
412 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
413 	else
414 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
415 }
416 
417 static bool mptcp_pending_data_fin_ack(struct sock *sk)
418 {
419 	struct mptcp_sock *msk = mptcp_sk(sk);
420 
421 	return !__mptcp_check_fallback(msk) &&
422 	       ((1 << sk->sk_state) &
423 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
424 	       msk->write_seq == READ_ONCE(msk->snd_una);
425 }
426 
427 static void mptcp_check_data_fin_ack(struct sock *sk)
428 {
429 	struct mptcp_sock *msk = mptcp_sk(sk);
430 
431 	/* Look for an acknowledged DATA_FIN */
432 	if (mptcp_pending_data_fin_ack(sk)) {
433 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
434 
435 		switch (sk->sk_state) {
436 		case TCP_FIN_WAIT1:
437 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
438 			break;
439 		case TCP_CLOSING:
440 		case TCP_LAST_ACK:
441 			inet_sk_state_store(sk, TCP_CLOSE);
442 			break;
443 		}
444 
445 		mptcp_close_wake_up(sk);
446 	}
447 }
448 
449 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
450 {
451 	struct mptcp_sock *msk = mptcp_sk(sk);
452 
453 	if (READ_ONCE(msk->rcv_data_fin) &&
454 	    ((1 << sk->sk_state) &
455 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
456 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
457 
458 		if (msk->ack_seq == rcv_data_fin_seq) {
459 			if (seq)
460 				*seq = rcv_data_fin_seq;
461 
462 			return true;
463 		}
464 	}
465 
466 	return false;
467 }
468 
469 static void mptcp_set_datafin_timeout(const struct sock *sk)
470 {
471 	struct inet_connection_sock *icsk = inet_csk(sk);
472 	u32 retransmits;
473 
474 	retransmits = min_t(u32, icsk->icsk_retransmits,
475 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
476 
477 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
478 }
479 
480 static void __mptcp_set_timeout(struct sock *sk, long tout)
481 {
482 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
483 }
484 
485 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
486 {
487 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
488 
489 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
490 	       inet_csk(ssk)->icsk_timeout - jiffies : 0;
491 }
492 
493 static void mptcp_set_timeout(struct sock *sk)
494 {
495 	struct mptcp_subflow_context *subflow;
496 	long tout = 0;
497 
498 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
499 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
500 	__mptcp_set_timeout(sk, tout);
501 }
502 
503 static bool tcp_can_send_ack(const struct sock *ssk)
504 {
505 	return !((1 << inet_sk_state_load(ssk)) &
506 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
507 }
508 
509 void mptcp_subflow_send_ack(struct sock *ssk)
510 {
511 	bool slow;
512 
513 	slow = lock_sock_fast(ssk);
514 	if (tcp_can_send_ack(ssk))
515 		tcp_send_ack(ssk);
516 	unlock_sock_fast(ssk, slow);
517 }
518 
519 static void mptcp_send_ack(struct mptcp_sock *msk)
520 {
521 	struct mptcp_subflow_context *subflow;
522 
523 	mptcp_for_each_subflow(msk, subflow)
524 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
525 }
526 
527 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk)
528 {
529 	bool slow;
530 
531 	slow = lock_sock_fast(ssk);
532 	if (tcp_can_send_ack(ssk))
533 		tcp_cleanup_rbuf(ssk, 1);
534 	unlock_sock_fast(ssk, slow);
535 }
536 
537 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
538 {
539 	const struct inet_connection_sock *icsk = inet_csk(ssk);
540 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
541 	const struct tcp_sock *tp = tcp_sk(ssk);
542 
543 	return (ack_pending & ICSK_ACK_SCHED) &&
544 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
545 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
546 		 (rx_empty && ack_pending &
547 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
548 }
549 
550 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
551 {
552 	int old_space = READ_ONCE(msk->old_wspace);
553 	struct mptcp_subflow_context *subflow;
554 	struct sock *sk = (struct sock *)msk;
555 	int space =  __mptcp_space(sk);
556 	bool cleanup, rx_empty;
557 
558 	cleanup = (space > 0) && (space >= (old_space << 1));
559 	rx_empty = !__mptcp_rmem(sk);
560 
561 	mptcp_for_each_subflow(msk, subflow) {
562 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
563 
564 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
565 			mptcp_subflow_cleanup_rbuf(ssk);
566 	}
567 }
568 
569 static bool mptcp_check_data_fin(struct sock *sk)
570 {
571 	struct mptcp_sock *msk = mptcp_sk(sk);
572 	u64 rcv_data_fin_seq;
573 	bool ret = false;
574 
575 	if (__mptcp_check_fallback(msk))
576 		return ret;
577 
578 	/* Need to ack a DATA_FIN received from a peer while this side
579 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
580 	 * msk->rcv_data_fin was set when parsing the incoming options
581 	 * at the subflow level and the msk lock was not held, so this
582 	 * is the first opportunity to act on the DATA_FIN and change
583 	 * the msk state.
584 	 *
585 	 * If we are caught up to the sequence number of the incoming
586 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
587 	 * not caught up, do nothing and let the recv code send DATA_ACK
588 	 * when catching up.
589 	 */
590 
591 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
592 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
593 		WRITE_ONCE(msk->rcv_data_fin, 0);
594 
595 		sk->sk_shutdown |= RCV_SHUTDOWN;
596 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
597 
598 		switch (sk->sk_state) {
599 		case TCP_ESTABLISHED:
600 			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
601 			break;
602 		case TCP_FIN_WAIT1:
603 			inet_sk_state_store(sk, TCP_CLOSING);
604 			break;
605 		case TCP_FIN_WAIT2:
606 			inet_sk_state_store(sk, TCP_CLOSE);
607 			break;
608 		default:
609 			/* Other states not expected */
610 			WARN_ON_ONCE(1);
611 			break;
612 		}
613 
614 		ret = true;
615 		mptcp_send_ack(msk);
616 		mptcp_close_wake_up(sk);
617 	}
618 	return ret;
619 }
620 
621 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
622 					   struct sock *ssk,
623 					   unsigned int *bytes)
624 {
625 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
626 	struct sock *sk = (struct sock *)msk;
627 	unsigned int moved = 0;
628 	bool more_data_avail;
629 	struct tcp_sock *tp;
630 	bool done = false;
631 	int sk_rbuf;
632 
633 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
634 
635 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
636 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
637 
638 		if (unlikely(ssk_rbuf > sk_rbuf)) {
639 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
640 			sk_rbuf = ssk_rbuf;
641 		}
642 	}
643 
644 	pr_debug("msk=%p ssk=%p", msk, ssk);
645 	tp = tcp_sk(ssk);
646 	do {
647 		u32 map_remaining, offset;
648 		u32 seq = tp->copied_seq;
649 		struct sk_buff *skb;
650 		bool fin;
651 
652 		/* try to move as much data as available */
653 		map_remaining = subflow->map_data_len -
654 				mptcp_subflow_get_map_offset(subflow);
655 
656 		skb = skb_peek(&ssk->sk_receive_queue);
657 		if (!skb) {
658 			/* if no data is found, a racing workqueue/recvmsg
659 			 * already processed the new data, stop here or we
660 			 * can enter an infinite loop
661 			 */
662 			if (!moved)
663 				done = true;
664 			break;
665 		}
666 
667 		if (__mptcp_check_fallback(msk)) {
668 			/* if we are running under the workqueue, TCP could have
669 			 * collapsed skbs between dummy map creation and now
670 			 * be sure to adjust the size
671 			 */
672 			map_remaining = skb->len;
673 			subflow->map_data_len = skb->len;
674 		}
675 
676 		offset = seq - TCP_SKB_CB(skb)->seq;
677 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
678 		if (fin) {
679 			done = true;
680 			seq++;
681 		}
682 
683 		if (offset < skb->len) {
684 			size_t len = skb->len - offset;
685 
686 			if (tp->urg_data)
687 				done = true;
688 
689 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
690 				moved += len;
691 			seq += len;
692 
693 			if (WARN_ON_ONCE(map_remaining < len))
694 				break;
695 		} else {
696 			WARN_ON_ONCE(!fin);
697 			sk_eat_skb(ssk, skb);
698 			done = true;
699 		}
700 
701 		WRITE_ONCE(tp->copied_seq, seq);
702 		more_data_avail = mptcp_subflow_data_available(ssk);
703 
704 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
705 			done = true;
706 			break;
707 		}
708 	} while (more_data_avail);
709 
710 	*bytes += moved;
711 	return done;
712 }
713 
714 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
715 {
716 	struct sock *sk = (struct sock *)msk;
717 	struct sk_buff *skb, *tail;
718 	bool moved = false;
719 	struct rb_node *p;
720 	u64 end_seq;
721 
722 	p = rb_first(&msk->out_of_order_queue);
723 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
724 	while (p) {
725 		skb = rb_to_skb(p);
726 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
727 			break;
728 
729 		p = rb_next(p);
730 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
731 
732 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
733 				      msk->ack_seq))) {
734 			mptcp_drop(sk, skb);
735 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
736 			continue;
737 		}
738 
739 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
740 		tail = skb_peek_tail(&sk->sk_receive_queue);
741 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
742 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
743 
744 			/* skip overlapping data, if any */
745 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
746 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
747 				 delta);
748 			MPTCP_SKB_CB(skb)->offset += delta;
749 			MPTCP_SKB_CB(skb)->map_seq += delta;
750 			__skb_queue_tail(&sk->sk_receive_queue, skb);
751 		}
752 		msk->ack_seq = end_seq;
753 		moved = true;
754 	}
755 	return moved;
756 }
757 
758 /* In most cases we will be able to lock the mptcp socket.  If its already
759  * owned, we need to defer to the work queue to avoid ABBA deadlock.
760  */
761 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
762 {
763 	struct sock *sk = (struct sock *)msk;
764 	unsigned int moved = 0;
765 
766 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
767 	__mptcp_ofo_queue(msk);
768 	if (unlikely(ssk->sk_err)) {
769 		if (!sock_owned_by_user(sk))
770 			__mptcp_error_report(sk);
771 		else
772 			__set_bit(MPTCP_ERROR_REPORT,  &msk->cb_flags);
773 	}
774 
775 	/* If the moves have caught up with the DATA_FIN sequence number
776 	 * it's time to ack the DATA_FIN and change socket state, but
777 	 * this is not a good place to change state. Let the workqueue
778 	 * do it.
779 	 */
780 	if (mptcp_pending_data_fin(sk, NULL))
781 		mptcp_schedule_work(sk);
782 	return moved > 0;
783 }
784 
785 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
786 {
787 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
788 	struct mptcp_sock *msk = mptcp_sk(sk);
789 	int sk_rbuf, ssk_rbuf;
790 
791 	/* The peer can send data while we are shutting down this
792 	 * subflow at msk destruction time, but we must avoid enqueuing
793 	 * more data to the msk receive queue
794 	 */
795 	if (unlikely(subflow->disposable))
796 		return;
797 
798 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
799 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
800 	if (unlikely(ssk_rbuf > sk_rbuf))
801 		sk_rbuf = ssk_rbuf;
802 
803 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
804 	if (__mptcp_rmem(sk) > sk_rbuf) {
805 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
806 		return;
807 	}
808 
809 	/* Wake-up the reader only for in-sequence data */
810 	mptcp_data_lock(sk);
811 	if (move_skbs_to_msk(msk, ssk))
812 		sk->sk_data_ready(sk);
813 
814 	mptcp_data_unlock(sk);
815 }
816 
817 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
818 {
819 	struct sock *sk = (struct sock *)msk;
820 
821 	if (sk->sk_state != TCP_ESTABLISHED)
822 		return false;
823 
824 	/* attach to msk socket only after we are sure we will deal with it
825 	 * at close time
826 	 */
827 	if (sk->sk_socket && !ssk->sk_socket)
828 		mptcp_sock_graft(ssk, sk->sk_socket);
829 
830 	mptcp_propagate_sndbuf((struct sock *)msk, ssk);
831 	mptcp_sockopt_sync_locked(msk, ssk);
832 	return true;
833 }
834 
835 static void __mptcp_flush_join_list(struct sock *sk)
836 {
837 	struct mptcp_subflow_context *tmp, *subflow;
838 	struct mptcp_sock *msk = mptcp_sk(sk);
839 
840 	list_for_each_entry_safe(subflow, tmp, &msk->join_list, node) {
841 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
842 		bool slow = lock_sock_fast(ssk);
843 
844 		list_move_tail(&subflow->node, &msk->conn_list);
845 		if (!__mptcp_finish_join(msk, ssk))
846 			mptcp_subflow_reset(ssk);
847 		unlock_sock_fast(ssk, slow);
848 	}
849 }
850 
851 static bool mptcp_timer_pending(struct sock *sk)
852 {
853 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
854 }
855 
856 static void mptcp_reset_timer(struct sock *sk)
857 {
858 	struct inet_connection_sock *icsk = inet_csk(sk);
859 	unsigned long tout;
860 
861 	/* prevent rescheduling on close */
862 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
863 		return;
864 
865 	tout = mptcp_sk(sk)->timer_ival;
866 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
867 }
868 
869 bool mptcp_schedule_work(struct sock *sk)
870 {
871 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
872 	    schedule_work(&mptcp_sk(sk)->work)) {
873 		/* each subflow already holds a reference to the sk, and the
874 		 * workqueue is invoked by a subflow, so sk can't go away here.
875 		 */
876 		sock_hold(sk);
877 		return true;
878 	}
879 	return false;
880 }
881 
882 void mptcp_subflow_eof(struct sock *sk)
883 {
884 	if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags))
885 		mptcp_schedule_work(sk);
886 }
887 
888 static void mptcp_check_for_eof(struct mptcp_sock *msk)
889 {
890 	struct mptcp_subflow_context *subflow;
891 	struct sock *sk = (struct sock *)msk;
892 	int receivers = 0;
893 
894 	mptcp_for_each_subflow(msk, subflow)
895 		receivers += !subflow->rx_eof;
896 	if (receivers)
897 		return;
898 
899 	if (!(sk->sk_shutdown & RCV_SHUTDOWN)) {
900 		/* hopefully temporary hack: propagate shutdown status
901 		 * to msk, when all subflows agree on it
902 		 */
903 		sk->sk_shutdown |= RCV_SHUTDOWN;
904 
905 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
906 		sk->sk_data_ready(sk);
907 	}
908 
909 	switch (sk->sk_state) {
910 	case TCP_ESTABLISHED:
911 		inet_sk_state_store(sk, TCP_CLOSE_WAIT);
912 		break;
913 	case TCP_FIN_WAIT1:
914 		inet_sk_state_store(sk, TCP_CLOSING);
915 		break;
916 	case TCP_FIN_WAIT2:
917 		inet_sk_state_store(sk, TCP_CLOSE);
918 		break;
919 	default:
920 		return;
921 	}
922 	mptcp_close_wake_up(sk);
923 }
924 
925 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
926 {
927 	struct mptcp_subflow_context *subflow;
928 	struct sock *sk = (struct sock *)msk;
929 
930 	sock_owned_by_me(sk);
931 
932 	mptcp_for_each_subflow(msk, subflow) {
933 		if (READ_ONCE(subflow->data_avail))
934 			return mptcp_subflow_tcp_sock(subflow);
935 	}
936 
937 	return NULL;
938 }
939 
940 static bool mptcp_skb_can_collapse_to(u64 write_seq,
941 				      const struct sk_buff *skb,
942 				      const struct mptcp_ext *mpext)
943 {
944 	if (!tcp_skb_can_collapse_to(skb))
945 		return false;
946 
947 	/* can collapse only if MPTCP level sequence is in order and this
948 	 * mapping has not been xmitted yet
949 	 */
950 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
951 	       !mpext->frozen;
952 }
953 
954 /* we can append data to the given data frag if:
955  * - there is space available in the backing page_frag
956  * - the data frag tail matches the current page_frag free offset
957  * - the data frag end sequence number matches the current write seq
958  */
959 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
960 				       const struct page_frag *pfrag,
961 				       const struct mptcp_data_frag *df)
962 {
963 	return df && pfrag->page == df->page &&
964 		pfrag->size - pfrag->offset > 0 &&
965 		pfrag->offset == (df->offset + df->data_len) &&
966 		df->data_seq + df->data_len == msk->write_seq;
967 }
968 
969 static void __mptcp_mem_reclaim_partial(struct sock *sk)
970 {
971 	int reclaimable = mptcp_sk(sk)->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
972 
973 	lockdep_assert_held_once(&sk->sk_lock.slock);
974 
975 	if (reclaimable > SK_MEM_QUANTUM)
976 		__mptcp_rmem_reclaim(sk, reclaimable - 1);
977 
978 	sk_mem_reclaim_partial(sk);
979 }
980 
981 static void mptcp_mem_reclaim_partial(struct sock *sk)
982 {
983 	mptcp_data_lock(sk);
984 	__mptcp_mem_reclaim_partial(sk);
985 	mptcp_data_unlock(sk);
986 }
987 
988 static void dfrag_uncharge(struct sock *sk, int len)
989 {
990 	sk_mem_uncharge(sk, len);
991 	sk_wmem_queued_add(sk, -len);
992 }
993 
994 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
995 {
996 	int len = dfrag->data_len + dfrag->overhead;
997 
998 	list_del(&dfrag->list);
999 	dfrag_uncharge(sk, len);
1000 	put_page(dfrag->page);
1001 }
1002 
1003 static void __mptcp_clean_una(struct sock *sk)
1004 {
1005 	struct mptcp_sock *msk = mptcp_sk(sk);
1006 	struct mptcp_data_frag *dtmp, *dfrag;
1007 	bool cleaned = false;
1008 	u64 snd_una;
1009 
1010 	/* on fallback we just need to ignore snd_una, as this is really
1011 	 * plain TCP
1012 	 */
1013 	if (__mptcp_check_fallback(msk))
1014 		msk->snd_una = READ_ONCE(msk->snd_nxt);
1015 
1016 	snd_una = msk->snd_una;
1017 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1018 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1019 			break;
1020 
1021 		if (unlikely(dfrag == msk->first_pending)) {
1022 			/* in recovery mode can see ack after the current snd head */
1023 			if (WARN_ON_ONCE(!msk->recovery))
1024 				break;
1025 
1026 			WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1027 		}
1028 
1029 		dfrag_clear(sk, dfrag);
1030 		cleaned = true;
1031 	}
1032 
1033 	dfrag = mptcp_rtx_head(sk);
1034 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1035 		u64 delta = snd_una - dfrag->data_seq;
1036 
1037 		/* prevent wrap around in recovery mode */
1038 		if (unlikely(delta > dfrag->already_sent)) {
1039 			if (WARN_ON_ONCE(!msk->recovery))
1040 				goto out;
1041 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1042 				goto out;
1043 			dfrag->already_sent += delta - dfrag->already_sent;
1044 		}
1045 
1046 		dfrag->data_seq += delta;
1047 		dfrag->offset += delta;
1048 		dfrag->data_len -= delta;
1049 		dfrag->already_sent -= delta;
1050 
1051 		dfrag_uncharge(sk, delta);
1052 		cleaned = true;
1053 	}
1054 
1055 	/* all retransmitted data acked, recovery completed */
1056 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1057 		msk->recovery = false;
1058 
1059 out:
1060 	if (cleaned && tcp_under_memory_pressure(sk))
1061 		__mptcp_mem_reclaim_partial(sk);
1062 
1063 	if (snd_una == READ_ONCE(msk->snd_nxt) &&
1064 	    snd_una == READ_ONCE(msk->write_seq)) {
1065 		if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1066 			mptcp_stop_timer(sk);
1067 	} else {
1068 		mptcp_reset_timer(sk);
1069 	}
1070 }
1071 
1072 static void __mptcp_clean_una_wakeup(struct sock *sk)
1073 {
1074 	lockdep_assert_held_once(&sk->sk_lock.slock);
1075 
1076 	__mptcp_clean_una(sk);
1077 	mptcp_write_space(sk);
1078 }
1079 
1080 static void mptcp_clean_una_wakeup(struct sock *sk)
1081 {
1082 	mptcp_data_lock(sk);
1083 	__mptcp_clean_una_wakeup(sk);
1084 	mptcp_data_unlock(sk);
1085 }
1086 
1087 static void mptcp_enter_memory_pressure(struct sock *sk)
1088 {
1089 	struct mptcp_subflow_context *subflow;
1090 	struct mptcp_sock *msk = mptcp_sk(sk);
1091 	bool first = true;
1092 
1093 	sk_stream_moderate_sndbuf(sk);
1094 	mptcp_for_each_subflow(msk, subflow) {
1095 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1096 
1097 		if (first)
1098 			tcp_enter_memory_pressure(ssk);
1099 		sk_stream_moderate_sndbuf(ssk);
1100 		first = false;
1101 	}
1102 }
1103 
1104 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1105  * data
1106  */
1107 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1108 {
1109 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1110 					pfrag, sk->sk_allocation)))
1111 		return true;
1112 
1113 	mptcp_enter_memory_pressure(sk);
1114 	return false;
1115 }
1116 
1117 static struct mptcp_data_frag *
1118 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1119 		      int orig_offset)
1120 {
1121 	int offset = ALIGN(orig_offset, sizeof(long));
1122 	struct mptcp_data_frag *dfrag;
1123 
1124 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1125 	dfrag->data_len = 0;
1126 	dfrag->data_seq = msk->write_seq;
1127 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1128 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1129 	dfrag->already_sent = 0;
1130 	dfrag->page = pfrag->page;
1131 
1132 	return dfrag;
1133 }
1134 
1135 struct mptcp_sendmsg_info {
1136 	int mss_now;
1137 	int size_goal;
1138 	u16 limit;
1139 	u16 sent;
1140 	unsigned int flags;
1141 	bool data_lock_held;
1142 };
1143 
1144 static int mptcp_check_allowed_size(struct mptcp_sock *msk, u64 data_seq,
1145 				    int avail_size)
1146 {
1147 	u64 window_end = mptcp_wnd_end(msk);
1148 
1149 	if (__mptcp_check_fallback(msk))
1150 		return avail_size;
1151 
1152 	if (!before64(data_seq + avail_size, window_end)) {
1153 		u64 allowed_size = window_end - data_seq;
1154 
1155 		return min_t(unsigned int, allowed_size, avail_size);
1156 	}
1157 
1158 	return avail_size;
1159 }
1160 
1161 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1162 {
1163 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1164 
1165 	if (!mpext)
1166 		return false;
1167 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1168 	return true;
1169 }
1170 
1171 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1172 {
1173 	struct sk_buff *skb;
1174 
1175 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1176 	if (likely(skb)) {
1177 		if (likely(__mptcp_add_ext(skb, gfp))) {
1178 			skb_reserve(skb, MAX_TCP_HEADER);
1179 			skb->ip_summed = CHECKSUM_PARTIAL;
1180 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1181 			return skb;
1182 		}
1183 		__kfree_skb(skb);
1184 	} else {
1185 		mptcp_enter_memory_pressure(sk);
1186 	}
1187 	return NULL;
1188 }
1189 
1190 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1191 {
1192 	struct sk_buff *skb;
1193 
1194 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1195 	if (!skb)
1196 		return NULL;
1197 
1198 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1199 		tcp_skb_entail(ssk, skb);
1200 		return skb;
1201 	}
1202 	tcp_skb_tsorted_anchor_cleanup(skb);
1203 	kfree_skb(skb);
1204 	return NULL;
1205 }
1206 
1207 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1208 {
1209 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1210 
1211 	if (unlikely(tcp_under_memory_pressure(sk))) {
1212 		if (data_lock_held)
1213 			__mptcp_mem_reclaim_partial(sk);
1214 		else
1215 			mptcp_mem_reclaim_partial(sk);
1216 	}
1217 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1218 }
1219 
1220 /* note: this always recompute the csum on the whole skb, even
1221  * if we just appended a single frag. More status info needed
1222  */
1223 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1224 {
1225 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1226 	__wsum csum = ~csum_unfold(mpext->csum);
1227 	int offset = skb->len - added;
1228 
1229 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1230 }
1231 
1232 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1233 			      struct mptcp_data_frag *dfrag,
1234 			      struct mptcp_sendmsg_info *info)
1235 {
1236 	u64 data_seq = dfrag->data_seq + info->sent;
1237 	int offset = dfrag->offset + info->sent;
1238 	struct mptcp_sock *msk = mptcp_sk(sk);
1239 	bool zero_window_probe = false;
1240 	struct mptcp_ext *mpext = NULL;
1241 	bool can_coalesce = false;
1242 	bool reuse_skb = true;
1243 	struct sk_buff *skb;
1244 	size_t copy;
1245 	int i;
1246 
1247 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1248 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1249 
1250 	if (WARN_ON_ONCE(info->sent > info->limit ||
1251 			 info->limit > dfrag->data_len))
1252 		return 0;
1253 
1254 	/* compute send limit */
1255 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1256 	copy = info->size_goal;
1257 
1258 	skb = tcp_write_queue_tail(ssk);
1259 	if (skb && copy > skb->len) {
1260 		/* Limit the write to the size available in the
1261 		 * current skb, if any, so that we create at most a new skb.
1262 		 * Explicitly tells TCP internals to avoid collapsing on later
1263 		 * queue management operation, to avoid breaking the ext <->
1264 		 * SSN association set here
1265 		 */
1266 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1267 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1268 			TCP_SKB_CB(skb)->eor = 1;
1269 			goto alloc_skb;
1270 		}
1271 
1272 		i = skb_shinfo(skb)->nr_frags;
1273 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1274 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
1275 			tcp_mark_push(tcp_sk(ssk), skb);
1276 			goto alloc_skb;
1277 		}
1278 
1279 		copy -= skb->len;
1280 	} else {
1281 alloc_skb:
1282 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1283 		if (!skb)
1284 			return -ENOMEM;
1285 
1286 		i = skb_shinfo(skb)->nr_frags;
1287 		reuse_skb = false;
1288 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1289 	}
1290 
1291 	/* Zero window and all data acked? Probe. */
1292 	copy = mptcp_check_allowed_size(msk, data_seq, copy);
1293 	if (copy == 0) {
1294 		u64 snd_una = READ_ONCE(msk->snd_una);
1295 
1296 		if (snd_una != msk->snd_nxt) {
1297 			tcp_remove_empty_skb(ssk);
1298 			return 0;
1299 		}
1300 
1301 		zero_window_probe = true;
1302 		data_seq = snd_una - 1;
1303 		copy = 1;
1304 
1305 		/* all mptcp-level data is acked, no skbs should be present into the
1306 		 * ssk write queue
1307 		 */
1308 		WARN_ON_ONCE(reuse_skb);
1309 	}
1310 
1311 	copy = min_t(size_t, copy, info->limit - info->sent);
1312 	if (!sk_wmem_schedule(ssk, copy)) {
1313 		tcp_remove_empty_skb(ssk);
1314 		return -ENOMEM;
1315 	}
1316 
1317 	if (can_coalesce) {
1318 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1319 	} else {
1320 		get_page(dfrag->page);
1321 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1322 	}
1323 
1324 	skb->len += copy;
1325 	skb->data_len += copy;
1326 	skb->truesize += copy;
1327 	sk_wmem_queued_add(ssk, copy);
1328 	sk_mem_charge(ssk, copy);
1329 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1330 	TCP_SKB_CB(skb)->end_seq += copy;
1331 	tcp_skb_pcount_set(skb, 0);
1332 
1333 	/* on skb reuse we just need to update the DSS len */
1334 	if (reuse_skb) {
1335 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1336 		mpext->data_len += copy;
1337 		WARN_ON_ONCE(zero_window_probe);
1338 		goto out;
1339 	}
1340 
1341 	memset(mpext, 0, sizeof(*mpext));
1342 	mpext->data_seq = data_seq;
1343 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1344 	mpext->data_len = copy;
1345 	mpext->use_map = 1;
1346 	mpext->dsn64 = 1;
1347 
1348 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1349 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1350 		 mpext->dsn64);
1351 
1352 	if (zero_window_probe) {
1353 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1354 		mpext->frozen = 1;
1355 		if (READ_ONCE(msk->csum_enabled))
1356 			mptcp_update_data_checksum(skb, copy);
1357 		tcp_push_pending_frames(ssk);
1358 		return 0;
1359 	}
1360 out:
1361 	if (READ_ONCE(msk->csum_enabled))
1362 		mptcp_update_data_checksum(skb, copy);
1363 	trace_mptcp_sendmsg_frag(mpext);
1364 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1365 	return copy;
1366 }
1367 
1368 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1369 					 sizeof(struct tcphdr) - \
1370 					 MAX_TCP_OPTION_SPACE - \
1371 					 sizeof(struct ipv6hdr) - \
1372 					 sizeof(struct frag_hdr))
1373 
1374 struct subflow_send_info {
1375 	struct sock *ssk;
1376 	u64 linger_time;
1377 };
1378 
1379 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1380 {
1381 	if (!subflow->stale)
1382 		return;
1383 
1384 	subflow->stale = 0;
1385 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1386 }
1387 
1388 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1389 {
1390 	if (unlikely(subflow->stale)) {
1391 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1392 
1393 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1394 			return false;
1395 
1396 		mptcp_subflow_set_active(subflow);
1397 	}
1398 	return __mptcp_subflow_active(subflow);
1399 }
1400 
1401 #define SSK_MODE_ACTIVE	0
1402 #define SSK_MODE_BACKUP	1
1403 #define SSK_MODE_MAX	2
1404 
1405 /* implement the mptcp packet scheduler;
1406  * returns the subflow that will transmit the next DSS
1407  * additionally updates the rtx timeout
1408  */
1409 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1410 {
1411 	struct subflow_send_info send_info[SSK_MODE_MAX];
1412 	struct mptcp_subflow_context *subflow;
1413 	struct sock *sk = (struct sock *)msk;
1414 	u32 pace, burst, wmem;
1415 	int i, nr_active = 0;
1416 	struct sock *ssk;
1417 	u64 linger_time;
1418 	long tout = 0;
1419 
1420 	sock_owned_by_me(sk);
1421 
1422 	if (__mptcp_check_fallback(msk)) {
1423 		if (!msk->first)
1424 			return NULL;
1425 		return sk_stream_memory_free(msk->first) ? msk->first : NULL;
1426 	}
1427 
1428 	/* re-use last subflow, if the burst allow that */
1429 	if (msk->last_snd && msk->snd_burst > 0 &&
1430 	    sk_stream_memory_free(msk->last_snd) &&
1431 	    mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) {
1432 		mptcp_set_timeout(sk);
1433 		return msk->last_snd;
1434 	}
1435 
1436 	/* pick the subflow with the lower wmem/wspace ratio */
1437 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1438 		send_info[i].ssk = NULL;
1439 		send_info[i].linger_time = -1;
1440 	}
1441 
1442 	mptcp_for_each_subflow(msk, subflow) {
1443 		trace_mptcp_subflow_get_send(subflow);
1444 		ssk =  mptcp_subflow_tcp_sock(subflow);
1445 		if (!mptcp_subflow_active(subflow))
1446 			continue;
1447 
1448 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1449 		nr_active += !subflow->backup;
1450 		pace = subflow->avg_pacing_rate;
1451 		if (unlikely(!pace)) {
1452 			/* init pacing rate from socket */
1453 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1454 			pace = subflow->avg_pacing_rate;
1455 			if (!pace)
1456 				continue;
1457 		}
1458 
1459 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1460 		if (linger_time < send_info[subflow->backup].linger_time) {
1461 			send_info[subflow->backup].ssk = ssk;
1462 			send_info[subflow->backup].linger_time = linger_time;
1463 		}
1464 	}
1465 	__mptcp_set_timeout(sk, tout);
1466 
1467 	/* pick the best backup if no other subflow is active */
1468 	if (!nr_active)
1469 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1470 
1471 	/* According to the blest algorithm, to avoid HoL blocking for the
1472 	 * faster flow, we need to:
1473 	 * - estimate the faster flow linger time
1474 	 * - use the above to estimate the amount of byte transferred
1475 	 *   by the faster flow
1476 	 * - check that the amount of queued data is greter than the above,
1477 	 *   otherwise do not use the picked, slower, subflow
1478 	 * We select the subflow with the shorter estimated time to flush
1479 	 * the queued mem, which basically ensure the above. We just need
1480 	 * to check that subflow has a non empty cwin.
1481 	 */
1482 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1483 	if (!ssk || !sk_stream_memory_free(ssk) || !tcp_sk(ssk)->snd_wnd)
1484 		return NULL;
1485 
1486 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, tcp_sk(ssk)->snd_wnd);
1487 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1488 	subflow = mptcp_subflow_ctx(ssk);
1489 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1490 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1491 					   burst + wmem);
1492 	msk->last_snd = ssk;
1493 	msk->snd_burst = burst;
1494 	return ssk;
1495 }
1496 
1497 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1498 {
1499 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1500 	release_sock(ssk);
1501 }
1502 
1503 static void mptcp_update_post_push(struct mptcp_sock *msk,
1504 				   struct mptcp_data_frag *dfrag,
1505 				   u32 sent)
1506 {
1507 	u64 snd_nxt_new = dfrag->data_seq;
1508 
1509 	dfrag->already_sent += sent;
1510 
1511 	msk->snd_burst -= sent;
1512 
1513 	snd_nxt_new += dfrag->already_sent;
1514 
1515 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1516 	 * is recovering after a failover. In that event, this re-sends
1517 	 * old segments.
1518 	 *
1519 	 * Thus compute snd_nxt_new candidate based on
1520 	 * the dfrag->data_seq that was sent and the data
1521 	 * that has been handed to the subflow for transmission
1522 	 * and skip update in case it was old dfrag.
1523 	 */
1524 	if (likely(after64(snd_nxt_new, msk->snd_nxt)))
1525 		msk->snd_nxt = snd_nxt_new;
1526 }
1527 
1528 void mptcp_check_and_set_pending(struct sock *sk)
1529 {
1530 	if (mptcp_send_head(sk))
1531 		mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING);
1532 }
1533 
1534 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1535 {
1536 	struct sock *prev_ssk = NULL, *ssk = NULL;
1537 	struct mptcp_sock *msk = mptcp_sk(sk);
1538 	struct mptcp_sendmsg_info info = {
1539 				.flags = flags,
1540 	};
1541 	struct mptcp_data_frag *dfrag;
1542 	int len, copied = 0;
1543 
1544 	while ((dfrag = mptcp_send_head(sk))) {
1545 		info.sent = dfrag->already_sent;
1546 		info.limit = dfrag->data_len;
1547 		len = dfrag->data_len - dfrag->already_sent;
1548 		while (len > 0) {
1549 			int ret = 0;
1550 
1551 			prev_ssk = ssk;
1552 			ssk = mptcp_subflow_get_send(msk);
1553 
1554 			/* First check. If the ssk has changed since
1555 			 * the last round, release prev_ssk
1556 			 */
1557 			if (ssk != prev_ssk && prev_ssk)
1558 				mptcp_push_release(prev_ssk, &info);
1559 			if (!ssk)
1560 				goto out;
1561 
1562 			/* Need to lock the new subflow only if different
1563 			 * from the previous one, otherwise we are still
1564 			 * helding the relevant lock
1565 			 */
1566 			if (ssk != prev_ssk)
1567 				lock_sock(ssk);
1568 
1569 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1570 			if (ret <= 0) {
1571 				mptcp_push_release(ssk, &info);
1572 				goto out;
1573 			}
1574 
1575 			info.sent += ret;
1576 			copied += ret;
1577 			len -= ret;
1578 
1579 			mptcp_update_post_push(msk, dfrag, ret);
1580 		}
1581 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1582 	}
1583 
1584 	/* at this point we held the socket lock for the last subflow we used */
1585 	if (ssk)
1586 		mptcp_push_release(ssk, &info);
1587 
1588 out:
1589 	/* ensure the rtx timer is running */
1590 	if (!mptcp_timer_pending(sk))
1591 		mptcp_reset_timer(sk);
1592 	if (copied)
1593 		__mptcp_check_send_data_fin(sk);
1594 }
1595 
1596 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk)
1597 {
1598 	struct mptcp_sock *msk = mptcp_sk(sk);
1599 	struct mptcp_sendmsg_info info = {
1600 		.data_lock_held = true,
1601 	};
1602 	struct mptcp_data_frag *dfrag;
1603 	struct sock *xmit_ssk;
1604 	int len, copied = 0;
1605 	bool first = true;
1606 
1607 	info.flags = 0;
1608 	while ((dfrag = mptcp_send_head(sk))) {
1609 		info.sent = dfrag->already_sent;
1610 		info.limit = dfrag->data_len;
1611 		len = dfrag->data_len - dfrag->already_sent;
1612 		while (len > 0) {
1613 			int ret = 0;
1614 
1615 			/* the caller already invoked the packet scheduler,
1616 			 * check for a different subflow usage only after
1617 			 * spooling the first chunk of data
1618 			 */
1619 			xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk));
1620 			if (!xmit_ssk)
1621 				goto out;
1622 			if (xmit_ssk != ssk) {
1623 				mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk),
1624 						       MPTCP_DELEGATE_SEND);
1625 				goto out;
1626 			}
1627 
1628 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1629 			if (ret <= 0)
1630 				goto out;
1631 
1632 			info.sent += ret;
1633 			copied += ret;
1634 			len -= ret;
1635 			first = false;
1636 
1637 			mptcp_update_post_push(msk, dfrag, ret);
1638 		}
1639 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1640 	}
1641 
1642 out:
1643 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1644 	 * not going to flush it via release_sock()
1645 	 */
1646 	if (copied) {
1647 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1648 			 info.size_goal);
1649 		if (!mptcp_timer_pending(sk))
1650 			mptcp_reset_timer(sk);
1651 
1652 		if (msk->snd_data_fin_enable &&
1653 		    msk->snd_nxt + 1 == msk->write_seq)
1654 			mptcp_schedule_work(sk);
1655 	}
1656 }
1657 
1658 static void mptcp_set_nospace(struct sock *sk)
1659 {
1660 	/* enable autotune */
1661 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1662 
1663 	/* will be cleared on avail space */
1664 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1665 }
1666 
1667 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1668 {
1669 	struct mptcp_sock *msk = mptcp_sk(sk);
1670 	struct page_frag *pfrag;
1671 	size_t copied = 0;
1672 	int ret = 0;
1673 	long timeo;
1674 
1675 	/* we don't support FASTOPEN yet */
1676 	if (msg->msg_flags & MSG_FASTOPEN)
1677 		return -EOPNOTSUPP;
1678 
1679 	/* silently ignore everything else */
1680 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL;
1681 
1682 	lock_sock(sk);
1683 
1684 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1685 
1686 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1687 		ret = sk_stream_wait_connect(sk, &timeo);
1688 		if (ret)
1689 			goto out;
1690 	}
1691 
1692 	pfrag = sk_page_frag(sk);
1693 
1694 	while (msg_data_left(msg)) {
1695 		int total_ts, frag_truesize = 0;
1696 		struct mptcp_data_frag *dfrag;
1697 		bool dfrag_collapsed;
1698 		size_t psize, offset;
1699 
1700 		if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
1701 			ret = -EPIPE;
1702 			goto out;
1703 		}
1704 
1705 		/* reuse tail pfrag, if possible, or carve a new one from the
1706 		 * page allocator
1707 		 */
1708 		dfrag = mptcp_pending_tail(sk);
1709 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1710 		if (!dfrag_collapsed) {
1711 			if (!sk_stream_memory_free(sk))
1712 				goto wait_for_memory;
1713 
1714 			if (!mptcp_page_frag_refill(sk, pfrag))
1715 				goto wait_for_memory;
1716 
1717 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1718 			frag_truesize = dfrag->overhead;
1719 		}
1720 
1721 		/* we do not bound vs wspace, to allow a single packet.
1722 		 * memory accounting will prevent execessive memory usage
1723 		 * anyway
1724 		 */
1725 		offset = dfrag->offset + dfrag->data_len;
1726 		psize = pfrag->size - offset;
1727 		psize = min_t(size_t, psize, msg_data_left(msg));
1728 		total_ts = psize + frag_truesize;
1729 
1730 		if (!sk_wmem_schedule(sk, total_ts))
1731 			goto wait_for_memory;
1732 
1733 		if (copy_page_from_iter(dfrag->page, offset, psize,
1734 					&msg->msg_iter) != psize) {
1735 			ret = -EFAULT;
1736 			goto out;
1737 		}
1738 
1739 		/* data successfully copied into the write queue */
1740 		sk->sk_forward_alloc -= total_ts;
1741 		copied += psize;
1742 		dfrag->data_len += psize;
1743 		frag_truesize += psize;
1744 		pfrag->offset += frag_truesize;
1745 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1746 
1747 		/* charge data on mptcp pending queue to the msk socket
1748 		 * Note: we charge such data both to sk and ssk
1749 		 */
1750 		sk_wmem_queued_add(sk, frag_truesize);
1751 		if (!dfrag_collapsed) {
1752 			get_page(dfrag->page);
1753 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1754 			if (!msk->first_pending)
1755 				WRITE_ONCE(msk->first_pending, dfrag);
1756 		}
1757 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1758 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1759 			 !dfrag_collapsed);
1760 
1761 		continue;
1762 
1763 wait_for_memory:
1764 		mptcp_set_nospace(sk);
1765 		__mptcp_push_pending(sk, msg->msg_flags);
1766 		ret = sk_stream_wait_memory(sk, &timeo);
1767 		if (ret)
1768 			goto out;
1769 	}
1770 
1771 	if (copied)
1772 		__mptcp_push_pending(sk, msg->msg_flags);
1773 
1774 out:
1775 	release_sock(sk);
1776 	return copied ? : ret;
1777 }
1778 
1779 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1780 				struct msghdr *msg,
1781 				size_t len, int flags,
1782 				struct scm_timestamping_internal *tss,
1783 				int *cmsg_flags)
1784 {
1785 	struct sk_buff *skb, *tmp;
1786 	int copied = 0;
1787 
1788 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1789 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1790 		u32 data_len = skb->len - offset;
1791 		u32 count = min_t(size_t, len - copied, data_len);
1792 		int err;
1793 
1794 		if (!(flags & MSG_TRUNC)) {
1795 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1796 			if (unlikely(err < 0)) {
1797 				if (!copied)
1798 					return err;
1799 				break;
1800 			}
1801 		}
1802 
1803 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
1804 			tcp_update_recv_tstamps(skb, tss);
1805 			*cmsg_flags |= MPTCP_CMSG_TS;
1806 		}
1807 
1808 		copied += count;
1809 
1810 		if (count < data_len) {
1811 			if (!(flags & MSG_PEEK)) {
1812 				MPTCP_SKB_CB(skb)->offset += count;
1813 				MPTCP_SKB_CB(skb)->map_seq += count;
1814 			}
1815 			break;
1816 		}
1817 
1818 		if (!(flags & MSG_PEEK)) {
1819 			/* we will bulk release the skb memory later */
1820 			skb->destructor = NULL;
1821 			WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
1822 			__skb_unlink(skb, &msk->receive_queue);
1823 			__kfree_skb(skb);
1824 		}
1825 
1826 		if (copied >= len)
1827 			break;
1828 	}
1829 
1830 	return copied;
1831 }
1832 
1833 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1834  *
1835  * Only difference: Use highest rtt estimate of the subflows in use.
1836  */
1837 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1838 {
1839 	struct mptcp_subflow_context *subflow;
1840 	struct sock *sk = (struct sock *)msk;
1841 	u32 time, advmss = 1;
1842 	u64 rtt_us, mstamp;
1843 
1844 	sock_owned_by_me(sk);
1845 
1846 	if (copied <= 0)
1847 		return;
1848 
1849 	msk->rcvq_space.copied += copied;
1850 
1851 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1852 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1853 
1854 	rtt_us = msk->rcvq_space.rtt_us;
1855 	if (rtt_us && time < (rtt_us >> 3))
1856 		return;
1857 
1858 	rtt_us = 0;
1859 	mptcp_for_each_subflow(msk, subflow) {
1860 		const struct tcp_sock *tp;
1861 		u64 sf_rtt_us;
1862 		u32 sf_advmss;
1863 
1864 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1865 
1866 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1867 		sf_advmss = READ_ONCE(tp->advmss);
1868 
1869 		rtt_us = max(sf_rtt_us, rtt_us);
1870 		advmss = max(sf_advmss, advmss);
1871 	}
1872 
1873 	msk->rcvq_space.rtt_us = rtt_us;
1874 	if (time < (rtt_us >> 3) || rtt_us == 0)
1875 		return;
1876 
1877 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1878 		goto new_measure;
1879 
1880 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
1881 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1882 		int rcvmem, rcvbuf;
1883 		u64 rcvwin, grow;
1884 
1885 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1886 
1887 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1888 
1889 		do_div(grow, msk->rcvq_space.space);
1890 		rcvwin += (grow << 1);
1891 
1892 		rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
1893 		while (tcp_win_from_space(sk, rcvmem) < advmss)
1894 			rcvmem += 128;
1895 
1896 		do_div(rcvwin, advmss);
1897 		rcvbuf = min_t(u64, rcvwin * rcvmem,
1898 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
1899 
1900 		if (rcvbuf > sk->sk_rcvbuf) {
1901 			u32 window_clamp;
1902 
1903 			window_clamp = tcp_win_from_space(sk, rcvbuf);
1904 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1905 
1906 			/* Make subflows follow along.  If we do not do this, we
1907 			 * get drops at subflow level if skbs can't be moved to
1908 			 * the mptcp rx queue fast enough (announced rcv_win can
1909 			 * exceed ssk->sk_rcvbuf).
1910 			 */
1911 			mptcp_for_each_subflow(msk, subflow) {
1912 				struct sock *ssk;
1913 				bool slow;
1914 
1915 				ssk = mptcp_subflow_tcp_sock(subflow);
1916 				slow = lock_sock_fast(ssk);
1917 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1918 				tcp_sk(ssk)->window_clamp = window_clamp;
1919 				tcp_cleanup_rbuf(ssk, 1);
1920 				unlock_sock_fast(ssk, slow);
1921 			}
1922 		}
1923 	}
1924 
1925 	msk->rcvq_space.space = msk->rcvq_space.copied;
1926 new_measure:
1927 	msk->rcvq_space.copied = 0;
1928 	msk->rcvq_space.time = mstamp;
1929 }
1930 
1931 static void __mptcp_update_rmem(struct sock *sk)
1932 {
1933 	struct mptcp_sock *msk = mptcp_sk(sk);
1934 
1935 	if (!msk->rmem_released)
1936 		return;
1937 
1938 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
1939 	mptcp_rmem_uncharge(sk, msk->rmem_released);
1940 	WRITE_ONCE(msk->rmem_released, 0);
1941 }
1942 
1943 static void __mptcp_splice_receive_queue(struct sock *sk)
1944 {
1945 	struct mptcp_sock *msk = mptcp_sk(sk);
1946 
1947 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
1948 }
1949 
1950 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
1951 {
1952 	struct sock *sk = (struct sock *)msk;
1953 	unsigned int moved = 0;
1954 	bool ret, done;
1955 
1956 	do {
1957 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
1958 		bool slowpath;
1959 
1960 		/* we can have data pending in the subflows only if the msk
1961 		 * receive buffer was full at subflow_data_ready() time,
1962 		 * that is an unlikely slow path.
1963 		 */
1964 		if (likely(!ssk))
1965 			break;
1966 
1967 		slowpath = lock_sock_fast(ssk);
1968 		mptcp_data_lock(sk);
1969 		__mptcp_update_rmem(sk);
1970 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
1971 		mptcp_data_unlock(sk);
1972 
1973 		if (unlikely(ssk->sk_err))
1974 			__mptcp_error_report(sk);
1975 		unlock_sock_fast(ssk, slowpath);
1976 	} while (!done);
1977 
1978 	/* acquire the data lock only if some input data is pending */
1979 	ret = moved > 0;
1980 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
1981 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
1982 		mptcp_data_lock(sk);
1983 		__mptcp_update_rmem(sk);
1984 		ret |= __mptcp_ofo_queue(msk);
1985 		__mptcp_splice_receive_queue(sk);
1986 		mptcp_data_unlock(sk);
1987 	}
1988 	if (ret)
1989 		mptcp_check_data_fin((struct sock *)msk);
1990 	return !skb_queue_empty(&msk->receive_queue);
1991 }
1992 
1993 static unsigned int mptcp_inq_hint(const struct sock *sk)
1994 {
1995 	const struct mptcp_sock *msk = mptcp_sk(sk);
1996 	const struct sk_buff *skb;
1997 
1998 	skb = skb_peek(&msk->receive_queue);
1999 	if (skb) {
2000 		u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
2001 
2002 		if (hint_val >= INT_MAX)
2003 			return INT_MAX;
2004 
2005 		return (unsigned int)hint_val;
2006 	}
2007 
2008 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2009 		return 1;
2010 
2011 	return 0;
2012 }
2013 
2014 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2015 			 int nonblock, int flags, int *addr_len)
2016 {
2017 	struct mptcp_sock *msk = mptcp_sk(sk);
2018 	struct scm_timestamping_internal tss;
2019 	int copied = 0, cmsg_flags = 0;
2020 	int target;
2021 	long timeo;
2022 
2023 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2024 	if (unlikely(flags & MSG_ERRQUEUE))
2025 		return inet_recv_error(sk, msg, len, addr_len);
2026 
2027 	lock_sock(sk);
2028 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2029 		copied = -ENOTCONN;
2030 		goto out_err;
2031 	}
2032 
2033 	timeo = sock_rcvtimeo(sk, nonblock);
2034 
2035 	len = min_t(size_t, len, INT_MAX);
2036 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2037 
2038 	if (unlikely(msk->recvmsg_inq))
2039 		cmsg_flags = MPTCP_CMSG_INQ;
2040 
2041 	while (copied < len) {
2042 		int bytes_read;
2043 
2044 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
2045 		if (unlikely(bytes_read < 0)) {
2046 			if (!copied)
2047 				copied = bytes_read;
2048 			goto out_err;
2049 		}
2050 
2051 		copied += bytes_read;
2052 
2053 		/* be sure to advertise window change */
2054 		mptcp_cleanup_rbuf(msk);
2055 
2056 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2057 			continue;
2058 
2059 		/* only the master socket status is relevant here. The exit
2060 		 * conditions mirror closely tcp_recvmsg()
2061 		 */
2062 		if (copied >= target)
2063 			break;
2064 
2065 		if (copied) {
2066 			if (sk->sk_err ||
2067 			    sk->sk_state == TCP_CLOSE ||
2068 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2069 			    !timeo ||
2070 			    signal_pending(current))
2071 				break;
2072 		} else {
2073 			if (sk->sk_err) {
2074 				copied = sock_error(sk);
2075 				break;
2076 			}
2077 
2078 			if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2079 				mptcp_check_for_eof(msk);
2080 
2081 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2082 				/* race breaker: the shutdown could be after the
2083 				 * previous receive queue check
2084 				 */
2085 				if (__mptcp_move_skbs(msk))
2086 					continue;
2087 				break;
2088 			}
2089 
2090 			if (sk->sk_state == TCP_CLOSE) {
2091 				copied = -ENOTCONN;
2092 				break;
2093 			}
2094 
2095 			if (!timeo) {
2096 				copied = -EAGAIN;
2097 				break;
2098 			}
2099 
2100 			if (signal_pending(current)) {
2101 				copied = sock_intr_errno(timeo);
2102 				break;
2103 			}
2104 		}
2105 
2106 		pr_debug("block timeout %ld", timeo);
2107 		sk_wait_data(sk, &timeo, NULL);
2108 	}
2109 
2110 out_err:
2111 	if (cmsg_flags && copied >= 0) {
2112 		if (cmsg_flags & MPTCP_CMSG_TS)
2113 			tcp_recv_timestamp(msg, sk, &tss);
2114 
2115 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2116 			unsigned int inq = mptcp_inq_hint(sk);
2117 
2118 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2119 		}
2120 	}
2121 
2122 	pr_debug("msk=%p rx queue empty=%d:%d copied=%d",
2123 		 msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
2124 		 skb_queue_empty(&msk->receive_queue), copied);
2125 	if (!(flags & MSG_PEEK))
2126 		mptcp_rcv_space_adjust(msk, copied);
2127 
2128 	release_sock(sk);
2129 	return copied;
2130 }
2131 
2132 static void mptcp_retransmit_timer(struct timer_list *t)
2133 {
2134 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2135 						       icsk_retransmit_timer);
2136 	struct sock *sk = &icsk->icsk_inet.sk;
2137 	struct mptcp_sock *msk = mptcp_sk(sk);
2138 
2139 	bh_lock_sock(sk);
2140 	if (!sock_owned_by_user(sk)) {
2141 		/* we need a process context to retransmit */
2142 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2143 			mptcp_schedule_work(sk);
2144 	} else {
2145 		/* delegate our work to tcp_release_cb() */
2146 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2147 	}
2148 	bh_unlock_sock(sk);
2149 	sock_put(sk);
2150 }
2151 
2152 static void mptcp_timeout_timer(struct timer_list *t)
2153 {
2154 	struct sock *sk = from_timer(sk, t, sk_timer);
2155 
2156 	mptcp_schedule_work(sk);
2157 	sock_put(sk);
2158 }
2159 
2160 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2161  * level.
2162  *
2163  * A backup subflow is returned only if that is the only kind available.
2164  */
2165 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2166 {
2167 	struct sock *backup = NULL, *pick = NULL;
2168 	struct mptcp_subflow_context *subflow;
2169 	int min_stale_count = INT_MAX;
2170 
2171 	sock_owned_by_me((const struct sock *)msk);
2172 
2173 	if (__mptcp_check_fallback(msk))
2174 		return NULL;
2175 
2176 	mptcp_for_each_subflow(msk, subflow) {
2177 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2178 
2179 		if (!__mptcp_subflow_active(subflow))
2180 			continue;
2181 
2182 		/* still data outstanding at TCP level? skip this */
2183 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2184 			mptcp_pm_subflow_chk_stale(msk, ssk);
2185 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2186 			continue;
2187 		}
2188 
2189 		if (subflow->backup) {
2190 			if (!backup)
2191 				backup = ssk;
2192 			continue;
2193 		}
2194 
2195 		if (!pick)
2196 			pick = ssk;
2197 	}
2198 
2199 	if (pick)
2200 		return pick;
2201 
2202 	/* use backup only if there are no progresses anywhere */
2203 	return min_stale_count > 1 ? backup : NULL;
2204 }
2205 
2206 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk)
2207 {
2208 	if (msk->subflow) {
2209 		iput(SOCK_INODE(msk->subflow));
2210 		msk->subflow = NULL;
2211 	}
2212 }
2213 
2214 bool __mptcp_retransmit_pending_data(struct sock *sk)
2215 {
2216 	struct mptcp_data_frag *cur, *rtx_head;
2217 	struct mptcp_sock *msk = mptcp_sk(sk);
2218 
2219 	if (__mptcp_check_fallback(mptcp_sk(sk)))
2220 		return false;
2221 
2222 	if (tcp_rtx_and_write_queues_empty(sk))
2223 		return false;
2224 
2225 	/* the closing socket has some data untransmitted and/or unacked:
2226 	 * some data in the mptcp rtx queue has not really xmitted yet.
2227 	 * keep it simple and re-inject the whole mptcp level rtx queue
2228 	 */
2229 	mptcp_data_lock(sk);
2230 	__mptcp_clean_una_wakeup(sk);
2231 	rtx_head = mptcp_rtx_head(sk);
2232 	if (!rtx_head) {
2233 		mptcp_data_unlock(sk);
2234 		return false;
2235 	}
2236 
2237 	msk->recovery_snd_nxt = msk->snd_nxt;
2238 	msk->recovery = true;
2239 	mptcp_data_unlock(sk);
2240 
2241 	msk->first_pending = rtx_head;
2242 	msk->snd_burst = 0;
2243 
2244 	/* be sure to clear the "sent status" on all re-injected fragments */
2245 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2246 		if (!cur->already_sent)
2247 			break;
2248 		cur->already_sent = 0;
2249 	}
2250 
2251 	return true;
2252 }
2253 
2254 /* flags for __mptcp_close_ssk() */
2255 #define MPTCP_CF_PUSH		BIT(1)
2256 #define MPTCP_CF_FASTCLOSE	BIT(2)
2257 
2258 /* subflow sockets can be either outgoing (connect) or incoming
2259  * (accept).
2260  *
2261  * Outgoing subflows use in-kernel sockets.
2262  * Incoming subflows do not have their own 'struct socket' allocated,
2263  * so we need to use tcp_close() after detaching them from the mptcp
2264  * parent socket.
2265  */
2266 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2267 			      struct mptcp_subflow_context *subflow,
2268 			      unsigned int flags)
2269 {
2270 	struct mptcp_sock *msk = mptcp_sk(sk);
2271 	bool need_push, dispose_it;
2272 
2273 	dispose_it = !msk->subflow || ssk != msk->subflow->sk;
2274 	if (dispose_it)
2275 		list_del(&subflow->node);
2276 
2277 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2278 
2279 	if (flags & MPTCP_CF_FASTCLOSE)
2280 		subflow->send_fastclose = 1;
2281 
2282 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2283 	if (!dispose_it) {
2284 		tcp_disconnect(ssk, 0);
2285 		msk->subflow->state = SS_UNCONNECTED;
2286 		mptcp_subflow_ctx_reset(subflow);
2287 		release_sock(ssk);
2288 
2289 		goto out;
2290 	}
2291 
2292 	/* if we are invoked by the msk cleanup code, the subflow is
2293 	 * already orphaned
2294 	 */
2295 	if (ssk->sk_socket)
2296 		sock_orphan(ssk);
2297 
2298 	subflow->disposable = 1;
2299 
2300 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2301 	 * the ssk has been already destroyed, we just need to release the
2302 	 * reference owned by msk;
2303 	 */
2304 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2305 		kfree_rcu(subflow, rcu);
2306 	} else {
2307 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2308 		__tcp_close(ssk, 0);
2309 
2310 		/* close acquired an extra ref */
2311 		__sock_put(ssk);
2312 	}
2313 	release_sock(ssk);
2314 
2315 	sock_put(ssk);
2316 
2317 	if (ssk == msk->first)
2318 		msk->first = NULL;
2319 
2320 out:
2321 	if (ssk == msk->last_snd)
2322 		msk->last_snd = NULL;
2323 
2324 	if (need_push)
2325 		__mptcp_push_pending(sk, 0);
2326 }
2327 
2328 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2329 		     struct mptcp_subflow_context *subflow)
2330 {
2331 	if (sk->sk_state == TCP_ESTABLISHED)
2332 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2333 
2334 	/* subflow aborted before reaching the fully_established status
2335 	 * attempt the creation of the next subflow
2336 	 */
2337 	mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow);
2338 
2339 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2340 }
2341 
2342 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2343 {
2344 	return 0;
2345 }
2346 
2347 static void __mptcp_close_subflow(struct mptcp_sock *msk)
2348 {
2349 	struct mptcp_subflow_context *subflow, *tmp;
2350 
2351 	might_sleep();
2352 
2353 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2354 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2355 
2356 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2357 			continue;
2358 
2359 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2360 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2361 			continue;
2362 
2363 		mptcp_close_ssk((struct sock *)msk, ssk, subflow);
2364 	}
2365 }
2366 
2367 static bool mptcp_check_close_timeout(const struct sock *sk)
2368 {
2369 	s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp;
2370 	struct mptcp_subflow_context *subflow;
2371 
2372 	if (delta >= TCP_TIMEWAIT_LEN)
2373 		return true;
2374 
2375 	/* if all subflows are in closed status don't bother with additional
2376 	 * timeout
2377 	 */
2378 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2379 		if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) !=
2380 		    TCP_CLOSE)
2381 			return false;
2382 	}
2383 	return true;
2384 }
2385 
2386 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2387 {
2388 	struct mptcp_subflow_context *subflow, *tmp;
2389 	struct sock *sk = &msk->sk.icsk_inet.sk;
2390 
2391 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2392 		return;
2393 
2394 	mptcp_token_destroy(msk);
2395 
2396 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2397 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2398 		bool slow;
2399 
2400 		slow = lock_sock_fast(tcp_sk);
2401 		if (tcp_sk->sk_state != TCP_CLOSE) {
2402 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2403 			tcp_set_state(tcp_sk, TCP_CLOSE);
2404 		}
2405 		unlock_sock_fast(tcp_sk, slow);
2406 	}
2407 
2408 	inet_sk_state_store(sk, TCP_CLOSE);
2409 	sk->sk_shutdown = SHUTDOWN_MASK;
2410 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2411 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2412 
2413 	mptcp_close_wake_up(sk);
2414 }
2415 
2416 static void __mptcp_retrans(struct sock *sk)
2417 {
2418 	struct mptcp_sock *msk = mptcp_sk(sk);
2419 	struct mptcp_sendmsg_info info = {};
2420 	struct mptcp_data_frag *dfrag;
2421 	size_t copied = 0;
2422 	struct sock *ssk;
2423 	int ret;
2424 
2425 	mptcp_clean_una_wakeup(sk);
2426 
2427 	/* first check ssk: need to kick "stale" logic */
2428 	ssk = mptcp_subflow_get_retrans(msk);
2429 	dfrag = mptcp_rtx_head(sk);
2430 	if (!dfrag) {
2431 		if (mptcp_data_fin_enabled(msk)) {
2432 			struct inet_connection_sock *icsk = inet_csk(sk);
2433 
2434 			icsk->icsk_retransmits++;
2435 			mptcp_set_datafin_timeout(sk);
2436 			mptcp_send_ack(msk);
2437 
2438 			goto reset_timer;
2439 		}
2440 
2441 		if (!mptcp_send_head(sk))
2442 			return;
2443 
2444 		goto reset_timer;
2445 	}
2446 
2447 	if (!ssk)
2448 		goto reset_timer;
2449 
2450 	lock_sock(ssk);
2451 
2452 	/* limit retransmission to the bytes already sent on some subflows */
2453 	info.sent = 0;
2454 	info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent;
2455 	while (info.sent < info.limit) {
2456 		ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2457 		if (ret <= 0)
2458 			break;
2459 
2460 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2461 		copied += ret;
2462 		info.sent += ret;
2463 	}
2464 	if (copied) {
2465 		dfrag->already_sent = max(dfrag->already_sent, info.sent);
2466 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2467 			 info.size_goal);
2468 	}
2469 
2470 	release_sock(ssk);
2471 
2472 reset_timer:
2473 	mptcp_check_and_set_pending(sk);
2474 
2475 	if (!mptcp_timer_pending(sk))
2476 		mptcp_reset_timer(sk);
2477 }
2478 
2479 static void mptcp_worker(struct work_struct *work)
2480 {
2481 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2482 	struct sock *sk = &msk->sk.icsk_inet.sk;
2483 	int state;
2484 
2485 	lock_sock(sk);
2486 	state = sk->sk_state;
2487 	if (unlikely(state == TCP_CLOSE))
2488 		goto unlock;
2489 
2490 	mptcp_check_data_fin_ack(sk);
2491 
2492 	mptcp_check_fastclose(msk);
2493 
2494 	mptcp_pm_nl_work(msk);
2495 
2496 	if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2497 		mptcp_check_for_eof(msk);
2498 
2499 	__mptcp_check_send_data_fin(sk);
2500 	mptcp_check_data_fin(sk);
2501 
2502 	/* There is no point in keeping around an orphaned sk timedout or
2503 	 * closed, but we need the msk around to reply to incoming DATA_FIN,
2504 	 * even if it is orphaned and in FIN_WAIT2 state
2505 	 */
2506 	if (sock_flag(sk, SOCK_DEAD) &&
2507 	    (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) {
2508 		inet_sk_state_store(sk, TCP_CLOSE);
2509 		__mptcp_destroy_sock(sk);
2510 		goto unlock;
2511 	}
2512 
2513 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2514 		__mptcp_close_subflow(msk);
2515 
2516 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2517 		__mptcp_retrans(sk);
2518 
2519 unlock:
2520 	release_sock(sk);
2521 	sock_put(sk);
2522 }
2523 
2524 static int __mptcp_init_sock(struct sock *sk)
2525 {
2526 	struct mptcp_sock *msk = mptcp_sk(sk);
2527 
2528 	INIT_LIST_HEAD(&msk->conn_list);
2529 	INIT_LIST_HEAD(&msk->join_list);
2530 	INIT_LIST_HEAD(&msk->rtx_queue);
2531 	INIT_WORK(&msk->work, mptcp_worker);
2532 	__skb_queue_head_init(&msk->receive_queue);
2533 	msk->out_of_order_queue = RB_ROOT;
2534 	msk->first_pending = NULL;
2535 	msk->rmem_fwd_alloc = 0;
2536 	WRITE_ONCE(msk->rmem_released, 0);
2537 	msk->timer_ival = TCP_RTO_MIN;
2538 
2539 	msk->first = NULL;
2540 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2541 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2542 	msk->recovery = false;
2543 
2544 	mptcp_pm_data_init(msk);
2545 
2546 	/* re-use the csk retrans timer for MPTCP-level retrans */
2547 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2548 	timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0);
2549 
2550 	return 0;
2551 }
2552 
2553 static void mptcp_ca_reset(struct sock *sk)
2554 {
2555 	struct inet_connection_sock *icsk = inet_csk(sk);
2556 
2557 	tcp_assign_congestion_control(sk);
2558 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2559 
2560 	/* no need to keep a reference to the ops, the name will suffice */
2561 	tcp_cleanup_congestion_control(sk);
2562 	icsk->icsk_ca_ops = NULL;
2563 }
2564 
2565 static int mptcp_init_sock(struct sock *sk)
2566 {
2567 	struct net *net = sock_net(sk);
2568 	int ret;
2569 
2570 	ret = __mptcp_init_sock(sk);
2571 	if (ret)
2572 		return ret;
2573 
2574 	if (!mptcp_is_enabled(net))
2575 		return -ENOPROTOOPT;
2576 
2577 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2578 		return -ENOMEM;
2579 
2580 	ret = __mptcp_socket_create(mptcp_sk(sk));
2581 	if (ret)
2582 		return ret;
2583 
2584 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2585 	 * propagate the correct value
2586 	 */
2587 	mptcp_ca_reset(sk);
2588 
2589 	sk_sockets_allocated_inc(sk);
2590 	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
2591 	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
2592 
2593 	return 0;
2594 }
2595 
2596 static void __mptcp_clear_xmit(struct sock *sk)
2597 {
2598 	struct mptcp_sock *msk = mptcp_sk(sk);
2599 	struct mptcp_data_frag *dtmp, *dfrag;
2600 
2601 	WRITE_ONCE(msk->first_pending, NULL);
2602 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2603 		dfrag_clear(sk, dfrag);
2604 }
2605 
2606 static void mptcp_cancel_work(struct sock *sk)
2607 {
2608 	struct mptcp_sock *msk = mptcp_sk(sk);
2609 
2610 	if (cancel_work_sync(&msk->work))
2611 		__sock_put(sk);
2612 }
2613 
2614 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2615 {
2616 	lock_sock(ssk);
2617 
2618 	switch (ssk->sk_state) {
2619 	case TCP_LISTEN:
2620 		if (!(how & RCV_SHUTDOWN))
2621 			break;
2622 		fallthrough;
2623 	case TCP_SYN_SENT:
2624 		tcp_disconnect(ssk, O_NONBLOCK);
2625 		break;
2626 	default:
2627 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2628 			pr_debug("Fallback");
2629 			ssk->sk_shutdown |= how;
2630 			tcp_shutdown(ssk, how);
2631 		} else {
2632 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2633 			tcp_send_ack(ssk);
2634 			if (!mptcp_timer_pending(sk))
2635 				mptcp_reset_timer(sk);
2636 		}
2637 		break;
2638 	}
2639 
2640 	release_sock(ssk);
2641 }
2642 
2643 static const unsigned char new_state[16] = {
2644 	/* current state:     new state:      action:	*/
2645 	[0 /* (Invalid) */] = TCP_CLOSE,
2646 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2647 	[TCP_SYN_SENT]      = TCP_CLOSE,
2648 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2649 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2650 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2651 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2652 	[TCP_CLOSE]         = TCP_CLOSE,
2653 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2654 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2655 	[TCP_LISTEN]        = TCP_CLOSE,
2656 	[TCP_CLOSING]       = TCP_CLOSING,
2657 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2658 };
2659 
2660 static int mptcp_close_state(struct sock *sk)
2661 {
2662 	int next = (int)new_state[sk->sk_state];
2663 	int ns = next & TCP_STATE_MASK;
2664 
2665 	inet_sk_state_store(sk, ns);
2666 
2667 	return next & TCP_ACTION_FIN;
2668 }
2669 
2670 static void __mptcp_check_send_data_fin(struct sock *sk)
2671 {
2672 	struct mptcp_subflow_context *subflow;
2673 	struct mptcp_sock *msk = mptcp_sk(sk);
2674 
2675 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2676 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2677 		 msk->snd_nxt, msk->write_seq);
2678 
2679 	/* we still need to enqueue subflows or not really shutting down,
2680 	 * skip this
2681 	 */
2682 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2683 	    mptcp_send_head(sk))
2684 		return;
2685 
2686 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2687 
2688 	/* fallback socket will not get data_fin/ack, can move to the next
2689 	 * state now
2690 	 */
2691 	if (__mptcp_check_fallback(msk)) {
2692 		WRITE_ONCE(msk->snd_una, msk->write_seq);
2693 		if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
2694 			inet_sk_state_store(sk, TCP_CLOSE);
2695 			mptcp_close_wake_up(sk);
2696 		} else if (sk->sk_state == TCP_FIN_WAIT1) {
2697 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
2698 		}
2699 	}
2700 
2701 	mptcp_for_each_subflow(msk, subflow) {
2702 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2703 
2704 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2705 	}
2706 }
2707 
2708 static void __mptcp_wr_shutdown(struct sock *sk)
2709 {
2710 	struct mptcp_sock *msk = mptcp_sk(sk);
2711 
2712 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2713 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2714 		 !!mptcp_send_head(sk));
2715 
2716 	/* will be ignored by fallback sockets */
2717 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2718 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2719 
2720 	__mptcp_check_send_data_fin(sk);
2721 }
2722 
2723 static void __mptcp_destroy_sock(struct sock *sk)
2724 {
2725 	struct mptcp_subflow_context *subflow, *tmp;
2726 	struct mptcp_sock *msk = mptcp_sk(sk);
2727 	LIST_HEAD(conn_list);
2728 
2729 	pr_debug("msk=%p", msk);
2730 
2731 	might_sleep();
2732 
2733 	/* join list will be eventually flushed (with rst) at sock lock release time*/
2734 	list_splice_init(&msk->conn_list, &conn_list);
2735 
2736 	sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer);
2737 	sk_stop_timer(sk, &sk->sk_timer);
2738 	msk->pm.status = 0;
2739 
2740 	/* clears msk->subflow, allowing the following loop to close
2741 	 * even the initial subflow
2742 	 */
2743 	mptcp_dispose_initial_subflow(msk);
2744 	list_for_each_entry_safe(subflow, tmp, &conn_list, node) {
2745 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2746 		__mptcp_close_ssk(sk, ssk, subflow, 0);
2747 	}
2748 
2749 	sk->sk_prot->destroy(sk);
2750 
2751 	WARN_ON_ONCE(msk->rmem_fwd_alloc);
2752 	WARN_ON_ONCE(msk->rmem_released);
2753 	sk_stream_kill_queues(sk);
2754 	xfrm_sk_free_policy(sk);
2755 
2756 	sk_refcnt_debug_release(sk);
2757 	sock_put(sk);
2758 }
2759 
2760 static void mptcp_close(struct sock *sk, long timeout)
2761 {
2762 	struct mptcp_subflow_context *subflow;
2763 	bool do_cancel_work = false;
2764 
2765 	lock_sock(sk);
2766 	sk->sk_shutdown = SHUTDOWN_MASK;
2767 
2768 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
2769 		inet_sk_state_store(sk, TCP_CLOSE);
2770 		goto cleanup;
2771 	}
2772 
2773 	if (mptcp_close_state(sk))
2774 		__mptcp_wr_shutdown(sk);
2775 
2776 	sk_stream_wait_close(sk, timeout);
2777 
2778 cleanup:
2779 	/* orphan all the subflows */
2780 	inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32;
2781 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2782 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2783 		bool slow = lock_sock_fast_nested(ssk);
2784 
2785 		sock_orphan(ssk);
2786 		unlock_sock_fast(ssk, slow);
2787 	}
2788 	sock_orphan(sk);
2789 
2790 	sock_hold(sk);
2791 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
2792 	if (mptcp_sk(sk)->token)
2793 		mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL);
2794 
2795 	if (sk->sk_state == TCP_CLOSE) {
2796 		__mptcp_destroy_sock(sk);
2797 		do_cancel_work = true;
2798 	} else {
2799 		sk_reset_timer(sk, &sk->sk_timer, jiffies + TCP_TIMEWAIT_LEN);
2800 	}
2801 	release_sock(sk);
2802 	if (do_cancel_work)
2803 		mptcp_cancel_work(sk);
2804 
2805 	sock_put(sk);
2806 }
2807 
2808 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
2809 {
2810 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2811 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
2812 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
2813 
2814 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
2815 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
2816 
2817 	if (msk6 && ssk6) {
2818 		msk6->saddr = ssk6->saddr;
2819 		msk6->flow_label = ssk6->flow_label;
2820 	}
2821 #endif
2822 
2823 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
2824 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
2825 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
2826 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
2827 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
2828 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
2829 }
2830 
2831 static int mptcp_disconnect(struct sock *sk, int flags)
2832 {
2833 	struct mptcp_subflow_context *subflow;
2834 	struct mptcp_sock *msk = mptcp_sk(sk);
2835 
2836 	inet_sk_state_store(sk, TCP_CLOSE);
2837 
2838 	mptcp_for_each_subflow(msk, subflow) {
2839 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2840 
2841 		__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_FASTCLOSE);
2842 	}
2843 
2844 	sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer);
2845 	sk_stop_timer(sk, &sk->sk_timer);
2846 
2847 	if (mptcp_sk(sk)->token)
2848 		mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL);
2849 
2850 	mptcp_destroy_common(msk);
2851 	msk->last_snd = NULL;
2852 	WRITE_ONCE(msk->flags, 0);
2853 	msk->cb_flags = 0;
2854 	msk->push_pending = 0;
2855 	msk->recovery = false;
2856 	msk->can_ack = false;
2857 	msk->fully_established = false;
2858 	msk->rcv_data_fin = false;
2859 	msk->snd_data_fin_enable = false;
2860 	msk->rcv_fastclose = false;
2861 	msk->use_64bit_ack = false;
2862 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2863 	mptcp_pm_data_reset(msk);
2864 	mptcp_ca_reset(sk);
2865 
2866 	sk->sk_shutdown = 0;
2867 	sk_error_report(sk);
2868 	return 0;
2869 }
2870 
2871 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2872 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
2873 {
2874 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
2875 
2876 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
2877 }
2878 #endif
2879 
2880 struct sock *mptcp_sk_clone(const struct sock *sk,
2881 			    const struct mptcp_options_received *mp_opt,
2882 			    struct request_sock *req)
2883 {
2884 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
2885 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
2886 	struct mptcp_sock *msk;
2887 	u64 ack_seq;
2888 
2889 	if (!nsk)
2890 		return NULL;
2891 
2892 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2893 	if (nsk->sk_family == AF_INET6)
2894 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
2895 #endif
2896 
2897 	__mptcp_init_sock(nsk);
2898 
2899 	msk = mptcp_sk(nsk);
2900 	msk->local_key = subflow_req->local_key;
2901 	msk->token = subflow_req->token;
2902 	msk->subflow = NULL;
2903 	WRITE_ONCE(msk->fully_established, false);
2904 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
2905 		WRITE_ONCE(msk->csum_enabled, true);
2906 
2907 	msk->write_seq = subflow_req->idsn + 1;
2908 	msk->snd_nxt = msk->write_seq;
2909 	msk->snd_una = msk->write_seq;
2910 	msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
2911 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
2912 
2913 	if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) {
2914 		msk->can_ack = true;
2915 		msk->remote_key = mp_opt->sndr_key;
2916 		mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
2917 		ack_seq++;
2918 		WRITE_ONCE(msk->ack_seq, ack_seq);
2919 		WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
2920 	}
2921 
2922 	sock_reset_flag(nsk, SOCK_RCU_FREE);
2923 	/* will be fully established after successful MPC subflow creation */
2924 	inet_sk_state_store(nsk, TCP_SYN_RECV);
2925 
2926 	security_inet_csk_clone(nsk, req);
2927 	bh_unlock_sock(nsk);
2928 
2929 	/* keep a single reference */
2930 	__sock_put(nsk);
2931 	return nsk;
2932 }
2933 
2934 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
2935 {
2936 	const struct tcp_sock *tp = tcp_sk(ssk);
2937 
2938 	msk->rcvq_space.copied = 0;
2939 	msk->rcvq_space.rtt_us = 0;
2940 
2941 	msk->rcvq_space.time = tp->tcp_mstamp;
2942 
2943 	/* initial rcv_space offering made to peer */
2944 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
2945 				      TCP_INIT_CWND * tp->advmss);
2946 	if (msk->rcvq_space.space == 0)
2947 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
2948 
2949 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
2950 }
2951 
2952 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
2953 				 bool kern)
2954 {
2955 	struct mptcp_sock *msk = mptcp_sk(sk);
2956 	struct socket *listener;
2957 	struct sock *newsk;
2958 
2959 	listener = __mptcp_nmpc_socket(msk);
2960 	if (WARN_ON_ONCE(!listener)) {
2961 		*err = -EINVAL;
2962 		return NULL;
2963 	}
2964 
2965 	pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
2966 	newsk = inet_csk_accept(listener->sk, flags, err, kern);
2967 	if (!newsk)
2968 		return NULL;
2969 
2970 	pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
2971 	if (sk_is_mptcp(newsk)) {
2972 		struct mptcp_subflow_context *subflow;
2973 		struct sock *new_mptcp_sock;
2974 
2975 		subflow = mptcp_subflow_ctx(newsk);
2976 		new_mptcp_sock = subflow->conn;
2977 
2978 		/* is_mptcp should be false if subflow->conn is missing, see
2979 		 * subflow_syn_recv_sock()
2980 		 */
2981 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
2982 			tcp_sk(newsk)->is_mptcp = 0;
2983 			goto out;
2984 		}
2985 
2986 		/* acquire the 2nd reference for the owning socket */
2987 		sock_hold(new_mptcp_sock);
2988 		newsk = new_mptcp_sock;
2989 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
2990 	} else {
2991 		MPTCP_INC_STATS(sock_net(sk),
2992 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
2993 	}
2994 
2995 out:
2996 	newsk->sk_kern_sock = kern;
2997 	return newsk;
2998 }
2999 
3000 void mptcp_destroy_common(struct mptcp_sock *msk)
3001 {
3002 	struct sock *sk = (struct sock *)msk;
3003 
3004 	__mptcp_clear_xmit(sk);
3005 
3006 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
3007 	mptcp_data_lock(sk);
3008 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
3009 	__skb_queue_purge(&sk->sk_receive_queue);
3010 	skb_rbtree_purge(&msk->out_of_order_queue);
3011 	mptcp_data_unlock(sk);
3012 
3013 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3014 	 * inet_sock_destruct() will dispose it
3015 	 */
3016 	sk->sk_forward_alloc += msk->rmem_fwd_alloc;
3017 	msk->rmem_fwd_alloc = 0;
3018 	mptcp_token_destroy(msk);
3019 	mptcp_pm_free_anno_list(msk);
3020 }
3021 
3022 static void mptcp_destroy(struct sock *sk)
3023 {
3024 	struct mptcp_sock *msk = mptcp_sk(sk);
3025 
3026 	mptcp_destroy_common(msk);
3027 	sk_sockets_allocated_dec(sk);
3028 }
3029 
3030 void __mptcp_data_acked(struct sock *sk)
3031 {
3032 	if (!sock_owned_by_user(sk))
3033 		__mptcp_clean_una(sk);
3034 	else
3035 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3036 
3037 	if (mptcp_pending_data_fin_ack(sk))
3038 		mptcp_schedule_work(sk);
3039 }
3040 
3041 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3042 {
3043 	if (!mptcp_send_head(sk))
3044 		return;
3045 
3046 	if (!sock_owned_by_user(sk)) {
3047 		struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk));
3048 
3049 		if (xmit_ssk == ssk)
3050 			__mptcp_subflow_push_pending(sk, ssk);
3051 		else if (xmit_ssk)
3052 			mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), MPTCP_DELEGATE_SEND);
3053 	} else {
3054 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3055 	}
3056 }
3057 
3058 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3059 				      BIT(MPTCP_RETRANSMIT) | \
3060 				      BIT(MPTCP_FLUSH_JOIN_LIST))
3061 
3062 /* processes deferred events and flush wmem */
3063 static void mptcp_release_cb(struct sock *sk)
3064 	__must_hold(&sk->sk_lock.slock)
3065 {
3066 	struct mptcp_sock *msk = mptcp_sk(sk);
3067 
3068 	for (;;) {
3069 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) |
3070 				      msk->push_pending;
3071 		if (!flags)
3072 			break;
3073 
3074 		/* the following actions acquire the subflow socket lock
3075 		 *
3076 		 * 1) can't be invoked in atomic scope
3077 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3078 		 *    datapath acquires the msk socket spinlock while helding
3079 		 *    the subflow socket lock
3080 		 */
3081 		msk->push_pending = 0;
3082 		msk->cb_flags &= ~flags;
3083 		spin_unlock_bh(&sk->sk_lock.slock);
3084 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3085 			__mptcp_flush_join_list(sk);
3086 		if (flags & BIT(MPTCP_PUSH_PENDING))
3087 			__mptcp_push_pending(sk, 0);
3088 		if (flags & BIT(MPTCP_RETRANSMIT))
3089 			__mptcp_retrans(sk);
3090 
3091 		cond_resched();
3092 		spin_lock_bh(&sk->sk_lock.slock);
3093 	}
3094 
3095 	/* be sure to set the current sk state before tacking actions
3096 	 * depending on sk_state
3097 	 */
3098 	if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags))
3099 		__mptcp_set_connected(sk);
3100 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3101 		__mptcp_clean_una_wakeup(sk);
3102 	if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3103 		__mptcp_error_report(sk);
3104 
3105 	__mptcp_update_rmem(sk);
3106 }
3107 
3108 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3109  * TCP can't schedule delack timer before the subflow is fully established.
3110  * MPTCP uses the delack timer to do 3rd ack retransmissions
3111  */
3112 static void schedule_3rdack_retransmission(struct sock *ssk)
3113 {
3114 	struct inet_connection_sock *icsk = inet_csk(ssk);
3115 	struct tcp_sock *tp = tcp_sk(ssk);
3116 	unsigned long timeout;
3117 
3118 	if (mptcp_subflow_ctx(ssk)->fully_established)
3119 		return;
3120 
3121 	/* reschedule with a timeout above RTT, as we must look only for drop */
3122 	if (tp->srtt_us)
3123 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3124 	else
3125 		timeout = TCP_TIMEOUT_INIT;
3126 	timeout += jiffies;
3127 
3128 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3129 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3130 	icsk->icsk_ack.timeout = timeout;
3131 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3132 }
3133 
3134 void mptcp_subflow_process_delegated(struct sock *ssk)
3135 {
3136 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3137 	struct sock *sk = subflow->conn;
3138 
3139 	if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) {
3140 		mptcp_data_lock(sk);
3141 		if (!sock_owned_by_user(sk))
3142 			__mptcp_subflow_push_pending(sk, ssk);
3143 		else
3144 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3145 		mptcp_data_unlock(sk);
3146 		mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND);
3147 	}
3148 	if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) {
3149 		schedule_3rdack_retransmission(ssk);
3150 		mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK);
3151 	}
3152 }
3153 
3154 static int mptcp_hash(struct sock *sk)
3155 {
3156 	/* should never be called,
3157 	 * we hash the TCP subflows not the master socket
3158 	 */
3159 	WARN_ON_ONCE(1);
3160 	return 0;
3161 }
3162 
3163 static void mptcp_unhash(struct sock *sk)
3164 {
3165 	/* called from sk_common_release(), but nothing to do here */
3166 }
3167 
3168 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3169 {
3170 	struct mptcp_sock *msk = mptcp_sk(sk);
3171 	struct socket *ssock;
3172 
3173 	ssock = __mptcp_nmpc_socket(msk);
3174 	pr_debug("msk=%p, subflow=%p", msk, ssock);
3175 	if (WARN_ON_ONCE(!ssock))
3176 		return -EINVAL;
3177 
3178 	return inet_csk_get_port(ssock->sk, snum);
3179 }
3180 
3181 void mptcp_finish_connect(struct sock *ssk)
3182 {
3183 	struct mptcp_subflow_context *subflow;
3184 	struct mptcp_sock *msk;
3185 	struct sock *sk;
3186 	u64 ack_seq;
3187 
3188 	subflow = mptcp_subflow_ctx(ssk);
3189 	sk = subflow->conn;
3190 	msk = mptcp_sk(sk);
3191 
3192 	pr_debug("msk=%p, token=%u", sk, subflow->token);
3193 
3194 	mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
3195 	ack_seq++;
3196 	subflow->map_seq = ack_seq;
3197 	subflow->map_subflow_seq = 1;
3198 
3199 	/* the socket is not connected yet, no msk/subflow ops can access/race
3200 	 * accessing the field below
3201 	 */
3202 	WRITE_ONCE(msk->remote_key, subflow->remote_key);
3203 	WRITE_ONCE(msk->local_key, subflow->local_key);
3204 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
3205 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3206 	WRITE_ONCE(msk->ack_seq, ack_seq);
3207 	WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
3208 	WRITE_ONCE(msk->can_ack, 1);
3209 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3210 
3211 	mptcp_pm_new_connection(msk, ssk, 0);
3212 
3213 	mptcp_rcv_space_init(msk, ssk);
3214 }
3215 
3216 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3217 {
3218 	write_lock_bh(&sk->sk_callback_lock);
3219 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3220 	sk_set_socket(sk, parent);
3221 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3222 	write_unlock_bh(&sk->sk_callback_lock);
3223 }
3224 
3225 bool mptcp_finish_join(struct sock *ssk)
3226 {
3227 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3228 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3229 	struct sock *parent = (void *)msk;
3230 	bool ret = true;
3231 
3232 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3233 
3234 	/* mptcp socket already closing? */
3235 	if (!mptcp_is_fully_established(parent)) {
3236 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3237 		return false;
3238 	}
3239 
3240 	if (!msk->pm.server_side)
3241 		goto out;
3242 
3243 	if (!mptcp_pm_allow_new_subflow(msk))
3244 		goto err_prohibited;
3245 
3246 	if (WARN_ON_ONCE(!list_empty(&subflow->node)))
3247 		goto err_prohibited;
3248 
3249 	/* active connections are already on conn_list.
3250 	 * If we can't acquire msk socket lock here, let the release callback
3251 	 * handle it
3252 	 */
3253 	mptcp_data_lock(parent);
3254 	if (!sock_owned_by_user(parent)) {
3255 		ret = __mptcp_finish_join(msk, ssk);
3256 		if (ret) {
3257 			sock_hold(ssk);
3258 			list_add_tail(&subflow->node, &msk->conn_list);
3259 		}
3260 	} else {
3261 		sock_hold(ssk);
3262 		list_add_tail(&subflow->node, &msk->join_list);
3263 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3264 	}
3265 	mptcp_data_unlock(parent);
3266 
3267 	if (!ret) {
3268 err_prohibited:
3269 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3270 		return false;
3271 	}
3272 
3273 	subflow->map_seq = READ_ONCE(msk->ack_seq);
3274 
3275 out:
3276 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
3277 	return true;
3278 }
3279 
3280 static void mptcp_shutdown(struct sock *sk, int how)
3281 {
3282 	pr_debug("sk=%p, how=%d", sk, how);
3283 
3284 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3285 		__mptcp_wr_shutdown(sk);
3286 }
3287 
3288 static int mptcp_forward_alloc_get(const struct sock *sk)
3289 {
3290 	return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc;
3291 }
3292 
3293 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3294 {
3295 	const struct sock *sk = (void *)msk;
3296 	u64 delta;
3297 
3298 	if (sk->sk_state == TCP_LISTEN)
3299 		return -EINVAL;
3300 
3301 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3302 		return 0;
3303 
3304 	delta = msk->write_seq - v;
3305 	if (__mptcp_check_fallback(msk) && msk->first) {
3306 		struct tcp_sock *tp = tcp_sk(msk->first);
3307 
3308 		/* the first subflow is disconnected after close - see
3309 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3310 		 * so ignore that status, too.
3311 		 */
3312 		if (!((1 << msk->first->sk_state) &
3313 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3314 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3315 	}
3316 	if (delta > INT_MAX)
3317 		delta = INT_MAX;
3318 
3319 	return (int)delta;
3320 }
3321 
3322 static int mptcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3323 {
3324 	struct mptcp_sock *msk = mptcp_sk(sk);
3325 	bool slow;
3326 	int answ;
3327 
3328 	switch (cmd) {
3329 	case SIOCINQ:
3330 		if (sk->sk_state == TCP_LISTEN)
3331 			return -EINVAL;
3332 
3333 		lock_sock(sk);
3334 		__mptcp_move_skbs(msk);
3335 		answ = mptcp_inq_hint(sk);
3336 		release_sock(sk);
3337 		break;
3338 	case SIOCOUTQ:
3339 		slow = lock_sock_fast(sk);
3340 		answ = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3341 		unlock_sock_fast(sk, slow);
3342 		break;
3343 	case SIOCOUTQNSD:
3344 		slow = lock_sock_fast(sk);
3345 		answ = mptcp_ioctl_outq(msk, msk->snd_nxt);
3346 		unlock_sock_fast(sk, slow);
3347 		break;
3348 	default:
3349 		return -ENOIOCTLCMD;
3350 	}
3351 
3352 	return put_user(answ, (int __user *)arg);
3353 }
3354 
3355 static struct proto mptcp_prot = {
3356 	.name		= "MPTCP",
3357 	.owner		= THIS_MODULE,
3358 	.init		= mptcp_init_sock,
3359 	.disconnect	= mptcp_disconnect,
3360 	.close		= mptcp_close,
3361 	.accept		= mptcp_accept,
3362 	.setsockopt	= mptcp_setsockopt,
3363 	.getsockopt	= mptcp_getsockopt,
3364 	.shutdown	= mptcp_shutdown,
3365 	.destroy	= mptcp_destroy,
3366 	.sendmsg	= mptcp_sendmsg,
3367 	.ioctl		= mptcp_ioctl,
3368 	.recvmsg	= mptcp_recvmsg,
3369 	.release_cb	= mptcp_release_cb,
3370 	.hash		= mptcp_hash,
3371 	.unhash		= mptcp_unhash,
3372 	.get_port	= mptcp_get_port,
3373 	.forward_alloc_get	= mptcp_forward_alloc_get,
3374 	.sockets_allocated	= &mptcp_sockets_allocated,
3375 	.memory_allocated	= &tcp_memory_allocated,
3376 	.memory_pressure	= &tcp_memory_pressure,
3377 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3378 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3379 	.sysctl_mem	= sysctl_tcp_mem,
3380 	.obj_size	= sizeof(struct mptcp_sock),
3381 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3382 	.no_autobind	= true,
3383 };
3384 
3385 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3386 {
3387 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3388 	struct socket *ssock;
3389 	int err;
3390 
3391 	lock_sock(sock->sk);
3392 	ssock = __mptcp_nmpc_socket(msk);
3393 	if (!ssock) {
3394 		err = -EINVAL;
3395 		goto unlock;
3396 	}
3397 
3398 	err = ssock->ops->bind(ssock, uaddr, addr_len);
3399 	if (!err)
3400 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3401 
3402 unlock:
3403 	release_sock(sock->sk);
3404 	return err;
3405 }
3406 
3407 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3408 					 struct mptcp_subflow_context *subflow)
3409 {
3410 	subflow->request_mptcp = 0;
3411 	__mptcp_do_fallback(msk);
3412 }
3413 
3414 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
3415 				int addr_len, int flags)
3416 {
3417 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3418 	struct mptcp_subflow_context *subflow;
3419 	struct socket *ssock;
3420 	int err = -EINVAL;
3421 
3422 	lock_sock(sock->sk);
3423 	if (uaddr) {
3424 		if (addr_len < sizeof(uaddr->sa_family))
3425 			goto unlock;
3426 
3427 		if (uaddr->sa_family == AF_UNSPEC) {
3428 			err = mptcp_disconnect(sock->sk, flags);
3429 			sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED;
3430 			goto unlock;
3431 		}
3432 	}
3433 
3434 	if (sock->state != SS_UNCONNECTED && msk->subflow) {
3435 		/* pending connection or invalid state, let existing subflow
3436 		 * cope with that
3437 		 */
3438 		ssock = msk->subflow;
3439 		goto do_connect;
3440 	}
3441 
3442 	ssock = __mptcp_nmpc_socket(msk);
3443 	if (!ssock)
3444 		goto unlock;
3445 
3446 	mptcp_token_destroy(msk);
3447 	inet_sk_state_store(sock->sk, TCP_SYN_SENT);
3448 	subflow = mptcp_subflow_ctx(ssock->sk);
3449 #ifdef CONFIG_TCP_MD5SIG
3450 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3451 	 * TCP option space.
3452 	 */
3453 	if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
3454 		mptcp_subflow_early_fallback(msk, subflow);
3455 #endif
3456 	if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) {
3457 		MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT);
3458 		mptcp_subflow_early_fallback(msk, subflow);
3459 	}
3460 	if (likely(!__mptcp_check_fallback(msk)))
3461 		MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE);
3462 
3463 do_connect:
3464 	err = ssock->ops->connect(ssock, uaddr, addr_len, flags);
3465 	sock->state = ssock->state;
3466 
3467 	/* on successful connect, the msk state will be moved to established by
3468 	 * subflow_finish_connect()
3469 	 */
3470 	if (!err || err == -EINPROGRESS)
3471 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3472 	else
3473 		inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3474 
3475 unlock:
3476 	release_sock(sock->sk);
3477 	return err;
3478 }
3479 
3480 static int mptcp_listen(struct socket *sock, int backlog)
3481 {
3482 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3483 	struct socket *ssock;
3484 	int err;
3485 
3486 	pr_debug("msk=%p", msk);
3487 
3488 	lock_sock(sock->sk);
3489 	ssock = __mptcp_nmpc_socket(msk);
3490 	if (!ssock) {
3491 		err = -EINVAL;
3492 		goto unlock;
3493 	}
3494 
3495 	mptcp_token_destroy(msk);
3496 	inet_sk_state_store(sock->sk, TCP_LISTEN);
3497 	sock_set_flag(sock->sk, SOCK_RCU_FREE);
3498 
3499 	err = ssock->ops->listen(ssock, backlog);
3500 	inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3501 	if (!err)
3502 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3503 
3504 unlock:
3505 	release_sock(sock->sk);
3506 	return err;
3507 }
3508 
3509 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3510 			       int flags, bool kern)
3511 {
3512 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3513 	struct socket *ssock;
3514 	int err;
3515 
3516 	pr_debug("msk=%p", msk);
3517 
3518 	ssock = __mptcp_nmpc_socket(msk);
3519 	if (!ssock)
3520 		return -EINVAL;
3521 
3522 	err = ssock->ops->accept(sock, newsock, flags, kern);
3523 	if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
3524 		struct mptcp_sock *msk = mptcp_sk(newsock->sk);
3525 		struct mptcp_subflow_context *subflow;
3526 		struct sock *newsk = newsock->sk;
3527 
3528 		lock_sock(newsk);
3529 
3530 		/* PM/worker can now acquire the first subflow socket
3531 		 * lock without racing with listener queue cleanup,
3532 		 * we can notify it, if needed.
3533 		 *
3534 		 * Even if remote has reset the initial subflow by now
3535 		 * the refcnt is still at least one.
3536 		 */
3537 		subflow = mptcp_subflow_ctx(msk->first);
3538 		list_add(&subflow->node, &msk->conn_list);
3539 		sock_hold(msk->first);
3540 		if (mptcp_is_fully_established(newsk))
3541 			mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL);
3542 
3543 		mptcp_copy_inaddrs(newsk, msk->first);
3544 		mptcp_rcv_space_init(msk, msk->first);
3545 		mptcp_propagate_sndbuf(newsk, msk->first);
3546 
3547 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3548 		 * This is needed so NOSPACE flag can be set from tcp stack.
3549 		 */
3550 		mptcp_for_each_subflow(msk, subflow) {
3551 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3552 
3553 			if (!ssk->sk_socket)
3554 				mptcp_sock_graft(ssk, newsock);
3555 		}
3556 		release_sock(newsk);
3557 	}
3558 
3559 	return err;
3560 }
3561 
3562 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
3563 {
3564 	/* Concurrent splices from sk_receive_queue into receive_queue will
3565 	 * always show at least one non-empty queue when checked in this order.
3566 	 */
3567 	if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) &&
3568 	    skb_queue_empty_lockless(&msk->receive_queue))
3569 		return 0;
3570 
3571 	return EPOLLIN | EPOLLRDNORM;
3572 }
3573 
3574 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3575 {
3576 	struct sock *sk = (struct sock *)msk;
3577 
3578 	if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN))
3579 		return EPOLLOUT | EPOLLWRNORM;
3580 
3581 	if (sk_stream_is_writeable(sk))
3582 		return EPOLLOUT | EPOLLWRNORM;
3583 
3584 	mptcp_set_nospace(sk);
3585 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3586 	if (sk_stream_is_writeable(sk))
3587 		return EPOLLOUT | EPOLLWRNORM;
3588 
3589 	return 0;
3590 }
3591 
3592 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3593 			   struct poll_table_struct *wait)
3594 {
3595 	struct sock *sk = sock->sk;
3596 	struct mptcp_sock *msk;
3597 	__poll_t mask = 0;
3598 	int state;
3599 
3600 	msk = mptcp_sk(sk);
3601 	sock_poll_wait(file, sock, wait);
3602 
3603 	state = inet_sk_state_load(sk);
3604 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3605 	if (state == TCP_LISTEN) {
3606 		if (WARN_ON_ONCE(!msk->subflow || !msk->subflow->sk))
3607 			return 0;
3608 
3609 		return inet_csk_listen_poll(msk->subflow->sk);
3610 	}
3611 
3612 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3613 		mask |= mptcp_check_readable(msk);
3614 		mask |= mptcp_check_writeable(msk);
3615 	}
3616 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3617 		mask |= EPOLLHUP;
3618 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3619 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3620 
3621 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
3622 	smp_rmb();
3623 	if (sk->sk_err)
3624 		mask |= EPOLLERR;
3625 
3626 	return mask;
3627 }
3628 
3629 static const struct proto_ops mptcp_stream_ops = {
3630 	.family		   = PF_INET,
3631 	.owner		   = THIS_MODULE,
3632 	.release	   = inet_release,
3633 	.bind		   = mptcp_bind,
3634 	.connect	   = mptcp_stream_connect,
3635 	.socketpair	   = sock_no_socketpair,
3636 	.accept		   = mptcp_stream_accept,
3637 	.getname	   = inet_getname,
3638 	.poll		   = mptcp_poll,
3639 	.ioctl		   = inet_ioctl,
3640 	.gettstamp	   = sock_gettstamp,
3641 	.listen		   = mptcp_listen,
3642 	.shutdown	   = inet_shutdown,
3643 	.setsockopt	   = sock_common_setsockopt,
3644 	.getsockopt	   = sock_common_getsockopt,
3645 	.sendmsg	   = inet_sendmsg,
3646 	.recvmsg	   = inet_recvmsg,
3647 	.mmap		   = sock_no_mmap,
3648 	.sendpage	   = inet_sendpage,
3649 };
3650 
3651 static struct inet_protosw mptcp_protosw = {
3652 	.type		= SOCK_STREAM,
3653 	.protocol	= IPPROTO_MPTCP,
3654 	.prot		= &mptcp_prot,
3655 	.ops		= &mptcp_stream_ops,
3656 	.flags		= INET_PROTOSW_ICSK,
3657 };
3658 
3659 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3660 {
3661 	struct mptcp_delegated_action *delegated;
3662 	struct mptcp_subflow_context *subflow;
3663 	int work_done = 0;
3664 
3665 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3666 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3667 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3668 
3669 		bh_lock_sock_nested(ssk);
3670 		if (!sock_owned_by_user(ssk) &&
3671 		    mptcp_subflow_has_delegated_action(subflow))
3672 			mptcp_subflow_process_delegated(ssk);
3673 		/* ... elsewhere tcp_release_cb_override already processed
3674 		 * the action or will do at next release_sock().
3675 		 * In both case must dequeue the subflow here - on the same
3676 		 * CPU that scheduled it.
3677 		 */
3678 		bh_unlock_sock(ssk);
3679 		sock_put(ssk);
3680 
3681 		if (++work_done == budget)
3682 			return budget;
3683 	}
3684 
3685 	/* always provide a 0 'work_done' argument, so that napi_complete_done
3686 	 * will not try accessing the NULL napi->dev ptr
3687 	 */
3688 	napi_complete_done(napi, 0);
3689 	return work_done;
3690 }
3691 
3692 void __init mptcp_proto_init(void)
3693 {
3694 	struct mptcp_delegated_action *delegated;
3695 	int cpu;
3696 
3697 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
3698 
3699 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
3700 		panic("Failed to allocate MPTCP pcpu counter\n");
3701 
3702 	init_dummy_netdev(&mptcp_napi_dev);
3703 	for_each_possible_cpu(cpu) {
3704 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
3705 		INIT_LIST_HEAD(&delegated->head);
3706 		netif_tx_napi_add(&mptcp_napi_dev, &delegated->napi, mptcp_napi_poll,
3707 				  NAPI_POLL_WEIGHT);
3708 		napi_enable(&delegated->napi);
3709 	}
3710 
3711 	mptcp_subflow_init();
3712 	mptcp_pm_init();
3713 	mptcp_token_init();
3714 
3715 	if (proto_register(&mptcp_prot, 1) != 0)
3716 		panic("Failed to register MPTCP proto.\n");
3717 
3718 	inet_register_protosw(&mptcp_protosw);
3719 
3720 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
3721 }
3722 
3723 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3724 static const struct proto_ops mptcp_v6_stream_ops = {
3725 	.family		   = PF_INET6,
3726 	.owner		   = THIS_MODULE,
3727 	.release	   = inet6_release,
3728 	.bind		   = mptcp_bind,
3729 	.connect	   = mptcp_stream_connect,
3730 	.socketpair	   = sock_no_socketpair,
3731 	.accept		   = mptcp_stream_accept,
3732 	.getname	   = inet6_getname,
3733 	.poll		   = mptcp_poll,
3734 	.ioctl		   = inet6_ioctl,
3735 	.gettstamp	   = sock_gettstamp,
3736 	.listen		   = mptcp_listen,
3737 	.shutdown	   = inet_shutdown,
3738 	.setsockopt	   = sock_common_setsockopt,
3739 	.getsockopt	   = sock_common_getsockopt,
3740 	.sendmsg	   = inet6_sendmsg,
3741 	.recvmsg	   = inet6_recvmsg,
3742 	.mmap		   = sock_no_mmap,
3743 	.sendpage	   = inet_sendpage,
3744 #ifdef CONFIG_COMPAT
3745 	.compat_ioctl	   = inet6_compat_ioctl,
3746 #endif
3747 };
3748 
3749 static struct proto mptcp_v6_prot;
3750 
3751 static void mptcp_v6_destroy(struct sock *sk)
3752 {
3753 	mptcp_destroy(sk);
3754 	inet6_destroy_sock(sk);
3755 }
3756 
3757 static struct inet_protosw mptcp_v6_protosw = {
3758 	.type		= SOCK_STREAM,
3759 	.protocol	= IPPROTO_MPTCP,
3760 	.prot		= &mptcp_v6_prot,
3761 	.ops		= &mptcp_v6_stream_ops,
3762 	.flags		= INET_PROTOSW_ICSK,
3763 };
3764 
3765 int __init mptcp_proto_v6_init(void)
3766 {
3767 	int err;
3768 
3769 	mptcp_v6_prot = mptcp_prot;
3770 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
3771 	mptcp_v6_prot.slab = NULL;
3772 	mptcp_v6_prot.destroy = mptcp_v6_destroy;
3773 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
3774 
3775 	err = proto_register(&mptcp_v6_prot, 1);
3776 	if (err)
3777 		return err;
3778 
3779 	err = inet6_register_protosw(&mptcp_v6_protosw);
3780 	if (err)
3781 		proto_unregister(&mptcp_v6_prot);
3782 
3783 	return err;
3784 }
3785 #endif
3786