1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include "protocol.h" 25 #include "mib.h" 26 27 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 28 struct mptcp6_sock { 29 struct mptcp_sock msk; 30 struct ipv6_pinfo np; 31 }; 32 #endif 33 34 struct mptcp_skb_cb { 35 u64 map_seq; 36 u64 end_seq; 37 u32 offset; 38 }; 39 40 #define MPTCP_SKB_CB(__skb) ((struct mptcp_skb_cb *)&((__skb)->cb[0])) 41 42 static struct percpu_counter mptcp_sockets_allocated; 43 44 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not 45 * completed yet or has failed, return the subflow socket. 46 * Otherwise return NULL. 47 */ 48 static struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk) 49 { 50 if (!msk->subflow || READ_ONCE(msk->can_ack)) 51 return NULL; 52 53 return msk->subflow; 54 } 55 56 static bool mptcp_is_tcpsk(struct sock *sk) 57 { 58 struct socket *sock = sk->sk_socket; 59 60 if (unlikely(sk->sk_prot == &tcp_prot)) { 61 /* we are being invoked after mptcp_accept() has 62 * accepted a non-mp-capable flow: sk is a tcp_sk, 63 * not an mptcp one. 64 * 65 * Hand the socket over to tcp so all further socket ops 66 * bypass mptcp. 67 */ 68 sock->ops = &inet_stream_ops; 69 return true; 70 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 71 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { 72 sock->ops = &inet6_stream_ops; 73 return true; 74 #endif 75 } 76 77 return false; 78 } 79 80 static struct sock *__mptcp_tcp_fallback(struct mptcp_sock *msk) 81 { 82 sock_owned_by_me((const struct sock *)msk); 83 84 if (likely(!__mptcp_check_fallback(msk))) 85 return NULL; 86 87 return msk->first; 88 } 89 90 static int __mptcp_socket_create(struct mptcp_sock *msk) 91 { 92 struct mptcp_subflow_context *subflow; 93 struct sock *sk = (struct sock *)msk; 94 struct socket *ssock; 95 int err; 96 97 err = mptcp_subflow_create_socket(sk, &ssock); 98 if (err) 99 return err; 100 101 msk->first = ssock->sk; 102 msk->subflow = ssock; 103 subflow = mptcp_subflow_ctx(ssock->sk); 104 list_add(&subflow->node, &msk->conn_list); 105 subflow->request_mptcp = 1; 106 107 /* accept() will wait on first subflow sk_wq, and we always wakes up 108 * via msk->sk_socket 109 */ 110 RCU_INIT_POINTER(msk->first->sk_wq, &sk->sk_socket->wq); 111 112 return 0; 113 } 114 115 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 116 { 117 sk_drops_add(sk, skb); 118 __kfree_skb(skb); 119 } 120 121 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 122 struct sk_buff *from) 123 { 124 bool fragstolen; 125 int delta; 126 127 if (MPTCP_SKB_CB(from)->offset || 128 !skb_try_coalesce(to, from, &fragstolen, &delta)) 129 return false; 130 131 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 132 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 133 to->len, MPTCP_SKB_CB(from)->end_seq); 134 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 135 kfree_skb_partial(from, fragstolen); 136 atomic_add(delta, &sk->sk_rmem_alloc); 137 sk_mem_charge(sk, delta); 138 return true; 139 } 140 141 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 142 struct sk_buff *from) 143 { 144 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 145 return false; 146 147 return mptcp_try_coalesce((struct sock *)msk, to, from); 148 } 149 150 /* "inspired" by tcp_data_queue_ofo(), main differences: 151 * - use mptcp seqs 152 * - don't cope with sacks 153 */ 154 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 155 { 156 struct sock *sk = (struct sock *)msk; 157 struct rb_node **p, *parent; 158 u64 seq, end_seq, max_seq; 159 struct sk_buff *skb1; 160 int space; 161 162 seq = MPTCP_SKB_CB(skb)->map_seq; 163 end_seq = MPTCP_SKB_CB(skb)->end_seq; 164 space = tcp_space(sk); 165 max_seq = space > 0 ? space + msk->ack_seq : msk->ack_seq; 166 167 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 168 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 169 if (after64(seq, max_seq)) { 170 /* out of window */ 171 mptcp_drop(sk, skb); 172 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 173 return; 174 } 175 176 p = &msk->out_of_order_queue.rb_node; 177 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 178 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 179 rb_link_node(&skb->rbnode, NULL, p); 180 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 181 msk->ooo_last_skb = skb; 182 goto end; 183 } 184 185 /* with 2 subflows, adding at end of ooo queue is quite likely 186 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 187 */ 188 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 189 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 190 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 191 return; 192 } 193 194 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 195 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 196 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 197 parent = &msk->ooo_last_skb->rbnode; 198 p = &parent->rb_right; 199 goto insert; 200 } 201 202 /* Find place to insert this segment. Handle overlaps on the way. */ 203 parent = NULL; 204 while (*p) { 205 parent = *p; 206 skb1 = rb_to_skb(parent); 207 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 208 p = &parent->rb_left; 209 continue; 210 } 211 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 212 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 213 /* All the bits are present. Drop. */ 214 mptcp_drop(sk, skb); 215 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 216 return; 217 } 218 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 219 /* partial overlap: 220 * | skb | 221 * | skb1 | 222 * continue traversing 223 */ 224 } else { 225 /* skb's seq == skb1's seq and skb covers skb1. 226 * Replace skb1 with skb. 227 */ 228 rb_replace_node(&skb1->rbnode, &skb->rbnode, 229 &msk->out_of_order_queue); 230 mptcp_drop(sk, skb1); 231 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 232 goto merge_right; 233 } 234 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 235 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 236 return; 237 } 238 p = &parent->rb_right; 239 } 240 241 insert: 242 /* Insert segment into RB tree. */ 243 rb_link_node(&skb->rbnode, parent, p); 244 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 245 246 merge_right: 247 /* Remove other segments covered by skb. */ 248 while ((skb1 = skb_rb_next(skb)) != NULL) { 249 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 250 break; 251 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 252 mptcp_drop(sk, skb1); 253 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 254 } 255 /* If there is no skb after us, we are the last_skb ! */ 256 if (!skb1) 257 msk->ooo_last_skb = skb; 258 259 end: 260 skb_condense(skb); 261 skb_set_owner_r(skb, sk); 262 } 263 264 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 265 struct sk_buff *skb, unsigned int offset, 266 size_t copy_len) 267 { 268 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 269 struct sock *sk = (struct sock *)msk; 270 struct sk_buff *tail; 271 272 __skb_unlink(skb, &ssk->sk_receive_queue); 273 274 skb_ext_reset(skb); 275 skb_orphan(skb); 276 277 /* try to fetch required memory from subflow */ 278 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 279 if (ssk->sk_forward_alloc < skb->truesize) 280 goto drop; 281 __sk_mem_reclaim(ssk, skb->truesize); 282 if (!sk_rmem_schedule(sk, skb, skb->truesize)) 283 goto drop; 284 } 285 286 /* the skb map_seq accounts for the skb offset: 287 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 288 * value 289 */ 290 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 291 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 292 MPTCP_SKB_CB(skb)->offset = offset; 293 294 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 295 /* in sequence */ 296 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 297 tail = skb_peek_tail(&sk->sk_receive_queue); 298 if (tail && mptcp_try_coalesce(sk, tail, skb)) 299 return true; 300 301 skb_set_owner_r(skb, sk); 302 __skb_queue_tail(&sk->sk_receive_queue, skb); 303 return true; 304 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 305 mptcp_data_queue_ofo(msk, skb); 306 return false; 307 } 308 309 /* old data, keep it simple and drop the whole pkt, sender 310 * will retransmit as needed, if needed. 311 */ 312 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 313 drop: 314 mptcp_drop(sk, skb); 315 return false; 316 } 317 318 static void mptcp_stop_timer(struct sock *sk) 319 { 320 struct inet_connection_sock *icsk = inet_csk(sk); 321 322 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 323 mptcp_sk(sk)->timer_ival = 0; 324 } 325 326 static void mptcp_check_data_fin_ack(struct sock *sk) 327 { 328 struct mptcp_sock *msk = mptcp_sk(sk); 329 330 if (__mptcp_check_fallback(msk)) 331 return; 332 333 /* Look for an acknowledged DATA_FIN */ 334 if (((1 << sk->sk_state) & 335 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 336 msk->write_seq == atomic64_read(&msk->snd_una)) { 337 mptcp_stop_timer(sk); 338 339 WRITE_ONCE(msk->snd_data_fin_enable, 0); 340 341 switch (sk->sk_state) { 342 case TCP_FIN_WAIT1: 343 inet_sk_state_store(sk, TCP_FIN_WAIT2); 344 sk->sk_state_change(sk); 345 break; 346 case TCP_CLOSING: 347 case TCP_LAST_ACK: 348 inet_sk_state_store(sk, TCP_CLOSE); 349 sk->sk_state_change(sk); 350 break; 351 } 352 353 if (sk->sk_shutdown == SHUTDOWN_MASK || 354 sk->sk_state == TCP_CLOSE) 355 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 356 else 357 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 358 } 359 } 360 361 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 362 { 363 struct mptcp_sock *msk = mptcp_sk(sk); 364 365 if (READ_ONCE(msk->rcv_data_fin) && 366 ((1 << sk->sk_state) & 367 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 368 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 369 370 if (msk->ack_seq == rcv_data_fin_seq) { 371 if (seq) 372 *seq = rcv_data_fin_seq; 373 374 return true; 375 } 376 } 377 378 return false; 379 } 380 381 static void mptcp_set_timeout(const struct sock *sk, const struct sock *ssk) 382 { 383 long tout = ssk && inet_csk(ssk)->icsk_pending ? 384 inet_csk(ssk)->icsk_timeout - jiffies : 0; 385 386 if (tout <= 0) 387 tout = mptcp_sk(sk)->timer_ival; 388 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 389 } 390 391 static void mptcp_check_data_fin(struct sock *sk) 392 { 393 struct mptcp_sock *msk = mptcp_sk(sk); 394 u64 rcv_data_fin_seq; 395 396 if (__mptcp_check_fallback(msk) || !msk->first) 397 return; 398 399 /* Need to ack a DATA_FIN received from a peer while this side 400 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 401 * msk->rcv_data_fin was set when parsing the incoming options 402 * at the subflow level and the msk lock was not held, so this 403 * is the first opportunity to act on the DATA_FIN and change 404 * the msk state. 405 * 406 * If we are caught up to the sequence number of the incoming 407 * DATA_FIN, send the DATA_ACK now and do state transition. If 408 * not caught up, do nothing and let the recv code send DATA_ACK 409 * when catching up. 410 */ 411 412 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 413 struct mptcp_subflow_context *subflow; 414 415 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 416 WRITE_ONCE(msk->rcv_data_fin, 0); 417 418 sk->sk_shutdown |= RCV_SHUTDOWN; 419 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 420 set_bit(MPTCP_DATA_READY, &msk->flags); 421 422 switch (sk->sk_state) { 423 case TCP_ESTABLISHED: 424 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 425 break; 426 case TCP_FIN_WAIT1: 427 inet_sk_state_store(sk, TCP_CLOSING); 428 break; 429 case TCP_FIN_WAIT2: 430 inet_sk_state_store(sk, TCP_CLOSE); 431 // @@ Close subflows now? 432 break; 433 default: 434 /* Other states not expected */ 435 WARN_ON_ONCE(1); 436 break; 437 } 438 439 mptcp_set_timeout(sk, NULL); 440 mptcp_for_each_subflow(msk, subflow) { 441 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 442 443 lock_sock(ssk); 444 tcp_send_ack(ssk); 445 release_sock(ssk); 446 } 447 448 sk->sk_state_change(sk); 449 450 if (sk->sk_shutdown == SHUTDOWN_MASK || 451 sk->sk_state == TCP_CLOSE) 452 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 453 else 454 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 455 } 456 } 457 458 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 459 struct sock *ssk, 460 unsigned int *bytes) 461 { 462 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 463 struct sock *sk = (struct sock *)msk; 464 unsigned int moved = 0; 465 bool more_data_avail; 466 struct tcp_sock *tp; 467 u32 old_copied_seq; 468 bool done = false; 469 470 pr_debug("msk=%p ssk=%p", msk, ssk); 471 tp = tcp_sk(ssk); 472 old_copied_seq = tp->copied_seq; 473 do { 474 u32 map_remaining, offset; 475 u32 seq = tp->copied_seq; 476 struct sk_buff *skb; 477 bool fin; 478 479 /* try to move as much data as available */ 480 map_remaining = subflow->map_data_len - 481 mptcp_subflow_get_map_offset(subflow); 482 483 skb = skb_peek(&ssk->sk_receive_queue); 484 if (!skb) { 485 /* if no data is found, a racing workqueue/recvmsg 486 * already processed the new data, stop here or we 487 * can enter an infinite loop 488 */ 489 if (!moved) 490 done = true; 491 break; 492 } 493 494 if (__mptcp_check_fallback(msk)) { 495 /* if we are running under the workqueue, TCP could have 496 * collapsed skbs between dummy map creation and now 497 * be sure to adjust the size 498 */ 499 map_remaining = skb->len; 500 subflow->map_data_len = skb->len; 501 } 502 503 offset = seq - TCP_SKB_CB(skb)->seq; 504 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 505 if (fin) { 506 done = true; 507 seq++; 508 } 509 510 if (offset < skb->len) { 511 size_t len = skb->len - offset; 512 513 if (tp->urg_data) 514 done = true; 515 516 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 517 moved += len; 518 seq += len; 519 520 if (WARN_ON_ONCE(map_remaining < len)) 521 break; 522 } else { 523 WARN_ON_ONCE(!fin); 524 sk_eat_skb(ssk, skb); 525 done = true; 526 } 527 528 WRITE_ONCE(tp->copied_seq, seq); 529 more_data_avail = mptcp_subflow_data_available(ssk); 530 531 if (atomic_read(&sk->sk_rmem_alloc) > READ_ONCE(sk->sk_rcvbuf)) { 532 done = true; 533 break; 534 } 535 } while (more_data_avail); 536 537 *bytes += moved; 538 if (tp->copied_seq != old_copied_seq) 539 tcp_cleanup_rbuf(ssk, 1); 540 541 return done; 542 } 543 544 static bool mptcp_ofo_queue(struct mptcp_sock *msk) 545 { 546 struct sock *sk = (struct sock *)msk; 547 struct sk_buff *skb, *tail; 548 bool moved = false; 549 struct rb_node *p; 550 u64 end_seq; 551 552 p = rb_first(&msk->out_of_order_queue); 553 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 554 while (p) { 555 skb = rb_to_skb(p); 556 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 557 break; 558 559 p = rb_next(p); 560 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 561 562 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 563 msk->ack_seq))) { 564 mptcp_drop(sk, skb); 565 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 566 continue; 567 } 568 569 end_seq = MPTCP_SKB_CB(skb)->end_seq; 570 tail = skb_peek_tail(&sk->sk_receive_queue); 571 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 572 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 573 574 /* skip overlapping data, if any */ 575 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 576 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 577 delta); 578 MPTCP_SKB_CB(skb)->offset += delta; 579 __skb_queue_tail(&sk->sk_receive_queue, skb); 580 } 581 msk->ack_seq = end_seq; 582 moved = true; 583 } 584 return moved; 585 } 586 587 /* In most cases we will be able to lock the mptcp socket. If its already 588 * owned, we need to defer to the work queue to avoid ABBA deadlock. 589 */ 590 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 591 { 592 struct sock *sk = (struct sock *)msk; 593 unsigned int moved = 0; 594 595 if (READ_ONCE(sk->sk_lock.owned)) 596 return false; 597 598 if (unlikely(!spin_trylock_bh(&sk->sk_lock.slock))) 599 return false; 600 601 /* must re-check after taking the lock */ 602 if (!READ_ONCE(sk->sk_lock.owned)) { 603 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 604 mptcp_ofo_queue(msk); 605 606 /* If the moves have caught up with the DATA_FIN sequence number 607 * it's time to ack the DATA_FIN and change socket state, but 608 * this is not a good place to change state. Let the workqueue 609 * do it. 610 */ 611 if (mptcp_pending_data_fin(sk, NULL) && 612 schedule_work(&msk->work)) 613 sock_hold(sk); 614 } 615 616 spin_unlock_bh(&sk->sk_lock.slock); 617 618 return moved > 0; 619 } 620 621 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 622 { 623 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 624 struct mptcp_sock *msk = mptcp_sk(sk); 625 bool wake; 626 627 /* move_skbs_to_msk below can legitly clear the data_avail flag, 628 * but we will need later to properly woke the reader, cache its 629 * value 630 */ 631 wake = subflow->data_avail == MPTCP_SUBFLOW_DATA_AVAIL; 632 if (wake) 633 set_bit(MPTCP_DATA_READY, &msk->flags); 634 635 if (atomic_read(&sk->sk_rmem_alloc) < READ_ONCE(sk->sk_rcvbuf) && 636 move_skbs_to_msk(msk, ssk)) 637 goto wake; 638 639 /* don't schedule if mptcp sk is (still) over limit */ 640 if (atomic_read(&sk->sk_rmem_alloc) > READ_ONCE(sk->sk_rcvbuf)) 641 goto wake; 642 643 /* mptcp socket is owned, release_cb should retry */ 644 if (!test_and_set_bit(TCP_DELACK_TIMER_DEFERRED, 645 &sk->sk_tsq_flags)) { 646 sock_hold(sk); 647 648 /* need to try again, its possible release_cb() has already 649 * been called after the test_and_set_bit() above. 650 */ 651 move_skbs_to_msk(msk, ssk); 652 } 653 wake: 654 if (wake) 655 sk->sk_data_ready(sk); 656 } 657 658 static void __mptcp_flush_join_list(struct mptcp_sock *msk) 659 { 660 if (likely(list_empty(&msk->join_list))) 661 return; 662 663 spin_lock_bh(&msk->join_list_lock); 664 list_splice_tail_init(&msk->join_list, &msk->conn_list); 665 spin_unlock_bh(&msk->join_list_lock); 666 } 667 668 static bool mptcp_timer_pending(struct sock *sk) 669 { 670 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 671 } 672 673 static void mptcp_reset_timer(struct sock *sk) 674 { 675 struct inet_connection_sock *icsk = inet_csk(sk); 676 unsigned long tout; 677 678 /* should never be called with mptcp level timer cleared */ 679 tout = READ_ONCE(mptcp_sk(sk)->timer_ival); 680 if (WARN_ON_ONCE(!tout)) 681 tout = TCP_RTO_MIN; 682 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 683 } 684 685 void mptcp_data_acked(struct sock *sk) 686 { 687 mptcp_reset_timer(sk); 688 689 if ((!test_bit(MPTCP_SEND_SPACE, &mptcp_sk(sk)->flags) || 690 (inet_sk_state_load(sk) != TCP_ESTABLISHED)) && 691 schedule_work(&mptcp_sk(sk)->work)) 692 sock_hold(sk); 693 } 694 695 void mptcp_subflow_eof(struct sock *sk) 696 { 697 struct mptcp_sock *msk = mptcp_sk(sk); 698 699 if (!test_and_set_bit(MPTCP_WORK_EOF, &msk->flags) && 700 schedule_work(&msk->work)) 701 sock_hold(sk); 702 } 703 704 static void mptcp_check_for_eof(struct mptcp_sock *msk) 705 { 706 struct mptcp_subflow_context *subflow; 707 struct sock *sk = (struct sock *)msk; 708 int receivers = 0; 709 710 mptcp_for_each_subflow(msk, subflow) 711 receivers += !subflow->rx_eof; 712 713 if (!receivers && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 714 /* hopefully temporary hack: propagate shutdown status 715 * to msk, when all subflows agree on it 716 */ 717 sk->sk_shutdown |= RCV_SHUTDOWN; 718 719 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 720 set_bit(MPTCP_DATA_READY, &msk->flags); 721 sk->sk_data_ready(sk); 722 } 723 } 724 725 static bool mptcp_ext_cache_refill(struct mptcp_sock *msk) 726 { 727 const struct sock *sk = (const struct sock *)msk; 728 729 if (!msk->cached_ext) 730 msk->cached_ext = __skb_ext_alloc(sk->sk_allocation); 731 732 return !!msk->cached_ext; 733 } 734 735 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 736 { 737 struct mptcp_subflow_context *subflow; 738 struct sock *sk = (struct sock *)msk; 739 740 sock_owned_by_me(sk); 741 742 mptcp_for_each_subflow(msk, subflow) { 743 if (subflow->data_avail) 744 return mptcp_subflow_tcp_sock(subflow); 745 } 746 747 return NULL; 748 } 749 750 static bool mptcp_skb_can_collapse_to(u64 write_seq, 751 const struct sk_buff *skb, 752 const struct mptcp_ext *mpext) 753 { 754 if (!tcp_skb_can_collapse_to(skb)) 755 return false; 756 757 /* can collapse only if MPTCP level sequence is in order */ 758 return mpext && mpext->data_seq + mpext->data_len == write_seq; 759 } 760 761 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 762 const struct page_frag *pfrag, 763 const struct mptcp_data_frag *df) 764 { 765 return df && pfrag->page == df->page && 766 df->data_seq + df->data_len == msk->write_seq; 767 } 768 769 static void dfrag_uncharge(struct sock *sk, int len) 770 { 771 sk_mem_uncharge(sk, len); 772 sk_wmem_queued_add(sk, -len); 773 } 774 775 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 776 { 777 int len = dfrag->data_len + dfrag->overhead; 778 779 list_del(&dfrag->list); 780 dfrag_uncharge(sk, len); 781 put_page(dfrag->page); 782 } 783 784 static bool mptcp_is_writeable(struct mptcp_sock *msk) 785 { 786 struct mptcp_subflow_context *subflow; 787 788 if (!sk_stream_is_writeable((struct sock *)msk)) 789 return false; 790 791 mptcp_for_each_subflow(msk, subflow) { 792 if (sk_stream_is_writeable(subflow->tcp_sock)) 793 return true; 794 } 795 return false; 796 } 797 798 static void mptcp_clean_una(struct sock *sk) 799 { 800 struct mptcp_sock *msk = mptcp_sk(sk); 801 struct mptcp_data_frag *dtmp, *dfrag; 802 bool cleaned = false; 803 u64 snd_una; 804 805 /* on fallback we just need to ignore snd_una, as this is really 806 * plain TCP 807 */ 808 if (__mptcp_check_fallback(msk)) 809 atomic64_set(&msk->snd_una, msk->write_seq); 810 snd_una = atomic64_read(&msk->snd_una); 811 812 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 813 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 814 break; 815 816 dfrag_clear(sk, dfrag); 817 cleaned = true; 818 } 819 820 dfrag = mptcp_rtx_head(sk); 821 if (dfrag && after64(snd_una, dfrag->data_seq)) { 822 u64 delta = snd_una - dfrag->data_seq; 823 824 if (WARN_ON_ONCE(delta > dfrag->data_len)) 825 goto out; 826 827 dfrag->data_seq += delta; 828 dfrag->offset += delta; 829 dfrag->data_len -= delta; 830 831 dfrag_uncharge(sk, delta); 832 cleaned = true; 833 } 834 835 out: 836 if (cleaned) { 837 sk_mem_reclaim_partial(sk); 838 839 /* Only wake up writers if a subflow is ready */ 840 if (mptcp_is_writeable(msk)) { 841 set_bit(MPTCP_SEND_SPACE, &mptcp_sk(sk)->flags); 842 smp_mb__after_atomic(); 843 844 /* set SEND_SPACE before sk_stream_write_space clears 845 * NOSPACE 846 */ 847 sk_stream_write_space(sk); 848 } 849 } 850 } 851 852 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 853 * data 854 */ 855 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 856 { 857 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 858 pfrag, sk->sk_allocation))) 859 return true; 860 861 sk->sk_prot->enter_memory_pressure(sk); 862 sk_stream_moderate_sndbuf(sk); 863 return false; 864 } 865 866 static struct mptcp_data_frag * 867 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 868 int orig_offset) 869 { 870 int offset = ALIGN(orig_offset, sizeof(long)); 871 struct mptcp_data_frag *dfrag; 872 873 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 874 dfrag->data_len = 0; 875 dfrag->data_seq = msk->write_seq; 876 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 877 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 878 dfrag->page = pfrag->page; 879 880 return dfrag; 881 } 882 883 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 884 struct msghdr *msg, struct mptcp_data_frag *dfrag, 885 long *timeo, int *pmss_now, 886 int *ps_goal) 887 { 888 int mss_now, avail_size, size_goal, offset, ret, frag_truesize = 0; 889 bool dfrag_collapsed, can_collapse = false; 890 struct mptcp_sock *msk = mptcp_sk(sk); 891 struct mptcp_ext *mpext = NULL; 892 bool retransmission = !!dfrag; 893 struct sk_buff *skb, *tail; 894 struct page_frag *pfrag; 895 struct page *page; 896 u64 *write_seq; 897 size_t psize; 898 899 /* use the mptcp page cache so that we can easily move the data 900 * from one substream to another, but do per subflow memory accounting 901 * Note: pfrag is used only !retransmission, but the compiler if 902 * fooled into a warning if we don't init here 903 */ 904 pfrag = sk_page_frag(sk); 905 if (!retransmission) { 906 write_seq = &msk->write_seq; 907 page = pfrag->page; 908 } else { 909 write_seq = &dfrag->data_seq; 910 page = dfrag->page; 911 } 912 913 /* compute copy limit */ 914 mss_now = tcp_send_mss(ssk, &size_goal, msg->msg_flags); 915 *pmss_now = mss_now; 916 *ps_goal = size_goal; 917 avail_size = size_goal; 918 skb = tcp_write_queue_tail(ssk); 919 if (skb) { 920 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 921 922 /* Limit the write to the size available in the 923 * current skb, if any, so that we create at most a new skb. 924 * Explicitly tells TCP internals to avoid collapsing on later 925 * queue management operation, to avoid breaking the ext <-> 926 * SSN association set here 927 */ 928 can_collapse = (size_goal - skb->len > 0) && 929 mptcp_skb_can_collapse_to(*write_seq, skb, mpext); 930 if (!can_collapse) 931 TCP_SKB_CB(skb)->eor = 1; 932 else 933 avail_size = size_goal - skb->len; 934 } 935 936 if (!retransmission) { 937 /* reuse tail pfrag, if possible, or carve a new one from the 938 * page allocator 939 */ 940 dfrag = mptcp_rtx_tail(sk); 941 offset = pfrag->offset; 942 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 943 if (!dfrag_collapsed) { 944 dfrag = mptcp_carve_data_frag(msk, pfrag, offset); 945 offset = dfrag->offset; 946 frag_truesize = dfrag->overhead; 947 } 948 psize = min_t(size_t, pfrag->size - offset, avail_size); 949 950 /* Copy to page */ 951 pr_debug("left=%zu", msg_data_left(msg)); 952 psize = copy_page_from_iter(pfrag->page, offset, 953 min_t(size_t, msg_data_left(msg), 954 psize), 955 &msg->msg_iter); 956 pr_debug("left=%zu", msg_data_left(msg)); 957 if (!psize) 958 return -EINVAL; 959 960 if (!sk_wmem_schedule(sk, psize + dfrag->overhead)) { 961 iov_iter_revert(&msg->msg_iter, psize); 962 return -ENOMEM; 963 } 964 } else { 965 offset = dfrag->offset; 966 psize = min_t(size_t, dfrag->data_len, avail_size); 967 } 968 969 /* tell the TCP stack to delay the push so that we can safely 970 * access the skb after the sendpages call 971 */ 972 ret = do_tcp_sendpages(ssk, page, offset, psize, 973 msg->msg_flags | MSG_SENDPAGE_NOTLAST | MSG_DONTWAIT); 974 if (ret <= 0) { 975 if (!retransmission) 976 iov_iter_revert(&msg->msg_iter, psize); 977 return ret; 978 } 979 980 frag_truesize += ret; 981 if (!retransmission) { 982 if (unlikely(ret < psize)) 983 iov_iter_revert(&msg->msg_iter, psize - ret); 984 985 /* send successful, keep track of sent data for mptcp-level 986 * retransmission 987 */ 988 dfrag->data_len += ret; 989 if (!dfrag_collapsed) { 990 get_page(dfrag->page); 991 list_add_tail(&dfrag->list, &msk->rtx_queue); 992 sk_wmem_queued_add(sk, frag_truesize); 993 } else { 994 sk_wmem_queued_add(sk, ret); 995 } 996 997 /* charge data on mptcp rtx queue to the master socket 998 * Note: we charge such data both to sk and ssk 999 */ 1000 sk->sk_forward_alloc -= frag_truesize; 1001 } 1002 1003 /* if the tail skb extension is still the cached one, collapsing 1004 * really happened. Note: we can't check for 'same skb' as the sk_buff 1005 * hdr on tail can be transmitted, freed and re-allocated by the 1006 * do_tcp_sendpages() call 1007 */ 1008 tail = tcp_write_queue_tail(ssk); 1009 if (mpext && tail && mpext == skb_ext_find(tail, SKB_EXT_MPTCP)) { 1010 WARN_ON_ONCE(!can_collapse); 1011 mpext->data_len += ret; 1012 goto out; 1013 } 1014 1015 skb = tcp_write_queue_tail(ssk); 1016 mpext = __skb_ext_set(skb, SKB_EXT_MPTCP, msk->cached_ext); 1017 msk->cached_ext = NULL; 1018 1019 memset(mpext, 0, sizeof(*mpext)); 1020 mpext->data_seq = *write_seq; 1021 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1022 mpext->data_len = ret; 1023 mpext->use_map = 1; 1024 mpext->dsn64 = 1; 1025 1026 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1027 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1028 mpext->dsn64); 1029 1030 out: 1031 if (!retransmission) 1032 pfrag->offset += frag_truesize; 1033 WRITE_ONCE(*write_seq, *write_seq + ret); 1034 mptcp_subflow_ctx(ssk)->rel_write_seq += ret; 1035 1036 return ret; 1037 } 1038 1039 static void mptcp_nospace(struct mptcp_sock *msk) 1040 { 1041 struct mptcp_subflow_context *subflow; 1042 1043 clear_bit(MPTCP_SEND_SPACE, &msk->flags); 1044 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 1045 1046 mptcp_for_each_subflow(msk, subflow) { 1047 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1048 struct socket *sock = READ_ONCE(ssk->sk_socket); 1049 1050 /* enables ssk->write_space() callbacks */ 1051 if (sock) 1052 set_bit(SOCK_NOSPACE, &sock->flags); 1053 } 1054 } 1055 1056 static bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1057 { 1058 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1059 1060 /* can't send if JOIN hasn't completed yet (i.e. is usable for mptcp) */ 1061 if (subflow->request_join && !subflow->fully_established) 1062 return false; 1063 1064 /* only send if our side has not closed yet */ 1065 return ((1 << ssk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)); 1066 } 1067 1068 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1069 sizeof(struct tcphdr) - \ 1070 MAX_TCP_OPTION_SPACE - \ 1071 sizeof(struct ipv6hdr) - \ 1072 sizeof(struct frag_hdr)) 1073 1074 struct subflow_send_info { 1075 struct sock *ssk; 1076 u64 ratio; 1077 }; 1078 1079 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk, 1080 u32 *sndbuf) 1081 { 1082 struct subflow_send_info send_info[2]; 1083 struct mptcp_subflow_context *subflow; 1084 int i, nr_active = 0; 1085 struct sock *ssk; 1086 u64 ratio; 1087 u32 pace; 1088 1089 sock_owned_by_me((struct sock *)msk); 1090 1091 *sndbuf = 0; 1092 if (!mptcp_ext_cache_refill(msk)) 1093 return NULL; 1094 1095 if (__mptcp_check_fallback(msk)) { 1096 if (!msk->first) 1097 return NULL; 1098 *sndbuf = msk->first->sk_sndbuf; 1099 return sk_stream_memory_free(msk->first) ? msk->first : NULL; 1100 } 1101 1102 /* re-use last subflow, if the burst allow that */ 1103 if (msk->last_snd && msk->snd_burst > 0 && 1104 sk_stream_memory_free(msk->last_snd) && 1105 mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) { 1106 mptcp_for_each_subflow(msk, subflow) { 1107 ssk = mptcp_subflow_tcp_sock(subflow); 1108 *sndbuf = max(tcp_sk(ssk)->snd_wnd, *sndbuf); 1109 } 1110 return msk->last_snd; 1111 } 1112 1113 /* pick the subflow with the lower wmem/wspace ratio */ 1114 for (i = 0; i < 2; ++i) { 1115 send_info[i].ssk = NULL; 1116 send_info[i].ratio = -1; 1117 } 1118 mptcp_for_each_subflow(msk, subflow) { 1119 ssk = mptcp_subflow_tcp_sock(subflow); 1120 if (!mptcp_subflow_active(subflow)) 1121 continue; 1122 1123 nr_active += !subflow->backup; 1124 *sndbuf = max(tcp_sk(ssk)->snd_wnd, *sndbuf); 1125 if (!sk_stream_memory_free(subflow->tcp_sock)) 1126 continue; 1127 1128 pace = READ_ONCE(ssk->sk_pacing_rate); 1129 if (!pace) 1130 continue; 1131 1132 ratio = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, 1133 pace); 1134 if (ratio < send_info[subflow->backup].ratio) { 1135 send_info[subflow->backup].ssk = ssk; 1136 send_info[subflow->backup].ratio = ratio; 1137 } 1138 } 1139 1140 pr_debug("msk=%p nr_active=%d ssk=%p:%lld backup=%p:%lld", 1141 msk, nr_active, send_info[0].ssk, send_info[0].ratio, 1142 send_info[1].ssk, send_info[1].ratio); 1143 1144 /* pick the best backup if no other subflow is active */ 1145 if (!nr_active) 1146 send_info[0].ssk = send_info[1].ssk; 1147 1148 if (send_info[0].ssk) { 1149 msk->last_snd = send_info[0].ssk; 1150 msk->snd_burst = min_t(int, MPTCP_SEND_BURST_SIZE, 1151 sk_stream_wspace(msk->last_snd)); 1152 return msk->last_snd; 1153 } 1154 return NULL; 1155 } 1156 1157 static void ssk_check_wmem(struct mptcp_sock *msk) 1158 { 1159 if (unlikely(!mptcp_is_writeable(msk))) 1160 mptcp_nospace(msk); 1161 } 1162 1163 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1164 { 1165 int mss_now = 0, size_goal = 0, ret = 0; 1166 struct mptcp_sock *msk = mptcp_sk(sk); 1167 struct page_frag *pfrag; 1168 size_t copied = 0; 1169 struct sock *ssk; 1170 u32 sndbuf; 1171 bool tx_ok; 1172 long timeo; 1173 1174 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) 1175 return -EOPNOTSUPP; 1176 1177 lock_sock(sk); 1178 1179 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1180 1181 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1182 ret = sk_stream_wait_connect(sk, &timeo); 1183 if (ret) 1184 goto out; 1185 } 1186 1187 pfrag = sk_page_frag(sk); 1188 restart: 1189 mptcp_clean_una(sk); 1190 1191 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) { 1192 ret = -EPIPE; 1193 goto out; 1194 } 1195 1196 __mptcp_flush_join_list(msk); 1197 ssk = mptcp_subflow_get_send(msk, &sndbuf); 1198 while (!sk_stream_memory_free(sk) || 1199 !ssk || 1200 !mptcp_page_frag_refill(ssk, pfrag)) { 1201 if (ssk) { 1202 /* make sure retransmit timer is 1203 * running before we wait for memory. 1204 * 1205 * The retransmit timer might be needed 1206 * to make the peer send an up-to-date 1207 * MPTCP Ack. 1208 */ 1209 mptcp_set_timeout(sk, ssk); 1210 if (!mptcp_timer_pending(sk)) 1211 mptcp_reset_timer(sk); 1212 } 1213 1214 mptcp_nospace(msk); 1215 ret = sk_stream_wait_memory(sk, &timeo); 1216 if (ret) 1217 goto out; 1218 1219 mptcp_clean_una(sk); 1220 1221 ssk = mptcp_subflow_get_send(msk, &sndbuf); 1222 if (list_empty(&msk->conn_list)) { 1223 ret = -ENOTCONN; 1224 goto out; 1225 } 1226 } 1227 1228 /* do auto tuning */ 1229 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK) && 1230 sndbuf > READ_ONCE(sk->sk_sndbuf)) 1231 WRITE_ONCE(sk->sk_sndbuf, sndbuf); 1232 1233 pr_debug("conn_list->subflow=%p", ssk); 1234 1235 lock_sock(ssk); 1236 tx_ok = msg_data_left(msg); 1237 while (tx_ok) { 1238 ret = mptcp_sendmsg_frag(sk, ssk, msg, NULL, &timeo, &mss_now, 1239 &size_goal); 1240 if (ret < 0) { 1241 if (ret == -EAGAIN && timeo > 0) { 1242 mptcp_set_timeout(sk, ssk); 1243 release_sock(ssk); 1244 goto restart; 1245 } 1246 break; 1247 } 1248 1249 /* burst can be negative, we will try move to the next subflow 1250 * at selection time, if possible. 1251 */ 1252 msk->snd_burst -= ret; 1253 copied += ret; 1254 1255 tx_ok = msg_data_left(msg); 1256 if (!tx_ok) 1257 break; 1258 1259 if (!sk_stream_memory_free(ssk) || 1260 !mptcp_page_frag_refill(ssk, pfrag) || 1261 !mptcp_ext_cache_refill(msk)) { 1262 tcp_push(ssk, msg->msg_flags, mss_now, 1263 tcp_sk(ssk)->nonagle, size_goal); 1264 mptcp_set_timeout(sk, ssk); 1265 release_sock(ssk); 1266 goto restart; 1267 } 1268 1269 /* memory is charged to mptcp level socket as well, i.e. 1270 * if msg is very large, mptcp socket may run out of buffer 1271 * space. mptcp_clean_una() will release data that has 1272 * been acked at mptcp level in the mean time, so there is 1273 * a good chance we can continue sending data right away. 1274 * 1275 * Normally, when the tcp subflow can accept more data, then 1276 * so can the MPTCP socket. However, we need to cope with 1277 * peers that might lag behind in their MPTCP-level 1278 * acknowledgements, i.e. data might have been acked at 1279 * tcp level only. So, we must also check the MPTCP socket 1280 * limits before we send more data. 1281 */ 1282 if (unlikely(!sk_stream_memory_free(sk))) { 1283 tcp_push(ssk, msg->msg_flags, mss_now, 1284 tcp_sk(ssk)->nonagle, size_goal); 1285 mptcp_clean_una(sk); 1286 if (!sk_stream_memory_free(sk)) { 1287 /* can't send more for now, need to wait for 1288 * MPTCP-level ACKs from peer. 1289 * 1290 * Wakeup will happen via mptcp_clean_una(). 1291 */ 1292 mptcp_set_timeout(sk, ssk); 1293 release_sock(ssk); 1294 goto restart; 1295 } 1296 } 1297 } 1298 1299 mptcp_set_timeout(sk, ssk); 1300 if (copied) { 1301 tcp_push(ssk, msg->msg_flags, mss_now, tcp_sk(ssk)->nonagle, 1302 size_goal); 1303 1304 /* start the timer, if it's not pending */ 1305 if (!mptcp_timer_pending(sk)) 1306 mptcp_reset_timer(sk); 1307 } 1308 1309 release_sock(ssk); 1310 out: 1311 ssk_check_wmem(msk); 1312 release_sock(sk); 1313 return copied ? : ret; 1314 } 1315 1316 static void mptcp_wait_data(struct sock *sk, long *timeo) 1317 { 1318 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1319 struct mptcp_sock *msk = mptcp_sk(sk); 1320 1321 add_wait_queue(sk_sleep(sk), &wait); 1322 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1323 1324 sk_wait_event(sk, timeo, 1325 test_and_clear_bit(MPTCP_DATA_READY, &msk->flags), &wait); 1326 1327 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1328 remove_wait_queue(sk_sleep(sk), &wait); 1329 } 1330 1331 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1332 struct msghdr *msg, 1333 size_t len) 1334 { 1335 struct sock *sk = (struct sock *)msk; 1336 struct sk_buff *skb; 1337 int copied = 0; 1338 1339 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1340 u32 offset = MPTCP_SKB_CB(skb)->offset; 1341 u32 data_len = skb->len - offset; 1342 u32 count = min_t(size_t, len - copied, data_len); 1343 int err; 1344 1345 err = skb_copy_datagram_msg(skb, offset, msg, count); 1346 if (unlikely(err < 0)) { 1347 if (!copied) 1348 return err; 1349 break; 1350 } 1351 1352 copied += count; 1353 1354 if (count < data_len) { 1355 MPTCP_SKB_CB(skb)->offset += count; 1356 break; 1357 } 1358 1359 __skb_unlink(skb, &sk->sk_receive_queue); 1360 __kfree_skb(skb); 1361 1362 if (copied >= len) 1363 break; 1364 } 1365 1366 return copied; 1367 } 1368 1369 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1370 * 1371 * Only difference: Use highest rtt estimate of the subflows in use. 1372 */ 1373 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1374 { 1375 struct mptcp_subflow_context *subflow; 1376 struct sock *sk = (struct sock *)msk; 1377 u32 time, advmss = 1; 1378 u64 rtt_us, mstamp; 1379 1380 sock_owned_by_me(sk); 1381 1382 if (copied <= 0) 1383 return; 1384 1385 msk->rcvq_space.copied += copied; 1386 1387 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1388 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1389 1390 rtt_us = msk->rcvq_space.rtt_us; 1391 if (rtt_us && time < (rtt_us >> 3)) 1392 return; 1393 1394 rtt_us = 0; 1395 mptcp_for_each_subflow(msk, subflow) { 1396 const struct tcp_sock *tp; 1397 u64 sf_rtt_us; 1398 u32 sf_advmss; 1399 1400 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1401 1402 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1403 sf_advmss = READ_ONCE(tp->advmss); 1404 1405 rtt_us = max(sf_rtt_us, rtt_us); 1406 advmss = max(sf_advmss, advmss); 1407 } 1408 1409 msk->rcvq_space.rtt_us = rtt_us; 1410 if (time < (rtt_us >> 3) || rtt_us == 0) 1411 return; 1412 1413 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1414 goto new_measure; 1415 1416 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 1417 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1418 int rcvmem, rcvbuf; 1419 u64 rcvwin, grow; 1420 1421 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1422 1423 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1424 1425 do_div(grow, msk->rcvq_space.space); 1426 rcvwin += (grow << 1); 1427 1428 rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER); 1429 while (tcp_win_from_space(sk, rcvmem) < advmss) 1430 rcvmem += 128; 1431 1432 do_div(rcvwin, advmss); 1433 rcvbuf = min_t(u64, rcvwin * rcvmem, 1434 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 1435 1436 if (rcvbuf > sk->sk_rcvbuf) { 1437 u32 window_clamp; 1438 1439 window_clamp = tcp_win_from_space(sk, rcvbuf); 1440 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 1441 1442 /* Make subflows follow along. If we do not do this, we 1443 * get drops at subflow level if skbs can't be moved to 1444 * the mptcp rx queue fast enough (announced rcv_win can 1445 * exceed ssk->sk_rcvbuf). 1446 */ 1447 mptcp_for_each_subflow(msk, subflow) { 1448 struct sock *ssk; 1449 bool slow; 1450 1451 ssk = mptcp_subflow_tcp_sock(subflow); 1452 slow = lock_sock_fast(ssk); 1453 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 1454 tcp_sk(ssk)->window_clamp = window_clamp; 1455 tcp_cleanup_rbuf(ssk, 1); 1456 unlock_sock_fast(ssk, slow); 1457 } 1458 } 1459 } 1460 1461 msk->rcvq_space.space = msk->rcvq_space.copied; 1462 new_measure: 1463 msk->rcvq_space.copied = 0; 1464 msk->rcvq_space.time = mstamp; 1465 } 1466 1467 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 1468 { 1469 unsigned int moved = 0; 1470 bool done; 1471 1472 /* avoid looping forever below on racing close */ 1473 if (((struct sock *)msk)->sk_state == TCP_CLOSE) 1474 return false; 1475 1476 __mptcp_flush_join_list(msk); 1477 do { 1478 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 1479 1480 if (!ssk) 1481 break; 1482 1483 lock_sock(ssk); 1484 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 1485 release_sock(ssk); 1486 } while (!done); 1487 1488 if (mptcp_ofo_queue(msk) || moved > 0) { 1489 mptcp_check_data_fin((struct sock *)msk); 1490 return true; 1491 } 1492 return false; 1493 } 1494 1495 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 1496 int nonblock, int flags, int *addr_len) 1497 { 1498 struct mptcp_sock *msk = mptcp_sk(sk); 1499 int copied = 0; 1500 int target; 1501 long timeo; 1502 1503 if (msg->msg_flags & ~(MSG_WAITALL | MSG_DONTWAIT)) 1504 return -EOPNOTSUPP; 1505 1506 lock_sock(sk); 1507 timeo = sock_rcvtimeo(sk, nonblock); 1508 1509 len = min_t(size_t, len, INT_MAX); 1510 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1511 __mptcp_flush_join_list(msk); 1512 1513 while (len > (size_t)copied) { 1514 int bytes_read; 1515 1516 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied); 1517 if (unlikely(bytes_read < 0)) { 1518 if (!copied) 1519 copied = bytes_read; 1520 goto out_err; 1521 } 1522 1523 copied += bytes_read; 1524 1525 if (skb_queue_empty(&sk->sk_receive_queue) && 1526 __mptcp_move_skbs(msk)) 1527 continue; 1528 1529 /* only the master socket status is relevant here. The exit 1530 * conditions mirror closely tcp_recvmsg() 1531 */ 1532 if (copied >= target) 1533 break; 1534 1535 if (copied) { 1536 if (sk->sk_err || 1537 sk->sk_state == TCP_CLOSE || 1538 (sk->sk_shutdown & RCV_SHUTDOWN) || 1539 !timeo || 1540 signal_pending(current)) 1541 break; 1542 } else { 1543 if (sk->sk_err) { 1544 copied = sock_error(sk); 1545 break; 1546 } 1547 1548 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 1549 mptcp_check_for_eof(msk); 1550 1551 if (sk->sk_shutdown & RCV_SHUTDOWN) 1552 break; 1553 1554 if (sk->sk_state == TCP_CLOSE) { 1555 copied = -ENOTCONN; 1556 break; 1557 } 1558 1559 if (!timeo) { 1560 copied = -EAGAIN; 1561 break; 1562 } 1563 1564 if (signal_pending(current)) { 1565 copied = sock_intr_errno(timeo); 1566 break; 1567 } 1568 } 1569 1570 pr_debug("block timeout %ld", timeo); 1571 mptcp_wait_data(sk, &timeo); 1572 } 1573 1574 if (skb_queue_empty(&sk->sk_receive_queue)) { 1575 /* entire backlog drained, clear DATA_READY. */ 1576 clear_bit(MPTCP_DATA_READY, &msk->flags); 1577 1578 /* .. race-breaker: ssk might have gotten new data 1579 * after last __mptcp_move_skbs() returned false. 1580 */ 1581 if (unlikely(__mptcp_move_skbs(msk))) 1582 set_bit(MPTCP_DATA_READY, &msk->flags); 1583 } else if (unlikely(!test_bit(MPTCP_DATA_READY, &msk->flags))) { 1584 /* data to read but mptcp_wait_data() cleared DATA_READY */ 1585 set_bit(MPTCP_DATA_READY, &msk->flags); 1586 } 1587 out_err: 1588 pr_debug("msk=%p data_ready=%d rx queue empty=%d copied=%d", 1589 msk, test_bit(MPTCP_DATA_READY, &msk->flags), 1590 skb_queue_empty(&sk->sk_receive_queue), copied); 1591 mptcp_rcv_space_adjust(msk, copied); 1592 1593 release_sock(sk); 1594 return copied; 1595 } 1596 1597 static void mptcp_retransmit_handler(struct sock *sk) 1598 { 1599 struct mptcp_sock *msk = mptcp_sk(sk); 1600 1601 if (atomic64_read(&msk->snd_una) == READ_ONCE(msk->write_seq)) { 1602 mptcp_stop_timer(sk); 1603 } else { 1604 set_bit(MPTCP_WORK_RTX, &msk->flags); 1605 if (schedule_work(&msk->work)) 1606 sock_hold(sk); 1607 } 1608 } 1609 1610 static void mptcp_retransmit_timer(struct timer_list *t) 1611 { 1612 struct inet_connection_sock *icsk = from_timer(icsk, t, 1613 icsk_retransmit_timer); 1614 struct sock *sk = &icsk->icsk_inet.sk; 1615 1616 bh_lock_sock(sk); 1617 if (!sock_owned_by_user(sk)) { 1618 mptcp_retransmit_handler(sk); 1619 } else { 1620 /* delegate our work to tcp_release_cb() */ 1621 if (!test_and_set_bit(TCP_WRITE_TIMER_DEFERRED, 1622 &sk->sk_tsq_flags)) 1623 sock_hold(sk); 1624 } 1625 bh_unlock_sock(sk); 1626 sock_put(sk); 1627 } 1628 1629 /* Find an idle subflow. Return NULL if there is unacked data at tcp 1630 * level. 1631 * 1632 * A backup subflow is returned only if that is the only kind available. 1633 */ 1634 static struct sock *mptcp_subflow_get_retrans(const struct mptcp_sock *msk) 1635 { 1636 struct mptcp_subflow_context *subflow; 1637 struct sock *backup = NULL; 1638 1639 sock_owned_by_me((const struct sock *)msk); 1640 1641 if (__mptcp_check_fallback(msk)) 1642 return msk->first; 1643 1644 mptcp_for_each_subflow(msk, subflow) { 1645 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1646 1647 if (!mptcp_subflow_active(subflow)) 1648 continue; 1649 1650 /* still data outstanding at TCP level? Don't retransmit. */ 1651 if (!tcp_write_queue_empty(ssk)) 1652 return NULL; 1653 1654 if (subflow->backup) { 1655 if (!backup) 1656 backup = ssk; 1657 continue; 1658 } 1659 1660 return ssk; 1661 } 1662 1663 return backup; 1664 } 1665 1666 /* subflow sockets can be either outgoing (connect) or incoming 1667 * (accept). 1668 * 1669 * Outgoing subflows use in-kernel sockets. 1670 * Incoming subflows do not have their own 'struct socket' allocated, 1671 * so we need to use tcp_close() after detaching them from the mptcp 1672 * parent socket. 1673 */ 1674 void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 1675 struct mptcp_subflow_context *subflow, 1676 long timeout) 1677 { 1678 struct socket *sock = READ_ONCE(ssk->sk_socket); 1679 1680 list_del(&subflow->node); 1681 1682 if (sock && sock != sk->sk_socket) { 1683 /* outgoing subflow */ 1684 sock_release(sock); 1685 } else { 1686 /* incoming subflow */ 1687 tcp_close(ssk, timeout); 1688 } 1689 } 1690 1691 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 1692 { 1693 return 0; 1694 } 1695 1696 static void pm_work(struct mptcp_sock *msk) 1697 { 1698 struct mptcp_pm_data *pm = &msk->pm; 1699 1700 spin_lock_bh(&msk->pm.lock); 1701 1702 pr_debug("msk=%p status=%x", msk, pm->status); 1703 if (pm->status & BIT(MPTCP_PM_ADD_ADDR_RECEIVED)) { 1704 pm->status &= ~BIT(MPTCP_PM_ADD_ADDR_RECEIVED); 1705 mptcp_pm_nl_add_addr_received(msk); 1706 } 1707 if (pm->status & BIT(MPTCP_PM_RM_ADDR_RECEIVED)) { 1708 pm->status &= ~BIT(MPTCP_PM_RM_ADDR_RECEIVED); 1709 mptcp_pm_nl_rm_addr_received(msk); 1710 } 1711 if (pm->status & BIT(MPTCP_PM_ESTABLISHED)) { 1712 pm->status &= ~BIT(MPTCP_PM_ESTABLISHED); 1713 mptcp_pm_nl_fully_established(msk); 1714 } 1715 if (pm->status & BIT(MPTCP_PM_SUBFLOW_ESTABLISHED)) { 1716 pm->status &= ~BIT(MPTCP_PM_SUBFLOW_ESTABLISHED); 1717 mptcp_pm_nl_subflow_established(msk); 1718 } 1719 1720 spin_unlock_bh(&msk->pm.lock); 1721 } 1722 1723 static void __mptcp_close_subflow(struct mptcp_sock *msk) 1724 { 1725 struct mptcp_subflow_context *subflow, *tmp; 1726 1727 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { 1728 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1729 1730 if (inet_sk_state_load(ssk) != TCP_CLOSE) 1731 continue; 1732 1733 __mptcp_close_ssk((struct sock *)msk, ssk, subflow, 0); 1734 } 1735 } 1736 1737 static void mptcp_worker(struct work_struct *work) 1738 { 1739 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 1740 struct sock *ssk, *sk = &msk->sk.icsk_inet.sk; 1741 int orig_len, orig_offset, mss_now = 0, size_goal = 0; 1742 struct mptcp_data_frag *dfrag; 1743 u64 orig_write_seq; 1744 size_t copied = 0; 1745 struct msghdr msg = { 1746 .msg_flags = MSG_DONTWAIT, 1747 }; 1748 long timeo = 0; 1749 1750 lock_sock(sk); 1751 mptcp_clean_una(sk); 1752 mptcp_check_data_fin_ack(sk); 1753 __mptcp_flush_join_list(msk); 1754 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 1755 __mptcp_close_subflow(msk); 1756 1757 __mptcp_move_skbs(msk); 1758 1759 if (msk->pm.status) 1760 pm_work(msk); 1761 1762 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 1763 mptcp_check_for_eof(msk); 1764 1765 mptcp_check_data_fin(sk); 1766 1767 if (!test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 1768 goto unlock; 1769 1770 dfrag = mptcp_rtx_head(sk); 1771 if (!dfrag) 1772 goto unlock; 1773 1774 if (!mptcp_ext_cache_refill(msk)) 1775 goto reset_unlock; 1776 1777 ssk = mptcp_subflow_get_retrans(msk); 1778 if (!ssk) 1779 goto reset_unlock; 1780 1781 lock_sock(ssk); 1782 1783 orig_len = dfrag->data_len; 1784 orig_offset = dfrag->offset; 1785 orig_write_seq = dfrag->data_seq; 1786 while (dfrag->data_len > 0) { 1787 int ret = mptcp_sendmsg_frag(sk, ssk, &msg, dfrag, &timeo, 1788 &mss_now, &size_goal); 1789 if (ret < 0) 1790 break; 1791 1792 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 1793 copied += ret; 1794 dfrag->data_len -= ret; 1795 dfrag->offset += ret; 1796 1797 if (!mptcp_ext_cache_refill(msk)) 1798 break; 1799 } 1800 if (copied) 1801 tcp_push(ssk, msg.msg_flags, mss_now, tcp_sk(ssk)->nonagle, 1802 size_goal); 1803 1804 dfrag->data_seq = orig_write_seq; 1805 dfrag->offset = orig_offset; 1806 dfrag->data_len = orig_len; 1807 1808 mptcp_set_timeout(sk, ssk); 1809 release_sock(ssk); 1810 1811 reset_unlock: 1812 if (!mptcp_timer_pending(sk)) 1813 mptcp_reset_timer(sk); 1814 1815 unlock: 1816 release_sock(sk); 1817 sock_put(sk); 1818 } 1819 1820 static int __mptcp_init_sock(struct sock *sk) 1821 { 1822 struct mptcp_sock *msk = mptcp_sk(sk); 1823 1824 spin_lock_init(&msk->join_list_lock); 1825 1826 INIT_LIST_HEAD(&msk->conn_list); 1827 INIT_LIST_HEAD(&msk->join_list); 1828 INIT_LIST_HEAD(&msk->rtx_queue); 1829 __set_bit(MPTCP_SEND_SPACE, &msk->flags); 1830 INIT_WORK(&msk->work, mptcp_worker); 1831 msk->out_of_order_queue = RB_ROOT; 1832 1833 msk->first = NULL; 1834 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 1835 1836 mptcp_pm_data_init(msk); 1837 1838 /* re-use the csk retrans timer for MPTCP-level retrans */ 1839 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 1840 1841 return 0; 1842 } 1843 1844 static int mptcp_init_sock(struct sock *sk) 1845 { 1846 struct net *net = sock_net(sk); 1847 int ret; 1848 1849 ret = __mptcp_init_sock(sk); 1850 if (ret) 1851 return ret; 1852 1853 if (!mptcp_is_enabled(net)) 1854 return -ENOPROTOOPT; 1855 1856 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 1857 return -ENOMEM; 1858 1859 ret = __mptcp_socket_create(mptcp_sk(sk)); 1860 if (ret) 1861 return ret; 1862 1863 sk_sockets_allocated_inc(sk); 1864 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 1865 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 1866 1867 return 0; 1868 } 1869 1870 static void __mptcp_clear_xmit(struct sock *sk) 1871 { 1872 struct mptcp_sock *msk = mptcp_sk(sk); 1873 struct mptcp_data_frag *dtmp, *dfrag; 1874 1875 sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer); 1876 1877 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 1878 dfrag_clear(sk, dfrag); 1879 } 1880 1881 static void mptcp_cancel_work(struct sock *sk) 1882 { 1883 struct mptcp_sock *msk = mptcp_sk(sk); 1884 1885 if (cancel_work_sync(&msk->work)) 1886 sock_put(sk); 1887 } 1888 1889 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 1890 { 1891 lock_sock(ssk); 1892 1893 switch (ssk->sk_state) { 1894 case TCP_LISTEN: 1895 if (!(how & RCV_SHUTDOWN)) 1896 break; 1897 fallthrough; 1898 case TCP_SYN_SENT: 1899 tcp_disconnect(ssk, O_NONBLOCK); 1900 break; 1901 default: 1902 if (__mptcp_check_fallback(mptcp_sk(sk))) { 1903 pr_debug("Fallback"); 1904 ssk->sk_shutdown |= how; 1905 tcp_shutdown(ssk, how); 1906 } else { 1907 pr_debug("Sending DATA_FIN on subflow %p", ssk); 1908 mptcp_set_timeout(sk, ssk); 1909 tcp_send_ack(ssk); 1910 } 1911 break; 1912 } 1913 1914 release_sock(ssk); 1915 } 1916 1917 static const unsigned char new_state[16] = { 1918 /* current state: new state: action: */ 1919 [0 /* (Invalid) */] = TCP_CLOSE, 1920 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1921 [TCP_SYN_SENT] = TCP_CLOSE, 1922 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1923 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 1924 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 1925 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 1926 [TCP_CLOSE] = TCP_CLOSE, 1927 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 1928 [TCP_LAST_ACK] = TCP_LAST_ACK, 1929 [TCP_LISTEN] = TCP_CLOSE, 1930 [TCP_CLOSING] = TCP_CLOSING, 1931 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 1932 }; 1933 1934 static int mptcp_close_state(struct sock *sk) 1935 { 1936 int next = (int)new_state[sk->sk_state]; 1937 int ns = next & TCP_STATE_MASK; 1938 1939 inet_sk_state_store(sk, ns); 1940 1941 return next & TCP_ACTION_FIN; 1942 } 1943 1944 static void mptcp_close(struct sock *sk, long timeout) 1945 { 1946 struct mptcp_subflow_context *subflow, *tmp; 1947 struct mptcp_sock *msk = mptcp_sk(sk); 1948 LIST_HEAD(conn_list); 1949 1950 lock_sock(sk); 1951 sk->sk_shutdown = SHUTDOWN_MASK; 1952 1953 if (sk->sk_state == TCP_LISTEN) { 1954 inet_sk_state_store(sk, TCP_CLOSE); 1955 goto cleanup; 1956 } else if (sk->sk_state == TCP_CLOSE) { 1957 goto cleanup; 1958 } 1959 1960 if (__mptcp_check_fallback(msk)) { 1961 goto update_state; 1962 } else if (mptcp_close_state(sk)) { 1963 pr_debug("Sending DATA_FIN sk=%p", sk); 1964 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 1965 WRITE_ONCE(msk->snd_data_fin_enable, 1); 1966 1967 mptcp_for_each_subflow(msk, subflow) { 1968 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 1969 1970 mptcp_subflow_shutdown(sk, tcp_sk, SHUTDOWN_MASK); 1971 } 1972 } 1973 1974 sk_stream_wait_close(sk, timeout); 1975 1976 update_state: 1977 inet_sk_state_store(sk, TCP_CLOSE); 1978 1979 cleanup: 1980 /* be sure to always acquire the join list lock, to sync vs 1981 * mptcp_finish_join(). 1982 */ 1983 spin_lock_bh(&msk->join_list_lock); 1984 list_splice_tail_init(&msk->join_list, &msk->conn_list); 1985 spin_unlock_bh(&msk->join_list_lock); 1986 list_splice_init(&msk->conn_list, &conn_list); 1987 1988 __mptcp_clear_xmit(sk); 1989 1990 release_sock(sk); 1991 1992 list_for_each_entry_safe(subflow, tmp, &conn_list, node) { 1993 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1994 __mptcp_close_ssk(sk, ssk, subflow, timeout); 1995 } 1996 1997 mptcp_cancel_work(sk); 1998 1999 __skb_queue_purge(&sk->sk_receive_queue); 2000 2001 sk_common_release(sk); 2002 } 2003 2004 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 2005 { 2006 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2007 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 2008 struct ipv6_pinfo *msk6 = inet6_sk(msk); 2009 2010 msk->sk_v6_daddr = ssk->sk_v6_daddr; 2011 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 2012 2013 if (msk6 && ssk6) { 2014 msk6->saddr = ssk6->saddr; 2015 msk6->flow_label = ssk6->flow_label; 2016 } 2017 #endif 2018 2019 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 2020 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 2021 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 2022 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 2023 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 2024 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 2025 } 2026 2027 static int mptcp_disconnect(struct sock *sk, int flags) 2028 { 2029 /* Should never be called. 2030 * inet_stream_connect() calls ->disconnect, but that 2031 * refers to the subflow socket, not the mptcp one. 2032 */ 2033 WARN_ON_ONCE(1); 2034 return 0; 2035 } 2036 2037 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2038 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 2039 { 2040 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 2041 2042 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 2043 } 2044 #endif 2045 2046 struct sock *mptcp_sk_clone(const struct sock *sk, 2047 const struct mptcp_options_received *mp_opt, 2048 struct request_sock *req) 2049 { 2050 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 2051 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 2052 struct mptcp_sock *msk; 2053 u64 ack_seq; 2054 2055 if (!nsk) 2056 return NULL; 2057 2058 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2059 if (nsk->sk_family == AF_INET6) 2060 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 2061 #endif 2062 2063 __mptcp_init_sock(nsk); 2064 2065 msk = mptcp_sk(nsk); 2066 msk->local_key = subflow_req->local_key; 2067 msk->token = subflow_req->token; 2068 msk->subflow = NULL; 2069 WRITE_ONCE(msk->fully_established, false); 2070 2071 msk->write_seq = subflow_req->idsn + 1; 2072 atomic64_set(&msk->snd_una, msk->write_seq); 2073 if (mp_opt->mp_capable) { 2074 msk->can_ack = true; 2075 msk->remote_key = mp_opt->sndr_key; 2076 mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq); 2077 ack_seq++; 2078 WRITE_ONCE(msk->ack_seq, ack_seq); 2079 } 2080 2081 sock_reset_flag(nsk, SOCK_RCU_FREE); 2082 /* will be fully established after successful MPC subflow creation */ 2083 inet_sk_state_store(nsk, TCP_SYN_RECV); 2084 bh_unlock_sock(nsk); 2085 2086 /* keep a single reference */ 2087 __sock_put(nsk); 2088 return nsk; 2089 } 2090 2091 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 2092 { 2093 const struct tcp_sock *tp = tcp_sk(ssk); 2094 2095 msk->rcvq_space.copied = 0; 2096 msk->rcvq_space.rtt_us = 0; 2097 2098 msk->rcvq_space.time = tp->tcp_mstamp; 2099 2100 /* initial rcv_space offering made to peer */ 2101 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 2102 TCP_INIT_CWND * tp->advmss); 2103 if (msk->rcvq_space.space == 0) 2104 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 2105 } 2106 2107 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err, 2108 bool kern) 2109 { 2110 struct mptcp_sock *msk = mptcp_sk(sk); 2111 struct socket *listener; 2112 struct sock *newsk; 2113 2114 listener = __mptcp_nmpc_socket(msk); 2115 if (WARN_ON_ONCE(!listener)) { 2116 *err = -EINVAL; 2117 return NULL; 2118 } 2119 2120 pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk)); 2121 newsk = inet_csk_accept(listener->sk, flags, err, kern); 2122 if (!newsk) 2123 return NULL; 2124 2125 pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk)); 2126 if (sk_is_mptcp(newsk)) { 2127 struct mptcp_subflow_context *subflow; 2128 struct sock *new_mptcp_sock; 2129 struct sock *ssk = newsk; 2130 2131 subflow = mptcp_subflow_ctx(newsk); 2132 new_mptcp_sock = subflow->conn; 2133 2134 /* is_mptcp should be false if subflow->conn is missing, see 2135 * subflow_syn_recv_sock() 2136 */ 2137 if (WARN_ON_ONCE(!new_mptcp_sock)) { 2138 tcp_sk(newsk)->is_mptcp = 0; 2139 return newsk; 2140 } 2141 2142 /* acquire the 2nd reference for the owning socket */ 2143 sock_hold(new_mptcp_sock); 2144 2145 local_bh_disable(); 2146 bh_lock_sock(new_mptcp_sock); 2147 msk = mptcp_sk(new_mptcp_sock); 2148 msk->first = newsk; 2149 2150 newsk = new_mptcp_sock; 2151 mptcp_copy_inaddrs(newsk, ssk); 2152 list_add(&subflow->node, &msk->conn_list); 2153 2154 mptcp_rcv_space_init(msk, ssk); 2155 bh_unlock_sock(new_mptcp_sock); 2156 2157 __MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 2158 local_bh_enable(); 2159 } else { 2160 MPTCP_INC_STATS(sock_net(sk), 2161 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 2162 } 2163 2164 return newsk; 2165 } 2166 2167 void mptcp_destroy_common(struct mptcp_sock *msk) 2168 { 2169 skb_rbtree_purge(&msk->out_of_order_queue); 2170 mptcp_token_destroy(msk); 2171 mptcp_pm_free_anno_list(msk); 2172 } 2173 2174 static void mptcp_destroy(struct sock *sk) 2175 { 2176 struct mptcp_sock *msk = mptcp_sk(sk); 2177 2178 if (msk->cached_ext) 2179 __skb_ext_put(msk->cached_ext); 2180 2181 mptcp_destroy_common(msk); 2182 sk_sockets_allocated_dec(sk); 2183 } 2184 2185 static int mptcp_setsockopt_sol_socket(struct mptcp_sock *msk, int optname, 2186 sockptr_t optval, unsigned int optlen) 2187 { 2188 struct sock *sk = (struct sock *)msk; 2189 struct socket *ssock; 2190 int ret; 2191 2192 switch (optname) { 2193 case SO_REUSEPORT: 2194 case SO_REUSEADDR: 2195 lock_sock(sk); 2196 ssock = __mptcp_nmpc_socket(msk); 2197 if (!ssock) { 2198 release_sock(sk); 2199 return -EINVAL; 2200 } 2201 2202 ret = sock_setsockopt(ssock, SOL_SOCKET, optname, optval, optlen); 2203 if (ret == 0) { 2204 if (optname == SO_REUSEPORT) 2205 sk->sk_reuseport = ssock->sk->sk_reuseport; 2206 else if (optname == SO_REUSEADDR) 2207 sk->sk_reuse = ssock->sk->sk_reuse; 2208 } 2209 release_sock(sk); 2210 return ret; 2211 } 2212 2213 return sock_setsockopt(sk->sk_socket, SOL_SOCKET, optname, optval, optlen); 2214 } 2215 2216 static int mptcp_setsockopt_v6(struct mptcp_sock *msk, int optname, 2217 sockptr_t optval, unsigned int optlen) 2218 { 2219 struct sock *sk = (struct sock *)msk; 2220 int ret = -EOPNOTSUPP; 2221 struct socket *ssock; 2222 2223 switch (optname) { 2224 case IPV6_V6ONLY: 2225 lock_sock(sk); 2226 ssock = __mptcp_nmpc_socket(msk); 2227 if (!ssock) { 2228 release_sock(sk); 2229 return -EINVAL; 2230 } 2231 2232 ret = tcp_setsockopt(ssock->sk, SOL_IPV6, optname, optval, optlen); 2233 if (ret == 0) 2234 sk->sk_ipv6only = ssock->sk->sk_ipv6only; 2235 2236 release_sock(sk); 2237 break; 2238 } 2239 2240 return ret; 2241 } 2242 2243 static int mptcp_setsockopt(struct sock *sk, int level, int optname, 2244 sockptr_t optval, unsigned int optlen) 2245 { 2246 struct mptcp_sock *msk = mptcp_sk(sk); 2247 struct sock *ssk; 2248 2249 pr_debug("msk=%p", msk); 2250 2251 if (level == SOL_SOCKET) 2252 return mptcp_setsockopt_sol_socket(msk, optname, optval, optlen); 2253 2254 /* @@ the meaning of setsockopt() when the socket is connected and 2255 * there are multiple subflows is not yet defined. It is up to the 2256 * MPTCP-level socket to configure the subflows until the subflow 2257 * is in TCP fallback, when TCP socket options are passed through 2258 * to the one remaining subflow. 2259 */ 2260 lock_sock(sk); 2261 ssk = __mptcp_tcp_fallback(msk); 2262 release_sock(sk); 2263 if (ssk) 2264 return tcp_setsockopt(ssk, level, optname, optval, optlen); 2265 2266 if (level == SOL_IPV6) 2267 return mptcp_setsockopt_v6(msk, optname, optval, optlen); 2268 2269 return -EOPNOTSUPP; 2270 } 2271 2272 static int mptcp_getsockopt(struct sock *sk, int level, int optname, 2273 char __user *optval, int __user *option) 2274 { 2275 struct mptcp_sock *msk = mptcp_sk(sk); 2276 struct sock *ssk; 2277 2278 pr_debug("msk=%p", msk); 2279 2280 /* @@ the meaning of setsockopt() when the socket is connected and 2281 * there are multiple subflows is not yet defined. It is up to the 2282 * MPTCP-level socket to configure the subflows until the subflow 2283 * is in TCP fallback, when socket options are passed through 2284 * to the one remaining subflow. 2285 */ 2286 lock_sock(sk); 2287 ssk = __mptcp_tcp_fallback(msk); 2288 release_sock(sk); 2289 if (ssk) 2290 return tcp_getsockopt(ssk, level, optname, optval, option); 2291 2292 return -EOPNOTSUPP; 2293 } 2294 2295 #define MPTCP_DEFERRED_ALL (TCPF_DELACK_TIMER_DEFERRED | \ 2296 TCPF_WRITE_TIMER_DEFERRED) 2297 2298 /* this is very alike tcp_release_cb() but we must handle differently a 2299 * different set of events 2300 */ 2301 static void mptcp_release_cb(struct sock *sk) 2302 { 2303 unsigned long flags, nflags; 2304 2305 do { 2306 flags = sk->sk_tsq_flags; 2307 if (!(flags & MPTCP_DEFERRED_ALL)) 2308 return; 2309 nflags = flags & ~MPTCP_DEFERRED_ALL; 2310 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 2311 2312 sock_release_ownership(sk); 2313 2314 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 2315 struct mptcp_sock *msk = mptcp_sk(sk); 2316 struct sock *ssk; 2317 2318 ssk = mptcp_subflow_recv_lookup(msk); 2319 if (!ssk || !schedule_work(&msk->work)) 2320 __sock_put(sk); 2321 } 2322 2323 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 2324 mptcp_retransmit_handler(sk); 2325 __sock_put(sk); 2326 } 2327 } 2328 2329 static int mptcp_hash(struct sock *sk) 2330 { 2331 /* should never be called, 2332 * we hash the TCP subflows not the master socket 2333 */ 2334 WARN_ON_ONCE(1); 2335 return 0; 2336 } 2337 2338 static void mptcp_unhash(struct sock *sk) 2339 { 2340 /* called from sk_common_release(), but nothing to do here */ 2341 } 2342 2343 static int mptcp_get_port(struct sock *sk, unsigned short snum) 2344 { 2345 struct mptcp_sock *msk = mptcp_sk(sk); 2346 struct socket *ssock; 2347 2348 ssock = __mptcp_nmpc_socket(msk); 2349 pr_debug("msk=%p, subflow=%p", msk, ssock); 2350 if (WARN_ON_ONCE(!ssock)) 2351 return -EINVAL; 2352 2353 return inet_csk_get_port(ssock->sk, snum); 2354 } 2355 2356 void mptcp_finish_connect(struct sock *ssk) 2357 { 2358 struct mptcp_subflow_context *subflow; 2359 struct mptcp_sock *msk; 2360 struct sock *sk; 2361 u64 ack_seq; 2362 2363 subflow = mptcp_subflow_ctx(ssk); 2364 sk = subflow->conn; 2365 msk = mptcp_sk(sk); 2366 2367 pr_debug("msk=%p, token=%u", sk, subflow->token); 2368 2369 mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq); 2370 ack_seq++; 2371 subflow->map_seq = ack_seq; 2372 subflow->map_subflow_seq = 1; 2373 2374 /* the socket is not connected yet, no msk/subflow ops can access/race 2375 * accessing the field below 2376 */ 2377 WRITE_ONCE(msk->remote_key, subflow->remote_key); 2378 WRITE_ONCE(msk->local_key, subflow->local_key); 2379 WRITE_ONCE(msk->write_seq, subflow->idsn + 1); 2380 WRITE_ONCE(msk->ack_seq, ack_seq); 2381 WRITE_ONCE(msk->can_ack, 1); 2382 atomic64_set(&msk->snd_una, msk->write_seq); 2383 2384 mptcp_pm_new_connection(msk, 0); 2385 2386 mptcp_rcv_space_init(msk, ssk); 2387 } 2388 2389 static void mptcp_sock_graft(struct sock *sk, struct socket *parent) 2390 { 2391 write_lock_bh(&sk->sk_callback_lock); 2392 rcu_assign_pointer(sk->sk_wq, &parent->wq); 2393 sk_set_socket(sk, parent); 2394 sk->sk_uid = SOCK_INODE(parent)->i_uid; 2395 write_unlock_bh(&sk->sk_callback_lock); 2396 } 2397 2398 bool mptcp_finish_join(struct sock *sk) 2399 { 2400 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); 2401 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 2402 struct sock *parent = (void *)msk; 2403 struct socket *parent_sock; 2404 bool ret; 2405 2406 pr_debug("msk=%p, subflow=%p", msk, subflow); 2407 2408 /* mptcp socket already closing? */ 2409 if (!mptcp_is_fully_established(parent)) 2410 return false; 2411 2412 if (!msk->pm.server_side) 2413 return true; 2414 2415 if (!mptcp_pm_allow_new_subflow(msk)) 2416 return false; 2417 2418 /* active connections are already on conn_list, and we can't acquire 2419 * msk lock here. 2420 * use the join list lock as synchronization point and double-check 2421 * msk status to avoid racing with mptcp_close() 2422 */ 2423 spin_lock_bh(&msk->join_list_lock); 2424 ret = inet_sk_state_load(parent) == TCP_ESTABLISHED; 2425 if (ret && !WARN_ON_ONCE(!list_empty(&subflow->node))) 2426 list_add_tail(&subflow->node, &msk->join_list); 2427 spin_unlock_bh(&msk->join_list_lock); 2428 if (!ret) 2429 return false; 2430 2431 /* attach to msk socket only after we are sure he will deal with us 2432 * at close time 2433 */ 2434 parent_sock = READ_ONCE(parent->sk_socket); 2435 if (parent_sock && !sk->sk_socket) 2436 mptcp_sock_graft(sk, parent_sock); 2437 subflow->map_seq = READ_ONCE(msk->ack_seq); 2438 return true; 2439 } 2440 2441 static bool mptcp_memory_free(const struct sock *sk, int wake) 2442 { 2443 struct mptcp_sock *msk = mptcp_sk(sk); 2444 2445 return wake ? test_bit(MPTCP_SEND_SPACE, &msk->flags) : true; 2446 } 2447 2448 static struct proto mptcp_prot = { 2449 .name = "MPTCP", 2450 .owner = THIS_MODULE, 2451 .init = mptcp_init_sock, 2452 .disconnect = mptcp_disconnect, 2453 .close = mptcp_close, 2454 .accept = mptcp_accept, 2455 .setsockopt = mptcp_setsockopt, 2456 .getsockopt = mptcp_getsockopt, 2457 .shutdown = tcp_shutdown, 2458 .destroy = mptcp_destroy, 2459 .sendmsg = mptcp_sendmsg, 2460 .recvmsg = mptcp_recvmsg, 2461 .release_cb = mptcp_release_cb, 2462 .hash = mptcp_hash, 2463 .unhash = mptcp_unhash, 2464 .get_port = mptcp_get_port, 2465 .sockets_allocated = &mptcp_sockets_allocated, 2466 .memory_allocated = &tcp_memory_allocated, 2467 .memory_pressure = &tcp_memory_pressure, 2468 .stream_memory_free = mptcp_memory_free, 2469 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 2470 .sysctl_mem = sysctl_tcp_mem, 2471 .obj_size = sizeof(struct mptcp_sock), 2472 .slab_flags = SLAB_TYPESAFE_BY_RCU, 2473 .no_autobind = true, 2474 }; 2475 2476 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 2477 { 2478 struct mptcp_sock *msk = mptcp_sk(sock->sk); 2479 struct socket *ssock; 2480 int err; 2481 2482 lock_sock(sock->sk); 2483 ssock = __mptcp_nmpc_socket(msk); 2484 if (!ssock) { 2485 err = -EINVAL; 2486 goto unlock; 2487 } 2488 2489 err = ssock->ops->bind(ssock, uaddr, addr_len); 2490 if (!err) 2491 mptcp_copy_inaddrs(sock->sk, ssock->sk); 2492 2493 unlock: 2494 release_sock(sock->sk); 2495 return err; 2496 } 2497 2498 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 2499 struct mptcp_subflow_context *subflow) 2500 { 2501 subflow->request_mptcp = 0; 2502 __mptcp_do_fallback(msk); 2503 } 2504 2505 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr, 2506 int addr_len, int flags) 2507 { 2508 struct mptcp_sock *msk = mptcp_sk(sock->sk); 2509 struct mptcp_subflow_context *subflow; 2510 struct socket *ssock; 2511 int err; 2512 2513 lock_sock(sock->sk); 2514 if (sock->state != SS_UNCONNECTED && msk->subflow) { 2515 /* pending connection or invalid state, let existing subflow 2516 * cope with that 2517 */ 2518 ssock = msk->subflow; 2519 goto do_connect; 2520 } 2521 2522 ssock = __mptcp_nmpc_socket(msk); 2523 if (!ssock) { 2524 err = -EINVAL; 2525 goto unlock; 2526 } 2527 2528 mptcp_token_destroy(msk); 2529 inet_sk_state_store(sock->sk, TCP_SYN_SENT); 2530 subflow = mptcp_subflow_ctx(ssock->sk); 2531 #ifdef CONFIG_TCP_MD5SIG 2532 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 2533 * TCP option space. 2534 */ 2535 if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info)) 2536 mptcp_subflow_early_fallback(msk, subflow); 2537 #endif 2538 if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) 2539 mptcp_subflow_early_fallback(msk, subflow); 2540 2541 do_connect: 2542 err = ssock->ops->connect(ssock, uaddr, addr_len, flags); 2543 sock->state = ssock->state; 2544 2545 /* on successful connect, the msk state will be moved to established by 2546 * subflow_finish_connect() 2547 */ 2548 if (!err || err == -EINPROGRESS) 2549 mptcp_copy_inaddrs(sock->sk, ssock->sk); 2550 else 2551 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 2552 2553 unlock: 2554 release_sock(sock->sk); 2555 return err; 2556 } 2557 2558 static int mptcp_listen(struct socket *sock, int backlog) 2559 { 2560 struct mptcp_sock *msk = mptcp_sk(sock->sk); 2561 struct socket *ssock; 2562 int err; 2563 2564 pr_debug("msk=%p", msk); 2565 2566 lock_sock(sock->sk); 2567 ssock = __mptcp_nmpc_socket(msk); 2568 if (!ssock) { 2569 err = -EINVAL; 2570 goto unlock; 2571 } 2572 2573 mptcp_token_destroy(msk); 2574 inet_sk_state_store(sock->sk, TCP_LISTEN); 2575 sock_set_flag(sock->sk, SOCK_RCU_FREE); 2576 2577 err = ssock->ops->listen(ssock, backlog); 2578 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 2579 if (!err) 2580 mptcp_copy_inaddrs(sock->sk, ssock->sk); 2581 2582 unlock: 2583 release_sock(sock->sk); 2584 return err; 2585 } 2586 2587 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 2588 int flags, bool kern) 2589 { 2590 struct mptcp_sock *msk = mptcp_sk(sock->sk); 2591 struct socket *ssock; 2592 int err; 2593 2594 pr_debug("msk=%p", msk); 2595 2596 lock_sock(sock->sk); 2597 if (sock->sk->sk_state != TCP_LISTEN) 2598 goto unlock_fail; 2599 2600 ssock = __mptcp_nmpc_socket(msk); 2601 if (!ssock) 2602 goto unlock_fail; 2603 2604 clear_bit(MPTCP_DATA_READY, &msk->flags); 2605 sock_hold(ssock->sk); 2606 release_sock(sock->sk); 2607 2608 err = ssock->ops->accept(sock, newsock, flags, kern); 2609 if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) { 2610 struct mptcp_sock *msk = mptcp_sk(newsock->sk); 2611 struct mptcp_subflow_context *subflow; 2612 2613 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 2614 * This is needed so NOSPACE flag can be set from tcp stack. 2615 */ 2616 __mptcp_flush_join_list(msk); 2617 mptcp_for_each_subflow(msk, subflow) { 2618 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2619 2620 if (!ssk->sk_socket) 2621 mptcp_sock_graft(ssk, newsock); 2622 } 2623 } 2624 2625 if (inet_csk_listen_poll(ssock->sk)) 2626 set_bit(MPTCP_DATA_READY, &msk->flags); 2627 sock_put(ssock->sk); 2628 return err; 2629 2630 unlock_fail: 2631 release_sock(sock->sk); 2632 return -EINVAL; 2633 } 2634 2635 static __poll_t mptcp_check_readable(struct mptcp_sock *msk) 2636 { 2637 return test_bit(MPTCP_DATA_READY, &msk->flags) ? EPOLLIN | EPOLLRDNORM : 2638 0; 2639 } 2640 2641 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 2642 struct poll_table_struct *wait) 2643 { 2644 struct sock *sk = sock->sk; 2645 struct mptcp_sock *msk; 2646 __poll_t mask = 0; 2647 int state; 2648 2649 msk = mptcp_sk(sk); 2650 sock_poll_wait(file, sock, wait); 2651 2652 state = inet_sk_state_load(sk); 2653 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 2654 if (state == TCP_LISTEN) 2655 return mptcp_check_readable(msk); 2656 2657 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 2658 mask |= mptcp_check_readable(msk); 2659 if (test_bit(MPTCP_SEND_SPACE, &msk->flags)) 2660 mask |= EPOLLOUT | EPOLLWRNORM; 2661 } 2662 if (sk->sk_shutdown & RCV_SHUTDOWN) 2663 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 2664 2665 return mask; 2666 } 2667 2668 static int mptcp_shutdown(struct socket *sock, int how) 2669 { 2670 struct mptcp_sock *msk = mptcp_sk(sock->sk); 2671 struct mptcp_subflow_context *subflow; 2672 int ret = 0; 2673 2674 pr_debug("sk=%p, how=%d", msk, how); 2675 2676 lock_sock(sock->sk); 2677 2678 how++; 2679 if ((how & ~SHUTDOWN_MASK) || !how) { 2680 ret = -EINVAL; 2681 goto out_unlock; 2682 } 2683 2684 if (sock->state == SS_CONNECTING) { 2685 if ((1 << sock->sk->sk_state) & 2686 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) 2687 sock->state = SS_DISCONNECTING; 2688 else 2689 sock->state = SS_CONNECTED; 2690 } 2691 2692 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2693 if (__mptcp_check_fallback(msk)) { 2694 if (how == SHUT_WR || how == SHUT_RDWR) 2695 inet_sk_state_store(sock->sk, TCP_FIN_WAIT1); 2696 2697 mptcp_for_each_subflow(msk, subflow) { 2698 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2699 2700 mptcp_subflow_shutdown(sock->sk, tcp_sk, how); 2701 } 2702 } else if ((how & SEND_SHUTDOWN) && 2703 ((1 << sock->sk->sk_state) & 2704 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2705 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) && 2706 mptcp_close_state(sock->sk)) { 2707 __mptcp_flush_join_list(msk); 2708 2709 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2710 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2711 2712 mptcp_for_each_subflow(msk, subflow) { 2713 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2714 2715 mptcp_subflow_shutdown(sock->sk, tcp_sk, how); 2716 } 2717 } 2718 2719 /* Wake up anyone sleeping in poll. */ 2720 sock->sk->sk_state_change(sock->sk); 2721 2722 out_unlock: 2723 release_sock(sock->sk); 2724 2725 return ret; 2726 } 2727 2728 static const struct proto_ops mptcp_stream_ops = { 2729 .family = PF_INET, 2730 .owner = THIS_MODULE, 2731 .release = inet_release, 2732 .bind = mptcp_bind, 2733 .connect = mptcp_stream_connect, 2734 .socketpair = sock_no_socketpair, 2735 .accept = mptcp_stream_accept, 2736 .getname = inet_getname, 2737 .poll = mptcp_poll, 2738 .ioctl = inet_ioctl, 2739 .gettstamp = sock_gettstamp, 2740 .listen = mptcp_listen, 2741 .shutdown = mptcp_shutdown, 2742 .setsockopt = sock_common_setsockopt, 2743 .getsockopt = sock_common_getsockopt, 2744 .sendmsg = inet_sendmsg, 2745 .recvmsg = inet_recvmsg, 2746 .mmap = sock_no_mmap, 2747 .sendpage = inet_sendpage, 2748 }; 2749 2750 static struct inet_protosw mptcp_protosw = { 2751 .type = SOCK_STREAM, 2752 .protocol = IPPROTO_MPTCP, 2753 .prot = &mptcp_prot, 2754 .ops = &mptcp_stream_ops, 2755 .flags = INET_PROTOSW_ICSK, 2756 }; 2757 2758 void __init mptcp_proto_init(void) 2759 { 2760 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 2761 2762 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 2763 panic("Failed to allocate MPTCP pcpu counter\n"); 2764 2765 mptcp_subflow_init(); 2766 mptcp_pm_init(); 2767 mptcp_token_init(); 2768 2769 if (proto_register(&mptcp_prot, 1) != 0) 2770 panic("Failed to register MPTCP proto.\n"); 2771 2772 inet_register_protosw(&mptcp_protosw); 2773 2774 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 2775 } 2776 2777 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2778 static const struct proto_ops mptcp_v6_stream_ops = { 2779 .family = PF_INET6, 2780 .owner = THIS_MODULE, 2781 .release = inet6_release, 2782 .bind = mptcp_bind, 2783 .connect = mptcp_stream_connect, 2784 .socketpair = sock_no_socketpair, 2785 .accept = mptcp_stream_accept, 2786 .getname = inet6_getname, 2787 .poll = mptcp_poll, 2788 .ioctl = inet6_ioctl, 2789 .gettstamp = sock_gettstamp, 2790 .listen = mptcp_listen, 2791 .shutdown = mptcp_shutdown, 2792 .setsockopt = sock_common_setsockopt, 2793 .getsockopt = sock_common_getsockopt, 2794 .sendmsg = inet6_sendmsg, 2795 .recvmsg = inet6_recvmsg, 2796 .mmap = sock_no_mmap, 2797 .sendpage = inet_sendpage, 2798 #ifdef CONFIG_COMPAT 2799 .compat_ioctl = inet6_compat_ioctl, 2800 #endif 2801 }; 2802 2803 static struct proto mptcp_v6_prot; 2804 2805 static void mptcp_v6_destroy(struct sock *sk) 2806 { 2807 mptcp_destroy(sk); 2808 inet6_destroy_sock(sk); 2809 } 2810 2811 static struct inet_protosw mptcp_v6_protosw = { 2812 .type = SOCK_STREAM, 2813 .protocol = IPPROTO_MPTCP, 2814 .prot = &mptcp_v6_prot, 2815 .ops = &mptcp_v6_stream_ops, 2816 .flags = INET_PROTOSW_ICSK, 2817 }; 2818 2819 int __init mptcp_proto_v6_init(void) 2820 { 2821 int err; 2822 2823 mptcp_v6_prot = mptcp_prot; 2824 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 2825 mptcp_v6_prot.slab = NULL; 2826 mptcp_v6_prot.destroy = mptcp_v6_destroy; 2827 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 2828 2829 err = proto_register(&mptcp_v6_prot, 1); 2830 if (err) 2831 return err; 2832 2833 err = inet6_register_protosw(&mptcp_v6_protosw); 2834 if (err) 2835 proto_unregister(&mptcp_v6_prot); 2836 2837 return err; 2838 } 2839 #endif 2840