1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 struct mptcp_skb_cb { 40 u64 map_seq; 41 u64 end_seq; 42 u32 offset; 43 u8 has_rxtstamp:1; 44 }; 45 46 #define MPTCP_SKB_CB(__skb) ((struct mptcp_skb_cb *)&((__skb)->cb[0])) 47 48 enum { 49 MPTCP_CMSG_TS = BIT(0), 50 MPTCP_CMSG_INQ = BIT(1), 51 }; 52 53 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 54 55 static void __mptcp_destroy_sock(struct sock *sk); 56 static void __mptcp_check_send_data_fin(struct sock *sk); 57 58 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 59 static struct net_device mptcp_napi_dev; 60 61 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not 62 * completed yet or has failed, return the subflow socket. 63 * Otherwise return NULL. 64 */ 65 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk) 66 { 67 if (!msk->subflow || READ_ONCE(msk->can_ack)) 68 return NULL; 69 70 return msk->subflow; 71 } 72 73 /* Returns end sequence number of the receiver's advertised window */ 74 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 75 { 76 return READ_ONCE(msk->wnd_end); 77 } 78 79 static bool mptcp_is_tcpsk(struct sock *sk) 80 { 81 struct socket *sock = sk->sk_socket; 82 83 if (unlikely(sk->sk_prot == &tcp_prot)) { 84 /* we are being invoked after mptcp_accept() has 85 * accepted a non-mp-capable flow: sk is a tcp_sk, 86 * not an mptcp one. 87 * 88 * Hand the socket over to tcp so all further socket ops 89 * bypass mptcp. 90 */ 91 sock->ops = &inet_stream_ops; 92 return true; 93 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 94 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { 95 sock->ops = &inet6_stream_ops; 96 return true; 97 #endif 98 } 99 100 return false; 101 } 102 103 static int __mptcp_socket_create(struct mptcp_sock *msk) 104 { 105 struct mptcp_subflow_context *subflow; 106 struct sock *sk = (struct sock *)msk; 107 struct socket *ssock; 108 int err; 109 110 err = mptcp_subflow_create_socket(sk, &ssock); 111 if (err) 112 return err; 113 114 msk->first = ssock->sk; 115 msk->subflow = ssock; 116 subflow = mptcp_subflow_ctx(ssock->sk); 117 list_add(&subflow->node, &msk->conn_list); 118 sock_hold(ssock->sk); 119 subflow->request_mptcp = 1; 120 mptcp_sock_graft(msk->first, sk->sk_socket); 121 122 return 0; 123 } 124 125 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 126 { 127 sk_drops_add(sk, skb); 128 __kfree_skb(skb); 129 } 130 131 static void mptcp_rmem_charge(struct sock *sk, int size) 132 { 133 mptcp_sk(sk)->rmem_fwd_alloc -= size; 134 } 135 136 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 137 struct sk_buff *from) 138 { 139 bool fragstolen; 140 int delta; 141 142 if (MPTCP_SKB_CB(from)->offset || 143 !skb_try_coalesce(to, from, &fragstolen, &delta)) 144 return false; 145 146 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 147 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 148 to->len, MPTCP_SKB_CB(from)->end_seq); 149 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 150 kfree_skb_partial(from, fragstolen); 151 atomic_add(delta, &sk->sk_rmem_alloc); 152 mptcp_rmem_charge(sk, delta); 153 return true; 154 } 155 156 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 157 struct sk_buff *from) 158 { 159 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 160 return false; 161 162 return mptcp_try_coalesce((struct sock *)msk, to, from); 163 } 164 165 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 166 { 167 amount >>= SK_MEM_QUANTUM_SHIFT; 168 mptcp_sk(sk)->rmem_fwd_alloc -= amount << SK_MEM_QUANTUM_SHIFT; 169 __sk_mem_reduce_allocated(sk, amount); 170 } 171 172 static void mptcp_rmem_uncharge(struct sock *sk, int size) 173 { 174 struct mptcp_sock *msk = mptcp_sk(sk); 175 int reclaimable; 176 177 msk->rmem_fwd_alloc += size; 178 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 179 180 /* see sk_mem_uncharge() for the rationale behind the following schema */ 181 if (unlikely(reclaimable >= SK_RECLAIM_THRESHOLD)) 182 __mptcp_rmem_reclaim(sk, SK_RECLAIM_CHUNK); 183 } 184 185 static void mptcp_rfree(struct sk_buff *skb) 186 { 187 unsigned int len = skb->truesize; 188 struct sock *sk = skb->sk; 189 190 atomic_sub(len, &sk->sk_rmem_alloc); 191 mptcp_rmem_uncharge(sk, len); 192 } 193 194 static void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 195 { 196 skb_orphan(skb); 197 skb->sk = sk; 198 skb->destructor = mptcp_rfree; 199 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 200 mptcp_rmem_charge(sk, skb->truesize); 201 } 202 203 /* "inspired" by tcp_data_queue_ofo(), main differences: 204 * - use mptcp seqs 205 * - don't cope with sacks 206 */ 207 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 208 { 209 struct sock *sk = (struct sock *)msk; 210 struct rb_node **p, *parent; 211 u64 seq, end_seq, max_seq; 212 struct sk_buff *skb1; 213 214 seq = MPTCP_SKB_CB(skb)->map_seq; 215 end_seq = MPTCP_SKB_CB(skb)->end_seq; 216 max_seq = READ_ONCE(msk->rcv_wnd_sent); 217 218 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 219 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 220 if (after64(end_seq, max_seq)) { 221 /* out of window */ 222 mptcp_drop(sk, skb); 223 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 224 (unsigned long long)end_seq - (unsigned long)max_seq, 225 (unsigned long long)msk->rcv_wnd_sent); 226 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 227 return; 228 } 229 230 p = &msk->out_of_order_queue.rb_node; 231 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 232 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 233 rb_link_node(&skb->rbnode, NULL, p); 234 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 235 msk->ooo_last_skb = skb; 236 goto end; 237 } 238 239 /* with 2 subflows, adding at end of ooo queue is quite likely 240 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 241 */ 242 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 243 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 244 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 245 return; 246 } 247 248 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 249 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 250 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 251 parent = &msk->ooo_last_skb->rbnode; 252 p = &parent->rb_right; 253 goto insert; 254 } 255 256 /* Find place to insert this segment. Handle overlaps on the way. */ 257 parent = NULL; 258 while (*p) { 259 parent = *p; 260 skb1 = rb_to_skb(parent); 261 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 262 p = &parent->rb_left; 263 continue; 264 } 265 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 266 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 267 /* All the bits are present. Drop. */ 268 mptcp_drop(sk, skb); 269 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 270 return; 271 } 272 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 273 /* partial overlap: 274 * | skb | 275 * | skb1 | 276 * continue traversing 277 */ 278 } else { 279 /* skb's seq == skb1's seq and skb covers skb1. 280 * Replace skb1 with skb. 281 */ 282 rb_replace_node(&skb1->rbnode, &skb->rbnode, 283 &msk->out_of_order_queue); 284 mptcp_drop(sk, skb1); 285 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 286 goto merge_right; 287 } 288 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 289 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 290 return; 291 } 292 p = &parent->rb_right; 293 } 294 295 insert: 296 /* Insert segment into RB tree. */ 297 rb_link_node(&skb->rbnode, parent, p); 298 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 299 300 merge_right: 301 /* Remove other segments covered by skb. */ 302 while ((skb1 = skb_rb_next(skb)) != NULL) { 303 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 304 break; 305 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 306 mptcp_drop(sk, skb1); 307 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 308 } 309 /* If there is no skb after us, we are the last_skb ! */ 310 if (!skb1) 311 msk->ooo_last_skb = skb; 312 313 end: 314 skb_condense(skb); 315 mptcp_set_owner_r(skb, sk); 316 } 317 318 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 319 { 320 struct mptcp_sock *msk = mptcp_sk(sk); 321 int amt, amount; 322 323 if (size < msk->rmem_fwd_alloc) 324 return true; 325 326 amt = sk_mem_pages(size); 327 amount = amt << SK_MEM_QUANTUM_SHIFT; 328 msk->rmem_fwd_alloc += amount; 329 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) { 330 if (ssk->sk_forward_alloc < amount) { 331 msk->rmem_fwd_alloc -= amount; 332 return false; 333 } 334 335 ssk->sk_forward_alloc -= amount; 336 } 337 return true; 338 } 339 340 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 341 struct sk_buff *skb, unsigned int offset, 342 size_t copy_len) 343 { 344 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 345 struct sock *sk = (struct sock *)msk; 346 struct sk_buff *tail; 347 bool has_rxtstamp; 348 349 __skb_unlink(skb, &ssk->sk_receive_queue); 350 351 skb_ext_reset(skb); 352 skb_orphan(skb); 353 354 /* try to fetch required memory from subflow */ 355 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) 356 goto drop; 357 358 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 359 360 /* the skb map_seq accounts for the skb offset: 361 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 362 * value 363 */ 364 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 365 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 366 MPTCP_SKB_CB(skb)->offset = offset; 367 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 368 369 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 370 /* in sequence */ 371 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 372 tail = skb_peek_tail(&sk->sk_receive_queue); 373 if (tail && mptcp_try_coalesce(sk, tail, skb)) 374 return true; 375 376 mptcp_set_owner_r(skb, sk); 377 __skb_queue_tail(&sk->sk_receive_queue, skb); 378 return true; 379 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 380 mptcp_data_queue_ofo(msk, skb); 381 return false; 382 } 383 384 /* old data, keep it simple and drop the whole pkt, sender 385 * will retransmit as needed, if needed. 386 */ 387 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 388 drop: 389 mptcp_drop(sk, skb); 390 return false; 391 } 392 393 static void mptcp_stop_timer(struct sock *sk) 394 { 395 struct inet_connection_sock *icsk = inet_csk(sk); 396 397 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 398 mptcp_sk(sk)->timer_ival = 0; 399 } 400 401 static void mptcp_close_wake_up(struct sock *sk) 402 { 403 if (sock_flag(sk, SOCK_DEAD)) 404 return; 405 406 sk->sk_state_change(sk); 407 if (sk->sk_shutdown == SHUTDOWN_MASK || 408 sk->sk_state == TCP_CLOSE) 409 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 410 else 411 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 412 } 413 414 static bool mptcp_pending_data_fin_ack(struct sock *sk) 415 { 416 struct mptcp_sock *msk = mptcp_sk(sk); 417 418 return !__mptcp_check_fallback(msk) && 419 ((1 << sk->sk_state) & 420 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 421 msk->write_seq == READ_ONCE(msk->snd_una); 422 } 423 424 static void mptcp_check_data_fin_ack(struct sock *sk) 425 { 426 struct mptcp_sock *msk = mptcp_sk(sk); 427 428 /* Look for an acknowledged DATA_FIN */ 429 if (mptcp_pending_data_fin_ack(sk)) { 430 WRITE_ONCE(msk->snd_data_fin_enable, 0); 431 432 switch (sk->sk_state) { 433 case TCP_FIN_WAIT1: 434 inet_sk_state_store(sk, TCP_FIN_WAIT2); 435 break; 436 case TCP_CLOSING: 437 case TCP_LAST_ACK: 438 inet_sk_state_store(sk, TCP_CLOSE); 439 break; 440 } 441 442 mptcp_close_wake_up(sk); 443 } 444 } 445 446 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 447 { 448 struct mptcp_sock *msk = mptcp_sk(sk); 449 450 if (READ_ONCE(msk->rcv_data_fin) && 451 ((1 << sk->sk_state) & 452 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 453 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 454 455 if (msk->ack_seq == rcv_data_fin_seq) { 456 if (seq) 457 *seq = rcv_data_fin_seq; 458 459 return true; 460 } 461 } 462 463 return false; 464 } 465 466 static void mptcp_set_datafin_timeout(const struct sock *sk) 467 { 468 struct inet_connection_sock *icsk = inet_csk(sk); 469 470 mptcp_sk(sk)->timer_ival = min(TCP_RTO_MAX, 471 TCP_RTO_MIN << icsk->icsk_retransmits); 472 } 473 474 static void __mptcp_set_timeout(struct sock *sk, long tout) 475 { 476 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 477 } 478 479 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 480 { 481 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 482 483 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 484 inet_csk(ssk)->icsk_timeout - jiffies : 0; 485 } 486 487 static void mptcp_set_timeout(struct sock *sk) 488 { 489 struct mptcp_subflow_context *subflow; 490 long tout = 0; 491 492 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 493 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 494 __mptcp_set_timeout(sk, tout); 495 } 496 497 static bool tcp_can_send_ack(const struct sock *ssk) 498 { 499 return !((1 << inet_sk_state_load(ssk)) & 500 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 501 } 502 503 void mptcp_subflow_send_ack(struct sock *ssk) 504 { 505 bool slow; 506 507 slow = lock_sock_fast(ssk); 508 if (tcp_can_send_ack(ssk)) 509 tcp_send_ack(ssk); 510 unlock_sock_fast(ssk, slow); 511 } 512 513 static void mptcp_send_ack(struct mptcp_sock *msk) 514 { 515 struct mptcp_subflow_context *subflow; 516 517 mptcp_for_each_subflow(msk, subflow) 518 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 519 } 520 521 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 522 { 523 bool slow; 524 525 slow = lock_sock_fast(ssk); 526 if (tcp_can_send_ack(ssk)) 527 tcp_cleanup_rbuf(ssk, 1); 528 unlock_sock_fast(ssk, slow); 529 } 530 531 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 532 { 533 const struct inet_connection_sock *icsk = inet_csk(ssk); 534 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 535 const struct tcp_sock *tp = tcp_sk(ssk); 536 537 return (ack_pending & ICSK_ACK_SCHED) && 538 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 539 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 540 (rx_empty && ack_pending & 541 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 542 } 543 544 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 545 { 546 int old_space = READ_ONCE(msk->old_wspace); 547 struct mptcp_subflow_context *subflow; 548 struct sock *sk = (struct sock *)msk; 549 int space = __mptcp_space(sk); 550 bool cleanup, rx_empty; 551 552 cleanup = (space > 0) && (space >= (old_space << 1)); 553 rx_empty = !__mptcp_rmem(sk); 554 555 mptcp_for_each_subflow(msk, subflow) { 556 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 557 558 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 559 mptcp_subflow_cleanup_rbuf(ssk); 560 } 561 } 562 563 static bool mptcp_check_data_fin(struct sock *sk) 564 { 565 struct mptcp_sock *msk = mptcp_sk(sk); 566 u64 rcv_data_fin_seq; 567 bool ret = false; 568 569 if (__mptcp_check_fallback(msk)) 570 return ret; 571 572 /* Need to ack a DATA_FIN received from a peer while this side 573 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 574 * msk->rcv_data_fin was set when parsing the incoming options 575 * at the subflow level and the msk lock was not held, so this 576 * is the first opportunity to act on the DATA_FIN and change 577 * the msk state. 578 * 579 * If we are caught up to the sequence number of the incoming 580 * DATA_FIN, send the DATA_ACK now and do state transition. If 581 * not caught up, do nothing and let the recv code send DATA_ACK 582 * when catching up. 583 */ 584 585 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 586 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 587 WRITE_ONCE(msk->rcv_data_fin, 0); 588 589 sk->sk_shutdown |= RCV_SHUTDOWN; 590 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 591 592 switch (sk->sk_state) { 593 case TCP_ESTABLISHED: 594 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 595 break; 596 case TCP_FIN_WAIT1: 597 inet_sk_state_store(sk, TCP_CLOSING); 598 break; 599 case TCP_FIN_WAIT2: 600 inet_sk_state_store(sk, TCP_CLOSE); 601 break; 602 default: 603 /* Other states not expected */ 604 WARN_ON_ONCE(1); 605 break; 606 } 607 608 ret = true; 609 mptcp_send_ack(msk); 610 mptcp_close_wake_up(sk); 611 } 612 return ret; 613 } 614 615 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 616 struct sock *ssk, 617 unsigned int *bytes) 618 { 619 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 620 struct sock *sk = (struct sock *)msk; 621 unsigned int moved = 0; 622 bool more_data_avail; 623 struct tcp_sock *tp; 624 bool done = false; 625 int sk_rbuf; 626 627 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 628 629 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 630 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 631 632 if (unlikely(ssk_rbuf > sk_rbuf)) { 633 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 634 sk_rbuf = ssk_rbuf; 635 } 636 } 637 638 pr_debug("msk=%p ssk=%p", msk, ssk); 639 tp = tcp_sk(ssk); 640 do { 641 u32 map_remaining, offset; 642 u32 seq = tp->copied_seq; 643 struct sk_buff *skb; 644 bool fin; 645 646 /* try to move as much data as available */ 647 map_remaining = subflow->map_data_len - 648 mptcp_subflow_get_map_offset(subflow); 649 650 skb = skb_peek(&ssk->sk_receive_queue); 651 if (!skb) { 652 /* if no data is found, a racing workqueue/recvmsg 653 * already processed the new data, stop here or we 654 * can enter an infinite loop 655 */ 656 if (!moved) 657 done = true; 658 break; 659 } 660 661 if (__mptcp_check_fallback(msk)) { 662 /* if we are running under the workqueue, TCP could have 663 * collapsed skbs between dummy map creation and now 664 * be sure to adjust the size 665 */ 666 map_remaining = skb->len; 667 subflow->map_data_len = skb->len; 668 } 669 670 offset = seq - TCP_SKB_CB(skb)->seq; 671 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 672 if (fin) { 673 done = true; 674 seq++; 675 } 676 677 if (offset < skb->len) { 678 size_t len = skb->len - offset; 679 680 if (tp->urg_data) 681 done = true; 682 683 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 684 moved += len; 685 seq += len; 686 687 if (WARN_ON_ONCE(map_remaining < len)) 688 break; 689 } else { 690 WARN_ON_ONCE(!fin); 691 sk_eat_skb(ssk, skb); 692 done = true; 693 } 694 695 WRITE_ONCE(tp->copied_seq, seq); 696 more_data_avail = mptcp_subflow_data_available(ssk); 697 698 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 699 done = true; 700 break; 701 } 702 } while (more_data_avail); 703 704 *bytes += moved; 705 return done; 706 } 707 708 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 709 { 710 struct sock *sk = (struct sock *)msk; 711 struct sk_buff *skb, *tail; 712 bool moved = false; 713 struct rb_node *p; 714 u64 end_seq; 715 716 p = rb_first(&msk->out_of_order_queue); 717 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 718 while (p) { 719 skb = rb_to_skb(p); 720 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 721 break; 722 723 p = rb_next(p); 724 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 725 726 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 727 msk->ack_seq))) { 728 mptcp_drop(sk, skb); 729 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 730 continue; 731 } 732 733 end_seq = MPTCP_SKB_CB(skb)->end_seq; 734 tail = skb_peek_tail(&sk->sk_receive_queue); 735 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 736 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 737 738 /* skip overlapping data, if any */ 739 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 740 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 741 delta); 742 MPTCP_SKB_CB(skb)->offset += delta; 743 MPTCP_SKB_CB(skb)->map_seq += delta; 744 __skb_queue_tail(&sk->sk_receive_queue, skb); 745 } 746 msk->ack_seq = end_seq; 747 moved = true; 748 } 749 return moved; 750 } 751 752 /* In most cases we will be able to lock the mptcp socket. If its already 753 * owned, we need to defer to the work queue to avoid ABBA deadlock. 754 */ 755 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 756 { 757 struct sock *sk = (struct sock *)msk; 758 unsigned int moved = 0; 759 760 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 761 __mptcp_ofo_queue(msk); 762 if (unlikely(ssk->sk_err)) { 763 if (!sock_owned_by_user(sk)) 764 __mptcp_error_report(sk); 765 else 766 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 767 } 768 769 /* If the moves have caught up with the DATA_FIN sequence number 770 * it's time to ack the DATA_FIN and change socket state, but 771 * this is not a good place to change state. Let the workqueue 772 * do it. 773 */ 774 if (mptcp_pending_data_fin(sk, NULL)) 775 mptcp_schedule_work(sk); 776 return moved > 0; 777 } 778 779 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 780 { 781 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 782 struct mptcp_sock *msk = mptcp_sk(sk); 783 int sk_rbuf, ssk_rbuf; 784 785 /* The peer can send data while we are shutting down this 786 * subflow at msk destruction time, but we must avoid enqueuing 787 * more data to the msk receive queue 788 */ 789 if (unlikely(subflow->disposable)) 790 return; 791 792 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 793 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 794 if (unlikely(ssk_rbuf > sk_rbuf)) 795 sk_rbuf = ssk_rbuf; 796 797 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 798 if (__mptcp_rmem(sk) > sk_rbuf) { 799 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 800 return; 801 } 802 803 /* Wake-up the reader only for in-sequence data */ 804 mptcp_data_lock(sk); 805 if (move_skbs_to_msk(msk, ssk)) 806 sk->sk_data_ready(sk); 807 808 mptcp_data_unlock(sk); 809 } 810 811 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 812 { 813 struct sock *sk = (struct sock *)msk; 814 815 if (sk->sk_state != TCP_ESTABLISHED) 816 return false; 817 818 /* attach to msk socket only after we are sure we will deal with it 819 * at close time 820 */ 821 if (sk->sk_socket && !ssk->sk_socket) 822 mptcp_sock_graft(ssk, sk->sk_socket); 823 824 mptcp_propagate_sndbuf((struct sock *)msk, ssk); 825 mptcp_sockopt_sync_locked(msk, ssk); 826 return true; 827 } 828 829 static void __mptcp_flush_join_list(struct sock *sk) 830 { 831 struct mptcp_subflow_context *tmp, *subflow; 832 struct mptcp_sock *msk = mptcp_sk(sk); 833 834 list_for_each_entry_safe(subflow, tmp, &msk->join_list, node) { 835 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 836 bool slow = lock_sock_fast(ssk); 837 838 list_move_tail(&subflow->node, &msk->conn_list); 839 if (!__mptcp_finish_join(msk, ssk)) 840 mptcp_subflow_reset(ssk); 841 unlock_sock_fast(ssk, slow); 842 } 843 } 844 845 static bool mptcp_timer_pending(struct sock *sk) 846 { 847 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 848 } 849 850 static void mptcp_reset_timer(struct sock *sk) 851 { 852 struct inet_connection_sock *icsk = inet_csk(sk); 853 unsigned long tout; 854 855 /* prevent rescheduling on close */ 856 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 857 return; 858 859 tout = mptcp_sk(sk)->timer_ival; 860 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 861 } 862 863 bool mptcp_schedule_work(struct sock *sk) 864 { 865 if (inet_sk_state_load(sk) != TCP_CLOSE && 866 schedule_work(&mptcp_sk(sk)->work)) { 867 /* each subflow already holds a reference to the sk, and the 868 * workqueue is invoked by a subflow, so sk can't go away here. 869 */ 870 sock_hold(sk); 871 return true; 872 } 873 return false; 874 } 875 876 void mptcp_subflow_eof(struct sock *sk) 877 { 878 if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags)) 879 mptcp_schedule_work(sk); 880 } 881 882 static void mptcp_check_for_eof(struct mptcp_sock *msk) 883 { 884 struct mptcp_subflow_context *subflow; 885 struct sock *sk = (struct sock *)msk; 886 int receivers = 0; 887 888 mptcp_for_each_subflow(msk, subflow) 889 receivers += !subflow->rx_eof; 890 if (receivers) 891 return; 892 893 if (!(sk->sk_shutdown & RCV_SHUTDOWN)) { 894 /* hopefully temporary hack: propagate shutdown status 895 * to msk, when all subflows agree on it 896 */ 897 sk->sk_shutdown |= RCV_SHUTDOWN; 898 899 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 900 sk->sk_data_ready(sk); 901 } 902 903 switch (sk->sk_state) { 904 case TCP_ESTABLISHED: 905 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 906 break; 907 case TCP_FIN_WAIT1: 908 inet_sk_state_store(sk, TCP_CLOSING); 909 break; 910 case TCP_FIN_WAIT2: 911 inet_sk_state_store(sk, TCP_CLOSE); 912 break; 913 default: 914 return; 915 } 916 mptcp_close_wake_up(sk); 917 } 918 919 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 920 { 921 struct mptcp_subflow_context *subflow; 922 struct sock *sk = (struct sock *)msk; 923 924 sock_owned_by_me(sk); 925 926 mptcp_for_each_subflow(msk, subflow) { 927 if (READ_ONCE(subflow->data_avail)) 928 return mptcp_subflow_tcp_sock(subflow); 929 } 930 931 return NULL; 932 } 933 934 static bool mptcp_skb_can_collapse_to(u64 write_seq, 935 const struct sk_buff *skb, 936 const struct mptcp_ext *mpext) 937 { 938 if (!tcp_skb_can_collapse_to(skb)) 939 return false; 940 941 /* can collapse only if MPTCP level sequence is in order and this 942 * mapping has not been xmitted yet 943 */ 944 return mpext && mpext->data_seq + mpext->data_len == write_seq && 945 !mpext->frozen; 946 } 947 948 /* we can append data to the given data frag if: 949 * - there is space available in the backing page_frag 950 * - the data frag tail matches the current page_frag free offset 951 * - the data frag end sequence number matches the current write seq 952 */ 953 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 954 const struct page_frag *pfrag, 955 const struct mptcp_data_frag *df) 956 { 957 return df && pfrag->page == df->page && 958 pfrag->size - pfrag->offset > 0 && 959 pfrag->offset == (df->offset + df->data_len) && 960 df->data_seq + df->data_len == msk->write_seq; 961 } 962 963 static void __mptcp_mem_reclaim_partial(struct sock *sk) 964 { 965 int reclaimable = mptcp_sk(sk)->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 966 967 lockdep_assert_held_once(&sk->sk_lock.slock); 968 969 __mptcp_rmem_reclaim(sk, reclaimable - 1); 970 sk_mem_reclaim_partial(sk); 971 } 972 973 static void mptcp_mem_reclaim_partial(struct sock *sk) 974 { 975 mptcp_data_lock(sk); 976 __mptcp_mem_reclaim_partial(sk); 977 mptcp_data_unlock(sk); 978 } 979 980 static void dfrag_uncharge(struct sock *sk, int len) 981 { 982 sk_mem_uncharge(sk, len); 983 sk_wmem_queued_add(sk, -len); 984 } 985 986 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 987 { 988 int len = dfrag->data_len + dfrag->overhead; 989 990 list_del(&dfrag->list); 991 dfrag_uncharge(sk, len); 992 put_page(dfrag->page); 993 } 994 995 static void __mptcp_clean_una(struct sock *sk) 996 { 997 struct mptcp_sock *msk = mptcp_sk(sk); 998 struct mptcp_data_frag *dtmp, *dfrag; 999 bool cleaned = false; 1000 u64 snd_una; 1001 1002 /* on fallback we just need to ignore snd_una, as this is really 1003 * plain TCP 1004 */ 1005 if (__mptcp_check_fallback(msk)) 1006 msk->snd_una = READ_ONCE(msk->snd_nxt); 1007 1008 snd_una = msk->snd_una; 1009 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1010 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1011 break; 1012 1013 if (unlikely(dfrag == msk->first_pending)) { 1014 /* in recovery mode can see ack after the current snd head */ 1015 if (WARN_ON_ONCE(!msk->recovery)) 1016 break; 1017 1018 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1019 } 1020 1021 dfrag_clear(sk, dfrag); 1022 cleaned = true; 1023 } 1024 1025 dfrag = mptcp_rtx_head(sk); 1026 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1027 u64 delta = snd_una - dfrag->data_seq; 1028 1029 /* prevent wrap around in recovery mode */ 1030 if (unlikely(delta > dfrag->already_sent)) { 1031 if (WARN_ON_ONCE(!msk->recovery)) 1032 goto out; 1033 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1034 goto out; 1035 dfrag->already_sent += delta - dfrag->already_sent; 1036 } 1037 1038 dfrag->data_seq += delta; 1039 dfrag->offset += delta; 1040 dfrag->data_len -= delta; 1041 dfrag->already_sent -= delta; 1042 1043 dfrag_uncharge(sk, delta); 1044 cleaned = true; 1045 } 1046 1047 /* all retransmitted data acked, recovery completed */ 1048 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1049 msk->recovery = false; 1050 1051 out: 1052 if (cleaned && tcp_under_memory_pressure(sk)) 1053 __mptcp_mem_reclaim_partial(sk); 1054 1055 if (snd_una == READ_ONCE(msk->snd_nxt) && 1056 snd_una == READ_ONCE(msk->write_seq)) { 1057 if (mptcp_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1058 mptcp_stop_timer(sk); 1059 } else { 1060 mptcp_reset_timer(sk); 1061 } 1062 } 1063 1064 static void __mptcp_clean_una_wakeup(struct sock *sk) 1065 { 1066 lockdep_assert_held_once(&sk->sk_lock.slock); 1067 1068 __mptcp_clean_una(sk); 1069 mptcp_write_space(sk); 1070 } 1071 1072 static void mptcp_clean_una_wakeup(struct sock *sk) 1073 { 1074 mptcp_data_lock(sk); 1075 __mptcp_clean_una_wakeup(sk); 1076 mptcp_data_unlock(sk); 1077 } 1078 1079 static void mptcp_enter_memory_pressure(struct sock *sk) 1080 { 1081 struct mptcp_subflow_context *subflow; 1082 struct mptcp_sock *msk = mptcp_sk(sk); 1083 bool first = true; 1084 1085 sk_stream_moderate_sndbuf(sk); 1086 mptcp_for_each_subflow(msk, subflow) { 1087 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1088 1089 if (first) 1090 tcp_enter_memory_pressure(ssk); 1091 sk_stream_moderate_sndbuf(ssk); 1092 first = false; 1093 } 1094 } 1095 1096 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1097 * data 1098 */ 1099 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1100 { 1101 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1102 pfrag, sk->sk_allocation))) 1103 return true; 1104 1105 mptcp_enter_memory_pressure(sk); 1106 return false; 1107 } 1108 1109 static struct mptcp_data_frag * 1110 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1111 int orig_offset) 1112 { 1113 int offset = ALIGN(orig_offset, sizeof(long)); 1114 struct mptcp_data_frag *dfrag; 1115 1116 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1117 dfrag->data_len = 0; 1118 dfrag->data_seq = msk->write_seq; 1119 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1120 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1121 dfrag->already_sent = 0; 1122 dfrag->page = pfrag->page; 1123 1124 return dfrag; 1125 } 1126 1127 struct mptcp_sendmsg_info { 1128 int mss_now; 1129 int size_goal; 1130 u16 limit; 1131 u16 sent; 1132 unsigned int flags; 1133 bool data_lock_held; 1134 }; 1135 1136 static int mptcp_check_allowed_size(struct mptcp_sock *msk, u64 data_seq, 1137 int avail_size) 1138 { 1139 u64 window_end = mptcp_wnd_end(msk); 1140 1141 if (__mptcp_check_fallback(msk)) 1142 return avail_size; 1143 1144 if (!before64(data_seq + avail_size, window_end)) { 1145 u64 allowed_size = window_end - data_seq; 1146 1147 return min_t(unsigned int, allowed_size, avail_size); 1148 } 1149 1150 return avail_size; 1151 } 1152 1153 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1154 { 1155 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1156 1157 if (!mpext) 1158 return false; 1159 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1160 return true; 1161 } 1162 1163 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1164 { 1165 struct sk_buff *skb; 1166 1167 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1168 if (likely(skb)) { 1169 if (likely(__mptcp_add_ext(skb, gfp))) { 1170 skb_reserve(skb, MAX_TCP_HEADER); 1171 skb->ip_summed = CHECKSUM_PARTIAL; 1172 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1173 return skb; 1174 } 1175 __kfree_skb(skb); 1176 } else { 1177 mptcp_enter_memory_pressure(sk); 1178 } 1179 return NULL; 1180 } 1181 1182 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1183 { 1184 struct sk_buff *skb; 1185 1186 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1187 if (!skb) 1188 return NULL; 1189 1190 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1191 tcp_skb_entail(ssk, skb); 1192 return skb; 1193 } 1194 kfree_skb(skb); 1195 return NULL; 1196 } 1197 1198 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1199 { 1200 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1201 1202 if (unlikely(tcp_under_memory_pressure(sk))) { 1203 if (data_lock_held) 1204 __mptcp_mem_reclaim_partial(sk); 1205 else 1206 mptcp_mem_reclaim_partial(sk); 1207 } 1208 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1209 } 1210 1211 /* note: this always recompute the csum on the whole skb, even 1212 * if we just appended a single frag. More status info needed 1213 */ 1214 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1215 { 1216 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1217 __wsum csum = ~csum_unfold(mpext->csum); 1218 int offset = skb->len - added; 1219 1220 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1221 } 1222 1223 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1224 struct mptcp_data_frag *dfrag, 1225 struct mptcp_sendmsg_info *info) 1226 { 1227 u64 data_seq = dfrag->data_seq + info->sent; 1228 int offset = dfrag->offset + info->sent; 1229 struct mptcp_sock *msk = mptcp_sk(sk); 1230 bool zero_window_probe = false; 1231 struct mptcp_ext *mpext = NULL; 1232 bool can_coalesce = false; 1233 bool reuse_skb = true; 1234 struct sk_buff *skb; 1235 size_t copy; 1236 int i; 1237 1238 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1239 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1240 1241 if (WARN_ON_ONCE(info->sent > info->limit || 1242 info->limit > dfrag->data_len)) 1243 return 0; 1244 1245 /* compute send limit */ 1246 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1247 copy = info->size_goal; 1248 1249 skb = tcp_write_queue_tail(ssk); 1250 if (skb && copy > skb->len) { 1251 /* Limit the write to the size available in the 1252 * current skb, if any, so that we create at most a new skb. 1253 * Explicitly tells TCP internals to avoid collapsing on later 1254 * queue management operation, to avoid breaking the ext <-> 1255 * SSN association set here 1256 */ 1257 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1258 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1259 TCP_SKB_CB(skb)->eor = 1; 1260 goto alloc_skb; 1261 } 1262 1263 i = skb_shinfo(skb)->nr_frags; 1264 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1265 if (!can_coalesce && i >= sysctl_max_skb_frags) { 1266 tcp_mark_push(tcp_sk(ssk), skb); 1267 goto alloc_skb; 1268 } 1269 1270 copy -= skb->len; 1271 } else { 1272 alloc_skb: 1273 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1274 if (!skb) 1275 return -ENOMEM; 1276 1277 i = skb_shinfo(skb)->nr_frags; 1278 reuse_skb = false; 1279 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1280 } 1281 1282 /* Zero window and all data acked? Probe. */ 1283 copy = mptcp_check_allowed_size(msk, data_seq, copy); 1284 if (copy == 0) { 1285 u64 snd_una = READ_ONCE(msk->snd_una); 1286 1287 if (snd_una != msk->snd_nxt) { 1288 tcp_remove_empty_skb(ssk); 1289 return 0; 1290 } 1291 1292 zero_window_probe = true; 1293 data_seq = snd_una - 1; 1294 copy = 1; 1295 1296 /* all mptcp-level data is acked, no skbs should be present into the 1297 * ssk write queue 1298 */ 1299 WARN_ON_ONCE(reuse_skb); 1300 } 1301 1302 copy = min_t(size_t, copy, info->limit - info->sent); 1303 if (!sk_wmem_schedule(ssk, copy)) { 1304 tcp_remove_empty_skb(ssk); 1305 return -ENOMEM; 1306 } 1307 1308 if (can_coalesce) { 1309 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1310 } else { 1311 get_page(dfrag->page); 1312 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1313 } 1314 1315 skb->len += copy; 1316 skb->data_len += copy; 1317 skb->truesize += copy; 1318 sk_wmem_queued_add(ssk, copy); 1319 sk_mem_charge(ssk, copy); 1320 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1321 TCP_SKB_CB(skb)->end_seq += copy; 1322 tcp_skb_pcount_set(skb, 0); 1323 1324 /* on skb reuse we just need to update the DSS len */ 1325 if (reuse_skb) { 1326 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1327 mpext->data_len += copy; 1328 WARN_ON_ONCE(zero_window_probe); 1329 goto out; 1330 } 1331 1332 memset(mpext, 0, sizeof(*mpext)); 1333 mpext->data_seq = data_seq; 1334 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1335 mpext->data_len = copy; 1336 mpext->use_map = 1; 1337 mpext->dsn64 = 1; 1338 1339 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1340 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1341 mpext->dsn64); 1342 1343 if (zero_window_probe) { 1344 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1345 mpext->frozen = 1; 1346 if (READ_ONCE(msk->csum_enabled)) 1347 mptcp_update_data_checksum(skb, copy); 1348 tcp_push_pending_frames(ssk); 1349 return 0; 1350 } 1351 out: 1352 if (READ_ONCE(msk->csum_enabled)) 1353 mptcp_update_data_checksum(skb, copy); 1354 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1355 return copy; 1356 } 1357 1358 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1359 sizeof(struct tcphdr) - \ 1360 MAX_TCP_OPTION_SPACE - \ 1361 sizeof(struct ipv6hdr) - \ 1362 sizeof(struct frag_hdr)) 1363 1364 struct subflow_send_info { 1365 struct sock *ssk; 1366 u64 linger_time; 1367 }; 1368 1369 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1370 { 1371 if (!subflow->stale) 1372 return; 1373 1374 subflow->stale = 0; 1375 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1376 } 1377 1378 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1379 { 1380 if (unlikely(subflow->stale)) { 1381 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1382 1383 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1384 return false; 1385 1386 mptcp_subflow_set_active(subflow); 1387 } 1388 return __mptcp_subflow_active(subflow); 1389 } 1390 1391 #define SSK_MODE_ACTIVE 0 1392 #define SSK_MODE_BACKUP 1 1393 #define SSK_MODE_MAX 2 1394 1395 /* implement the mptcp packet scheduler; 1396 * returns the subflow that will transmit the next DSS 1397 * additionally updates the rtx timeout 1398 */ 1399 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1400 { 1401 struct subflow_send_info send_info[SSK_MODE_MAX]; 1402 struct mptcp_subflow_context *subflow; 1403 struct sock *sk = (struct sock *)msk; 1404 u32 pace, burst, wmem; 1405 int i, nr_active = 0; 1406 struct sock *ssk; 1407 u64 linger_time; 1408 long tout = 0; 1409 1410 sock_owned_by_me(sk); 1411 1412 if (__mptcp_check_fallback(msk)) { 1413 if (!msk->first) 1414 return NULL; 1415 return sk_stream_memory_free(msk->first) ? msk->first : NULL; 1416 } 1417 1418 /* re-use last subflow, if the burst allow that */ 1419 if (msk->last_snd && msk->snd_burst > 0 && 1420 sk_stream_memory_free(msk->last_snd) && 1421 mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) { 1422 mptcp_set_timeout(sk); 1423 return msk->last_snd; 1424 } 1425 1426 /* pick the subflow with the lower wmem/wspace ratio */ 1427 for (i = 0; i < SSK_MODE_MAX; ++i) { 1428 send_info[i].ssk = NULL; 1429 send_info[i].linger_time = -1; 1430 } 1431 1432 mptcp_for_each_subflow(msk, subflow) { 1433 trace_mptcp_subflow_get_send(subflow); 1434 ssk = mptcp_subflow_tcp_sock(subflow); 1435 if (!mptcp_subflow_active(subflow)) 1436 continue; 1437 1438 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1439 nr_active += !subflow->backup; 1440 pace = subflow->avg_pacing_rate; 1441 if (unlikely(!pace)) { 1442 /* init pacing rate from socket */ 1443 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1444 pace = subflow->avg_pacing_rate; 1445 if (!pace) 1446 continue; 1447 } 1448 1449 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1450 if (linger_time < send_info[subflow->backup].linger_time) { 1451 send_info[subflow->backup].ssk = ssk; 1452 send_info[subflow->backup].linger_time = linger_time; 1453 } 1454 } 1455 __mptcp_set_timeout(sk, tout); 1456 1457 /* pick the best backup if no other subflow is active */ 1458 if (!nr_active) 1459 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1460 1461 /* According to the blest algorithm, to avoid HoL blocking for the 1462 * faster flow, we need to: 1463 * - estimate the faster flow linger time 1464 * - use the above to estimate the amount of byte transferred 1465 * by the faster flow 1466 * - check that the amount of queued data is greter than the above, 1467 * otherwise do not use the picked, slower, subflow 1468 * We select the subflow with the shorter estimated time to flush 1469 * the queued mem, which basically ensure the above. We just need 1470 * to check that subflow has a non empty cwin. 1471 */ 1472 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1473 if (!ssk || !sk_stream_memory_free(ssk) || !tcp_sk(ssk)->snd_wnd) 1474 return NULL; 1475 1476 burst = min_t(int, MPTCP_SEND_BURST_SIZE, tcp_sk(ssk)->snd_wnd); 1477 wmem = READ_ONCE(ssk->sk_wmem_queued); 1478 subflow = mptcp_subflow_ctx(ssk); 1479 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1480 READ_ONCE(ssk->sk_pacing_rate) * burst, 1481 burst + wmem); 1482 msk->last_snd = ssk; 1483 msk->snd_burst = burst; 1484 return ssk; 1485 } 1486 1487 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1488 { 1489 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1490 release_sock(ssk); 1491 } 1492 1493 static void mptcp_update_post_push(struct mptcp_sock *msk, 1494 struct mptcp_data_frag *dfrag, 1495 u32 sent) 1496 { 1497 u64 snd_nxt_new = dfrag->data_seq; 1498 1499 dfrag->already_sent += sent; 1500 1501 msk->snd_burst -= sent; 1502 1503 snd_nxt_new += dfrag->already_sent; 1504 1505 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1506 * is recovering after a failover. In that event, this re-sends 1507 * old segments. 1508 * 1509 * Thus compute snd_nxt_new candidate based on 1510 * the dfrag->data_seq that was sent and the data 1511 * that has been handed to the subflow for transmission 1512 * and skip update in case it was old dfrag. 1513 */ 1514 if (likely(after64(snd_nxt_new, msk->snd_nxt))) 1515 msk->snd_nxt = snd_nxt_new; 1516 } 1517 1518 void mptcp_check_and_set_pending(struct sock *sk) 1519 { 1520 if (mptcp_send_head(sk)) 1521 mptcp_sk(sk)->push_pending |= BIT(MPTCP_PUSH_PENDING); 1522 } 1523 1524 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1525 { 1526 struct sock *prev_ssk = NULL, *ssk = NULL; 1527 struct mptcp_sock *msk = mptcp_sk(sk); 1528 struct mptcp_sendmsg_info info = { 1529 .flags = flags, 1530 }; 1531 struct mptcp_data_frag *dfrag; 1532 int len, copied = 0; 1533 1534 while ((dfrag = mptcp_send_head(sk))) { 1535 info.sent = dfrag->already_sent; 1536 info.limit = dfrag->data_len; 1537 len = dfrag->data_len - dfrag->already_sent; 1538 while (len > 0) { 1539 int ret = 0; 1540 1541 prev_ssk = ssk; 1542 ssk = mptcp_subflow_get_send(msk); 1543 1544 /* First check. If the ssk has changed since 1545 * the last round, release prev_ssk 1546 */ 1547 if (ssk != prev_ssk && prev_ssk) 1548 mptcp_push_release(prev_ssk, &info); 1549 if (!ssk) 1550 goto out; 1551 1552 /* Need to lock the new subflow only if different 1553 * from the previous one, otherwise we are still 1554 * helding the relevant lock 1555 */ 1556 if (ssk != prev_ssk) 1557 lock_sock(ssk); 1558 1559 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1560 if (ret <= 0) { 1561 mptcp_push_release(ssk, &info); 1562 goto out; 1563 } 1564 1565 info.sent += ret; 1566 copied += ret; 1567 len -= ret; 1568 1569 mptcp_update_post_push(msk, dfrag, ret); 1570 } 1571 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1572 } 1573 1574 /* at this point we held the socket lock for the last subflow we used */ 1575 if (ssk) 1576 mptcp_push_release(ssk, &info); 1577 1578 out: 1579 /* ensure the rtx timer is running */ 1580 if (!mptcp_timer_pending(sk)) 1581 mptcp_reset_timer(sk); 1582 if (copied) 1583 __mptcp_check_send_data_fin(sk); 1584 } 1585 1586 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk) 1587 { 1588 struct mptcp_sock *msk = mptcp_sk(sk); 1589 struct mptcp_sendmsg_info info = { 1590 .data_lock_held = true, 1591 }; 1592 struct mptcp_data_frag *dfrag; 1593 struct sock *xmit_ssk; 1594 int len, copied = 0; 1595 bool first = true; 1596 1597 info.flags = 0; 1598 while ((dfrag = mptcp_send_head(sk))) { 1599 info.sent = dfrag->already_sent; 1600 info.limit = dfrag->data_len; 1601 len = dfrag->data_len - dfrag->already_sent; 1602 while (len > 0) { 1603 int ret = 0; 1604 1605 /* the caller already invoked the packet scheduler, 1606 * check for a different subflow usage only after 1607 * spooling the first chunk of data 1608 */ 1609 xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk)); 1610 if (!xmit_ssk) 1611 goto out; 1612 if (xmit_ssk != ssk) { 1613 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), 1614 MPTCP_DELEGATE_SEND); 1615 goto out; 1616 } 1617 1618 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1619 if (ret <= 0) 1620 goto out; 1621 1622 info.sent += ret; 1623 copied += ret; 1624 len -= ret; 1625 first = false; 1626 1627 mptcp_update_post_push(msk, dfrag, ret); 1628 } 1629 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1630 } 1631 1632 out: 1633 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1634 * not going to flush it via release_sock() 1635 */ 1636 if (copied) { 1637 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1638 info.size_goal); 1639 if (!mptcp_timer_pending(sk)) 1640 mptcp_reset_timer(sk); 1641 1642 if (msk->snd_data_fin_enable && 1643 msk->snd_nxt + 1 == msk->write_seq) 1644 mptcp_schedule_work(sk); 1645 } 1646 } 1647 1648 static void mptcp_set_nospace(struct sock *sk) 1649 { 1650 /* enable autotune */ 1651 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1652 1653 /* will be cleared on avail space */ 1654 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1655 } 1656 1657 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1658 { 1659 struct mptcp_sock *msk = mptcp_sk(sk); 1660 struct page_frag *pfrag; 1661 size_t copied = 0; 1662 int ret = 0; 1663 long timeo; 1664 1665 /* we don't support FASTOPEN yet */ 1666 if (msg->msg_flags & MSG_FASTOPEN) 1667 return -EOPNOTSUPP; 1668 1669 /* silently ignore everything else */ 1670 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL; 1671 1672 lock_sock(sk); 1673 1674 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1675 1676 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1677 ret = sk_stream_wait_connect(sk, &timeo); 1678 if (ret) 1679 goto out; 1680 } 1681 1682 pfrag = sk_page_frag(sk); 1683 1684 while (msg_data_left(msg)) { 1685 int total_ts, frag_truesize = 0; 1686 struct mptcp_data_frag *dfrag; 1687 bool dfrag_collapsed; 1688 size_t psize, offset; 1689 1690 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) { 1691 ret = -EPIPE; 1692 goto out; 1693 } 1694 1695 /* reuse tail pfrag, if possible, or carve a new one from the 1696 * page allocator 1697 */ 1698 dfrag = mptcp_pending_tail(sk); 1699 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1700 if (!dfrag_collapsed) { 1701 if (!sk_stream_memory_free(sk)) 1702 goto wait_for_memory; 1703 1704 if (!mptcp_page_frag_refill(sk, pfrag)) 1705 goto wait_for_memory; 1706 1707 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1708 frag_truesize = dfrag->overhead; 1709 } 1710 1711 /* we do not bound vs wspace, to allow a single packet. 1712 * memory accounting will prevent execessive memory usage 1713 * anyway 1714 */ 1715 offset = dfrag->offset + dfrag->data_len; 1716 psize = pfrag->size - offset; 1717 psize = min_t(size_t, psize, msg_data_left(msg)); 1718 total_ts = psize + frag_truesize; 1719 1720 if (!sk_wmem_schedule(sk, total_ts)) 1721 goto wait_for_memory; 1722 1723 if (copy_page_from_iter(dfrag->page, offset, psize, 1724 &msg->msg_iter) != psize) { 1725 ret = -EFAULT; 1726 goto out; 1727 } 1728 1729 /* data successfully copied into the write queue */ 1730 sk->sk_forward_alloc -= total_ts; 1731 copied += psize; 1732 dfrag->data_len += psize; 1733 frag_truesize += psize; 1734 pfrag->offset += frag_truesize; 1735 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1736 1737 /* charge data on mptcp pending queue to the msk socket 1738 * Note: we charge such data both to sk and ssk 1739 */ 1740 sk_wmem_queued_add(sk, frag_truesize); 1741 if (!dfrag_collapsed) { 1742 get_page(dfrag->page); 1743 list_add_tail(&dfrag->list, &msk->rtx_queue); 1744 if (!msk->first_pending) 1745 WRITE_ONCE(msk->first_pending, dfrag); 1746 } 1747 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1748 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1749 !dfrag_collapsed); 1750 1751 continue; 1752 1753 wait_for_memory: 1754 mptcp_set_nospace(sk); 1755 __mptcp_push_pending(sk, msg->msg_flags); 1756 ret = sk_stream_wait_memory(sk, &timeo); 1757 if (ret) 1758 goto out; 1759 } 1760 1761 if (copied) 1762 __mptcp_push_pending(sk, msg->msg_flags); 1763 1764 out: 1765 release_sock(sk); 1766 return copied ? : ret; 1767 } 1768 1769 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1770 struct msghdr *msg, 1771 size_t len, int flags, 1772 struct scm_timestamping_internal *tss, 1773 int *cmsg_flags) 1774 { 1775 struct sk_buff *skb, *tmp; 1776 int copied = 0; 1777 1778 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1779 u32 offset = MPTCP_SKB_CB(skb)->offset; 1780 u32 data_len = skb->len - offset; 1781 u32 count = min_t(size_t, len - copied, data_len); 1782 int err; 1783 1784 if (!(flags & MSG_TRUNC)) { 1785 err = skb_copy_datagram_msg(skb, offset, msg, count); 1786 if (unlikely(err < 0)) { 1787 if (!copied) 1788 return err; 1789 break; 1790 } 1791 } 1792 1793 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1794 tcp_update_recv_tstamps(skb, tss); 1795 *cmsg_flags |= MPTCP_CMSG_TS; 1796 } 1797 1798 copied += count; 1799 1800 if (count < data_len) { 1801 if (!(flags & MSG_PEEK)) { 1802 MPTCP_SKB_CB(skb)->offset += count; 1803 MPTCP_SKB_CB(skb)->map_seq += count; 1804 } 1805 break; 1806 } 1807 1808 if (!(flags & MSG_PEEK)) { 1809 /* we will bulk release the skb memory later */ 1810 skb->destructor = NULL; 1811 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1812 __skb_unlink(skb, &msk->receive_queue); 1813 __kfree_skb(skb); 1814 } 1815 1816 if (copied >= len) 1817 break; 1818 } 1819 1820 return copied; 1821 } 1822 1823 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1824 * 1825 * Only difference: Use highest rtt estimate of the subflows in use. 1826 */ 1827 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1828 { 1829 struct mptcp_subflow_context *subflow; 1830 struct sock *sk = (struct sock *)msk; 1831 u32 time, advmss = 1; 1832 u64 rtt_us, mstamp; 1833 1834 sock_owned_by_me(sk); 1835 1836 if (copied <= 0) 1837 return; 1838 1839 msk->rcvq_space.copied += copied; 1840 1841 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1842 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1843 1844 rtt_us = msk->rcvq_space.rtt_us; 1845 if (rtt_us && time < (rtt_us >> 3)) 1846 return; 1847 1848 rtt_us = 0; 1849 mptcp_for_each_subflow(msk, subflow) { 1850 const struct tcp_sock *tp; 1851 u64 sf_rtt_us; 1852 u32 sf_advmss; 1853 1854 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1855 1856 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1857 sf_advmss = READ_ONCE(tp->advmss); 1858 1859 rtt_us = max(sf_rtt_us, rtt_us); 1860 advmss = max(sf_advmss, advmss); 1861 } 1862 1863 msk->rcvq_space.rtt_us = rtt_us; 1864 if (time < (rtt_us >> 3) || rtt_us == 0) 1865 return; 1866 1867 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1868 goto new_measure; 1869 1870 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 1871 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1872 int rcvmem, rcvbuf; 1873 u64 rcvwin, grow; 1874 1875 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1876 1877 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1878 1879 do_div(grow, msk->rcvq_space.space); 1880 rcvwin += (grow << 1); 1881 1882 rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER); 1883 while (tcp_win_from_space(sk, rcvmem) < advmss) 1884 rcvmem += 128; 1885 1886 do_div(rcvwin, advmss); 1887 rcvbuf = min_t(u64, rcvwin * rcvmem, 1888 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 1889 1890 if (rcvbuf > sk->sk_rcvbuf) { 1891 u32 window_clamp; 1892 1893 window_clamp = tcp_win_from_space(sk, rcvbuf); 1894 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 1895 1896 /* Make subflows follow along. If we do not do this, we 1897 * get drops at subflow level if skbs can't be moved to 1898 * the mptcp rx queue fast enough (announced rcv_win can 1899 * exceed ssk->sk_rcvbuf). 1900 */ 1901 mptcp_for_each_subflow(msk, subflow) { 1902 struct sock *ssk; 1903 bool slow; 1904 1905 ssk = mptcp_subflow_tcp_sock(subflow); 1906 slow = lock_sock_fast(ssk); 1907 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 1908 tcp_sk(ssk)->window_clamp = window_clamp; 1909 tcp_cleanup_rbuf(ssk, 1); 1910 unlock_sock_fast(ssk, slow); 1911 } 1912 } 1913 } 1914 1915 msk->rcvq_space.space = msk->rcvq_space.copied; 1916 new_measure: 1917 msk->rcvq_space.copied = 0; 1918 msk->rcvq_space.time = mstamp; 1919 } 1920 1921 static void __mptcp_update_rmem(struct sock *sk) 1922 { 1923 struct mptcp_sock *msk = mptcp_sk(sk); 1924 1925 if (!msk->rmem_released) 1926 return; 1927 1928 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 1929 mptcp_rmem_uncharge(sk, msk->rmem_released); 1930 WRITE_ONCE(msk->rmem_released, 0); 1931 } 1932 1933 static void __mptcp_splice_receive_queue(struct sock *sk) 1934 { 1935 struct mptcp_sock *msk = mptcp_sk(sk); 1936 1937 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 1938 } 1939 1940 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 1941 { 1942 struct sock *sk = (struct sock *)msk; 1943 unsigned int moved = 0; 1944 bool ret, done; 1945 1946 do { 1947 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 1948 bool slowpath; 1949 1950 /* we can have data pending in the subflows only if the msk 1951 * receive buffer was full at subflow_data_ready() time, 1952 * that is an unlikely slow path. 1953 */ 1954 if (likely(!ssk)) 1955 break; 1956 1957 slowpath = lock_sock_fast(ssk); 1958 mptcp_data_lock(sk); 1959 __mptcp_update_rmem(sk); 1960 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 1961 mptcp_data_unlock(sk); 1962 1963 if (unlikely(ssk->sk_err)) 1964 __mptcp_error_report(sk); 1965 unlock_sock_fast(ssk, slowpath); 1966 } while (!done); 1967 1968 /* acquire the data lock only if some input data is pending */ 1969 ret = moved > 0; 1970 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 1971 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 1972 mptcp_data_lock(sk); 1973 __mptcp_update_rmem(sk); 1974 ret |= __mptcp_ofo_queue(msk); 1975 __mptcp_splice_receive_queue(sk); 1976 mptcp_data_unlock(sk); 1977 } 1978 if (ret) 1979 mptcp_check_data_fin((struct sock *)msk); 1980 return !skb_queue_empty(&msk->receive_queue); 1981 } 1982 1983 static unsigned int mptcp_inq_hint(const struct sock *sk) 1984 { 1985 const struct mptcp_sock *msk = mptcp_sk(sk); 1986 const struct sk_buff *skb; 1987 1988 skb = skb_peek(&msk->receive_queue); 1989 if (skb) { 1990 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 1991 1992 if (hint_val >= INT_MAX) 1993 return INT_MAX; 1994 1995 return (unsigned int)hint_val; 1996 } 1997 1998 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1999 return 1; 2000 2001 return 0; 2002 } 2003 2004 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2005 int nonblock, int flags, int *addr_len) 2006 { 2007 struct mptcp_sock *msk = mptcp_sk(sk); 2008 struct scm_timestamping_internal tss; 2009 int copied = 0, cmsg_flags = 0; 2010 int target; 2011 long timeo; 2012 2013 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2014 if (unlikely(flags & MSG_ERRQUEUE)) 2015 return inet_recv_error(sk, msg, len, addr_len); 2016 2017 lock_sock(sk); 2018 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2019 copied = -ENOTCONN; 2020 goto out_err; 2021 } 2022 2023 timeo = sock_rcvtimeo(sk, nonblock); 2024 2025 len = min_t(size_t, len, INT_MAX); 2026 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2027 2028 if (unlikely(msk->recvmsg_inq)) 2029 cmsg_flags = MPTCP_CMSG_INQ; 2030 2031 while (copied < len) { 2032 int bytes_read; 2033 2034 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2035 if (unlikely(bytes_read < 0)) { 2036 if (!copied) 2037 copied = bytes_read; 2038 goto out_err; 2039 } 2040 2041 copied += bytes_read; 2042 2043 /* be sure to advertise window change */ 2044 mptcp_cleanup_rbuf(msk); 2045 2046 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2047 continue; 2048 2049 /* only the master socket status is relevant here. The exit 2050 * conditions mirror closely tcp_recvmsg() 2051 */ 2052 if (copied >= target) 2053 break; 2054 2055 if (copied) { 2056 if (sk->sk_err || 2057 sk->sk_state == TCP_CLOSE || 2058 (sk->sk_shutdown & RCV_SHUTDOWN) || 2059 !timeo || 2060 signal_pending(current)) 2061 break; 2062 } else { 2063 if (sk->sk_err) { 2064 copied = sock_error(sk); 2065 break; 2066 } 2067 2068 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2069 mptcp_check_for_eof(msk); 2070 2071 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2072 /* race breaker: the shutdown could be after the 2073 * previous receive queue check 2074 */ 2075 if (__mptcp_move_skbs(msk)) 2076 continue; 2077 break; 2078 } 2079 2080 if (sk->sk_state == TCP_CLOSE) { 2081 copied = -ENOTCONN; 2082 break; 2083 } 2084 2085 if (!timeo) { 2086 copied = -EAGAIN; 2087 break; 2088 } 2089 2090 if (signal_pending(current)) { 2091 copied = sock_intr_errno(timeo); 2092 break; 2093 } 2094 } 2095 2096 pr_debug("block timeout %ld", timeo); 2097 sk_wait_data(sk, &timeo, NULL); 2098 } 2099 2100 out_err: 2101 if (cmsg_flags && copied >= 0) { 2102 if (cmsg_flags & MPTCP_CMSG_TS) 2103 tcp_recv_timestamp(msg, sk, &tss); 2104 2105 if (cmsg_flags & MPTCP_CMSG_INQ) { 2106 unsigned int inq = mptcp_inq_hint(sk); 2107 2108 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2109 } 2110 } 2111 2112 pr_debug("msk=%p rx queue empty=%d:%d copied=%d", 2113 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2114 skb_queue_empty(&msk->receive_queue), copied); 2115 if (!(flags & MSG_PEEK)) 2116 mptcp_rcv_space_adjust(msk, copied); 2117 2118 release_sock(sk); 2119 return copied; 2120 } 2121 2122 static void mptcp_retransmit_timer(struct timer_list *t) 2123 { 2124 struct inet_connection_sock *icsk = from_timer(icsk, t, 2125 icsk_retransmit_timer); 2126 struct sock *sk = &icsk->icsk_inet.sk; 2127 struct mptcp_sock *msk = mptcp_sk(sk); 2128 2129 bh_lock_sock(sk); 2130 if (!sock_owned_by_user(sk)) { 2131 /* we need a process context to retransmit */ 2132 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2133 mptcp_schedule_work(sk); 2134 } else { 2135 /* delegate our work to tcp_release_cb() */ 2136 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2137 } 2138 bh_unlock_sock(sk); 2139 sock_put(sk); 2140 } 2141 2142 static void mptcp_timeout_timer(struct timer_list *t) 2143 { 2144 struct sock *sk = from_timer(sk, t, sk_timer); 2145 2146 mptcp_schedule_work(sk); 2147 sock_put(sk); 2148 } 2149 2150 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2151 * level. 2152 * 2153 * A backup subflow is returned only if that is the only kind available. 2154 */ 2155 static struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2156 { 2157 struct sock *backup = NULL, *pick = NULL; 2158 struct mptcp_subflow_context *subflow; 2159 int min_stale_count = INT_MAX; 2160 2161 sock_owned_by_me((const struct sock *)msk); 2162 2163 if (__mptcp_check_fallback(msk)) 2164 return NULL; 2165 2166 mptcp_for_each_subflow(msk, subflow) { 2167 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2168 2169 if (!__mptcp_subflow_active(subflow)) 2170 continue; 2171 2172 /* still data outstanding at TCP level? skip this */ 2173 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2174 mptcp_pm_subflow_chk_stale(msk, ssk); 2175 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2176 continue; 2177 } 2178 2179 if (subflow->backup) { 2180 if (!backup) 2181 backup = ssk; 2182 continue; 2183 } 2184 2185 if (!pick) 2186 pick = ssk; 2187 } 2188 2189 if (pick) 2190 return pick; 2191 2192 /* use backup only if there are no progresses anywhere */ 2193 return min_stale_count > 1 ? backup : NULL; 2194 } 2195 2196 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk) 2197 { 2198 if (msk->subflow) { 2199 iput(SOCK_INODE(msk->subflow)); 2200 msk->subflow = NULL; 2201 } 2202 } 2203 2204 bool __mptcp_retransmit_pending_data(struct sock *sk) 2205 { 2206 struct mptcp_data_frag *cur, *rtx_head; 2207 struct mptcp_sock *msk = mptcp_sk(sk); 2208 2209 if (__mptcp_check_fallback(mptcp_sk(sk))) 2210 return false; 2211 2212 if (tcp_rtx_and_write_queues_empty(sk)) 2213 return false; 2214 2215 /* the closing socket has some data untransmitted and/or unacked: 2216 * some data in the mptcp rtx queue has not really xmitted yet. 2217 * keep it simple and re-inject the whole mptcp level rtx queue 2218 */ 2219 mptcp_data_lock(sk); 2220 __mptcp_clean_una_wakeup(sk); 2221 rtx_head = mptcp_rtx_head(sk); 2222 if (!rtx_head) { 2223 mptcp_data_unlock(sk); 2224 return false; 2225 } 2226 2227 msk->recovery_snd_nxt = msk->snd_nxt; 2228 msk->recovery = true; 2229 mptcp_data_unlock(sk); 2230 2231 msk->first_pending = rtx_head; 2232 msk->snd_burst = 0; 2233 2234 /* be sure to clear the "sent status" on all re-injected fragments */ 2235 list_for_each_entry(cur, &msk->rtx_queue, list) { 2236 if (!cur->already_sent) 2237 break; 2238 cur->already_sent = 0; 2239 } 2240 2241 return true; 2242 } 2243 2244 /* flags for __mptcp_close_ssk() */ 2245 #define MPTCP_CF_PUSH BIT(1) 2246 #define MPTCP_CF_FASTCLOSE BIT(2) 2247 2248 /* subflow sockets can be either outgoing (connect) or incoming 2249 * (accept). 2250 * 2251 * Outgoing subflows use in-kernel sockets. 2252 * Incoming subflows do not have their own 'struct socket' allocated, 2253 * so we need to use tcp_close() after detaching them from the mptcp 2254 * parent socket. 2255 */ 2256 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2257 struct mptcp_subflow_context *subflow, 2258 unsigned int flags) 2259 { 2260 struct mptcp_sock *msk = mptcp_sk(sk); 2261 bool need_push, dispose_it; 2262 2263 dispose_it = !msk->subflow || ssk != msk->subflow->sk; 2264 if (dispose_it) 2265 list_del(&subflow->node); 2266 2267 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2268 2269 if (flags & MPTCP_CF_FASTCLOSE) 2270 subflow->send_fastclose = 1; 2271 2272 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2273 if (!dispose_it) { 2274 tcp_disconnect(ssk, 0); 2275 msk->subflow->state = SS_UNCONNECTED; 2276 mptcp_subflow_ctx_reset(subflow); 2277 release_sock(ssk); 2278 2279 goto out; 2280 } 2281 2282 /* if we are invoked by the msk cleanup code, the subflow is 2283 * already orphaned 2284 */ 2285 if (ssk->sk_socket) 2286 sock_orphan(ssk); 2287 2288 subflow->disposable = 1; 2289 2290 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2291 * the ssk has been already destroyed, we just need to release the 2292 * reference owned by msk; 2293 */ 2294 if (!inet_csk(ssk)->icsk_ulp_ops) { 2295 kfree_rcu(subflow, rcu); 2296 } else { 2297 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2298 __tcp_close(ssk, 0); 2299 2300 /* close acquired an extra ref */ 2301 __sock_put(ssk); 2302 } 2303 release_sock(ssk); 2304 2305 sock_put(ssk); 2306 2307 if (ssk == msk->first) 2308 msk->first = NULL; 2309 2310 out: 2311 if (ssk == msk->last_snd) 2312 msk->last_snd = NULL; 2313 2314 if (need_push) 2315 __mptcp_push_pending(sk, 0); 2316 } 2317 2318 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2319 struct mptcp_subflow_context *subflow) 2320 { 2321 if (sk->sk_state == TCP_ESTABLISHED) 2322 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2323 2324 /* subflow aborted before reaching the fully_established status 2325 * attempt the creation of the next subflow 2326 */ 2327 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow); 2328 2329 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2330 } 2331 2332 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2333 { 2334 return 0; 2335 } 2336 2337 static void __mptcp_close_subflow(struct mptcp_sock *msk) 2338 { 2339 struct mptcp_subflow_context *subflow, *tmp; 2340 2341 might_sleep(); 2342 2343 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { 2344 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2345 2346 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2347 continue; 2348 2349 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2350 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2351 continue; 2352 2353 mptcp_close_ssk((struct sock *)msk, ssk, subflow); 2354 } 2355 } 2356 2357 static bool mptcp_check_close_timeout(const struct sock *sk) 2358 { 2359 s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp; 2360 struct mptcp_subflow_context *subflow; 2361 2362 if (delta >= TCP_TIMEWAIT_LEN) 2363 return true; 2364 2365 /* if all subflows are in closed status don't bother with additional 2366 * timeout 2367 */ 2368 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2369 if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) != 2370 TCP_CLOSE) 2371 return false; 2372 } 2373 return true; 2374 } 2375 2376 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2377 { 2378 struct mptcp_subflow_context *subflow, *tmp; 2379 struct sock *sk = &msk->sk.icsk_inet.sk; 2380 2381 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2382 return; 2383 2384 mptcp_token_destroy(msk); 2385 2386 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { 2387 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2388 bool slow; 2389 2390 slow = lock_sock_fast(tcp_sk); 2391 if (tcp_sk->sk_state != TCP_CLOSE) { 2392 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2393 tcp_set_state(tcp_sk, TCP_CLOSE); 2394 } 2395 unlock_sock_fast(tcp_sk, slow); 2396 } 2397 2398 inet_sk_state_store(sk, TCP_CLOSE); 2399 sk->sk_shutdown = SHUTDOWN_MASK; 2400 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2401 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2402 2403 mptcp_close_wake_up(sk); 2404 } 2405 2406 static void __mptcp_retrans(struct sock *sk) 2407 { 2408 struct mptcp_sock *msk = mptcp_sk(sk); 2409 struct mptcp_sendmsg_info info = {}; 2410 struct mptcp_data_frag *dfrag; 2411 size_t copied = 0; 2412 struct sock *ssk; 2413 int ret; 2414 2415 mptcp_clean_una_wakeup(sk); 2416 2417 /* first check ssk: need to kick "stale" logic */ 2418 ssk = mptcp_subflow_get_retrans(msk); 2419 dfrag = mptcp_rtx_head(sk); 2420 if (!dfrag) { 2421 if (mptcp_data_fin_enabled(msk)) { 2422 struct inet_connection_sock *icsk = inet_csk(sk); 2423 2424 icsk->icsk_retransmits++; 2425 mptcp_set_datafin_timeout(sk); 2426 mptcp_send_ack(msk); 2427 2428 goto reset_timer; 2429 } 2430 2431 if (!mptcp_send_head(sk)) 2432 return; 2433 2434 goto reset_timer; 2435 } 2436 2437 if (!ssk) 2438 goto reset_timer; 2439 2440 lock_sock(ssk); 2441 2442 /* limit retransmission to the bytes already sent on some subflows */ 2443 info.sent = 0; 2444 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : dfrag->already_sent; 2445 while (info.sent < info.limit) { 2446 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2447 if (ret <= 0) 2448 break; 2449 2450 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2451 copied += ret; 2452 info.sent += ret; 2453 } 2454 if (copied) { 2455 dfrag->already_sent = max(dfrag->already_sent, info.sent); 2456 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2457 info.size_goal); 2458 } 2459 2460 release_sock(ssk); 2461 2462 reset_timer: 2463 mptcp_check_and_set_pending(sk); 2464 2465 if (!mptcp_timer_pending(sk)) 2466 mptcp_reset_timer(sk); 2467 } 2468 2469 static void mptcp_worker(struct work_struct *work) 2470 { 2471 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2472 struct sock *sk = &msk->sk.icsk_inet.sk; 2473 int state; 2474 2475 lock_sock(sk); 2476 state = sk->sk_state; 2477 if (unlikely(state == TCP_CLOSE)) 2478 goto unlock; 2479 2480 mptcp_check_data_fin_ack(sk); 2481 2482 mptcp_check_fastclose(msk); 2483 2484 mptcp_pm_nl_work(msk); 2485 2486 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2487 mptcp_check_for_eof(msk); 2488 2489 __mptcp_check_send_data_fin(sk); 2490 mptcp_check_data_fin(sk); 2491 2492 /* There is no point in keeping around an orphaned sk timedout or 2493 * closed, but we need the msk around to reply to incoming DATA_FIN, 2494 * even if it is orphaned and in FIN_WAIT2 state 2495 */ 2496 if (sock_flag(sk, SOCK_DEAD) && 2497 (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) { 2498 inet_sk_state_store(sk, TCP_CLOSE); 2499 __mptcp_destroy_sock(sk); 2500 goto unlock; 2501 } 2502 2503 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2504 __mptcp_close_subflow(msk); 2505 2506 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2507 __mptcp_retrans(sk); 2508 2509 unlock: 2510 release_sock(sk); 2511 sock_put(sk); 2512 } 2513 2514 static int __mptcp_init_sock(struct sock *sk) 2515 { 2516 struct mptcp_sock *msk = mptcp_sk(sk); 2517 2518 INIT_LIST_HEAD(&msk->conn_list); 2519 INIT_LIST_HEAD(&msk->join_list); 2520 INIT_LIST_HEAD(&msk->rtx_queue); 2521 INIT_WORK(&msk->work, mptcp_worker); 2522 __skb_queue_head_init(&msk->receive_queue); 2523 msk->out_of_order_queue = RB_ROOT; 2524 msk->first_pending = NULL; 2525 msk->rmem_fwd_alloc = 0; 2526 WRITE_ONCE(msk->rmem_released, 0); 2527 msk->timer_ival = TCP_RTO_MIN; 2528 2529 msk->first = NULL; 2530 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2531 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2532 msk->recovery = false; 2533 2534 mptcp_pm_data_init(msk); 2535 2536 /* re-use the csk retrans timer for MPTCP-level retrans */ 2537 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2538 timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0); 2539 2540 return 0; 2541 } 2542 2543 static void mptcp_ca_reset(struct sock *sk) 2544 { 2545 struct inet_connection_sock *icsk = inet_csk(sk); 2546 2547 tcp_assign_congestion_control(sk); 2548 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2549 2550 /* no need to keep a reference to the ops, the name will suffice */ 2551 tcp_cleanup_congestion_control(sk); 2552 icsk->icsk_ca_ops = NULL; 2553 } 2554 2555 static int mptcp_init_sock(struct sock *sk) 2556 { 2557 struct net *net = sock_net(sk); 2558 int ret; 2559 2560 ret = __mptcp_init_sock(sk); 2561 if (ret) 2562 return ret; 2563 2564 if (!mptcp_is_enabled(net)) 2565 return -ENOPROTOOPT; 2566 2567 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2568 return -ENOMEM; 2569 2570 ret = __mptcp_socket_create(mptcp_sk(sk)); 2571 if (ret) 2572 return ret; 2573 2574 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2575 * propagate the correct value 2576 */ 2577 mptcp_ca_reset(sk); 2578 2579 sk_sockets_allocated_inc(sk); 2580 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 2581 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 2582 2583 return 0; 2584 } 2585 2586 static void __mptcp_clear_xmit(struct sock *sk) 2587 { 2588 struct mptcp_sock *msk = mptcp_sk(sk); 2589 struct mptcp_data_frag *dtmp, *dfrag; 2590 2591 WRITE_ONCE(msk->first_pending, NULL); 2592 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2593 dfrag_clear(sk, dfrag); 2594 } 2595 2596 static void mptcp_cancel_work(struct sock *sk) 2597 { 2598 struct mptcp_sock *msk = mptcp_sk(sk); 2599 2600 if (cancel_work_sync(&msk->work)) 2601 __sock_put(sk); 2602 } 2603 2604 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2605 { 2606 lock_sock(ssk); 2607 2608 switch (ssk->sk_state) { 2609 case TCP_LISTEN: 2610 if (!(how & RCV_SHUTDOWN)) 2611 break; 2612 fallthrough; 2613 case TCP_SYN_SENT: 2614 tcp_disconnect(ssk, O_NONBLOCK); 2615 break; 2616 default: 2617 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2618 pr_debug("Fallback"); 2619 ssk->sk_shutdown |= how; 2620 tcp_shutdown(ssk, how); 2621 } else { 2622 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2623 tcp_send_ack(ssk); 2624 if (!mptcp_timer_pending(sk)) 2625 mptcp_reset_timer(sk); 2626 } 2627 break; 2628 } 2629 2630 release_sock(ssk); 2631 } 2632 2633 static const unsigned char new_state[16] = { 2634 /* current state: new state: action: */ 2635 [0 /* (Invalid) */] = TCP_CLOSE, 2636 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2637 [TCP_SYN_SENT] = TCP_CLOSE, 2638 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2639 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2640 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2641 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2642 [TCP_CLOSE] = TCP_CLOSE, 2643 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2644 [TCP_LAST_ACK] = TCP_LAST_ACK, 2645 [TCP_LISTEN] = TCP_CLOSE, 2646 [TCP_CLOSING] = TCP_CLOSING, 2647 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2648 }; 2649 2650 static int mptcp_close_state(struct sock *sk) 2651 { 2652 int next = (int)new_state[sk->sk_state]; 2653 int ns = next & TCP_STATE_MASK; 2654 2655 inet_sk_state_store(sk, ns); 2656 2657 return next & TCP_ACTION_FIN; 2658 } 2659 2660 static void __mptcp_check_send_data_fin(struct sock *sk) 2661 { 2662 struct mptcp_subflow_context *subflow; 2663 struct mptcp_sock *msk = mptcp_sk(sk); 2664 2665 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2666 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2667 msk->snd_nxt, msk->write_seq); 2668 2669 /* we still need to enqueue subflows or not really shutting down, 2670 * skip this 2671 */ 2672 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2673 mptcp_send_head(sk)) 2674 return; 2675 2676 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2677 2678 /* fallback socket will not get data_fin/ack, can move to the next 2679 * state now 2680 */ 2681 if (__mptcp_check_fallback(msk)) { 2682 WRITE_ONCE(msk->snd_una, msk->write_seq); 2683 if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { 2684 inet_sk_state_store(sk, TCP_CLOSE); 2685 mptcp_close_wake_up(sk); 2686 } else if (sk->sk_state == TCP_FIN_WAIT1) { 2687 inet_sk_state_store(sk, TCP_FIN_WAIT2); 2688 } 2689 } 2690 2691 mptcp_for_each_subflow(msk, subflow) { 2692 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2693 2694 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2695 } 2696 } 2697 2698 static void __mptcp_wr_shutdown(struct sock *sk) 2699 { 2700 struct mptcp_sock *msk = mptcp_sk(sk); 2701 2702 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2703 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2704 !!mptcp_send_head(sk)); 2705 2706 /* will be ignored by fallback sockets */ 2707 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2708 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2709 2710 __mptcp_check_send_data_fin(sk); 2711 } 2712 2713 static void __mptcp_destroy_sock(struct sock *sk) 2714 { 2715 struct mptcp_subflow_context *subflow, *tmp; 2716 struct mptcp_sock *msk = mptcp_sk(sk); 2717 LIST_HEAD(conn_list); 2718 2719 pr_debug("msk=%p", msk); 2720 2721 might_sleep(); 2722 2723 /* join list will be eventually flushed (with rst) at sock lock release time*/ 2724 list_splice_init(&msk->conn_list, &conn_list); 2725 2726 sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer); 2727 sk_stop_timer(sk, &sk->sk_timer); 2728 msk->pm.status = 0; 2729 2730 /* clears msk->subflow, allowing the following loop to close 2731 * even the initial subflow 2732 */ 2733 mptcp_dispose_initial_subflow(msk); 2734 list_for_each_entry_safe(subflow, tmp, &conn_list, node) { 2735 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2736 __mptcp_close_ssk(sk, ssk, subflow, 0); 2737 } 2738 2739 sk->sk_prot->destroy(sk); 2740 2741 WARN_ON_ONCE(msk->rmem_fwd_alloc); 2742 WARN_ON_ONCE(msk->rmem_released); 2743 sk_stream_kill_queues(sk); 2744 xfrm_sk_free_policy(sk); 2745 2746 sk_refcnt_debug_release(sk); 2747 sock_put(sk); 2748 } 2749 2750 static void mptcp_close(struct sock *sk, long timeout) 2751 { 2752 struct mptcp_subflow_context *subflow; 2753 bool do_cancel_work = false; 2754 2755 lock_sock(sk); 2756 sk->sk_shutdown = SHUTDOWN_MASK; 2757 2758 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 2759 inet_sk_state_store(sk, TCP_CLOSE); 2760 goto cleanup; 2761 } 2762 2763 if (mptcp_close_state(sk)) 2764 __mptcp_wr_shutdown(sk); 2765 2766 sk_stream_wait_close(sk, timeout); 2767 2768 cleanup: 2769 /* orphan all the subflows */ 2770 inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32; 2771 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2772 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2773 bool slow = lock_sock_fast_nested(ssk); 2774 2775 sock_orphan(ssk); 2776 unlock_sock_fast(ssk, slow); 2777 } 2778 sock_orphan(sk); 2779 2780 sock_hold(sk); 2781 pr_debug("msk=%p state=%d", sk, sk->sk_state); 2782 if (mptcp_sk(sk)->token) 2783 mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL); 2784 2785 if (sk->sk_state == TCP_CLOSE) { 2786 __mptcp_destroy_sock(sk); 2787 do_cancel_work = true; 2788 } else { 2789 sk_reset_timer(sk, &sk->sk_timer, jiffies + TCP_TIMEWAIT_LEN); 2790 } 2791 release_sock(sk); 2792 if (do_cancel_work) 2793 mptcp_cancel_work(sk); 2794 2795 sock_put(sk); 2796 } 2797 2798 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 2799 { 2800 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2801 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 2802 struct ipv6_pinfo *msk6 = inet6_sk(msk); 2803 2804 msk->sk_v6_daddr = ssk->sk_v6_daddr; 2805 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 2806 2807 if (msk6 && ssk6) { 2808 msk6->saddr = ssk6->saddr; 2809 msk6->flow_label = ssk6->flow_label; 2810 } 2811 #endif 2812 2813 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 2814 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 2815 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 2816 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 2817 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 2818 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 2819 } 2820 2821 static int mptcp_disconnect(struct sock *sk, int flags) 2822 { 2823 struct mptcp_subflow_context *subflow; 2824 struct mptcp_sock *msk = mptcp_sk(sk); 2825 2826 inet_sk_state_store(sk, TCP_CLOSE); 2827 2828 mptcp_for_each_subflow(msk, subflow) { 2829 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2830 2831 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_FASTCLOSE); 2832 } 2833 2834 sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer); 2835 sk_stop_timer(sk, &sk->sk_timer); 2836 2837 if (mptcp_sk(sk)->token) 2838 mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL); 2839 2840 mptcp_destroy_common(msk); 2841 msk->last_snd = NULL; 2842 WRITE_ONCE(msk->flags, 0); 2843 msk->cb_flags = 0; 2844 msk->push_pending = 0; 2845 msk->recovery = false; 2846 msk->can_ack = false; 2847 msk->fully_established = false; 2848 msk->rcv_data_fin = false; 2849 msk->snd_data_fin_enable = false; 2850 msk->rcv_fastclose = false; 2851 msk->use_64bit_ack = false; 2852 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2853 mptcp_pm_data_reset(msk); 2854 mptcp_ca_reset(sk); 2855 2856 sk->sk_shutdown = 0; 2857 sk_error_report(sk); 2858 return 0; 2859 } 2860 2861 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2862 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 2863 { 2864 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 2865 2866 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 2867 } 2868 #endif 2869 2870 struct sock *mptcp_sk_clone(const struct sock *sk, 2871 const struct mptcp_options_received *mp_opt, 2872 struct request_sock *req) 2873 { 2874 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 2875 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 2876 struct mptcp_sock *msk; 2877 u64 ack_seq; 2878 2879 if (!nsk) 2880 return NULL; 2881 2882 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2883 if (nsk->sk_family == AF_INET6) 2884 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 2885 #endif 2886 2887 __mptcp_init_sock(nsk); 2888 2889 msk = mptcp_sk(nsk); 2890 msk->local_key = subflow_req->local_key; 2891 msk->token = subflow_req->token; 2892 msk->subflow = NULL; 2893 WRITE_ONCE(msk->fully_established, false); 2894 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 2895 WRITE_ONCE(msk->csum_enabled, true); 2896 2897 msk->write_seq = subflow_req->idsn + 1; 2898 msk->snd_nxt = msk->write_seq; 2899 msk->snd_una = msk->write_seq; 2900 msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd; 2901 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 2902 2903 if (mp_opt->suboptions & OPTIONS_MPTCP_MPC) { 2904 msk->can_ack = true; 2905 msk->remote_key = mp_opt->sndr_key; 2906 mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq); 2907 ack_seq++; 2908 WRITE_ONCE(msk->ack_seq, ack_seq); 2909 WRITE_ONCE(msk->rcv_wnd_sent, ack_seq); 2910 } 2911 2912 sock_reset_flag(nsk, SOCK_RCU_FREE); 2913 /* will be fully established after successful MPC subflow creation */ 2914 inet_sk_state_store(nsk, TCP_SYN_RECV); 2915 2916 security_inet_csk_clone(nsk, req); 2917 bh_unlock_sock(nsk); 2918 2919 /* keep a single reference */ 2920 __sock_put(nsk); 2921 return nsk; 2922 } 2923 2924 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 2925 { 2926 const struct tcp_sock *tp = tcp_sk(ssk); 2927 2928 msk->rcvq_space.copied = 0; 2929 msk->rcvq_space.rtt_us = 0; 2930 2931 msk->rcvq_space.time = tp->tcp_mstamp; 2932 2933 /* initial rcv_space offering made to peer */ 2934 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 2935 TCP_INIT_CWND * tp->advmss); 2936 if (msk->rcvq_space.space == 0) 2937 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 2938 2939 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 2940 } 2941 2942 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err, 2943 bool kern) 2944 { 2945 struct mptcp_sock *msk = mptcp_sk(sk); 2946 struct socket *listener; 2947 struct sock *newsk; 2948 2949 listener = __mptcp_nmpc_socket(msk); 2950 if (WARN_ON_ONCE(!listener)) { 2951 *err = -EINVAL; 2952 return NULL; 2953 } 2954 2955 pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk)); 2956 newsk = inet_csk_accept(listener->sk, flags, err, kern); 2957 if (!newsk) 2958 return NULL; 2959 2960 pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk)); 2961 if (sk_is_mptcp(newsk)) { 2962 struct mptcp_subflow_context *subflow; 2963 struct sock *new_mptcp_sock; 2964 2965 subflow = mptcp_subflow_ctx(newsk); 2966 new_mptcp_sock = subflow->conn; 2967 2968 /* is_mptcp should be false if subflow->conn is missing, see 2969 * subflow_syn_recv_sock() 2970 */ 2971 if (WARN_ON_ONCE(!new_mptcp_sock)) { 2972 tcp_sk(newsk)->is_mptcp = 0; 2973 goto out; 2974 } 2975 2976 /* acquire the 2nd reference for the owning socket */ 2977 sock_hold(new_mptcp_sock); 2978 newsk = new_mptcp_sock; 2979 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 2980 } else { 2981 MPTCP_INC_STATS(sock_net(sk), 2982 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 2983 } 2984 2985 out: 2986 newsk->sk_kern_sock = kern; 2987 return newsk; 2988 } 2989 2990 void mptcp_destroy_common(struct mptcp_sock *msk) 2991 { 2992 struct sock *sk = (struct sock *)msk; 2993 2994 __mptcp_clear_xmit(sk); 2995 2996 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 2997 mptcp_data_lock(sk); 2998 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 2999 __skb_queue_purge(&sk->sk_receive_queue); 3000 skb_rbtree_purge(&msk->out_of_order_queue); 3001 mptcp_data_unlock(sk); 3002 3003 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3004 * inet_sock_destruct() will dispose it 3005 */ 3006 sk->sk_forward_alloc += msk->rmem_fwd_alloc; 3007 msk->rmem_fwd_alloc = 0; 3008 mptcp_token_destroy(msk); 3009 mptcp_pm_free_anno_list(msk); 3010 } 3011 3012 static void mptcp_destroy(struct sock *sk) 3013 { 3014 struct mptcp_sock *msk = mptcp_sk(sk); 3015 3016 mptcp_destroy_common(msk); 3017 sk_sockets_allocated_dec(sk); 3018 } 3019 3020 void __mptcp_data_acked(struct sock *sk) 3021 { 3022 if (!sock_owned_by_user(sk)) 3023 __mptcp_clean_una(sk); 3024 else 3025 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3026 3027 if (mptcp_pending_data_fin_ack(sk)) 3028 mptcp_schedule_work(sk); 3029 } 3030 3031 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3032 { 3033 if (!mptcp_send_head(sk)) 3034 return; 3035 3036 if (!sock_owned_by_user(sk)) { 3037 struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk)); 3038 3039 if (xmit_ssk == ssk) 3040 __mptcp_subflow_push_pending(sk, ssk); 3041 else if (xmit_ssk) 3042 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk), MPTCP_DELEGATE_SEND); 3043 } else { 3044 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3045 } 3046 } 3047 3048 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3049 BIT(MPTCP_RETRANSMIT) | \ 3050 BIT(MPTCP_FLUSH_JOIN_LIST)) 3051 3052 /* processes deferred events and flush wmem */ 3053 static void mptcp_release_cb(struct sock *sk) 3054 __must_hold(&sk->sk_lock.slock) 3055 { 3056 struct mptcp_sock *msk = mptcp_sk(sk); 3057 3058 for (;;) { 3059 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED) | 3060 msk->push_pending; 3061 if (!flags) 3062 break; 3063 3064 /* the following actions acquire the subflow socket lock 3065 * 3066 * 1) can't be invoked in atomic scope 3067 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3068 * datapath acquires the msk socket spinlock while helding 3069 * the subflow socket lock 3070 */ 3071 msk->push_pending = 0; 3072 msk->cb_flags &= ~flags; 3073 spin_unlock_bh(&sk->sk_lock.slock); 3074 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3075 __mptcp_flush_join_list(sk); 3076 if (flags & BIT(MPTCP_PUSH_PENDING)) 3077 __mptcp_push_pending(sk, 0); 3078 if (flags & BIT(MPTCP_RETRANSMIT)) 3079 __mptcp_retrans(sk); 3080 3081 cond_resched(); 3082 spin_lock_bh(&sk->sk_lock.slock); 3083 } 3084 3085 /* be sure to set the current sk state before tacking actions 3086 * depending on sk_state 3087 */ 3088 if (__test_and_clear_bit(MPTCP_CONNECTED, &msk->cb_flags)) 3089 __mptcp_set_connected(sk); 3090 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3091 __mptcp_clean_una_wakeup(sk); 3092 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3093 __mptcp_error_report(sk); 3094 3095 __mptcp_update_rmem(sk); 3096 } 3097 3098 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3099 * TCP can't schedule delack timer before the subflow is fully established. 3100 * MPTCP uses the delack timer to do 3rd ack retransmissions 3101 */ 3102 static void schedule_3rdack_retransmission(struct sock *ssk) 3103 { 3104 struct inet_connection_sock *icsk = inet_csk(ssk); 3105 struct tcp_sock *tp = tcp_sk(ssk); 3106 unsigned long timeout; 3107 3108 if (mptcp_subflow_ctx(ssk)->fully_established) 3109 return; 3110 3111 /* reschedule with a timeout above RTT, as we must look only for drop */ 3112 if (tp->srtt_us) 3113 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3114 else 3115 timeout = TCP_TIMEOUT_INIT; 3116 timeout += jiffies; 3117 3118 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3119 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3120 icsk->icsk_ack.timeout = timeout; 3121 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3122 } 3123 3124 void mptcp_subflow_process_delegated(struct sock *ssk) 3125 { 3126 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3127 struct sock *sk = subflow->conn; 3128 3129 if (test_bit(MPTCP_DELEGATE_SEND, &subflow->delegated_status)) { 3130 mptcp_data_lock(sk); 3131 if (!sock_owned_by_user(sk)) 3132 __mptcp_subflow_push_pending(sk, ssk); 3133 else 3134 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3135 mptcp_data_unlock(sk); 3136 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_SEND); 3137 } 3138 if (test_bit(MPTCP_DELEGATE_ACK, &subflow->delegated_status)) { 3139 schedule_3rdack_retransmission(ssk); 3140 mptcp_subflow_delegated_done(subflow, MPTCP_DELEGATE_ACK); 3141 } 3142 } 3143 3144 static int mptcp_hash(struct sock *sk) 3145 { 3146 /* should never be called, 3147 * we hash the TCP subflows not the master socket 3148 */ 3149 WARN_ON_ONCE(1); 3150 return 0; 3151 } 3152 3153 static void mptcp_unhash(struct sock *sk) 3154 { 3155 /* called from sk_common_release(), but nothing to do here */ 3156 } 3157 3158 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3159 { 3160 struct mptcp_sock *msk = mptcp_sk(sk); 3161 struct socket *ssock; 3162 3163 ssock = __mptcp_nmpc_socket(msk); 3164 pr_debug("msk=%p, subflow=%p", msk, ssock); 3165 if (WARN_ON_ONCE(!ssock)) 3166 return -EINVAL; 3167 3168 return inet_csk_get_port(ssock->sk, snum); 3169 } 3170 3171 void mptcp_finish_connect(struct sock *ssk) 3172 { 3173 struct mptcp_subflow_context *subflow; 3174 struct mptcp_sock *msk; 3175 struct sock *sk; 3176 u64 ack_seq; 3177 3178 subflow = mptcp_subflow_ctx(ssk); 3179 sk = subflow->conn; 3180 msk = mptcp_sk(sk); 3181 3182 pr_debug("msk=%p, token=%u", sk, subflow->token); 3183 3184 mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq); 3185 ack_seq++; 3186 subflow->map_seq = ack_seq; 3187 subflow->map_subflow_seq = 1; 3188 3189 /* the socket is not connected yet, no msk/subflow ops can access/race 3190 * accessing the field below 3191 */ 3192 WRITE_ONCE(msk->remote_key, subflow->remote_key); 3193 WRITE_ONCE(msk->local_key, subflow->local_key); 3194 WRITE_ONCE(msk->write_seq, subflow->idsn + 1); 3195 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3196 WRITE_ONCE(msk->ack_seq, ack_seq); 3197 WRITE_ONCE(msk->rcv_wnd_sent, ack_seq); 3198 WRITE_ONCE(msk->can_ack, 1); 3199 WRITE_ONCE(msk->snd_una, msk->write_seq); 3200 3201 mptcp_pm_new_connection(msk, ssk, 0); 3202 3203 mptcp_rcv_space_init(msk, ssk); 3204 } 3205 3206 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3207 { 3208 write_lock_bh(&sk->sk_callback_lock); 3209 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3210 sk_set_socket(sk, parent); 3211 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3212 write_unlock_bh(&sk->sk_callback_lock); 3213 } 3214 3215 bool mptcp_finish_join(struct sock *ssk) 3216 { 3217 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3218 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3219 struct sock *parent = (void *)msk; 3220 bool ret = true; 3221 3222 pr_debug("msk=%p, subflow=%p", msk, subflow); 3223 3224 /* mptcp socket already closing? */ 3225 if (!mptcp_is_fully_established(parent)) { 3226 subflow->reset_reason = MPTCP_RST_EMPTCP; 3227 return false; 3228 } 3229 3230 if (!msk->pm.server_side) 3231 goto out; 3232 3233 if (!mptcp_pm_allow_new_subflow(msk)) 3234 goto err_prohibited; 3235 3236 if (WARN_ON_ONCE(!list_empty(&subflow->node))) 3237 goto err_prohibited; 3238 3239 /* active connections are already on conn_list. 3240 * If we can't acquire msk socket lock here, let the release callback 3241 * handle it 3242 */ 3243 mptcp_data_lock(parent); 3244 if (!sock_owned_by_user(parent)) { 3245 ret = __mptcp_finish_join(msk, ssk); 3246 if (ret) { 3247 sock_hold(ssk); 3248 list_add_tail(&subflow->node, &msk->conn_list); 3249 } 3250 } else { 3251 sock_hold(ssk); 3252 list_add_tail(&subflow->node, &msk->join_list); 3253 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3254 } 3255 mptcp_data_unlock(parent); 3256 3257 if (!ret) { 3258 err_prohibited: 3259 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3260 return false; 3261 } 3262 3263 subflow->map_seq = READ_ONCE(msk->ack_seq); 3264 3265 out: 3266 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 3267 return true; 3268 } 3269 3270 static void mptcp_shutdown(struct sock *sk, int how) 3271 { 3272 pr_debug("sk=%p, how=%d", sk, how); 3273 3274 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3275 __mptcp_wr_shutdown(sk); 3276 } 3277 3278 static int mptcp_forward_alloc_get(const struct sock *sk) 3279 { 3280 return sk->sk_forward_alloc + mptcp_sk(sk)->rmem_fwd_alloc; 3281 } 3282 3283 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3284 { 3285 const struct sock *sk = (void *)msk; 3286 u64 delta; 3287 3288 if (sk->sk_state == TCP_LISTEN) 3289 return -EINVAL; 3290 3291 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3292 return 0; 3293 3294 delta = msk->write_seq - v; 3295 if (delta > INT_MAX) 3296 delta = INT_MAX; 3297 3298 return (int)delta; 3299 } 3300 3301 static int mptcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 3302 { 3303 struct mptcp_sock *msk = mptcp_sk(sk); 3304 bool slow; 3305 int answ; 3306 3307 switch (cmd) { 3308 case SIOCINQ: 3309 if (sk->sk_state == TCP_LISTEN) 3310 return -EINVAL; 3311 3312 lock_sock(sk); 3313 __mptcp_move_skbs(msk); 3314 answ = mptcp_inq_hint(sk); 3315 release_sock(sk); 3316 break; 3317 case SIOCOUTQ: 3318 slow = lock_sock_fast(sk); 3319 answ = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3320 unlock_sock_fast(sk, slow); 3321 break; 3322 case SIOCOUTQNSD: 3323 slow = lock_sock_fast(sk); 3324 answ = mptcp_ioctl_outq(msk, msk->snd_nxt); 3325 unlock_sock_fast(sk, slow); 3326 break; 3327 default: 3328 return -ENOIOCTLCMD; 3329 } 3330 3331 return put_user(answ, (int __user *)arg); 3332 } 3333 3334 static struct proto mptcp_prot = { 3335 .name = "MPTCP", 3336 .owner = THIS_MODULE, 3337 .init = mptcp_init_sock, 3338 .disconnect = mptcp_disconnect, 3339 .close = mptcp_close, 3340 .accept = mptcp_accept, 3341 .setsockopt = mptcp_setsockopt, 3342 .getsockopt = mptcp_getsockopt, 3343 .shutdown = mptcp_shutdown, 3344 .destroy = mptcp_destroy, 3345 .sendmsg = mptcp_sendmsg, 3346 .ioctl = mptcp_ioctl, 3347 .recvmsg = mptcp_recvmsg, 3348 .release_cb = mptcp_release_cb, 3349 .hash = mptcp_hash, 3350 .unhash = mptcp_unhash, 3351 .get_port = mptcp_get_port, 3352 .forward_alloc_get = mptcp_forward_alloc_get, 3353 .sockets_allocated = &mptcp_sockets_allocated, 3354 .memory_allocated = &tcp_memory_allocated, 3355 .memory_pressure = &tcp_memory_pressure, 3356 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3357 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3358 .sysctl_mem = sysctl_tcp_mem, 3359 .obj_size = sizeof(struct mptcp_sock), 3360 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3361 .no_autobind = true, 3362 }; 3363 3364 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3365 { 3366 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3367 struct socket *ssock; 3368 int err; 3369 3370 lock_sock(sock->sk); 3371 ssock = __mptcp_nmpc_socket(msk); 3372 if (!ssock) { 3373 err = -EINVAL; 3374 goto unlock; 3375 } 3376 3377 err = ssock->ops->bind(ssock, uaddr, addr_len); 3378 if (!err) 3379 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3380 3381 unlock: 3382 release_sock(sock->sk); 3383 return err; 3384 } 3385 3386 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3387 struct mptcp_subflow_context *subflow) 3388 { 3389 subflow->request_mptcp = 0; 3390 __mptcp_do_fallback(msk); 3391 } 3392 3393 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr, 3394 int addr_len, int flags) 3395 { 3396 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3397 struct mptcp_subflow_context *subflow; 3398 struct socket *ssock; 3399 int err = -EINVAL; 3400 3401 lock_sock(sock->sk); 3402 if (uaddr) { 3403 if (addr_len < sizeof(uaddr->sa_family)) 3404 goto unlock; 3405 3406 if (uaddr->sa_family == AF_UNSPEC) { 3407 err = mptcp_disconnect(sock->sk, flags); 3408 sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; 3409 goto unlock; 3410 } 3411 } 3412 3413 if (sock->state != SS_UNCONNECTED && msk->subflow) { 3414 /* pending connection or invalid state, let existing subflow 3415 * cope with that 3416 */ 3417 ssock = msk->subflow; 3418 goto do_connect; 3419 } 3420 3421 ssock = __mptcp_nmpc_socket(msk); 3422 if (!ssock) 3423 goto unlock; 3424 3425 mptcp_token_destroy(msk); 3426 inet_sk_state_store(sock->sk, TCP_SYN_SENT); 3427 subflow = mptcp_subflow_ctx(ssock->sk); 3428 #ifdef CONFIG_TCP_MD5SIG 3429 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3430 * TCP option space. 3431 */ 3432 if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info)) 3433 mptcp_subflow_early_fallback(msk, subflow); 3434 #endif 3435 if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) { 3436 MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT); 3437 mptcp_subflow_early_fallback(msk, subflow); 3438 } 3439 if (likely(!__mptcp_check_fallback(msk))) 3440 MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE); 3441 3442 do_connect: 3443 err = ssock->ops->connect(ssock, uaddr, addr_len, flags); 3444 sock->state = ssock->state; 3445 3446 /* on successful connect, the msk state will be moved to established by 3447 * subflow_finish_connect() 3448 */ 3449 if (!err || err == -EINPROGRESS) 3450 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3451 else 3452 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 3453 3454 unlock: 3455 release_sock(sock->sk); 3456 return err; 3457 } 3458 3459 static int mptcp_listen(struct socket *sock, int backlog) 3460 { 3461 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3462 struct socket *ssock; 3463 int err; 3464 3465 pr_debug("msk=%p", msk); 3466 3467 lock_sock(sock->sk); 3468 ssock = __mptcp_nmpc_socket(msk); 3469 if (!ssock) { 3470 err = -EINVAL; 3471 goto unlock; 3472 } 3473 3474 mptcp_token_destroy(msk); 3475 inet_sk_state_store(sock->sk, TCP_LISTEN); 3476 sock_set_flag(sock->sk, SOCK_RCU_FREE); 3477 3478 err = ssock->ops->listen(ssock, backlog); 3479 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 3480 if (!err) 3481 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3482 3483 unlock: 3484 release_sock(sock->sk); 3485 return err; 3486 } 3487 3488 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3489 int flags, bool kern) 3490 { 3491 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3492 struct socket *ssock; 3493 int err; 3494 3495 pr_debug("msk=%p", msk); 3496 3497 ssock = __mptcp_nmpc_socket(msk); 3498 if (!ssock) 3499 return -EINVAL; 3500 3501 err = ssock->ops->accept(sock, newsock, flags, kern); 3502 if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) { 3503 struct mptcp_sock *msk = mptcp_sk(newsock->sk); 3504 struct mptcp_subflow_context *subflow; 3505 struct sock *newsk = newsock->sk; 3506 3507 lock_sock(newsk); 3508 3509 /* PM/worker can now acquire the first subflow socket 3510 * lock without racing with listener queue cleanup, 3511 * we can notify it, if needed. 3512 * 3513 * Even if remote has reset the initial subflow by now 3514 * the refcnt is still at least one. 3515 */ 3516 subflow = mptcp_subflow_ctx(msk->first); 3517 list_add(&subflow->node, &msk->conn_list); 3518 sock_hold(msk->first); 3519 if (mptcp_is_fully_established(newsk)) 3520 mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL); 3521 3522 mptcp_copy_inaddrs(newsk, msk->first); 3523 mptcp_rcv_space_init(msk, msk->first); 3524 mptcp_propagate_sndbuf(newsk, msk->first); 3525 3526 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3527 * This is needed so NOSPACE flag can be set from tcp stack. 3528 */ 3529 mptcp_for_each_subflow(msk, subflow) { 3530 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3531 3532 if (!ssk->sk_socket) 3533 mptcp_sock_graft(ssk, newsock); 3534 } 3535 release_sock(newsk); 3536 } 3537 3538 return err; 3539 } 3540 3541 static __poll_t mptcp_check_readable(struct mptcp_sock *msk) 3542 { 3543 /* Concurrent splices from sk_receive_queue into receive_queue will 3544 * always show at least one non-empty queue when checked in this order. 3545 */ 3546 if (skb_queue_empty_lockless(&((struct sock *)msk)->sk_receive_queue) && 3547 skb_queue_empty_lockless(&msk->receive_queue)) 3548 return 0; 3549 3550 return EPOLLIN | EPOLLRDNORM; 3551 } 3552 3553 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3554 { 3555 struct sock *sk = (struct sock *)msk; 3556 3557 if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN)) 3558 return EPOLLOUT | EPOLLWRNORM; 3559 3560 if (sk_stream_is_writeable(sk)) 3561 return EPOLLOUT | EPOLLWRNORM; 3562 3563 mptcp_set_nospace(sk); 3564 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3565 if (sk_stream_is_writeable(sk)) 3566 return EPOLLOUT | EPOLLWRNORM; 3567 3568 return 0; 3569 } 3570 3571 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3572 struct poll_table_struct *wait) 3573 { 3574 struct sock *sk = sock->sk; 3575 struct mptcp_sock *msk; 3576 __poll_t mask = 0; 3577 int state; 3578 3579 msk = mptcp_sk(sk); 3580 sock_poll_wait(file, sock, wait); 3581 3582 state = inet_sk_state_load(sk); 3583 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3584 if (state == TCP_LISTEN) { 3585 if (WARN_ON_ONCE(!msk->subflow || !msk->subflow->sk)) 3586 return 0; 3587 3588 return inet_csk_listen_poll(msk->subflow->sk); 3589 } 3590 3591 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3592 mask |= mptcp_check_readable(msk); 3593 mask |= mptcp_check_writeable(msk); 3594 } 3595 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3596 mask |= EPOLLHUP; 3597 if (sk->sk_shutdown & RCV_SHUTDOWN) 3598 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3599 3600 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 3601 smp_rmb(); 3602 if (sk->sk_err) 3603 mask |= EPOLLERR; 3604 3605 return mask; 3606 } 3607 3608 static const struct proto_ops mptcp_stream_ops = { 3609 .family = PF_INET, 3610 .owner = THIS_MODULE, 3611 .release = inet_release, 3612 .bind = mptcp_bind, 3613 .connect = mptcp_stream_connect, 3614 .socketpair = sock_no_socketpair, 3615 .accept = mptcp_stream_accept, 3616 .getname = inet_getname, 3617 .poll = mptcp_poll, 3618 .ioctl = inet_ioctl, 3619 .gettstamp = sock_gettstamp, 3620 .listen = mptcp_listen, 3621 .shutdown = inet_shutdown, 3622 .setsockopt = sock_common_setsockopt, 3623 .getsockopt = sock_common_getsockopt, 3624 .sendmsg = inet_sendmsg, 3625 .recvmsg = inet_recvmsg, 3626 .mmap = sock_no_mmap, 3627 .sendpage = inet_sendpage, 3628 }; 3629 3630 static struct inet_protosw mptcp_protosw = { 3631 .type = SOCK_STREAM, 3632 .protocol = IPPROTO_MPTCP, 3633 .prot = &mptcp_prot, 3634 .ops = &mptcp_stream_ops, 3635 .flags = INET_PROTOSW_ICSK, 3636 }; 3637 3638 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 3639 { 3640 struct mptcp_delegated_action *delegated; 3641 struct mptcp_subflow_context *subflow; 3642 int work_done = 0; 3643 3644 delegated = container_of(napi, struct mptcp_delegated_action, napi); 3645 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 3646 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3647 3648 bh_lock_sock_nested(ssk); 3649 if (!sock_owned_by_user(ssk) && 3650 mptcp_subflow_has_delegated_action(subflow)) 3651 mptcp_subflow_process_delegated(ssk); 3652 /* ... elsewhere tcp_release_cb_override already processed 3653 * the action or will do at next release_sock(). 3654 * In both case must dequeue the subflow here - on the same 3655 * CPU that scheduled it. 3656 */ 3657 bh_unlock_sock(ssk); 3658 sock_put(ssk); 3659 3660 if (++work_done == budget) 3661 return budget; 3662 } 3663 3664 /* always provide a 0 'work_done' argument, so that napi_complete_done 3665 * will not try accessing the NULL napi->dev ptr 3666 */ 3667 napi_complete_done(napi, 0); 3668 return work_done; 3669 } 3670 3671 void __init mptcp_proto_init(void) 3672 { 3673 struct mptcp_delegated_action *delegated; 3674 int cpu; 3675 3676 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 3677 3678 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 3679 panic("Failed to allocate MPTCP pcpu counter\n"); 3680 3681 init_dummy_netdev(&mptcp_napi_dev); 3682 for_each_possible_cpu(cpu) { 3683 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 3684 INIT_LIST_HEAD(&delegated->head); 3685 netif_tx_napi_add(&mptcp_napi_dev, &delegated->napi, mptcp_napi_poll, 3686 NAPI_POLL_WEIGHT); 3687 napi_enable(&delegated->napi); 3688 } 3689 3690 mptcp_subflow_init(); 3691 mptcp_pm_init(); 3692 mptcp_token_init(); 3693 3694 if (proto_register(&mptcp_prot, 1) != 0) 3695 panic("Failed to register MPTCP proto.\n"); 3696 3697 inet_register_protosw(&mptcp_protosw); 3698 3699 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 3700 } 3701 3702 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3703 static const struct proto_ops mptcp_v6_stream_ops = { 3704 .family = PF_INET6, 3705 .owner = THIS_MODULE, 3706 .release = inet6_release, 3707 .bind = mptcp_bind, 3708 .connect = mptcp_stream_connect, 3709 .socketpair = sock_no_socketpair, 3710 .accept = mptcp_stream_accept, 3711 .getname = inet6_getname, 3712 .poll = mptcp_poll, 3713 .ioctl = inet6_ioctl, 3714 .gettstamp = sock_gettstamp, 3715 .listen = mptcp_listen, 3716 .shutdown = inet_shutdown, 3717 .setsockopt = sock_common_setsockopt, 3718 .getsockopt = sock_common_getsockopt, 3719 .sendmsg = inet6_sendmsg, 3720 .recvmsg = inet6_recvmsg, 3721 .mmap = sock_no_mmap, 3722 .sendpage = inet_sendpage, 3723 #ifdef CONFIG_COMPAT 3724 .compat_ioctl = inet6_compat_ioctl, 3725 #endif 3726 }; 3727 3728 static struct proto mptcp_v6_prot; 3729 3730 static void mptcp_v6_destroy(struct sock *sk) 3731 { 3732 mptcp_destroy(sk); 3733 inet6_destroy_sock(sk); 3734 } 3735 3736 static struct inet_protosw mptcp_v6_protosw = { 3737 .type = SOCK_STREAM, 3738 .protocol = IPPROTO_MPTCP, 3739 .prot = &mptcp_v6_prot, 3740 .ops = &mptcp_v6_stream_ops, 3741 .flags = INET_PROTOSW_ICSK, 3742 }; 3743 3744 int __init mptcp_proto_v6_init(void) 3745 { 3746 int err; 3747 3748 mptcp_v6_prot = mptcp_prot; 3749 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 3750 mptcp_v6_prot.slab = NULL; 3751 mptcp_v6_prot.destroy = mptcp_v6_destroy; 3752 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 3753 3754 err = proto_register(&mptcp_v6_prot, 1); 3755 if (err) 3756 return err; 3757 3758 err = inet6_register_protosw(&mptcp_v6_protosw); 3759 if (err) 3760 proto_unregister(&mptcp_v6_prot); 3761 3762 return err; 3763 } 3764 #endif 3765