1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include "protocol.h" 25 #include "mib.h" 26 27 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 28 struct mptcp6_sock { 29 struct mptcp_sock msk; 30 struct ipv6_pinfo np; 31 }; 32 #endif 33 34 struct mptcp_skb_cb { 35 u64 map_seq; 36 u64 end_seq; 37 u32 offset; 38 }; 39 40 #define MPTCP_SKB_CB(__skb) ((struct mptcp_skb_cb *)&((__skb)->cb[0])) 41 42 static struct percpu_counter mptcp_sockets_allocated; 43 44 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not 45 * completed yet or has failed, return the subflow socket. 46 * Otherwise return NULL. 47 */ 48 static struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk) 49 { 50 if (!msk->subflow || READ_ONCE(msk->can_ack)) 51 return NULL; 52 53 return msk->subflow; 54 } 55 56 static bool mptcp_is_tcpsk(struct sock *sk) 57 { 58 struct socket *sock = sk->sk_socket; 59 60 if (unlikely(sk->sk_prot == &tcp_prot)) { 61 /* we are being invoked after mptcp_accept() has 62 * accepted a non-mp-capable flow: sk is a tcp_sk, 63 * not an mptcp one. 64 * 65 * Hand the socket over to tcp so all further socket ops 66 * bypass mptcp. 67 */ 68 sock->ops = &inet_stream_ops; 69 return true; 70 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 71 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { 72 sock->ops = &inet6_stream_ops; 73 return true; 74 #endif 75 } 76 77 return false; 78 } 79 80 static struct sock *__mptcp_tcp_fallback(struct mptcp_sock *msk) 81 { 82 sock_owned_by_me((const struct sock *)msk); 83 84 if (likely(!__mptcp_check_fallback(msk))) 85 return NULL; 86 87 return msk->first; 88 } 89 90 static int __mptcp_socket_create(struct mptcp_sock *msk) 91 { 92 struct mptcp_subflow_context *subflow; 93 struct sock *sk = (struct sock *)msk; 94 struct socket *ssock; 95 int err; 96 97 err = mptcp_subflow_create_socket(sk, &ssock); 98 if (err) 99 return err; 100 101 msk->first = ssock->sk; 102 msk->subflow = ssock; 103 subflow = mptcp_subflow_ctx(ssock->sk); 104 list_add(&subflow->node, &msk->conn_list); 105 subflow->request_mptcp = 1; 106 107 /* accept() will wait on first subflow sk_wq, and we always wakes up 108 * via msk->sk_socket 109 */ 110 RCU_INIT_POINTER(msk->first->sk_wq, &sk->sk_socket->wq); 111 112 return 0; 113 } 114 115 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 116 { 117 sk_drops_add(sk, skb); 118 __kfree_skb(skb); 119 } 120 121 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 122 struct sk_buff *from) 123 { 124 bool fragstolen; 125 int delta; 126 127 if (MPTCP_SKB_CB(from)->offset || 128 !skb_try_coalesce(to, from, &fragstolen, &delta)) 129 return false; 130 131 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 132 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 133 to->len, MPTCP_SKB_CB(from)->end_seq); 134 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 135 kfree_skb_partial(from, fragstolen); 136 atomic_add(delta, &sk->sk_rmem_alloc); 137 sk_mem_charge(sk, delta); 138 return true; 139 } 140 141 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 142 struct sk_buff *from) 143 { 144 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 145 return false; 146 147 return mptcp_try_coalesce((struct sock *)msk, to, from); 148 } 149 150 /* "inspired" by tcp_data_queue_ofo(), main differences: 151 * - use mptcp seqs 152 * - don't cope with sacks 153 */ 154 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 155 { 156 struct sock *sk = (struct sock *)msk; 157 struct rb_node **p, *parent; 158 u64 seq, end_seq, max_seq; 159 struct sk_buff *skb1; 160 int space; 161 162 seq = MPTCP_SKB_CB(skb)->map_seq; 163 end_seq = MPTCP_SKB_CB(skb)->end_seq; 164 space = tcp_space(sk); 165 max_seq = space > 0 ? space + msk->ack_seq : msk->ack_seq; 166 167 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 168 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 169 if (after64(seq, max_seq)) { 170 /* out of window */ 171 mptcp_drop(sk, skb); 172 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 173 return; 174 } 175 176 p = &msk->out_of_order_queue.rb_node; 177 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 178 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 179 rb_link_node(&skb->rbnode, NULL, p); 180 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 181 msk->ooo_last_skb = skb; 182 goto end; 183 } 184 185 /* with 2 subflows, adding at end of ooo queue is quite likely 186 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 187 */ 188 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 189 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 190 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 191 return; 192 } 193 194 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 195 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 196 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 197 parent = &msk->ooo_last_skb->rbnode; 198 p = &parent->rb_right; 199 goto insert; 200 } 201 202 /* Find place to insert this segment. Handle overlaps on the way. */ 203 parent = NULL; 204 while (*p) { 205 parent = *p; 206 skb1 = rb_to_skb(parent); 207 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 208 p = &parent->rb_left; 209 continue; 210 } 211 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 212 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 213 /* All the bits are present. Drop. */ 214 mptcp_drop(sk, skb); 215 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 216 return; 217 } 218 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 219 /* partial overlap: 220 * | skb | 221 * | skb1 | 222 * continue traversing 223 */ 224 } else { 225 /* skb's seq == skb1's seq and skb covers skb1. 226 * Replace skb1 with skb. 227 */ 228 rb_replace_node(&skb1->rbnode, &skb->rbnode, 229 &msk->out_of_order_queue); 230 mptcp_drop(sk, skb1); 231 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 232 goto merge_right; 233 } 234 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 235 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 236 return; 237 } 238 p = &parent->rb_right; 239 } 240 241 insert: 242 /* Insert segment into RB tree. */ 243 rb_link_node(&skb->rbnode, parent, p); 244 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 245 246 merge_right: 247 /* Remove other segments covered by skb. */ 248 while ((skb1 = skb_rb_next(skb)) != NULL) { 249 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 250 break; 251 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 252 mptcp_drop(sk, skb1); 253 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 254 } 255 /* If there is no skb after us, we are the last_skb ! */ 256 if (!skb1) 257 msk->ooo_last_skb = skb; 258 259 end: 260 skb_condense(skb); 261 skb_set_owner_r(skb, sk); 262 } 263 264 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 265 struct sk_buff *skb, unsigned int offset, 266 size_t copy_len) 267 { 268 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 269 struct sock *sk = (struct sock *)msk; 270 struct sk_buff *tail; 271 272 __skb_unlink(skb, &ssk->sk_receive_queue); 273 274 skb_ext_reset(skb); 275 skb_orphan(skb); 276 277 /* the skb map_seq accounts for the skb offset: 278 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 279 * value 280 */ 281 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 282 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 283 MPTCP_SKB_CB(skb)->offset = offset; 284 285 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 286 /* in sequence */ 287 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 288 tail = skb_peek_tail(&sk->sk_receive_queue); 289 if (tail && mptcp_try_coalesce(sk, tail, skb)) 290 return true; 291 292 skb_set_owner_r(skb, sk); 293 __skb_queue_tail(&sk->sk_receive_queue, skb); 294 return true; 295 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 296 mptcp_data_queue_ofo(msk, skb); 297 return false; 298 } 299 300 /* old data, keep it simple and drop the whole pkt, sender 301 * will retransmit as needed, if needed. 302 */ 303 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 304 mptcp_drop(sk, skb); 305 return false; 306 } 307 308 static void mptcp_stop_timer(struct sock *sk) 309 { 310 struct inet_connection_sock *icsk = inet_csk(sk); 311 312 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 313 mptcp_sk(sk)->timer_ival = 0; 314 } 315 316 static void mptcp_check_data_fin_ack(struct sock *sk) 317 { 318 struct mptcp_sock *msk = mptcp_sk(sk); 319 320 if (__mptcp_check_fallback(msk)) 321 return; 322 323 /* Look for an acknowledged DATA_FIN */ 324 if (((1 << sk->sk_state) & 325 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 326 msk->write_seq == atomic64_read(&msk->snd_una)) { 327 mptcp_stop_timer(sk); 328 329 WRITE_ONCE(msk->snd_data_fin_enable, 0); 330 331 switch (sk->sk_state) { 332 case TCP_FIN_WAIT1: 333 inet_sk_state_store(sk, TCP_FIN_WAIT2); 334 sk->sk_state_change(sk); 335 break; 336 case TCP_CLOSING: 337 case TCP_LAST_ACK: 338 inet_sk_state_store(sk, TCP_CLOSE); 339 sk->sk_state_change(sk); 340 break; 341 } 342 343 if (sk->sk_shutdown == SHUTDOWN_MASK || 344 sk->sk_state == TCP_CLOSE) 345 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 346 else 347 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 348 } 349 } 350 351 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 352 { 353 struct mptcp_sock *msk = mptcp_sk(sk); 354 355 if (READ_ONCE(msk->rcv_data_fin) && 356 ((1 << sk->sk_state) & 357 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 358 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 359 360 if (msk->ack_seq == rcv_data_fin_seq) { 361 if (seq) 362 *seq = rcv_data_fin_seq; 363 364 return true; 365 } 366 } 367 368 return false; 369 } 370 371 static void mptcp_set_timeout(const struct sock *sk, const struct sock *ssk) 372 { 373 long tout = ssk && inet_csk(ssk)->icsk_pending ? 374 inet_csk(ssk)->icsk_timeout - jiffies : 0; 375 376 if (tout <= 0) 377 tout = mptcp_sk(sk)->timer_ival; 378 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 379 } 380 381 static void mptcp_check_data_fin(struct sock *sk) 382 { 383 struct mptcp_sock *msk = mptcp_sk(sk); 384 u64 rcv_data_fin_seq; 385 386 if (__mptcp_check_fallback(msk) || !msk->first) 387 return; 388 389 /* Need to ack a DATA_FIN received from a peer while this side 390 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 391 * msk->rcv_data_fin was set when parsing the incoming options 392 * at the subflow level and the msk lock was not held, so this 393 * is the first opportunity to act on the DATA_FIN and change 394 * the msk state. 395 * 396 * If we are caught up to the sequence number of the incoming 397 * DATA_FIN, send the DATA_ACK now and do state transition. If 398 * not caught up, do nothing and let the recv code send DATA_ACK 399 * when catching up. 400 */ 401 402 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 403 struct mptcp_subflow_context *subflow; 404 405 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 406 WRITE_ONCE(msk->rcv_data_fin, 0); 407 408 sk->sk_shutdown |= RCV_SHUTDOWN; 409 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 410 set_bit(MPTCP_DATA_READY, &msk->flags); 411 412 switch (sk->sk_state) { 413 case TCP_ESTABLISHED: 414 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 415 break; 416 case TCP_FIN_WAIT1: 417 inet_sk_state_store(sk, TCP_CLOSING); 418 break; 419 case TCP_FIN_WAIT2: 420 inet_sk_state_store(sk, TCP_CLOSE); 421 // @@ Close subflows now? 422 break; 423 default: 424 /* Other states not expected */ 425 WARN_ON_ONCE(1); 426 break; 427 } 428 429 mptcp_set_timeout(sk, NULL); 430 mptcp_for_each_subflow(msk, subflow) { 431 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 432 433 lock_sock(ssk); 434 tcp_send_ack(ssk); 435 release_sock(ssk); 436 } 437 438 sk->sk_state_change(sk); 439 440 if (sk->sk_shutdown == SHUTDOWN_MASK || 441 sk->sk_state == TCP_CLOSE) 442 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 443 else 444 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 445 } 446 } 447 448 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 449 struct sock *ssk, 450 unsigned int *bytes) 451 { 452 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 453 struct sock *sk = (struct sock *)msk; 454 unsigned int moved = 0; 455 bool more_data_avail; 456 struct tcp_sock *tp; 457 u32 old_copied_seq; 458 bool done = false; 459 460 pr_debug("msk=%p ssk=%p", msk, ssk); 461 tp = tcp_sk(ssk); 462 old_copied_seq = tp->copied_seq; 463 do { 464 u32 map_remaining, offset; 465 u32 seq = tp->copied_seq; 466 struct sk_buff *skb; 467 bool fin; 468 469 /* try to move as much data as available */ 470 map_remaining = subflow->map_data_len - 471 mptcp_subflow_get_map_offset(subflow); 472 473 skb = skb_peek(&ssk->sk_receive_queue); 474 if (!skb) { 475 /* if no data is found, a racing workqueue/recvmsg 476 * already processed the new data, stop here or we 477 * can enter an infinite loop 478 */ 479 if (!moved) 480 done = true; 481 break; 482 } 483 484 if (__mptcp_check_fallback(msk)) { 485 /* if we are running under the workqueue, TCP could have 486 * collapsed skbs between dummy map creation and now 487 * be sure to adjust the size 488 */ 489 map_remaining = skb->len; 490 subflow->map_data_len = skb->len; 491 } 492 493 offset = seq - TCP_SKB_CB(skb)->seq; 494 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 495 if (fin) { 496 done = true; 497 seq++; 498 } 499 500 if (offset < skb->len) { 501 size_t len = skb->len - offset; 502 503 if (tp->urg_data) 504 done = true; 505 506 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 507 moved += len; 508 seq += len; 509 510 if (WARN_ON_ONCE(map_remaining < len)) 511 break; 512 } else { 513 WARN_ON_ONCE(!fin); 514 sk_eat_skb(ssk, skb); 515 done = true; 516 } 517 518 WRITE_ONCE(tp->copied_seq, seq); 519 more_data_avail = mptcp_subflow_data_available(ssk); 520 521 if (atomic_read(&sk->sk_rmem_alloc) > READ_ONCE(sk->sk_rcvbuf)) { 522 done = true; 523 break; 524 } 525 } while (more_data_avail); 526 527 *bytes += moved; 528 if (tp->copied_seq != old_copied_seq) 529 tcp_cleanup_rbuf(ssk, 1); 530 531 return done; 532 } 533 534 static bool mptcp_ofo_queue(struct mptcp_sock *msk) 535 { 536 struct sock *sk = (struct sock *)msk; 537 struct sk_buff *skb, *tail; 538 bool moved = false; 539 struct rb_node *p; 540 u64 end_seq; 541 542 p = rb_first(&msk->out_of_order_queue); 543 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 544 while (p) { 545 skb = rb_to_skb(p); 546 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 547 break; 548 549 p = rb_next(p); 550 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 551 552 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 553 msk->ack_seq))) { 554 mptcp_drop(sk, skb); 555 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 556 continue; 557 } 558 559 end_seq = MPTCP_SKB_CB(skb)->end_seq; 560 tail = skb_peek_tail(&sk->sk_receive_queue); 561 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 562 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 563 564 /* skip overlapping data, if any */ 565 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 566 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 567 delta); 568 MPTCP_SKB_CB(skb)->offset += delta; 569 __skb_queue_tail(&sk->sk_receive_queue, skb); 570 } 571 msk->ack_seq = end_seq; 572 moved = true; 573 } 574 return moved; 575 } 576 577 /* In most cases we will be able to lock the mptcp socket. If its already 578 * owned, we need to defer to the work queue to avoid ABBA deadlock. 579 */ 580 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 581 { 582 struct sock *sk = (struct sock *)msk; 583 unsigned int moved = 0; 584 585 if (READ_ONCE(sk->sk_lock.owned)) 586 return false; 587 588 if (unlikely(!spin_trylock_bh(&sk->sk_lock.slock))) 589 return false; 590 591 /* must re-check after taking the lock */ 592 if (!READ_ONCE(sk->sk_lock.owned)) { 593 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 594 mptcp_ofo_queue(msk); 595 596 /* If the moves have caught up with the DATA_FIN sequence number 597 * it's time to ack the DATA_FIN and change socket state, but 598 * this is not a good place to change state. Let the workqueue 599 * do it. 600 */ 601 if (mptcp_pending_data_fin(sk, NULL) && 602 schedule_work(&msk->work)) 603 sock_hold(sk); 604 } 605 606 spin_unlock_bh(&sk->sk_lock.slock); 607 608 return moved > 0; 609 } 610 611 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 612 { 613 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 614 struct mptcp_sock *msk = mptcp_sk(sk); 615 bool wake; 616 617 /* move_skbs_to_msk below can legitly clear the data_avail flag, 618 * but we will need later to properly woke the reader, cache its 619 * value 620 */ 621 wake = subflow->data_avail == MPTCP_SUBFLOW_DATA_AVAIL; 622 if (wake) 623 set_bit(MPTCP_DATA_READY, &msk->flags); 624 625 if (atomic_read(&sk->sk_rmem_alloc) < READ_ONCE(sk->sk_rcvbuf) && 626 move_skbs_to_msk(msk, ssk)) 627 goto wake; 628 629 /* don't schedule if mptcp sk is (still) over limit */ 630 if (atomic_read(&sk->sk_rmem_alloc) > READ_ONCE(sk->sk_rcvbuf)) 631 goto wake; 632 633 /* mptcp socket is owned, release_cb should retry */ 634 if (!test_and_set_bit(TCP_DELACK_TIMER_DEFERRED, 635 &sk->sk_tsq_flags)) { 636 sock_hold(sk); 637 638 /* need to try again, its possible release_cb() has already 639 * been called after the test_and_set_bit() above. 640 */ 641 move_skbs_to_msk(msk, ssk); 642 } 643 wake: 644 if (wake) 645 sk->sk_data_ready(sk); 646 } 647 648 static void __mptcp_flush_join_list(struct mptcp_sock *msk) 649 { 650 if (likely(list_empty(&msk->join_list))) 651 return; 652 653 spin_lock_bh(&msk->join_list_lock); 654 list_splice_tail_init(&msk->join_list, &msk->conn_list); 655 spin_unlock_bh(&msk->join_list_lock); 656 } 657 658 static bool mptcp_timer_pending(struct sock *sk) 659 { 660 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 661 } 662 663 static void mptcp_reset_timer(struct sock *sk) 664 { 665 struct inet_connection_sock *icsk = inet_csk(sk); 666 unsigned long tout; 667 668 /* should never be called with mptcp level timer cleared */ 669 tout = READ_ONCE(mptcp_sk(sk)->timer_ival); 670 if (WARN_ON_ONCE(!tout)) 671 tout = TCP_RTO_MIN; 672 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 673 } 674 675 void mptcp_data_acked(struct sock *sk) 676 { 677 mptcp_reset_timer(sk); 678 679 if ((!test_bit(MPTCP_SEND_SPACE, &mptcp_sk(sk)->flags) || 680 (inet_sk_state_load(sk) != TCP_ESTABLISHED)) && 681 schedule_work(&mptcp_sk(sk)->work)) 682 sock_hold(sk); 683 } 684 685 void mptcp_subflow_eof(struct sock *sk) 686 { 687 struct mptcp_sock *msk = mptcp_sk(sk); 688 689 if (!test_and_set_bit(MPTCP_WORK_EOF, &msk->flags) && 690 schedule_work(&msk->work)) 691 sock_hold(sk); 692 } 693 694 static void mptcp_check_for_eof(struct mptcp_sock *msk) 695 { 696 struct mptcp_subflow_context *subflow; 697 struct sock *sk = (struct sock *)msk; 698 int receivers = 0; 699 700 mptcp_for_each_subflow(msk, subflow) 701 receivers += !subflow->rx_eof; 702 703 if (!receivers && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 704 /* hopefully temporary hack: propagate shutdown status 705 * to msk, when all subflows agree on it 706 */ 707 sk->sk_shutdown |= RCV_SHUTDOWN; 708 709 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 710 set_bit(MPTCP_DATA_READY, &msk->flags); 711 sk->sk_data_ready(sk); 712 } 713 } 714 715 static bool mptcp_ext_cache_refill(struct mptcp_sock *msk) 716 { 717 const struct sock *sk = (const struct sock *)msk; 718 719 if (!msk->cached_ext) 720 msk->cached_ext = __skb_ext_alloc(sk->sk_allocation); 721 722 return !!msk->cached_ext; 723 } 724 725 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 726 { 727 struct mptcp_subflow_context *subflow; 728 struct sock *sk = (struct sock *)msk; 729 730 sock_owned_by_me(sk); 731 732 mptcp_for_each_subflow(msk, subflow) { 733 if (subflow->data_avail) 734 return mptcp_subflow_tcp_sock(subflow); 735 } 736 737 return NULL; 738 } 739 740 static bool mptcp_skb_can_collapse_to(u64 write_seq, 741 const struct sk_buff *skb, 742 const struct mptcp_ext *mpext) 743 { 744 if (!tcp_skb_can_collapse_to(skb)) 745 return false; 746 747 /* can collapse only if MPTCP level sequence is in order */ 748 return mpext && mpext->data_seq + mpext->data_len == write_seq; 749 } 750 751 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 752 const struct page_frag *pfrag, 753 const struct mptcp_data_frag *df) 754 { 755 return df && pfrag->page == df->page && 756 df->data_seq + df->data_len == msk->write_seq; 757 } 758 759 static void dfrag_uncharge(struct sock *sk, int len) 760 { 761 sk_mem_uncharge(sk, len); 762 sk_wmem_queued_add(sk, -len); 763 } 764 765 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 766 { 767 int len = dfrag->data_len + dfrag->overhead; 768 769 list_del(&dfrag->list); 770 dfrag_uncharge(sk, len); 771 put_page(dfrag->page); 772 } 773 774 static bool mptcp_is_writeable(struct mptcp_sock *msk) 775 { 776 struct mptcp_subflow_context *subflow; 777 778 if (!sk_stream_is_writeable((struct sock *)msk)) 779 return false; 780 781 mptcp_for_each_subflow(msk, subflow) { 782 if (sk_stream_is_writeable(subflow->tcp_sock)) 783 return true; 784 } 785 return false; 786 } 787 788 static void mptcp_clean_una(struct sock *sk) 789 { 790 struct mptcp_sock *msk = mptcp_sk(sk); 791 struct mptcp_data_frag *dtmp, *dfrag; 792 bool cleaned = false; 793 u64 snd_una; 794 795 /* on fallback we just need to ignore snd_una, as this is really 796 * plain TCP 797 */ 798 if (__mptcp_check_fallback(msk)) 799 atomic64_set(&msk->snd_una, msk->write_seq); 800 snd_una = atomic64_read(&msk->snd_una); 801 802 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 803 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 804 break; 805 806 dfrag_clear(sk, dfrag); 807 cleaned = true; 808 } 809 810 dfrag = mptcp_rtx_head(sk); 811 if (dfrag && after64(snd_una, dfrag->data_seq)) { 812 u64 delta = snd_una - dfrag->data_seq; 813 814 if (WARN_ON_ONCE(delta > dfrag->data_len)) 815 goto out; 816 817 dfrag->data_seq += delta; 818 dfrag->offset += delta; 819 dfrag->data_len -= delta; 820 821 dfrag_uncharge(sk, delta); 822 cleaned = true; 823 } 824 825 out: 826 if (cleaned) { 827 sk_mem_reclaim_partial(sk); 828 829 /* Only wake up writers if a subflow is ready */ 830 if (mptcp_is_writeable(msk)) { 831 set_bit(MPTCP_SEND_SPACE, &mptcp_sk(sk)->flags); 832 smp_mb__after_atomic(); 833 834 /* set SEND_SPACE before sk_stream_write_space clears 835 * NOSPACE 836 */ 837 sk_stream_write_space(sk); 838 } 839 } 840 } 841 842 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 843 * data 844 */ 845 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 846 { 847 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 848 pfrag, sk->sk_allocation))) 849 return true; 850 851 sk->sk_prot->enter_memory_pressure(sk); 852 sk_stream_moderate_sndbuf(sk); 853 return false; 854 } 855 856 static struct mptcp_data_frag * 857 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 858 int orig_offset) 859 { 860 int offset = ALIGN(orig_offset, sizeof(long)); 861 struct mptcp_data_frag *dfrag; 862 863 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 864 dfrag->data_len = 0; 865 dfrag->data_seq = msk->write_seq; 866 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 867 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 868 dfrag->page = pfrag->page; 869 870 return dfrag; 871 } 872 873 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 874 struct msghdr *msg, struct mptcp_data_frag *dfrag, 875 long *timeo, int *pmss_now, 876 int *ps_goal) 877 { 878 int mss_now, avail_size, size_goal, offset, ret, frag_truesize = 0; 879 bool dfrag_collapsed, can_collapse = false; 880 struct mptcp_sock *msk = mptcp_sk(sk); 881 struct mptcp_ext *mpext = NULL; 882 bool retransmission = !!dfrag; 883 struct sk_buff *skb, *tail; 884 struct page_frag *pfrag; 885 struct page *page; 886 u64 *write_seq; 887 size_t psize; 888 889 /* use the mptcp page cache so that we can easily move the data 890 * from one substream to another, but do per subflow memory accounting 891 * Note: pfrag is used only !retransmission, but the compiler if 892 * fooled into a warning if we don't init here 893 */ 894 pfrag = sk_page_frag(sk); 895 if (!retransmission) { 896 write_seq = &msk->write_seq; 897 page = pfrag->page; 898 } else { 899 write_seq = &dfrag->data_seq; 900 page = dfrag->page; 901 } 902 903 /* compute copy limit */ 904 mss_now = tcp_send_mss(ssk, &size_goal, msg->msg_flags); 905 *pmss_now = mss_now; 906 *ps_goal = size_goal; 907 avail_size = size_goal; 908 skb = tcp_write_queue_tail(ssk); 909 if (skb) { 910 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 911 912 /* Limit the write to the size available in the 913 * current skb, if any, so that we create at most a new skb. 914 * Explicitly tells TCP internals to avoid collapsing on later 915 * queue management operation, to avoid breaking the ext <-> 916 * SSN association set here 917 */ 918 can_collapse = (size_goal - skb->len > 0) && 919 mptcp_skb_can_collapse_to(*write_seq, skb, mpext); 920 if (!can_collapse) 921 TCP_SKB_CB(skb)->eor = 1; 922 else 923 avail_size = size_goal - skb->len; 924 } 925 926 if (!retransmission) { 927 /* reuse tail pfrag, if possible, or carve a new one from the 928 * page allocator 929 */ 930 dfrag = mptcp_rtx_tail(sk); 931 offset = pfrag->offset; 932 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 933 if (!dfrag_collapsed) { 934 dfrag = mptcp_carve_data_frag(msk, pfrag, offset); 935 offset = dfrag->offset; 936 frag_truesize = dfrag->overhead; 937 } 938 psize = min_t(size_t, pfrag->size - offset, avail_size); 939 940 /* Copy to page */ 941 pr_debug("left=%zu", msg_data_left(msg)); 942 psize = copy_page_from_iter(pfrag->page, offset, 943 min_t(size_t, msg_data_left(msg), 944 psize), 945 &msg->msg_iter); 946 pr_debug("left=%zu", msg_data_left(msg)); 947 if (!psize) 948 return -EINVAL; 949 950 if (!sk_wmem_schedule(sk, psize + dfrag->overhead)) { 951 iov_iter_revert(&msg->msg_iter, psize); 952 return -ENOMEM; 953 } 954 } else { 955 offset = dfrag->offset; 956 psize = min_t(size_t, dfrag->data_len, avail_size); 957 } 958 959 /* tell the TCP stack to delay the push so that we can safely 960 * access the skb after the sendpages call 961 */ 962 ret = do_tcp_sendpages(ssk, page, offset, psize, 963 msg->msg_flags | MSG_SENDPAGE_NOTLAST | MSG_DONTWAIT); 964 if (ret <= 0) { 965 if (!retransmission) 966 iov_iter_revert(&msg->msg_iter, psize); 967 return ret; 968 } 969 970 frag_truesize += ret; 971 if (!retransmission) { 972 if (unlikely(ret < psize)) 973 iov_iter_revert(&msg->msg_iter, psize - ret); 974 975 /* send successful, keep track of sent data for mptcp-level 976 * retransmission 977 */ 978 dfrag->data_len += ret; 979 if (!dfrag_collapsed) { 980 get_page(dfrag->page); 981 list_add_tail(&dfrag->list, &msk->rtx_queue); 982 sk_wmem_queued_add(sk, frag_truesize); 983 } else { 984 sk_wmem_queued_add(sk, ret); 985 } 986 987 /* charge data on mptcp rtx queue to the master socket 988 * Note: we charge such data both to sk and ssk 989 */ 990 sk->sk_forward_alloc -= frag_truesize; 991 } 992 993 /* if the tail skb extension is still the cached one, collapsing 994 * really happened. Note: we can't check for 'same skb' as the sk_buff 995 * hdr on tail can be transmitted, freed and re-allocated by the 996 * do_tcp_sendpages() call 997 */ 998 tail = tcp_write_queue_tail(ssk); 999 if (mpext && tail && mpext == skb_ext_find(tail, SKB_EXT_MPTCP)) { 1000 WARN_ON_ONCE(!can_collapse); 1001 mpext->data_len += ret; 1002 goto out; 1003 } 1004 1005 skb = tcp_write_queue_tail(ssk); 1006 mpext = __skb_ext_set(skb, SKB_EXT_MPTCP, msk->cached_ext); 1007 msk->cached_ext = NULL; 1008 1009 memset(mpext, 0, sizeof(*mpext)); 1010 mpext->data_seq = *write_seq; 1011 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1012 mpext->data_len = ret; 1013 mpext->use_map = 1; 1014 mpext->dsn64 = 1; 1015 1016 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1017 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1018 mpext->dsn64); 1019 1020 out: 1021 if (!retransmission) 1022 pfrag->offset += frag_truesize; 1023 WRITE_ONCE(*write_seq, *write_seq + ret); 1024 mptcp_subflow_ctx(ssk)->rel_write_seq += ret; 1025 1026 return ret; 1027 } 1028 1029 static void mptcp_nospace(struct mptcp_sock *msk) 1030 { 1031 struct mptcp_subflow_context *subflow; 1032 1033 clear_bit(MPTCP_SEND_SPACE, &msk->flags); 1034 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 1035 1036 mptcp_for_each_subflow(msk, subflow) { 1037 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1038 struct socket *sock = READ_ONCE(ssk->sk_socket); 1039 1040 /* enables ssk->write_space() callbacks */ 1041 if (sock) 1042 set_bit(SOCK_NOSPACE, &sock->flags); 1043 } 1044 } 1045 1046 static bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1047 { 1048 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1049 1050 /* can't send if JOIN hasn't completed yet (i.e. is usable for mptcp) */ 1051 if (subflow->request_join && !subflow->fully_established) 1052 return false; 1053 1054 /* only send if our side has not closed yet */ 1055 return ((1 << ssk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)); 1056 } 1057 1058 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1059 sizeof(struct tcphdr) - \ 1060 MAX_TCP_OPTION_SPACE - \ 1061 sizeof(struct ipv6hdr) - \ 1062 sizeof(struct frag_hdr)) 1063 1064 struct subflow_send_info { 1065 struct sock *ssk; 1066 u64 ratio; 1067 }; 1068 1069 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk, 1070 u32 *sndbuf) 1071 { 1072 struct subflow_send_info send_info[2]; 1073 struct mptcp_subflow_context *subflow; 1074 int i, nr_active = 0; 1075 struct sock *ssk; 1076 u64 ratio; 1077 u32 pace; 1078 1079 sock_owned_by_me((struct sock *)msk); 1080 1081 *sndbuf = 0; 1082 if (!mptcp_ext_cache_refill(msk)) 1083 return NULL; 1084 1085 if (__mptcp_check_fallback(msk)) { 1086 if (!msk->first) 1087 return NULL; 1088 *sndbuf = msk->first->sk_sndbuf; 1089 return sk_stream_memory_free(msk->first) ? msk->first : NULL; 1090 } 1091 1092 /* re-use last subflow, if the burst allow that */ 1093 if (msk->last_snd && msk->snd_burst > 0 && 1094 sk_stream_memory_free(msk->last_snd) && 1095 mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) { 1096 mptcp_for_each_subflow(msk, subflow) { 1097 ssk = mptcp_subflow_tcp_sock(subflow); 1098 *sndbuf = max(tcp_sk(ssk)->snd_wnd, *sndbuf); 1099 } 1100 return msk->last_snd; 1101 } 1102 1103 /* pick the subflow with the lower wmem/wspace ratio */ 1104 for (i = 0; i < 2; ++i) { 1105 send_info[i].ssk = NULL; 1106 send_info[i].ratio = -1; 1107 } 1108 mptcp_for_each_subflow(msk, subflow) { 1109 ssk = mptcp_subflow_tcp_sock(subflow); 1110 if (!mptcp_subflow_active(subflow)) 1111 continue; 1112 1113 nr_active += !subflow->backup; 1114 *sndbuf = max(tcp_sk(ssk)->snd_wnd, *sndbuf); 1115 if (!sk_stream_memory_free(subflow->tcp_sock)) 1116 continue; 1117 1118 pace = READ_ONCE(ssk->sk_pacing_rate); 1119 if (!pace) 1120 continue; 1121 1122 ratio = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, 1123 pace); 1124 if (ratio < send_info[subflow->backup].ratio) { 1125 send_info[subflow->backup].ssk = ssk; 1126 send_info[subflow->backup].ratio = ratio; 1127 } 1128 } 1129 1130 pr_debug("msk=%p nr_active=%d ssk=%p:%lld backup=%p:%lld", 1131 msk, nr_active, send_info[0].ssk, send_info[0].ratio, 1132 send_info[1].ssk, send_info[1].ratio); 1133 1134 /* pick the best backup if no other subflow is active */ 1135 if (!nr_active) 1136 send_info[0].ssk = send_info[1].ssk; 1137 1138 if (send_info[0].ssk) { 1139 msk->last_snd = send_info[0].ssk; 1140 msk->snd_burst = min_t(int, MPTCP_SEND_BURST_SIZE, 1141 sk_stream_wspace(msk->last_snd)); 1142 return msk->last_snd; 1143 } 1144 return NULL; 1145 } 1146 1147 static void ssk_check_wmem(struct mptcp_sock *msk) 1148 { 1149 if (unlikely(!mptcp_is_writeable(msk))) 1150 mptcp_nospace(msk); 1151 } 1152 1153 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1154 { 1155 int mss_now = 0, size_goal = 0, ret = 0; 1156 struct mptcp_sock *msk = mptcp_sk(sk); 1157 struct page_frag *pfrag; 1158 size_t copied = 0; 1159 struct sock *ssk; 1160 u32 sndbuf; 1161 bool tx_ok; 1162 long timeo; 1163 1164 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) 1165 return -EOPNOTSUPP; 1166 1167 lock_sock(sk); 1168 1169 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1170 1171 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1172 ret = sk_stream_wait_connect(sk, &timeo); 1173 if (ret) 1174 goto out; 1175 } 1176 1177 pfrag = sk_page_frag(sk); 1178 restart: 1179 mptcp_clean_una(sk); 1180 1181 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) { 1182 ret = -EPIPE; 1183 goto out; 1184 } 1185 1186 __mptcp_flush_join_list(msk); 1187 ssk = mptcp_subflow_get_send(msk, &sndbuf); 1188 while (!sk_stream_memory_free(sk) || 1189 !ssk || 1190 !mptcp_page_frag_refill(ssk, pfrag)) { 1191 if (ssk) { 1192 /* make sure retransmit timer is 1193 * running before we wait for memory. 1194 * 1195 * The retransmit timer might be needed 1196 * to make the peer send an up-to-date 1197 * MPTCP Ack. 1198 */ 1199 mptcp_set_timeout(sk, ssk); 1200 if (!mptcp_timer_pending(sk)) 1201 mptcp_reset_timer(sk); 1202 } 1203 1204 mptcp_nospace(msk); 1205 ret = sk_stream_wait_memory(sk, &timeo); 1206 if (ret) 1207 goto out; 1208 1209 mptcp_clean_una(sk); 1210 1211 ssk = mptcp_subflow_get_send(msk, &sndbuf); 1212 if (list_empty(&msk->conn_list)) { 1213 ret = -ENOTCONN; 1214 goto out; 1215 } 1216 } 1217 1218 /* do auto tuning */ 1219 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK) && 1220 sndbuf > READ_ONCE(sk->sk_sndbuf)) 1221 WRITE_ONCE(sk->sk_sndbuf, sndbuf); 1222 1223 pr_debug("conn_list->subflow=%p", ssk); 1224 1225 lock_sock(ssk); 1226 tx_ok = msg_data_left(msg); 1227 while (tx_ok) { 1228 ret = mptcp_sendmsg_frag(sk, ssk, msg, NULL, &timeo, &mss_now, 1229 &size_goal); 1230 if (ret < 0) { 1231 if (ret == -EAGAIN && timeo > 0) { 1232 mptcp_set_timeout(sk, ssk); 1233 release_sock(ssk); 1234 goto restart; 1235 } 1236 break; 1237 } 1238 1239 /* burst can be negative, we will try move to the next subflow 1240 * at selection time, if possible. 1241 */ 1242 msk->snd_burst -= ret; 1243 copied += ret; 1244 1245 tx_ok = msg_data_left(msg); 1246 if (!tx_ok) 1247 break; 1248 1249 if (!sk_stream_memory_free(ssk) || 1250 !mptcp_page_frag_refill(ssk, pfrag) || 1251 !mptcp_ext_cache_refill(msk)) { 1252 tcp_push(ssk, msg->msg_flags, mss_now, 1253 tcp_sk(ssk)->nonagle, size_goal); 1254 mptcp_set_timeout(sk, ssk); 1255 release_sock(ssk); 1256 goto restart; 1257 } 1258 1259 /* memory is charged to mptcp level socket as well, i.e. 1260 * if msg is very large, mptcp socket may run out of buffer 1261 * space. mptcp_clean_una() will release data that has 1262 * been acked at mptcp level in the mean time, so there is 1263 * a good chance we can continue sending data right away. 1264 * 1265 * Normally, when the tcp subflow can accept more data, then 1266 * so can the MPTCP socket. However, we need to cope with 1267 * peers that might lag behind in their MPTCP-level 1268 * acknowledgements, i.e. data might have been acked at 1269 * tcp level only. So, we must also check the MPTCP socket 1270 * limits before we send more data. 1271 */ 1272 if (unlikely(!sk_stream_memory_free(sk))) { 1273 tcp_push(ssk, msg->msg_flags, mss_now, 1274 tcp_sk(ssk)->nonagle, size_goal); 1275 mptcp_clean_una(sk); 1276 if (!sk_stream_memory_free(sk)) { 1277 /* can't send more for now, need to wait for 1278 * MPTCP-level ACKs from peer. 1279 * 1280 * Wakeup will happen via mptcp_clean_una(). 1281 */ 1282 mptcp_set_timeout(sk, ssk); 1283 release_sock(ssk); 1284 goto restart; 1285 } 1286 } 1287 } 1288 1289 mptcp_set_timeout(sk, ssk); 1290 if (copied) { 1291 tcp_push(ssk, msg->msg_flags, mss_now, tcp_sk(ssk)->nonagle, 1292 size_goal); 1293 1294 /* start the timer, if it's not pending */ 1295 if (!mptcp_timer_pending(sk)) 1296 mptcp_reset_timer(sk); 1297 } 1298 1299 release_sock(ssk); 1300 out: 1301 ssk_check_wmem(msk); 1302 release_sock(sk); 1303 return copied ? : ret; 1304 } 1305 1306 static void mptcp_wait_data(struct sock *sk, long *timeo) 1307 { 1308 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1309 struct mptcp_sock *msk = mptcp_sk(sk); 1310 1311 add_wait_queue(sk_sleep(sk), &wait); 1312 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1313 1314 sk_wait_event(sk, timeo, 1315 test_and_clear_bit(MPTCP_DATA_READY, &msk->flags), &wait); 1316 1317 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1318 remove_wait_queue(sk_sleep(sk), &wait); 1319 } 1320 1321 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1322 struct msghdr *msg, 1323 size_t len) 1324 { 1325 struct sock *sk = (struct sock *)msk; 1326 struct sk_buff *skb; 1327 int copied = 0; 1328 1329 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1330 u32 offset = MPTCP_SKB_CB(skb)->offset; 1331 u32 data_len = skb->len - offset; 1332 u32 count = min_t(size_t, len - copied, data_len); 1333 int err; 1334 1335 err = skb_copy_datagram_msg(skb, offset, msg, count); 1336 if (unlikely(err < 0)) { 1337 if (!copied) 1338 return err; 1339 break; 1340 } 1341 1342 copied += count; 1343 1344 if (count < data_len) { 1345 MPTCP_SKB_CB(skb)->offset += count; 1346 break; 1347 } 1348 1349 __skb_unlink(skb, &sk->sk_receive_queue); 1350 __kfree_skb(skb); 1351 1352 if (copied >= len) 1353 break; 1354 } 1355 1356 return copied; 1357 } 1358 1359 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1360 * 1361 * Only difference: Use highest rtt estimate of the subflows in use. 1362 */ 1363 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1364 { 1365 struct mptcp_subflow_context *subflow; 1366 struct sock *sk = (struct sock *)msk; 1367 u32 time, advmss = 1; 1368 u64 rtt_us, mstamp; 1369 1370 sock_owned_by_me(sk); 1371 1372 if (copied <= 0) 1373 return; 1374 1375 msk->rcvq_space.copied += copied; 1376 1377 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1378 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1379 1380 rtt_us = msk->rcvq_space.rtt_us; 1381 if (rtt_us && time < (rtt_us >> 3)) 1382 return; 1383 1384 rtt_us = 0; 1385 mptcp_for_each_subflow(msk, subflow) { 1386 const struct tcp_sock *tp; 1387 u64 sf_rtt_us; 1388 u32 sf_advmss; 1389 1390 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1391 1392 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1393 sf_advmss = READ_ONCE(tp->advmss); 1394 1395 rtt_us = max(sf_rtt_us, rtt_us); 1396 advmss = max(sf_advmss, advmss); 1397 } 1398 1399 msk->rcvq_space.rtt_us = rtt_us; 1400 if (time < (rtt_us >> 3) || rtt_us == 0) 1401 return; 1402 1403 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1404 goto new_measure; 1405 1406 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 1407 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1408 int rcvmem, rcvbuf; 1409 u64 rcvwin, grow; 1410 1411 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1412 1413 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1414 1415 do_div(grow, msk->rcvq_space.space); 1416 rcvwin += (grow << 1); 1417 1418 rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER); 1419 while (tcp_win_from_space(sk, rcvmem) < advmss) 1420 rcvmem += 128; 1421 1422 do_div(rcvwin, advmss); 1423 rcvbuf = min_t(u64, rcvwin * rcvmem, 1424 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 1425 1426 if (rcvbuf > sk->sk_rcvbuf) { 1427 u32 window_clamp; 1428 1429 window_clamp = tcp_win_from_space(sk, rcvbuf); 1430 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 1431 1432 /* Make subflows follow along. If we do not do this, we 1433 * get drops at subflow level if skbs can't be moved to 1434 * the mptcp rx queue fast enough (announced rcv_win can 1435 * exceed ssk->sk_rcvbuf). 1436 */ 1437 mptcp_for_each_subflow(msk, subflow) { 1438 struct sock *ssk; 1439 bool slow; 1440 1441 ssk = mptcp_subflow_tcp_sock(subflow); 1442 slow = lock_sock_fast(ssk); 1443 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 1444 tcp_sk(ssk)->window_clamp = window_clamp; 1445 tcp_cleanup_rbuf(ssk, 1); 1446 unlock_sock_fast(ssk, slow); 1447 } 1448 } 1449 } 1450 1451 msk->rcvq_space.space = msk->rcvq_space.copied; 1452 new_measure: 1453 msk->rcvq_space.copied = 0; 1454 msk->rcvq_space.time = mstamp; 1455 } 1456 1457 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 1458 { 1459 unsigned int moved = 0; 1460 bool done; 1461 1462 /* avoid looping forever below on racing close */ 1463 if (((struct sock *)msk)->sk_state == TCP_CLOSE) 1464 return false; 1465 1466 __mptcp_flush_join_list(msk); 1467 do { 1468 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 1469 1470 if (!ssk) 1471 break; 1472 1473 lock_sock(ssk); 1474 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 1475 release_sock(ssk); 1476 } while (!done); 1477 1478 if (mptcp_ofo_queue(msk) || moved > 0) { 1479 mptcp_check_data_fin((struct sock *)msk); 1480 return true; 1481 } 1482 return false; 1483 } 1484 1485 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 1486 int nonblock, int flags, int *addr_len) 1487 { 1488 struct mptcp_sock *msk = mptcp_sk(sk); 1489 int copied = 0; 1490 int target; 1491 long timeo; 1492 1493 if (msg->msg_flags & ~(MSG_WAITALL | MSG_DONTWAIT)) 1494 return -EOPNOTSUPP; 1495 1496 lock_sock(sk); 1497 timeo = sock_rcvtimeo(sk, nonblock); 1498 1499 len = min_t(size_t, len, INT_MAX); 1500 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1501 __mptcp_flush_join_list(msk); 1502 1503 while (len > (size_t)copied) { 1504 int bytes_read; 1505 1506 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied); 1507 if (unlikely(bytes_read < 0)) { 1508 if (!copied) 1509 copied = bytes_read; 1510 goto out_err; 1511 } 1512 1513 copied += bytes_read; 1514 1515 if (skb_queue_empty(&sk->sk_receive_queue) && 1516 __mptcp_move_skbs(msk)) 1517 continue; 1518 1519 /* only the master socket status is relevant here. The exit 1520 * conditions mirror closely tcp_recvmsg() 1521 */ 1522 if (copied >= target) 1523 break; 1524 1525 if (copied) { 1526 if (sk->sk_err || 1527 sk->sk_state == TCP_CLOSE || 1528 (sk->sk_shutdown & RCV_SHUTDOWN) || 1529 !timeo || 1530 signal_pending(current)) 1531 break; 1532 } else { 1533 if (sk->sk_err) { 1534 copied = sock_error(sk); 1535 break; 1536 } 1537 1538 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 1539 mptcp_check_for_eof(msk); 1540 1541 if (sk->sk_shutdown & RCV_SHUTDOWN) 1542 break; 1543 1544 if (sk->sk_state == TCP_CLOSE) { 1545 copied = -ENOTCONN; 1546 break; 1547 } 1548 1549 if (!timeo) { 1550 copied = -EAGAIN; 1551 break; 1552 } 1553 1554 if (signal_pending(current)) { 1555 copied = sock_intr_errno(timeo); 1556 break; 1557 } 1558 } 1559 1560 pr_debug("block timeout %ld", timeo); 1561 mptcp_wait_data(sk, &timeo); 1562 } 1563 1564 if (skb_queue_empty(&sk->sk_receive_queue)) { 1565 /* entire backlog drained, clear DATA_READY. */ 1566 clear_bit(MPTCP_DATA_READY, &msk->flags); 1567 1568 /* .. race-breaker: ssk might have gotten new data 1569 * after last __mptcp_move_skbs() returned false. 1570 */ 1571 if (unlikely(__mptcp_move_skbs(msk))) 1572 set_bit(MPTCP_DATA_READY, &msk->flags); 1573 } else if (unlikely(!test_bit(MPTCP_DATA_READY, &msk->flags))) { 1574 /* data to read but mptcp_wait_data() cleared DATA_READY */ 1575 set_bit(MPTCP_DATA_READY, &msk->flags); 1576 } 1577 out_err: 1578 pr_debug("msk=%p data_ready=%d rx queue empty=%d copied=%d", 1579 msk, test_bit(MPTCP_DATA_READY, &msk->flags), 1580 skb_queue_empty(&sk->sk_receive_queue), copied); 1581 mptcp_rcv_space_adjust(msk, copied); 1582 1583 release_sock(sk); 1584 return copied; 1585 } 1586 1587 static void mptcp_retransmit_handler(struct sock *sk) 1588 { 1589 struct mptcp_sock *msk = mptcp_sk(sk); 1590 1591 if (atomic64_read(&msk->snd_una) == READ_ONCE(msk->write_seq)) { 1592 mptcp_stop_timer(sk); 1593 } else { 1594 set_bit(MPTCP_WORK_RTX, &msk->flags); 1595 if (schedule_work(&msk->work)) 1596 sock_hold(sk); 1597 } 1598 } 1599 1600 static void mptcp_retransmit_timer(struct timer_list *t) 1601 { 1602 struct inet_connection_sock *icsk = from_timer(icsk, t, 1603 icsk_retransmit_timer); 1604 struct sock *sk = &icsk->icsk_inet.sk; 1605 1606 bh_lock_sock(sk); 1607 if (!sock_owned_by_user(sk)) { 1608 mptcp_retransmit_handler(sk); 1609 } else { 1610 /* delegate our work to tcp_release_cb() */ 1611 if (!test_and_set_bit(TCP_WRITE_TIMER_DEFERRED, 1612 &sk->sk_tsq_flags)) 1613 sock_hold(sk); 1614 } 1615 bh_unlock_sock(sk); 1616 sock_put(sk); 1617 } 1618 1619 /* Find an idle subflow. Return NULL if there is unacked data at tcp 1620 * level. 1621 * 1622 * A backup subflow is returned only if that is the only kind available. 1623 */ 1624 static struct sock *mptcp_subflow_get_retrans(const struct mptcp_sock *msk) 1625 { 1626 struct mptcp_subflow_context *subflow; 1627 struct sock *backup = NULL; 1628 1629 sock_owned_by_me((const struct sock *)msk); 1630 1631 if (__mptcp_check_fallback(msk)) 1632 return msk->first; 1633 1634 mptcp_for_each_subflow(msk, subflow) { 1635 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1636 1637 if (!mptcp_subflow_active(subflow)) 1638 continue; 1639 1640 /* still data outstanding at TCP level? Don't retransmit. */ 1641 if (!tcp_write_queue_empty(ssk)) 1642 return NULL; 1643 1644 if (subflow->backup) { 1645 if (!backup) 1646 backup = ssk; 1647 continue; 1648 } 1649 1650 return ssk; 1651 } 1652 1653 return backup; 1654 } 1655 1656 /* subflow sockets can be either outgoing (connect) or incoming 1657 * (accept). 1658 * 1659 * Outgoing subflows use in-kernel sockets. 1660 * Incoming subflows do not have their own 'struct socket' allocated, 1661 * so we need to use tcp_close() after detaching them from the mptcp 1662 * parent socket. 1663 */ 1664 void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 1665 struct mptcp_subflow_context *subflow, 1666 long timeout) 1667 { 1668 struct socket *sock = READ_ONCE(ssk->sk_socket); 1669 1670 list_del(&subflow->node); 1671 1672 if (sock && sock != sk->sk_socket) { 1673 /* outgoing subflow */ 1674 sock_release(sock); 1675 } else { 1676 /* incoming subflow */ 1677 tcp_close(ssk, timeout); 1678 } 1679 } 1680 1681 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 1682 { 1683 return 0; 1684 } 1685 1686 static void pm_work(struct mptcp_sock *msk) 1687 { 1688 struct mptcp_pm_data *pm = &msk->pm; 1689 1690 spin_lock_bh(&msk->pm.lock); 1691 1692 pr_debug("msk=%p status=%x", msk, pm->status); 1693 if (pm->status & BIT(MPTCP_PM_ADD_ADDR_RECEIVED)) { 1694 pm->status &= ~BIT(MPTCP_PM_ADD_ADDR_RECEIVED); 1695 mptcp_pm_nl_add_addr_received(msk); 1696 } 1697 if (pm->status & BIT(MPTCP_PM_RM_ADDR_RECEIVED)) { 1698 pm->status &= ~BIT(MPTCP_PM_RM_ADDR_RECEIVED); 1699 mptcp_pm_nl_rm_addr_received(msk); 1700 } 1701 if (pm->status & BIT(MPTCP_PM_ESTABLISHED)) { 1702 pm->status &= ~BIT(MPTCP_PM_ESTABLISHED); 1703 mptcp_pm_nl_fully_established(msk); 1704 } 1705 if (pm->status & BIT(MPTCP_PM_SUBFLOW_ESTABLISHED)) { 1706 pm->status &= ~BIT(MPTCP_PM_SUBFLOW_ESTABLISHED); 1707 mptcp_pm_nl_subflow_established(msk); 1708 } 1709 1710 spin_unlock_bh(&msk->pm.lock); 1711 } 1712 1713 static void __mptcp_close_subflow(struct mptcp_sock *msk) 1714 { 1715 struct mptcp_subflow_context *subflow, *tmp; 1716 1717 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { 1718 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1719 1720 if (inet_sk_state_load(ssk) != TCP_CLOSE) 1721 continue; 1722 1723 __mptcp_close_ssk((struct sock *)msk, ssk, subflow, 0); 1724 } 1725 } 1726 1727 static void mptcp_worker(struct work_struct *work) 1728 { 1729 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 1730 struct sock *ssk, *sk = &msk->sk.icsk_inet.sk; 1731 int orig_len, orig_offset, mss_now = 0, size_goal = 0; 1732 struct mptcp_data_frag *dfrag; 1733 u64 orig_write_seq; 1734 size_t copied = 0; 1735 struct msghdr msg = { 1736 .msg_flags = MSG_DONTWAIT, 1737 }; 1738 long timeo = 0; 1739 1740 lock_sock(sk); 1741 mptcp_clean_una(sk); 1742 mptcp_check_data_fin_ack(sk); 1743 __mptcp_flush_join_list(msk); 1744 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 1745 __mptcp_close_subflow(msk); 1746 1747 __mptcp_move_skbs(msk); 1748 1749 if (msk->pm.status) 1750 pm_work(msk); 1751 1752 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 1753 mptcp_check_for_eof(msk); 1754 1755 mptcp_check_data_fin(sk); 1756 1757 if (!test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 1758 goto unlock; 1759 1760 dfrag = mptcp_rtx_head(sk); 1761 if (!dfrag) 1762 goto unlock; 1763 1764 if (!mptcp_ext_cache_refill(msk)) 1765 goto reset_unlock; 1766 1767 ssk = mptcp_subflow_get_retrans(msk); 1768 if (!ssk) 1769 goto reset_unlock; 1770 1771 lock_sock(ssk); 1772 1773 orig_len = dfrag->data_len; 1774 orig_offset = dfrag->offset; 1775 orig_write_seq = dfrag->data_seq; 1776 while (dfrag->data_len > 0) { 1777 int ret = mptcp_sendmsg_frag(sk, ssk, &msg, dfrag, &timeo, 1778 &mss_now, &size_goal); 1779 if (ret < 0) 1780 break; 1781 1782 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 1783 copied += ret; 1784 dfrag->data_len -= ret; 1785 dfrag->offset += ret; 1786 1787 if (!mptcp_ext_cache_refill(msk)) 1788 break; 1789 } 1790 if (copied) 1791 tcp_push(ssk, msg.msg_flags, mss_now, tcp_sk(ssk)->nonagle, 1792 size_goal); 1793 1794 dfrag->data_seq = orig_write_seq; 1795 dfrag->offset = orig_offset; 1796 dfrag->data_len = orig_len; 1797 1798 mptcp_set_timeout(sk, ssk); 1799 release_sock(ssk); 1800 1801 reset_unlock: 1802 if (!mptcp_timer_pending(sk)) 1803 mptcp_reset_timer(sk); 1804 1805 unlock: 1806 release_sock(sk); 1807 sock_put(sk); 1808 } 1809 1810 static int __mptcp_init_sock(struct sock *sk) 1811 { 1812 struct mptcp_sock *msk = mptcp_sk(sk); 1813 1814 spin_lock_init(&msk->join_list_lock); 1815 1816 INIT_LIST_HEAD(&msk->conn_list); 1817 INIT_LIST_HEAD(&msk->join_list); 1818 INIT_LIST_HEAD(&msk->rtx_queue); 1819 __set_bit(MPTCP_SEND_SPACE, &msk->flags); 1820 INIT_WORK(&msk->work, mptcp_worker); 1821 msk->out_of_order_queue = RB_ROOT; 1822 1823 msk->first = NULL; 1824 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 1825 1826 mptcp_pm_data_init(msk); 1827 1828 /* re-use the csk retrans timer for MPTCP-level retrans */ 1829 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 1830 1831 return 0; 1832 } 1833 1834 static int mptcp_init_sock(struct sock *sk) 1835 { 1836 struct net *net = sock_net(sk); 1837 int ret; 1838 1839 ret = __mptcp_init_sock(sk); 1840 if (ret) 1841 return ret; 1842 1843 if (!mptcp_is_enabled(net)) 1844 return -ENOPROTOOPT; 1845 1846 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 1847 return -ENOMEM; 1848 1849 ret = __mptcp_socket_create(mptcp_sk(sk)); 1850 if (ret) 1851 return ret; 1852 1853 sk_sockets_allocated_inc(sk); 1854 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 1855 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 1856 1857 return 0; 1858 } 1859 1860 static void __mptcp_clear_xmit(struct sock *sk) 1861 { 1862 struct mptcp_sock *msk = mptcp_sk(sk); 1863 struct mptcp_data_frag *dtmp, *dfrag; 1864 1865 sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer); 1866 1867 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 1868 dfrag_clear(sk, dfrag); 1869 } 1870 1871 static void mptcp_cancel_work(struct sock *sk) 1872 { 1873 struct mptcp_sock *msk = mptcp_sk(sk); 1874 1875 if (cancel_work_sync(&msk->work)) 1876 sock_put(sk); 1877 } 1878 1879 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 1880 { 1881 lock_sock(ssk); 1882 1883 switch (ssk->sk_state) { 1884 case TCP_LISTEN: 1885 if (!(how & RCV_SHUTDOWN)) 1886 break; 1887 fallthrough; 1888 case TCP_SYN_SENT: 1889 tcp_disconnect(ssk, O_NONBLOCK); 1890 break; 1891 default: 1892 if (__mptcp_check_fallback(mptcp_sk(sk))) { 1893 pr_debug("Fallback"); 1894 ssk->sk_shutdown |= how; 1895 tcp_shutdown(ssk, how); 1896 } else { 1897 pr_debug("Sending DATA_FIN on subflow %p", ssk); 1898 mptcp_set_timeout(sk, ssk); 1899 tcp_send_ack(ssk); 1900 } 1901 break; 1902 } 1903 1904 release_sock(ssk); 1905 } 1906 1907 static const unsigned char new_state[16] = { 1908 /* current state: new state: action: */ 1909 [0 /* (Invalid) */] = TCP_CLOSE, 1910 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1911 [TCP_SYN_SENT] = TCP_CLOSE, 1912 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1913 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 1914 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 1915 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 1916 [TCP_CLOSE] = TCP_CLOSE, 1917 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 1918 [TCP_LAST_ACK] = TCP_LAST_ACK, 1919 [TCP_LISTEN] = TCP_CLOSE, 1920 [TCP_CLOSING] = TCP_CLOSING, 1921 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 1922 }; 1923 1924 static int mptcp_close_state(struct sock *sk) 1925 { 1926 int next = (int)new_state[sk->sk_state]; 1927 int ns = next & TCP_STATE_MASK; 1928 1929 inet_sk_state_store(sk, ns); 1930 1931 return next & TCP_ACTION_FIN; 1932 } 1933 1934 static void mptcp_close(struct sock *sk, long timeout) 1935 { 1936 struct mptcp_subflow_context *subflow, *tmp; 1937 struct mptcp_sock *msk = mptcp_sk(sk); 1938 LIST_HEAD(conn_list); 1939 1940 lock_sock(sk); 1941 sk->sk_shutdown = SHUTDOWN_MASK; 1942 1943 if (sk->sk_state == TCP_LISTEN) { 1944 inet_sk_state_store(sk, TCP_CLOSE); 1945 goto cleanup; 1946 } else if (sk->sk_state == TCP_CLOSE) { 1947 goto cleanup; 1948 } 1949 1950 if (__mptcp_check_fallback(msk)) { 1951 goto update_state; 1952 } else if (mptcp_close_state(sk)) { 1953 pr_debug("Sending DATA_FIN sk=%p", sk); 1954 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 1955 WRITE_ONCE(msk->snd_data_fin_enable, 1); 1956 1957 mptcp_for_each_subflow(msk, subflow) { 1958 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 1959 1960 mptcp_subflow_shutdown(sk, tcp_sk, SHUTDOWN_MASK); 1961 } 1962 } 1963 1964 sk_stream_wait_close(sk, timeout); 1965 1966 update_state: 1967 inet_sk_state_store(sk, TCP_CLOSE); 1968 1969 cleanup: 1970 /* be sure to always acquire the join list lock, to sync vs 1971 * mptcp_finish_join(). 1972 */ 1973 spin_lock_bh(&msk->join_list_lock); 1974 list_splice_tail_init(&msk->join_list, &msk->conn_list); 1975 spin_unlock_bh(&msk->join_list_lock); 1976 list_splice_init(&msk->conn_list, &conn_list); 1977 1978 __mptcp_clear_xmit(sk); 1979 1980 release_sock(sk); 1981 1982 list_for_each_entry_safe(subflow, tmp, &conn_list, node) { 1983 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1984 __mptcp_close_ssk(sk, ssk, subflow, timeout); 1985 } 1986 1987 mptcp_cancel_work(sk); 1988 1989 __skb_queue_purge(&sk->sk_receive_queue); 1990 1991 sk_common_release(sk); 1992 } 1993 1994 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 1995 { 1996 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 1997 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 1998 struct ipv6_pinfo *msk6 = inet6_sk(msk); 1999 2000 msk->sk_v6_daddr = ssk->sk_v6_daddr; 2001 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 2002 2003 if (msk6 && ssk6) { 2004 msk6->saddr = ssk6->saddr; 2005 msk6->flow_label = ssk6->flow_label; 2006 } 2007 #endif 2008 2009 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 2010 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 2011 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 2012 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 2013 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 2014 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 2015 } 2016 2017 static int mptcp_disconnect(struct sock *sk, int flags) 2018 { 2019 /* Should never be called. 2020 * inet_stream_connect() calls ->disconnect, but that 2021 * refers to the subflow socket, not the mptcp one. 2022 */ 2023 WARN_ON_ONCE(1); 2024 return 0; 2025 } 2026 2027 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2028 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 2029 { 2030 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 2031 2032 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 2033 } 2034 #endif 2035 2036 struct sock *mptcp_sk_clone(const struct sock *sk, 2037 const struct mptcp_options_received *mp_opt, 2038 struct request_sock *req) 2039 { 2040 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 2041 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 2042 struct mptcp_sock *msk; 2043 u64 ack_seq; 2044 2045 if (!nsk) 2046 return NULL; 2047 2048 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2049 if (nsk->sk_family == AF_INET6) 2050 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 2051 #endif 2052 2053 __mptcp_init_sock(nsk); 2054 2055 msk = mptcp_sk(nsk); 2056 msk->local_key = subflow_req->local_key; 2057 msk->token = subflow_req->token; 2058 msk->subflow = NULL; 2059 WRITE_ONCE(msk->fully_established, false); 2060 2061 msk->write_seq = subflow_req->idsn + 1; 2062 atomic64_set(&msk->snd_una, msk->write_seq); 2063 if (mp_opt->mp_capable) { 2064 msk->can_ack = true; 2065 msk->remote_key = mp_opt->sndr_key; 2066 mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq); 2067 ack_seq++; 2068 WRITE_ONCE(msk->ack_seq, ack_seq); 2069 } 2070 2071 sock_reset_flag(nsk, SOCK_RCU_FREE); 2072 /* will be fully established after successful MPC subflow creation */ 2073 inet_sk_state_store(nsk, TCP_SYN_RECV); 2074 bh_unlock_sock(nsk); 2075 2076 /* keep a single reference */ 2077 __sock_put(nsk); 2078 return nsk; 2079 } 2080 2081 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 2082 { 2083 const struct tcp_sock *tp = tcp_sk(ssk); 2084 2085 msk->rcvq_space.copied = 0; 2086 msk->rcvq_space.rtt_us = 0; 2087 2088 msk->rcvq_space.time = tp->tcp_mstamp; 2089 2090 /* initial rcv_space offering made to peer */ 2091 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 2092 TCP_INIT_CWND * tp->advmss); 2093 if (msk->rcvq_space.space == 0) 2094 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 2095 } 2096 2097 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err, 2098 bool kern) 2099 { 2100 struct mptcp_sock *msk = mptcp_sk(sk); 2101 struct socket *listener; 2102 struct sock *newsk; 2103 2104 listener = __mptcp_nmpc_socket(msk); 2105 if (WARN_ON_ONCE(!listener)) { 2106 *err = -EINVAL; 2107 return NULL; 2108 } 2109 2110 pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk)); 2111 newsk = inet_csk_accept(listener->sk, flags, err, kern); 2112 if (!newsk) 2113 return NULL; 2114 2115 pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk)); 2116 if (sk_is_mptcp(newsk)) { 2117 struct mptcp_subflow_context *subflow; 2118 struct sock *new_mptcp_sock; 2119 struct sock *ssk = newsk; 2120 2121 subflow = mptcp_subflow_ctx(newsk); 2122 new_mptcp_sock = subflow->conn; 2123 2124 /* is_mptcp should be false if subflow->conn is missing, see 2125 * subflow_syn_recv_sock() 2126 */ 2127 if (WARN_ON_ONCE(!new_mptcp_sock)) { 2128 tcp_sk(newsk)->is_mptcp = 0; 2129 return newsk; 2130 } 2131 2132 /* acquire the 2nd reference for the owning socket */ 2133 sock_hold(new_mptcp_sock); 2134 2135 local_bh_disable(); 2136 bh_lock_sock(new_mptcp_sock); 2137 msk = mptcp_sk(new_mptcp_sock); 2138 msk->first = newsk; 2139 2140 newsk = new_mptcp_sock; 2141 mptcp_copy_inaddrs(newsk, ssk); 2142 list_add(&subflow->node, &msk->conn_list); 2143 2144 mptcp_rcv_space_init(msk, ssk); 2145 bh_unlock_sock(new_mptcp_sock); 2146 2147 __MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 2148 local_bh_enable(); 2149 } else { 2150 MPTCP_INC_STATS(sock_net(sk), 2151 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 2152 } 2153 2154 return newsk; 2155 } 2156 2157 void mptcp_destroy_common(struct mptcp_sock *msk) 2158 { 2159 skb_rbtree_purge(&msk->out_of_order_queue); 2160 mptcp_token_destroy(msk); 2161 mptcp_pm_free_anno_list(msk); 2162 } 2163 2164 static void mptcp_destroy(struct sock *sk) 2165 { 2166 struct mptcp_sock *msk = mptcp_sk(sk); 2167 2168 if (msk->cached_ext) 2169 __skb_ext_put(msk->cached_ext); 2170 2171 mptcp_destroy_common(msk); 2172 sk_sockets_allocated_dec(sk); 2173 } 2174 2175 static int mptcp_setsockopt_sol_socket(struct mptcp_sock *msk, int optname, 2176 sockptr_t optval, unsigned int optlen) 2177 { 2178 struct sock *sk = (struct sock *)msk; 2179 struct socket *ssock; 2180 int ret; 2181 2182 switch (optname) { 2183 case SO_REUSEPORT: 2184 case SO_REUSEADDR: 2185 lock_sock(sk); 2186 ssock = __mptcp_nmpc_socket(msk); 2187 if (!ssock) { 2188 release_sock(sk); 2189 return -EINVAL; 2190 } 2191 2192 ret = sock_setsockopt(ssock, SOL_SOCKET, optname, optval, optlen); 2193 if (ret == 0) { 2194 if (optname == SO_REUSEPORT) 2195 sk->sk_reuseport = ssock->sk->sk_reuseport; 2196 else if (optname == SO_REUSEADDR) 2197 sk->sk_reuse = ssock->sk->sk_reuse; 2198 } 2199 release_sock(sk); 2200 return ret; 2201 } 2202 2203 return sock_setsockopt(sk->sk_socket, SOL_SOCKET, optname, optval, optlen); 2204 } 2205 2206 static int mptcp_setsockopt_v6(struct mptcp_sock *msk, int optname, 2207 sockptr_t optval, unsigned int optlen) 2208 { 2209 struct sock *sk = (struct sock *)msk; 2210 int ret = -EOPNOTSUPP; 2211 struct socket *ssock; 2212 2213 switch (optname) { 2214 case IPV6_V6ONLY: 2215 lock_sock(sk); 2216 ssock = __mptcp_nmpc_socket(msk); 2217 if (!ssock) { 2218 release_sock(sk); 2219 return -EINVAL; 2220 } 2221 2222 ret = tcp_setsockopt(ssock->sk, SOL_IPV6, optname, optval, optlen); 2223 if (ret == 0) 2224 sk->sk_ipv6only = ssock->sk->sk_ipv6only; 2225 2226 release_sock(sk); 2227 break; 2228 } 2229 2230 return ret; 2231 } 2232 2233 static int mptcp_setsockopt(struct sock *sk, int level, int optname, 2234 sockptr_t optval, unsigned int optlen) 2235 { 2236 struct mptcp_sock *msk = mptcp_sk(sk); 2237 struct sock *ssk; 2238 2239 pr_debug("msk=%p", msk); 2240 2241 if (level == SOL_SOCKET) 2242 return mptcp_setsockopt_sol_socket(msk, optname, optval, optlen); 2243 2244 /* @@ the meaning of setsockopt() when the socket is connected and 2245 * there are multiple subflows is not yet defined. It is up to the 2246 * MPTCP-level socket to configure the subflows until the subflow 2247 * is in TCP fallback, when TCP socket options are passed through 2248 * to the one remaining subflow. 2249 */ 2250 lock_sock(sk); 2251 ssk = __mptcp_tcp_fallback(msk); 2252 release_sock(sk); 2253 if (ssk) 2254 return tcp_setsockopt(ssk, level, optname, optval, optlen); 2255 2256 if (level == SOL_IPV6) 2257 return mptcp_setsockopt_v6(msk, optname, optval, optlen); 2258 2259 return -EOPNOTSUPP; 2260 } 2261 2262 static int mptcp_getsockopt(struct sock *sk, int level, int optname, 2263 char __user *optval, int __user *option) 2264 { 2265 struct mptcp_sock *msk = mptcp_sk(sk); 2266 struct sock *ssk; 2267 2268 pr_debug("msk=%p", msk); 2269 2270 /* @@ the meaning of setsockopt() when the socket is connected and 2271 * there are multiple subflows is not yet defined. It is up to the 2272 * MPTCP-level socket to configure the subflows until the subflow 2273 * is in TCP fallback, when socket options are passed through 2274 * to the one remaining subflow. 2275 */ 2276 lock_sock(sk); 2277 ssk = __mptcp_tcp_fallback(msk); 2278 release_sock(sk); 2279 if (ssk) 2280 return tcp_getsockopt(ssk, level, optname, optval, option); 2281 2282 return -EOPNOTSUPP; 2283 } 2284 2285 #define MPTCP_DEFERRED_ALL (TCPF_DELACK_TIMER_DEFERRED | \ 2286 TCPF_WRITE_TIMER_DEFERRED) 2287 2288 /* this is very alike tcp_release_cb() but we must handle differently a 2289 * different set of events 2290 */ 2291 static void mptcp_release_cb(struct sock *sk) 2292 { 2293 unsigned long flags, nflags; 2294 2295 do { 2296 flags = sk->sk_tsq_flags; 2297 if (!(flags & MPTCP_DEFERRED_ALL)) 2298 return; 2299 nflags = flags & ~MPTCP_DEFERRED_ALL; 2300 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); 2301 2302 sock_release_ownership(sk); 2303 2304 if (flags & TCPF_DELACK_TIMER_DEFERRED) { 2305 struct mptcp_sock *msk = mptcp_sk(sk); 2306 struct sock *ssk; 2307 2308 ssk = mptcp_subflow_recv_lookup(msk); 2309 if (!ssk || !schedule_work(&msk->work)) 2310 __sock_put(sk); 2311 } 2312 2313 if (flags & TCPF_WRITE_TIMER_DEFERRED) { 2314 mptcp_retransmit_handler(sk); 2315 __sock_put(sk); 2316 } 2317 } 2318 2319 static int mptcp_hash(struct sock *sk) 2320 { 2321 /* should never be called, 2322 * we hash the TCP subflows not the master socket 2323 */ 2324 WARN_ON_ONCE(1); 2325 return 0; 2326 } 2327 2328 static void mptcp_unhash(struct sock *sk) 2329 { 2330 /* called from sk_common_release(), but nothing to do here */ 2331 } 2332 2333 static int mptcp_get_port(struct sock *sk, unsigned short snum) 2334 { 2335 struct mptcp_sock *msk = mptcp_sk(sk); 2336 struct socket *ssock; 2337 2338 ssock = __mptcp_nmpc_socket(msk); 2339 pr_debug("msk=%p, subflow=%p", msk, ssock); 2340 if (WARN_ON_ONCE(!ssock)) 2341 return -EINVAL; 2342 2343 return inet_csk_get_port(ssock->sk, snum); 2344 } 2345 2346 void mptcp_finish_connect(struct sock *ssk) 2347 { 2348 struct mptcp_subflow_context *subflow; 2349 struct mptcp_sock *msk; 2350 struct sock *sk; 2351 u64 ack_seq; 2352 2353 subflow = mptcp_subflow_ctx(ssk); 2354 sk = subflow->conn; 2355 msk = mptcp_sk(sk); 2356 2357 pr_debug("msk=%p, token=%u", sk, subflow->token); 2358 2359 mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq); 2360 ack_seq++; 2361 subflow->map_seq = ack_seq; 2362 subflow->map_subflow_seq = 1; 2363 2364 /* the socket is not connected yet, no msk/subflow ops can access/race 2365 * accessing the field below 2366 */ 2367 WRITE_ONCE(msk->remote_key, subflow->remote_key); 2368 WRITE_ONCE(msk->local_key, subflow->local_key); 2369 WRITE_ONCE(msk->write_seq, subflow->idsn + 1); 2370 WRITE_ONCE(msk->ack_seq, ack_seq); 2371 WRITE_ONCE(msk->can_ack, 1); 2372 atomic64_set(&msk->snd_una, msk->write_seq); 2373 2374 mptcp_pm_new_connection(msk, 0); 2375 2376 mptcp_rcv_space_init(msk, ssk); 2377 } 2378 2379 static void mptcp_sock_graft(struct sock *sk, struct socket *parent) 2380 { 2381 write_lock_bh(&sk->sk_callback_lock); 2382 rcu_assign_pointer(sk->sk_wq, &parent->wq); 2383 sk_set_socket(sk, parent); 2384 sk->sk_uid = SOCK_INODE(parent)->i_uid; 2385 write_unlock_bh(&sk->sk_callback_lock); 2386 } 2387 2388 bool mptcp_finish_join(struct sock *sk) 2389 { 2390 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk); 2391 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 2392 struct sock *parent = (void *)msk; 2393 struct socket *parent_sock; 2394 bool ret; 2395 2396 pr_debug("msk=%p, subflow=%p", msk, subflow); 2397 2398 /* mptcp socket already closing? */ 2399 if (!mptcp_is_fully_established(parent)) 2400 return false; 2401 2402 if (!msk->pm.server_side) 2403 return true; 2404 2405 if (!mptcp_pm_allow_new_subflow(msk)) 2406 return false; 2407 2408 /* active connections are already on conn_list, and we can't acquire 2409 * msk lock here. 2410 * use the join list lock as synchronization point and double-check 2411 * msk status to avoid racing with mptcp_close() 2412 */ 2413 spin_lock_bh(&msk->join_list_lock); 2414 ret = inet_sk_state_load(parent) == TCP_ESTABLISHED; 2415 if (ret && !WARN_ON_ONCE(!list_empty(&subflow->node))) 2416 list_add_tail(&subflow->node, &msk->join_list); 2417 spin_unlock_bh(&msk->join_list_lock); 2418 if (!ret) 2419 return false; 2420 2421 /* attach to msk socket only after we are sure he will deal with us 2422 * at close time 2423 */ 2424 parent_sock = READ_ONCE(parent->sk_socket); 2425 if (parent_sock && !sk->sk_socket) 2426 mptcp_sock_graft(sk, parent_sock); 2427 subflow->map_seq = READ_ONCE(msk->ack_seq); 2428 return true; 2429 } 2430 2431 static bool mptcp_memory_free(const struct sock *sk, int wake) 2432 { 2433 struct mptcp_sock *msk = mptcp_sk(sk); 2434 2435 return wake ? test_bit(MPTCP_SEND_SPACE, &msk->flags) : true; 2436 } 2437 2438 static struct proto mptcp_prot = { 2439 .name = "MPTCP", 2440 .owner = THIS_MODULE, 2441 .init = mptcp_init_sock, 2442 .disconnect = mptcp_disconnect, 2443 .close = mptcp_close, 2444 .accept = mptcp_accept, 2445 .setsockopt = mptcp_setsockopt, 2446 .getsockopt = mptcp_getsockopt, 2447 .shutdown = tcp_shutdown, 2448 .destroy = mptcp_destroy, 2449 .sendmsg = mptcp_sendmsg, 2450 .recvmsg = mptcp_recvmsg, 2451 .release_cb = mptcp_release_cb, 2452 .hash = mptcp_hash, 2453 .unhash = mptcp_unhash, 2454 .get_port = mptcp_get_port, 2455 .sockets_allocated = &mptcp_sockets_allocated, 2456 .memory_allocated = &tcp_memory_allocated, 2457 .memory_pressure = &tcp_memory_pressure, 2458 .stream_memory_free = mptcp_memory_free, 2459 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 2460 .sysctl_mem = sysctl_tcp_mem, 2461 .obj_size = sizeof(struct mptcp_sock), 2462 .slab_flags = SLAB_TYPESAFE_BY_RCU, 2463 .no_autobind = true, 2464 }; 2465 2466 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 2467 { 2468 struct mptcp_sock *msk = mptcp_sk(sock->sk); 2469 struct socket *ssock; 2470 int err; 2471 2472 lock_sock(sock->sk); 2473 ssock = __mptcp_nmpc_socket(msk); 2474 if (!ssock) { 2475 err = -EINVAL; 2476 goto unlock; 2477 } 2478 2479 err = ssock->ops->bind(ssock, uaddr, addr_len); 2480 if (!err) 2481 mptcp_copy_inaddrs(sock->sk, ssock->sk); 2482 2483 unlock: 2484 release_sock(sock->sk); 2485 return err; 2486 } 2487 2488 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 2489 struct mptcp_subflow_context *subflow) 2490 { 2491 subflow->request_mptcp = 0; 2492 __mptcp_do_fallback(msk); 2493 } 2494 2495 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr, 2496 int addr_len, int flags) 2497 { 2498 struct mptcp_sock *msk = mptcp_sk(sock->sk); 2499 struct mptcp_subflow_context *subflow; 2500 struct socket *ssock; 2501 int err; 2502 2503 lock_sock(sock->sk); 2504 if (sock->state != SS_UNCONNECTED && msk->subflow) { 2505 /* pending connection or invalid state, let existing subflow 2506 * cope with that 2507 */ 2508 ssock = msk->subflow; 2509 goto do_connect; 2510 } 2511 2512 ssock = __mptcp_nmpc_socket(msk); 2513 if (!ssock) { 2514 err = -EINVAL; 2515 goto unlock; 2516 } 2517 2518 mptcp_token_destroy(msk); 2519 inet_sk_state_store(sock->sk, TCP_SYN_SENT); 2520 subflow = mptcp_subflow_ctx(ssock->sk); 2521 #ifdef CONFIG_TCP_MD5SIG 2522 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 2523 * TCP option space. 2524 */ 2525 if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info)) 2526 mptcp_subflow_early_fallback(msk, subflow); 2527 #endif 2528 if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) 2529 mptcp_subflow_early_fallback(msk, subflow); 2530 2531 do_connect: 2532 err = ssock->ops->connect(ssock, uaddr, addr_len, flags); 2533 sock->state = ssock->state; 2534 2535 /* on successful connect, the msk state will be moved to established by 2536 * subflow_finish_connect() 2537 */ 2538 if (!err || err == -EINPROGRESS) 2539 mptcp_copy_inaddrs(sock->sk, ssock->sk); 2540 else 2541 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 2542 2543 unlock: 2544 release_sock(sock->sk); 2545 return err; 2546 } 2547 2548 static int mptcp_listen(struct socket *sock, int backlog) 2549 { 2550 struct mptcp_sock *msk = mptcp_sk(sock->sk); 2551 struct socket *ssock; 2552 int err; 2553 2554 pr_debug("msk=%p", msk); 2555 2556 lock_sock(sock->sk); 2557 ssock = __mptcp_nmpc_socket(msk); 2558 if (!ssock) { 2559 err = -EINVAL; 2560 goto unlock; 2561 } 2562 2563 mptcp_token_destroy(msk); 2564 inet_sk_state_store(sock->sk, TCP_LISTEN); 2565 sock_set_flag(sock->sk, SOCK_RCU_FREE); 2566 2567 err = ssock->ops->listen(ssock, backlog); 2568 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 2569 if (!err) 2570 mptcp_copy_inaddrs(sock->sk, ssock->sk); 2571 2572 unlock: 2573 release_sock(sock->sk); 2574 return err; 2575 } 2576 2577 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 2578 int flags, bool kern) 2579 { 2580 struct mptcp_sock *msk = mptcp_sk(sock->sk); 2581 struct socket *ssock; 2582 int err; 2583 2584 pr_debug("msk=%p", msk); 2585 2586 lock_sock(sock->sk); 2587 if (sock->sk->sk_state != TCP_LISTEN) 2588 goto unlock_fail; 2589 2590 ssock = __mptcp_nmpc_socket(msk); 2591 if (!ssock) 2592 goto unlock_fail; 2593 2594 clear_bit(MPTCP_DATA_READY, &msk->flags); 2595 sock_hold(ssock->sk); 2596 release_sock(sock->sk); 2597 2598 err = ssock->ops->accept(sock, newsock, flags, kern); 2599 if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) { 2600 struct mptcp_sock *msk = mptcp_sk(newsock->sk); 2601 struct mptcp_subflow_context *subflow; 2602 2603 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 2604 * This is needed so NOSPACE flag can be set from tcp stack. 2605 */ 2606 __mptcp_flush_join_list(msk); 2607 mptcp_for_each_subflow(msk, subflow) { 2608 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2609 2610 if (!ssk->sk_socket) 2611 mptcp_sock_graft(ssk, newsock); 2612 } 2613 } 2614 2615 if (inet_csk_listen_poll(ssock->sk)) 2616 set_bit(MPTCP_DATA_READY, &msk->flags); 2617 sock_put(ssock->sk); 2618 return err; 2619 2620 unlock_fail: 2621 release_sock(sock->sk); 2622 return -EINVAL; 2623 } 2624 2625 static __poll_t mptcp_check_readable(struct mptcp_sock *msk) 2626 { 2627 return test_bit(MPTCP_DATA_READY, &msk->flags) ? EPOLLIN | EPOLLRDNORM : 2628 0; 2629 } 2630 2631 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 2632 struct poll_table_struct *wait) 2633 { 2634 struct sock *sk = sock->sk; 2635 struct mptcp_sock *msk; 2636 __poll_t mask = 0; 2637 int state; 2638 2639 msk = mptcp_sk(sk); 2640 sock_poll_wait(file, sock, wait); 2641 2642 state = inet_sk_state_load(sk); 2643 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 2644 if (state == TCP_LISTEN) 2645 return mptcp_check_readable(msk); 2646 2647 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 2648 mask |= mptcp_check_readable(msk); 2649 if (test_bit(MPTCP_SEND_SPACE, &msk->flags)) 2650 mask |= EPOLLOUT | EPOLLWRNORM; 2651 } 2652 if (sk->sk_shutdown & RCV_SHUTDOWN) 2653 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 2654 2655 return mask; 2656 } 2657 2658 static int mptcp_shutdown(struct socket *sock, int how) 2659 { 2660 struct mptcp_sock *msk = mptcp_sk(sock->sk); 2661 struct mptcp_subflow_context *subflow; 2662 int ret = 0; 2663 2664 pr_debug("sk=%p, how=%d", msk, how); 2665 2666 lock_sock(sock->sk); 2667 2668 how++; 2669 if ((how & ~SHUTDOWN_MASK) || !how) { 2670 ret = -EINVAL; 2671 goto out_unlock; 2672 } 2673 2674 if (sock->state == SS_CONNECTING) { 2675 if ((1 << sock->sk->sk_state) & 2676 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) 2677 sock->state = SS_DISCONNECTING; 2678 else 2679 sock->state = SS_CONNECTED; 2680 } 2681 2682 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2683 if (__mptcp_check_fallback(msk)) { 2684 if (how == SHUT_WR || how == SHUT_RDWR) 2685 inet_sk_state_store(sock->sk, TCP_FIN_WAIT1); 2686 2687 mptcp_for_each_subflow(msk, subflow) { 2688 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2689 2690 mptcp_subflow_shutdown(sock->sk, tcp_sk, how); 2691 } 2692 } else if ((how & SEND_SHUTDOWN) && 2693 ((1 << sock->sk->sk_state) & 2694 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2695 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) && 2696 mptcp_close_state(sock->sk)) { 2697 __mptcp_flush_join_list(msk); 2698 2699 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2700 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2701 2702 mptcp_for_each_subflow(msk, subflow) { 2703 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2704 2705 mptcp_subflow_shutdown(sock->sk, tcp_sk, how); 2706 } 2707 } 2708 2709 /* Wake up anyone sleeping in poll. */ 2710 sock->sk->sk_state_change(sock->sk); 2711 2712 out_unlock: 2713 release_sock(sock->sk); 2714 2715 return ret; 2716 } 2717 2718 static const struct proto_ops mptcp_stream_ops = { 2719 .family = PF_INET, 2720 .owner = THIS_MODULE, 2721 .release = inet_release, 2722 .bind = mptcp_bind, 2723 .connect = mptcp_stream_connect, 2724 .socketpair = sock_no_socketpair, 2725 .accept = mptcp_stream_accept, 2726 .getname = inet_getname, 2727 .poll = mptcp_poll, 2728 .ioctl = inet_ioctl, 2729 .gettstamp = sock_gettstamp, 2730 .listen = mptcp_listen, 2731 .shutdown = mptcp_shutdown, 2732 .setsockopt = sock_common_setsockopt, 2733 .getsockopt = sock_common_getsockopt, 2734 .sendmsg = inet_sendmsg, 2735 .recvmsg = inet_recvmsg, 2736 .mmap = sock_no_mmap, 2737 .sendpage = inet_sendpage, 2738 }; 2739 2740 static struct inet_protosw mptcp_protosw = { 2741 .type = SOCK_STREAM, 2742 .protocol = IPPROTO_MPTCP, 2743 .prot = &mptcp_prot, 2744 .ops = &mptcp_stream_ops, 2745 .flags = INET_PROTOSW_ICSK, 2746 }; 2747 2748 void __init mptcp_proto_init(void) 2749 { 2750 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 2751 2752 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 2753 panic("Failed to allocate MPTCP pcpu counter\n"); 2754 2755 mptcp_subflow_init(); 2756 mptcp_pm_init(); 2757 mptcp_token_init(); 2758 2759 if (proto_register(&mptcp_prot, 1) != 0) 2760 panic("Failed to register MPTCP proto.\n"); 2761 2762 inet_register_protosw(&mptcp_protosw); 2763 2764 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 2765 } 2766 2767 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2768 static const struct proto_ops mptcp_v6_stream_ops = { 2769 .family = PF_INET6, 2770 .owner = THIS_MODULE, 2771 .release = inet6_release, 2772 .bind = mptcp_bind, 2773 .connect = mptcp_stream_connect, 2774 .socketpair = sock_no_socketpair, 2775 .accept = mptcp_stream_accept, 2776 .getname = inet6_getname, 2777 .poll = mptcp_poll, 2778 .ioctl = inet6_ioctl, 2779 .gettstamp = sock_gettstamp, 2780 .listen = mptcp_listen, 2781 .shutdown = mptcp_shutdown, 2782 .setsockopt = sock_common_setsockopt, 2783 .getsockopt = sock_common_getsockopt, 2784 .sendmsg = inet6_sendmsg, 2785 .recvmsg = inet6_recvmsg, 2786 .mmap = sock_no_mmap, 2787 .sendpage = inet_sendpage, 2788 #ifdef CONFIG_COMPAT 2789 .compat_ioctl = inet6_compat_ioctl, 2790 #endif 2791 }; 2792 2793 static struct proto mptcp_v6_prot; 2794 2795 static void mptcp_v6_destroy(struct sock *sk) 2796 { 2797 mptcp_destroy(sk); 2798 inet6_destroy_sock(sk); 2799 } 2800 2801 static struct inet_protosw mptcp_v6_protosw = { 2802 .type = SOCK_STREAM, 2803 .protocol = IPPROTO_MPTCP, 2804 .prot = &mptcp_v6_prot, 2805 .ops = &mptcp_v6_stream_ops, 2806 .flags = INET_PROTOSW_ICSK, 2807 }; 2808 2809 int __init mptcp_proto_v6_init(void) 2810 { 2811 int err; 2812 2813 mptcp_v6_prot = mptcp_prot; 2814 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 2815 mptcp_v6_prot.slab = NULL; 2816 mptcp_v6_prot.destroy = mptcp_v6_destroy; 2817 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 2818 2819 err = proto_register(&mptcp_v6_prot, 1); 2820 if (err) 2821 return err; 2822 2823 err = inet6_register_protosw(&mptcp_v6_protosw); 2824 if (err) 2825 proto_unregister(&mptcp_v6_prot); 2826 2827 return err; 2828 } 2829 #endif 2830