1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include "protocol.h" 26 #include "mib.h" 27 28 #define CREATE_TRACE_POINTS 29 #include <trace/events/mptcp.h> 30 31 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 32 struct mptcp6_sock { 33 struct mptcp_sock msk; 34 struct ipv6_pinfo np; 35 }; 36 #endif 37 38 struct mptcp_skb_cb { 39 u64 map_seq; 40 u64 end_seq; 41 u32 offset; 42 }; 43 44 #define MPTCP_SKB_CB(__skb) ((struct mptcp_skb_cb *)&((__skb)->cb[0])) 45 46 static struct percpu_counter mptcp_sockets_allocated; 47 48 static void __mptcp_destroy_sock(struct sock *sk); 49 static void __mptcp_check_send_data_fin(struct sock *sk); 50 51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 52 static struct net_device mptcp_napi_dev; 53 54 /* If msk has an initial subflow socket, and the MP_CAPABLE handshake has not 55 * completed yet or has failed, return the subflow socket. 56 * Otherwise return NULL. 57 */ 58 struct socket *__mptcp_nmpc_socket(const struct mptcp_sock *msk) 59 { 60 if (!msk->subflow || READ_ONCE(msk->can_ack)) 61 return NULL; 62 63 return msk->subflow; 64 } 65 66 /* Returns end sequence number of the receiver's advertised window */ 67 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 68 { 69 return READ_ONCE(msk->wnd_end); 70 } 71 72 static bool mptcp_is_tcpsk(struct sock *sk) 73 { 74 struct socket *sock = sk->sk_socket; 75 76 if (unlikely(sk->sk_prot == &tcp_prot)) { 77 /* we are being invoked after mptcp_accept() has 78 * accepted a non-mp-capable flow: sk is a tcp_sk, 79 * not an mptcp one. 80 * 81 * Hand the socket over to tcp so all further socket ops 82 * bypass mptcp. 83 */ 84 sock->ops = &inet_stream_ops; 85 return true; 86 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 87 } else if (unlikely(sk->sk_prot == &tcpv6_prot)) { 88 sock->ops = &inet6_stream_ops; 89 return true; 90 #endif 91 } 92 93 return false; 94 } 95 96 static int __mptcp_socket_create(struct mptcp_sock *msk) 97 { 98 struct mptcp_subflow_context *subflow; 99 struct sock *sk = (struct sock *)msk; 100 struct socket *ssock; 101 int err; 102 103 err = mptcp_subflow_create_socket(sk, &ssock); 104 if (err) 105 return err; 106 107 msk->first = ssock->sk; 108 msk->subflow = ssock; 109 subflow = mptcp_subflow_ctx(ssock->sk); 110 list_add(&subflow->node, &msk->conn_list); 111 sock_hold(ssock->sk); 112 subflow->request_mptcp = 1; 113 mptcp_sock_graft(msk->first, sk->sk_socket); 114 115 return 0; 116 } 117 118 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 119 { 120 sk_drops_add(sk, skb); 121 __kfree_skb(skb); 122 } 123 124 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 125 struct sk_buff *from) 126 { 127 bool fragstolen; 128 int delta; 129 130 if (MPTCP_SKB_CB(from)->offset || 131 !skb_try_coalesce(to, from, &fragstolen, &delta)) 132 return false; 133 134 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx", 135 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 136 to->len, MPTCP_SKB_CB(from)->end_seq); 137 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 138 kfree_skb_partial(from, fragstolen); 139 atomic_add(delta, &sk->sk_rmem_alloc); 140 sk_mem_charge(sk, delta); 141 return true; 142 } 143 144 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 145 struct sk_buff *from) 146 { 147 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 148 return false; 149 150 return mptcp_try_coalesce((struct sock *)msk, to, from); 151 } 152 153 /* "inspired" by tcp_data_queue_ofo(), main differences: 154 * - use mptcp seqs 155 * - don't cope with sacks 156 */ 157 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 158 { 159 struct sock *sk = (struct sock *)msk; 160 struct rb_node **p, *parent; 161 u64 seq, end_seq, max_seq; 162 struct sk_buff *skb1; 163 164 seq = MPTCP_SKB_CB(skb)->map_seq; 165 end_seq = MPTCP_SKB_CB(skb)->end_seq; 166 max_seq = READ_ONCE(msk->rcv_wnd_sent); 167 168 pr_debug("msk=%p seq=%llx limit=%llx empty=%d", msk, seq, max_seq, 169 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 170 if (after64(end_seq, max_seq)) { 171 /* out of window */ 172 mptcp_drop(sk, skb); 173 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 174 (unsigned long long)end_seq - (unsigned long)max_seq, 175 (unsigned long long)msk->rcv_wnd_sent); 176 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 177 return; 178 } 179 180 p = &msk->out_of_order_queue.rb_node; 181 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 182 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 183 rb_link_node(&skb->rbnode, NULL, p); 184 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 185 msk->ooo_last_skb = skb; 186 goto end; 187 } 188 189 /* with 2 subflows, adding at end of ooo queue is quite likely 190 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 191 */ 192 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 193 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 194 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 195 return; 196 } 197 198 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 199 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 200 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 201 parent = &msk->ooo_last_skb->rbnode; 202 p = &parent->rb_right; 203 goto insert; 204 } 205 206 /* Find place to insert this segment. Handle overlaps on the way. */ 207 parent = NULL; 208 while (*p) { 209 parent = *p; 210 skb1 = rb_to_skb(parent); 211 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 212 p = &parent->rb_left; 213 continue; 214 } 215 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 216 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 217 /* All the bits are present. Drop. */ 218 mptcp_drop(sk, skb); 219 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 220 return; 221 } 222 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 223 /* partial overlap: 224 * | skb | 225 * | skb1 | 226 * continue traversing 227 */ 228 } else { 229 /* skb's seq == skb1's seq and skb covers skb1. 230 * Replace skb1 with skb. 231 */ 232 rb_replace_node(&skb1->rbnode, &skb->rbnode, 233 &msk->out_of_order_queue); 234 mptcp_drop(sk, skb1); 235 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 236 goto merge_right; 237 } 238 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 239 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 240 return; 241 } 242 p = &parent->rb_right; 243 } 244 245 insert: 246 /* Insert segment into RB tree. */ 247 rb_link_node(&skb->rbnode, parent, p); 248 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 249 250 merge_right: 251 /* Remove other segments covered by skb. */ 252 while ((skb1 = skb_rb_next(skb)) != NULL) { 253 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 254 break; 255 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 256 mptcp_drop(sk, skb1); 257 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 258 } 259 /* If there is no skb after us, we are the last_skb ! */ 260 if (!skb1) 261 msk->ooo_last_skb = skb; 262 263 end: 264 skb_condense(skb); 265 skb_set_owner_r(skb, sk); 266 } 267 268 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 269 struct sk_buff *skb, unsigned int offset, 270 size_t copy_len) 271 { 272 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 273 struct sock *sk = (struct sock *)msk; 274 struct sk_buff *tail; 275 276 __skb_unlink(skb, &ssk->sk_receive_queue); 277 278 skb_ext_reset(skb); 279 skb_orphan(skb); 280 281 /* try to fetch required memory from subflow */ 282 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 283 int amount = sk_mem_pages(skb->truesize) << SK_MEM_QUANTUM_SHIFT; 284 285 if (ssk->sk_forward_alloc < amount) 286 goto drop; 287 288 ssk->sk_forward_alloc -= amount; 289 sk->sk_forward_alloc += amount; 290 } 291 292 /* the skb map_seq accounts for the skb offset: 293 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 294 * value 295 */ 296 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 297 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 298 MPTCP_SKB_CB(skb)->offset = offset; 299 300 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 301 /* in sequence */ 302 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 303 tail = skb_peek_tail(&sk->sk_receive_queue); 304 if (tail && mptcp_try_coalesce(sk, tail, skb)) 305 return true; 306 307 skb_set_owner_r(skb, sk); 308 __skb_queue_tail(&sk->sk_receive_queue, skb); 309 return true; 310 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 311 mptcp_data_queue_ofo(msk, skb); 312 return false; 313 } 314 315 /* old data, keep it simple and drop the whole pkt, sender 316 * will retransmit as needed, if needed. 317 */ 318 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 319 drop: 320 mptcp_drop(sk, skb); 321 return false; 322 } 323 324 static void mptcp_stop_timer(struct sock *sk) 325 { 326 struct inet_connection_sock *icsk = inet_csk(sk); 327 328 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 329 mptcp_sk(sk)->timer_ival = 0; 330 } 331 332 static void mptcp_close_wake_up(struct sock *sk) 333 { 334 if (sock_flag(sk, SOCK_DEAD)) 335 return; 336 337 sk->sk_state_change(sk); 338 if (sk->sk_shutdown == SHUTDOWN_MASK || 339 sk->sk_state == TCP_CLOSE) 340 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 341 else 342 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 343 } 344 345 static bool mptcp_pending_data_fin_ack(struct sock *sk) 346 { 347 struct mptcp_sock *msk = mptcp_sk(sk); 348 349 return !__mptcp_check_fallback(msk) && 350 ((1 << sk->sk_state) & 351 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 352 msk->write_seq == READ_ONCE(msk->snd_una); 353 } 354 355 static void mptcp_check_data_fin_ack(struct sock *sk) 356 { 357 struct mptcp_sock *msk = mptcp_sk(sk); 358 359 /* Look for an acknowledged DATA_FIN */ 360 if (mptcp_pending_data_fin_ack(sk)) { 361 WRITE_ONCE(msk->snd_data_fin_enable, 0); 362 363 switch (sk->sk_state) { 364 case TCP_FIN_WAIT1: 365 inet_sk_state_store(sk, TCP_FIN_WAIT2); 366 break; 367 case TCP_CLOSING: 368 case TCP_LAST_ACK: 369 inet_sk_state_store(sk, TCP_CLOSE); 370 break; 371 } 372 373 mptcp_close_wake_up(sk); 374 } 375 } 376 377 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 378 { 379 struct mptcp_sock *msk = mptcp_sk(sk); 380 381 if (READ_ONCE(msk->rcv_data_fin) && 382 ((1 << sk->sk_state) & 383 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 384 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 385 386 if (msk->ack_seq == rcv_data_fin_seq) { 387 if (seq) 388 *seq = rcv_data_fin_seq; 389 390 return true; 391 } 392 } 393 394 return false; 395 } 396 397 static void mptcp_set_datafin_timeout(const struct sock *sk) 398 { 399 struct inet_connection_sock *icsk = inet_csk(sk); 400 401 mptcp_sk(sk)->timer_ival = min(TCP_RTO_MAX, 402 TCP_RTO_MIN << icsk->icsk_retransmits); 403 } 404 405 static void mptcp_set_timeout(const struct sock *sk, const struct sock *ssk) 406 { 407 long tout = ssk && inet_csk(ssk)->icsk_pending ? 408 inet_csk(ssk)->icsk_timeout - jiffies : 0; 409 410 if (tout <= 0) 411 tout = mptcp_sk(sk)->timer_ival; 412 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 413 } 414 415 static bool tcp_can_send_ack(const struct sock *ssk) 416 { 417 return !((1 << inet_sk_state_load(ssk)) & 418 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 419 } 420 421 static void mptcp_send_ack(struct mptcp_sock *msk) 422 { 423 struct mptcp_subflow_context *subflow; 424 425 mptcp_for_each_subflow(msk, subflow) { 426 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 427 428 lock_sock(ssk); 429 if (tcp_can_send_ack(ssk)) 430 tcp_send_ack(ssk); 431 release_sock(ssk); 432 } 433 } 434 435 static bool mptcp_subflow_cleanup_rbuf(struct sock *ssk) 436 { 437 int ret; 438 439 lock_sock(ssk); 440 ret = tcp_can_send_ack(ssk); 441 if (ret) 442 tcp_cleanup_rbuf(ssk, 1); 443 release_sock(ssk); 444 return ret; 445 } 446 447 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 448 { 449 struct sock *ack_hint = READ_ONCE(msk->ack_hint); 450 int old_space = READ_ONCE(msk->old_wspace); 451 struct mptcp_subflow_context *subflow; 452 struct sock *sk = (struct sock *)msk; 453 bool cleanup; 454 455 /* this is a simple superset of what tcp_cleanup_rbuf() implements 456 * so that we don't have to acquire the ssk socket lock most of the time 457 * to do actually nothing 458 */ 459 cleanup = __mptcp_space(sk) - old_space >= max(0, old_space); 460 if (!cleanup) 461 return; 462 463 /* if the hinted ssk is still active, try to use it */ 464 if (likely(ack_hint)) { 465 mptcp_for_each_subflow(msk, subflow) { 466 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 467 468 if (ack_hint == ssk && mptcp_subflow_cleanup_rbuf(ssk)) 469 return; 470 } 471 } 472 473 /* otherwise pick the first active subflow */ 474 mptcp_for_each_subflow(msk, subflow) 475 if (mptcp_subflow_cleanup_rbuf(mptcp_subflow_tcp_sock(subflow))) 476 return; 477 } 478 479 static bool mptcp_check_data_fin(struct sock *sk) 480 { 481 struct mptcp_sock *msk = mptcp_sk(sk); 482 u64 rcv_data_fin_seq; 483 bool ret = false; 484 485 if (__mptcp_check_fallback(msk)) 486 return ret; 487 488 /* Need to ack a DATA_FIN received from a peer while this side 489 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 490 * msk->rcv_data_fin was set when parsing the incoming options 491 * at the subflow level and the msk lock was not held, so this 492 * is the first opportunity to act on the DATA_FIN and change 493 * the msk state. 494 * 495 * If we are caught up to the sequence number of the incoming 496 * DATA_FIN, send the DATA_ACK now and do state transition. If 497 * not caught up, do nothing and let the recv code send DATA_ACK 498 * when catching up. 499 */ 500 501 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 502 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 503 WRITE_ONCE(msk->rcv_data_fin, 0); 504 505 sk->sk_shutdown |= RCV_SHUTDOWN; 506 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 507 set_bit(MPTCP_DATA_READY, &msk->flags); 508 509 switch (sk->sk_state) { 510 case TCP_ESTABLISHED: 511 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 512 break; 513 case TCP_FIN_WAIT1: 514 inet_sk_state_store(sk, TCP_CLOSING); 515 break; 516 case TCP_FIN_WAIT2: 517 inet_sk_state_store(sk, TCP_CLOSE); 518 break; 519 default: 520 /* Other states not expected */ 521 WARN_ON_ONCE(1); 522 break; 523 } 524 525 ret = true; 526 mptcp_set_timeout(sk, NULL); 527 mptcp_send_ack(msk); 528 mptcp_close_wake_up(sk); 529 } 530 return ret; 531 } 532 533 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 534 struct sock *ssk, 535 unsigned int *bytes) 536 { 537 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 538 struct sock *sk = (struct sock *)msk; 539 unsigned int moved = 0; 540 bool more_data_avail; 541 struct tcp_sock *tp; 542 bool done = false; 543 int sk_rbuf; 544 545 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 546 547 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 548 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 549 550 if (unlikely(ssk_rbuf > sk_rbuf)) { 551 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 552 sk_rbuf = ssk_rbuf; 553 } 554 } 555 556 pr_debug("msk=%p ssk=%p", msk, ssk); 557 tp = tcp_sk(ssk); 558 do { 559 u32 map_remaining, offset; 560 u32 seq = tp->copied_seq; 561 struct sk_buff *skb; 562 bool fin; 563 564 /* try to move as much data as available */ 565 map_remaining = subflow->map_data_len - 566 mptcp_subflow_get_map_offset(subflow); 567 568 skb = skb_peek(&ssk->sk_receive_queue); 569 if (!skb) { 570 /* if no data is found, a racing workqueue/recvmsg 571 * already processed the new data, stop here or we 572 * can enter an infinite loop 573 */ 574 if (!moved) 575 done = true; 576 break; 577 } 578 579 if (__mptcp_check_fallback(msk)) { 580 /* if we are running under the workqueue, TCP could have 581 * collapsed skbs between dummy map creation and now 582 * be sure to adjust the size 583 */ 584 map_remaining = skb->len; 585 subflow->map_data_len = skb->len; 586 } 587 588 offset = seq - TCP_SKB_CB(skb)->seq; 589 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 590 if (fin) { 591 done = true; 592 seq++; 593 } 594 595 if (offset < skb->len) { 596 size_t len = skb->len - offset; 597 598 if (tp->urg_data) 599 done = true; 600 601 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 602 moved += len; 603 seq += len; 604 605 if (WARN_ON_ONCE(map_remaining < len)) 606 break; 607 } else { 608 WARN_ON_ONCE(!fin); 609 sk_eat_skb(ssk, skb); 610 done = true; 611 } 612 613 WRITE_ONCE(tp->copied_seq, seq); 614 more_data_avail = mptcp_subflow_data_available(ssk); 615 616 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 617 done = true; 618 break; 619 } 620 } while (more_data_avail); 621 WRITE_ONCE(msk->ack_hint, ssk); 622 623 *bytes += moved; 624 return done; 625 } 626 627 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 628 { 629 struct sock *sk = (struct sock *)msk; 630 struct sk_buff *skb, *tail; 631 bool moved = false; 632 struct rb_node *p; 633 u64 end_seq; 634 635 p = rb_first(&msk->out_of_order_queue); 636 pr_debug("msk=%p empty=%d", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 637 while (p) { 638 skb = rb_to_skb(p); 639 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 640 break; 641 642 p = rb_next(p); 643 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 644 645 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 646 msk->ack_seq))) { 647 mptcp_drop(sk, skb); 648 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 649 continue; 650 } 651 652 end_seq = MPTCP_SKB_CB(skb)->end_seq; 653 tail = skb_peek_tail(&sk->sk_receive_queue); 654 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 655 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 656 657 /* skip overlapping data, if any */ 658 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d", 659 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 660 delta); 661 MPTCP_SKB_CB(skb)->offset += delta; 662 __skb_queue_tail(&sk->sk_receive_queue, skb); 663 } 664 msk->ack_seq = end_seq; 665 moved = true; 666 } 667 return moved; 668 } 669 670 /* In most cases we will be able to lock the mptcp socket. If its already 671 * owned, we need to defer to the work queue to avoid ABBA deadlock. 672 */ 673 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 674 { 675 struct sock *sk = (struct sock *)msk; 676 unsigned int moved = 0; 677 678 if (inet_sk_state_load(sk) == TCP_CLOSE) 679 return false; 680 681 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 682 __mptcp_ofo_queue(msk); 683 if (unlikely(ssk->sk_err)) { 684 if (!sock_owned_by_user(sk)) 685 __mptcp_error_report(sk); 686 else 687 set_bit(MPTCP_ERROR_REPORT, &msk->flags); 688 } 689 690 /* If the moves have caught up with the DATA_FIN sequence number 691 * it's time to ack the DATA_FIN and change socket state, but 692 * this is not a good place to change state. Let the workqueue 693 * do it. 694 */ 695 if (mptcp_pending_data_fin(sk, NULL)) 696 mptcp_schedule_work(sk); 697 return moved > 0; 698 } 699 700 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 701 { 702 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 703 struct mptcp_sock *msk = mptcp_sk(sk); 704 int sk_rbuf, ssk_rbuf; 705 706 /* The peer can send data while we are shutting down this 707 * subflow at msk destruction time, but we must avoid enqueuing 708 * more data to the msk receive queue 709 */ 710 if (unlikely(subflow->disposable)) 711 return; 712 713 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 714 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 715 if (unlikely(ssk_rbuf > sk_rbuf)) 716 sk_rbuf = ssk_rbuf; 717 718 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 719 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) 720 return; 721 722 /* Wake-up the reader only for in-sequence data */ 723 mptcp_data_lock(sk); 724 if (move_skbs_to_msk(msk, ssk)) { 725 set_bit(MPTCP_DATA_READY, &msk->flags); 726 sk->sk_data_ready(sk); 727 } 728 mptcp_data_unlock(sk); 729 } 730 731 static bool mptcp_do_flush_join_list(struct mptcp_sock *msk) 732 { 733 struct mptcp_subflow_context *subflow; 734 bool ret = false; 735 736 if (likely(list_empty(&msk->join_list))) 737 return false; 738 739 spin_lock_bh(&msk->join_list_lock); 740 list_for_each_entry(subflow, &msk->join_list, node) { 741 u32 sseq = READ_ONCE(subflow->setsockopt_seq); 742 743 mptcp_propagate_sndbuf((struct sock *)msk, mptcp_subflow_tcp_sock(subflow)); 744 if (READ_ONCE(msk->setsockopt_seq) != sseq) 745 ret = true; 746 } 747 list_splice_tail_init(&msk->join_list, &msk->conn_list); 748 spin_unlock_bh(&msk->join_list_lock); 749 750 return ret; 751 } 752 753 void __mptcp_flush_join_list(struct mptcp_sock *msk) 754 { 755 if (likely(!mptcp_do_flush_join_list(msk))) 756 return; 757 758 if (!test_and_set_bit(MPTCP_WORK_SYNC_SETSOCKOPT, &msk->flags)) 759 mptcp_schedule_work((struct sock *)msk); 760 } 761 762 static void mptcp_flush_join_list(struct mptcp_sock *msk) 763 { 764 bool sync_needed = test_and_clear_bit(MPTCP_WORK_SYNC_SETSOCKOPT, &msk->flags); 765 766 might_sleep(); 767 768 if (!mptcp_do_flush_join_list(msk) && !sync_needed) 769 return; 770 771 mptcp_sockopt_sync_all(msk); 772 } 773 774 static bool mptcp_timer_pending(struct sock *sk) 775 { 776 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 777 } 778 779 static void mptcp_reset_timer(struct sock *sk) 780 { 781 struct inet_connection_sock *icsk = inet_csk(sk); 782 unsigned long tout; 783 784 /* prevent rescheduling on close */ 785 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 786 return; 787 788 /* should never be called with mptcp level timer cleared */ 789 tout = READ_ONCE(mptcp_sk(sk)->timer_ival); 790 if (WARN_ON_ONCE(!tout)) 791 tout = TCP_RTO_MIN; 792 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 793 } 794 795 bool mptcp_schedule_work(struct sock *sk) 796 { 797 if (inet_sk_state_load(sk) != TCP_CLOSE && 798 schedule_work(&mptcp_sk(sk)->work)) { 799 /* each subflow already holds a reference to the sk, and the 800 * workqueue is invoked by a subflow, so sk can't go away here. 801 */ 802 sock_hold(sk); 803 return true; 804 } 805 return false; 806 } 807 808 void mptcp_subflow_eof(struct sock *sk) 809 { 810 if (!test_and_set_bit(MPTCP_WORK_EOF, &mptcp_sk(sk)->flags)) 811 mptcp_schedule_work(sk); 812 } 813 814 static void mptcp_check_for_eof(struct mptcp_sock *msk) 815 { 816 struct mptcp_subflow_context *subflow; 817 struct sock *sk = (struct sock *)msk; 818 int receivers = 0; 819 820 mptcp_for_each_subflow(msk, subflow) 821 receivers += !subflow->rx_eof; 822 if (receivers) 823 return; 824 825 if (!(sk->sk_shutdown & RCV_SHUTDOWN)) { 826 /* hopefully temporary hack: propagate shutdown status 827 * to msk, when all subflows agree on it 828 */ 829 sk->sk_shutdown |= RCV_SHUTDOWN; 830 831 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 832 set_bit(MPTCP_DATA_READY, &msk->flags); 833 sk->sk_data_ready(sk); 834 } 835 836 switch (sk->sk_state) { 837 case TCP_ESTABLISHED: 838 inet_sk_state_store(sk, TCP_CLOSE_WAIT); 839 break; 840 case TCP_FIN_WAIT1: 841 inet_sk_state_store(sk, TCP_CLOSING); 842 break; 843 case TCP_FIN_WAIT2: 844 inet_sk_state_store(sk, TCP_CLOSE); 845 break; 846 default: 847 return; 848 } 849 mptcp_close_wake_up(sk); 850 } 851 852 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 853 { 854 struct mptcp_subflow_context *subflow; 855 struct sock *sk = (struct sock *)msk; 856 857 sock_owned_by_me(sk); 858 859 mptcp_for_each_subflow(msk, subflow) { 860 if (READ_ONCE(subflow->data_avail)) 861 return mptcp_subflow_tcp_sock(subflow); 862 } 863 864 return NULL; 865 } 866 867 static bool mptcp_skb_can_collapse_to(u64 write_seq, 868 const struct sk_buff *skb, 869 const struct mptcp_ext *mpext) 870 { 871 if (!tcp_skb_can_collapse_to(skb)) 872 return false; 873 874 /* can collapse only if MPTCP level sequence is in order and this 875 * mapping has not been xmitted yet 876 */ 877 return mpext && mpext->data_seq + mpext->data_len == write_seq && 878 !mpext->frozen; 879 } 880 881 /* we can append data to the given data frag if: 882 * - there is space available in the backing page_frag 883 * - the data frag tail matches the current page_frag free offset 884 * - the data frag end sequence number matches the current write seq 885 */ 886 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 887 const struct page_frag *pfrag, 888 const struct mptcp_data_frag *df) 889 { 890 return df && pfrag->page == df->page && 891 pfrag->size - pfrag->offset > 0 && 892 pfrag->offset == (df->offset + df->data_len) && 893 df->data_seq + df->data_len == msk->write_seq; 894 } 895 896 static int mptcp_wmem_with_overhead(struct sock *sk, int size) 897 { 898 struct mptcp_sock *msk = mptcp_sk(sk); 899 int ret, skbs; 900 901 ret = size + ((sizeof(struct mptcp_data_frag) * size) >> PAGE_SHIFT); 902 skbs = (msk->tx_pending_data + size) / msk->size_goal_cache; 903 if (skbs < msk->skb_tx_cache.qlen) 904 return ret; 905 906 return ret + (skbs - msk->skb_tx_cache.qlen) * SKB_TRUESIZE(MAX_TCP_HEADER); 907 } 908 909 static void __mptcp_wmem_reserve(struct sock *sk, int size) 910 { 911 int amount = mptcp_wmem_with_overhead(sk, size); 912 struct mptcp_sock *msk = mptcp_sk(sk); 913 914 WARN_ON_ONCE(msk->wmem_reserved); 915 if (WARN_ON_ONCE(amount < 0)) 916 amount = 0; 917 918 if (amount <= sk->sk_forward_alloc) 919 goto reserve; 920 921 /* under memory pressure try to reserve at most a single page 922 * otherwise try to reserve the full estimate and fallback 923 * to a single page before entering the error path 924 */ 925 if ((tcp_under_memory_pressure(sk) && amount > PAGE_SIZE) || 926 !sk_wmem_schedule(sk, amount)) { 927 if (amount <= PAGE_SIZE) 928 goto nomem; 929 930 amount = PAGE_SIZE; 931 if (!sk_wmem_schedule(sk, amount)) 932 goto nomem; 933 } 934 935 reserve: 936 msk->wmem_reserved = amount; 937 sk->sk_forward_alloc -= amount; 938 return; 939 940 nomem: 941 /* we will wait for memory on next allocation */ 942 msk->wmem_reserved = -1; 943 } 944 945 static void __mptcp_update_wmem(struct sock *sk) 946 { 947 struct mptcp_sock *msk = mptcp_sk(sk); 948 949 #ifdef CONFIG_LOCKDEP 950 WARN_ON_ONCE(!lockdep_is_held(&sk->sk_lock.slock)); 951 #endif 952 953 if (!msk->wmem_reserved) 954 return; 955 956 if (msk->wmem_reserved < 0) 957 msk->wmem_reserved = 0; 958 if (msk->wmem_reserved > 0) { 959 sk->sk_forward_alloc += msk->wmem_reserved; 960 msk->wmem_reserved = 0; 961 } 962 } 963 964 static bool mptcp_wmem_alloc(struct sock *sk, int size) 965 { 966 struct mptcp_sock *msk = mptcp_sk(sk); 967 968 /* check for pre-existing error condition */ 969 if (msk->wmem_reserved < 0) 970 return false; 971 972 if (msk->wmem_reserved >= size) 973 goto account; 974 975 mptcp_data_lock(sk); 976 if (!sk_wmem_schedule(sk, size)) { 977 mptcp_data_unlock(sk); 978 return false; 979 } 980 981 sk->sk_forward_alloc -= size; 982 msk->wmem_reserved += size; 983 mptcp_data_unlock(sk); 984 985 account: 986 msk->wmem_reserved -= size; 987 return true; 988 } 989 990 static void mptcp_wmem_uncharge(struct sock *sk, int size) 991 { 992 struct mptcp_sock *msk = mptcp_sk(sk); 993 994 if (msk->wmem_reserved < 0) 995 msk->wmem_reserved = 0; 996 msk->wmem_reserved += size; 997 } 998 999 static void mptcp_mem_reclaim_partial(struct sock *sk) 1000 { 1001 struct mptcp_sock *msk = mptcp_sk(sk); 1002 1003 /* if we are experiencing a transint allocation error, 1004 * the forward allocation memory has been already 1005 * released 1006 */ 1007 if (msk->wmem_reserved < 0) 1008 return; 1009 1010 mptcp_data_lock(sk); 1011 sk->sk_forward_alloc += msk->wmem_reserved; 1012 sk_mem_reclaim_partial(sk); 1013 msk->wmem_reserved = sk->sk_forward_alloc; 1014 sk->sk_forward_alloc = 0; 1015 mptcp_data_unlock(sk); 1016 } 1017 1018 static void dfrag_uncharge(struct sock *sk, int len) 1019 { 1020 sk_mem_uncharge(sk, len); 1021 sk_wmem_queued_add(sk, -len); 1022 } 1023 1024 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 1025 { 1026 int len = dfrag->data_len + dfrag->overhead; 1027 1028 list_del(&dfrag->list); 1029 dfrag_uncharge(sk, len); 1030 put_page(dfrag->page); 1031 } 1032 1033 static void __mptcp_clean_una(struct sock *sk) 1034 { 1035 struct mptcp_sock *msk = mptcp_sk(sk); 1036 struct mptcp_data_frag *dtmp, *dfrag; 1037 bool cleaned = false; 1038 u64 snd_una; 1039 1040 /* on fallback we just need to ignore snd_una, as this is really 1041 * plain TCP 1042 */ 1043 if (__mptcp_check_fallback(msk)) 1044 msk->snd_una = READ_ONCE(msk->snd_nxt); 1045 1046 snd_una = msk->snd_una; 1047 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1048 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1049 break; 1050 1051 if (WARN_ON_ONCE(dfrag == msk->first_pending)) 1052 break; 1053 dfrag_clear(sk, dfrag); 1054 cleaned = true; 1055 } 1056 1057 dfrag = mptcp_rtx_head(sk); 1058 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1059 u64 delta = snd_una - dfrag->data_seq; 1060 1061 if (WARN_ON_ONCE(delta > dfrag->already_sent)) 1062 goto out; 1063 1064 dfrag->data_seq += delta; 1065 dfrag->offset += delta; 1066 dfrag->data_len -= delta; 1067 dfrag->already_sent -= delta; 1068 1069 dfrag_uncharge(sk, delta); 1070 cleaned = true; 1071 } 1072 1073 out: 1074 if (cleaned) { 1075 if (tcp_under_memory_pressure(sk)) { 1076 __mptcp_update_wmem(sk); 1077 sk_mem_reclaim_partial(sk); 1078 } 1079 } 1080 1081 if (snd_una == READ_ONCE(msk->snd_nxt)) { 1082 if (msk->timer_ival && !mptcp_data_fin_enabled(msk)) 1083 mptcp_stop_timer(sk); 1084 } else { 1085 mptcp_reset_timer(sk); 1086 } 1087 } 1088 1089 static void __mptcp_clean_una_wakeup(struct sock *sk) 1090 { 1091 #ifdef CONFIG_LOCKDEP 1092 WARN_ON_ONCE(!lockdep_is_held(&sk->sk_lock.slock)); 1093 #endif 1094 __mptcp_clean_una(sk); 1095 mptcp_write_space(sk); 1096 } 1097 1098 static void mptcp_clean_una_wakeup(struct sock *sk) 1099 { 1100 mptcp_data_lock(sk); 1101 __mptcp_clean_una_wakeup(sk); 1102 mptcp_data_unlock(sk); 1103 } 1104 1105 static void mptcp_enter_memory_pressure(struct sock *sk) 1106 { 1107 struct mptcp_subflow_context *subflow; 1108 struct mptcp_sock *msk = mptcp_sk(sk); 1109 bool first = true; 1110 1111 sk_stream_moderate_sndbuf(sk); 1112 mptcp_for_each_subflow(msk, subflow) { 1113 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1114 1115 if (first) 1116 tcp_enter_memory_pressure(ssk); 1117 sk_stream_moderate_sndbuf(ssk); 1118 first = false; 1119 } 1120 } 1121 1122 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1123 * data 1124 */ 1125 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1126 { 1127 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1128 pfrag, sk->sk_allocation))) 1129 return true; 1130 1131 mptcp_enter_memory_pressure(sk); 1132 return false; 1133 } 1134 1135 static struct mptcp_data_frag * 1136 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1137 int orig_offset) 1138 { 1139 int offset = ALIGN(orig_offset, sizeof(long)); 1140 struct mptcp_data_frag *dfrag; 1141 1142 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1143 dfrag->data_len = 0; 1144 dfrag->data_seq = msk->write_seq; 1145 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1146 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1147 dfrag->already_sent = 0; 1148 dfrag->page = pfrag->page; 1149 1150 return dfrag; 1151 } 1152 1153 struct mptcp_sendmsg_info { 1154 int mss_now; 1155 int size_goal; 1156 u16 limit; 1157 u16 sent; 1158 unsigned int flags; 1159 }; 1160 1161 static int mptcp_check_allowed_size(struct mptcp_sock *msk, u64 data_seq, 1162 int avail_size) 1163 { 1164 u64 window_end = mptcp_wnd_end(msk); 1165 1166 if (__mptcp_check_fallback(msk)) 1167 return avail_size; 1168 1169 if (!before64(data_seq + avail_size, window_end)) { 1170 u64 allowed_size = window_end - data_seq; 1171 1172 return min_t(unsigned int, allowed_size, avail_size); 1173 } 1174 1175 return avail_size; 1176 } 1177 1178 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1179 { 1180 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1181 1182 if (!mpext) 1183 return false; 1184 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1185 return true; 1186 } 1187 1188 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1189 { 1190 struct sk_buff *skb; 1191 1192 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1193 if (likely(skb)) { 1194 if (likely(__mptcp_add_ext(skb, gfp))) { 1195 skb_reserve(skb, MAX_TCP_HEADER); 1196 skb->reserved_tailroom = skb->end - skb->tail; 1197 return skb; 1198 } 1199 __kfree_skb(skb); 1200 } else { 1201 mptcp_enter_memory_pressure(sk); 1202 } 1203 return NULL; 1204 } 1205 1206 static bool mptcp_tx_cache_refill(struct sock *sk, int size, 1207 struct sk_buff_head *skbs, int *total_ts) 1208 { 1209 struct mptcp_sock *msk = mptcp_sk(sk); 1210 struct sk_buff *skb; 1211 int space_needed; 1212 1213 if (unlikely(tcp_under_memory_pressure(sk))) { 1214 mptcp_mem_reclaim_partial(sk); 1215 1216 /* under pressure pre-allocate at most a single skb */ 1217 if (msk->skb_tx_cache.qlen) 1218 return true; 1219 space_needed = msk->size_goal_cache; 1220 } else { 1221 space_needed = msk->tx_pending_data + size - 1222 msk->skb_tx_cache.qlen * msk->size_goal_cache; 1223 } 1224 1225 while (space_needed > 0) { 1226 skb = __mptcp_do_alloc_tx_skb(sk, sk->sk_allocation); 1227 if (unlikely(!skb)) { 1228 /* under memory pressure, try to pass the caller a 1229 * single skb to allow forward progress 1230 */ 1231 while (skbs->qlen > 1) { 1232 skb = __skb_dequeue_tail(skbs); 1233 *total_ts -= skb->truesize; 1234 __kfree_skb(skb); 1235 } 1236 return skbs->qlen > 0; 1237 } 1238 1239 *total_ts += skb->truesize; 1240 __skb_queue_tail(skbs, skb); 1241 space_needed -= msk->size_goal_cache; 1242 } 1243 return true; 1244 } 1245 1246 static bool __mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1247 { 1248 struct mptcp_sock *msk = mptcp_sk(sk); 1249 struct sk_buff *skb; 1250 1251 if (ssk->sk_tx_skb_cache) { 1252 skb = ssk->sk_tx_skb_cache; 1253 if (unlikely(!skb_ext_find(skb, SKB_EXT_MPTCP) && 1254 !__mptcp_add_ext(skb, gfp))) 1255 return false; 1256 return true; 1257 } 1258 1259 skb = skb_peek(&msk->skb_tx_cache); 1260 if (skb) { 1261 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1262 skb = __skb_dequeue(&msk->skb_tx_cache); 1263 if (WARN_ON_ONCE(!skb)) 1264 return false; 1265 1266 mptcp_wmem_uncharge(sk, skb->truesize); 1267 ssk->sk_tx_skb_cache = skb; 1268 return true; 1269 } 1270 1271 /* over memory limit, no point to try to allocate a new skb */ 1272 return false; 1273 } 1274 1275 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1276 if (!skb) 1277 return false; 1278 1279 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1280 ssk->sk_tx_skb_cache = skb; 1281 return true; 1282 } 1283 kfree_skb(skb); 1284 return false; 1285 } 1286 1287 static bool mptcp_must_reclaim_memory(struct sock *sk, struct sock *ssk) 1288 { 1289 return !ssk->sk_tx_skb_cache && 1290 !skb_peek(&mptcp_sk(sk)->skb_tx_cache) && 1291 tcp_under_memory_pressure(sk); 1292 } 1293 1294 static bool mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk) 1295 { 1296 if (unlikely(mptcp_must_reclaim_memory(sk, ssk))) 1297 mptcp_mem_reclaim_partial(sk); 1298 return __mptcp_alloc_tx_skb(sk, ssk, sk->sk_allocation); 1299 } 1300 1301 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1302 struct mptcp_data_frag *dfrag, 1303 struct mptcp_sendmsg_info *info) 1304 { 1305 u64 data_seq = dfrag->data_seq + info->sent; 1306 struct mptcp_sock *msk = mptcp_sk(sk); 1307 bool zero_window_probe = false; 1308 struct mptcp_ext *mpext = NULL; 1309 struct sk_buff *skb, *tail; 1310 bool can_collapse = false; 1311 int size_bias = 0; 1312 int avail_size; 1313 size_t ret = 0; 1314 1315 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u", 1316 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1317 1318 /* compute send limit */ 1319 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1320 avail_size = info->size_goal; 1321 msk->size_goal_cache = info->size_goal; 1322 skb = tcp_write_queue_tail(ssk); 1323 if (skb) { 1324 /* Limit the write to the size available in the 1325 * current skb, if any, so that we create at most a new skb. 1326 * Explicitly tells TCP internals to avoid collapsing on later 1327 * queue management operation, to avoid breaking the ext <-> 1328 * SSN association set here 1329 */ 1330 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1331 can_collapse = (info->size_goal - skb->len > 0) && 1332 mptcp_skb_can_collapse_to(data_seq, skb, mpext); 1333 if (!can_collapse) { 1334 TCP_SKB_CB(skb)->eor = 1; 1335 } else { 1336 size_bias = skb->len; 1337 avail_size = info->size_goal - skb->len; 1338 } 1339 } 1340 1341 /* Zero window and all data acked? Probe. */ 1342 avail_size = mptcp_check_allowed_size(msk, data_seq, avail_size); 1343 if (avail_size == 0) { 1344 u64 snd_una = READ_ONCE(msk->snd_una); 1345 1346 if (skb || snd_una != msk->snd_nxt) 1347 return 0; 1348 zero_window_probe = true; 1349 data_seq = snd_una - 1; 1350 avail_size = 1; 1351 } 1352 1353 if (WARN_ON_ONCE(info->sent > info->limit || 1354 info->limit > dfrag->data_len)) 1355 return 0; 1356 1357 ret = info->limit - info->sent; 1358 tail = tcp_build_frag(ssk, avail_size + size_bias, info->flags, 1359 dfrag->page, dfrag->offset + info->sent, &ret); 1360 if (!tail) { 1361 tcp_remove_empty_skb(sk, tcp_write_queue_tail(ssk)); 1362 return -ENOMEM; 1363 } 1364 1365 /* if the tail skb is still the cached one, collapsing really happened. 1366 */ 1367 if (skb == tail) { 1368 TCP_SKB_CB(tail)->tcp_flags &= ~TCPHDR_PSH; 1369 mpext->data_len += ret; 1370 WARN_ON_ONCE(!can_collapse); 1371 WARN_ON_ONCE(zero_window_probe); 1372 goto out; 1373 } 1374 1375 mpext = skb_ext_find(tail, SKB_EXT_MPTCP); 1376 if (WARN_ON_ONCE(!mpext)) { 1377 /* should never reach here, stream corrupted */ 1378 return -EINVAL; 1379 } 1380 1381 memset(mpext, 0, sizeof(*mpext)); 1382 mpext->data_seq = data_seq; 1383 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1384 mpext->data_len = ret; 1385 mpext->use_map = 1; 1386 mpext->dsn64 = 1; 1387 1388 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d", 1389 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1390 mpext->dsn64); 1391 1392 if (zero_window_probe) { 1393 mptcp_subflow_ctx(ssk)->rel_write_seq += ret; 1394 mpext->frozen = 1; 1395 ret = 0; 1396 tcp_push_pending_frames(ssk); 1397 } 1398 out: 1399 mptcp_subflow_ctx(ssk)->rel_write_seq += ret; 1400 return ret; 1401 } 1402 1403 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1404 sizeof(struct tcphdr) - \ 1405 MAX_TCP_OPTION_SPACE - \ 1406 sizeof(struct ipv6hdr) - \ 1407 sizeof(struct frag_hdr)) 1408 1409 struct subflow_send_info { 1410 struct sock *ssk; 1411 u64 ratio; 1412 }; 1413 1414 static struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1415 { 1416 struct subflow_send_info send_info[2]; 1417 struct mptcp_subflow_context *subflow; 1418 int i, nr_active = 0; 1419 struct sock *ssk; 1420 u64 ratio; 1421 u32 pace; 1422 1423 sock_owned_by_me((struct sock *)msk); 1424 1425 if (__mptcp_check_fallback(msk)) { 1426 if (!msk->first) 1427 return NULL; 1428 return sk_stream_memory_free(msk->first) ? msk->first : NULL; 1429 } 1430 1431 /* re-use last subflow, if the burst allow that */ 1432 if (msk->last_snd && msk->snd_burst > 0 && 1433 sk_stream_memory_free(msk->last_snd) && 1434 mptcp_subflow_active(mptcp_subflow_ctx(msk->last_snd))) 1435 return msk->last_snd; 1436 1437 /* pick the subflow with the lower wmem/wspace ratio */ 1438 for (i = 0; i < 2; ++i) { 1439 send_info[i].ssk = NULL; 1440 send_info[i].ratio = -1; 1441 } 1442 mptcp_for_each_subflow(msk, subflow) { 1443 trace_mptcp_subflow_get_send(subflow); 1444 ssk = mptcp_subflow_tcp_sock(subflow); 1445 if (!mptcp_subflow_active(subflow)) 1446 continue; 1447 1448 nr_active += !subflow->backup; 1449 if (!sk_stream_memory_free(subflow->tcp_sock) || !tcp_sk(ssk)->snd_wnd) 1450 continue; 1451 1452 pace = READ_ONCE(ssk->sk_pacing_rate); 1453 if (!pace) 1454 continue; 1455 1456 ratio = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, 1457 pace); 1458 if (ratio < send_info[subflow->backup].ratio) { 1459 send_info[subflow->backup].ssk = ssk; 1460 send_info[subflow->backup].ratio = ratio; 1461 } 1462 } 1463 1464 /* pick the best backup if no other subflow is active */ 1465 if (!nr_active) 1466 send_info[0].ssk = send_info[1].ssk; 1467 1468 if (send_info[0].ssk) { 1469 msk->last_snd = send_info[0].ssk; 1470 msk->snd_burst = min_t(int, MPTCP_SEND_BURST_SIZE, 1471 tcp_sk(msk->last_snd)->snd_wnd); 1472 return msk->last_snd; 1473 } 1474 1475 return NULL; 1476 } 1477 1478 static void mptcp_push_release(struct sock *sk, struct sock *ssk, 1479 struct mptcp_sendmsg_info *info) 1480 { 1481 mptcp_set_timeout(sk, ssk); 1482 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1483 release_sock(ssk); 1484 } 1485 1486 static void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1487 { 1488 struct sock *prev_ssk = NULL, *ssk = NULL; 1489 struct mptcp_sock *msk = mptcp_sk(sk); 1490 struct mptcp_sendmsg_info info = { 1491 .flags = flags, 1492 }; 1493 struct mptcp_data_frag *dfrag; 1494 int len, copied = 0; 1495 1496 while ((dfrag = mptcp_send_head(sk))) { 1497 info.sent = dfrag->already_sent; 1498 info.limit = dfrag->data_len; 1499 len = dfrag->data_len - dfrag->already_sent; 1500 while (len > 0) { 1501 int ret = 0; 1502 1503 prev_ssk = ssk; 1504 mptcp_flush_join_list(msk); 1505 ssk = mptcp_subflow_get_send(msk); 1506 1507 /* try to keep the subflow socket lock across 1508 * consecutive xmit on the same socket 1509 */ 1510 if (ssk != prev_ssk && prev_ssk) 1511 mptcp_push_release(sk, prev_ssk, &info); 1512 if (!ssk) 1513 goto out; 1514 1515 if (ssk != prev_ssk || !prev_ssk) 1516 lock_sock(ssk); 1517 1518 /* keep it simple and always provide a new skb for the 1519 * subflow, even if we will not use it when collapsing 1520 * on the pending one 1521 */ 1522 if (!mptcp_alloc_tx_skb(sk, ssk)) { 1523 mptcp_push_release(sk, ssk, &info); 1524 goto out; 1525 } 1526 1527 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1528 if (ret <= 0) { 1529 mptcp_push_release(sk, ssk, &info); 1530 goto out; 1531 } 1532 1533 info.sent += ret; 1534 dfrag->already_sent += ret; 1535 msk->snd_nxt += ret; 1536 msk->snd_burst -= ret; 1537 msk->tx_pending_data -= ret; 1538 copied += ret; 1539 len -= ret; 1540 } 1541 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1542 } 1543 1544 /* at this point we held the socket lock for the last subflow we used */ 1545 if (ssk) 1546 mptcp_push_release(sk, ssk, &info); 1547 1548 out: 1549 if (copied) { 1550 /* start the timer, if it's not pending */ 1551 if (!mptcp_timer_pending(sk)) 1552 mptcp_reset_timer(sk); 1553 __mptcp_check_send_data_fin(sk); 1554 } 1555 } 1556 1557 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk) 1558 { 1559 struct mptcp_sock *msk = mptcp_sk(sk); 1560 struct mptcp_sendmsg_info info; 1561 struct mptcp_data_frag *dfrag; 1562 struct sock *xmit_ssk; 1563 int len, copied = 0; 1564 bool first = true; 1565 1566 info.flags = 0; 1567 while ((dfrag = mptcp_send_head(sk))) { 1568 info.sent = dfrag->already_sent; 1569 info.limit = dfrag->data_len; 1570 len = dfrag->data_len - dfrag->already_sent; 1571 while (len > 0) { 1572 int ret = 0; 1573 1574 /* the caller already invoked the packet scheduler, 1575 * check for a different subflow usage only after 1576 * spooling the first chunk of data 1577 */ 1578 xmit_ssk = first ? ssk : mptcp_subflow_get_send(mptcp_sk(sk)); 1579 if (!xmit_ssk) 1580 goto out; 1581 if (xmit_ssk != ssk) { 1582 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk)); 1583 goto out; 1584 } 1585 1586 if (unlikely(mptcp_must_reclaim_memory(sk, ssk))) { 1587 __mptcp_update_wmem(sk); 1588 sk_mem_reclaim_partial(sk); 1589 } 1590 if (!__mptcp_alloc_tx_skb(sk, ssk, GFP_ATOMIC)) 1591 goto out; 1592 1593 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 1594 if (ret <= 0) 1595 goto out; 1596 1597 info.sent += ret; 1598 dfrag->already_sent += ret; 1599 msk->snd_nxt += ret; 1600 msk->snd_burst -= ret; 1601 msk->tx_pending_data -= ret; 1602 copied += ret; 1603 len -= ret; 1604 first = false; 1605 } 1606 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1607 } 1608 1609 out: 1610 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1611 * not going to flush it via release_sock() 1612 */ 1613 __mptcp_update_wmem(sk); 1614 if (copied) { 1615 mptcp_set_timeout(sk, ssk); 1616 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1617 info.size_goal); 1618 if (!mptcp_timer_pending(sk)) 1619 mptcp_reset_timer(sk); 1620 1621 if (msk->snd_data_fin_enable && 1622 msk->snd_nxt + 1 == msk->write_seq) 1623 mptcp_schedule_work(sk); 1624 } 1625 } 1626 1627 static void mptcp_set_nospace(struct sock *sk) 1628 { 1629 /* enable autotune */ 1630 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1631 1632 /* will be cleared on avail space */ 1633 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1634 } 1635 1636 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1637 { 1638 struct mptcp_sock *msk = mptcp_sk(sk); 1639 struct page_frag *pfrag; 1640 size_t copied = 0; 1641 int ret = 0; 1642 long timeo; 1643 1644 /* we don't support FASTOPEN yet */ 1645 if (msg->msg_flags & MSG_FASTOPEN) 1646 return -EOPNOTSUPP; 1647 1648 /* silently ignore everything else */ 1649 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL; 1650 1651 mptcp_lock_sock(sk, __mptcp_wmem_reserve(sk, min_t(size_t, 1 << 20, len))); 1652 1653 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1654 1655 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1656 ret = sk_stream_wait_connect(sk, &timeo); 1657 if (ret) 1658 goto out; 1659 } 1660 1661 pfrag = sk_page_frag(sk); 1662 1663 while (msg_data_left(msg)) { 1664 int total_ts, frag_truesize = 0; 1665 struct mptcp_data_frag *dfrag; 1666 struct sk_buff_head skbs; 1667 bool dfrag_collapsed; 1668 size_t psize, offset; 1669 1670 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) { 1671 ret = -EPIPE; 1672 goto out; 1673 } 1674 1675 /* reuse tail pfrag, if possible, or carve a new one from the 1676 * page allocator 1677 */ 1678 dfrag = mptcp_pending_tail(sk); 1679 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1680 if (!dfrag_collapsed) { 1681 if (!sk_stream_memory_free(sk)) 1682 goto wait_for_memory; 1683 1684 if (!mptcp_page_frag_refill(sk, pfrag)) 1685 goto wait_for_memory; 1686 1687 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1688 frag_truesize = dfrag->overhead; 1689 } 1690 1691 /* we do not bound vs wspace, to allow a single packet. 1692 * memory accounting will prevent execessive memory usage 1693 * anyway 1694 */ 1695 offset = dfrag->offset + dfrag->data_len; 1696 psize = pfrag->size - offset; 1697 psize = min_t(size_t, psize, msg_data_left(msg)); 1698 total_ts = psize + frag_truesize; 1699 __skb_queue_head_init(&skbs); 1700 if (!mptcp_tx_cache_refill(sk, psize, &skbs, &total_ts)) 1701 goto wait_for_memory; 1702 1703 if (!mptcp_wmem_alloc(sk, total_ts)) { 1704 __skb_queue_purge(&skbs); 1705 goto wait_for_memory; 1706 } 1707 1708 skb_queue_splice_tail(&skbs, &msk->skb_tx_cache); 1709 if (copy_page_from_iter(dfrag->page, offset, psize, 1710 &msg->msg_iter) != psize) { 1711 mptcp_wmem_uncharge(sk, psize + frag_truesize); 1712 ret = -EFAULT; 1713 goto out; 1714 } 1715 1716 /* data successfully copied into the write queue */ 1717 copied += psize; 1718 dfrag->data_len += psize; 1719 frag_truesize += psize; 1720 pfrag->offset += frag_truesize; 1721 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1722 msk->tx_pending_data += psize; 1723 1724 /* charge data on mptcp pending queue to the msk socket 1725 * Note: we charge such data both to sk and ssk 1726 */ 1727 sk_wmem_queued_add(sk, frag_truesize); 1728 if (!dfrag_collapsed) { 1729 get_page(dfrag->page); 1730 list_add_tail(&dfrag->list, &msk->rtx_queue); 1731 if (!msk->first_pending) 1732 WRITE_ONCE(msk->first_pending, dfrag); 1733 } 1734 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d", msk, 1735 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1736 !dfrag_collapsed); 1737 1738 continue; 1739 1740 wait_for_memory: 1741 mptcp_set_nospace(sk); 1742 __mptcp_push_pending(sk, msg->msg_flags); 1743 ret = sk_stream_wait_memory(sk, &timeo); 1744 if (ret) 1745 goto out; 1746 } 1747 1748 if (copied) 1749 __mptcp_push_pending(sk, msg->msg_flags); 1750 1751 out: 1752 release_sock(sk); 1753 return copied ? : ret; 1754 } 1755 1756 static void mptcp_wait_data(struct sock *sk, long *timeo) 1757 { 1758 DEFINE_WAIT_FUNC(wait, woken_wake_function); 1759 struct mptcp_sock *msk = mptcp_sk(sk); 1760 1761 add_wait_queue(sk_sleep(sk), &wait); 1762 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1763 1764 sk_wait_event(sk, timeo, 1765 test_and_clear_bit(MPTCP_DATA_READY, &msk->flags), &wait); 1766 1767 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); 1768 remove_wait_queue(sk_sleep(sk), &wait); 1769 } 1770 1771 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1772 struct msghdr *msg, 1773 size_t len, int flags) 1774 { 1775 struct sk_buff *skb, *tmp; 1776 int copied = 0; 1777 1778 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1779 u32 offset = MPTCP_SKB_CB(skb)->offset; 1780 u32 data_len = skb->len - offset; 1781 u32 count = min_t(size_t, len - copied, data_len); 1782 int err; 1783 1784 if (!(flags & MSG_TRUNC)) { 1785 err = skb_copy_datagram_msg(skb, offset, msg, count); 1786 if (unlikely(err < 0)) { 1787 if (!copied) 1788 return err; 1789 break; 1790 } 1791 } 1792 1793 copied += count; 1794 1795 if (count < data_len) { 1796 if (!(flags & MSG_PEEK)) 1797 MPTCP_SKB_CB(skb)->offset += count; 1798 break; 1799 } 1800 1801 if (!(flags & MSG_PEEK)) { 1802 /* we will bulk release the skb memory later */ 1803 skb->destructor = NULL; 1804 msk->rmem_released += skb->truesize; 1805 __skb_unlink(skb, &msk->receive_queue); 1806 __kfree_skb(skb); 1807 } 1808 1809 if (copied >= len) 1810 break; 1811 } 1812 1813 return copied; 1814 } 1815 1816 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1817 * 1818 * Only difference: Use highest rtt estimate of the subflows in use. 1819 */ 1820 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1821 { 1822 struct mptcp_subflow_context *subflow; 1823 struct sock *sk = (struct sock *)msk; 1824 u32 time, advmss = 1; 1825 u64 rtt_us, mstamp; 1826 1827 sock_owned_by_me(sk); 1828 1829 if (copied <= 0) 1830 return; 1831 1832 msk->rcvq_space.copied += copied; 1833 1834 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1835 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1836 1837 rtt_us = msk->rcvq_space.rtt_us; 1838 if (rtt_us && time < (rtt_us >> 3)) 1839 return; 1840 1841 rtt_us = 0; 1842 mptcp_for_each_subflow(msk, subflow) { 1843 const struct tcp_sock *tp; 1844 u64 sf_rtt_us; 1845 u32 sf_advmss; 1846 1847 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1848 1849 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1850 sf_advmss = READ_ONCE(tp->advmss); 1851 1852 rtt_us = max(sf_rtt_us, rtt_us); 1853 advmss = max(sf_advmss, advmss); 1854 } 1855 1856 msk->rcvq_space.rtt_us = rtt_us; 1857 if (time < (rtt_us >> 3) || rtt_us == 0) 1858 return; 1859 1860 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1861 goto new_measure; 1862 1863 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 1864 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1865 int rcvmem, rcvbuf; 1866 u64 rcvwin, grow; 1867 1868 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1869 1870 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1871 1872 do_div(grow, msk->rcvq_space.space); 1873 rcvwin += (grow << 1); 1874 1875 rcvmem = SKB_TRUESIZE(advmss + MAX_TCP_HEADER); 1876 while (tcp_win_from_space(sk, rcvmem) < advmss) 1877 rcvmem += 128; 1878 1879 do_div(rcvwin, advmss); 1880 rcvbuf = min_t(u64, rcvwin * rcvmem, 1881 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 1882 1883 if (rcvbuf > sk->sk_rcvbuf) { 1884 u32 window_clamp; 1885 1886 window_clamp = tcp_win_from_space(sk, rcvbuf); 1887 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 1888 1889 /* Make subflows follow along. If we do not do this, we 1890 * get drops at subflow level if skbs can't be moved to 1891 * the mptcp rx queue fast enough (announced rcv_win can 1892 * exceed ssk->sk_rcvbuf). 1893 */ 1894 mptcp_for_each_subflow(msk, subflow) { 1895 struct sock *ssk; 1896 bool slow; 1897 1898 ssk = mptcp_subflow_tcp_sock(subflow); 1899 slow = lock_sock_fast(ssk); 1900 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 1901 tcp_sk(ssk)->window_clamp = window_clamp; 1902 tcp_cleanup_rbuf(ssk, 1); 1903 unlock_sock_fast(ssk, slow); 1904 } 1905 } 1906 } 1907 1908 msk->rcvq_space.space = msk->rcvq_space.copied; 1909 new_measure: 1910 msk->rcvq_space.copied = 0; 1911 msk->rcvq_space.time = mstamp; 1912 } 1913 1914 static void __mptcp_update_rmem(struct sock *sk) 1915 { 1916 struct mptcp_sock *msk = mptcp_sk(sk); 1917 1918 if (!msk->rmem_released) 1919 return; 1920 1921 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 1922 sk_mem_uncharge(sk, msk->rmem_released); 1923 msk->rmem_released = 0; 1924 } 1925 1926 static void __mptcp_splice_receive_queue(struct sock *sk) 1927 { 1928 struct mptcp_sock *msk = mptcp_sk(sk); 1929 1930 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 1931 } 1932 1933 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 1934 { 1935 struct sock *sk = (struct sock *)msk; 1936 unsigned int moved = 0; 1937 bool ret, done; 1938 1939 mptcp_flush_join_list(msk); 1940 do { 1941 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 1942 bool slowpath; 1943 1944 /* we can have data pending in the subflows only if the msk 1945 * receive buffer was full at subflow_data_ready() time, 1946 * that is an unlikely slow path. 1947 */ 1948 if (likely(!ssk)) 1949 break; 1950 1951 slowpath = lock_sock_fast(ssk); 1952 mptcp_data_lock(sk); 1953 __mptcp_update_rmem(sk); 1954 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 1955 mptcp_data_unlock(sk); 1956 tcp_cleanup_rbuf(ssk, moved); 1957 1958 if (unlikely(ssk->sk_err)) 1959 __mptcp_error_report(sk); 1960 unlock_sock_fast(ssk, slowpath); 1961 } while (!done); 1962 1963 /* acquire the data lock only if some input data is pending */ 1964 ret = moved > 0; 1965 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 1966 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 1967 mptcp_data_lock(sk); 1968 __mptcp_update_rmem(sk); 1969 ret |= __mptcp_ofo_queue(msk); 1970 __mptcp_splice_receive_queue(sk); 1971 mptcp_data_unlock(sk); 1972 mptcp_cleanup_rbuf(msk); 1973 } 1974 if (ret) 1975 mptcp_check_data_fin((struct sock *)msk); 1976 return !skb_queue_empty(&msk->receive_queue); 1977 } 1978 1979 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 1980 int nonblock, int flags, int *addr_len) 1981 { 1982 struct mptcp_sock *msk = mptcp_sk(sk); 1983 int copied = 0; 1984 int target; 1985 long timeo; 1986 1987 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 1988 if (unlikely(flags & MSG_ERRQUEUE)) 1989 return inet_recv_error(sk, msg, len, addr_len); 1990 1991 mptcp_lock_sock(sk, __mptcp_splice_receive_queue(sk)); 1992 if (unlikely(sk->sk_state == TCP_LISTEN)) { 1993 copied = -ENOTCONN; 1994 goto out_err; 1995 } 1996 1997 timeo = sock_rcvtimeo(sk, nonblock); 1998 1999 len = min_t(size_t, len, INT_MAX); 2000 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2001 2002 while (copied < len) { 2003 int bytes_read; 2004 2005 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags); 2006 if (unlikely(bytes_read < 0)) { 2007 if (!copied) 2008 copied = bytes_read; 2009 goto out_err; 2010 } 2011 2012 copied += bytes_read; 2013 2014 /* be sure to advertise window change */ 2015 mptcp_cleanup_rbuf(msk); 2016 2017 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2018 continue; 2019 2020 /* only the master socket status is relevant here. The exit 2021 * conditions mirror closely tcp_recvmsg() 2022 */ 2023 if (copied >= target) 2024 break; 2025 2026 if (copied) { 2027 if (sk->sk_err || 2028 sk->sk_state == TCP_CLOSE || 2029 (sk->sk_shutdown & RCV_SHUTDOWN) || 2030 !timeo || 2031 signal_pending(current)) 2032 break; 2033 } else { 2034 if (sk->sk_err) { 2035 copied = sock_error(sk); 2036 break; 2037 } 2038 2039 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2040 mptcp_check_for_eof(msk); 2041 2042 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2043 /* race breaker: the shutdown could be after the 2044 * previous receive queue check 2045 */ 2046 if (__mptcp_move_skbs(msk)) 2047 continue; 2048 break; 2049 } 2050 2051 if (sk->sk_state == TCP_CLOSE) { 2052 copied = -ENOTCONN; 2053 break; 2054 } 2055 2056 if (!timeo) { 2057 copied = -EAGAIN; 2058 break; 2059 } 2060 2061 if (signal_pending(current)) { 2062 copied = sock_intr_errno(timeo); 2063 break; 2064 } 2065 } 2066 2067 pr_debug("block timeout %ld", timeo); 2068 mptcp_wait_data(sk, &timeo); 2069 } 2070 2071 if (skb_queue_empty_lockless(&sk->sk_receive_queue) && 2072 skb_queue_empty(&msk->receive_queue)) { 2073 /* entire backlog drained, clear DATA_READY. */ 2074 clear_bit(MPTCP_DATA_READY, &msk->flags); 2075 2076 /* .. race-breaker: ssk might have gotten new data 2077 * after last __mptcp_move_skbs() returned false. 2078 */ 2079 if (unlikely(__mptcp_move_skbs(msk))) 2080 set_bit(MPTCP_DATA_READY, &msk->flags); 2081 } else if (unlikely(!test_bit(MPTCP_DATA_READY, &msk->flags))) { 2082 /* data to read but mptcp_wait_data() cleared DATA_READY */ 2083 set_bit(MPTCP_DATA_READY, &msk->flags); 2084 } 2085 out_err: 2086 pr_debug("msk=%p data_ready=%d rx queue empty=%d copied=%d", 2087 msk, test_bit(MPTCP_DATA_READY, &msk->flags), 2088 skb_queue_empty_lockless(&sk->sk_receive_queue), copied); 2089 if (!(flags & MSG_PEEK)) 2090 mptcp_rcv_space_adjust(msk, copied); 2091 2092 release_sock(sk); 2093 return copied; 2094 } 2095 2096 static void mptcp_retransmit_timer(struct timer_list *t) 2097 { 2098 struct inet_connection_sock *icsk = from_timer(icsk, t, 2099 icsk_retransmit_timer); 2100 struct sock *sk = &icsk->icsk_inet.sk; 2101 struct mptcp_sock *msk = mptcp_sk(sk); 2102 2103 bh_lock_sock(sk); 2104 if (!sock_owned_by_user(sk)) { 2105 /* we need a process context to retransmit */ 2106 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2107 mptcp_schedule_work(sk); 2108 } else { 2109 /* delegate our work to tcp_release_cb() */ 2110 set_bit(MPTCP_RETRANSMIT, &msk->flags); 2111 } 2112 bh_unlock_sock(sk); 2113 sock_put(sk); 2114 } 2115 2116 static void mptcp_timeout_timer(struct timer_list *t) 2117 { 2118 struct sock *sk = from_timer(sk, t, sk_timer); 2119 2120 mptcp_schedule_work(sk); 2121 sock_put(sk); 2122 } 2123 2124 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2125 * level. 2126 * 2127 * A backup subflow is returned only if that is the only kind available. 2128 */ 2129 static struct sock *mptcp_subflow_get_retrans(const struct mptcp_sock *msk) 2130 { 2131 struct mptcp_subflow_context *subflow; 2132 struct sock *backup = NULL; 2133 2134 sock_owned_by_me((const struct sock *)msk); 2135 2136 if (__mptcp_check_fallback(msk)) 2137 return NULL; 2138 2139 mptcp_for_each_subflow(msk, subflow) { 2140 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2141 2142 if (!mptcp_subflow_active(subflow)) 2143 continue; 2144 2145 /* still data outstanding at TCP level? Don't retransmit. */ 2146 if (!tcp_write_queue_empty(ssk)) { 2147 if (inet_csk(ssk)->icsk_ca_state >= TCP_CA_Loss) 2148 continue; 2149 return NULL; 2150 } 2151 2152 if (subflow->backup) { 2153 if (!backup) 2154 backup = ssk; 2155 continue; 2156 } 2157 2158 return ssk; 2159 } 2160 2161 return backup; 2162 } 2163 2164 static void mptcp_dispose_initial_subflow(struct mptcp_sock *msk) 2165 { 2166 if (msk->subflow) { 2167 iput(SOCK_INODE(msk->subflow)); 2168 msk->subflow = NULL; 2169 } 2170 } 2171 2172 /* subflow sockets can be either outgoing (connect) or incoming 2173 * (accept). 2174 * 2175 * Outgoing subflows use in-kernel sockets. 2176 * Incoming subflows do not have their own 'struct socket' allocated, 2177 * so we need to use tcp_close() after detaching them from the mptcp 2178 * parent socket. 2179 */ 2180 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2181 struct mptcp_subflow_context *subflow) 2182 { 2183 struct mptcp_sock *msk = mptcp_sk(sk); 2184 2185 list_del(&subflow->node); 2186 2187 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2188 2189 /* if we are invoked by the msk cleanup code, the subflow is 2190 * already orphaned 2191 */ 2192 if (ssk->sk_socket) 2193 sock_orphan(ssk); 2194 2195 subflow->disposable = 1; 2196 2197 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2198 * the ssk has been already destroyed, we just need to release the 2199 * reference owned by msk; 2200 */ 2201 if (!inet_csk(ssk)->icsk_ulp_ops) { 2202 kfree_rcu(subflow, rcu); 2203 } else { 2204 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2205 __tcp_close(ssk, 0); 2206 2207 /* close acquired an extra ref */ 2208 __sock_put(ssk); 2209 } 2210 release_sock(ssk); 2211 2212 sock_put(ssk); 2213 2214 if (ssk == msk->last_snd) 2215 msk->last_snd = NULL; 2216 2217 if (ssk == msk->ack_hint) 2218 msk->ack_hint = NULL; 2219 2220 if (ssk == msk->first) 2221 msk->first = NULL; 2222 2223 if (msk->subflow && ssk == msk->subflow->sk) 2224 mptcp_dispose_initial_subflow(msk); 2225 } 2226 2227 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2228 struct mptcp_subflow_context *subflow) 2229 { 2230 if (sk->sk_state == TCP_ESTABLISHED) 2231 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2232 __mptcp_close_ssk(sk, ssk, subflow); 2233 } 2234 2235 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2236 { 2237 return 0; 2238 } 2239 2240 static void __mptcp_close_subflow(struct mptcp_sock *msk) 2241 { 2242 struct mptcp_subflow_context *subflow, *tmp; 2243 2244 might_sleep(); 2245 2246 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { 2247 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2248 2249 if (inet_sk_state_load(ssk) != TCP_CLOSE) 2250 continue; 2251 2252 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2253 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2254 continue; 2255 2256 mptcp_close_ssk((struct sock *)msk, ssk, subflow); 2257 } 2258 } 2259 2260 static bool mptcp_check_close_timeout(const struct sock *sk) 2261 { 2262 s32 delta = tcp_jiffies32 - inet_csk(sk)->icsk_mtup.probe_timestamp; 2263 struct mptcp_subflow_context *subflow; 2264 2265 if (delta >= TCP_TIMEWAIT_LEN) 2266 return true; 2267 2268 /* if all subflows are in closed status don't bother with additional 2269 * timeout 2270 */ 2271 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2272 if (inet_sk_state_load(mptcp_subflow_tcp_sock(subflow)) != 2273 TCP_CLOSE) 2274 return false; 2275 } 2276 return true; 2277 } 2278 2279 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2280 { 2281 struct mptcp_subflow_context *subflow, *tmp; 2282 struct sock *sk = &msk->sk.icsk_inet.sk; 2283 2284 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2285 return; 2286 2287 mptcp_token_destroy(msk); 2288 2289 list_for_each_entry_safe(subflow, tmp, &msk->conn_list, node) { 2290 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2291 2292 lock_sock(tcp_sk); 2293 if (tcp_sk->sk_state != TCP_CLOSE) { 2294 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2295 tcp_set_state(tcp_sk, TCP_CLOSE); 2296 } 2297 release_sock(tcp_sk); 2298 } 2299 2300 inet_sk_state_store(sk, TCP_CLOSE); 2301 sk->sk_shutdown = SHUTDOWN_MASK; 2302 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2303 set_bit(MPTCP_DATA_READY, &msk->flags); 2304 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2305 2306 mptcp_close_wake_up(sk); 2307 } 2308 2309 static void __mptcp_retrans(struct sock *sk) 2310 { 2311 struct mptcp_sock *msk = mptcp_sk(sk); 2312 struct mptcp_sendmsg_info info = {}; 2313 struct mptcp_data_frag *dfrag; 2314 size_t copied = 0; 2315 struct sock *ssk; 2316 int ret; 2317 2318 mptcp_clean_una_wakeup(sk); 2319 dfrag = mptcp_rtx_head(sk); 2320 if (!dfrag) { 2321 if (mptcp_data_fin_enabled(msk)) { 2322 struct inet_connection_sock *icsk = inet_csk(sk); 2323 2324 icsk->icsk_retransmits++; 2325 mptcp_set_datafin_timeout(sk); 2326 mptcp_send_ack(msk); 2327 2328 goto reset_timer; 2329 } 2330 2331 return; 2332 } 2333 2334 ssk = mptcp_subflow_get_retrans(msk); 2335 if (!ssk) 2336 goto reset_timer; 2337 2338 lock_sock(ssk); 2339 2340 /* limit retransmission to the bytes already sent on some subflows */ 2341 info.sent = 0; 2342 info.limit = dfrag->already_sent; 2343 while (info.sent < dfrag->already_sent) { 2344 if (!mptcp_alloc_tx_skb(sk, ssk)) 2345 break; 2346 2347 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2348 if (ret <= 0) 2349 break; 2350 2351 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2352 copied += ret; 2353 info.sent += ret; 2354 } 2355 if (copied) 2356 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2357 info.size_goal); 2358 2359 mptcp_set_timeout(sk, ssk); 2360 release_sock(ssk); 2361 2362 reset_timer: 2363 if (!mptcp_timer_pending(sk)) 2364 mptcp_reset_timer(sk); 2365 } 2366 2367 static void mptcp_worker(struct work_struct *work) 2368 { 2369 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2370 struct sock *sk = &msk->sk.icsk_inet.sk; 2371 int state; 2372 2373 lock_sock(sk); 2374 state = sk->sk_state; 2375 if (unlikely(state == TCP_CLOSE)) 2376 goto unlock; 2377 2378 mptcp_check_data_fin_ack(sk); 2379 mptcp_flush_join_list(msk); 2380 2381 mptcp_check_fastclose(msk); 2382 2383 if (msk->pm.status) 2384 mptcp_pm_nl_work(msk); 2385 2386 if (test_and_clear_bit(MPTCP_WORK_EOF, &msk->flags)) 2387 mptcp_check_for_eof(msk); 2388 2389 __mptcp_check_send_data_fin(sk); 2390 mptcp_check_data_fin(sk); 2391 2392 /* There is no point in keeping around an orphaned sk timedout or 2393 * closed, but we need the msk around to reply to incoming DATA_FIN, 2394 * even if it is orphaned and in FIN_WAIT2 state 2395 */ 2396 if (sock_flag(sk, SOCK_DEAD) && 2397 (mptcp_check_close_timeout(sk) || sk->sk_state == TCP_CLOSE)) { 2398 inet_sk_state_store(sk, TCP_CLOSE); 2399 __mptcp_destroy_sock(sk); 2400 goto unlock; 2401 } 2402 2403 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2404 __mptcp_close_subflow(msk); 2405 2406 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2407 __mptcp_retrans(sk); 2408 2409 unlock: 2410 release_sock(sk); 2411 sock_put(sk); 2412 } 2413 2414 static int __mptcp_init_sock(struct sock *sk) 2415 { 2416 struct mptcp_sock *msk = mptcp_sk(sk); 2417 2418 spin_lock_init(&msk->join_list_lock); 2419 2420 INIT_LIST_HEAD(&msk->conn_list); 2421 INIT_LIST_HEAD(&msk->join_list); 2422 INIT_LIST_HEAD(&msk->rtx_queue); 2423 INIT_WORK(&msk->work, mptcp_worker); 2424 __skb_queue_head_init(&msk->receive_queue); 2425 __skb_queue_head_init(&msk->skb_tx_cache); 2426 msk->out_of_order_queue = RB_ROOT; 2427 msk->first_pending = NULL; 2428 msk->wmem_reserved = 0; 2429 msk->rmem_released = 0; 2430 msk->tx_pending_data = 0; 2431 msk->size_goal_cache = TCP_BASE_MSS; 2432 2433 msk->ack_hint = NULL; 2434 msk->first = NULL; 2435 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2436 2437 mptcp_pm_data_init(msk); 2438 2439 /* re-use the csk retrans timer for MPTCP-level retrans */ 2440 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2441 timer_setup(&sk->sk_timer, mptcp_timeout_timer, 0); 2442 2443 return 0; 2444 } 2445 2446 static int mptcp_init_sock(struct sock *sk) 2447 { 2448 struct inet_connection_sock *icsk = inet_csk(sk); 2449 struct net *net = sock_net(sk); 2450 int ret; 2451 2452 ret = __mptcp_init_sock(sk); 2453 if (ret) 2454 return ret; 2455 2456 if (!mptcp_is_enabled(net)) 2457 return -ENOPROTOOPT; 2458 2459 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2460 return -ENOMEM; 2461 2462 ret = __mptcp_socket_create(mptcp_sk(sk)); 2463 if (ret) 2464 return ret; 2465 2466 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2467 * propagate the correct value 2468 */ 2469 tcp_assign_congestion_control(sk); 2470 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2471 2472 /* no need to keep a reference to the ops, the name will suffice */ 2473 tcp_cleanup_congestion_control(sk); 2474 icsk->icsk_ca_ops = NULL; 2475 2476 sk_sockets_allocated_inc(sk); 2477 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 2478 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 2479 2480 return 0; 2481 } 2482 2483 static void __mptcp_clear_xmit(struct sock *sk) 2484 { 2485 struct mptcp_sock *msk = mptcp_sk(sk); 2486 struct mptcp_data_frag *dtmp, *dfrag; 2487 struct sk_buff *skb; 2488 2489 WRITE_ONCE(msk->first_pending, NULL); 2490 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2491 dfrag_clear(sk, dfrag); 2492 while ((skb = __skb_dequeue(&msk->skb_tx_cache)) != NULL) { 2493 sk->sk_forward_alloc += skb->truesize; 2494 kfree_skb(skb); 2495 } 2496 } 2497 2498 static void mptcp_cancel_work(struct sock *sk) 2499 { 2500 struct mptcp_sock *msk = mptcp_sk(sk); 2501 2502 if (cancel_work_sync(&msk->work)) 2503 __sock_put(sk); 2504 } 2505 2506 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2507 { 2508 lock_sock(ssk); 2509 2510 switch (ssk->sk_state) { 2511 case TCP_LISTEN: 2512 if (!(how & RCV_SHUTDOWN)) 2513 break; 2514 fallthrough; 2515 case TCP_SYN_SENT: 2516 tcp_disconnect(ssk, O_NONBLOCK); 2517 break; 2518 default: 2519 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2520 pr_debug("Fallback"); 2521 ssk->sk_shutdown |= how; 2522 tcp_shutdown(ssk, how); 2523 } else { 2524 pr_debug("Sending DATA_FIN on subflow %p", ssk); 2525 mptcp_set_timeout(sk, ssk); 2526 tcp_send_ack(ssk); 2527 if (!mptcp_timer_pending(sk)) 2528 mptcp_reset_timer(sk); 2529 } 2530 break; 2531 } 2532 2533 release_sock(ssk); 2534 } 2535 2536 static const unsigned char new_state[16] = { 2537 /* current state: new state: action: */ 2538 [0 /* (Invalid) */] = TCP_CLOSE, 2539 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2540 [TCP_SYN_SENT] = TCP_CLOSE, 2541 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2542 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2543 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2544 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2545 [TCP_CLOSE] = TCP_CLOSE, 2546 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2547 [TCP_LAST_ACK] = TCP_LAST_ACK, 2548 [TCP_LISTEN] = TCP_CLOSE, 2549 [TCP_CLOSING] = TCP_CLOSING, 2550 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2551 }; 2552 2553 static int mptcp_close_state(struct sock *sk) 2554 { 2555 int next = (int)new_state[sk->sk_state]; 2556 int ns = next & TCP_STATE_MASK; 2557 2558 inet_sk_state_store(sk, ns); 2559 2560 return next & TCP_ACTION_FIN; 2561 } 2562 2563 static void __mptcp_check_send_data_fin(struct sock *sk) 2564 { 2565 struct mptcp_subflow_context *subflow; 2566 struct mptcp_sock *msk = mptcp_sk(sk); 2567 2568 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu", 2569 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2570 msk->snd_nxt, msk->write_seq); 2571 2572 /* we still need to enqueue subflows or not really shutting down, 2573 * skip this 2574 */ 2575 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2576 mptcp_send_head(sk)) 2577 return; 2578 2579 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2580 2581 /* fallback socket will not get data_fin/ack, can move to the next 2582 * state now 2583 */ 2584 if (__mptcp_check_fallback(msk)) { 2585 if ((1 << sk->sk_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) { 2586 inet_sk_state_store(sk, TCP_CLOSE); 2587 mptcp_close_wake_up(sk); 2588 } else if (sk->sk_state == TCP_FIN_WAIT1) { 2589 inet_sk_state_store(sk, TCP_FIN_WAIT2); 2590 } 2591 } 2592 2593 mptcp_flush_join_list(msk); 2594 mptcp_for_each_subflow(msk, subflow) { 2595 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2596 2597 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2598 } 2599 } 2600 2601 static void __mptcp_wr_shutdown(struct sock *sk) 2602 { 2603 struct mptcp_sock *msk = mptcp_sk(sk); 2604 2605 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d", 2606 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2607 !!mptcp_send_head(sk)); 2608 2609 /* will be ignored by fallback sockets */ 2610 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2611 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2612 2613 __mptcp_check_send_data_fin(sk); 2614 } 2615 2616 static void __mptcp_destroy_sock(struct sock *sk) 2617 { 2618 struct mptcp_subflow_context *subflow, *tmp; 2619 struct mptcp_sock *msk = mptcp_sk(sk); 2620 LIST_HEAD(conn_list); 2621 2622 pr_debug("msk=%p", msk); 2623 2624 might_sleep(); 2625 2626 /* be sure to always acquire the join list lock, to sync vs 2627 * mptcp_finish_join(). 2628 */ 2629 spin_lock_bh(&msk->join_list_lock); 2630 list_splice_tail_init(&msk->join_list, &msk->conn_list); 2631 spin_unlock_bh(&msk->join_list_lock); 2632 list_splice_init(&msk->conn_list, &conn_list); 2633 2634 sk_stop_timer(sk, &msk->sk.icsk_retransmit_timer); 2635 sk_stop_timer(sk, &sk->sk_timer); 2636 msk->pm.status = 0; 2637 2638 list_for_each_entry_safe(subflow, tmp, &conn_list, node) { 2639 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2640 __mptcp_close_ssk(sk, ssk, subflow); 2641 } 2642 2643 sk->sk_prot->destroy(sk); 2644 2645 WARN_ON_ONCE(msk->wmem_reserved); 2646 WARN_ON_ONCE(msk->rmem_released); 2647 sk_stream_kill_queues(sk); 2648 xfrm_sk_free_policy(sk); 2649 2650 sk_refcnt_debug_release(sk); 2651 mptcp_dispose_initial_subflow(msk); 2652 sock_put(sk); 2653 } 2654 2655 static void mptcp_close(struct sock *sk, long timeout) 2656 { 2657 struct mptcp_subflow_context *subflow; 2658 bool do_cancel_work = false; 2659 2660 lock_sock(sk); 2661 sk->sk_shutdown = SHUTDOWN_MASK; 2662 2663 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 2664 inet_sk_state_store(sk, TCP_CLOSE); 2665 goto cleanup; 2666 } 2667 2668 if (mptcp_close_state(sk)) 2669 __mptcp_wr_shutdown(sk); 2670 2671 sk_stream_wait_close(sk, timeout); 2672 2673 cleanup: 2674 /* orphan all the subflows */ 2675 inet_csk(sk)->icsk_mtup.probe_timestamp = tcp_jiffies32; 2676 mptcp_for_each_subflow(mptcp_sk(sk), subflow) { 2677 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2678 bool slow = lock_sock_fast(ssk); 2679 2680 sock_orphan(ssk); 2681 unlock_sock_fast(ssk, slow); 2682 } 2683 sock_orphan(sk); 2684 2685 sock_hold(sk); 2686 pr_debug("msk=%p state=%d", sk, sk->sk_state); 2687 if (sk->sk_state == TCP_CLOSE) { 2688 __mptcp_destroy_sock(sk); 2689 do_cancel_work = true; 2690 } else { 2691 sk_reset_timer(sk, &sk->sk_timer, jiffies + TCP_TIMEWAIT_LEN); 2692 } 2693 release_sock(sk); 2694 if (do_cancel_work) 2695 mptcp_cancel_work(sk); 2696 2697 if (mptcp_sk(sk)->token) 2698 mptcp_event(MPTCP_EVENT_CLOSED, mptcp_sk(sk), NULL, GFP_KERNEL); 2699 2700 sock_put(sk); 2701 } 2702 2703 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 2704 { 2705 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2706 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 2707 struct ipv6_pinfo *msk6 = inet6_sk(msk); 2708 2709 msk->sk_v6_daddr = ssk->sk_v6_daddr; 2710 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 2711 2712 if (msk6 && ssk6) { 2713 msk6->saddr = ssk6->saddr; 2714 msk6->flow_label = ssk6->flow_label; 2715 } 2716 #endif 2717 2718 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 2719 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 2720 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 2721 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 2722 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 2723 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 2724 } 2725 2726 static int mptcp_disconnect(struct sock *sk, int flags) 2727 { 2728 struct mptcp_subflow_context *subflow; 2729 struct mptcp_sock *msk = mptcp_sk(sk); 2730 2731 mptcp_do_flush_join_list(msk); 2732 2733 mptcp_for_each_subflow(msk, subflow) { 2734 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2735 2736 lock_sock(ssk); 2737 tcp_disconnect(ssk, flags); 2738 release_sock(ssk); 2739 } 2740 return 0; 2741 } 2742 2743 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2744 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 2745 { 2746 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 2747 2748 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 2749 } 2750 #endif 2751 2752 struct sock *mptcp_sk_clone(const struct sock *sk, 2753 const struct mptcp_options_received *mp_opt, 2754 struct request_sock *req) 2755 { 2756 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 2757 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 2758 struct mptcp_sock *msk; 2759 u64 ack_seq; 2760 2761 if (!nsk) 2762 return NULL; 2763 2764 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 2765 if (nsk->sk_family == AF_INET6) 2766 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 2767 #endif 2768 2769 __mptcp_init_sock(nsk); 2770 2771 msk = mptcp_sk(nsk); 2772 msk->local_key = subflow_req->local_key; 2773 msk->token = subflow_req->token; 2774 msk->subflow = NULL; 2775 WRITE_ONCE(msk->fully_established, false); 2776 2777 msk->write_seq = subflow_req->idsn + 1; 2778 msk->snd_nxt = msk->write_seq; 2779 msk->snd_una = msk->write_seq; 2780 msk->wnd_end = msk->snd_nxt + req->rsk_rcv_wnd; 2781 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 2782 2783 if (mp_opt->mp_capable) { 2784 msk->can_ack = true; 2785 msk->remote_key = mp_opt->sndr_key; 2786 mptcp_crypto_key_sha(msk->remote_key, NULL, &ack_seq); 2787 ack_seq++; 2788 WRITE_ONCE(msk->ack_seq, ack_seq); 2789 WRITE_ONCE(msk->rcv_wnd_sent, ack_seq); 2790 } 2791 2792 sock_reset_flag(nsk, SOCK_RCU_FREE); 2793 /* will be fully established after successful MPC subflow creation */ 2794 inet_sk_state_store(nsk, TCP_SYN_RECV); 2795 2796 security_inet_csk_clone(nsk, req); 2797 bh_unlock_sock(nsk); 2798 2799 /* keep a single reference */ 2800 __sock_put(nsk); 2801 return nsk; 2802 } 2803 2804 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 2805 { 2806 const struct tcp_sock *tp = tcp_sk(ssk); 2807 2808 msk->rcvq_space.copied = 0; 2809 msk->rcvq_space.rtt_us = 0; 2810 2811 msk->rcvq_space.time = tp->tcp_mstamp; 2812 2813 /* initial rcv_space offering made to peer */ 2814 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 2815 TCP_INIT_CWND * tp->advmss); 2816 if (msk->rcvq_space.space == 0) 2817 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 2818 2819 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 2820 } 2821 2822 static struct sock *mptcp_accept(struct sock *sk, int flags, int *err, 2823 bool kern) 2824 { 2825 struct mptcp_sock *msk = mptcp_sk(sk); 2826 struct socket *listener; 2827 struct sock *newsk; 2828 2829 listener = __mptcp_nmpc_socket(msk); 2830 if (WARN_ON_ONCE(!listener)) { 2831 *err = -EINVAL; 2832 return NULL; 2833 } 2834 2835 pr_debug("msk=%p, listener=%p", msk, mptcp_subflow_ctx(listener->sk)); 2836 newsk = inet_csk_accept(listener->sk, flags, err, kern); 2837 if (!newsk) 2838 return NULL; 2839 2840 pr_debug("msk=%p, subflow is mptcp=%d", msk, sk_is_mptcp(newsk)); 2841 if (sk_is_mptcp(newsk)) { 2842 struct mptcp_subflow_context *subflow; 2843 struct sock *new_mptcp_sock; 2844 2845 subflow = mptcp_subflow_ctx(newsk); 2846 new_mptcp_sock = subflow->conn; 2847 2848 /* is_mptcp should be false if subflow->conn is missing, see 2849 * subflow_syn_recv_sock() 2850 */ 2851 if (WARN_ON_ONCE(!new_mptcp_sock)) { 2852 tcp_sk(newsk)->is_mptcp = 0; 2853 return newsk; 2854 } 2855 2856 /* acquire the 2nd reference for the owning socket */ 2857 sock_hold(new_mptcp_sock); 2858 newsk = new_mptcp_sock; 2859 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 2860 } else { 2861 MPTCP_INC_STATS(sock_net(sk), 2862 MPTCP_MIB_MPCAPABLEPASSIVEFALLBACK); 2863 } 2864 2865 return newsk; 2866 } 2867 2868 void mptcp_destroy_common(struct mptcp_sock *msk) 2869 { 2870 struct sock *sk = (struct sock *)msk; 2871 2872 __mptcp_clear_xmit(sk); 2873 2874 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 2875 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 2876 2877 skb_rbtree_purge(&msk->out_of_order_queue); 2878 mptcp_token_destroy(msk); 2879 mptcp_pm_free_anno_list(msk); 2880 } 2881 2882 static void mptcp_destroy(struct sock *sk) 2883 { 2884 struct mptcp_sock *msk = mptcp_sk(sk); 2885 2886 mptcp_destroy_common(msk); 2887 sk_sockets_allocated_dec(sk); 2888 } 2889 2890 void __mptcp_data_acked(struct sock *sk) 2891 { 2892 if (!sock_owned_by_user(sk)) 2893 __mptcp_clean_una(sk); 2894 else 2895 set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags); 2896 2897 if (mptcp_pending_data_fin_ack(sk)) 2898 mptcp_schedule_work(sk); 2899 } 2900 2901 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 2902 { 2903 if (!mptcp_send_head(sk)) 2904 return; 2905 2906 if (!sock_owned_by_user(sk)) { 2907 struct sock *xmit_ssk = mptcp_subflow_get_send(mptcp_sk(sk)); 2908 2909 if (xmit_ssk == ssk) 2910 __mptcp_subflow_push_pending(sk, ssk); 2911 else if (xmit_ssk) 2912 mptcp_subflow_delegate(mptcp_subflow_ctx(xmit_ssk)); 2913 } else { 2914 set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags); 2915 } 2916 } 2917 2918 /* processes deferred events and flush wmem */ 2919 static void mptcp_release_cb(struct sock *sk) 2920 { 2921 for (;;) { 2922 unsigned long flags = 0; 2923 2924 if (test_and_clear_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags)) 2925 flags |= BIT(MPTCP_PUSH_PENDING); 2926 if (test_and_clear_bit(MPTCP_RETRANSMIT, &mptcp_sk(sk)->flags)) 2927 flags |= BIT(MPTCP_RETRANSMIT); 2928 if (!flags) 2929 break; 2930 2931 /* the following actions acquire the subflow socket lock 2932 * 2933 * 1) can't be invoked in atomic scope 2934 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 2935 * datapath acquires the msk socket spinlock while helding 2936 * the subflow socket lock 2937 */ 2938 2939 spin_unlock_bh(&sk->sk_lock.slock); 2940 if (flags & BIT(MPTCP_PUSH_PENDING)) 2941 __mptcp_push_pending(sk, 0); 2942 if (flags & BIT(MPTCP_RETRANSMIT)) 2943 __mptcp_retrans(sk); 2944 2945 cond_resched(); 2946 spin_lock_bh(&sk->sk_lock.slock); 2947 } 2948 2949 if (test_and_clear_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->flags)) 2950 __mptcp_clean_una_wakeup(sk); 2951 if (test_and_clear_bit(MPTCP_ERROR_REPORT, &mptcp_sk(sk)->flags)) 2952 __mptcp_error_report(sk); 2953 2954 /* push_pending may touch wmem_reserved, ensure we do the cleanup 2955 * later 2956 */ 2957 __mptcp_update_wmem(sk); 2958 __mptcp_update_rmem(sk); 2959 } 2960 2961 void mptcp_subflow_process_delegated(struct sock *ssk) 2962 { 2963 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 2964 struct sock *sk = subflow->conn; 2965 2966 mptcp_data_lock(sk); 2967 if (!sock_owned_by_user(sk)) 2968 __mptcp_subflow_push_pending(sk, ssk); 2969 else 2970 set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->flags); 2971 mptcp_data_unlock(sk); 2972 mptcp_subflow_delegated_done(subflow); 2973 } 2974 2975 static int mptcp_hash(struct sock *sk) 2976 { 2977 /* should never be called, 2978 * we hash the TCP subflows not the master socket 2979 */ 2980 WARN_ON_ONCE(1); 2981 return 0; 2982 } 2983 2984 static void mptcp_unhash(struct sock *sk) 2985 { 2986 /* called from sk_common_release(), but nothing to do here */ 2987 } 2988 2989 static int mptcp_get_port(struct sock *sk, unsigned short snum) 2990 { 2991 struct mptcp_sock *msk = mptcp_sk(sk); 2992 struct socket *ssock; 2993 2994 ssock = __mptcp_nmpc_socket(msk); 2995 pr_debug("msk=%p, subflow=%p", msk, ssock); 2996 if (WARN_ON_ONCE(!ssock)) 2997 return -EINVAL; 2998 2999 return inet_csk_get_port(ssock->sk, snum); 3000 } 3001 3002 void mptcp_finish_connect(struct sock *ssk) 3003 { 3004 struct mptcp_subflow_context *subflow; 3005 struct mptcp_sock *msk; 3006 struct sock *sk; 3007 u64 ack_seq; 3008 3009 subflow = mptcp_subflow_ctx(ssk); 3010 sk = subflow->conn; 3011 msk = mptcp_sk(sk); 3012 3013 pr_debug("msk=%p, token=%u", sk, subflow->token); 3014 3015 mptcp_crypto_key_sha(subflow->remote_key, NULL, &ack_seq); 3016 ack_seq++; 3017 subflow->map_seq = ack_seq; 3018 subflow->map_subflow_seq = 1; 3019 3020 /* the socket is not connected yet, no msk/subflow ops can access/race 3021 * accessing the field below 3022 */ 3023 WRITE_ONCE(msk->remote_key, subflow->remote_key); 3024 WRITE_ONCE(msk->local_key, subflow->local_key); 3025 WRITE_ONCE(msk->write_seq, subflow->idsn + 1); 3026 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3027 WRITE_ONCE(msk->ack_seq, ack_seq); 3028 WRITE_ONCE(msk->rcv_wnd_sent, ack_seq); 3029 WRITE_ONCE(msk->can_ack, 1); 3030 WRITE_ONCE(msk->snd_una, msk->write_seq); 3031 3032 mptcp_pm_new_connection(msk, ssk, 0); 3033 3034 mptcp_rcv_space_init(msk, ssk); 3035 } 3036 3037 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3038 { 3039 write_lock_bh(&sk->sk_callback_lock); 3040 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3041 sk_set_socket(sk, parent); 3042 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3043 write_unlock_bh(&sk->sk_callback_lock); 3044 } 3045 3046 bool mptcp_finish_join(struct sock *ssk) 3047 { 3048 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3049 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3050 struct sock *parent = (void *)msk; 3051 struct socket *parent_sock; 3052 bool ret; 3053 3054 pr_debug("msk=%p, subflow=%p", msk, subflow); 3055 3056 /* mptcp socket already closing? */ 3057 if (!mptcp_is_fully_established(parent)) { 3058 subflow->reset_reason = MPTCP_RST_EMPTCP; 3059 return false; 3060 } 3061 3062 if (!msk->pm.server_side) 3063 goto out; 3064 3065 if (!mptcp_pm_allow_new_subflow(msk)) { 3066 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3067 return false; 3068 } 3069 3070 /* active connections are already on conn_list, and we can't acquire 3071 * msk lock here. 3072 * use the join list lock as synchronization point and double-check 3073 * msk status to avoid racing with __mptcp_destroy_sock() 3074 */ 3075 spin_lock_bh(&msk->join_list_lock); 3076 ret = inet_sk_state_load(parent) == TCP_ESTABLISHED; 3077 if (ret && !WARN_ON_ONCE(!list_empty(&subflow->node))) { 3078 list_add_tail(&subflow->node, &msk->join_list); 3079 sock_hold(ssk); 3080 } 3081 spin_unlock_bh(&msk->join_list_lock); 3082 if (!ret) { 3083 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3084 return false; 3085 } 3086 3087 /* attach to msk socket only after we are sure he will deal with us 3088 * at close time 3089 */ 3090 parent_sock = READ_ONCE(parent->sk_socket); 3091 if (parent_sock && !ssk->sk_socket) 3092 mptcp_sock_graft(ssk, parent_sock); 3093 subflow->map_seq = READ_ONCE(msk->ack_seq); 3094 out: 3095 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 3096 return true; 3097 } 3098 3099 static void mptcp_shutdown(struct sock *sk, int how) 3100 { 3101 pr_debug("sk=%p, how=%d", sk, how); 3102 3103 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3104 __mptcp_wr_shutdown(sk); 3105 } 3106 3107 static struct proto mptcp_prot = { 3108 .name = "MPTCP", 3109 .owner = THIS_MODULE, 3110 .init = mptcp_init_sock, 3111 .disconnect = mptcp_disconnect, 3112 .close = mptcp_close, 3113 .accept = mptcp_accept, 3114 .setsockopt = mptcp_setsockopt, 3115 .getsockopt = mptcp_getsockopt, 3116 .shutdown = mptcp_shutdown, 3117 .destroy = mptcp_destroy, 3118 .sendmsg = mptcp_sendmsg, 3119 .recvmsg = mptcp_recvmsg, 3120 .release_cb = mptcp_release_cb, 3121 .hash = mptcp_hash, 3122 .unhash = mptcp_unhash, 3123 .get_port = mptcp_get_port, 3124 .sockets_allocated = &mptcp_sockets_allocated, 3125 .memory_allocated = &tcp_memory_allocated, 3126 .memory_pressure = &tcp_memory_pressure, 3127 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3128 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3129 .sysctl_mem = sysctl_tcp_mem, 3130 .obj_size = sizeof(struct mptcp_sock), 3131 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3132 .no_autobind = true, 3133 }; 3134 3135 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3136 { 3137 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3138 struct socket *ssock; 3139 int err; 3140 3141 lock_sock(sock->sk); 3142 ssock = __mptcp_nmpc_socket(msk); 3143 if (!ssock) { 3144 err = -EINVAL; 3145 goto unlock; 3146 } 3147 3148 err = ssock->ops->bind(ssock, uaddr, addr_len); 3149 if (!err) 3150 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3151 3152 unlock: 3153 release_sock(sock->sk); 3154 return err; 3155 } 3156 3157 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3158 struct mptcp_subflow_context *subflow) 3159 { 3160 subflow->request_mptcp = 0; 3161 __mptcp_do_fallback(msk); 3162 } 3163 3164 static int mptcp_stream_connect(struct socket *sock, struct sockaddr *uaddr, 3165 int addr_len, int flags) 3166 { 3167 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3168 struct mptcp_subflow_context *subflow; 3169 struct socket *ssock; 3170 int err; 3171 3172 lock_sock(sock->sk); 3173 if (sock->state != SS_UNCONNECTED && msk->subflow) { 3174 /* pending connection or invalid state, let existing subflow 3175 * cope with that 3176 */ 3177 ssock = msk->subflow; 3178 goto do_connect; 3179 } 3180 3181 ssock = __mptcp_nmpc_socket(msk); 3182 if (!ssock) { 3183 err = -EINVAL; 3184 goto unlock; 3185 } 3186 3187 mptcp_token_destroy(msk); 3188 inet_sk_state_store(sock->sk, TCP_SYN_SENT); 3189 subflow = mptcp_subflow_ctx(ssock->sk); 3190 #ifdef CONFIG_TCP_MD5SIG 3191 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3192 * TCP option space. 3193 */ 3194 if (rcu_access_pointer(tcp_sk(ssock->sk)->md5sig_info)) 3195 mptcp_subflow_early_fallback(msk, subflow); 3196 #endif 3197 if (subflow->request_mptcp && mptcp_token_new_connect(ssock->sk)) { 3198 MPTCP_INC_STATS(sock_net(ssock->sk), MPTCP_MIB_TOKENFALLBACKINIT); 3199 mptcp_subflow_early_fallback(msk, subflow); 3200 } 3201 if (likely(!__mptcp_check_fallback(msk))) 3202 MPTCP_INC_STATS(sock_net(sock->sk), MPTCP_MIB_MPCAPABLEACTIVE); 3203 3204 do_connect: 3205 err = ssock->ops->connect(ssock, uaddr, addr_len, flags); 3206 sock->state = ssock->state; 3207 3208 /* on successful connect, the msk state will be moved to established by 3209 * subflow_finish_connect() 3210 */ 3211 if (!err || err == -EINPROGRESS) 3212 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3213 else 3214 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 3215 3216 unlock: 3217 release_sock(sock->sk); 3218 return err; 3219 } 3220 3221 static int mptcp_listen(struct socket *sock, int backlog) 3222 { 3223 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3224 struct socket *ssock; 3225 int err; 3226 3227 pr_debug("msk=%p", msk); 3228 3229 lock_sock(sock->sk); 3230 ssock = __mptcp_nmpc_socket(msk); 3231 if (!ssock) { 3232 err = -EINVAL; 3233 goto unlock; 3234 } 3235 3236 mptcp_token_destroy(msk); 3237 inet_sk_state_store(sock->sk, TCP_LISTEN); 3238 sock_set_flag(sock->sk, SOCK_RCU_FREE); 3239 3240 err = ssock->ops->listen(ssock, backlog); 3241 inet_sk_state_store(sock->sk, inet_sk_state_load(ssock->sk)); 3242 if (!err) 3243 mptcp_copy_inaddrs(sock->sk, ssock->sk); 3244 3245 unlock: 3246 release_sock(sock->sk); 3247 return err; 3248 } 3249 3250 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3251 int flags, bool kern) 3252 { 3253 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3254 struct socket *ssock; 3255 int err; 3256 3257 pr_debug("msk=%p", msk); 3258 3259 lock_sock(sock->sk); 3260 if (sock->sk->sk_state != TCP_LISTEN) 3261 goto unlock_fail; 3262 3263 ssock = __mptcp_nmpc_socket(msk); 3264 if (!ssock) 3265 goto unlock_fail; 3266 3267 clear_bit(MPTCP_DATA_READY, &msk->flags); 3268 sock_hold(ssock->sk); 3269 release_sock(sock->sk); 3270 3271 err = ssock->ops->accept(sock, newsock, flags, kern); 3272 if (err == 0 && !mptcp_is_tcpsk(newsock->sk)) { 3273 struct mptcp_sock *msk = mptcp_sk(newsock->sk); 3274 struct mptcp_subflow_context *subflow; 3275 struct sock *newsk = newsock->sk; 3276 3277 lock_sock(newsk); 3278 3279 /* PM/worker can now acquire the first subflow socket 3280 * lock without racing with listener queue cleanup, 3281 * we can notify it, if needed. 3282 * 3283 * Even if remote has reset the initial subflow by now 3284 * the refcnt is still at least one. 3285 */ 3286 subflow = mptcp_subflow_ctx(msk->first); 3287 list_add(&subflow->node, &msk->conn_list); 3288 sock_hold(msk->first); 3289 if (mptcp_is_fully_established(newsk)) 3290 mptcp_pm_fully_established(msk, msk->first, GFP_KERNEL); 3291 3292 mptcp_copy_inaddrs(newsk, msk->first); 3293 mptcp_rcv_space_init(msk, msk->first); 3294 mptcp_propagate_sndbuf(newsk, msk->first); 3295 3296 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3297 * This is needed so NOSPACE flag can be set from tcp stack. 3298 */ 3299 mptcp_flush_join_list(msk); 3300 mptcp_for_each_subflow(msk, subflow) { 3301 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3302 3303 if (!ssk->sk_socket) 3304 mptcp_sock_graft(ssk, newsock); 3305 } 3306 release_sock(newsk); 3307 } 3308 3309 if (inet_csk_listen_poll(ssock->sk)) 3310 set_bit(MPTCP_DATA_READY, &msk->flags); 3311 sock_put(ssock->sk); 3312 return err; 3313 3314 unlock_fail: 3315 release_sock(sock->sk); 3316 return -EINVAL; 3317 } 3318 3319 static __poll_t mptcp_check_readable(struct mptcp_sock *msk) 3320 { 3321 return test_bit(MPTCP_DATA_READY, &msk->flags) ? EPOLLIN | EPOLLRDNORM : 3322 0; 3323 } 3324 3325 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3326 { 3327 struct sock *sk = (struct sock *)msk; 3328 3329 if (unlikely(sk->sk_shutdown & SEND_SHUTDOWN)) 3330 return EPOLLOUT | EPOLLWRNORM; 3331 3332 if (sk_stream_is_writeable(sk)) 3333 return EPOLLOUT | EPOLLWRNORM; 3334 3335 mptcp_set_nospace(sk); 3336 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3337 if (sk_stream_is_writeable(sk)) 3338 return EPOLLOUT | EPOLLWRNORM; 3339 3340 return 0; 3341 } 3342 3343 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3344 struct poll_table_struct *wait) 3345 { 3346 struct sock *sk = sock->sk; 3347 struct mptcp_sock *msk; 3348 __poll_t mask = 0; 3349 int state; 3350 3351 msk = mptcp_sk(sk); 3352 sock_poll_wait(file, sock, wait); 3353 3354 state = inet_sk_state_load(sk); 3355 pr_debug("msk=%p state=%d flags=%lx", msk, state, msk->flags); 3356 if (state == TCP_LISTEN) 3357 return mptcp_check_readable(msk); 3358 3359 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3360 mask |= mptcp_check_readable(msk); 3361 mask |= mptcp_check_writeable(msk); 3362 } 3363 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3364 mask |= EPOLLHUP; 3365 if (sk->sk_shutdown & RCV_SHUTDOWN) 3366 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3367 3368 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 3369 smp_rmb(); 3370 if (sk->sk_err) 3371 mask |= EPOLLERR; 3372 3373 return mask; 3374 } 3375 3376 static const struct proto_ops mptcp_stream_ops = { 3377 .family = PF_INET, 3378 .owner = THIS_MODULE, 3379 .release = inet_release, 3380 .bind = mptcp_bind, 3381 .connect = mptcp_stream_connect, 3382 .socketpair = sock_no_socketpair, 3383 .accept = mptcp_stream_accept, 3384 .getname = inet_getname, 3385 .poll = mptcp_poll, 3386 .ioctl = inet_ioctl, 3387 .gettstamp = sock_gettstamp, 3388 .listen = mptcp_listen, 3389 .shutdown = inet_shutdown, 3390 .setsockopt = sock_common_setsockopt, 3391 .getsockopt = sock_common_getsockopt, 3392 .sendmsg = inet_sendmsg, 3393 .recvmsg = inet_recvmsg, 3394 .mmap = sock_no_mmap, 3395 .sendpage = inet_sendpage, 3396 }; 3397 3398 static struct inet_protosw mptcp_protosw = { 3399 .type = SOCK_STREAM, 3400 .protocol = IPPROTO_MPTCP, 3401 .prot = &mptcp_prot, 3402 .ops = &mptcp_stream_ops, 3403 .flags = INET_PROTOSW_ICSK, 3404 }; 3405 3406 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 3407 { 3408 struct mptcp_delegated_action *delegated; 3409 struct mptcp_subflow_context *subflow; 3410 int work_done = 0; 3411 3412 delegated = container_of(napi, struct mptcp_delegated_action, napi); 3413 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 3414 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3415 3416 bh_lock_sock_nested(ssk); 3417 if (!sock_owned_by_user(ssk) && 3418 mptcp_subflow_has_delegated_action(subflow)) 3419 mptcp_subflow_process_delegated(ssk); 3420 /* ... elsewhere tcp_release_cb_override already processed 3421 * the action or will do at next release_sock(). 3422 * In both case must dequeue the subflow here - on the same 3423 * CPU that scheduled it. 3424 */ 3425 bh_unlock_sock(ssk); 3426 sock_put(ssk); 3427 3428 if (++work_done == budget) 3429 return budget; 3430 } 3431 3432 /* always provide a 0 'work_done' argument, so that napi_complete_done 3433 * will not try accessing the NULL napi->dev ptr 3434 */ 3435 napi_complete_done(napi, 0); 3436 return work_done; 3437 } 3438 3439 void __init mptcp_proto_init(void) 3440 { 3441 struct mptcp_delegated_action *delegated; 3442 int cpu; 3443 3444 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 3445 3446 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 3447 panic("Failed to allocate MPTCP pcpu counter\n"); 3448 3449 init_dummy_netdev(&mptcp_napi_dev); 3450 for_each_possible_cpu(cpu) { 3451 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 3452 INIT_LIST_HEAD(&delegated->head); 3453 netif_tx_napi_add(&mptcp_napi_dev, &delegated->napi, mptcp_napi_poll, 3454 NAPI_POLL_WEIGHT); 3455 napi_enable(&delegated->napi); 3456 } 3457 3458 mptcp_subflow_init(); 3459 mptcp_pm_init(); 3460 mptcp_token_init(); 3461 3462 if (proto_register(&mptcp_prot, 1) != 0) 3463 panic("Failed to register MPTCP proto.\n"); 3464 3465 inet_register_protosw(&mptcp_protosw); 3466 3467 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 3468 } 3469 3470 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3471 static const struct proto_ops mptcp_v6_stream_ops = { 3472 .family = PF_INET6, 3473 .owner = THIS_MODULE, 3474 .release = inet6_release, 3475 .bind = mptcp_bind, 3476 .connect = mptcp_stream_connect, 3477 .socketpair = sock_no_socketpair, 3478 .accept = mptcp_stream_accept, 3479 .getname = inet6_getname, 3480 .poll = mptcp_poll, 3481 .ioctl = inet6_ioctl, 3482 .gettstamp = sock_gettstamp, 3483 .listen = mptcp_listen, 3484 .shutdown = inet_shutdown, 3485 .setsockopt = sock_common_setsockopt, 3486 .getsockopt = sock_common_getsockopt, 3487 .sendmsg = inet6_sendmsg, 3488 .recvmsg = inet6_recvmsg, 3489 .mmap = sock_no_mmap, 3490 .sendpage = inet_sendpage, 3491 #ifdef CONFIG_COMPAT 3492 .compat_ioctl = inet6_compat_ioctl, 3493 #endif 3494 }; 3495 3496 static struct proto mptcp_v6_prot; 3497 3498 static void mptcp_v6_destroy(struct sock *sk) 3499 { 3500 mptcp_destroy(sk); 3501 inet6_destroy_sock(sk); 3502 } 3503 3504 static struct inet_protosw mptcp_v6_protosw = { 3505 .type = SOCK_STREAM, 3506 .protocol = IPPROTO_MPTCP, 3507 .prot = &mptcp_v6_prot, 3508 .ops = &mptcp_v6_stream_ops, 3509 .flags = INET_PROTOSW_ICSK, 3510 }; 3511 3512 int __init mptcp_proto_v6_init(void) 3513 { 3514 int err; 3515 3516 mptcp_v6_prot = mptcp_prot; 3517 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 3518 mptcp_v6_prot.slab = NULL; 3519 mptcp_v6_prot.destroy = mptcp_v6_destroy; 3520 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 3521 3522 err = proto_register(&mptcp_v6_prot, 1); 3523 if (err) 3524 return err; 3525 3526 err = inet6_register_protosw(&mptcp_v6_protosw); 3527 if (err) 3528 proto_unregister(&mptcp_v6_prot); 3529 3530 return err; 3531 } 3532 #endif 3533