xref: /openbmc/linux/net/mptcp/protocol.c (revision 05911c5d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/sock.h>
15 #include <net/inet_common.h>
16 #include <net/inet_hashtables.h>
17 #include <net/protocol.h>
18 #include <net/tcp.h>
19 #include <net/tcp_states.h>
20 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
21 #include <net/transp_v6.h>
22 #endif
23 #include <net/mptcp.h>
24 #include <net/xfrm.h>
25 #include "protocol.h"
26 #include "mib.h"
27 
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/mptcp.h>
30 
31 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
32 struct mptcp6_sock {
33 	struct mptcp_sock msk;
34 	struct ipv6_pinfo np;
35 };
36 #endif
37 
38 struct mptcp_skb_cb {
39 	u64 map_seq;
40 	u64 end_seq;
41 	u32 offset;
42 };
43 
44 #define MPTCP_SKB_CB(__skb)	((struct mptcp_skb_cb *)&((__skb)->cb[0]))
45 
46 static struct percpu_counter mptcp_sockets_allocated;
47 
48 static void __mptcp_destroy_sock(struct sock *sk);
49 static void __mptcp_check_send_data_fin(struct sock *sk);
50 
51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
52 static struct net_device mptcp_napi_dev;
53 
54 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not
55  * completed yet or has failed, return the subflow socket.
56  * Otherwise return NULL.
57  */
58 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk)
59 {
60 	if (!msk->subflow || READ_ONCE(msk->can_ack))
61 		return NULL;
62 
63 	return msk->subflow;
64 }
65 
66 /* Returns end sequence number of the receiver's advertised window */
67 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
68 {
69 	return READ_ONCE(msk->wnd_end);
70 }
71 
72 static bool mptcp_is_tcpsk(struct sock *sk)
73 {
74 	struct socket *sock = sk->sk_socket;
75 
76 	if (unlikely(sk->sk_prot == &tcp_prot)) {
77 		/* we are being invoked after mptcp_accept() has
78 		 * accepted a non-mp-capable flow: sk is a tcp_sk,
79 		 * not an mptcp one.
80 		 *
81 		 * Hand the socket over to tcp so all further socket ops
82 		 * bypass mptcp.
83 		 */
84 		sock->ops = &inet_stream_ops;
85 		return true;
86 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
87 	} else if (unlikely(sk->sk_prot == &tcpv6_prot)) {
88 		sock->ops = &inet6_stream_ops;
89 		return true;
90 #endif
91 	}
92 
93 	return false;
94 }
95 
96 static int __mptcp_socket_create(struct mptcp_sock *msk)
97 {
98 	struct mptcp_subflow_context *subflow;
99 	struct sock *sk = (struct sock *)msk;
100 	struct socket *ssock;
101 	int err;
102 
103 	err = mptcp_subflow_create_socket(sk, &ssock);
104 	if (err)
105 		return err;
106 
107 	msk->first = ssock->sk;
108 	msk->subflow = ssock;
109 	subflow = mptcp_subflow_ctx(ssock->sk);
110 	list_add(&subflow->node, &msk->conn_list);
111 	sock_hold(ssock->sk);
112 	subflow->request_mptcp = 1;
113 	mptcp_sock_graft(msk->first, sk->sk_socket);
114 
115 	return 0;
116 }
117 
118 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
119 {
120 	sk_drops_add(sk, skb);
121 	__kfree_skb(skb);
122 }
123 
124 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
125 			       struct sk_buff *from)
126 {
127 	bool fragstolen;
128 	int delta;
129 
130 	if (MPTCP_SKB_CB(from)->offset ||
131 	    !skb_try_coalesce(to, from, &fragstolen, &delta))
132 		return false;
133 
134 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx",
135 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
136 		 to->len, MPTCP_SKB_CB(from)->end_seq);
137 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
138 	kfree_skb_partial(from, fragstolen);
139 	atomic_add(delta, &sk->sk_rmem_alloc);
140 	sk_mem_charge(sk, delta);
141 	return true;
142 }
143 
144 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
145 				   struct sk_buff *from)
146 {
147 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
148 		return false;
149 
150 	return mptcp_try_coalesce((struct sock *)msk, to, from);
151 }
152 
153 /* "inspired" by tcp_data_queue_ofo(), main differences:
154  * - use mptcp seqs
155  * - don't cope with sacks
156  */
157 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
158 {
159 	struct sock *sk = (struct sock *)msk;
160 	struct rb_node **p, *parent;
161 	u64 seq, end_seq, max_seq;
162 	struct sk_buff *skb1;
163 
164 	seq = MPTCP_SKB_CB(skb)->map_seq;
165 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
166 	max_seq = READ_ONCE(msk->rcv_wnd_sent);
167 
168 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq,
169 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
170 	if (after64(end_seq, max_seq)) {
171 		/* out of window */
172 		mptcp_drop(sk, skb);
173 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
174 			 (unsigned long long)end_seq - (unsigned long)max_seq,
175 			 (unsigned long long)msk->rcv_wnd_sent);
176 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
177 		return;
178 	}
179 
180 	p = &msk->out_of_order_queue.rb_node;
181 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
182 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
183 		rb_link_node(&skb->rbnode, NULL, p);
184 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
185 		msk->ooo_last_skb = skb;
186 		goto end;
187 	}
188 
189 	/* with 2 subflows, adding at end of ooo queue is quite likely
190 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
191 	 */
192 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
193 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
194 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
195 		return;
196 	}
197 
198 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
199 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
200 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
201 		parent = &msk->ooo_last_skb->rbnode;
202 		p = &parent->rb_right;
203 		goto insert;
204 	}
205 
206 	/* Find place to insert this segment. Handle overlaps on the way. */
207 	parent = NULL;
208 	while (*p) {
209 		parent = *p;
210 		skb1 = rb_to_skb(parent);
211 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
212 			p = &parent->rb_left;
213 			continue;
214 		}
215 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
216 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
217 				/* All the bits are present. Drop. */
218 				mptcp_drop(sk, skb);
219 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
220 				return;
221 			}
222 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
223 				/* partial overlap:
224 				 *     |     skb      |
225 				 *  |     skb1    |
226 				 * continue traversing
227 				 */
228 			} else {
229 				/* skb's seq == skb1's seq and skb covers skb1.
230 				 * Replace skb1 with skb.
231 				 */
232 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
233 						&msk->out_of_order_queue);
234 				mptcp_drop(sk, skb1);
235 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
236 				goto merge_right;
237 			}
238 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
239 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
240 			return;
241 		}
242 		p = &parent->rb_right;
243 	}
244 
245 insert:
246 	/* Insert segment into RB tree. */
247 	rb_link_node(&skb->rbnode, parent, p);
248 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
249 
250 merge_right:
251 	/* Remove other segments covered by skb. */
252 	while ((skb1 = skb_rb_next(skb)) != NULL) {
253 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
254 			break;
255 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
256 		mptcp_drop(sk, skb1);
257 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
258 	}
259 	/* If there is no skb after us, we are the last_skb ! */
260 	if (!skb1)
261 		msk->ooo_last_skb = skb;
262 
263 end:
264 	skb_condense(skb);
265 	skb_set_owner_r(skb, sk);
266 }
267 
268 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
269 			     struct sk_buff *skb, unsigned int offset,
270 			     size_t copy_len)
271 {
272 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
273 	struct sock *sk = (struct sock *)msk;
274 	struct sk_buff *tail;
275 
276 	__skb_unlink(skb, &ssk->sk_receive_queue);
277 
278 	skb_ext_reset(skb);
279 	skb_orphan(skb);
280 
281 	/* try to fetch required memory from subflow */
282 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
283 		int amount = sk_mem_pages(skb->truesize) << SK_MEM_QUANTUM_SHIFT;
284 
285 		if (ssk->sk_forward_alloc < amount)
286 			goto drop;
287 
288 		ssk->sk_forward_alloc -= amount;
289 		sk->sk_forward_alloc += amount;
290 	}
291 
292 	/* the skb map_seq accounts for the skb offset:
293 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
294 	 * value
295 	 */
296 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
297 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
298 	MPTCP_SKB_CB(skb)->offset = offset;
299 
300 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
301 		/* in sequence */
302 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
303 		tail = skb_peek_tail(&sk->sk_receive_queue);
304 		if (tail && mptcp_try_coalesce(sk, tail, skb))
305 			return true;
306 
307 		skb_set_owner_r(skb, sk);
308 		__skb_queue_tail(&sk->sk_receive_queue, skb);
309 		return true;
310 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
311 		mptcp_data_queue_ofo(msk, skb);
312 		return false;
313 	}
314 
315 	/* old data, keep it simple and drop the whole pkt, sender
316 	 * will retransmit as needed, if needed.
317 	 */
318 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
319 drop:
320 	mptcp_drop(sk, skb);
321 	return false;
322 }
323 
324 static void mptcp_stop_timer(struct sock *sk)
325 {
326 	struct inet_connection_sock *icsk = inet_csk(sk);
327 
328 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
329 	mptcp_sk(sk)->timer_ival = 0;
330 }
331 
332 static void mptcp_close_wake_up(struct sock *sk)
333 {
334 	if (sock_flag(sk, SOCK_DEAD))
335 		return;
336 
337 	sk->sk_state_change(sk);
338 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
339 	    sk->sk_state == TCP_CLOSE)
340 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
341 	else
342 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
343 }
344 
345 static bool mptcp_pending_data_fin_ack(struct sock *sk)
346 {
347 	struct mptcp_sock *msk = mptcp_sk(sk);
348 
349 	return !__mptcp_check_fallback(msk) &&
350 	       ((1 << sk->sk_state) &
351 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
352 	       msk->write_seq == READ_ONCE(msk->snd_una);
353 }
354 
355 static void mptcp_check_data_fin_ack(struct sock *sk)
356 {
357 	struct mptcp_sock *msk = mptcp_sk(sk);
358 
359 	/* Look for an acknowledged DATA_FIN */
360 	if (mptcp_pending_data_fin_ack(sk)) {
361 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
362 
363 		switch (sk->sk_state) {
364 		case TCP_FIN_WAIT1:
365 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
366 			break;
367 		case TCP_CLOSING:
368 		case TCP_LAST_ACK:
369 			inet_sk_state_store(sk, TCP_CLOSE);
370 			break;
371 		}
372 
373 		mptcp_close_wake_up(sk);
374 	}
375 }
376 
377 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
378 {
379 	struct mptcp_sock *msk = mptcp_sk(sk);
380 
381 	if (READ_ONCE(msk->rcv_data_fin) &&
382 	    ((1 << sk->sk_state) &
383 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
384 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
385 
386 		if (msk->ack_seq == rcv_data_fin_seq) {
387 			if (seq)
388 				*seq = rcv_data_fin_seq;
389 
390 			return true;
391 		}
392 	}
393 
394 	return false;
395 }
396 
397 static void mptcp_set_datafin_timeout(const struct sock *sk)
398 {
399 	struct inet_connection_sock *icsk = inet_csk(sk);
400 
401 	mptcp_sk(sk)->timer_ival = min(TCP_RTO_MAX,
402 				       TCP_RTO_MIN << icsk->icsk_retransmits);
403 }
404 
405 static void mptcp_set_timeout(const struct sock *sk, const struct sock *ssk)
406 {
407 	long tout = ssk && inet_csk(ssk)->icsk_pending ?
408 				      inet_csk(ssk)->icsk_timeout - jiffies : 0;
409 
410 	if (tout <= 0)
411 		tout = mptcp_sk(sk)->timer_ival;
412 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
413 }
414 
415 static bool tcp_can_send_ack(const struct sock *ssk)
416 {
417 	return !((1 << inet_sk_state_load(ssk)) &
418 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
419 }
420 
421 static void mptcp_send_ack(struct mptcp_sock *msk)
422 {
423 	struct mptcp_subflow_context *subflow;
424 
425 	mptcp_for_each_subflow(msk, subflow) {
426 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
427 
428 		lock_sock(ssk);
429 		if (tcp_can_send_ack(ssk))
430 			tcp_send_ack(ssk);
431 		release_sock(ssk);
432 	}
433 }
434 
435 static bool mptcp_subflow_cleanup_rbuf(struct sock *ssk)
436 {
437 	int ret;
438 
439 	lock_sock(ssk);
440 	ret = tcp_can_send_ack(ssk);
441 	if (ret)
442 		tcp_cleanup_rbuf(ssk, 1);
443 	release_sock(ssk);
444 	return ret;
445 }
446 
447 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk)
448 {
449 	struct sock *ack_hint = READ_ONCE(msk->ack_hint);
450 	int old_space = READ_ONCE(msk->old_wspace);
451 	struct mptcp_subflow_context *subflow;
452 	struct sock *sk = (struct sock *)msk;
453 	bool cleanup;
454 
455 	/* this is a simple superset of what tcp_cleanup_rbuf() implements
456 	 * so that we don't have to acquire the ssk socket lock most of the time
457 	 * to do actually nothing
458 	 */
459 	cleanup = __mptcp_space(sk) - old_space >= max(0, old_space);
460 	if (!cleanup)
461 		return;
462 
463 	/* if the hinted ssk is still active, try to use it */
464 	if (likely(ack_hint)) {
465 		mptcp_for_each_subflow(msk, subflow) {
466 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
467 
468 			if (ack_hint == ssk && mptcp_subflow_cleanup_rbuf(ssk))
469 				return;
470 		}
471 	}
472 
473 	/* otherwise pick the first active subflow */
474 	mptcp_for_each_subflow(msk, subflow)
475 		if (mptcp_subflow_cleanup_rbuf(mptcp_subflow_tcp_sock(subflow)))
476 			return;
477 }
478 
479 static bool mptcp_check_data_fin(struct sock *sk)
480 {
481 	struct mptcp_sock *msk = mptcp_sk(sk);
482 	u64 rcv_data_fin_seq;
483 	bool ret = false;
484 
485 	if (__mptcp_check_fallback(msk))
486 		return ret;
487 
488 	/* Need to ack a DATA_FIN received from a peer while this side
489 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
490 	 * msk->rcv_data_fin was set when parsing the incoming options
491 	 * at the subflow level and the msk lock was not held, so this
492 	 * is the first opportunity to act on the DATA_FIN and change
493 	 * the msk state.
494 	 *
495 	 * If we are caught up to the sequence number of the incoming
496 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
497 	 * not caught up, do nothing and let the recv code send DATA_ACK
498 	 * when catching up.
499 	 */
500 
501 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
502 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
503 		WRITE_ONCE(msk->rcv_data_fin, 0);
504 
505 		sk->sk_shutdown |= RCV_SHUTDOWN;
506 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
507 		set_bit(MPTCP_DATA_READY, &msk->flags);
508 
509 		switch (sk->sk_state) {
510 		case TCP_ESTABLISHED:
511 			inet_sk_state_store(sk, TCP_CLOSE_WAIT);
512 			break;
513 		case TCP_FIN_WAIT1:
514 			inet_sk_state_store(sk, TCP_CLOSING);
515 			break;
516 		case TCP_FIN_WAIT2:
517 			inet_sk_state_store(sk, TCP_CLOSE);
518 			break;
519 		default:
520 			/* Other states not expected */
521 			WARN_ON_ONCE(1);
522 			break;
523 		}
524 
525 		ret = true;
526 		mptcp_set_timeout(sk, NULL);
527 		mptcp_send_ack(msk);
528 		mptcp_close_wake_up(sk);
529 	}
530 	return ret;
531 }
532 
533 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
534 					   struct sock *ssk,
535 					   unsigned int *bytes)
536 {
537 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
538 	struct sock *sk = (struct sock *)msk;
539 	unsigned int moved = 0;
540 	bool more_data_avail;
541 	struct tcp_sock *tp;
542 	bool done = false;
543 	int sk_rbuf;
544 
545 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
546 
547 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
548 		int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
549 
550 		if (unlikely(ssk_rbuf > sk_rbuf)) {
551 			WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
552 			sk_rbuf = ssk_rbuf;
553 		}
554 	}
555 
556 	pr_debug("msk=%p ssk=%p", msk, ssk);
557 	tp = tcp_sk(ssk);
558 	do {
559 		u32 map_remaining, offset;
560 		u32 seq = tp->copied_seq;
561 		struct sk_buff *skb;
562 		bool fin;
563 
564 		/* try to move as much data as available */
565 		map_remaining = subflow->map_data_len -
566 				mptcp_subflow_get_map_offset(subflow);
567 
568 		skb = skb_peek(&ssk->sk_receive_queue);
569 		if (!skb) {
570 			/* if no data is found, a racing workqueue/recvmsg
571 			 * already processed the new data, stop here or we
572 			 * can enter an infinite loop
573 			 */
574 			if (!moved)
575 				done = true;
576 			break;
577 		}
578 
579 		if (__mptcp_check_fallback(msk)) {
580 			/* if we are running under the workqueue, TCP could have
581 			 * collapsed skbs between dummy map creation and now
582 			 * be sure to adjust the size
583 			 */
584 			map_remaining = skb->len;
585 			subflow->map_data_len = skb->len;
586 		}
587 
588 		offset = seq - TCP_SKB_CB(skb)->seq;
589 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
590 		if (fin) {
591 			done = true;
592 			seq++;
593 		}
594 
595 		if (offset < skb->len) {
596 			size_t len = skb->len - offset;
597 
598 			if (tp->urg_data)
599 				done = true;
600 
601 			if (__mptcp_move_skb(msk, ssk, skb, offset, len))
602 				moved += len;
603 			seq += len;
604 
605 			if (WARN_ON_ONCE(map_remaining < len))
606 				break;
607 		} else {
608 			WARN_ON_ONCE(!fin);
609 			sk_eat_skb(ssk, skb);
610 			done = true;
611 		}
612 
613 		WRITE_ONCE(tp->copied_seq, seq);
614 		more_data_avail = mptcp_subflow_data_available(ssk);
615 
616 		if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
617 			done = true;
618 			break;
619 		}
620 	} while (more_data_avail);
621 	WRITE_ONCE(msk->ack_hint, ssk);
622 
623 	*bytes += moved;
624 	return done;
625 }
626 
627 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
628 {
629 	struct sock *sk = (struct sock *)msk;
630 	struct sk_buff *skb, *tail;
631 	bool moved = false;
632 	struct rb_node *p;
633 	u64 end_seq;
634 
635 	p = rb_first(&msk->out_of_order_queue);
636 	pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
637 	while (p) {
638 		skb = rb_to_skb(p);
639 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
640 			break;
641 
642 		p = rb_next(p);
643 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
644 
645 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
646 				      msk->ack_seq))) {
647 			mptcp_drop(sk, skb);
648 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
649 			continue;
650 		}
651 
652 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
653 		tail = skb_peek_tail(&sk->sk_receive_queue);
654 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
655 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
656 
657 			/* skip overlapping data, if any */
658 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d",
659 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
660 				 delta);
661 			MPTCP_SKB_CB(skb)->offset += delta;
662 			__skb_queue_tail(&sk->sk_receive_queue, skb);
663 		}
664 		msk->ack_seq = end_seq;
665 		moved = true;
666 	}
667 	return moved;
668 }
669 
670 /* In most cases we will be able to lock the mptcp socket.  If its already
671  * owned, we need to defer to the work queue to avoid ABBA deadlock.
672  */
673 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
674 {
675 	struct sock *sk = (struct sock *)msk;
676 	unsigned int moved = 0;
677 
678 	if (inet_sk_state_load(sk) == TCP_CLOSE)
679 		return false;
680 
681 	__mptcp_move_skbs_from_subflow(msk, ssk, &moved);
682 	__mptcp_ofo_queue(msk);
683 	if (unlikely(ssk->sk_err)) {
684 		if (!sock_owned_by_user(sk))
685 			__mptcp_error_report(sk);
686 		else
687 			set_bit(MPTCP_ERROR_REPORT,  &msk->flags);
688 	}
689 
690 	/* If the moves have caught up with the DATA_FIN sequence number
691 	 * it's time to ack the DATA_FIN and change socket state, but
692 	 * this is not a good place to change state. Let the workqueue
693 	 * do it.
694 	 */
695 	if (mptcp_pending_data_fin(sk, NULL))
696 		mptcp_schedule_work(sk);
697 	return moved > 0;
698 }
699 
700 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
701 {
702 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
703 	struct mptcp_sock *msk = mptcp_sk(sk);
704 	int sk_rbuf, ssk_rbuf;
705 
706 	/* The peer can send data while we are shutting down this
707 	 * subflow at msk destruction time, but we must avoid enqueuing
708 	 * more data to the msk receive queue
709 	 */
710 	if (unlikely(subflow->disposable))
711 		return;
712 
713 	ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
714 	sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
715 	if (unlikely(ssk_rbuf > sk_rbuf))
716 		sk_rbuf = ssk_rbuf;
717 
718 	/* over limit? can't append more skbs to msk, Also, no need to wake-up*/
719 	if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf)
720 		return;
721 
722 	/* Wake-up the reader only for in-sequence data */
723 	mptcp_data_lock(sk);
724 	if (move_skbs_to_msk(msk, ssk)) {
725 		set_bit(MPTCP_DATA_READY, &msk->flags);
726 		sk->sk_data_ready(sk);
727 	}
728 	mptcp_data_unlock(sk);
729 }
730 
731 static bool mptcp_do_flush_join_list(struct mptcp_sock *msk)
732 {
733 	struct mptcp_subflow_context *subflow;
734 	bool ret = false;
735 
736 	if (likely(list_empty(&msk->join_list)))
737 		return false;
738 
739 	spin_lock_bh(&msk->join_list_lock);
740 	list_for_each_entry(subflow, &msk->join_list, node) {
741 		u32 sseq = READ_ONCE(subflow->setsockopt_seq);
742 
743 		mptcp_propagate_sndbuf((struct sock *)msk, mptcp_subflow_tcp_sock(subflow));
744 		if (READ_ONCE(msk->setsockopt_seq) != sseq)
745 			ret = true;
746 	}
747 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
748 	spin_unlock_bh(&msk->join_list_lock);
749 
750 	return ret;
751 }
752 
753 void __mptcp_flush_join_list(struct mptcp_sock *msk)
754 {
755 	if (likely(!mptcp_do_flush_join_list(msk)))
756 		return;
757 
758 	if (!test_and_set_bit(MPTCP_WORK_SYNC_SETSOCKOPT, &msk->flags))
759 		mptcp_schedule_work((struct sock *)msk);
760 }
761 
762 static void mptcp_flush_join_list(struct mptcp_sock *msk)
763 {
764 	bool sync_needed = test_and_clear_bit(MPTCP_WORK_SYNC_SETSOCKOPT, &msk->flags);
765 
766 	might_sleep();
767 
768 	if (!mptcp_do_flush_join_list(msk) && !sync_needed)
769 		return;
770 
771 	mptcp_sockopt_sync_all(msk);
772 }
773 
774 static bool mptcp_timer_pending(struct sock *sk)
775 {
776 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
777 }
778 
779 static void mptcp_reset_timer(struct sock *sk)
780 {
781 	struct inet_connection_sock *icsk = inet_csk(sk);
782 	unsigned long tout;
783 
784 	/* prevent rescheduling on close */
785 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
786 		return;
787 
788 	/* should never be called with mptcp level timer cleared */
789 	tout = READ_ONCE(mptcp_sk(sk)->timer_ival);
790 	if (WARN_ON_ONCE(!tout))
791 		tout = TCP_RTO_MIN;
792 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
793 }
794 
795 bool mptcp_schedule_work(struct sock *sk)
796 {
797 	if (inet_sk_state_load(sk) != TCP_CLOSE &&
798 	    schedule_work(&mptcp_sk(sk)->work)) {
799 		/* each subflow already holds a reference to the sk, and the
800 		 * workqueue is invoked by a subflow, so sk can't go away here.
801 		 */
802 		sock_hold(sk);
803 		return true;
804 	}
805 	return false;
806 }
807 
808 void mptcp_subflow_eof(struct sock *sk)
809 {
810 	if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags))
811 		mptcp_schedule_work(sk);
812 }
813 
814 static void mptcp_check_for_eof(struct mptcp_sock *msk)
815 {
816 	struct mptcp_subflow_context *subflow;
817 	struct sock *sk = (struct sock *)msk;
818 	int receivers = 0;
819 
820 	mptcp_for_each_subflow(msk, subflow)
821 		receivers += !subflow->rx_eof;
822 	if (receivers)
823 		return;
824 
825 	if (!(sk->sk_shutdown & RCV_SHUTDOWN)) {
826 		/* hopefully temporary hack: propagate shutdown status
827 		 * to msk, when all subflows agree on it
828 		 */
829 		sk->sk_shutdown |= RCV_SHUTDOWN;
830 
831 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
832 		set_bit(MPTCP_DATA_READY, &msk->flags);
833 		sk->sk_data_ready(sk);
834 	}
835 
836 	switch (sk->sk_state) {
837 	case TCP_ESTABLISHED:
838 		inet_sk_state_store(sk, TCP_CLOSE_WAIT);
839 		break;
840 	case TCP_FIN_WAIT1:
841 		inet_sk_state_store(sk, TCP_CLOSING);
842 		break;
843 	case TCP_FIN_WAIT2:
844 		inet_sk_state_store(sk, TCP_CLOSE);
845 		break;
846 	default:
847 		return;
848 	}
849 	mptcp_close_wake_up(sk);
850 }
851 
852 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
853 {
854 	struct mptcp_subflow_context *subflow;
855 	struct sock *sk = (struct sock *)msk;
856 
857 	sock_owned_by_me(sk);
858 
859 	mptcp_for_each_subflow(msk, subflow) {
860 		if (READ_ONCE(subflow->data_avail))
861 			return mptcp_subflow_tcp_sock(subflow);
862 	}
863 
864 	return NULL;
865 }
866 
867 static bool mptcp_skb_can_collapse_to(u64 write_seq,
868 				      const struct sk_buff *skb,
869 				      const struct mptcp_ext *mpext)
870 {
871 	if (!tcp_skb_can_collapse_to(skb))
872 		return false;
873 
874 	/* can collapse only if MPTCP level sequence is in order and this
875 	 * mapping has not been xmitted yet
876 	 */
877 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
878 	       !mpext->frozen;
879 }
880 
881 /* we can append data to the given data frag if:
882  * - there is space available in the backing page_frag
883  * - the data frag tail matches the current page_frag free offset
884  * - the data frag end sequence number matches the current write seq
885  */
886 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
887 				       const struct page_frag *pfrag,
888 				       const struct mptcp_data_frag *df)
889 {
890 	return df && pfrag->page == df->page &&
891 		pfrag->size - pfrag->offset > 0 &&
892 		pfrag->offset == (df->offset + df->data_len) &&
893 		df->data_seq + df->data_len == msk->write_seq;
894 }
895 
896 static int mptcp_wmem_with_overhead(struct sock *sk, int size)
897 {
898 	struct mptcp_sock *msk = mptcp_sk(sk);
899 	int ret, skbs;
900 
901 	ret = size + ((sizeof(struct mptcp_data_frag) * size) >> PAGE_SHIFT);
902 	skbs = (msk->tx_pending_data + size) / msk->size_goal_cache;
903 	if (skbs < msk->skb_tx_cache.qlen)
904 		return ret;
905 
906 	return ret + (skbs - msk->skb_tx_cache.qlen) * SKB_TRUESIZE(MAX_TCP_HEADER);
907 }
908 
909 static void __mptcp_wmem_reserve(struct sock *sk, int size)
910 {
911 	int amount = mptcp_wmem_with_overhead(sk, size);
912 	struct mptcp_sock *msk = mptcp_sk(sk);
913 
914 	WARN_ON_ONCE(msk->wmem_reserved);
915 	if (WARN_ON_ONCE(amount < 0))
916 		amount = 0;
917 
918 	if (amount <= sk->sk_forward_alloc)
919 		goto reserve;
920 
921 	/* under memory pressure try to reserve at most a single page
922 	 * otherwise try to reserve the full estimate and fallback
923 	 * to a single page before entering the error path
924 	 */
925 	if ((tcp_under_memory_pressure(sk) && amount > PAGE_SIZE) ||
926 	    !sk_wmem_schedule(sk, amount)) {
927 		if (amount <= PAGE_SIZE)
928 			goto nomem;
929 
930 		amount = PAGE_SIZE;
931 		if (!sk_wmem_schedule(sk, amount))
932 			goto nomem;
933 	}
934 
935 reserve:
936 	msk->wmem_reserved = amount;
937 	sk->sk_forward_alloc -= amount;
938 	return;
939 
940 nomem:
941 	/* we will wait for memory on next allocation */
942 	msk->wmem_reserved = -1;
943 }
944 
945 static void __mptcp_update_wmem(struct sock *sk)
946 {
947 	struct mptcp_sock *msk = mptcp_sk(sk);
948 
949 #ifdef CONFIG_LOCKDEP
950 	WARN_ON_ONCE(!lockdep_is_held(&sk->sk_lock.slock));
951 #endif
952 
953 	if (!msk->wmem_reserved)
954 		return;
955 
956 	if (msk->wmem_reserved < 0)
957 		msk->wmem_reserved = 0;
958 	if (msk->wmem_reserved > 0) {
959 		sk->sk_forward_alloc += msk->wmem_reserved;
960 		msk->wmem_reserved = 0;
961 	}
962 }
963 
964 static bool mptcp_wmem_alloc(struct sock *sk, int size)
965 {
966 	struct mptcp_sock *msk = mptcp_sk(sk);
967 
968 	/* check for pre-existing error condition */
969 	if (msk->wmem_reserved < 0)
970 		return false;
971 
972 	if (msk->wmem_reserved >= size)
973 		goto account;
974 
975 	mptcp_data_lock(sk);
976 	if (!sk_wmem_schedule(sk, size)) {
977 		mptcp_data_unlock(sk);
978 		return false;
979 	}
980 
981 	sk->sk_forward_alloc -= size;
982 	msk->wmem_reserved += size;
983 	mptcp_data_unlock(sk);
984 
985 account:
986 	msk->wmem_reserved -= size;
987 	return true;
988 }
989 
990 static void mptcp_wmem_uncharge(struct sock *sk, int size)
991 {
992 	struct mptcp_sock *msk = mptcp_sk(sk);
993 
994 	if (msk->wmem_reserved < 0)
995 		msk->wmem_reserved = 0;
996 	msk->wmem_reserved += size;
997 }
998 
999 static void mptcp_mem_reclaim_partial(struct sock *sk)
1000 {
1001 	struct mptcp_sock *msk = mptcp_sk(sk);
1002 
1003 	/* if we are experiencing a transint allocation error,
1004 	 * the forward allocation memory has been already
1005 	 * released
1006 	 */
1007 	if (msk->wmem_reserved < 0)
1008 		return;
1009 
1010 	mptcp_data_lock(sk);
1011 	sk->sk_forward_alloc += msk->wmem_reserved;
1012 	sk_mem_reclaim_partial(sk);
1013 	msk->wmem_reserved = sk->sk_forward_alloc;
1014 	sk->sk_forward_alloc = 0;
1015 	mptcp_data_unlock(sk);
1016 }
1017 
1018 static void dfrag_uncharge(struct sock *sk, int len)
1019 {
1020 	sk_mem_uncharge(sk, len);
1021 	sk_wmem_queued_add(sk, -len);
1022 }
1023 
1024 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
1025 {
1026 	int len = dfrag->data_len + dfrag->overhead;
1027 
1028 	list_del(&dfrag->list);
1029 	dfrag_uncharge(sk, len);
1030 	put_page(dfrag->page);
1031 }
1032 
1033 static void __mptcp_clean_una(struct sock *sk)
1034 {
1035 	struct mptcp_sock *msk = mptcp_sk(sk);
1036 	struct mptcp_data_frag *dtmp, *dfrag;
1037 	bool cleaned = false;
1038 	u64 snd_una;
1039 
1040 	/* on fallback we just need to ignore snd_una, as this is really
1041 	 * plain TCP
1042 	 */
1043 	if (__mptcp_check_fallback(msk))
1044 		msk->snd_una = READ_ONCE(msk->snd_nxt);
1045 
1046 	snd_una = msk->snd_una;
1047 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1048 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1049 			break;
1050 
1051 		if (WARN_ON_ONCE(dfrag == msk->first_pending))
1052 			break;
1053 		dfrag_clear(sk, dfrag);
1054 		cleaned = true;
1055 	}
1056 
1057 	dfrag = mptcp_rtx_head(sk);
1058 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1059 		u64 delta = snd_una - dfrag->data_seq;
1060 
1061 		if (WARN_ON_ONCE(delta > dfrag->already_sent))
1062 			goto out;
1063 
1064 		dfrag->data_seq += delta;
1065 		dfrag->offset += delta;
1066 		dfrag->data_len -= delta;
1067 		dfrag->already_sent -= delta;
1068 
1069 		dfrag_uncharge(sk, delta);
1070 		cleaned = true;
1071 	}
1072 
1073 out:
1074 	if (cleaned) {
1075 		if (tcp_under_memory_pressure(sk)) {
1076 			__mptcp_update_wmem(sk);
1077 			sk_mem_reclaim_partial(sk);
1078 		}
1079 	}
1080 
1081 	if (snd_una == READ_ONCE(msk->snd_nxt)) {
1082 		if (msk->timer_ival && !mptcp_data_fin_enabled(msk))
1083 			mptcp_stop_timer(sk);
1084 	} else {
1085 		mptcp_reset_timer(sk);
1086 	}
1087 }
1088 
1089 static void __mptcp_clean_una_wakeup(struct sock *sk)
1090 {
1091 #ifdef CONFIG_LOCKDEP
1092 	WARN_ON_ONCE(!lockdep_is_held(&sk->sk_lock.slock));
1093 #endif
1094 	__mptcp_clean_una(sk);
1095 	mptcp_write_space(sk);
1096 }
1097 
1098 static void mptcp_clean_una_wakeup(struct sock *sk)
1099 {
1100 	mptcp_data_lock(sk);
1101 	__mptcp_clean_una_wakeup(sk);
1102 	mptcp_data_unlock(sk);
1103 }
1104 
1105 static void mptcp_enter_memory_pressure(struct sock *sk)
1106 {
1107 	struct mptcp_subflow_context *subflow;
1108 	struct mptcp_sock *msk = mptcp_sk(sk);
1109 	bool first = true;
1110 
1111 	sk_stream_moderate_sndbuf(sk);
1112 	mptcp_for_each_subflow(msk, subflow) {
1113 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1114 
1115 		if (first)
1116 			tcp_enter_memory_pressure(ssk);
1117 		sk_stream_moderate_sndbuf(ssk);
1118 		first = false;
1119 	}
1120 }
1121 
1122 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1123  * data
1124  */
1125 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1126 {
1127 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1128 					pfrag, sk->sk_allocation)))
1129 		return true;
1130 
1131 	mptcp_enter_memory_pressure(sk);
1132 	return false;
1133 }
1134 
1135 static struct mptcp_data_frag *
1136 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1137 		      int orig_offset)
1138 {
1139 	int offset = ALIGN(orig_offset, sizeof(long));
1140 	struct mptcp_data_frag *dfrag;
1141 
1142 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1143 	dfrag->data_len = 0;
1144 	dfrag->data_seq = msk->write_seq;
1145 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1146 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1147 	dfrag->already_sent = 0;
1148 	dfrag->page = pfrag->page;
1149 
1150 	return dfrag;
1151 }
1152 
1153 struct mptcp_sendmsg_info {
1154 	int mss_now;
1155 	int size_goal;
1156 	u16 limit;
1157 	u16 sent;
1158 	unsigned int flags;
1159 };
1160 
1161 static int mptcp_check_allowed_size(struct mptcp_sock *msk, u64 data_seq,
1162 				    int avail_size)
1163 {
1164 	u64 window_end = mptcp_wnd_end(msk);
1165 
1166 	if (__mptcp_check_fallback(msk))
1167 		return avail_size;
1168 
1169 	if (!before64(data_seq + avail_size, window_end)) {
1170 		u64 allowed_size = window_end - data_seq;
1171 
1172 		return min_t(unsigned int, allowed_size, avail_size);
1173 	}
1174 
1175 	return avail_size;
1176 }
1177 
1178 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1179 {
1180 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1181 
1182 	if (!mpext)
1183 		return false;
1184 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1185 	return true;
1186 }
1187 
1188 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1189 {
1190 	struct sk_buff *skb;
1191 
1192 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1193 	if (likely(skb)) {
1194 		if (likely(__mptcp_add_ext(skb, gfp))) {
1195 			skb_reserve(skb, MAX_TCP_HEADER);
1196 			skb->reserved_tailroom = skb->end - skb->tail;
1197 			return skb;
1198 		}
1199 		__kfree_skb(skb);
1200 	} else {
1201 		mptcp_enter_memory_pressure(sk);
1202 	}
1203 	return NULL;
1204 }
1205 
1206 static bool mptcp_tx_cache_refill(struct sock *sk, int size,
1207 				  struct sk_buff_head *skbs, int *total_ts)
1208 {
1209 	struct mptcp_sock *msk = mptcp_sk(sk);
1210 	struct sk_buff *skb;
1211 	int space_needed;
1212 
1213 	if (unlikely(tcp_under_memory_pressure(sk))) {
1214 		mptcp_mem_reclaim_partial(sk);
1215 
1216 		/* under pressure pre-allocate at most a single skb */
1217 		if (msk->skb_tx_cache.qlen)
1218 			return true;
1219 		space_needed = msk->size_goal_cache;
1220 	} else {
1221 		space_needed = msk->tx_pending_data + size -
1222 			       msk->skb_tx_cache.qlen * msk->size_goal_cache;
1223 	}
1224 
1225 	while (space_needed > 0) {
1226 		skb = __mptcp_do_alloc_tx_skb(sk, sk->sk_allocation);
1227 		if (unlikely(!skb)) {
1228 			/* under memory pressure, try to pass the caller a
1229 			 * single skb to allow forward progress
1230 			 */
1231 			while (skbs->qlen > 1) {
1232 				skb = __skb_dequeue_tail(skbs);
1233 				*total_ts -= skb->truesize;
1234 				__kfree_skb(skb);
1235 			}
1236 			return skbs->qlen > 0;
1237 		}
1238 
1239 		*total_ts += skb->truesize;
1240 		__skb_queue_tail(skbs, skb);
1241 		space_needed -= msk->size_goal_cache;
1242 	}
1243 	return true;
1244 }
1245 
1246 static bool __mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1247 {
1248 	struct mptcp_sock *msk = mptcp_sk(sk);
1249 	struct sk_buff *skb;
1250 
1251 	if (ssk->sk_tx_skb_cache) {
1252 		skb = ssk->sk_tx_skb_cache;
1253 		if (unlikely(!skb_ext_find(skb, SKB_EXT_MPTCP) &&
1254 			     !__mptcp_add_ext(skb, gfp)))
1255 			return false;
1256 		return true;
1257 	}
1258 
1259 	skb = skb_peek(&msk->skb_tx_cache);
1260 	if (skb) {
1261 		if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1262 			skb = __skb_dequeue(&msk->skb_tx_cache);
1263 			if (WARN_ON_ONCE(!skb))
1264 				return false;
1265 
1266 			mptcp_wmem_uncharge(sk, skb->truesize);
1267 			ssk->sk_tx_skb_cache = skb;
1268 			return true;
1269 		}
1270 
1271 		/* over memory limit, no point to try to allocate a new skb */
1272 		return false;
1273 	}
1274 
1275 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1276 	if (!skb)
1277 		return false;
1278 
1279 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1280 		ssk->sk_tx_skb_cache = skb;
1281 		return true;
1282 	}
1283 	kfree_skb(skb);
1284 	return false;
1285 }
1286 
1287 static bool mptcp_must_reclaim_memory(struct sock *sk, struct sock *ssk)
1288 {
1289 	return !ssk->sk_tx_skb_cache &&
1290 	       !skb_peek(&mptcp_sk(sk)->skb_tx_cache) &&
1291 	       tcp_under_memory_pressure(sk);
1292 }
1293 
1294 static bool mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk)
1295 {
1296 	if (unlikely(mptcp_must_reclaim_memory(sk, ssk)))
1297 		mptcp_mem_reclaim_partial(sk);
1298 	return __mptcp_alloc_tx_skb(sk, ssk, sk->sk_allocation);
1299 }
1300 
1301 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1302 			      struct mptcp_data_frag *dfrag,
1303 			      struct mptcp_sendmsg_info *info)
1304 {
1305 	u64 data_seq = dfrag->data_seq + info->sent;
1306 	struct mptcp_sock *msk = mptcp_sk(sk);
1307 	bool zero_window_probe = false;
1308 	struct mptcp_ext *mpext = NULL;
1309 	struct sk_buff *skb, *tail;
1310 	bool can_collapse = false;
1311 	int size_bias = 0;
1312 	int avail_size;
1313 	size_t ret = 0;
1314 
1315 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u",
1316 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1317 
1318 	/* compute send limit */
1319 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1320 	avail_size = info->size_goal;
1321 	msk->size_goal_cache = info->size_goal;
1322 	skb = tcp_write_queue_tail(ssk);
1323 	if (skb) {
1324 		/* Limit the write to the size available in the
1325 		 * current skb, if any, so that we create at most a new skb.
1326 		 * Explicitly tells TCP internals to avoid collapsing on later
1327 		 * queue management operation, to avoid breaking the ext <->
1328 		 * SSN association set here
1329 		 */
1330 		mpext = skb_ext_find(skb, SKB_EXT_MPTCP);
1331 		can_collapse = (info->size_goal - skb->len > 0) &&
1332 			 mptcp_skb_can_collapse_to(data_seq, skb, mpext);
1333 		if (!can_collapse) {
1334 			TCP_SKB_CB(skb)->eor = 1;
1335 		} else {
1336 			size_bias = skb->len;
1337 			avail_size = info->size_goal - skb->len;
1338 		}
1339 	}
1340 
1341 	/* Zero window and all data acked? Probe. */
1342 	avail_size = mptcp_check_allowed_size(msk, data_seq, avail_size);
1343 	if (avail_size == 0) {
1344 		u64 snd_una = READ_ONCE(msk->snd_una);
1345 
1346 		if (skb || snd_una != msk->snd_nxt)
1347 			return 0;
1348 		zero_window_probe = true;
1349 		data_seq = snd_una - 1;
1350 		avail_size = 1;
1351 	}
1352 
1353 	if (WARN_ON_ONCE(info->sent > info->limit ||
1354 			 info->limit > dfrag->data_len))
1355 		return 0;
1356 
1357 	ret = info->limit - info->sent;
1358 	tail = tcp_build_frag(ssk, avail_size + size_bias, info->flags,
1359 			      dfrag->page, dfrag->offset + info->sent, &ret);
1360 	if (!tail) {
1361 		tcp_remove_empty_skb(sk, tcp_write_queue_tail(ssk));
1362 		return -ENOMEM;
1363 	}
1364 
1365 	/* if the tail skb is still the cached one, collapsing really happened.
1366 	 */
1367 	if (skb == tail) {
1368 		TCP_SKB_CB(tail)->tcp_flags &= ~TCPHDR_PSH;
1369 		mpext->data_len += ret;
1370 		WARN_ON_ONCE(!can_collapse);
1371 		WARN_ON_ONCE(zero_window_probe);
1372 		goto out;
1373 	}
1374 
1375 	mpext = skb_ext_find(tail, SKB_EXT_MPTCP);
1376 	if (WARN_ON_ONCE(!mpext)) {
1377 		/* should never reach here, stream corrupted */
1378 		return -EINVAL;
1379 	}
1380 
1381 	memset(mpext, 0, sizeof(*mpext));
1382 	mpext->data_seq = data_seq;
1383 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1384 	mpext->data_len = ret;
1385 	mpext->use_map = 1;
1386 	mpext->dsn64 = 1;
1387 
1388 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d",
1389 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1390 		 mpext->dsn64);
1391 
1392 	if (zero_window_probe) {
1393 		mptcp_subflow_ctx(ssk)->rel_write_seq += ret;
1394 		mpext->frozen = 1;
1395 		ret = 0;
1396 		tcp_push_pending_frames(ssk);
1397 	}
1398 out:
1399 	mptcp_subflow_ctx(ssk)->rel_write_seq += ret;
1400 	return ret;
1401 }
1402 
1403 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1404 					 sizeof(struct tcphdr) - \
1405 					 MAX_TCP_OPTION_SPACE - \
1406 					 sizeof(struct ipv6hdr) - \
1407 					 sizeof(struct frag_hdr))
1408 
1409 struct subflow_send_info {
1410 	struct sock *ssk;
1411 	u64 ratio;
1412 };
1413 
1414 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1415 {
1416 	struct subflow_send_info send_info[2];
1417 	struct mptcp_subflow_context *subflow;
1418 	int i, nr_active = 0;
1419 	struct sock *ssk;
1420 	u64 ratio;
1421 	u32 pace;
1422 
1423 	sock_owned_by_me((struct sock *)msk);
1424 
1425 	if (__mptcp_check_fallback(msk)) {
1426 		if (!msk->first)
1427 			return NULL;
1428 		return sk_stream_memory_free(msk->first) ? msk->first : NULL;
1429 	}
1430 
1431 	/* re-use last subflow, if the burst allow that */
1432 	if (msk->last_snd && msk->snd_burst > 0 &&
1433 	    sk_stream_memory_free(msk->last_snd) &&
1434 	    mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd)))
1435 		return msk->last_snd;
1436 
1437 	/* pick the subflow with the lower wmem/wspace ratio */
1438 	for (i = 0; i < 2; ++i) {
1439 		send_info[i].ssk = NULL;
1440 		send_info[i].ratio = -1;
1441 	}
1442 	mptcp_for_each_subflow(msk, subflow) {
1443 		trace_mptcp_subflow_get_send(subflow);
1444 		ssk =  mptcp_subflow_tcp_sock(subflow);
1445 		if (!mptcp_subflow_active(subflow))
1446 			continue;
1447 
1448 		nr_active += !subflow->backup;
1449 		if (!sk_stream_memory_free(subflow->tcp_sock) || !tcp_sk(ssk)->snd_wnd)
1450 			continue;
1451 
1452 		pace = READ_ONCE(ssk->sk_pacing_rate);
1453 		if (!pace)
1454 			continue;
1455 
1456 		ratio = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32,
1457 				pace);
1458 		if (ratio < send_info[subflow->backup].ratio) {
1459 			send_info[subflow->backup].ssk = ssk;
1460 			send_info[subflow->backup].ratio = ratio;
1461 		}
1462 	}
1463 
1464 	/* pick the best backup if no other subflow is active */
1465 	if (!nr_active)
1466 		send_info[0].ssk = send_info[1].ssk;
1467 
1468 	if (send_info[0].ssk) {
1469 		msk->last_snd = send_info[0].ssk;
1470 		msk->snd_burst = min_t(int, MPTCP_SEND_BURST_SIZE,
1471 				       tcp_sk(msk->last_snd)->snd_wnd);
1472 		return msk->last_snd;
1473 	}
1474 
1475 	return NULL;
1476 }
1477 
1478 static void mptcp_push_release(struct sock *sk, struct sock *ssk,
1479 			       struct mptcp_sendmsg_info *info)
1480 {
1481 	mptcp_set_timeout(sk, ssk);
1482 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1483 	release_sock(ssk);
1484 }
1485 
1486 static void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1487 {
1488 	struct sock *prev_ssk = NULL, *ssk = NULL;
1489 	struct mptcp_sock *msk = mptcp_sk(sk);
1490 	struct mptcp_sendmsg_info info = {
1491 				.flags = flags,
1492 	};
1493 	struct mptcp_data_frag *dfrag;
1494 	int len, copied = 0;
1495 
1496 	while ((dfrag = mptcp_send_head(sk))) {
1497 		info.sent = dfrag->already_sent;
1498 		info.limit = dfrag->data_len;
1499 		len = dfrag->data_len - dfrag->already_sent;
1500 		while (len > 0) {
1501 			int ret = 0;
1502 
1503 			prev_ssk = ssk;
1504 			mptcp_flush_join_list(msk);
1505 			ssk = mptcp_subflow_get_send(msk);
1506 
1507 			/* try to keep the subflow socket lock across
1508 			 * consecutive xmit on the same socket
1509 			 */
1510 			if (ssk != prev_ssk && prev_ssk)
1511 				mptcp_push_release(sk, prev_ssk, &info);
1512 			if (!ssk)
1513 				goto out;
1514 
1515 			if (ssk != prev_ssk || !prev_ssk)
1516 				lock_sock(ssk);
1517 
1518 			/* keep it simple and always provide a new skb for the
1519 			 * subflow, even if we will not use it when collapsing
1520 			 * on the pending one
1521 			 */
1522 			if (!mptcp_alloc_tx_skb(sk, ssk)) {
1523 				mptcp_push_release(sk, ssk, &info);
1524 				goto out;
1525 			}
1526 
1527 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1528 			if (ret <= 0) {
1529 				mptcp_push_release(sk, ssk, &info);
1530 				goto out;
1531 			}
1532 
1533 			info.sent += ret;
1534 			dfrag->already_sent += ret;
1535 			msk->snd_nxt += ret;
1536 			msk->snd_burst -= ret;
1537 			msk->tx_pending_data -= ret;
1538 			copied += ret;
1539 			len -= ret;
1540 		}
1541 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1542 	}
1543 
1544 	/* at this point we held the socket lock for the last subflow we used */
1545 	if (ssk)
1546 		mptcp_push_release(sk, ssk, &info);
1547 
1548 out:
1549 	if (copied) {
1550 		/* start the timer, if it's not pending */
1551 		if (!mptcp_timer_pending(sk))
1552 			mptcp_reset_timer(sk);
1553 		__mptcp_check_send_data_fin(sk);
1554 	}
1555 }
1556 
1557 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk)
1558 {
1559 	struct mptcp_sock *msk = mptcp_sk(sk);
1560 	struct mptcp_sendmsg_info info;
1561 	struct mptcp_data_frag *dfrag;
1562 	struct sock *xmit_ssk;
1563 	int len, copied = 0;
1564 	bool first = true;
1565 
1566 	info.flags = 0;
1567 	while ((dfrag = mptcp_send_head(sk))) {
1568 		info.sent = dfrag->already_sent;
1569 		info.limit = dfrag->data_len;
1570 		len = dfrag->data_len - dfrag->already_sent;
1571 		while (len > 0) {
1572 			int ret = 0;
1573 
1574 			/* the caller already invoked the packet scheduler,
1575 			 * check for a different subflow usage only after
1576 			 * spooling the first chunk of data
1577 			 */
1578 			xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk));
1579 			if (!xmit_ssk)
1580 				goto out;
1581 			if (xmit_ssk != ssk) {
1582 				mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk));
1583 				goto out;
1584 			}
1585 
1586 			if (unlikely(mptcp_must_reclaim_memory(sk, ssk))) {
1587 				__mptcp_update_wmem(sk);
1588 				sk_mem_reclaim_partial(sk);
1589 			}
1590 			if (!__mptcp_alloc_tx_skb(sk, ssk, GFP_ATOMIC))
1591 				goto out;
1592 
1593 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
1594 			if (ret <= 0)
1595 				goto out;
1596 
1597 			info.sent += ret;
1598 			dfrag->already_sent += ret;
1599 			msk->snd_nxt += ret;
1600 			msk->snd_burst -= ret;
1601 			msk->tx_pending_data -= ret;
1602 			copied += ret;
1603 			len -= ret;
1604 			first = false;
1605 		}
1606 		WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
1607 	}
1608 
1609 out:
1610 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1611 	 * not going to flush it via release_sock()
1612 	 */
1613 	__mptcp_update_wmem(sk);
1614 	if (copied) {
1615 		mptcp_set_timeout(sk, ssk);
1616 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1617 			 info.size_goal);
1618 		if (!mptcp_timer_pending(sk))
1619 			mptcp_reset_timer(sk);
1620 
1621 		if (msk->snd_data_fin_enable &&
1622 		    msk->snd_nxt + 1 == msk->write_seq)
1623 			mptcp_schedule_work(sk);
1624 	}
1625 }
1626 
1627 static void mptcp_set_nospace(struct sock *sk)
1628 {
1629 	/* enable autotune */
1630 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1631 
1632 	/* will be cleared on avail space */
1633 	set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags);
1634 }
1635 
1636 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1637 {
1638 	struct mptcp_sock *msk = mptcp_sk(sk);
1639 	struct page_frag *pfrag;
1640 	size_t copied = 0;
1641 	int ret = 0;
1642 	long timeo;
1643 
1644 	/* we don't support FASTOPEN yet */
1645 	if (msg->msg_flags & MSG_FASTOPEN)
1646 		return -EOPNOTSUPP;
1647 
1648 	/* silently ignore everything else */
1649 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL;
1650 
1651 	mptcp_lock_sock(sk, __mptcp_wmem_reserve(sk, min_t(size_t, 1 << 20, len)));
1652 
1653 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1654 
1655 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1656 		ret = sk_stream_wait_connect(sk, &timeo);
1657 		if (ret)
1658 			goto out;
1659 	}
1660 
1661 	pfrag = sk_page_frag(sk);
1662 
1663 	while (msg_data_left(msg)) {
1664 		int total_ts, frag_truesize = 0;
1665 		struct mptcp_data_frag *dfrag;
1666 		struct sk_buff_head skbs;
1667 		bool dfrag_collapsed;
1668 		size_t psize, offset;
1669 
1670 		if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
1671 			ret = -EPIPE;
1672 			goto out;
1673 		}
1674 
1675 		/* reuse tail pfrag, if possible, or carve a new one from the
1676 		 * page allocator
1677 		 */
1678 		dfrag = mptcp_pending_tail(sk);
1679 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1680 		if (!dfrag_collapsed) {
1681 			if (!sk_stream_memory_free(sk))
1682 				goto wait_for_memory;
1683 
1684 			if (!mptcp_page_frag_refill(sk, pfrag))
1685 				goto wait_for_memory;
1686 
1687 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1688 			frag_truesize = dfrag->overhead;
1689 		}
1690 
1691 		/* we do not bound vs wspace, to allow a single packet.
1692 		 * memory accounting will prevent execessive memory usage
1693 		 * anyway
1694 		 */
1695 		offset = dfrag->offset + dfrag->data_len;
1696 		psize = pfrag->size - offset;
1697 		psize = min_t(size_t, psize, msg_data_left(msg));
1698 		total_ts = psize + frag_truesize;
1699 		__skb_queue_head_init(&skbs);
1700 		if (!mptcp_tx_cache_refill(sk, psize, &skbs, &total_ts))
1701 			goto wait_for_memory;
1702 
1703 		if (!mptcp_wmem_alloc(sk, total_ts)) {
1704 			__skb_queue_purge(&skbs);
1705 			goto wait_for_memory;
1706 		}
1707 
1708 		skb_queue_splice_tail(&skbs, &msk->skb_tx_cache);
1709 		if (copy_page_from_iter(dfrag->page, offset, psize,
1710 					&msg->msg_iter) != psize) {
1711 			mptcp_wmem_uncharge(sk, psize + frag_truesize);
1712 			ret = -EFAULT;
1713 			goto out;
1714 		}
1715 
1716 		/* data successfully copied into the write queue */
1717 		copied += psize;
1718 		dfrag->data_len += psize;
1719 		frag_truesize += psize;
1720 		pfrag->offset += frag_truesize;
1721 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1722 		msk->tx_pending_data += psize;
1723 
1724 		/* charge data on mptcp pending queue to the msk socket
1725 		 * Note: we charge such data both to sk and ssk
1726 		 */
1727 		sk_wmem_queued_add(sk, frag_truesize);
1728 		if (!dfrag_collapsed) {
1729 			get_page(dfrag->page);
1730 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1731 			if (!msk->first_pending)
1732 				WRITE_ONCE(msk->first_pending, dfrag);
1733 		}
1734 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk,
1735 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1736 			 !dfrag_collapsed);
1737 
1738 		continue;
1739 
1740 wait_for_memory:
1741 		mptcp_set_nospace(sk);
1742 		__mptcp_push_pending(sk, msg->msg_flags);
1743 		ret = sk_stream_wait_memory(sk, &timeo);
1744 		if (ret)
1745 			goto out;
1746 	}
1747 
1748 	if (copied)
1749 		__mptcp_push_pending(sk, msg->msg_flags);
1750 
1751 out:
1752 	release_sock(sk);
1753 	return copied ? : ret;
1754 }
1755 
1756 static void mptcp_wait_data(struct sock *sk, long *timeo)
1757 {
1758 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1759 	struct mptcp_sock *msk = mptcp_sk(sk);
1760 
1761 	add_wait_queue(sk_sleep(sk), &wait);
1762 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1763 
1764 	sk_wait_event(sk, timeo,
1765 		      test_and_clear_bit(MPTCP_DATA_READY, &msk->flags), &wait);
1766 
1767 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1768 	remove_wait_queue(sk_sleep(sk), &wait);
1769 }
1770 
1771 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
1772 				struct msghdr *msg,
1773 				size_t len, int flags)
1774 {
1775 	struct sk_buff *skb, *tmp;
1776 	int copied = 0;
1777 
1778 	skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
1779 		u32 offset = MPTCP_SKB_CB(skb)->offset;
1780 		u32 data_len = skb->len - offset;
1781 		u32 count = min_t(size_t, len - copied, data_len);
1782 		int err;
1783 
1784 		if (!(flags & MSG_TRUNC)) {
1785 			err = skb_copy_datagram_msg(skb, offset, msg, count);
1786 			if (unlikely(err < 0)) {
1787 				if (!copied)
1788 					return err;
1789 				break;
1790 			}
1791 		}
1792 
1793 		copied += count;
1794 
1795 		if (count < data_len) {
1796 			if (!(flags & MSG_PEEK))
1797 				MPTCP_SKB_CB(skb)->offset += count;
1798 			break;
1799 		}
1800 
1801 		if (!(flags & MSG_PEEK)) {
1802 			/* we will bulk release the skb memory later */
1803 			skb->destructor = NULL;
1804 			msk->rmem_released += skb->truesize;
1805 			__skb_unlink(skb, &msk->receive_queue);
1806 			__kfree_skb(skb);
1807 		}
1808 
1809 		if (copied >= len)
1810 			break;
1811 	}
1812 
1813 	return copied;
1814 }
1815 
1816 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
1817  *
1818  * Only difference: Use highest rtt estimate of the subflows in use.
1819  */
1820 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
1821 {
1822 	struct mptcp_subflow_context *subflow;
1823 	struct sock *sk = (struct sock *)msk;
1824 	u32 time, advmss = 1;
1825 	u64 rtt_us, mstamp;
1826 
1827 	sock_owned_by_me(sk);
1828 
1829 	if (copied <= 0)
1830 		return;
1831 
1832 	msk->rcvq_space.copied += copied;
1833 
1834 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
1835 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
1836 
1837 	rtt_us = msk->rcvq_space.rtt_us;
1838 	if (rtt_us && time < (rtt_us >> 3))
1839 		return;
1840 
1841 	rtt_us = 0;
1842 	mptcp_for_each_subflow(msk, subflow) {
1843 		const struct tcp_sock *tp;
1844 		u64 sf_rtt_us;
1845 		u32 sf_advmss;
1846 
1847 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
1848 
1849 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
1850 		sf_advmss = READ_ONCE(tp->advmss);
1851 
1852 		rtt_us = max(sf_rtt_us, rtt_us);
1853 		advmss = max(sf_advmss, advmss);
1854 	}
1855 
1856 	msk->rcvq_space.rtt_us = rtt_us;
1857 	if (time < (rtt_us >> 3) || rtt_us == 0)
1858 		return;
1859 
1860 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
1861 		goto new_measure;
1862 
1863 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
1864 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1865 		int rcvmem, rcvbuf;
1866 		u64 rcvwin, grow;
1867 
1868 		rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
1869 
1870 		grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
1871 
1872 		do_div(grow, msk->rcvq_space.space);
1873 		rcvwin += (grow << 1);
1874 
1875 		rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER);
1876 		while (tcp_win_from_space(sk, rcvmem) < advmss)
1877 			rcvmem += 128;
1878 
1879 		do_div(rcvwin, advmss);
1880 		rcvbuf = min_t(u64, rcvwin * rcvmem,
1881 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
1882 
1883 		if (rcvbuf > sk->sk_rcvbuf) {
1884 			u32 window_clamp;
1885 
1886 			window_clamp = tcp_win_from_space(sk, rcvbuf);
1887 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
1888 
1889 			/* Make subflows follow along.  If we do not do this, we
1890 			 * get drops at subflow level if skbs can't be moved to
1891 			 * the mptcp rx queue fast enough (announced rcv_win can
1892 			 * exceed ssk->sk_rcvbuf).
1893 			 */
1894 			mptcp_for_each_subflow(msk, subflow) {
1895 				struct sock *ssk;
1896 				bool slow;
1897 
1898 				ssk = mptcp_subflow_tcp_sock(subflow);
1899 				slow = lock_sock_fast(ssk);
1900 				WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
1901 				tcp_sk(ssk)->window_clamp = window_clamp;
1902 				tcp_cleanup_rbuf(ssk, 1);
1903 				unlock_sock_fast(ssk, slow);
1904 			}
1905 		}
1906 	}
1907 
1908 	msk->rcvq_space.space = msk->rcvq_space.copied;
1909 new_measure:
1910 	msk->rcvq_space.copied = 0;
1911 	msk->rcvq_space.time = mstamp;
1912 }
1913 
1914 static void __mptcp_update_rmem(struct sock *sk)
1915 {
1916 	struct mptcp_sock *msk = mptcp_sk(sk);
1917 
1918 	if (!msk->rmem_released)
1919 		return;
1920 
1921 	atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
1922 	sk_mem_uncharge(sk, msk->rmem_released);
1923 	msk->rmem_released = 0;
1924 }
1925 
1926 static void __mptcp_splice_receive_queue(struct sock *sk)
1927 {
1928 	struct mptcp_sock *msk = mptcp_sk(sk);
1929 
1930 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
1931 }
1932 
1933 static bool __mptcp_move_skbs(struct mptcp_sock *msk)
1934 {
1935 	struct sock *sk = (struct sock *)msk;
1936 	unsigned int moved = 0;
1937 	bool ret, done;
1938 
1939 	mptcp_flush_join_list(msk);
1940 	do {
1941 		struct sock *ssk = mptcp_subflow_recv_lookup(msk);
1942 		bool slowpath;
1943 
1944 		/* we can have data pending in the subflows only if the msk
1945 		 * receive buffer was full at subflow_data_ready() time,
1946 		 * that is an unlikely slow path.
1947 		 */
1948 		if (likely(!ssk))
1949 			break;
1950 
1951 		slowpath = lock_sock_fast(ssk);
1952 		mptcp_data_lock(sk);
1953 		__mptcp_update_rmem(sk);
1954 		done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
1955 		mptcp_data_unlock(sk);
1956 		tcp_cleanup_rbuf(ssk, moved);
1957 
1958 		if (unlikely(ssk->sk_err))
1959 			__mptcp_error_report(sk);
1960 		unlock_sock_fast(ssk, slowpath);
1961 	} while (!done);
1962 
1963 	/* acquire the data lock only if some input data is pending */
1964 	ret = moved > 0;
1965 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
1966 	    !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
1967 		mptcp_data_lock(sk);
1968 		__mptcp_update_rmem(sk);
1969 		ret |= __mptcp_ofo_queue(msk);
1970 		__mptcp_splice_receive_queue(sk);
1971 		mptcp_data_unlock(sk);
1972 		mptcp_cleanup_rbuf(msk);
1973 	}
1974 	if (ret)
1975 		mptcp_check_data_fin((struct sock *)msk);
1976 	return !skb_queue_empty(&msk->receive_queue);
1977 }
1978 
1979 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
1980 			 int nonblock, int flags, int *addr_len)
1981 {
1982 	struct mptcp_sock *msk = mptcp_sk(sk);
1983 	int copied = 0;
1984 	int target;
1985 	long timeo;
1986 
1987 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
1988 	if (unlikely(flags & MSG_ERRQUEUE))
1989 		return inet_recv_error(sk, msg, len, addr_len);
1990 
1991 	mptcp_lock_sock(sk, __mptcp_splice_receive_queue(sk));
1992 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
1993 		copied = -ENOTCONN;
1994 		goto out_err;
1995 	}
1996 
1997 	timeo = sock_rcvtimeo(sk, nonblock);
1998 
1999 	len = min_t(size_t, len, INT_MAX);
2000 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2001 
2002 	while (copied < len) {
2003 		int bytes_read;
2004 
2005 		bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags);
2006 		if (unlikely(bytes_read < 0)) {
2007 			if (!copied)
2008 				copied = bytes_read;
2009 			goto out_err;
2010 		}
2011 
2012 		copied += bytes_read;
2013 
2014 		/* be sure to advertise window change */
2015 		mptcp_cleanup_rbuf(msk);
2016 
2017 		if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
2018 			continue;
2019 
2020 		/* only the master socket status is relevant here. The exit
2021 		 * conditions mirror closely tcp_recvmsg()
2022 		 */
2023 		if (copied >= target)
2024 			break;
2025 
2026 		if (copied) {
2027 			if (sk->sk_err ||
2028 			    sk->sk_state == TCP_CLOSE ||
2029 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2030 			    !timeo ||
2031 			    signal_pending(current))
2032 				break;
2033 		} else {
2034 			if (sk->sk_err) {
2035 				copied = sock_error(sk);
2036 				break;
2037 			}
2038 
2039 			if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2040 				mptcp_check_for_eof(msk);
2041 
2042 			if (sk->sk_shutdown & RCV_SHUTDOWN) {
2043 				/* race breaker: the shutdown could be after the
2044 				 * previous receive queue check
2045 				 */
2046 				if (__mptcp_move_skbs(msk))
2047 					continue;
2048 				break;
2049 			}
2050 
2051 			if (sk->sk_state == TCP_CLOSE) {
2052 				copied = -ENOTCONN;
2053 				break;
2054 			}
2055 
2056 			if (!timeo) {
2057 				copied = -EAGAIN;
2058 				break;
2059 			}
2060 
2061 			if (signal_pending(current)) {
2062 				copied = sock_intr_errno(timeo);
2063 				break;
2064 			}
2065 		}
2066 
2067 		pr_debug("block timeout %ld", timeo);
2068 		mptcp_wait_data(sk, &timeo);
2069 	}
2070 
2071 	if (skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2072 	    skb_queue_empty(&msk->receive_queue)) {
2073 		/* entire backlog drained, clear DATA_READY. */
2074 		clear_bit(MPTCP_DATA_READY, &msk->flags);
2075 
2076 		/* .. race-breaker: ssk might have gotten new data
2077 		 * after last __mptcp_move_skbs() returned false.
2078 		 */
2079 		if (unlikely(__mptcp_move_skbs(msk)))
2080 			set_bit(MPTCP_DATA_READY, &msk->flags);
2081 	} else if (unlikely(!test_bit(MPTCP_DATA_READY, &msk->flags))) {
2082 		/* data to read but mptcp_wait_data() cleared DATA_READY */
2083 		set_bit(MPTCP_DATA_READY, &msk->flags);
2084 	}
2085 out_err:
2086 	pr_debug("msk=%p data_ready=%d rx queue empty=%d copied=%d",
2087 		 msk, test_bit(MPTCP_DATA_READY, &msk->flags),
2088 		 skb_queue_empty_lockless(&sk->sk_receive_queue), copied);
2089 	if (!(flags & MSG_PEEK))
2090 		mptcp_rcv_space_adjust(msk, copied);
2091 
2092 	release_sock(sk);
2093 	return copied;
2094 }
2095 
2096 static void mptcp_retransmit_timer(struct timer_list *t)
2097 {
2098 	struct inet_connection_sock *icsk = from_timer(icsk, t,
2099 						       icsk_retransmit_timer);
2100 	struct sock *sk = &icsk->icsk_inet.sk;
2101 	struct mptcp_sock *msk = mptcp_sk(sk);
2102 
2103 	bh_lock_sock(sk);
2104 	if (!sock_owned_by_user(sk)) {
2105 		/* we need a process context to retransmit */
2106 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2107 			mptcp_schedule_work(sk);
2108 	} else {
2109 		/* delegate our work to tcp_release_cb() */
2110 		set_bit(MPTCP_RETRANSMIT, &msk->flags);
2111 	}
2112 	bh_unlock_sock(sk);
2113 	sock_put(sk);
2114 }
2115 
2116 static void mptcp_timeout_timer(struct timer_list *t)
2117 {
2118 	struct sock *sk = from_timer(sk, t, sk_timer);
2119 
2120 	mptcp_schedule_work(sk);
2121 	sock_put(sk);
2122 }
2123 
2124 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2125  * level.
2126  *
2127  * A backup subflow is returned only if that is the only kind available.
2128  */
2129 static struct sock *mptcp_subflow_get_retrans(const struct mptcp_sock *msk)
2130 {
2131 	struct mptcp_subflow_context *subflow;
2132 	struct sock *backup = NULL;
2133 
2134 	sock_owned_by_me((const struct sock *)msk);
2135 
2136 	if (__mptcp_check_fallback(msk))
2137 		return NULL;
2138 
2139 	mptcp_for_each_subflow(msk, subflow) {
2140 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2141 
2142 		if (!mptcp_subflow_active(subflow))
2143 			continue;
2144 
2145 		/* still data outstanding at TCP level?  Don't retransmit. */
2146 		if (!tcp_write_queue_empty(ssk)) {
2147 			if (inet_csk(ssk)->icsk_ca_state >= TCP_CA_Loss)
2148 				continue;
2149 			return NULL;
2150 		}
2151 
2152 		if (subflow->backup) {
2153 			if (!backup)
2154 				backup = ssk;
2155 			continue;
2156 		}
2157 
2158 		return ssk;
2159 	}
2160 
2161 	return backup;
2162 }
2163 
2164 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk)
2165 {
2166 	if (msk->subflow) {
2167 		iput(SOCK_INODE(msk->subflow));
2168 		msk->subflow = NULL;
2169 	}
2170 }
2171 
2172 /* subflow sockets can be either outgoing (connect) or incoming
2173  * (accept).
2174  *
2175  * Outgoing subflows use in-kernel sockets.
2176  * Incoming subflows do not have their own 'struct socket' allocated,
2177  * so we need to use tcp_close() after detaching them from the mptcp
2178  * parent socket.
2179  */
2180 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2181 			      struct mptcp_subflow_context *subflow)
2182 {
2183 	struct mptcp_sock *msk = mptcp_sk(sk);
2184 
2185 	list_del(&subflow->node);
2186 
2187 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2188 
2189 	/* if we are invoked by the msk cleanup code, the subflow is
2190 	 * already orphaned
2191 	 */
2192 	if (ssk->sk_socket)
2193 		sock_orphan(ssk);
2194 
2195 	subflow->disposable = 1;
2196 
2197 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2198 	 * the ssk has been already destroyed, we just need to release the
2199 	 * reference owned by msk;
2200 	 */
2201 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2202 		kfree_rcu(subflow, rcu);
2203 	} else {
2204 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2205 		__tcp_close(ssk, 0);
2206 
2207 		/* close acquired an extra ref */
2208 		__sock_put(ssk);
2209 	}
2210 	release_sock(ssk);
2211 
2212 	sock_put(ssk);
2213 
2214 	if (ssk == msk->last_snd)
2215 		msk->last_snd = NULL;
2216 
2217 	if (ssk == msk->ack_hint)
2218 		msk->ack_hint = NULL;
2219 
2220 	if (ssk == msk->first)
2221 		msk->first = NULL;
2222 
2223 	if (msk->subflow && ssk == msk->subflow->sk)
2224 		mptcp_dispose_initial_subflow(msk);
2225 }
2226 
2227 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2228 		     struct mptcp_subflow_context *subflow)
2229 {
2230 	if (sk->sk_state == TCP_ESTABLISHED)
2231 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2232 	__mptcp_close_ssk(sk, ssk, subflow);
2233 }
2234 
2235 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2236 {
2237 	return 0;
2238 }
2239 
2240 static void __mptcp_close_subflow(struct mptcp_sock *msk)
2241 {
2242 	struct mptcp_subflow_context *subflow, *tmp;
2243 
2244 	might_sleep();
2245 
2246 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2247 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2248 
2249 		if (inet_sk_state_load(ssk) != TCP_CLOSE)
2250 			continue;
2251 
2252 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2253 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2254 			continue;
2255 
2256 		mptcp_close_ssk((struct sock *)msk, ssk, subflow);
2257 	}
2258 }
2259 
2260 static bool mptcp_check_close_timeout(const struct sock *sk)
2261 {
2262 	s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp;
2263 	struct mptcp_subflow_context *subflow;
2264 
2265 	if (delta >= TCP_TIMEWAIT_LEN)
2266 		return true;
2267 
2268 	/* if all subflows are in closed status don't bother with additional
2269 	 * timeout
2270 	 */
2271 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2272 		if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) !=
2273 		    TCP_CLOSE)
2274 			return false;
2275 	}
2276 	return true;
2277 }
2278 
2279 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2280 {
2281 	struct mptcp_subflow_context *subflow, *tmp;
2282 	struct sock *sk = &msk->sk.icsk_inet.sk;
2283 
2284 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2285 		return;
2286 
2287 	mptcp_token_destroy(msk);
2288 
2289 	list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) {
2290 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2291 
2292 		lock_sock(tcp_sk);
2293 		if (tcp_sk->sk_state != TCP_CLOSE) {
2294 			tcp_send_active_reset(tcp_sk, GFP_ATOMIC);
2295 			tcp_set_state(tcp_sk, TCP_CLOSE);
2296 		}
2297 		release_sock(tcp_sk);
2298 	}
2299 
2300 	inet_sk_state_store(sk, TCP_CLOSE);
2301 	sk->sk_shutdown = SHUTDOWN_MASK;
2302 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2303 	set_bit(MPTCP_DATA_READY, &msk->flags);
2304 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2305 
2306 	mptcp_close_wake_up(sk);
2307 }
2308 
2309 static void __mptcp_retrans(struct sock *sk)
2310 {
2311 	struct mptcp_sock *msk = mptcp_sk(sk);
2312 	struct mptcp_sendmsg_info info = {};
2313 	struct mptcp_data_frag *dfrag;
2314 	size_t copied = 0;
2315 	struct sock *ssk;
2316 	int ret;
2317 
2318 	mptcp_clean_una_wakeup(sk);
2319 	dfrag = mptcp_rtx_head(sk);
2320 	if (!dfrag) {
2321 		if (mptcp_data_fin_enabled(msk)) {
2322 			struct inet_connection_sock *icsk = inet_csk(sk);
2323 
2324 			icsk->icsk_retransmits++;
2325 			mptcp_set_datafin_timeout(sk);
2326 			mptcp_send_ack(msk);
2327 
2328 			goto reset_timer;
2329 		}
2330 
2331 		return;
2332 	}
2333 
2334 	ssk = mptcp_subflow_get_retrans(msk);
2335 	if (!ssk)
2336 		goto reset_timer;
2337 
2338 	lock_sock(ssk);
2339 
2340 	/* limit retransmission to the bytes already sent on some subflows */
2341 	info.sent = 0;
2342 	info.limit = dfrag->already_sent;
2343 	while (info.sent < dfrag->already_sent) {
2344 		if (!mptcp_alloc_tx_skb(sk, ssk))
2345 			break;
2346 
2347 		ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2348 		if (ret <= 0)
2349 			break;
2350 
2351 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2352 		copied += ret;
2353 		info.sent += ret;
2354 	}
2355 	if (copied)
2356 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2357 			 info.size_goal);
2358 
2359 	mptcp_set_timeout(sk, ssk);
2360 	release_sock(ssk);
2361 
2362 reset_timer:
2363 	if (!mptcp_timer_pending(sk))
2364 		mptcp_reset_timer(sk);
2365 }
2366 
2367 static void mptcp_worker(struct work_struct *work)
2368 {
2369 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2370 	struct sock *sk = &msk->sk.icsk_inet.sk;
2371 	int state;
2372 
2373 	lock_sock(sk);
2374 	state = sk->sk_state;
2375 	if (unlikely(state == TCP_CLOSE))
2376 		goto unlock;
2377 
2378 	mptcp_check_data_fin_ack(sk);
2379 	mptcp_flush_join_list(msk);
2380 
2381 	mptcp_check_fastclose(msk);
2382 
2383 	if (msk->pm.status)
2384 		mptcp_pm_nl_work(msk);
2385 
2386 	if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags))
2387 		mptcp_check_for_eof(msk);
2388 
2389 	__mptcp_check_send_data_fin(sk);
2390 	mptcp_check_data_fin(sk);
2391 
2392 	/* There is no point in keeping around an orphaned sk timedout or
2393 	 * closed, but we need the msk around to reply to incoming DATA_FIN,
2394 	 * even if it is orphaned and in FIN_WAIT2 state
2395 	 */
2396 	if (sock_flag(sk, SOCK_DEAD) &&
2397 	    (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) {
2398 		inet_sk_state_store(sk, TCP_CLOSE);
2399 		__mptcp_destroy_sock(sk);
2400 		goto unlock;
2401 	}
2402 
2403 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2404 		__mptcp_close_subflow(msk);
2405 
2406 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2407 		__mptcp_retrans(sk);
2408 
2409 unlock:
2410 	release_sock(sk);
2411 	sock_put(sk);
2412 }
2413 
2414 static int __mptcp_init_sock(struct sock *sk)
2415 {
2416 	struct mptcp_sock *msk = mptcp_sk(sk);
2417 
2418 	spin_lock_init(&msk->join_list_lock);
2419 
2420 	INIT_LIST_HEAD(&msk->conn_list);
2421 	INIT_LIST_HEAD(&msk->join_list);
2422 	INIT_LIST_HEAD(&msk->rtx_queue);
2423 	INIT_WORK(&msk->work, mptcp_worker);
2424 	__skb_queue_head_init(&msk->receive_queue);
2425 	__skb_queue_head_init(&msk->skb_tx_cache);
2426 	msk->out_of_order_queue = RB_ROOT;
2427 	msk->first_pending = NULL;
2428 	msk->wmem_reserved = 0;
2429 	msk->rmem_released = 0;
2430 	msk->tx_pending_data = 0;
2431 	msk->size_goal_cache = TCP_BASE_MSS;
2432 
2433 	msk->ack_hint = NULL;
2434 	msk->first = NULL;
2435 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2436 
2437 	mptcp_pm_data_init(msk);
2438 
2439 	/* re-use the csk retrans timer for MPTCP-level retrans */
2440 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2441 	timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0);
2442 
2443 	return 0;
2444 }
2445 
2446 static int mptcp_init_sock(struct sock *sk)
2447 {
2448 	struct inet_connection_sock *icsk = inet_csk(sk);
2449 	struct net *net = sock_net(sk);
2450 	int ret;
2451 
2452 	ret = __mptcp_init_sock(sk);
2453 	if (ret)
2454 		return ret;
2455 
2456 	if (!mptcp_is_enabled(net))
2457 		return -ENOPROTOOPT;
2458 
2459 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2460 		return -ENOMEM;
2461 
2462 	ret = __mptcp_socket_create(mptcp_sk(sk));
2463 	if (ret)
2464 		return ret;
2465 
2466 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2467 	 * propagate the correct value
2468 	 */
2469 	tcp_assign_congestion_control(sk);
2470 	strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name);
2471 
2472 	/* no need to keep a reference to the ops, the name will suffice */
2473 	tcp_cleanup_congestion_control(sk);
2474 	icsk->icsk_ca_ops = NULL;
2475 
2476 	sk_sockets_allocated_inc(sk);
2477 	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
2478 	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
2479 
2480 	return 0;
2481 }
2482 
2483 static void __mptcp_clear_xmit(struct sock *sk)
2484 {
2485 	struct mptcp_sock *msk = mptcp_sk(sk);
2486 	struct mptcp_data_frag *dtmp, *dfrag;
2487 	struct sk_buff *skb;
2488 
2489 	WRITE_ONCE(msk->first_pending, NULL);
2490 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2491 		dfrag_clear(sk, dfrag);
2492 	while ((skb = __skb_dequeue(&msk->skb_tx_cache)) != NULL) {
2493 		sk->sk_forward_alloc += skb->truesize;
2494 		kfree_skb(skb);
2495 	}
2496 }
2497 
2498 static void mptcp_cancel_work(struct sock *sk)
2499 {
2500 	struct mptcp_sock *msk = mptcp_sk(sk);
2501 
2502 	if (cancel_work_sync(&msk->work))
2503 		__sock_put(sk);
2504 }
2505 
2506 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2507 {
2508 	lock_sock(ssk);
2509 
2510 	switch (ssk->sk_state) {
2511 	case TCP_LISTEN:
2512 		if (!(how & RCV_SHUTDOWN))
2513 			break;
2514 		fallthrough;
2515 	case TCP_SYN_SENT:
2516 		tcp_disconnect(ssk, O_NONBLOCK);
2517 		break;
2518 	default:
2519 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2520 			pr_debug("Fallback");
2521 			ssk->sk_shutdown |= how;
2522 			tcp_shutdown(ssk, how);
2523 		} else {
2524 			pr_debug("Sending DATA_FIN on subflow %p", ssk);
2525 			mptcp_set_timeout(sk, ssk);
2526 			tcp_send_ack(ssk);
2527 			if (!mptcp_timer_pending(sk))
2528 				mptcp_reset_timer(sk);
2529 		}
2530 		break;
2531 	}
2532 
2533 	release_sock(ssk);
2534 }
2535 
2536 static const unsigned char new_state[16] = {
2537 	/* current state:     new state:      action:	*/
2538 	[0 /* (Invalid) */] = TCP_CLOSE,
2539 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2540 	[TCP_SYN_SENT]      = TCP_CLOSE,
2541 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2542 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
2543 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
2544 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
2545 	[TCP_CLOSE]         = TCP_CLOSE,
2546 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
2547 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
2548 	[TCP_LISTEN]        = TCP_CLOSE,
2549 	[TCP_CLOSING]       = TCP_CLOSING,
2550 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
2551 };
2552 
2553 static int mptcp_close_state(struct sock *sk)
2554 {
2555 	int next = (int)new_state[sk->sk_state];
2556 	int ns = next & TCP_STATE_MASK;
2557 
2558 	inet_sk_state_store(sk, ns);
2559 
2560 	return next & TCP_ACTION_FIN;
2561 }
2562 
2563 static void __mptcp_check_send_data_fin(struct sock *sk)
2564 {
2565 	struct mptcp_subflow_context *subflow;
2566 	struct mptcp_sock *msk = mptcp_sk(sk);
2567 
2568 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu",
2569 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
2570 		 msk->snd_nxt, msk->write_seq);
2571 
2572 	/* we still need to enqueue subflows or not really shutting down,
2573 	 * skip this
2574 	 */
2575 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
2576 	    mptcp_send_head(sk))
2577 		return;
2578 
2579 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
2580 
2581 	/* fallback socket will not get data_fin/ack, can move to the next
2582 	 * state now
2583 	 */
2584 	if (__mptcp_check_fallback(msk)) {
2585 		if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
2586 			inet_sk_state_store(sk, TCP_CLOSE);
2587 			mptcp_close_wake_up(sk);
2588 		} else if (sk->sk_state == TCP_FIN_WAIT1) {
2589 			inet_sk_state_store(sk, TCP_FIN_WAIT2);
2590 		}
2591 	}
2592 
2593 	mptcp_flush_join_list(msk);
2594 	mptcp_for_each_subflow(msk, subflow) {
2595 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2596 
2597 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
2598 	}
2599 }
2600 
2601 static void __mptcp_wr_shutdown(struct sock *sk)
2602 {
2603 	struct mptcp_sock *msk = mptcp_sk(sk);
2604 
2605 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d",
2606 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
2607 		 !!mptcp_send_head(sk));
2608 
2609 	/* will be ignored by fallback sockets */
2610 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
2611 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
2612 
2613 	__mptcp_check_send_data_fin(sk);
2614 }
2615 
2616 static void __mptcp_destroy_sock(struct sock *sk)
2617 {
2618 	struct mptcp_subflow_context *subflow, *tmp;
2619 	struct mptcp_sock *msk = mptcp_sk(sk);
2620 	LIST_HEAD(conn_list);
2621 
2622 	pr_debug("msk=%p", msk);
2623 
2624 	might_sleep();
2625 
2626 	/* be sure to always acquire the join list lock, to sync vs
2627 	 * mptcp_finish_join().
2628 	 */
2629 	spin_lock_bh(&msk->join_list_lock);
2630 	list_splice_tail_init(&msk->join_list, &msk->conn_list);
2631 	spin_unlock_bh(&msk->join_list_lock);
2632 	list_splice_init(&msk->conn_list, &conn_list);
2633 
2634 	sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer);
2635 	sk_stop_timer(sk, &sk->sk_timer);
2636 	msk->pm.status = 0;
2637 
2638 	list_for_each_entry_safe(subflow, tmp, &conn_list, node) {
2639 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2640 		__mptcp_close_ssk(sk, ssk, subflow);
2641 	}
2642 
2643 	sk->sk_prot->destroy(sk);
2644 
2645 	WARN_ON_ONCE(msk->wmem_reserved);
2646 	WARN_ON_ONCE(msk->rmem_released);
2647 	sk_stream_kill_queues(sk);
2648 	xfrm_sk_free_policy(sk);
2649 
2650 	sk_refcnt_debug_release(sk);
2651 	mptcp_dispose_initial_subflow(msk);
2652 	sock_put(sk);
2653 }
2654 
2655 static void mptcp_close(struct sock *sk, long timeout)
2656 {
2657 	struct mptcp_subflow_context *subflow;
2658 	bool do_cancel_work = false;
2659 
2660 	lock_sock(sk);
2661 	sk->sk_shutdown = SHUTDOWN_MASK;
2662 
2663 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
2664 		inet_sk_state_store(sk, TCP_CLOSE);
2665 		goto cleanup;
2666 	}
2667 
2668 	if (mptcp_close_state(sk))
2669 		__mptcp_wr_shutdown(sk);
2670 
2671 	sk_stream_wait_close(sk, timeout);
2672 
2673 cleanup:
2674 	/* orphan all the subflows */
2675 	inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32;
2676 	mptcp_for_each_subflow(mptcp_sk(sk), subflow) {
2677 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2678 		bool slow = lock_sock_fast(ssk);
2679 
2680 		sock_orphan(ssk);
2681 		unlock_sock_fast(ssk, slow);
2682 	}
2683 	sock_orphan(sk);
2684 
2685 	sock_hold(sk);
2686 	pr_debug("msk=%p state=%d", sk, sk->sk_state);
2687 	if (sk->sk_state == TCP_CLOSE) {
2688 		__mptcp_destroy_sock(sk);
2689 		do_cancel_work = true;
2690 	} else {
2691 		sk_reset_timer(sk, &sk->sk_timer, jiffies + TCP_TIMEWAIT_LEN);
2692 	}
2693 	release_sock(sk);
2694 	if (do_cancel_work)
2695 		mptcp_cancel_work(sk);
2696 
2697 	if (mptcp_sk(sk)->token)
2698 		mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL);
2699 
2700 	sock_put(sk);
2701 }
2702 
2703 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
2704 {
2705 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2706 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
2707 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
2708 
2709 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
2710 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
2711 
2712 	if (msk6 && ssk6) {
2713 		msk6->saddr = ssk6->saddr;
2714 		msk6->flow_label = ssk6->flow_label;
2715 	}
2716 #endif
2717 
2718 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
2719 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
2720 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
2721 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
2722 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
2723 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
2724 }
2725 
2726 static int mptcp_disconnect(struct sock *sk, int flags)
2727 {
2728 	struct mptcp_subflow_context *subflow;
2729 	struct mptcp_sock *msk = mptcp_sk(sk);
2730 
2731 	mptcp_do_flush_join_list(msk);
2732 
2733 	mptcp_for_each_subflow(msk, subflow) {
2734 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2735 
2736 		lock_sock(ssk);
2737 		tcp_disconnect(ssk, flags);
2738 		release_sock(ssk);
2739 	}
2740 	return 0;
2741 }
2742 
2743 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2744 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
2745 {
2746 	unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
2747 
2748 	return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
2749 }
2750 #endif
2751 
2752 struct sock *mptcp_sk_clone(const struct sock *sk,
2753 			    const struct mptcp_options_received *mp_opt,
2754 			    struct request_sock *req)
2755 {
2756 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
2757 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
2758 	struct mptcp_sock *msk;
2759 	u64 ack_seq;
2760 
2761 	if (!nsk)
2762 		return NULL;
2763 
2764 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
2765 	if (nsk->sk_family == AF_INET6)
2766 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
2767 #endif
2768 
2769 	__mptcp_init_sock(nsk);
2770 
2771 	msk = mptcp_sk(nsk);
2772 	msk->local_key = subflow_req->local_key;
2773 	msk->token = subflow_req->token;
2774 	msk->subflow = NULL;
2775 	WRITE_ONCE(msk->fully_established, false);
2776 
2777 	msk->write_seq = subflow_req->idsn + 1;
2778 	msk->snd_nxt = msk->write_seq;
2779 	msk->snd_una = msk->write_seq;
2780 	msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd;
2781 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
2782 
2783 	if (mp_opt->mp_capable) {
2784 		msk->can_ack = true;
2785 		msk->remote_key = mp_opt->sndr_key;
2786 		mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq);
2787 		ack_seq++;
2788 		WRITE_ONCE(msk->ack_seq, ack_seq);
2789 		WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
2790 	}
2791 
2792 	sock_reset_flag(nsk, SOCK_RCU_FREE);
2793 	/* will be fully established after successful MPC subflow creation */
2794 	inet_sk_state_store(nsk, TCP_SYN_RECV);
2795 
2796 	security_inet_csk_clone(nsk, req);
2797 	bh_unlock_sock(nsk);
2798 
2799 	/* keep a single reference */
2800 	__sock_put(nsk);
2801 	return nsk;
2802 }
2803 
2804 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
2805 {
2806 	const struct tcp_sock *tp = tcp_sk(ssk);
2807 
2808 	msk->rcvq_space.copied = 0;
2809 	msk->rcvq_space.rtt_us = 0;
2810 
2811 	msk->rcvq_space.time = tp->tcp_mstamp;
2812 
2813 	/* initial rcv_space offering made to peer */
2814 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
2815 				      TCP_INIT_CWND * tp->advmss);
2816 	if (msk->rcvq_space.space == 0)
2817 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
2818 
2819 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
2820 }
2821 
2822 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err,
2823 				 bool kern)
2824 {
2825 	struct mptcp_sock *msk = mptcp_sk(sk);
2826 	struct socket *listener;
2827 	struct sock *newsk;
2828 
2829 	listener = __mptcp_nmpc_socket(msk);
2830 	if (WARN_ON_ONCE(!listener)) {
2831 		*err = -EINVAL;
2832 		return NULL;
2833 	}
2834 
2835 	pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk));
2836 	newsk = inet_csk_accept(listener->sk, flags, err, kern);
2837 	if (!newsk)
2838 		return NULL;
2839 
2840 	pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk));
2841 	if (sk_is_mptcp(newsk)) {
2842 		struct mptcp_subflow_context *subflow;
2843 		struct sock *new_mptcp_sock;
2844 
2845 		subflow = mptcp_subflow_ctx(newsk);
2846 		new_mptcp_sock = subflow->conn;
2847 
2848 		/* is_mptcp should be false if subflow->conn is missing, see
2849 		 * subflow_syn_recv_sock()
2850 		 */
2851 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
2852 			tcp_sk(newsk)->is_mptcp = 0;
2853 			return newsk;
2854 		}
2855 
2856 		/* acquire the 2nd reference for the owning socket */
2857 		sock_hold(new_mptcp_sock);
2858 		newsk = new_mptcp_sock;
2859 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
2860 	} else {
2861 		MPTCP_INC_STATS(sock_net(sk),
2862 				MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK);
2863 	}
2864 
2865 	return newsk;
2866 }
2867 
2868 void mptcp_destroy_common(struct mptcp_sock *msk)
2869 {
2870 	struct sock *sk = (struct sock *)msk;
2871 
2872 	__mptcp_clear_xmit(sk);
2873 
2874 	/* move to sk_receive_queue, sk_stream_kill_queues will purge it */
2875 	skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
2876 
2877 	skb_rbtree_purge(&msk->out_of_order_queue);
2878 	mptcp_token_destroy(msk);
2879 	mptcp_pm_free_anno_list(msk);
2880 }
2881 
2882 static void mptcp_destroy(struct sock *sk)
2883 {
2884 	struct mptcp_sock *msk = mptcp_sk(sk);
2885 
2886 	mptcp_destroy_common(msk);
2887 	sk_sockets_allocated_dec(sk);
2888 }
2889 
2890 void __mptcp_data_acked(struct sock *sk)
2891 {
2892 	if (!sock_owned_by_user(sk))
2893 		__mptcp_clean_una(sk);
2894 	else
2895 		set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags);
2896 
2897 	if (mptcp_pending_data_fin_ack(sk))
2898 		mptcp_schedule_work(sk);
2899 }
2900 
2901 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
2902 {
2903 	if (!mptcp_send_head(sk))
2904 		return;
2905 
2906 	if (!sock_owned_by_user(sk)) {
2907 		struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk));
2908 
2909 		if (xmit_ssk == ssk)
2910 			__mptcp_subflow_push_pending(sk, ssk);
2911 		else if (xmit_ssk)
2912 			mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk));
2913 	} else {
2914 		set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags);
2915 	}
2916 }
2917 
2918 /* processes deferred events and flush wmem */
2919 static void mptcp_release_cb(struct sock *sk)
2920 {
2921 	for (;;) {
2922 		unsigned long flags = 0;
2923 
2924 		if (test_and_clear_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags))
2925 			flags |= BIT(MPTCP_PUSH_PENDING);
2926 		if (test_and_clear_bit(MPTCP_RETRANSMIT, &mptcp_sk(sk)->flags))
2927 			flags |= BIT(MPTCP_RETRANSMIT);
2928 		if (!flags)
2929 			break;
2930 
2931 		/* the following actions acquire the subflow socket lock
2932 		 *
2933 		 * 1) can't be invoked in atomic scope
2934 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
2935 		 *    datapath acquires the msk socket spinlock while helding
2936 		 *    the subflow socket lock
2937 		 */
2938 
2939 		spin_unlock_bh(&sk->sk_lock.slock);
2940 		if (flags & BIT(MPTCP_PUSH_PENDING))
2941 			__mptcp_push_pending(sk, 0);
2942 		if (flags & BIT(MPTCP_RETRANSMIT))
2943 			__mptcp_retrans(sk);
2944 
2945 		cond_resched();
2946 		spin_lock_bh(&sk->sk_lock.slock);
2947 	}
2948 
2949 	if (test_and_clear_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags))
2950 		__mptcp_clean_una_wakeup(sk);
2951 	if (test_and_clear_bit(MPTCP_ERROR_REPORT, &mptcp_sk(sk)->flags))
2952 		__mptcp_error_report(sk);
2953 
2954 	/* push_pending may touch wmem_reserved, ensure we do the cleanup
2955 	 * later
2956 	 */
2957 	__mptcp_update_wmem(sk);
2958 	__mptcp_update_rmem(sk);
2959 }
2960 
2961 void mptcp_subflow_process_delegated(struct sock *ssk)
2962 {
2963 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
2964 	struct sock *sk = subflow->conn;
2965 
2966 	mptcp_data_lock(sk);
2967 	if (!sock_owned_by_user(sk))
2968 		__mptcp_subflow_push_pending(sk, ssk);
2969 	else
2970 		set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags);
2971 	mptcp_data_unlock(sk);
2972 	mptcp_subflow_delegated_done(subflow);
2973 }
2974 
2975 static int mptcp_hash(struct sock *sk)
2976 {
2977 	/* should never be called,
2978 	 * we hash the TCP subflows not the master socket
2979 	 */
2980 	WARN_ON_ONCE(1);
2981 	return 0;
2982 }
2983 
2984 static void mptcp_unhash(struct sock *sk)
2985 {
2986 	/* called from sk_common_release(), but nothing to do here */
2987 }
2988 
2989 static int mptcp_get_port(struct sock *sk, unsigned short snum)
2990 {
2991 	struct mptcp_sock *msk = mptcp_sk(sk);
2992 	struct socket *ssock;
2993 
2994 	ssock = __mptcp_nmpc_socket(msk);
2995 	pr_debug("msk=%p, subflow=%p", msk, ssock);
2996 	if (WARN_ON_ONCE(!ssock))
2997 		return -EINVAL;
2998 
2999 	return inet_csk_get_port(ssock->sk, snum);
3000 }
3001 
3002 void mptcp_finish_connect(struct sock *ssk)
3003 {
3004 	struct mptcp_subflow_context *subflow;
3005 	struct mptcp_sock *msk;
3006 	struct sock *sk;
3007 	u64 ack_seq;
3008 
3009 	subflow = mptcp_subflow_ctx(ssk);
3010 	sk = subflow->conn;
3011 	msk = mptcp_sk(sk);
3012 
3013 	pr_debug("msk=%p, token=%u", sk, subflow->token);
3014 
3015 	mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq);
3016 	ack_seq++;
3017 	subflow->map_seq = ack_seq;
3018 	subflow->map_subflow_seq = 1;
3019 
3020 	/* the socket is not connected yet, no msk/subflow ops can access/race
3021 	 * accessing the field below
3022 	 */
3023 	WRITE_ONCE(msk->remote_key, subflow->remote_key);
3024 	WRITE_ONCE(msk->local_key, subflow->local_key);
3025 	WRITE_ONCE(msk->write_seq, subflow->idsn + 1);
3026 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3027 	WRITE_ONCE(msk->ack_seq, ack_seq);
3028 	WRITE_ONCE(msk->rcv_wnd_sent, ack_seq);
3029 	WRITE_ONCE(msk->can_ack, 1);
3030 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3031 
3032 	mptcp_pm_new_connection(msk, ssk, 0);
3033 
3034 	mptcp_rcv_space_init(msk, ssk);
3035 }
3036 
3037 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3038 {
3039 	write_lock_bh(&sk->sk_callback_lock);
3040 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3041 	sk_set_socket(sk, parent);
3042 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
3043 	write_unlock_bh(&sk->sk_callback_lock);
3044 }
3045 
3046 bool mptcp_finish_join(struct sock *ssk)
3047 {
3048 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3049 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3050 	struct sock *parent = (void *)msk;
3051 	struct socket *parent_sock;
3052 	bool ret;
3053 
3054 	pr_debug("msk=%p, subflow=%p", msk, subflow);
3055 
3056 	/* mptcp socket already closing? */
3057 	if (!mptcp_is_fully_established(parent)) {
3058 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3059 		return false;
3060 	}
3061 
3062 	if (!msk->pm.server_side)
3063 		goto out;
3064 
3065 	if (!mptcp_pm_allow_new_subflow(msk)) {
3066 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3067 		return false;
3068 	}
3069 
3070 	/* active connections are already on conn_list, and we can't acquire
3071 	 * msk lock here.
3072 	 * use the join list lock as synchronization point and double-check
3073 	 * msk status to avoid racing with __mptcp_destroy_sock()
3074 	 */
3075 	spin_lock_bh(&msk->join_list_lock);
3076 	ret = inet_sk_state_load(parent) == TCP_ESTABLISHED;
3077 	if (ret && !WARN_ON_ONCE(!list_empty(&subflow->node))) {
3078 		list_add_tail(&subflow->node, &msk->join_list);
3079 		sock_hold(ssk);
3080 	}
3081 	spin_unlock_bh(&msk->join_list_lock);
3082 	if (!ret) {
3083 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3084 		return false;
3085 	}
3086 
3087 	/* attach to msk socket only after we are sure he will deal with us
3088 	 * at close time
3089 	 */
3090 	parent_sock = READ_ONCE(parent->sk_socket);
3091 	if (parent_sock && !ssk->sk_socket)
3092 		mptcp_sock_graft(ssk, parent_sock);
3093 	subflow->map_seq = READ_ONCE(msk->ack_seq);
3094 out:
3095 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
3096 	return true;
3097 }
3098 
3099 static void mptcp_shutdown(struct sock *sk, int how)
3100 {
3101 	pr_debug("sk=%p, how=%d", sk, how);
3102 
3103 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3104 		__mptcp_wr_shutdown(sk);
3105 }
3106 
3107 static struct proto mptcp_prot = {
3108 	.name		= "MPTCP",
3109 	.owner		= THIS_MODULE,
3110 	.init		= mptcp_init_sock,
3111 	.disconnect	= mptcp_disconnect,
3112 	.close		= mptcp_close,
3113 	.accept		= mptcp_accept,
3114 	.setsockopt	= mptcp_setsockopt,
3115 	.getsockopt	= mptcp_getsockopt,
3116 	.shutdown	= mptcp_shutdown,
3117 	.destroy	= mptcp_destroy,
3118 	.sendmsg	= mptcp_sendmsg,
3119 	.recvmsg	= mptcp_recvmsg,
3120 	.release_cb	= mptcp_release_cb,
3121 	.hash		= mptcp_hash,
3122 	.unhash		= mptcp_unhash,
3123 	.get_port	= mptcp_get_port,
3124 	.sockets_allocated	= &mptcp_sockets_allocated,
3125 	.memory_allocated	= &tcp_memory_allocated,
3126 	.memory_pressure	= &tcp_memory_pressure,
3127 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3128 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3129 	.sysctl_mem	= sysctl_tcp_mem,
3130 	.obj_size	= sizeof(struct mptcp_sock),
3131 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3132 	.no_autobind	= true,
3133 };
3134 
3135 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3136 {
3137 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3138 	struct socket *ssock;
3139 	int err;
3140 
3141 	lock_sock(sock->sk);
3142 	ssock = __mptcp_nmpc_socket(msk);
3143 	if (!ssock) {
3144 		err = -EINVAL;
3145 		goto unlock;
3146 	}
3147 
3148 	err = ssock->ops->bind(ssock, uaddr, addr_len);
3149 	if (!err)
3150 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3151 
3152 unlock:
3153 	release_sock(sock->sk);
3154 	return err;
3155 }
3156 
3157 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk,
3158 					 struct mptcp_subflow_context *subflow)
3159 {
3160 	subflow->request_mptcp = 0;
3161 	__mptcp_do_fallback(msk);
3162 }
3163 
3164 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr,
3165 				int addr_len, int flags)
3166 {
3167 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3168 	struct mptcp_subflow_context *subflow;
3169 	struct socket *ssock;
3170 	int err;
3171 
3172 	lock_sock(sock->sk);
3173 	if (sock->state != SS_UNCONNECTED && msk->subflow) {
3174 		/* pending connection or invalid state, let existing subflow
3175 		 * cope with that
3176 		 */
3177 		ssock = msk->subflow;
3178 		goto do_connect;
3179 	}
3180 
3181 	ssock = __mptcp_nmpc_socket(msk);
3182 	if (!ssock) {
3183 		err = -EINVAL;
3184 		goto unlock;
3185 	}
3186 
3187 	mptcp_token_destroy(msk);
3188 	inet_sk_state_store(sock->sk, TCP_SYN_SENT);
3189 	subflow = mptcp_subflow_ctx(ssock->sk);
3190 #ifdef CONFIG_TCP_MD5SIG
3191 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3192 	 * TCP option space.
3193 	 */
3194 	if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info))
3195 		mptcp_subflow_early_fallback(msk, subflow);
3196 #endif
3197 	if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) {
3198 		MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT);
3199 		mptcp_subflow_early_fallback(msk, subflow);
3200 	}
3201 	if (likely(!__mptcp_check_fallback(msk)))
3202 		MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE);
3203 
3204 do_connect:
3205 	err = ssock->ops->connect(ssock, uaddr, addr_len, flags);
3206 	sock->state = ssock->state;
3207 
3208 	/* on successful connect, the msk state will be moved to established by
3209 	 * subflow_finish_connect()
3210 	 */
3211 	if (!err || err == -EINPROGRESS)
3212 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3213 	else
3214 		inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3215 
3216 unlock:
3217 	release_sock(sock->sk);
3218 	return err;
3219 }
3220 
3221 static int mptcp_listen(struct socket *sock, int backlog)
3222 {
3223 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3224 	struct socket *ssock;
3225 	int err;
3226 
3227 	pr_debug("msk=%p", msk);
3228 
3229 	lock_sock(sock->sk);
3230 	ssock = __mptcp_nmpc_socket(msk);
3231 	if (!ssock) {
3232 		err = -EINVAL;
3233 		goto unlock;
3234 	}
3235 
3236 	mptcp_token_destroy(msk);
3237 	inet_sk_state_store(sock->sk, TCP_LISTEN);
3238 	sock_set_flag(sock->sk, SOCK_RCU_FREE);
3239 
3240 	err = ssock->ops->listen(ssock, backlog);
3241 	inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk));
3242 	if (!err)
3243 		mptcp_copy_inaddrs(sock->sk, ssock->sk);
3244 
3245 unlock:
3246 	release_sock(sock->sk);
3247 	return err;
3248 }
3249 
3250 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3251 			       int flags, bool kern)
3252 {
3253 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3254 	struct socket *ssock;
3255 	int err;
3256 
3257 	pr_debug("msk=%p", msk);
3258 
3259 	lock_sock(sock->sk);
3260 	if (sock->sk->sk_state != TCP_LISTEN)
3261 		goto unlock_fail;
3262 
3263 	ssock = __mptcp_nmpc_socket(msk);
3264 	if (!ssock)
3265 		goto unlock_fail;
3266 
3267 	clear_bit(MPTCP_DATA_READY, &msk->flags);
3268 	sock_hold(ssock->sk);
3269 	release_sock(sock->sk);
3270 
3271 	err = ssock->ops->accept(sock, newsock, flags, kern);
3272 	if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) {
3273 		struct mptcp_sock *msk = mptcp_sk(newsock->sk);
3274 		struct mptcp_subflow_context *subflow;
3275 		struct sock *newsk = newsock->sk;
3276 
3277 		lock_sock(newsk);
3278 
3279 		/* PM/worker can now acquire the first subflow socket
3280 		 * lock without racing with listener queue cleanup,
3281 		 * we can notify it, if needed.
3282 		 *
3283 		 * Even if remote has reset the initial subflow by now
3284 		 * the refcnt is still at least one.
3285 		 */
3286 		subflow = mptcp_subflow_ctx(msk->first);
3287 		list_add(&subflow->node, &msk->conn_list);
3288 		sock_hold(msk->first);
3289 		if (mptcp_is_fully_established(newsk))
3290 			mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL);
3291 
3292 		mptcp_copy_inaddrs(newsk, msk->first);
3293 		mptcp_rcv_space_init(msk, msk->first);
3294 		mptcp_propagate_sndbuf(newsk, msk->first);
3295 
3296 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
3297 		 * This is needed so NOSPACE flag can be set from tcp stack.
3298 		 */
3299 		mptcp_flush_join_list(msk);
3300 		mptcp_for_each_subflow(msk, subflow) {
3301 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3302 
3303 			if (!ssk->sk_socket)
3304 				mptcp_sock_graft(ssk, newsock);
3305 		}
3306 		release_sock(newsk);
3307 	}
3308 
3309 	if (inet_csk_listen_poll(ssock->sk))
3310 		set_bit(MPTCP_DATA_READY, &msk->flags);
3311 	sock_put(ssock->sk);
3312 	return err;
3313 
3314 unlock_fail:
3315 	release_sock(sock->sk);
3316 	return -EINVAL;
3317 }
3318 
3319 static __poll_t mptcp_check_readable(struct mptcp_sock *msk)
3320 {
3321 	return test_bit(MPTCP_DATA_READY, &msk->flags) ? EPOLLIN | EPOLLRDNORM :
3322 	       0;
3323 }
3324 
3325 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
3326 {
3327 	struct sock *sk = (struct sock *)msk;
3328 
3329 	if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN))
3330 		return EPOLLOUT | EPOLLWRNORM;
3331 
3332 	if (sk_stream_is_writeable(sk))
3333 		return EPOLLOUT | EPOLLWRNORM;
3334 
3335 	mptcp_set_nospace(sk);
3336 	smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */
3337 	if (sk_stream_is_writeable(sk))
3338 		return EPOLLOUT | EPOLLWRNORM;
3339 
3340 	return 0;
3341 }
3342 
3343 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
3344 			   struct poll_table_struct *wait)
3345 {
3346 	struct sock *sk = sock->sk;
3347 	struct mptcp_sock *msk;
3348 	__poll_t mask = 0;
3349 	int state;
3350 
3351 	msk = mptcp_sk(sk);
3352 	sock_poll_wait(file, sock, wait);
3353 
3354 	state = inet_sk_state_load(sk);
3355 	pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags);
3356 	if (state == TCP_LISTEN)
3357 		return mptcp_check_readable(msk);
3358 
3359 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
3360 		mask |= mptcp_check_readable(msk);
3361 		mask |= mptcp_check_writeable(msk);
3362 	}
3363 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
3364 		mask |= EPOLLHUP;
3365 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3366 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
3367 
3368 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
3369 	smp_rmb();
3370 	if (sk->sk_err)
3371 		mask |= EPOLLERR;
3372 
3373 	return mask;
3374 }
3375 
3376 static const struct proto_ops mptcp_stream_ops = {
3377 	.family		   = PF_INET,
3378 	.owner		   = THIS_MODULE,
3379 	.release	   = inet_release,
3380 	.bind		   = mptcp_bind,
3381 	.connect	   = mptcp_stream_connect,
3382 	.socketpair	   = sock_no_socketpair,
3383 	.accept		   = mptcp_stream_accept,
3384 	.getname	   = inet_getname,
3385 	.poll		   = mptcp_poll,
3386 	.ioctl		   = inet_ioctl,
3387 	.gettstamp	   = sock_gettstamp,
3388 	.listen		   = mptcp_listen,
3389 	.shutdown	   = inet_shutdown,
3390 	.setsockopt	   = sock_common_setsockopt,
3391 	.getsockopt	   = sock_common_getsockopt,
3392 	.sendmsg	   = inet_sendmsg,
3393 	.recvmsg	   = inet_recvmsg,
3394 	.mmap		   = sock_no_mmap,
3395 	.sendpage	   = inet_sendpage,
3396 };
3397 
3398 static struct inet_protosw mptcp_protosw = {
3399 	.type		= SOCK_STREAM,
3400 	.protocol	= IPPROTO_MPTCP,
3401 	.prot		= &mptcp_prot,
3402 	.ops		= &mptcp_stream_ops,
3403 	.flags		= INET_PROTOSW_ICSK,
3404 };
3405 
3406 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
3407 {
3408 	struct mptcp_delegated_action *delegated;
3409 	struct mptcp_subflow_context *subflow;
3410 	int work_done = 0;
3411 
3412 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
3413 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
3414 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3415 
3416 		bh_lock_sock_nested(ssk);
3417 		if (!sock_owned_by_user(ssk) &&
3418 		    mptcp_subflow_has_delegated_action(subflow))
3419 			mptcp_subflow_process_delegated(ssk);
3420 		/* ... elsewhere tcp_release_cb_override already processed
3421 		 * the action or will do at next release_sock().
3422 		 * In both case must dequeue the subflow here - on the same
3423 		 * CPU that scheduled it.
3424 		 */
3425 		bh_unlock_sock(ssk);
3426 		sock_put(ssk);
3427 
3428 		if (++work_done == budget)
3429 			return budget;
3430 	}
3431 
3432 	/* always provide a 0 'work_done' argument, so that napi_complete_done
3433 	 * will not try accessing the NULL napi->dev ptr
3434 	 */
3435 	napi_complete_done(napi, 0);
3436 	return work_done;
3437 }
3438 
3439 void __init mptcp_proto_init(void)
3440 {
3441 	struct mptcp_delegated_action *delegated;
3442 	int cpu;
3443 
3444 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
3445 
3446 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
3447 		panic("Failed to allocate MPTCP pcpu counter\n");
3448 
3449 	init_dummy_netdev(&mptcp_napi_dev);
3450 	for_each_possible_cpu(cpu) {
3451 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
3452 		INIT_LIST_HEAD(&delegated->head);
3453 		netif_tx_napi_add(&mptcp_napi_dev, &delegated->napi, mptcp_napi_poll,
3454 				  NAPI_POLL_WEIGHT);
3455 		napi_enable(&delegated->napi);
3456 	}
3457 
3458 	mptcp_subflow_init();
3459 	mptcp_pm_init();
3460 	mptcp_token_init();
3461 
3462 	if (proto_register(&mptcp_prot, 1) != 0)
3463 		panic("Failed to register MPTCP proto.\n");
3464 
3465 	inet_register_protosw(&mptcp_protosw);
3466 
3467 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
3468 }
3469 
3470 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3471 static const struct proto_ops mptcp_v6_stream_ops = {
3472 	.family		   = PF_INET6,
3473 	.owner		   = THIS_MODULE,
3474 	.release	   = inet6_release,
3475 	.bind		   = mptcp_bind,
3476 	.connect	   = mptcp_stream_connect,
3477 	.socketpair	   = sock_no_socketpair,
3478 	.accept		   = mptcp_stream_accept,
3479 	.getname	   = inet6_getname,
3480 	.poll		   = mptcp_poll,
3481 	.ioctl		   = inet6_ioctl,
3482 	.gettstamp	   = sock_gettstamp,
3483 	.listen		   = mptcp_listen,
3484 	.shutdown	   = inet_shutdown,
3485 	.setsockopt	   = sock_common_setsockopt,
3486 	.getsockopt	   = sock_common_getsockopt,
3487 	.sendmsg	   = inet6_sendmsg,
3488 	.recvmsg	   = inet6_recvmsg,
3489 	.mmap		   = sock_no_mmap,
3490 	.sendpage	   = inet_sendpage,
3491 #ifdef CONFIG_COMPAT
3492 	.compat_ioctl	   = inet6_compat_ioctl,
3493 #endif
3494 };
3495 
3496 static struct proto mptcp_v6_prot;
3497 
3498 static void mptcp_v6_destroy(struct sock *sk)
3499 {
3500 	mptcp_destroy(sk);
3501 	inet6_destroy_sock(sk);
3502 }
3503 
3504 static struct inet_protosw mptcp_v6_protosw = {
3505 	.type		= SOCK_STREAM,
3506 	.protocol	= IPPROTO_MPTCP,
3507 	.prot		= &mptcp_v6_prot,
3508 	.ops		= &mptcp_v6_stream_ops,
3509 	.flags		= INET_PROTOSW_ICSK,
3510 };
3511 
3512 int __init mptcp_proto_v6_init(void)
3513 {
3514 	int err;
3515 
3516 	mptcp_v6_prot = mptcp_prot;
3517 	strcpy(mptcp_v6_prot.name, "MPTCPv6");
3518 	mptcp_v6_prot.slab = NULL;
3519 	mptcp_v6_prot.destroy = mptcp_v6_destroy;
3520 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
3521 
3522 	err = proto_register(&mptcp_v6_prot, 1);
3523 	if (err)
3524 		return err;
3525 
3526 	err = inet6_register_protosw(&mptcp_v6_protosw);
3527 	if (err)
3528 		proto_unregister(&mptcp_v6_prot);
3529 
3530 	return err;
3531 }
3532 #endif
3533