1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/sock.h> 15 #include <net/inet_common.h> 16 #include <net/inet_hashtables.h> 17 #include <net/protocol.h> 18 #include <net/tcp.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/xfrm.h> 25 #include <asm/ioctls.h> 26 #include "protocol.h" 27 #include "mib.h" 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/mptcp.h> 31 32 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 33 struct mptcp6_sock { 34 struct mptcp_sock msk; 35 struct ipv6_pinfo np; 36 }; 37 #endif 38 39 enum { 40 MPTCP_CMSG_TS = BIT(0), 41 MPTCP_CMSG_INQ = BIT(1), 42 }; 43 44 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 45 46 static void __mptcp_destroy_sock(struct sock *sk); 47 static void mptcp_check_send_data_fin(struct sock *sk); 48 49 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions); 50 static struct net_device mptcp_napi_dev; 51 52 /* Returns end sequence number of the receiver's advertised window */ 53 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 54 { 55 return READ_ONCE(msk->wnd_end); 56 } 57 58 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 59 { 60 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 61 if (sk->sk_prot == &tcpv6_prot) 62 return &inet6_stream_ops; 63 #endif 64 WARN_ON_ONCE(sk->sk_prot != &tcp_prot); 65 return &inet_stream_ops; 66 } 67 68 static int __mptcp_socket_create(struct mptcp_sock *msk) 69 { 70 struct mptcp_subflow_context *subflow; 71 struct sock *sk = (struct sock *)msk; 72 struct socket *ssock; 73 int err; 74 75 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 76 if (err) 77 return err; 78 79 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 80 WRITE_ONCE(msk->first, ssock->sk); 81 subflow = mptcp_subflow_ctx(ssock->sk); 82 list_add(&subflow->node, &msk->conn_list); 83 sock_hold(ssock->sk); 84 subflow->request_mptcp = 1; 85 subflow->subflow_id = msk->subflow_id++; 86 87 /* This is the first subflow, always with id 0 */ 88 WRITE_ONCE(subflow->local_id, 0); 89 mptcp_sock_graft(msk->first, sk->sk_socket); 90 iput(SOCK_INODE(ssock)); 91 92 return 0; 93 } 94 95 /* If the MPC handshake is not started, returns the first subflow, 96 * eventually allocating it. 97 */ 98 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 99 { 100 struct sock *sk = (struct sock *)msk; 101 int ret; 102 103 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 104 return ERR_PTR(-EINVAL); 105 106 if (!msk->first) { 107 ret = __mptcp_socket_create(msk); 108 if (ret) 109 return ERR_PTR(ret); 110 111 mptcp_sockopt_sync(msk, msk->first); 112 } 113 114 return msk->first; 115 } 116 117 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 118 { 119 sk_drops_add(sk, skb); 120 __kfree_skb(skb); 121 } 122 123 static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size) 124 { 125 WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc, 126 mptcp_sk(sk)->rmem_fwd_alloc + size); 127 } 128 129 static void mptcp_rmem_charge(struct sock *sk, int size) 130 { 131 mptcp_rmem_fwd_alloc_add(sk, -size); 132 } 133 134 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 135 struct sk_buff *from) 136 { 137 bool fragstolen; 138 int delta; 139 140 if (MPTCP_SKB_CB(from)->offset || 141 !skb_try_coalesce(to, from, &fragstolen, &delta)) 142 return false; 143 144 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n", 145 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 146 to->len, MPTCP_SKB_CB(from)->end_seq); 147 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 148 149 /* note the fwd memory can reach a negative value after accounting 150 * for the delta, but the later skb free will restore a non 151 * negative one 152 */ 153 atomic_add(delta, &sk->sk_rmem_alloc); 154 mptcp_rmem_charge(sk, delta); 155 kfree_skb_partial(from, fragstolen); 156 157 return true; 158 } 159 160 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 161 struct sk_buff *from) 162 { 163 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 164 return false; 165 166 return mptcp_try_coalesce((struct sock *)msk, to, from); 167 } 168 169 static void __mptcp_rmem_reclaim(struct sock *sk, int amount) 170 { 171 amount >>= PAGE_SHIFT; 172 mptcp_rmem_charge(sk, amount << PAGE_SHIFT); 173 __sk_mem_reduce_allocated(sk, amount); 174 } 175 176 static void mptcp_rmem_uncharge(struct sock *sk, int size) 177 { 178 struct mptcp_sock *msk = mptcp_sk(sk); 179 int reclaimable; 180 181 mptcp_rmem_fwd_alloc_add(sk, size); 182 reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk); 183 184 /* see sk_mem_uncharge() for the rationale behind the following schema */ 185 if (unlikely(reclaimable >= PAGE_SIZE)) 186 __mptcp_rmem_reclaim(sk, reclaimable); 187 } 188 189 static void mptcp_rfree(struct sk_buff *skb) 190 { 191 unsigned int len = skb->truesize; 192 struct sock *sk = skb->sk; 193 194 atomic_sub(len, &sk->sk_rmem_alloc); 195 mptcp_rmem_uncharge(sk, len); 196 } 197 198 void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk) 199 { 200 skb_orphan(skb); 201 skb->sk = sk; 202 skb->destructor = mptcp_rfree; 203 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 204 mptcp_rmem_charge(sk, skb->truesize); 205 } 206 207 /* "inspired" by tcp_data_queue_ofo(), main differences: 208 * - use mptcp seqs 209 * - don't cope with sacks 210 */ 211 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 212 { 213 struct sock *sk = (struct sock *)msk; 214 struct rb_node **p, *parent; 215 u64 seq, end_seq, max_seq; 216 struct sk_buff *skb1; 217 218 seq = MPTCP_SKB_CB(skb)->map_seq; 219 end_seq = MPTCP_SKB_CB(skb)->end_seq; 220 max_seq = atomic64_read(&msk->rcv_wnd_sent); 221 222 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq, 223 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 224 if (after64(end_seq, max_seq)) { 225 /* out of window */ 226 mptcp_drop(sk, skb); 227 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 228 (unsigned long long)end_seq - (unsigned long)max_seq, 229 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 230 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 231 return; 232 } 233 234 p = &msk->out_of_order_queue.rb_node; 235 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 236 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 237 rb_link_node(&skb->rbnode, NULL, p); 238 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 239 msk->ooo_last_skb = skb; 240 goto end; 241 } 242 243 /* with 2 subflows, adding at end of ooo queue is quite likely 244 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 245 */ 246 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 247 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 248 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 249 return; 250 } 251 252 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 253 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 254 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 255 parent = &msk->ooo_last_skb->rbnode; 256 p = &parent->rb_right; 257 goto insert; 258 } 259 260 /* Find place to insert this segment. Handle overlaps on the way. */ 261 parent = NULL; 262 while (*p) { 263 parent = *p; 264 skb1 = rb_to_skb(parent); 265 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 266 p = &parent->rb_left; 267 continue; 268 } 269 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 270 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 271 /* All the bits are present. Drop. */ 272 mptcp_drop(sk, skb); 273 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 274 return; 275 } 276 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 277 /* partial overlap: 278 * | skb | 279 * | skb1 | 280 * continue traversing 281 */ 282 } else { 283 /* skb's seq == skb1's seq and skb covers skb1. 284 * Replace skb1 with skb. 285 */ 286 rb_replace_node(&skb1->rbnode, &skb->rbnode, 287 &msk->out_of_order_queue); 288 mptcp_drop(sk, skb1); 289 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 290 goto merge_right; 291 } 292 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 293 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 294 return; 295 } 296 p = &parent->rb_right; 297 } 298 299 insert: 300 /* Insert segment into RB tree. */ 301 rb_link_node(&skb->rbnode, parent, p); 302 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 303 304 merge_right: 305 /* Remove other segments covered by skb. */ 306 while ((skb1 = skb_rb_next(skb)) != NULL) { 307 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 308 break; 309 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 310 mptcp_drop(sk, skb1); 311 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 312 } 313 /* If there is no skb after us, we are the last_skb ! */ 314 if (!skb1) 315 msk->ooo_last_skb = skb; 316 317 end: 318 skb_condense(skb); 319 mptcp_set_owner_r(skb, sk); 320 } 321 322 static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size) 323 { 324 struct mptcp_sock *msk = mptcp_sk(sk); 325 int amt, amount; 326 327 if (size <= msk->rmem_fwd_alloc) 328 return true; 329 330 size -= msk->rmem_fwd_alloc; 331 amt = sk_mem_pages(size); 332 amount = amt << PAGE_SHIFT; 333 if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV)) 334 return false; 335 336 mptcp_rmem_fwd_alloc_add(sk, amount); 337 return true; 338 } 339 340 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 341 struct sk_buff *skb, unsigned int offset, 342 size_t copy_len) 343 { 344 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 345 struct sock *sk = (struct sock *)msk; 346 struct sk_buff *tail; 347 bool has_rxtstamp; 348 349 __skb_unlink(skb, &ssk->sk_receive_queue); 350 351 skb_ext_reset(skb); 352 skb_orphan(skb); 353 354 /* try to fetch required memory from subflow */ 355 if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) { 356 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 357 goto drop; 358 } 359 360 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 361 362 /* the skb map_seq accounts for the skb offset: 363 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 364 * value 365 */ 366 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 367 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 368 MPTCP_SKB_CB(skb)->offset = offset; 369 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 370 371 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 372 /* in sequence */ 373 msk->bytes_received += copy_len; 374 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 375 tail = skb_peek_tail(&sk->sk_receive_queue); 376 if (tail && mptcp_try_coalesce(sk, tail, skb)) 377 return true; 378 379 mptcp_set_owner_r(skb, sk); 380 __skb_queue_tail(&sk->sk_receive_queue, skb); 381 return true; 382 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 383 mptcp_data_queue_ofo(msk, skb); 384 return false; 385 } 386 387 /* old data, keep it simple and drop the whole pkt, sender 388 * will retransmit as needed, if needed. 389 */ 390 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 391 drop: 392 mptcp_drop(sk, skb); 393 return false; 394 } 395 396 static void mptcp_stop_rtx_timer(struct sock *sk) 397 { 398 struct inet_connection_sock *icsk = inet_csk(sk); 399 400 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 401 mptcp_sk(sk)->timer_ival = 0; 402 } 403 404 static void mptcp_close_wake_up(struct sock *sk) 405 { 406 if (sock_flag(sk, SOCK_DEAD)) 407 return; 408 409 sk->sk_state_change(sk); 410 if (sk->sk_shutdown == SHUTDOWN_MASK || 411 sk->sk_state == TCP_CLOSE) 412 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 413 else 414 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 415 } 416 417 static bool mptcp_pending_data_fin_ack(struct sock *sk) 418 { 419 struct mptcp_sock *msk = mptcp_sk(sk); 420 421 return ((1 << sk->sk_state) & 422 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 423 msk->write_seq == READ_ONCE(msk->snd_una); 424 } 425 426 static void mptcp_check_data_fin_ack(struct sock *sk) 427 { 428 struct mptcp_sock *msk = mptcp_sk(sk); 429 430 /* Look for an acknowledged DATA_FIN */ 431 if (mptcp_pending_data_fin_ack(sk)) { 432 WRITE_ONCE(msk->snd_data_fin_enable, 0); 433 434 switch (sk->sk_state) { 435 case TCP_FIN_WAIT1: 436 mptcp_set_state(sk, TCP_FIN_WAIT2); 437 break; 438 case TCP_CLOSING: 439 case TCP_LAST_ACK: 440 mptcp_set_state(sk, TCP_CLOSE); 441 break; 442 } 443 444 mptcp_close_wake_up(sk); 445 } 446 } 447 448 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 449 { 450 struct mptcp_sock *msk = mptcp_sk(sk); 451 452 if (READ_ONCE(msk->rcv_data_fin) && 453 ((1 << sk->sk_state) & 454 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 455 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 456 457 if (msk->ack_seq == rcv_data_fin_seq) { 458 if (seq) 459 *seq = rcv_data_fin_seq; 460 461 return true; 462 } 463 } 464 465 return false; 466 } 467 468 static void mptcp_set_datafin_timeout(struct sock *sk) 469 { 470 struct inet_connection_sock *icsk = inet_csk(sk); 471 u32 retransmits; 472 473 retransmits = min_t(u32, icsk->icsk_retransmits, 474 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 475 476 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 477 } 478 479 static void __mptcp_set_timeout(struct sock *sk, long tout) 480 { 481 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 482 } 483 484 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 485 { 486 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 487 488 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 489 inet_csk(ssk)->icsk_timeout - jiffies : 0; 490 } 491 492 static void mptcp_set_timeout(struct sock *sk) 493 { 494 struct mptcp_subflow_context *subflow; 495 long tout = 0; 496 497 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 498 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 499 __mptcp_set_timeout(sk, tout); 500 } 501 502 static inline bool tcp_can_send_ack(const struct sock *ssk) 503 { 504 return !((1 << inet_sk_state_load(ssk)) & 505 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 506 } 507 508 void __mptcp_subflow_send_ack(struct sock *ssk) 509 { 510 if (tcp_can_send_ack(ssk)) 511 tcp_send_ack(ssk); 512 } 513 514 static void mptcp_subflow_send_ack(struct sock *ssk) 515 { 516 bool slow; 517 518 slow = lock_sock_fast(ssk); 519 __mptcp_subflow_send_ack(ssk); 520 unlock_sock_fast(ssk, slow); 521 } 522 523 static void mptcp_send_ack(struct mptcp_sock *msk) 524 { 525 struct mptcp_subflow_context *subflow; 526 527 mptcp_for_each_subflow(msk, subflow) 528 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 529 } 530 531 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk) 532 { 533 bool slow; 534 535 slow = lock_sock_fast(ssk); 536 if (tcp_can_send_ack(ssk)) 537 tcp_cleanup_rbuf(ssk, 1); 538 unlock_sock_fast(ssk, slow); 539 } 540 541 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 542 { 543 const struct inet_connection_sock *icsk = inet_csk(ssk); 544 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 545 const struct tcp_sock *tp = tcp_sk(ssk); 546 547 return (ack_pending & ICSK_ACK_SCHED) && 548 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 549 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 550 (rx_empty && ack_pending & 551 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 552 } 553 554 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk) 555 { 556 int old_space = READ_ONCE(msk->old_wspace); 557 struct mptcp_subflow_context *subflow; 558 struct sock *sk = (struct sock *)msk; 559 int space = __mptcp_space(sk); 560 bool cleanup, rx_empty; 561 562 cleanup = (space > 0) && (space >= (old_space << 1)); 563 rx_empty = !__mptcp_rmem(sk); 564 565 mptcp_for_each_subflow(msk, subflow) { 566 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 567 568 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 569 mptcp_subflow_cleanup_rbuf(ssk); 570 } 571 } 572 573 static bool mptcp_check_data_fin(struct sock *sk) 574 { 575 struct mptcp_sock *msk = mptcp_sk(sk); 576 u64 rcv_data_fin_seq; 577 bool ret = false; 578 579 /* Need to ack a DATA_FIN received from a peer while this side 580 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 581 * msk->rcv_data_fin was set when parsing the incoming options 582 * at the subflow level and the msk lock was not held, so this 583 * is the first opportunity to act on the DATA_FIN and change 584 * the msk state. 585 * 586 * If we are caught up to the sequence number of the incoming 587 * DATA_FIN, send the DATA_ACK now and do state transition. If 588 * not caught up, do nothing and let the recv code send DATA_ACK 589 * when catching up. 590 */ 591 592 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 593 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 594 WRITE_ONCE(msk->rcv_data_fin, 0); 595 596 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 597 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 598 599 switch (sk->sk_state) { 600 case TCP_ESTABLISHED: 601 mptcp_set_state(sk, TCP_CLOSE_WAIT); 602 break; 603 case TCP_FIN_WAIT1: 604 mptcp_set_state(sk, TCP_CLOSING); 605 break; 606 case TCP_FIN_WAIT2: 607 mptcp_set_state(sk, TCP_CLOSE); 608 break; 609 default: 610 /* Other states not expected */ 611 WARN_ON_ONCE(1); 612 break; 613 } 614 615 ret = true; 616 if (!__mptcp_check_fallback(msk)) 617 mptcp_send_ack(msk); 618 mptcp_close_wake_up(sk); 619 } 620 return ret; 621 } 622 623 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk) 624 { 625 if (READ_ONCE(msk->allow_infinite_fallback)) { 626 MPTCP_INC_STATS(sock_net(ssk), 627 MPTCP_MIB_DSSCORRUPTIONFALLBACK); 628 mptcp_do_fallback(ssk); 629 } else { 630 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET); 631 mptcp_subflow_reset(ssk); 632 } 633 } 634 635 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 636 struct sock *ssk, 637 unsigned int *bytes) 638 { 639 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 640 struct sock *sk = (struct sock *)msk; 641 unsigned int moved = 0; 642 bool more_data_avail; 643 struct tcp_sock *tp; 644 bool done = false; 645 int sk_rbuf; 646 647 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 648 649 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 650 int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 651 652 if (unlikely(ssk_rbuf > sk_rbuf)) { 653 WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf); 654 sk_rbuf = ssk_rbuf; 655 } 656 } 657 658 pr_debug("msk=%p ssk=%p\n", msk, ssk); 659 tp = tcp_sk(ssk); 660 do { 661 u32 map_remaining, offset; 662 u32 seq = tp->copied_seq; 663 struct sk_buff *skb; 664 bool fin; 665 666 /* try to move as much data as available */ 667 map_remaining = subflow->map_data_len - 668 mptcp_subflow_get_map_offset(subflow); 669 670 skb = skb_peek(&ssk->sk_receive_queue); 671 if (!skb) { 672 /* With racing move_skbs_to_msk() and __mptcp_move_skbs(), 673 * a different CPU can have already processed the pending 674 * data, stop here or we can enter an infinite loop 675 */ 676 if (!moved) 677 done = true; 678 break; 679 } 680 681 if (__mptcp_check_fallback(msk)) { 682 /* Under fallback skbs have no MPTCP extension and TCP could 683 * collapse them between the dummy map creation and the 684 * current dequeue. Be sure to adjust the map size. 685 */ 686 map_remaining = skb->len; 687 subflow->map_data_len = skb->len; 688 } 689 690 offset = seq - TCP_SKB_CB(skb)->seq; 691 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 692 if (fin) { 693 done = true; 694 seq++; 695 } 696 697 if (offset < skb->len) { 698 size_t len = skb->len - offset; 699 700 if (tp->urg_data) 701 done = true; 702 703 if (__mptcp_move_skb(msk, ssk, skb, offset, len)) 704 moved += len; 705 seq += len; 706 707 if (unlikely(map_remaining < len)) { 708 DEBUG_NET_WARN_ON_ONCE(1); 709 mptcp_dss_corruption(msk, ssk); 710 } 711 } else { 712 if (unlikely(!fin)) { 713 DEBUG_NET_WARN_ON_ONCE(1); 714 mptcp_dss_corruption(msk, ssk); 715 } 716 717 sk_eat_skb(ssk, skb); 718 done = true; 719 } 720 721 WRITE_ONCE(tp->copied_seq, seq); 722 more_data_avail = mptcp_subflow_data_available(ssk); 723 724 if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) { 725 done = true; 726 break; 727 } 728 } while (more_data_avail); 729 730 *bytes += moved; 731 return done; 732 } 733 734 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 735 { 736 struct sock *sk = (struct sock *)msk; 737 struct sk_buff *skb, *tail; 738 bool moved = false; 739 struct rb_node *p; 740 u64 end_seq; 741 742 p = rb_first(&msk->out_of_order_queue); 743 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 744 while (p) { 745 skb = rb_to_skb(p); 746 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 747 break; 748 749 p = rb_next(p); 750 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 751 752 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 753 msk->ack_seq))) { 754 mptcp_drop(sk, skb); 755 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 756 continue; 757 } 758 759 end_seq = MPTCP_SKB_CB(skb)->end_seq; 760 tail = skb_peek_tail(&sk->sk_receive_queue); 761 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 762 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 763 764 /* skip overlapping data, if any */ 765 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n", 766 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 767 delta); 768 MPTCP_SKB_CB(skb)->offset += delta; 769 MPTCP_SKB_CB(skb)->map_seq += delta; 770 __skb_queue_tail(&sk->sk_receive_queue, skb); 771 } 772 msk->bytes_received += end_seq - msk->ack_seq; 773 msk->ack_seq = end_seq; 774 moved = true; 775 } 776 return moved; 777 } 778 779 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 780 { 781 int err = sock_error(ssk); 782 int ssk_state; 783 784 if (!err) 785 return false; 786 787 /* only propagate errors on fallen-back sockets or 788 * on MPC connect 789 */ 790 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 791 return false; 792 793 /* We need to propagate only transition to CLOSE state. 794 * Orphaned socket will see such state change via 795 * subflow_sched_work_if_closed() and that path will properly 796 * destroy the msk as needed. 797 */ 798 ssk_state = inet_sk_state_load(ssk); 799 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 800 mptcp_set_state(sk, ssk_state); 801 WRITE_ONCE(sk->sk_err, -err); 802 803 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 804 smp_wmb(); 805 sk_error_report(sk); 806 return true; 807 } 808 809 void __mptcp_error_report(struct sock *sk) 810 { 811 struct mptcp_subflow_context *subflow; 812 struct mptcp_sock *msk = mptcp_sk(sk); 813 814 mptcp_for_each_subflow(msk, subflow) 815 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 816 break; 817 } 818 819 /* In most cases we will be able to lock the mptcp socket. If its already 820 * owned, we need to defer to the work queue to avoid ABBA deadlock. 821 */ 822 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 823 { 824 struct sock *sk = (struct sock *)msk; 825 unsigned int moved = 0; 826 827 __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 828 __mptcp_ofo_queue(msk); 829 if (unlikely(ssk->sk_err)) { 830 if (!sock_owned_by_user(sk)) 831 __mptcp_error_report(sk); 832 else 833 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 834 } 835 836 /* If the moves have caught up with the DATA_FIN sequence number 837 * it's time to ack the DATA_FIN and change socket state, but 838 * this is not a good place to change state. Let the workqueue 839 * do it. 840 */ 841 if (mptcp_pending_data_fin(sk, NULL)) 842 mptcp_schedule_work(sk); 843 return moved > 0; 844 } 845 846 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 847 { 848 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 849 struct mptcp_sock *msk = mptcp_sk(sk); 850 int sk_rbuf, ssk_rbuf; 851 852 /* The peer can send data while we are shutting down this 853 * subflow at msk destruction time, but we must avoid enqueuing 854 * more data to the msk receive queue 855 */ 856 if (unlikely(subflow->disposable)) 857 return; 858 859 ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf); 860 sk_rbuf = READ_ONCE(sk->sk_rcvbuf); 861 if (unlikely(ssk_rbuf > sk_rbuf)) 862 sk_rbuf = ssk_rbuf; 863 864 /* over limit? can't append more skbs to msk, Also, no need to wake-up*/ 865 if (__mptcp_rmem(sk) > sk_rbuf) 866 return; 867 868 /* Wake-up the reader only for in-sequence data */ 869 mptcp_data_lock(sk); 870 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 871 sk->sk_data_ready(sk); 872 mptcp_data_unlock(sk); 873 } 874 875 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 876 { 877 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 878 WRITE_ONCE(msk->allow_infinite_fallback, false); 879 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 880 } 881 882 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 883 { 884 struct sock *sk = (struct sock *)msk; 885 886 if (sk->sk_state != TCP_ESTABLISHED) 887 return false; 888 889 /* attach to msk socket only after we are sure we will deal with it 890 * at close time 891 */ 892 if (sk->sk_socket && !ssk->sk_socket) 893 mptcp_sock_graft(ssk, sk->sk_socket); 894 895 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 896 mptcp_sockopt_sync_locked(msk, ssk); 897 mptcp_subflow_joined(msk, ssk); 898 mptcp_stop_tout_timer(sk); 899 __mptcp_propagate_sndbuf(sk, ssk); 900 return true; 901 } 902 903 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 904 { 905 struct mptcp_subflow_context *tmp, *subflow; 906 struct mptcp_sock *msk = mptcp_sk(sk); 907 908 list_for_each_entry_safe(subflow, tmp, join_list, node) { 909 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 910 bool slow = lock_sock_fast(ssk); 911 912 list_move_tail(&subflow->node, &msk->conn_list); 913 if (!__mptcp_finish_join(msk, ssk)) 914 mptcp_subflow_reset(ssk); 915 unlock_sock_fast(ssk, slow); 916 } 917 } 918 919 static bool mptcp_rtx_timer_pending(struct sock *sk) 920 { 921 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 922 } 923 924 static void mptcp_reset_rtx_timer(struct sock *sk) 925 { 926 struct inet_connection_sock *icsk = inet_csk(sk); 927 unsigned long tout; 928 929 /* prevent rescheduling on close */ 930 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 931 return; 932 933 tout = mptcp_sk(sk)->timer_ival; 934 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 935 } 936 937 bool mptcp_schedule_work(struct sock *sk) 938 { 939 if (inet_sk_state_load(sk) != TCP_CLOSE && 940 schedule_work(&mptcp_sk(sk)->work)) { 941 /* each subflow already holds a reference to the sk, and the 942 * workqueue is invoked by a subflow, so sk can't go away here. 943 */ 944 sock_hold(sk); 945 return true; 946 } 947 return false; 948 } 949 950 static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk) 951 { 952 struct mptcp_subflow_context *subflow; 953 954 msk_owned_by_me(msk); 955 956 mptcp_for_each_subflow(msk, subflow) { 957 if (READ_ONCE(subflow->data_avail)) 958 return mptcp_subflow_tcp_sock(subflow); 959 } 960 961 return NULL; 962 } 963 964 static bool mptcp_skb_can_collapse_to(u64 write_seq, 965 const struct sk_buff *skb, 966 const struct mptcp_ext *mpext) 967 { 968 if (!tcp_skb_can_collapse_to(skb)) 969 return false; 970 971 /* can collapse only if MPTCP level sequence is in order and this 972 * mapping has not been xmitted yet 973 */ 974 return mpext && mpext->data_seq + mpext->data_len == write_seq && 975 !mpext->frozen; 976 } 977 978 /* we can append data to the given data frag if: 979 * - there is space available in the backing page_frag 980 * - the data frag tail matches the current page_frag free offset 981 * - the data frag end sequence number matches the current write seq 982 */ 983 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 984 const struct page_frag *pfrag, 985 const struct mptcp_data_frag *df) 986 { 987 return df && pfrag->page == df->page && 988 pfrag->size - pfrag->offset > 0 && 989 pfrag->offset == (df->offset + df->data_len) && 990 df->data_seq + df->data_len == msk->write_seq; 991 } 992 993 static void dfrag_uncharge(struct sock *sk, int len) 994 { 995 sk_mem_uncharge(sk, len); 996 sk_wmem_queued_add(sk, -len); 997 } 998 999 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 1000 { 1001 int len = dfrag->data_len + dfrag->overhead; 1002 1003 list_del(&dfrag->list); 1004 dfrag_uncharge(sk, len); 1005 put_page(dfrag->page); 1006 } 1007 1008 static void __mptcp_clean_una(struct sock *sk) 1009 { 1010 struct mptcp_sock *msk = mptcp_sk(sk); 1011 struct mptcp_data_frag *dtmp, *dfrag; 1012 u64 snd_una; 1013 1014 snd_una = msk->snd_una; 1015 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 1016 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 1017 break; 1018 1019 if (unlikely(dfrag == msk->first_pending)) { 1020 /* in recovery mode can see ack after the current snd head */ 1021 if (WARN_ON_ONCE(!msk->recovery)) 1022 break; 1023 1024 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1025 } 1026 1027 dfrag_clear(sk, dfrag); 1028 } 1029 1030 dfrag = mptcp_rtx_head(sk); 1031 if (dfrag && after64(snd_una, dfrag->data_seq)) { 1032 u64 delta = snd_una - dfrag->data_seq; 1033 1034 /* prevent wrap around in recovery mode */ 1035 if (unlikely(delta > dfrag->already_sent)) { 1036 if (WARN_ON_ONCE(!msk->recovery)) 1037 goto out; 1038 if (WARN_ON_ONCE(delta > dfrag->data_len)) 1039 goto out; 1040 dfrag->already_sent += delta - dfrag->already_sent; 1041 } 1042 1043 dfrag->data_seq += delta; 1044 dfrag->offset += delta; 1045 dfrag->data_len -= delta; 1046 dfrag->already_sent -= delta; 1047 1048 dfrag_uncharge(sk, delta); 1049 } 1050 1051 /* all retransmitted data acked, recovery completed */ 1052 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 1053 msk->recovery = false; 1054 1055 out: 1056 if (snd_una == READ_ONCE(msk->snd_nxt) && 1057 snd_una == READ_ONCE(msk->write_seq)) { 1058 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 1059 mptcp_stop_rtx_timer(sk); 1060 } else { 1061 mptcp_reset_rtx_timer(sk); 1062 } 1063 } 1064 1065 static void __mptcp_clean_una_wakeup(struct sock *sk) 1066 { 1067 lockdep_assert_held_once(&sk->sk_lock.slock); 1068 1069 __mptcp_clean_una(sk); 1070 mptcp_write_space(sk); 1071 } 1072 1073 static void mptcp_clean_una_wakeup(struct sock *sk) 1074 { 1075 mptcp_data_lock(sk); 1076 __mptcp_clean_una_wakeup(sk); 1077 mptcp_data_unlock(sk); 1078 } 1079 1080 static void mptcp_enter_memory_pressure(struct sock *sk) 1081 { 1082 struct mptcp_subflow_context *subflow; 1083 struct mptcp_sock *msk = mptcp_sk(sk); 1084 bool first = true; 1085 1086 mptcp_for_each_subflow(msk, subflow) { 1087 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1088 1089 if (first) 1090 tcp_enter_memory_pressure(ssk); 1091 sk_stream_moderate_sndbuf(ssk); 1092 1093 first = false; 1094 } 1095 __mptcp_sync_sndbuf(sk); 1096 } 1097 1098 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1099 * data 1100 */ 1101 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1102 { 1103 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1104 pfrag, sk->sk_allocation))) 1105 return true; 1106 1107 mptcp_enter_memory_pressure(sk); 1108 return false; 1109 } 1110 1111 static struct mptcp_data_frag * 1112 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1113 int orig_offset) 1114 { 1115 int offset = ALIGN(orig_offset, sizeof(long)); 1116 struct mptcp_data_frag *dfrag; 1117 1118 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1119 dfrag->data_len = 0; 1120 dfrag->data_seq = msk->write_seq; 1121 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1122 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1123 dfrag->already_sent = 0; 1124 dfrag->page = pfrag->page; 1125 1126 return dfrag; 1127 } 1128 1129 struct mptcp_sendmsg_info { 1130 int mss_now; 1131 int size_goal; 1132 u16 limit; 1133 u16 sent; 1134 unsigned int flags; 1135 bool data_lock_held; 1136 }; 1137 1138 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1139 u64 data_seq, int avail_size) 1140 { 1141 u64 window_end = mptcp_wnd_end(msk); 1142 u64 mptcp_snd_wnd; 1143 1144 if (__mptcp_check_fallback(msk)) 1145 return avail_size; 1146 1147 mptcp_snd_wnd = window_end - data_seq; 1148 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1149 1150 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1151 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1152 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1153 } 1154 1155 return avail_size; 1156 } 1157 1158 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1159 { 1160 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1161 1162 if (!mpext) 1163 return false; 1164 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1165 return true; 1166 } 1167 1168 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1169 { 1170 struct sk_buff *skb; 1171 1172 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1173 if (likely(skb)) { 1174 if (likely(__mptcp_add_ext(skb, gfp))) { 1175 skb_reserve(skb, MAX_TCP_HEADER); 1176 skb->ip_summed = CHECKSUM_PARTIAL; 1177 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1178 return skb; 1179 } 1180 __kfree_skb(skb); 1181 } else { 1182 mptcp_enter_memory_pressure(sk); 1183 } 1184 return NULL; 1185 } 1186 1187 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1188 { 1189 struct sk_buff *skb; 1190 1191 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1192 if (!skb) 1193 return NULL; 1194 1195 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1196 tcp_skb_entail(ssk, skb); 1197 return skb; 1198 } 1199 tcp_skb_tsorted_anchor_cleanup(skb); 1200 kfree_skb(skb); 1201 return NULL; 1202 } 1203 1204 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1205 { 1206 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1207 1208 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1209 } 1210 1211 /* note: this always recompute the csum on the whole skb, even 1212 * if we just appended a single frag. More status info needed 1213 */ 1214 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1215 { 1216 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1217 __wsum csum = ~csum_unfold(mpext->csum); 1218 int offset = skb->len - added; 1219 1220 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1221 } 1222 1223 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1224 struct sock *ssk, 1225 struct mptcp_ext *mpext) 1226 { 1227 if (!mpext) 1228 return; 1229 1230 mpext->infinite_map = 1; 1231 mpext->data_len = 0; 1232 1233 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX); 1234 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1235 pr_fallback(msk); 1236 mptcp_do_fallback(ssk); 1237 } 1238 1239 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1240 1241 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1242 struct mptcp_data_frag *dfrag, 1243 struct mptcp_sendmsg_info *info) 1244 { 1245 u64 data_seq = dfrag->data_seq + info->sent; 1246 int offset = dfrag->offset + info->sent; 1247 struct mptcp_sock *msk = mptcp_sk(sk); 1248 bool zero_window_probe = false; 1249 struct mptcp_ext *mpext = NULL; 1250 bool can_coalesce = false; 1251 bool reuse_skb = true; 1252 struct sk_buff *skb; 1253 size_t copy; 1254 int i; 1255 1256 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n", 1257 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1258 1259 if (WARN_ON_ONCE(info->sent > info->limit || 1260 info->limit > dfrag->data_len)) 1261 return 0; 1262 1263 if (unlikely(!__tcp_can_send(ssk))) 1264 return -EAGAIN; 1265 1266 /* compute send limit */ 1267 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1268 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1269 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1270 copy = info->size_goal; 1271 1272 skb = tcp_write_queue_tail(ssk); 1273 if (skb && copy > skb->len) { 1274 /* Limit the write to the size available in the 1275 * current skb, if any, so that we create at most a new skb. 1276 * Explicitly tells TCP internals to avoid collapsing on later 1277 * queue management operation, to avoid breaking the ext <-> 1278 * SSN association set here 1279 */ 1280 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1281 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1282 TCP_SKB_CB(skb)->eor = 1; 1283 tcp_mark_push(tcp_sk(ssk), skb); 1284 goto alloc_skb; 1285 } 1286 1287 i = skb_shinfo(skb)->nr_frags; 1288 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1289 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) { 1290 tcp_mark_push(tcp_sk(ssk), skb); 1291 goto alloc_skb; 1292 } 1293 1294 copy -= skb->len; 1295 } else { 1296 alloc_skb: 1297 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1298 if (!skb) 1299 return -ENOMEM; 1300 1301 i = skb_shinfo(skb)->nr_frags; 1302 reuse_skb = false; 1303 mpext = skb_ext_find(skb, SKB_EXT_MPTCP); 1304 } 1305 1306 /* Zero window and all data acked? Probe. */ 1307 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1308 if (copy == 0) { 1309 u64 snd_una = READ_ONCE(msk->snd_una); 1310 1311 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) { 1312 tcp_remove_empty_skb(ssk); 1313 return 0; 1314 } 1315 1316 zero_window_probe = true; 1317 data_seq = snd_una - 1; 1318 copy = 1; 1319 } 1320 1321 copy = min_t(size_t, copy, info->limit - info->sent); 1322 if (!sk_wmem_schedule(ssk, copy)) { 1323 tcp_remove_empty_skb(ssk); 1324 return -ENOMEM; 1325 } 1326 1327 if (can_coalesce) { 1328 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1329 } else { 1330 get_page(dfrag->page); 1331 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1332 } 1333 1334 skb->len += copy; 1335 skb->data_len += copy; 1336 skb->truesize += copy; 1337 sk_wmem_queued_add(ssk, copy); 1338 sk_mem_charge(ssk, copy); 1339 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1340 TCP_SKB_CB(skb)->end_seq += copy; 1341 tcp_skb_pcount_set(skb, 0); 1342 1343 /* on skb reuse we just need to update the DSS len */ 1344 if (reuse_skb) { 1345 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1346 mpext->data_len += copy; 1347 goto out; 1348 } 1349 1350 memset(mpext, 0, sizeof(*mpext)); 1351 mpext->data_seq = data_seq; 1352 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1353 mpext->data_len = copy; 1354 mpext->use_map = 1; 1355 mpext->dsn64 = 1; 1356 1357 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n", 1358 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1359 mpext->dsn64); 1360 1361 if (zero_window_probe) { 1362 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1363 mpext->frozen = 1; 1364 if (READ_ONCE(msk->csum_enabled)) 1365 mptcp_update_data_checksum(skb, copy); 1366 tcp_push_pending_frames(ssk); 1367 return 0; 1368 } 1369 out: 1370 if (READ_ONCE(msk->csum_enabled)) 1371 mptcp_update_data_checksum(skb, copy); 1372 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1373 mptcp_update_infinite_map(msk, ssk, mpext); 1374 trace_mptcp_sendmsg_frag(mpext); 1375 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1376 return copy; 1377 } 1378 1379 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1380 sizeof(struct tcphdr) - \ 1381 MAX_TCP_OPTION_SPACE - \ 1382 sizeof(struct ipv6hdr) - \ 1383 sizeof(struct frag_hdr)) 1384 1385 struct subflow_send_info { 1386 struct sock *ssk; 1387 u64 linger_time; 1388 }; 1389 1390 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1391 { 1392 if (!subflow->stale) 1393 return; 1394 1395 subflow->stale = 0; 1396 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1397 } 1398 1399 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1400 { 1401 if (unlikely(subflow->stale)) { 1402 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1403 1404 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1405 return false; 1406 1407 mptcp_subflow_set_active(subflow); 1408 } 1409 return __mptcp_subflow_active(subflow); 1410 } 1411 1412 #define SSK_MODE_ACTIVE 0 1413 #define SSK_MODE_BACKUP 1 1414 #define SSK_MODE_MAX 2 1415 1416 /* implement the mptcp packet scheduler; 1417 * returns the subflow that will transmit the next DSS 1418 * additionally updates the rtx timeout 1419 */ 1420 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1421 { 1422 struct subflow_send_info send_info[SSK_MODE_MAX]; 1423 struct mptcp_subflow_context *subflow; 1424 struct sock *sk = (struct sock *)msk; 1425 u32 pace, burst, wmem; 1426 int i, nr_active = 0; 1427 struct sock *ssk; 1428 u64 linger_time; 1429 long tout = 0; 1430 1431 /* pick the subflow with the lower wmem/wspace ratio */ 1432 for (i = 0; i < SSK_MODE_MAX; ++i) { 1433 send_info[i].ssk = NULL; 1434 send_info[i].linger_time = -1; 1435 } 1436 1437 mptcp_for_each_subflow(msk, subflow) { 1438 bool backup = subflow->backup || subflow->request_bkup; 1439 1440 trace_mptcp_subflow_get_send(subflow); 1441 ssk = mptcp_subflow_tcp_sock(subflow); 1442 if (!mptcp_subflow_active(subflow)) 1443 continue; 1444 1445 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1446 nr_active += !backup; 1447 pace = subflow->avg_pacing_rate; 1448 if (unlikely(!pace)) { 1449 /* init pacing rate from socket */ 1450 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1451 pace = subflow->avg_pacing_rate; 1452 if (!pace) 1453 continue; 1454 } 1455 1456 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1457 if (linger_time < send_info[backup].linger_time) { 1458 send_info[backup].ssk = ssk; 1459 send_info[backup].linger_time = linger_time; 1460 } 1461 } 1462 __mptcp_set_timeout(sk, tout); 1463 1464 /* pick the best backup if no other subflow is active */ 1465 if (!nr_active) 1466 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1467 1468 /* According to the blest algorithm, to avoid HoL blocking for the 1469 * faster flow, we need to: 1470 * - estimate the faster flow linger time 1471 * - use the above to estimate the amount of byte transferred 1472 * by the faster flow 1473 * - check that the amount of queued data is greter than the above, 1474 * otherwise do not use the picked, slower, subflow 1475 * We select the subflow with the shorter estimated time to flush 1476 * the queued mem, which basically ensure the above. We just need 1477 * to check that subflow has a non empty cwin. 1478 */ 1479 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1480 if (!ssk || !sk_stream_memory_free(ssk)) 1481 return NULL; 1482 1483 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1484 wmem = READ_ONCE(ssk->sk_wmem_queued); 1485 if (!burst) 1486 return ssk; 1487 1488 subflow = mptcp_subflow_ctx(ssk); 1489 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1490 READ_ONCE(ssk->sk_pacing_rate) * burst, 1491 burst + wmem); 1492 msk->snd_burst = burst; 1493 return ssk; 1494 } 1495 1496 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1497 { 1498 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1499 release_sock(ssk); 1500 } 1501 1502 static void mptcp_update_post_push(struct mptcp_sock *msk, 1503 struct mptcp_data_frag *dfrag, 1504 u32 sent) 1505 { 1506 u64 snd_nxt_new = dfrag->data_seq; 1507 1508 dfrag->already_sent += sent; 1509 1510 msk->snd_burst -= sent; 1511 1512 snd_nxt_new += dfrag->already_sent; 1513 1514 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1515 * is recovering after a failover. In that event, this re-sends 1516 * old segments. 1517 * 1518 * Thus compute snd_nxt_new candidate based on 1519 * the dfrag->data_seq that was sent and the data 1520 * that has been handed to the subflow for transmission 1521 * and skip update in case it was old dfrag. 1522 */ 1523 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1524 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1525 msk->snd_nxt = snd_nxt_new; 1526 } 1527 } 1528 1529 void mptcp_check_and_set_pending(struct sock *sk) 1530 { 1531 if (mptcp_send_head(sk)) { 1532 mptcp_data_lock(sk); 1533 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1534 mptcp_data_unlock(sk); 1535 } 1536 } 1537 1538 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1539 struct mptcp_sendmsg_info *info) 1540 { 1541 struct mptcp_sock *msk = mptcp_sk(sk); 1542 struct mptcp_data_frag *dfrag; 1543 int len, copied = 0, err = 0; 1544 1545 while ((dfrag = mptcp_send_head(sk))) { 1546 info->sent = dfrag->already_sent; 1547 info->limit = dfrag->data_len; 1548 len = dfrag->data_len - dfrag->already_sent; 1549 while (len > 0) { 1550 int ret = 0; 1551 1552 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1553 if (ret <= 0) { 1554 err = copied ? : ret; 1555 goto out; 1556 } 1557 1558 info->sent += ret; 1559 copied += ret; 1560 len -= ret; 1561 1562 mptcp_update_post_push(msk, dfrag, ret); 1563 } 1564 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1565 1566 if (msk->snd_burst <= 0 || 1567 !sk_stream_memory_free(ssk) || 1568 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1569 err = copied; 1570 goto out; 1571 } 1572 mptcp_set_timeout(sk); 1573 } 1574 err = copied; 1575 1576 out: 1577 return err; 1578 } 1579 1580 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1581 { 1582 struct sock *prev_ssk = NULL, *ssk = NULL; 1583 struct mptcp_sock *msk = mptcp_sk(sk); 1584 struct mptcp_sendmsg_info info = { 1585 .flags = flags, 1586 }; 1587 bool do_check_data_fin = false; 1588 int push_count = 1; 1589 1590 while (mptcp_send_head(sk) && (push_count > 0)) { 1591 struct mptcp_subflow_context *subflow; 1592 int ret = 0; 1593 1594 if (mptcp_sched_get_send(msk)) 1595 break; 1596 1597 push_count = 0; 1598 1599 mptcp_for_each_subflow(msk, subflow) { 1600 if (READ_ONCE(subflow->scheduled)) { 1601 mptcp_subflow_set_scheduled(subflow, false); 1602 1603 prev_ssk = ssk; 1604 ssk = mptcp_subflow_tcp_sock(subflow); 1605 if (ssk != prev_ssk) { 1606 /* First check. If the ssk has changed since 1607 * the last round, release prev_ssk 1608 */ 1609 if (prev_ssk) 1610 mptcp_push_release(prev_ssk, &info); 1611 1612 /* Need to lock the new subflow only if different 1613 * from the previous one, otherwise we are still 1614 * helding the relevant lock 1615 */ 1616 lock_sock(ssk); 1617 } 1618 1619 push_count++; 1620 1621 ret = __subflow_push_pending(sk, ssk, &info); 1622 if (ret <= 0) { 1623 if (ret != -EAGAIN || 1624 (1 << ssk->sk_state) & 1625 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1626 push_count--; 1627 continue; 1628 } 1629 do_check_data_fin = true; 1630 } 1631 } 1632 } 1633 1634 /* at this point we held the socket lock for the last subflow we used */ 1635 if (ssk) 1636 mptcp_push_release(ssk, &info); 1637 1638 /* ensure the rtx timer is running */ 1639 if (!mptcp_rtx_timer_pending(sk)) 1640 mptcp_reset_rtx_timer(sk); 1641 if (do_check_data_fin) 1642 mptcp_check_send_data_fin(sk); 1643 } 1644 1645 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1646 { 1647 struct mptcp_sock *msk = mptcp_sk(sk); 1648 struct mptcp_sendmsg_info info = { 1649 .data_lock_held = true, 1650 }; 1651 bool keep_pushing = true; 1652 struct sock *xmit_ssk; 1653 int copied = 0; 1654 1655 info.flags = 0; 1656 while (mptcp_send_head(sk) && keep_pushing) { 1657 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1658 int ret = 0; 1659 1660 /* check for a different subflow usage only after 1661 * spooling the first chunk of data 1662 */ 1663 if (first) { 1664 mptcp_subflow_set_scheduled(subflow, false); 1665 ret = __subflow_push_pending(sk, ssk, &info); 1666 first = false; 1667 if (ret <= 0) 1668 break; 1669 copied += ret; 1670 continue; 1671 } 1672 1673 if (mptcp_sched_get_send(msk)) 1674 goto out; 1675 1676 if (READ_ONCE(subflow->scheduled)) { 1677 mptcp_subflow_set_scheduled(subflow, false); 1678 ret = __subflow_push_pending(sk, ssk, &info); 1679 if (ret <= 0) 1680 keep_pushing = false; 1681 copied += ret; 1682 } 1683 1684 mptcp_for_each_subflow(msk, subflow) { 1685 if (READ_ONCE(subflow->scheduled)) { 1686 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1687 if (xmit_ssk != ssk) { 1688 mptcp_subflow_delegate(subflow, 1689 MPTCP_DELEGATE_SEND); 1690 keep_pushing = false; 1691 } 1692 } 1693 } 1694 } 1695 1696 out: 1697 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1698 * not going to flush it via release_sock() 1699 */ 1700 if (copied) { 1701 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1702 info.size_goal); 1703 if (!mptcp_rtx_timer_pending(sk)) 1704 mptcp_reset_rtx_timer(sk); 1705 1706 if (msk->snd_data_fin_enable && 1707 msk->snd_nxt + 1 == msk->write_seq) 1708 mptcp_schedule_work(sk); 1709 } 1710 } 1711 1712 static void mptcp_set_nospace(struct sock *sk) 1713 { 1714 /* enable autotune */ 1715 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1716 1717 /* will be cleared on avail space */ 1718 set_bit(MPTCP_NOSPACE, &mptcp_sk(sk)->flags); 1719 } 1720 1721 static int mptcp_disconnect(struct sock *sk, int flags); 1722 1723 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1724 size_t len, int *copied_syn) 1725 { 1726 unsigned int saved_flags = msg->msg_flags; 1727 struct mptcp_sock *msk = mptcp_sk(sk); 1728 struct sock *ssk; 1729 int ret; 1730 1731 /* on flags based fastopen the mptcp is supposed to create the 1732 * first subflow right now. Otherwise we are in the defer_connect 1733 * path, and the first subflow must be already present. 1734 * Since the defer_connect flag is cleared after the first succsful 1735 * fastopen attempt, no need to check for additional subflow status. 1736 */ 1737 if (msg->msg_flags & MSG_FASTOPEN) { 1738 ssk = __mptcp_nmpc_sk(msk); 1739 if (IS_ERR(ssk)) 1740 return PTR_ERR(ssk); 1741 } 1742 if (!msk->first) 1743 return -EINVAL; 1744 1745 ssk = msk->first; 1746 1747 lock_sock(ssk); 1748 msg->msg_flags |= MSG_DONTWAIT; 1749 msk->fastopening = 1; 1750 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1751 msk->fastopening = 0; 1752 msg->msg_flags = saved_flags; 1753 release_sock(ssk); 1754 1755 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1756 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1757 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1758 msg->msg_namelen, msg->msg_flags, 1); 1759 1760 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1761 * case of any error, except timeout or signal 1762 */ 1763 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1764 *copied_syn = 0; 1765 } else if (ret && ret != -EINPROGRESS) { 1766 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1767 * __inet_stream_connect() can fail, due to looking check, 1768 * see mptcp_disconnect(). 1769 * Attempt it again outside the problematic scope. 1770 */ 1771 if (!mptcp_disconnect(sk, 0)) 1772 sk->sk_socket->state = SS_UNCONNECTED; 1773 } 1774 inet_clear_bit(DEFER_CONNECT, sk); 1775 1776 return ret; 1777 } 1778 1779 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1780 { 1781 struct mptcp_sock *msk = mptcp_sk(sk); 1782 struct page_frag *pfrag; 1783 size_t copied = 0; 1784 int ret = 0; 1785 long timeo; 1786 1787 /* silently ignore everything else */ 1788 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1789 1790 lock_sock(sk); 1791 1792 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1793 msg->msg_flags & MSG_FASTOPEN)) { 1794 int copied_syn = 0; 1795 1796 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1797 copied += copied_syn; 1798 if (ret == -EINPROGRESS && copied_syn > 0) 1799 goto out; 1800 else if (ret) 1801 goto do_error; 1802 } 1803 1804 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1805 1806 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1807 ret = sk_stream_wait_connect(sk, &timeo); 1808 if (ret) 1809 goto do_error; 1810 } 1811 1812 ret = -EPIPE; 1813 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1814 goto do_error; 1815 1816 pfrag = sk_page_frag(sk); 1817 1818 while (msg_data_left(msg)) { 1819 int total_ts, frag_truesize = 0; 1820 struct mptcp_data_frag *dfrag; 1821 bool dfrag_collapsed; 1822 size_t psize, offset; 1823 1824 /* reuse tail pfrag, if possible, or carve a new one from the 1825 * page allocator 1826 */ 1827 dfrag = mptcp_pending_tail(sk); 1828 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1829 if (!dfrag_collapsed) { 1830 if (!sk_stream_memory_free(sk)) 1831 goto wait_for_memory; 1832 1833 if (!mptcp_page_frag_refill(sk, pfrag)) 1834 goto wait_for_memory; 1835 1836 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1837 frag_truesize = dfrag->overhead; 1838 } 1839 1840 /* we do not bound vs wspace, to allow a single packet. 1841 * memory accounting will prevent execessive memory usage 1842 * anyway 1843 */ 1844 offset = dfrag->offset + dfrag->data_len; 1845 psize = pfrag->size - offset; 1846 psize = min_t(size_t, psize, msg_data_left(msg)); 1847 total_ts = psize + frag_truesize; 1848 1849 if (!sk_wmem_schedule(sk, total_ts)) 1850 goto wait_for_memory; 1851 1852 if (copy_page_from_iter(dfrag->page, offset, psize, 1853 &msg->msg_iter) != psize) { 1854 ret = -EFAULT; 1855 goto do_error; 1856 } 1857 1858 /* data successfully copied into the write queue */ 1859 sk_forward_alloc_add(sk, -total_ts); 1860 copied += psize; 1861 dfrag->data_len += psize; 1862 frag_truesize += psize; 1863 pfrag->offset += frag_truesize; 1864 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1865 1866 /* charge data on mptcp pending queue to the msk socket 1867 * Note: we charge such data both to sk and ssk 1868 */ 1869 sk_wmem_queued_add(sk, frag_truesize); 1870 if (!dfrag_collapsed) { 1871 get_page(dfrag->page); 1872 list_add_tail(&dfrag->list, &msk->rtx_queue); 1873 if (!msk->first_pending) 1874 WRITE_ONCE(msk->first_pending, dfrag); 1875 } 1876 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk, 1877 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1878 !dfrag_collapsed); 1879 1880 continue; 1881 1882 wait_for_memory: 1883 mptcp_set_nospace(sk); 1884 __mptcp_push_pending(sk, msg->msg_flags); 1885 ret = sk_stream_wait_memory(sk, &timeo); 1886 if (ret) 1887 goto do_error; 1888 } 1889 1890 if (copied) 1891 __mptcp_push_pending(sk, msg->msg_flags); 1892 1893 out: 1894 release_sock(sk); 1895 return copied; 1896 1897 do_error: 1898 if (copied) 1899 goto out; 1900 1901 copied = sk_stream_error(sk, msg->msg_flags, ret); 1902 goto out; 1903 } 1904 1905 static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk, 1906 struct msghdr *msg, 1907 size_t len, int flags, 1908 struct scm_timestamping_internal *tss, 1909 int *cmsg_flags) 1910 { 1911 struct sk_buff *skb, *tmp; 1912 int copied = 0; 1913 1914 skb_queue_walk_safe(&msk->receive_queue, skb, tmp) { 1915 u32 offset = MPTCP_SKB_CB(skb)->offset; 1916 u32 data_len = skb->len - offset; 1917 u32 count = min_t(size_t, len - copied, data_len); 1918 int err; 1919 1920 if (!(flags & MSG_TRUNC)) { 1921 err = skb_copy_datagram_msg(skb, offset, msg, count); 1922 if (unlikely(err < 0)) { 1923 if (!copied) 1924 return err; 1925 break; 1926 } 1927 } 1928 1929 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1930 tcp_update_recv_tstamps(skb, tss); 1931 *cmsg_flags |= MPTCP_CMSG_TS; 1932 } 1933 1934 copied += count; 1935 1936 if (count < data_len) { 1937 if (!(flags & MSG_PEEK)) { 1938 MPTCP_SKB_CB(skb)->offset += count; 1939 MPTCP_SKB_CB(skb)->map_seq += count; 1940 msk->bytes_consumed += count; 1941 } 1942 break; 1943 } 1944 1945 if (!(flags & MSG_PEEK)) { 1946 /* we will bulk release the skb memory later */ 1947 skb->destructor = NULL; 1948 WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize); 1949 __skb_unlink(skb, &msk->receive_queue); 1950 __kfree_skb(skb); 1951 msk->bytes_consumed += count; 1952 } 1953 1954 if (copied >= len) 1955 break; 1956 } 1957 1958 return copied; 1959 } 1960 1961 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1962 * 1963 * Only difference: Use highest rtt estimate of the subflows in use. 1964 */ 1965 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1966 { 1967 struct mptcp_subflow_context *subflow; 1968 struct sock *sk = (struct sock *)msk; 1969 u8 scaling_ratio = U8_MAX; 1970 u32 time, advmss = 1; 1971 u64 rtt_us, mstamp; 1972 1973 msk_owned_by_me(msk); 1974 1975 if (copied <= 0) 1976 return; 1977 1978 if (!msk->rcvspace_init) 1979 mptcp_rcv_space_init(msk, msk->first); 1980 1981 msk->rcvq_space.copied += copied; 1982 1983 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1984 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1985 1986 rtt_us = msk->rcvq_space.rtt_us; 1987 if (rtt_us && time < (rtt_us >> 3)) 1988 return; 1989 1990 rtt_us = 0; 1991 mptcp_for_each_subflow(msk, subflow) { 1992 const struct tcp_sock *tp; 1993 u64 sf_rtt_us; 1994 u32 sf_advmss; 1995 1996 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1997 1998 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1999 sf_advmss = READ_ONCE(tp->advmss); 2000 2001 rtt_us = max(sf_rtt_us, rtt_us); 2002 advmss = max(sf_advmss, advmss); 2003 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 2004 } 2005 2006 msk->rcvq_space.rtt_us = rtt_us; 2007 msk->scaling_ratio = scaling_ratio; 2008 if (time < (rtt_us >> 3) || rtt_us == 0) 2009 return; 2010 2011 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 2012 goto new_measure; 2013 2014 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 2015 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 2016 u64 rcvwin, grow; 2017 int rcvbuf; 2018 2019 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 2020 2021 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 2022 2023 do_div(grow, msk->rcvq_space.space); 2024 rcvwin += (grow << 1); 2025 2026 rcvbuf = min_t(u64, __tcp_space_from_win(scaling_ratio, rcvwin), 2027 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 2028 2029 if (rcvbuf > sk->sk_rcvbuf) { 2030 u32 window_clamp; 2031 2032 window_clamp = __tcp_win_from_space(scaling_ratio, rcvbuf); 2033 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 2034 2035 /* Make subflows follow along. If we do not do this, we 2036 * get drops at subflow level if skbs can't be moved to 2037 * the mptcp rx queue fast enough (announced rcv_win can 2038 * exceed ssk->sk_rcvbuf). 2039 */ 2040 mptcp_for_each_subflow(msk, subflow) { 2041 struct sock *ssk; 2042 bool slow; 2043 2044 ssk = mptcp_subflow_tcp_sock(subflow); 2045 slow = lock_sock_fast(ssk); 2046 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 2047 WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp); 2048 tcp_cleanup_rbuf(ssk, 1); 2049 unlock_sock_fast(ssk, slow); 2050 } 2051 } 2052 } 2053 2054 msk->rcvq_space.space = msk->rcvq_space.copied; 2055 new_measure: 2056 msk->rcvq_space.copied = 0; 2057 msk->rcvq_space.time = mstamp; 2058 } 2059 2060 static void __mptcp_update_rmem(struct sock *sk) 2061 { 2062 struct mptcp_sock *msk = mptcp_sk(sk); 2063 2064 if (!msk->rmem_released) 2065 return; 2066 2067 atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc); 2068 mptcp_rmem_uncharge(sk, msk->rmem_released); 2069 WRITE_ONCE(msk->rmem_released, 0); 2070 } 2071 2072 static void __mptcp_splice_receive_queue(struct sock *sk) 2073 { 2074 struct mptcp_sock *msk = mptcp_sk(sk); 2075 2076 skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue); 2077 } 2078 2079 static bool __mptcp_move_skbs(struct mptcp_sock *msk) 2080 { 2081 struct sock *sk = (struct sock *)msk; 2082 unsigned int moved = 0; 2083 bool ret, done; 2084 2085 do { 2086 struct sock *ssk = mptcp_subflow_recv_lookup(msk); 2087 bool slowpath; 2088 2089 /* we can have data pending in the subflows only if the msk 2090 * receive buffer was full at subflow_data_ready() time, 2091 * that is an unlikely slow path. 2092 */ 2093 if (likely(!ssk)) 2094 break; 2095 2096 slowpath = lock_sock_fast(ssk); 2097 mptcp_data_lock(sk); 2098 __mptcp_update_rmem(sk); 2099 done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved); 2100 mptcp_data_unlock(sk); 2101 2102 if (unlikely(ssk->sk_err)) 2103 __mptcp_error_report(sk); 2104 unlock_sock_fast(ssk, slowpath); 2105 } while (!done); 2106 2107 /* acquire the data lock only if some input data is pending */ 2108 ret = moved > 0; 2109 if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) || 2110 !skb_queue_empty_lockless(&sk->sk_receive_queue)) { 2111 mptcp_data_lock(sk); 2112 __mptcp_update_rmem(sk); 2113 ret |= __mptcp_ofo_queue(msk); 2114 __mptcp_splice_receive_queue(sk); 2115 mptcp_data_unlock(sk); 2116 } 2117 if (ret) 2118 mptcp_check_data_fin((struct sock *)msk); 2119 return !skb_queue_empty(&msk->receive_queue); 2120 } 2121 2122 static unsigned int mptcp_inq_hint(const struct sock *sk) 2123 { 2124 const struct mptcp_sock *msk = mptcp_sk(sk); 2125 const struct sk_buff *skb; 2126 2127 skb = skb_peek(&msk->receive_queue); 2128 if (skb) { 2129 u64 hint_val = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 2130 2131 if (hint_val >= INT_MAX) 2132 return INT_MAX; 2133 2134 return (unsigned int)hint_val; 2135 } 2136 2137 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2138 return 1; 2139 2140 return 0; 2141 } 2142 2143 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2144 int flags, int *addr_len) 2145 { 2146 struct mptcp_sock *msk = mptcp_sk(sk); 2147 struct scm_timestamping_internal tss; 2148 int copied = 0, cmsg_flags = 0; 2149 int target; 2150 long timeo; 2151 2152 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2153 if (unlikely(flags & MSG_ERRQUEUE)) 2154 return inet_recv_error(sk, msg, len, addr_len); 2155 2156 lock_sock(sk); 2157 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2158 copied = -ENOTCONN; 2159 goto out_err; 2160 } 2161 2162 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2163 2164 len = min_t(size_t, len, INT_MAX); 2165 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2166 2167 if (unlikely(msk->recvmsg_inq)) 2168 cmsg_flags = MPTCP_CMSG_INQ; 2169 2170 while (copied < len) { 2171 int bytes_read; 2172 2173 bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags); 2174 if (unlikely(bytes_read < 0)) { 2175 if (!copied) 2176 copied = bytes_read; 2177 goto out_err; 2178 } 2179 2180 copied += bytes_read; 2181 2182 /* be sure to advertise window change */ 2183 mptcp_cleanup_rbuf(msk); 2184 2185 if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk)) 2186 continue; 2187 2188 /* only the master socket status is relevant here. The exit 2189 * conditions mirror closely tcp_recvmsg() 2190 */ 2191 if (copied >= target) 2192 break; 2193 2194 if (copied) { 2195 if (sk->sk_err || 2196 sk->sk_state == TCP_CLOSE || 2197 (sk->sk_shutdown & RCV_SHUTDOWN) || 2198 !timeo || 2199 signal_pending(current)) 2200 break; 2201 } else { 2202 if (sk->sk_err) { 2203 copied = sock_error(sk); 2204 break; 2205 } 2206 2207 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2208 /* race breaker: the shutdown could be after the 2209 * previous receive queue check 2210 */ 2211 if (__mptcp_move_skbs(msk)) 2212 continue; 2213 break; 2214 } 2215 2216 if (sk->sk_state == TCP_CLOSE) { 2217 copied = -ENOTCONN; 2218 break; 2219 } 2220 2221 if (!timeo) { 2222 copied = -EAGAIN; 2223 break; 2224 } 2225 2226 if (signal_pending(current)) { 2227 copied = sock_intr_errno(timeo); 2228 break; 2229 } 2230 } 2231 2232 pr_debug("block timeout %ld\n", timeo); 2233 sk_wait_data(sk, &timeo, NULL); 2234 } 2235 2236 out_err: 2237 if (cmsg_flags && copied >= 0) { 2238 if (cmsg_flags & MPTCP_CMSG_TS) 2239 tcp_recv_timestamp(msg, sk, &tss); 2240 2241 if (cmsg_flags & MPTCP_CMSG_INQ) { 2242 unsigned int inq = mptcp_inq_hint(sk); 2243 2244 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2245 } 2246 } 2247 2248 pr_debug("msk=%p rx queue empty=%d:%d copied=%d\n", 2249 msk, skb_queue_empty_lockless(&sk->sk_receive_queue), 2250 skb_queue_empty(&msk->receive_queue), copied); 2251 if (!(flags & MSG_PEEK)) 2252 mptcp_rcv_space_adjust(msk, copied); 2253 2254 release_sock(sk); 2255 return copied; 2256 } 2257 2258 static void mptcp_retransmit_timer(struct timer_list *t) 2259 { 2260 struct inet_connection_sock *icsk = from_timer(icsk, t, 2261 icsk_retransmit_timer); 2262 struct sock *sk = &icsk->icsk_inet.sk; 2263 struct mptcp_sock *msk = mptcp_sk(sk); 2264 2265 bh_lock_sock(sk); 2266 if (!sock_owned_by_user(sk)) { 2267 /* we need a process context to retransmit */ 2268 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2269 mptcp_schedule_work(sk); 2270 } else { 2271 /* delegate our work to tcp_release_cb() */ 2272 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2273 } 2274 bh_unlock_sock(sk); 2275 sock_put(sk); 2276 } 2277 2278 static void mptcp_tout_timer(struct timer_list *t) 2279 { 2280 struct sock *sk = from_timer(sk, t, sk_timer); 2281 2282 mptcp_schedule_work(sk); 2283 sock_put(sk); 2284 } 2285 2286 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2287 * level. 2288 * 2289 * A backup subflow is returned only if that is the only kind available. 2290 */ 2291 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2292 { 2293 struct sock *backup = NULL, *pick = NULL; 2294 struct mptcp_subflow_context *subflow; 2295 int min_stale_count = INT_MAX; 2296 2297 mptcp_for_each_subflow(msk, subflow) { 2298 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2299 2300 if (!__mptcp_subflow_active(subflow)) 2301 continue; 2302 2303 /* still data outstanding at TCP level? skip this */ 2304 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2305 mptcp_pm_subflow_chk_stale(msk, ssk); 2306 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2307 continue; 2308 } 2309 2310 if (subflow->backup || subflow->request_bkup) { 2311 if (!backup) 2312 backup = ssk; 2313 continue; 2314 } 2315 2316 if (!pick) 2317 pick = ssk; 2318 } 2319 2320 if (pick) 2321 return pick; 2322 2323 /* use backup only if there are no progresses anywhere */ 2324 return min_stale_count > 1 ? backup : NULL; 2325 } 2326 2327 bool __mptcp_retransmit_pending_data(struct sock *sk) 2328 { 2329 struct mptcp_data_frag *cur, *rtx_head; 2330 struct mptcp_sock *msk = mptcp_sk(sk); 2331 2332 if (__mptcp_check_fallback(msk)) 2333 return false; 2334 2335 /* the closing socket has some data untransmitted and/or unacked: 2336 * some data in the mptcp rtx queue has not really xmitted yet. 2337 * keep it simple and re-inject the whole mptcp level rtx queue 2338 */ 2339 mptcp_data_lock(sk); 2340 __mptcp_clean_una_wakeup(sk); 2341 rtx_head = mptcp_rtx_head(sk); 2342 if (!rtx_head) { 2343 mptcp_data_unlock(sk); 2344 return false; 2345 } 2346 2347 msk->recovery_snd_nxt = msk->snd_nxt; 2348 msk->recovery = true; 2349 mptcp_data_unlock(sk); 2350 2351 msk->first_pending = rtx_head; 2352 msk->snd_burst = 0; 2353 2354 /* be sure to clear the "sent status" on all re-injected fragments */ 2355 list_for_each_entry(cur, &msk->rtx_queue, list) { 2356 if (!cur->already_sent) 2357 break; 2358 cur->already_sent = 0; 2359 } 2360 2361 return true; 2362 } 2363 2364 /* flags for __mptcp_close_ssk() */ 2365 #define MPTCP_CF_PUSH BIT(1) 2366 #define MPTCP_CF_FASTCLOSE BIT(2) 2367 2368 /* be sure to send a reset only if the caller asked for it, also 2369 * clean completely the subflow status when the subflow reaches 2370 * TCP_CLOSE state 2371 */ 2372 static void __mptcp_subflow_disconnect(struct sock *ssk, 2373 struct mptcp_subflow_context *subflow, 2374 unsigned int flags) 2375 { 2376 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2377 (flags & MPTCP_CF_FASTCLOSE)) { 2378 /* The MPTCP code never wait on the subflow sockets, TCP-level 2379 * disconnect should never fail 2380 */ 2381 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2382 mptcp_subflow_ctx_reset(subflow); 2383 } else { 2384 tcp_shutdown(ssk, SEND_SHUTDOWN); 2385 } 2386 } 2387 2388 /* subflow sockets can be either outgoing (connect) or incoming 2389 * (accept). 2390 * 2391 * Outgoing subflows use in-kernel sockets. 2392 * Incoming subflows do not have their own 'struct socket' allocated, 2393 * so we need to use tcp_close() after detaching them from the mptcp 2394 * parent socket. 2395 */ 2396 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2397 struct mptcp_subflow_context *subflow, 2398 unsigned int flags) 2399 { 2400 struct mptcp_sock *msk = mptcp_sk(sk); 2401 bool dispose_it, need_push = false; 2402 2403 /* If the first subflow moved to a close state before accept, e.g. due 2404 * to an incoming reset or listener shutdown, the subflow socket is 2405 * already deleted by inet_child_forget() and the mptcp socket can't 2406 * survive too. 2407 */ 2408 if (msk->in_accept_queue && msk->first == ssk && 2409 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2410 /* ensure later check in mptcp_worker() will dispose the msk */ 2411 mptcp_set_close_tout(sk, tcp_jiffies32 - (TCP_TIMEWAIT_LEN + 1)); 2412 sock_set_flag(sk, SOCK_DEAD); 2413 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2414 mptcp_subflow_drop_ctx(ssk); 2415 goto out_release; 2416 } 2417 2418 dispose_it = msk->free_first || ssk != msk->first; 2419 if (dispose_it) 2420 list_del(&subflow->node); 2421 2422 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2423 2424 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2425 /* be sure to force the tcp_close path 2426 * to generate the egress reset 2427 */ 2428 ssk->sk_lingertime = 0; 2429 sock_set_flag(ssk, SOCK_LINGER); 2430 subflow->send_fastclose = 1; 2431 } 2432 2433 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2434 if (!dispose_it) { 2435 __mptcp_subflow_disconnect(ssk, subflow, flags); 2436 release_sock(ssk); 2437 2438 goto out; 2439 } 2440 2441 subflow->disposable = 1; 2442 2443 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2444 * the ssk has been already destroyed, we just need to release the 2445 * reference owned by msk; 2446 */ 2447 if (!inet_csk(ssk)->icsk_ulp_ops) { 2448 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2449 kfree_rcu(subflow, rcu); 2450 } else { 2451 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2452 __tcp_close(ssk, 0); 2453 2454 /* close acquired an extra ref */ 2455 __sock_put(ssk); 2456 } 2457 2458 out_release: 2459 __mptcp_subflow_error_report(sk, ssk); 2460 release_sock(ssk); 2461 2462 sock_put(ssk); 2463 2464 if (ssk == msk->first) 2465 WRITE_ONCE(msk->first, NULL); 2466 2467 out: 2468 __mptcp_sync_sndbuf(sk); 2469 if (need_push) 2470 __mptcp_push_pending(sk, 0); 2471 2472 /* Catch every 'all subflows closed' scenario, including peers silently 2473 * closing them, e.g. due to timeout. 2474 * For established sockets, allow an additional timeout before closing, 2475 * as the protocol can still create more subflows. 2476 */ 2477 if (list_is_singular(&msk->conn_list) && msk->first && 2478 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2479 if (sk->sk_state != TCP_ESTABLISHED || 2480 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2481 mptcp_set_state(sk, TCP_CLOSE); 2482 mptcp_close_wake_up(sk); 2483 } else { 2484 mptcp_start_tout_timer(sk); 2485 } 2486 } 2487 } 2488 2489 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2490 struct mptcp_subflow_context *subflow) 2491 { 2492 /* The first subflow can already be closed and still in the list */ 2493 if (subflow->close_event_done) 2494 return; 2495 2496 subflow->close_event_done = true; 2497 2498 if (sk->sk_state == TCP_ESTABLISHED) 2499 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2500 2501 /* subflow aborted before reaching the fully_established status 2502 * attempt the creation of the next subflow 2503 */ 2504 mptcp_pm_subflow_check_next(mptcp_sk(sk), ssk, subflow); 2505 2506 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2507 } 2508 2509 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2510 { 2511 return 0; 2512 } 2513 2514 static void __mptcp_close_subflow(struct sock *sk) 2515 { 2516 struct mptcp_subflow_context *subflow, *tmp; 2517 struct mptcp_sock *msk = mptcp_sk(sk); 2518 2519 might_sleep(); 2520 2521 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2522 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2523 int ssk_state = inet_sk_state_load(ssk); 2524 2525 if (ssk_state != TCP_CLOSE && 2526 (ssk_state != TCP_CLOSE_WAIT || 2527 inet_sk_state_load(sk) != TCP_ESTABLISHED)) 2528 continue; 2529 2530 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2531 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2532 continue; 2533 2534 mptcp_close_ssk(sk, ssk, subflow); 2535 } 2536 2537 } 2538 2539 static bool mptcp_close_tout_expired(const struct sock *sk) 2540 { 2541 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2542 sk->sk_state == TCP_CLOSE) 2543 return false; 2544 2545 return time_after32(tcp_jiffies32, 2546 inet_csk(sk)->icsk_mtup.probe_timestamp + TCP_TIMEWAIT_LEN); 2547 } 2548 2549 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2550 { 2551 struct mptcp_subflow_context *subflow, *tmp; 2552 struct sock *sk = (struct sock *)msk; 2553 2554 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2555 return; 2556 2557 mptcp_token_destroy(msk); 2558 2559 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2560 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2561 bool slow; 2562 2563 slow = lock_sock_fast(tcp_sk); 2564 if (tcp_sk->sk_state != TCP_CLOSE) { 2565 tcp_send_active_reset(tcp_sk, GFP_ATOMIC); 2566 tcp_set_state(tcp_sk, TCP_CLOSE); 2567 } 2568 unlock_sock_fast(tcp_sk, slow); 2569 } 2570 2571 /* Mirror the tcp_reset() error propagation */ 2572 switch (sk->sk_state) { 2573 case TCP_SYN_SENT: 2574 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2575 break; 2576 case TCP_CLOSE_WAIT: 2577 WRITE_ONCE(sk->sk_err, EPIPE); 2578 break; 2579 case TCP_CLOSE: 2580 return; 2581 default: 2582 WRITE_ONCE(sk->sk_err, ECONNRESET); 2583 } 2584 2585 mptcp_set_state(sk, TCP_CLOSE); 2586 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2587 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2588 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2589 2590 /* the calling mptcp_worker will properly destroy the socket */ 2591 if (sock_flag(sk, SOCK_DEAD)) 2592 return; 2593 2594 sk->sk_state_change(sk); 2595 sk_error_report(sk); 2596 } 2597 2598 static void __mptcp_retrans(struct sock *sk) 2599 { 2600 struct mptcp_sock *msk = mptcp_sk(sk); 2601 struct mptcp_subflow_context *subflow; 2602 struct mptcp_sendmsg_info info = {}; 2603 struct mptcp_data_frag *dfrag; 2604 struct sock *ssk; 2605 int ret, err; 2606 u16 len = 0; 2607 2608 mptcp_clean_una_wakeup(sk); 2609 2610 /* first check ssk: need to kick "stale" logic */ 2611 err = mptcp_sched_get_retrans(msk); 2612 dfrag = mptcp_rtx_head(sk); 2613 if (!dfrag) { 2614 if (mptcp_data_fin_enabled(msk)) { 2615 struct inet_connection_sock *icsk = inet_csk(sk); 2616 2617 icsk->icsk_retransmits++; 2618 mptcp_set_datafin_timeout(sk); 2619 mptcp_send_ack(msk); 2620 2621 goto reset_timer; 2622 } 2623 2624 if (!mptcp_send_head(sk)) 2625 return; 2626 2627 goto reset_timer; 2628 } 2629 2630 if (err) 2631 goto reset_timer; 2632 2633 mptcp_for_each_subflow(msk, subflow) { 2634 if (READ_ONCE(subflow->scheduled)) { 2635 u16 copied = 0; 2636 2637 mptcp_subflow_set_scheduled(subflow, false); 2638 2639 ssk = mptcp_subflow_tcp_sock(subflow); 2640 2641 lock_sock(ssk); 2642 2643 /* limit retransmission to the bytes already sent on some subflows */ 2644 info.sent = 0; 2645 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2646 dfrag->already_sent; 2647 while (info.sent < info.limit) { 2648 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2649 if (ret <= 0) 2650 break; 2651 2652 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2653 copied += ret; 2654 info.sent += ret; 2655 } 2656 if (copied) { 2657 len = max(copied, len); 2658 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2659 info.size_goal); 2660 WRITE_ONCE(msk->allow_infinite_fallback, false); 2661 } 2662 2663 release_sock(ssk); 2664 } 2665 } 2666 2667 msk->bytes_retrans += len; 2668 dfrag->already_sent = max(dfrag->already_sent, len); 2669 2670 reset_timer: 2671 mptcp_check_and_set_pending(sk); 2672 2673 if (!mptcp_rtx_timer_pending(sk)) 2674 mptcp_reset_rtx_timer(sk); 2675 } 2676 2677 /* schedule the timeout timer for the relevant event: either close timeout 2678 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2679 */ 2680 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2681 { 2682 struct sock *sk = (struct sock *)msk; 2683 unsigned long timeout, close_timeout; 2684 2685 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2686 return; 2687 2688 close_timeout = inet_csk(sk)->icsk_mtup.probe_timestamp - tcp_jiffies32 + jiffies + 2689 TCP_TIMEWAIT_LEN; 2690 2691 /* the close timeout takes precedence on the fail one, and here at least one of 2692 * them is active 2693 */ 2694 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2695 2696 sk_reset_timer(sk, &sk->sk_timer, timeout); 2697 } 2698 2699 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2700 { 2701 struct sock *ssk = msk->first; 2702 bool slow; 2703 2704 if (!ssk) 2705 return; 2706 2707 pr_debug("MP_FAIL doesn't respond, reset the subflow\n"); 2708 2709 slow = lock_sock_fast(ssk); 2710 mptcp_subflow_reset(ssk); 2711 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2712 unlock_sock_fast(ssk, slow); 2713 } 2714 2715 static void mptcp_do_fastclose(struct sock *sk) 2716 { 2717 struct mptcp_subflow_context *subflow, *tmp; 2718 struct mptcp_sock *msk = mptcp_sk(sk); 2719 2720 mptcp_set_state(sk, TCP_CLOSE); 2721 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2722 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2723 subflow, MPTCP_CF_FASTCLOSE); 2724 } 2725 2726 static void mptcp_worker(struct work_struct *work) 2727 { 2728 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2729 struct sock *sk = (struct sock *)msk; 2730 unsigned long fail_tout; 2731 int state; 2732 2733 lock_sock(sk); 2734 state = sk->sk_state; 2735 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2736 goto unlock; 2737 2738 mptcp_check_fastclose(msk); 2739 2740 mptcp_pm_nl_work(msk); 2741 2742 mptcp_check_send_data_fin(sk); 2743 mptcp_check_data_fin_ack(sk); 2744 mptcp_check_data_fin(sk); 2745 2746 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2747 __mptcp_close_subflow(sk); 2748 2749 if (mptcp_close_tout_expired(sk)) { 2750 mptcp_do_fastclose(sk); 2751 mptcp_close_wake_up(sk); 2752 } 2753 2754 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2755 __mptcp_destroy_sock(sk); 2756 goto unlock; 2757 } 2758 2759 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2760 __mptcp_retrans(sk); 2761 2762 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2763 if (fail_tout && time_after(jiffies, fail_tout)) 2764 mptcp_mp_fail_no_response(msk); 2765 2766 unlock: 2767 release_sock(sk); 2768 sock_put(sk); 2769 } 2770 2771 static void __mptcp_init_sock(struct sock *sk) 2772 { 2773 struct mptcp_sock *msk = mptcp_sk(sk); 2774 2775 INIT_LIST_HEAD(&msk->conn_list); 2776 INIT_LIST_HEAD(&msk->join_list); 2777 INIT_LIST_HEAD(&msk->rtx_queue); 2778 INIT_WORK(&msk->work, mptcp_worker); 2779 __skb_queue_head_init(&msk->receive_queue); 2780 msk->out_of_order_queue = RB_ROOT; 2781 msk->first_pending = NULL; 2782 msk->rmem_fwd_alloc = 0; 2783 WRITE_ONCE(msk->rmem_released, 0); 2784 msk->timer_ival = TCP_RTO_MIN; 2785 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2786 2787 WRITE_ONCE(msk->first, NULL); 2788 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2789 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2790 WRITE_ONCE(msk->allow_infinite_fallback, true); 2791 msk->recovery = false; 2792 msk->subflow_id = 1; 2793 2794 mptcp_pm_data_init(msk); 2795 2796 /* re-use the csk retrans timer for MPTCP-level retrans */ 2797 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2798 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2799 } 2800 2801 static void mptcp_ca_reset(struct sock *sk) 2802 { 2803 struct inet_connection_sock *icsk = inet_csk(sk); 2804 2805 tcp_assign_congestion_control(sk); 2806 strcpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name); 2807 2808 /* no need to keep a reference to the ops, the name will suffice */ 2809 tcp_cleanup_congestion_control(sk); 2810 icsk->icsk_ca_ops = NULL; 2811 } 2812 2813 static int mptcp_init_sock(struct sock *sk) 2814 { 2815 struct net *net = sock_net(sk); 2816 int ret; 2817 2818 __mptcp_init_sock(sk); 2819 2820 if (!mptcp_is_enabled(net)) 2821 return -ENOPROTOOPT; 2822 2823 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2824 return -ENOMEM; 2825 2826 rcu_read_lock(); 2827 ret = mptcp_init_sched(mptcp_sk(sk), 2828 mptcp_sched_find(mptcp_get_scheduler(net))); 2829 rcu_read_unlock(); 2830 if (ret) 2831 return ret; 2832 2833 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2834 2835 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2836 * propagate the correct value 2837 */ 2838 mptcp_ca_reset(sk); 2839 2840 sk_sockets_allocated_inc(sk); 2841 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2842 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2843 2844 return 0; 2845 } 2846 2847 static void __mptcp_clear_xmit(struct sock *sk) 2848 { 2849 struct mptcp_sock *msk = mptcp_sk(sk); 2850 struct mptcp_data_frag *dtmp, *dfrag; 2851 2852 WRITE_ONCE(msk->first_pending, NULL); 2853 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2854 dfrag_clear(sk, dfrag); 2855 } 2856 2857 void mptcp_cancel_work(struct sock *sk) 2858 { 2859 struct mptcp_sock *msk = mptcp_sk(sk); 2860 2861 if (cancel_work_sync(&msk->work)) 2862 __sock_put(sk); 2863 } 2864 2865 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2866 { 2867 lock_sock(ssk); 2868 2869 switch (ssk->sk_state) { 2870 case TCP_LISTEN: 2871 if (!(how & RCV_SHUTDOWN)) 2872 break; 2873 fallthrough; 2874 case TCP_SYN_SENT: 2875 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2876 break; 2877 default: 2878 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2879 pr_debug("Fallback\n"); 2880 ssk->sk_shutdown |= how; 2881 tcp_shutdown(ssk, how); 2882 2883 /* simulate the data_fin ack reception to let the state 2884 * machine move forward 2885 */ 2886 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2887 mptcp_schedule_work(sk); 2888 } else { 2889 pr_debug("Sending DATA_FIN on subflow %p\n", ssk); 2890 tcp_send_ack(ssk); 2891 if (!mptcp_rtx_timer_pending(sk)) 2892 mptcp_reset_rtx_timer(sk); 2893 } 2894 break; 2895 } 2896 2897 release_sock(ssk); 2898 } 2899 2900 void mptcp_set_state(struct sock *sk, int state) 2901 { 2902 int oldstate = sk->sk_state; 2903 2904 switch (state) { 2905 case TCP_ESTABLISHED: 2906 if (oldstate != TCP_ESTABLISHED) 2907 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2908 break; 2909 case TCP_CLOSE_WAIT: 2910 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state: 2911 * MPTCP "accepted" sockets will be created later on. So no 2912 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT. 2913 */ 2914 break; 2915 default: 2916 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2917 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2918 } 2919 2920 inet_sk_state_store(sk, state); 2921 } 2922 2923 static const unsigned char new_state[16] = { 2924 /* current state: new state: action: */ 2925 [0 /* (Invalid) */] = TCP_CLOSE, 2926 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2927 [TCP_SYN_SENT] = TCP_CLOSE, 2928 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2929 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2930 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2931 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2932 [TCP_CLOSE] = TCP_CLOSE, 2933 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2934 [TCP_LAST_ACK] = TCP_LAST_ACK, 2935 [TCP_LISTEN] = TCP_CLOSE, 2936 [TCP_CLOSING] = TCP_CLOSING, 2937 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2938 }; 2939 2940 static int mptcp_close_state(struct sock *sk) 2941 { 2942 int next = (int)new_state[sk->sk_state]; 2943 int ns = next & TCP_STATE_MASK; 2944 2945 mptcp_set_state(sk, ns); 2946 2947 return next & TCP_ACTION_FIN; 2948 } 2949 2950 static void mptcp_check_send_data_fin(struct sock *sk) 2951 { 2952 struct mptcp_subflow_context *subflow; 2953 struct mptcp_sock *msk = mptcp_sk(sk); 2954 2955 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n", 2956 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2957 msk->snd_nxt, msk->write_seq); 2958 2959 /* we still need to enqueue subflows or not really shutting down, 2960 * skip this 2961 */ 2962 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2963 mptcp_send_head(sk)) 2964 return; 2965 2966 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2967 2968 mptcp_for_each_subflow(msk, subflow) { 2969 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2970 2971 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2972 } 2973 } 2974 2975 static void __mptcp_wr_shutdown(struct sock *sk) 2976 { 2977 struct mptcp_sock *msk = mptcp_sk(sk); 2978 2979 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n", 2980 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2981 !!mptcp_send_head(sk)); 2982 2983 /* will be ignored by fallback sockets */ 2984 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2985 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2986 2987 mptcp_check_send_data_fin(sk); 2988 } 2989 2990 static void __mptcp_destroy_sock(struct sock *sk) 2991 { 2992 struct mptcp_sock *msk = mptcp_sk(sk); 2993 2994 pr_debug("msk=%p\n", msk); 2995 2996 might_sleep(); 2997 2998 mptcp_stop_rtx_timer(sk); 2999 sk_stop_timer(sk, &sk->sk_timer); 3000 msk->pm.status = 0; 3001 mptcp_release_sched(msk); 3002 3003 sk->sk_prot->destroy(sk); 3004 3005 WARN_ON_ONCE(msk->rmem_fwd_alloc); 3006 WARN_ON_ONCE(msk->rmem_released); 3007 sk_stream_kill_queues(sk); 3008 xfrm_sk_free_policy(sk); 3009 3010 sock_put(sk); 3011 } 3012 3013 void __mptcp_unaccepted_force_close(struct sock *sk) 3014 { 3015 sock_set_flag(sk, SOCK_DEAD); 3016 mptcp_do_fastclose(sk); 3017 __mptcp_destroy_sock(sk); 3018 } 3019 3020 static __poll_t mptcp_check_readable(struct sock *sk) 3021 { 3022 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 3023 } 3024 3025 static void mptcp_check_listen_stop(struct sock *sk) 3026 { 3027 struct sock *ssk; 3028 3029 if (inet_sk_state_load(sk) != TCP_LISTEN) 3030 return; 3031 3032 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3033 ssk = mptcp_sk(sk)->first; 3034 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3035 return; 3036 3037 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3038 tcp_set_state(ssk, TCP_CLOSE); 3039 mptcp_subflow_queue_clean(sk, ssk); 3040 inet_csk_listen_stop(ssk); 3041 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3042 release_sock(ssk); 3043 } 3044 3045 bool __mptcp_close(struct sock *sk, long timeout) 3046 { 3047 struct mptcp_subflow_context *subflow; 3048 struct mptcp_sock *msk = mptcp_sk(sk); 3049 bool do_cancel_work = false; 3050 int subflows_alive = 0; 3051 3052 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3053 3054 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3055 mptcp_check_listen_stop(sk); 3056 mptcp_set_state(sk, TCP_CLOSE); 3057 goto cleanup; 3058 } 3059 3060 if (mptcp_data_avail(msk) || timeout < 0) { 3061 /* If the msk has read data, or the caller explicitly ask it, 3062 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3063 */ 3064 mptcp_do_fastclose(sk); 3065 timeout = 0; 3066 } else if (mptcp_close_state(sk)) { 3067 __mptcp_wr_shutdown(sk); 3068 } 3069 3070 sk_stream_wait_close(sk, timeout); 3071 3072 cleanup: 3073 /* orphan all the subflows */ 3074 mptcp_for_each_subflow(msk, subflow) { 3075 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3076 bool slow = lock_sock_fast_nested(ssk); 3077 3078 subflows_alive += ssk->sk_state != TCP_CLOSE; 3079 3080 /* since the close timeout takes precedence on the fail one, 3081 * cancel the latter 3082 */ 3083 if (ssk == msk->first) 3084 subflow->fail_tout = 0; 3085 3086 /* detach from the parent socket, but allow data_ready to 3087 * push incoming data into the mptcp stack, to properly ack it 3088 */ 3089 ssk->sk_socket = NULL; 3090 ssk->sk_wq = NULL; 3091 unlock_sock_fast(ssk, slow); 3092 } 3093 sock_orphan(sk); 3094 3095 /* all the subflows are closed, only timeout can change the msk 3096 * state, let's not keep resources busy for no reasons 3097 */ 3098 if (subflows_alive == 0) 3099 mptcp_set_state(sk, TCP_CLOSE); 3100 3101 sock_hold(sk); 3102 pr_debug("msk=%p state=%d\n", sk, sk->sk_state); 3103 if (msk->token) 3104 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3105 3106 if (sk->sk_state == TCP_CLOSE) { 3107 __mptcp_destroy_sock(sk); 3108 do_cancel_work = true; 3109 } else { 3110 mptcp_start_tout_timer(sk); 3111 } 3112 3113 return do_cancel_work; 3114 } 3115 3116 static void mptcp_close(struct sock *sk, long timeout) 3117 { 3118 bool do_cancel_work; 3119 3120 lock_sock(sk); 3121 3122 do_cancel_work = __mptcp_close(sk, timeout); 3123 release_sock(sk); 3124 if (do_cancel_work) 3125 mptcp_cancel_work(sk); 3126 3127 sock_put(sk); 3128 } 3129 3130 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3131 { 3132 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3133 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3134 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3135 3136 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3137 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3138 3139 if (msk6 && ssk6) { 3140 msk6->saddr = ssk6->saddr; 3141 msk6->flow_label = ssk6->flow_label; 3142 } 3143 #endif 3144 3145 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3146 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3147 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3148 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3149 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3150 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3151 } 3152 3153 static int mptcp_disconnect(struct sock *sk, int flags) 3154 { 3155 struct mptcp_sock *msk = mptcp_sk(sk); 3156 3157 /* We are on the fastopen error path. We can't call straight into the 3158 * subflows cleanup code due to lock nesting (we are already under 3159 * msk->firstsocket lock). 3160 */ 3161 if (msk->fastopening) 3162 return -EBUSY; 3163 3164 mptcp_check_listen_stop(sk); 3165 mptcp_set_state(sk, TCP_CLOSE); 3166 3167 mptcp_stop_rtx_timer(sk); 3168 mptcp_stop_tout_timer(sk); 3169 3170 if (msk->token) 3171 mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL); 3172 3173 /* msk->subflow is still intact, the following will not free the first 3174 * subflow 3175 */ 3176 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3177 WRITE_ONCE(msk->flags, 0); 3178 msk->cb_flags = 0; 3179 msk->recovery = false; 3180 msk->can_ack = false; 3181 msk->fully_established = false; 3182 msk->rcv_data_fin = false; 3183 msk->snd_data_fin_enable = false; 3184 msk->rcv_fastclose = false; 3185 msk->use_64bit_ack = false; 3186 msk->bytes_consumed = 0; 3187 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3188 mptcp_pm_data_reset(msk); 3189 mptcp_ca_reset(sk); 3190 msk->bytes_acked = 0; 3191 msk->bytes_received = 0; 3192 msk->bytes_sent = 0; 3193 msk->bytes_retrans = 0; 3194 msk->rcvspace_init = 0; 3195 3196 WRITE_ONCE(sk->sk_shutdown, 0); 3197 sk_error_report(sk); 3198 return 0; 3199 } 3200 3201 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3202 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3203 { 3204 unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo); 3205 3206 return (struct ipv6_pinfo *)(((u8 *)sk) + offset); 3207 } 3208 3209 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3210 { 3211 const struct ipv6_pinfo *np = inet6_sk(sk); 3212 struct ipv6_txoptions *opt; 3213 struct ipv6_pinfo *newnp; 3214 3215 newnp = inet6_sk(newsk); 3216 3217 rcu_read_lock(); 3218 opt = rcu_dereference(np->opt); 3219 if (opt) { 3220 opt = ipv6_dup_options(newsk, opt); 3221 if (!opt) 3222 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3223 } 3224 RCU_INIT_POINTER(newnp->opt, opt); 3225 rcu_read_unlock(); 3226 } 3227 #endif 3228 3229 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3230 { 3231 struct ip_options_rcu *inet_opt, *newopt = NULL; 3232 const struct inet_sock *inet = inet_sk(sk); 3233 struct inet_sock *newinet; 3234 3235 newinet = inet_sk(newsk); 3236 3237 rcu_read_lock(); 3238 inet_opt = rcu_dereference(inet->inet_opt); 3239 if (inet_opt) { 3240 newopt = sock_kmalloc(newsk, sizeof(*inet_opt) + 3241 inet_opt->opt.optlen, GFP_ATOMIC); 3242 if (newopt) 3243 memcpy(newopt, inet_opt, sizeof(*inet_opt) + 3244 inet_opt->opt.optlen); 3245 else 3246 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3247 } 3248 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3249 rcu_read_unlock(); 3250 } 3251 3252 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3253 const struct mptcp_options_received *mp_opt, 3254 struct sock *ssk, 3255 struct request_sock *req) 3256 { 3257 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3258 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3259 struct mptcp_subflow_context *subflow; 3260 struct mptcp_sock *msk; 3261 3262 if (!nsk) 3263 return NULL; 3264 3265 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3266 if (nsk->sk_family == AF_INET6) 3267 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3268 #endif 3269 3270 __mptcp_init_sock(nsk); 3271 3272 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3273 if (nsk->sk_family == AF_INET6) 3274 mptcp_copy_ip6_options(nsk, sk); 3275 else 3276 #endif 3277 mptcp_copy_ip_options(nsk, sk); 3278 3279 msk = mptcp_sk(nsk); 3280 msk->local_key = subflow_req->local_key; 3281 msk->token = subflow_req->token; 3282 msk->in_accept_queue = 1; 3283 WRITE_ONCE(msk->fully_established, false); 3284 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3285 WRITE_ONCE(msk->csum_enabled, true); 3286 3287 msk->write_seq = subflow_req->idsn + 1; 3288 msk->snd_nxt = msk->write_seq; 3289 msk->snd_una = msk->write_seq; 3290 msk->wnd_end = msk->snd_nxt + tcp_sk(ssk)->snd_wnd; 3291 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3292 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3293 3294 /* passive msk is created after the first/MPC subflow */ 3295 msk->subflow_id = 2; 3296 3297 sock_reset_flag(nsk, SOCK_RCU_FREE); 3298 security_inet_csk_clone(nsk, req); 3299 3300 /* this can't race with mptcp_close(), as the msk is 3301 * not yet exposted to user-space 3302 */ 3303 mptcp_set_state(nsk, TCP_ESTABLISHED); 3304 3305 /* The msk maintain a ref to each subflow in the connections list */ 3306 WRITE_ONCE(msk->first, ssk); 3307 subflow = mptcp_subflow_ctx(ssk); 3308 list_add(&subflow->node, &msk->conn_list); 3309 sock_hold(ssk); 3310 3311 /* new mpc subflow takes ownership of the newly 3312 * created mptcp socket 3313 */ 3314 mptcp_token_accept(subflow_req, msk); 3315 3316 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3317 * uses the correct data 3318 */ 3319 mptcp_copy_inaddrs(nsk, ssk); 3320 __mptcp_propagate_sndbuf(nsk, ssk); 3321 3322 mptcp_rcv_space_init(msk, ssk); 3323 3324 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3325 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3326 bh_unlock_sock(nsk); 3327 3328 /* note: the newly allocated socket refcount is 2 now */ 3329 return nsk; 3330 } 3331 3332 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3333 { 3334 const struct tcp_sock *tp = tcp_sk(ssk); 3335 3336 msk->rcvspace_init = 1; 3337 msk->rcvq_space.copied = 0; 3338 msk->rcvq_space.rtt_us = 0; 3339 3340 msk->rcvq_space.time = tp->tcp_mstamp; 3341 3342 /* initial rcv_space offering made to peer */ 3343 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3344 TCP_INIT_CWND * tp->advmss); 3345 if (msk->rcvq_space.space == 0) 3346 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3347 } 3348 3349 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3350 { 3351 struct mptcp_subflow_context *subflow, *tmp; 3352 struct sock *sk = (struct sock *)msk; 3353 3354 __mptcp_clear_xmit(sk); 3355 3356 /* join list will be eventually flushed (with rst) at sock lock release time */ 3357 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3358 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3359 3360 /* move to sk_receive_queue, sk_stream_kill_queues will purge it */ 3361 mptcp_data_lock(sk); 3362 skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue); 3363 __skb_queue_purge(&sk->sk_receive_queue); 3364 skb_rbtree_purge(&msk->out_of_order_queue); 3365 mptcp_data_unlock(sk); 3366 3367 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3368 * inet_sock_destruct() will dispose it 3369 */ 3370 sk_forward_alloc_add(sk, msk->rmem_fwd_alloc); 3371 WRITE_ONCE(msk->rmem_fwd_alloc, 0); 3372 mptcp_token_destroy(msk); 3373 mptcp_pm_free_anno_list(msk); 3374 mptcp_free_local_addr_list(msk); 3375 } 3376 3377 static void mptcp_destroy(struct sock *sk) 3378 { 3379 struct mptcp_sock *msk = mptcp_sk(sk); 3380 3381 /* allow the following to close even the initial subflow */ 3382 msk->free_first = 1; 3383 mptcp_destroy_common(msk, 0); 3384 sk_sockets_allocated_dec(sk); 3385 } 3386 3387 void __mptcp_data_acked(struct sock *sk) 3388 { 3389 if (!sock_owned_by_user(sk)) 3390 __mptcp_clean_una(sk); 3391 else 3392 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3393 3394 if (mptcp_pending_data_fin_ack(sk)) 3395 mptcp_schedule_work(sk); 3396 } 3397 3398 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3399 { 3400 if (!mptcp_send_head(sk)) 3401 return; 3402 3403 if (!sock_owned_by_user(sk)) 3404 __mptcp_subflow_push_pending(sk, ssk, false); 3405 else 3406 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3407 } 3408 3409 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3410 BIT(MPTCP_RETRANSMIT) | \ 3411 BIT(MPTCP_FLUSH_JOIN_LIST)) 3412 3413 /* processes deferred events and flush wmem */ 3414 static void mptcp_release_cb(struct sock *sk) 3415 __must_hold(&sk->sk_lock.slock) 3416 { 3417 struct mptcp_sock *msk = mptcp_sk(sk); 3418 3419 for (;;) { 3420 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3421 struct list_head join_list; 3422 3423 if (!flags) 3424 break; 3425 3426 INIT_LIST_HEAD(&join_list); 3427 list_splice_init(&msk->join_list, &join_list); 3428 3429 /* the following actions acquire the subflow socket lock 3430 * 3431 * 1) can't be invoked in atomic scope 3432 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3433 * datapath acquires the msk socket spinlock while helding 3434 * the subflow socket lock 3435 */ 3436 msk->cb_flags &= ~flags; 3437 spin_unlock_bh(&sk->sk_lock.slock); 3438 3439 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3440 __mptcp_flush_join_list(sk, &join_list); 3441 if (flags & BIT(MPTCP_PUSH_PENDING)) 3442 __mptcp_push_pending(sk, 0); 3443 if (flags & BIT(MPTCP_RETRANSMIT)) 3444 __mptcp_retrans(sk); 3445 3446 cond_resched(); 3447 spin_lock_bh(&sk->sk_lock.slock); 3448 } 3449 3450 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3451 __mptcp_clean_una_wakeup(sk); 3452 if (unlikely(msk->cb_flags)) { 3453 /* be sure to sync the msk state before taking actions 3454 * depending on sk_state (MPTCP_ERROR_REPORT) 3455 * On sk release avoid actions depending on the first subflow 3456 */ 3457 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3458 __mptcp_sync_state(sk, msk->pending_state); 3459 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3460 __mptcp_error_report(sk); 3461 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3462 __mptcp_sync_sndbuf(sk); 3463 } 3464 3465 __mptcp_update_rmem(sk); 3466 } 3467 3468 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3469 * TCP can't schedule delack timer before the subflow is fully established. 3470 * MPTCP uses the delack timer to do 3rd ack retransmissions 3471 */ 3472 static void schedule_3rdack_retransmission(struct sock *ssk) 3473 { 3474 struct inet_connection_sock *icsk = inet_csk(ssk); 3475 struct tcp_sock *tp = tcp_sk(ssk); 3476 unsigned long timeout; 3477 3478 if (mptcp_subflow_ctx(ssk)->fully_established) 3479 return; 3480 3481 /* reschedule with a timeout above RTT, as we must look only for drop */ 3482 if (tp->srtt_us) 3483 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3484 else 3485 timeout = TCP_TIMEOUT_INIT; 3486 timeout += jiffies; 3487 3488 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3489 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 3490 icsk->icsk_ack.timeout = timeout; 3491 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3492 } 3493 3494 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3495 { 3496 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3497 struct sock *sk = subflow->conn; 3498 3499 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3500 mptcp_data_lock(sk); 3501 if (!sock_owned_by_user(sk)) 3502 __mptcp_subflow_push_pending(sk, ssk, true); 3503 else 3504 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3505 mptcp_data_unlock(sk); 3506 } 3507 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3508 mptcp_data_lock(sk); 3509 if (!sock_owned_by_user(sk)) 3510 __mptcp_sync_sndbuf(sk); 3511 else 3512 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3513 mptcp_data_unlock(sk); 3514 } 3515 if (status & BIT(MPTCP_DELEGATE_ACK)) 3516 schedule_3rdack_retransmission(ssk); 3517 } 3518 3519 static int mptcp_hash(struct sock *sk) 3520 { 3521 /* should never be called, 3522 * we hash the TCP subflows not the master socket 3523 */ 3524 WARN_ON_ONCE(1); 3525 return 0; 3526 } 3527 3528 static void mptcp_unhash(struct sock *sk) 3529 { 3530 /* called from sk_common_release(), but nothing to do here */ 3531 } 3532 3533 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3534 { 3535 struct mptcp_sock *msk = mptcp_sk(sk); 3536 3537 pr_debug("msk=%p, ssk=%p\n", msk, msk->first); 3538 if (WARN_ON_ONCE(!msk->first)) 3539 return -EINVAL; 3540 3541 return inet_csk_get_port(msk->first, snum); 3542 } 3543 3544 void mptcp_finish_connect(struct sock *ssk) 3545 { 3546 struct mptcp_subflow_context *subflow; 3547 struct mptcp_sock *msk; 3548 struct sock *sk; 3549 3550 subflow = mptcp_subflow_ctx(ssk); 3551 sk = subflow->conn; 3552 msk = mptcp_sk(sk); 3553 3554 pr_debug("msk=%p, token=%u\n", sk, subflow->token); 3555 3556 subflow->map_seq = subflow->iasn; 3557 subflow->map_subflow_seq = 1; 3558 3559 /* the socket is not connected yet, no msk/subflow ops can access/race 3560 * accessing the field below 3561 */ 3562 WRITE_ONCE(msk->local_key, subflow->local_key); 3563 3564 mptcp_pm_new_connection(msk, ssk, 0); 3565 } 3566 3567 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3568 { 3569 write_lock_bh(&sk->sk_callback_lock); 3570 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3571 sk_set_socket(sk, parent); 3572 sk->sk_uid = SOCK_INODE(parent)->i_uid; 3573 write_unlock_bh(&sk->sk_callback_lock); 3574 } 3575 3576 bool mptcp_finish_join(struct sock *ssk) 3577 { 3578 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3579 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3580 struct sock *parent = (void *)msk; 3581 bool ret = true; 3582 3583 pr_debug("msk=%p, subflow=%p\n", msk, subflow); 3584 3585 /* mptcp socket already closing? */ 3586 if (!mptcp_is_fully_established(parent)) { 3587 subflow->reset_reason = MPTCP_RST_EMPTCP; 3588 return false; 3589 } 3590 3591 /* active subflow, already present inside the conn_list */ 3592 if (!list_empty(&subflow->node)) { 3593 mptcp_subflow_joined(msk, ssk); 3594 mptcp_propagate_sndbuf(parent, ssk); 3595 return true; 3596 } 3597 3598 if (!mptcp_pm_allow_new_subflow(msk)) 3599 goto err_prohibited; 3600 3601 /* If we can't acquire msk socket lock here, let the release callback 3602 * handle it 3603 */ 3604 mptcp_data_lock(parent); 3605 if (!sock_owned_by_user(parent)) { 3606 ret = __mptcp_finish_join(msk, ssk); 3607 if (ret) { 3608 sock_hold(ssk); 3609 list_add_tail(&subflow->node, &msk->conn_list); 3610 } 3611 } else { 3612 sock_hold(ssk); 3613 list_add_tail(&subflow->node, &msk->join_list); 3614 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3615 } 3616 mptcp_data_unlock(parent); 3617 3618 if (!ret) { 3619 err_prohibited: 3620 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3621 return false; 3622 } 3623 3624 return true; 3625 } 3626 3627 static void mptcp_shutdown(struct sock *sk, int how) 3628 { 3629 pr_debug("sk=%p, how=%d\n", sk, how); 3630 3631 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3632 __mptcp_wr_shutdown(sk); 3633 } 3634 3635 static int mptcp_forward_alloc_get(const struct sock *sk) 3636 { 3637 return READ_ONCE(sk->sk_forward_alloc) + 3638 READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc); 3639 } 3640 3641 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3642 { 3643 const struct sock *sk = (void *)msk; 3644 u64 delta; 3645 3646 if (sk->sk_state == TCP_LISTEN) 3647 return -EINVAL; 3648 3649 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3650 return 0; 3651 3652 delta = msk->write_seq - v; 3653 if (__mptcp_check_fallback(msk) && msk->first) { 3654 struct tcp_sock *tp = tcp_sk(msk->first); 3655 3656 /* the first subflow is disconnected after close - see 3657 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3658 * so ignore that status, too. 3659 */ 3660 if (!((1 << msk->first->sk_state) & 3661 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3662 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3663 } 3664 if (delta > INT_MAX) 3665 delta = INT_MAX; 3666 3667 return (int)delta; 3668 } 3669 3670 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3671 { 3672 struct mptcp_sock *msk = mptcp_sk(sk); 3673 bool slow; 3674 3675 switch (cmd) { 3676 case SIOCINQ: 3677 if (sk->sk_state == TCP_LISTEN) 3678 return -EINVAL; 3679 3680 lock_sock(sk); 3681 __mptcp_move_skbs(msk); 3682 *karg = mptcp_inq_hint(sk); 3683 release_sock(sk); 3684 break; 3685 case SIOCOUTQ: 3686 slow = lock_sock_fast(sk); 3687 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3688 unlock_sock_fast(sk, slow); 3689 break; 3690 case SIOCOUTQNSD: 3691 slow = lock_sock_fast(sk); 3692 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3693 unlock_sock_fast(sk, slow); 3694 break; 3695 default: 3696 return -ENOIOCTLCMD; 3697 } 3698 3699 return 0; 3700 } 3701 3702 static void mptcp_subflow_early_fallback(struct mptcp_sock *msk, 3703 struct mptcp_subflow_context *subflow) 3704 { 3705 subflow->request_mptcp = 0; 3706 __mptcp_do_fallback(msk); 3707 } 3708 3709 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3710 { 3711 struct mptcp_subflow_context *subflow; 3712 struct mptcp_sock *msk = mptcp_sk(sk); 3713 int err = -EINVAL; 3714 struct sock *ssk; 3715 3716 ssk = __mptcp_nmpc_sk(msk); 3717 if (IS_ERR(ssk)) 3718 return PTR_ERR(ssk); 3719 3720 mptcp_set_state(sk, TCP_SYN_SENT); 3721 subflow = mptcp_subflow_ctx(ssk); 3722 #ifdef CONFIG_TCP_MD5SIG 3723 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3724 * TCP option space. 3725 */ 3726 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3727 mptcp_subflow_early_fallback(msk, subflow); 3728 #endif 3729 if (subflow->request_mptcp && mptcp_token_new_connect(ssk)) { 3730 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT); 3731 mptcp_subflow_early_fallback(msk, subflow); 3732 } 3733 3734 WRITE_ONCE(msk->write_seq, subflow->idsn); 3735 WRITE_ONCE(msk->snd_nxt, subflow->idsn); 3736 WRITE_ONCE(msk->snd_una, subflow->idsn); 3737 if (likely(!__mptcp_check_fallback(msk))) 3738 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3739 3740 /* if reaching here via the fastopen/sendmsg path, the caller already 3741 * acquired the subflow socket lock, too. 3742 */ 3743 if (!msk->fastopening) 3744 lock_sock(ssk); 3745 3746 /* the following mirrors closely a very small chunk of code from 3747 * __inet_stream_connect() 3748 */ 3749 if (ssk->sk_state != TCP_CLOSE) 3750 goto out; 3751 3752 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3753 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3754 if (err) 3755 goto out; 3756 } 3757 3758 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3759 if (err < 0) 3760 goto out; 3761 3762 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3763 3764 out: 3765 if (!msk->fastopening) 3766 release_sock(ssk); 3767 3768 /* on successful connect, the msk state will be moved to established by 3769 * subflow_finish_connect() 3770 */ 3771 if (unlikely(err)) { 3772 /* avoid leaving a dangling token in an unconnected socket */ 3773 mptcp_token_destroy(msk); 3774 mptcp_set_state(sk, TCP_CLOSE); 3775 return err; 3776 } 3777 3778 mptcp_copy_inaddrs(sk, ssk); 3779 return 0; 3780 } 3781 3782 static struct proto mptcp_prot = { 3783 .name = "MPTCP", 3784 .owner = THIS_MODULE, 3785 .init = mptcp_init_sock, 3786 .connect = mptcp_connect, 3787 .disconnect = mptcp_disconnect, 3788 .close = mptcp_close, 3789 .setsockopt = mptcp_setsockopt, 3790 .getsockopt = mptcp_getsockopt, 3791 .shutdown = mptcp_shutdown, 3792 .destroy = mptcp_destroy, 3793 .sendmsg = mptcp_sendmsg, 3794 .ioctl = mptcp_ioctl, 3795 .recvmsg = mptcp_recvmsg, 3796 .release_cb = mptcp_release_cb, 3797 .hash = mptcp_hash, 3798 .unhash = mptcp_unhash, 3799 .get_port = mptcp_get_port, 3800 .forward_alloc_get = mptcp_forward_alloc_get, 3801 .sockets_allocated = &mptcp_sockets_allocated, 3802 3803 .memory_allocated = &tcp_memory_allocated, 3804 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3805 3806 .memory_pressure = &tcp_memory_pressure, 3807 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3808 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3809 .sysctl_mem = sysctl_tcp_mem, 3810 .obj_size = sizeof(struct mptcp_sock), 3811 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3812 .no_autobind = true, 3813 }; 3814 3815 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3816 { 3817 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3818 struct sock *ssk, *sk = sock->sk; 3819 int err = -EINVAL; 3820 3821 lock_sock(sk); 3822 ssk = __mptcp_nmpc_sk(msk); 3823 if (IS_ERR(ssk)) { 3824 err = PTR_ERR(ssk); 3825 goto unlock; 3826 } 3827 3828 if (sk->sk_family == AF_INET) 3829 err = inet_bind_sk(ssk, uaddr, addr_len); 3830 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3831 else if (sk->sk_family == AF_INET6) 3832 err = inet6_bind_sk(ssk, uaddr, addr_len); 3833 #endif 3834 if (!err) 3835 mptcp_copy_inaddrs(sk, ssk); 3836 3837 unlock: 3838 release_sock(sk); 3839 return err; 3840 } 3841 3842 static int mptcp_listen(struct socket *sock, int backlog) 3843 { 3844 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3845 struct sock *sk = sock->sk; 3846 struct sock *ssk; 3847 int err; 3848 3849 pr_debug("msk=%p\n", msk); 3850 3851 lock_sock(sk); 3852 3853 err = -EINVAL; 3854 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3855 goto unlock; 3856 3857 ssk = __mptcp_nmpc_sk(msk); 3858 if (IS_ERR(ssk)) { 3859 err = PTR_ERR(ssk); 3860 goto unlock; 3861 } 3862 3863 mptcp_set_state(sk, TCP_LISTEN); 3864 sock_set_flag(sk, SOCK_RCU_FREE); 3865 3866 lock_sock(ssk); 3867 err = __inet_listen_sk(ssk, backlog); 3868 release_sock(ssk); 3869 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3870 3871 if (!err) { 3872 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3873 mptcp_copy_inaddrs(sk, ssk); 3874 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3875 } 3876 3877 unlock: 3878 release_sock(sk); 3879 return err; 3880 } 3881 3882 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3883 int flags, bool kern) 3884 { 3885 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3886 struct sock *ssk, *newsk; 3887 int err; 3888 3889 pr_debug("msk=%p\n", msk); 3890 3891 /* Buggy applications can call accept on socket states other then LISTEN 3892 * but no need to allocate the first subflow just to error out. 3893 */ 3894 ssk = READ_ONCE(msk->first); 3895 if (!ssk) 3896 return -EINVAL; 3897 3898 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk)); 3899 newsk = inet_csk_accept(ssk, flags, &err, kern); 3900 if (!newsk) 3901 return err; 3902 3903 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk)); 3904 if (sk_is_mptcp(newsk)) { 3905 struct mptcp_subflow_context *subflow; 3906 struct sock *new_mptcp_sock; 3907 3908 subflow = mptcp_subflow_ctx(newsk); 3909 new_mptcp_sock = subflow->conn; 3910 3911 /* is_mptcp should be false if subflow->conn is missing, see 3912 * subflow_syn_recv_sock() 3913 */ 3914 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3915 tcp_sk(newsk)->is_mptcp = 0; 3916 goto tcpfallback; 3917 } 3918 3919 newsk = new_mptcp_sock; 3920 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3921 3922 newsk->sk_kern_sock = kern; 3923 lock_sock(newsk); 3924 __inet_accept(sock, newsock, newsk); 3925 3926 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3927 msk = mptcp_sk(newsk); 3928 msk->in_accept_queue = 0; 3929 3930 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3931 * This is needed so NOSPACE flag can be set from tcp stack. 3932 */ 3933 mptcp_for_each_subflow(msk, subflow) { 3934 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3935 3936 if (!ssk->sk_socket) 3937 mptcp_sock_graft(ssk, newsock); 3938 } 3939 3940 /* Do late cleanup for the first subflow as necessary. Also 3941 * deal with bad peers not doing a complete shutdown. 3942 */ 3943 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3944 __mptcp_close_ssk(newsk, msk->first, 3945 mptcp_subflow_ctx(msk->first), 0); 3946 if (unlikely(list_is_singular(&msk->conn_list))) 3947 mptcp_set_state(newsk, TCP_CLOSE); 3948 } 3949 } else { 3950 tcpfallback: 3951 newsk->sk_kern_sock = kern; 3952 lock_sock(newsk); 3953 __inet_accept(sock, newsock, newsk); 3954 /* we are being invoked after accepting a non-mp-capable 3955 * flow: sk is a tcp_sk, not an mptcp one. 3956 * 3957 * Hand the socket over to tcp so all further socket ops 3958 * bypass mptcp. 3959 */ 3960 WRITE_ONCE(newsock->sk->sk_socket->ops, 3961 mptcp_fallback_tcp_ops(newsock->sk)); 3962 } 3963 release_sock(newsk); 3964 3965 return 0; 3966 } 3967 3968 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3969 { 3970 struct sock *sk = (struct sock *)msk; 3971 3972 if (sk_stream_is_writeable(sk)) 3973 return EPOLLOUT | EPOLLWRNORM; 3974 3975 mptcp_set_nospace(sk); 3976 smp_mb__after_atomic(); /* msk->flags is changed by write_space cb */ 3977 if (sk_stream_is_writeable(sk)) 3978 return EPOLLOUT | EPOLLWRNORM; 3979 3980 return 0; 3981 } 3982 3983 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3984 struct poll_table_struct *wait) 3985 { 3986 struct sock *sk = sock->sk; 3987 struct mptcp_sock *msk; 3988 __poll_t mask = 0; 3989 u8 shutdown; 3990 int state; 3991 3992 msk = mptcp_sk(sk); 3993 sock_poll_wait(file, sock, wait); 3994 3995 state = inet_sk_state_load(sk); 3996 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags); 3997 if (state == TCP_LISTEN) { 3998 struct sock *ssk = READ_ONCE(msk->first); 3999 4000 if (WARN_ON_ONCE(!ssk)) 4001 return 0; 4002 4003 return inet_csk_listen_poll(ssk); 4004 } 4005 4006 shutdown = READ_ONCE(sk->sk_shutdown); 4007 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 4008 mask |= EPOLLHUP; 4009 if (shutdown & RCV_SHUTDOWN) 4010 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 4011 4012 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 4013 mask |= mptcp_check_readable(sk); 4014 if (shutdown & SEND_SHUTDOWN) 4015 mask |= EPOLLOUT | EPOLLWRNORM; 4016 else 4017 mask |= mptcp_check_writeable(msk); 4018 } else if (state == TCP_SYN_SENT && 4019 inet_test_bit(DEFER_CONNECT, sk)) { 4020 /* cf tcp_poll() note about TFO */ 4021 mask |= EPOLLOUT | EPOLLWRNORM; 4022 } 4023 4024 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 4025 smp_rmb(); 4026 if (READ_ONCE(sk->sk_err)) 4027 mask |= EPOLLERR; 4028 4029 return mask; 4030 } 4031 4032 static const struct proto_ops mptcp_stream_ops = { 4033 .family = PF_INET, 4034 .owner = THIS_MODULE, 4035 .release = inet_release, 4036 .bind = mptcp_bind, 4037 .connect = inet_stream_connect, 4038 .socketpair = sock_no_socketpair, 4039 .accept = mptcp_stream_accept, 4040 .getname = inet_getname, 4041 .poll = mptcp_poll, 4042 .ioctl = inet_ioctl, 4043 .gettstamp = sock_gettstamp, 4044 .listen = mptcp_listen, 4045 .shutdown = inet_shutdown, 4046 .setsockopt = sock_common_setsockopt, 4047 .getsockopt = sock_common_getsockopt, 4048 .sendmsg = inet_sendmsg, 4049 .recvmsg = inet_recvmsg, 4050 .mmap = sock_no_mmap, 4051 .set_rcvlowat = mptcp_set_rcvlowat, 4052 }; 4053 4054 static struct inet_protosw mptcp_protosw = { 4055 .type = SOCK_STREAM, 4056 .protocol = IPPROTO_MPTCP, 4057 .prot = &mptcp_prot, 4058 .ops = &mptcp_stream_ops, 4059 .flags = INET_PROTOSW_ICSK, 4060 }; 4061 4062 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4063 { 4064 struct mptcp_delegated_action *delegated; 4065 struct mptcp_subflow_context *subflow; 4066 int work_done = 0; 4067 4068 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4069 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4070 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4071 4072 bh_lock_sock_nested(ssk); 4073 if (!sock_owned_by_user(ssk)) { 4074 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4075 } else { 4076 /* tcp_release_cb_override already processed 4077 * the action or will do at next release_sock(). 4078 * In both case must dequeue the subflow here - on the same 4079 * CPU that scheduled it. 4080 */ 4081 smp_wmb(); 4082 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4083 } 4084 bh_unlock_sock(ssk); 4085 sock_put(ssk); 4086 4087 if (++work_done == budget) 4088 return budget; 4089 } 4090 4091 /* always provide a 0 'work_done' argument, so that napi_complete_done 4092 * will not try accessing the NULL napi->dev ptr 4093 */ 4094 napi_complete_done(napi, 0); 4095 return work_done; 4096 } 4097 4098 void __init mptcp_proto_init(void) 4099 { 4100 struct mptcp_delegated_action *delegated; 4101 int cpu; 4102 4103 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4104 4105 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4106 panic("Failed to allocate MPTCP pcpu counter\n"); 4107 4108 init_dummy_netdev(&mptcp_napi_dev); 4109 for_each_possible_cpu(cpu) { 4110 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4111 INIT_LIST_HEAD(&delegated->head); 4112 netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi, 4113 mptcp_napi_poll); 4114 napi_enable(&delegated->napi); 4115 } 4116 4117 mptcp_subflow_init(); 4118 mptcp_pm_init(); 4119 mptcp_sched_init(); 4120 mptcp_token_init(); 4121 4122 if (proto_register(&mptcp_prot, 1) != 0) 4123 panic("Failed to register MPTCP proto.\n"); 4124 4125 inet_register_protosw(&mptcp_protosw); 4126 4127 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4128 } 4129 4130 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4131 static const struct proto_ops mptcp_v6_stream_ops = { 4132 .family = PF_INET6, 4133 .owner = THIS_MODULE, 4134 .release = inet6_release, 4135 .bind = mptcp_bind, 4136 .connect = inet_stream_connect, 4137 .socketpair = sock_no_socketpair, 4138 .accept = mptcp_stream_accept, 4139 .getname = inet6_getname, 4140 .poll = mptcp_poll, 4141 .ioctl = inet6_ioctl, 4142 .gettstamp = sock_gettstamp, 4143 .listen = mptcp_listen, 4144 .shutdown = inet_shutdown, 4145 .setsockopt = sock_common_setsockopt, 4146 .getsockopt = sock_common_getsockopt, 4147 .sendmsg = inet6_sendmsg, 4148 .recvmsg = inet6_recvmsg, 4149 .mmap = sock_no_mmap, 4150 #ifdef CONFIG_COMPAT 4151 .compat_ioctl = inet6_compat_ioctl, 4152 #endif 4153 .set_rcvlowat = mptcp_set_rcvlowat, 4154 }; 4155 4156 static struct proto mptcp_v6_prot; 4157 4158 static struct inet_protosw mptcp_v6_protosw = { 4159 .type = SOCK_STREAM, 4160 .protocol = IPPROTO_MPTCP, 4161 .prot = &mptcp_v6_prot, 4162 .ops = &mptcp_v6_stream_ops, 4163 .flags = INET_PROTOSW_ICSK, 4164 }; 4165 4166 int __init mptcp_proto_v6_init(void) 4167 { 4168 int err; 4169 4170 mptcp_v6_prot = mptcp_prot; 4171 strcpy(mptcp_v6_prot.name, "MPTCPv6"); 4172 mptcp_v6_prot.slab = NULL; 4173 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4174 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4175 4176 err = proto_register(&mptcp_v6_prot, 1); 4177 if (err) 4178 return err; 4179 4180 err = inet6_register_protosw(&mptcp_v6_protosw); 4181 if (err) 4182 proto_unregister(&mptcp_v6_prot); 4183 4184 return err; 4185 } 4186 #endif 4187