1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2020 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 28 #include "ieee80211_i.h" 29 #include "driver-ops.h" 30 #include "rate.h" 31 #include "mesh.h" 32 #include "wme.h" 33 #include "led.h" 34 #include "wep.h" 35 36 /* privid for wiphys to determine whether they belong to us or not */ 37 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 38 39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 40 { 41 struct ieee80211_local *local; 42 43 local = wiphy_priv(wiphy); 44 return &local->hw; 45 } 46 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 47 48 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 49 enum nl80211_iftype type) 50 { 51 __le16 fc = hdr->frame_control; 52 53 if (ieee80211_is_data(fc)) { 54 if (len < 24) /* drop incorrect hdr len (data) */ 55 return NULL; 56 57 if (ieee80211_has_a4(fc)) 58 return NULL; 59 if (ieee80211_has_tods(fc)) 60 return hdr->addr1; 61 if (ieee80211_has_fromds(fc)) 62 return hdr->addr2; 63 64 return hdr->addr3; 65 } 66 67 if (ieee80211_is_s1g_beacon(fc)) { 68 struct ieee80211_ext *ext = (void *) hdr; 69 70 return ext->u.s1g_beacon.sa; 71 } 72 73 if (ieee80211_is_mgmt(fc)) { 74 if (len < 24) /* drop incorrect hdr len (mgmt) */ 75 return NULL; 76 return hdr->addr3; 77 } 78 79 if (ieee80211_is_ctl(fc)) { 80 if (ieee80211_is_pspoll(fc)) 81 return hdr->addr1; 82 83 if (ieee80211_is_back_req(fc)) { 84 switch (type) { 85 case NL80211_IFTYPE_STATION: 86 return hdr->addr2; 87 case NL80211_IFTYPE_AP: 88 case NL80211_IFTYPE_AP_VLAN: 89 return hdr->addr1; 90 default: 91 break; /* fall through to the return */ 92 } 93 } 94 } 95 96 return NULL; 97 } 98 EXPORT_SYMBOL(ieee80211_get_bssid); 99 100 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 101 { 102 struct sk_buff *skb; 103 struct ieee80211_hdr *hdr; 104 105 skb_queue_walk(&tx->skbs, skb) { 106 hdr = (struct ieee80211_hdr *) skb->data; 107 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 108 } 109 } 110 111 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 112 int rate, int erp, int short_preamble, 113 int shift) 114 { 115 int dur; 116 117 /* calculate duration (in microseconds, rounded up to next higher 118 * integer if it includes a fractional microsecond) to send frame of 119 * len bytes (does not include FCS) at the given rate. Duration will 120 * also include SIFS. 121 * 122 * rate is in 100 kbps, so divident is multiplied by 10 in the 123 * DIV_ROUND_UP() operations. 124 * 125 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and 126 * is assumed to be 0 otherwise. 127 */ 128 129 if (band == NL80211_BAND_5GHZ || erp) { 130 /* 131 * OFDM: 132 * 133 * N_DBPS = DATARATE x 4 134 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 135 * (16 = SIGNAL time, 6 = tail bits) 136 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 137 * 138 * T_SYM = 4 usec 139 * 802.11a - 18.5.2: aSIFSTime = 16 usec 140 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 141 * signal ext = 6 usec 142 */ 143 dur = 16; /* SIFS + signal ext */ 144 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 145 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 146 147 /* IEEE 802.11-2012 18.3.2.4: all values above are: 148 * * times 4 for 5 MHz 149 * * times 2 for 10 MHz 150 */ 151 dur *= 1 << shift; 152 153 /* rates should already consider the channel bandwidth, 154 * don't apply divisor again. 155 */ 156 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 157 4 * rate); /* T_SYM x N_SYM */ 158 } else { 159 /* 160 * 802.11b or 802.11g with 802.11b compatibility: 161 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 162 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 163 * 164 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 165 * aSIFSTime = 10 usec 166 * aPreambleLength = 144 usec or 72 usec with short preamble 167 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 168 */ 169 dur = 10; /* aSIFSTime = 10 usec */ 170 dur += short_preamble ? (72 + 24) : (144 + 48); 171 172 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 173 } 174 175 return dur; 176 } 177 178 /* Exported duration function for driver use */ 179 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 180 struct ieee80211_vif *vif, 181 enum nl80211_band band, 182 size_t frame_len, 183 struct ieee80211_rate *rate) 184 { 185 struct ieee80211_sub_if_data *sdata; 186 u16 dur; 187 int erp, shift = 0; 188 bool short_preamble = false; 189 190 erp = 0; 191 if (vif) { 192 sdata = vif_to_sdata(vif); 193 short_preamble = sdata->vif.bss_conf.use_short_preamble; 194 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 195 erp = rate->flags & IEEE80211_RATE_ERP_G; 196 shift = ieee80211_vif_get_shift(vif); 197 } 198 199 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 200 short_preamble, shift); 201 202 return cpu_to_le16(dur); 203 } 204 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 205 206 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 207 struct ieee80211_vif *vif, size_t frame_len, 208 const struct ieee80211_tx_info *frame_txctl) 209 { 210 struct ieee80211_local *local = hw_to_local(hw); 211 struct ieee80211_rate *rate; 212 struct ieee80211_sub_if_data *sdata; 213 bool short_preamble; 214 int erp, shift = 0, bitrate; 215 u16 dur; 216 struct ieee80211_supported_band *sband; 217 218 sband = local->hw.wiphy->bands[frame_txctl->band]; 219 220 short_preamble = false; 221 222 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 223 224 erp = 0; 225 if (vif) { 226 sdata = vif_to_sdata(vif); 227 short_preamble = sdata->vif.bss_conf.use_short_preamble; 228 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 229 erp = rate->flags & IEEE80211_RATE_ERP_G; 230 shift = ieee80211_vif_get_shift(vif); 231 } 232 233 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 234 235 /* CTS duration */ 236 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 237 erp, short_preamble, shift); 238 /* Data frame duration */ 239 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 240 erp, short_preamble, shift); 241 /* ACK duration */ 242 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 243 erp, short_preamble, shift); 244 245 return cpu_to_le16(dur); 246 } 247 EXPORT_SYMBOL(ieee80211_rts_duration); 248 249 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 250 struct ieee80211_vif *vif, 251 size_t frame_len, 252 const struct ieee80211_tx_info *frame_txctl) 253 { 254 struct ieee80211_local *local = hw_to_local(hw); 255 struct ieee80211_rate *rate; 256 struct ieee80211_sub_if_data *sdata; 257 bool short_preamble; 258 int erp, shift = 0, bitrate; 259 u16 dur; 260 struct ieee80211_supported_band *sband; 261 262 sband = local->hw.wiphy->bands[frame_txctl->band]; 263 264 short_preamble = false; 265 266 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 267 erp = 0; 268 if (vif) { 269 sdata = vif_to_sdata(vif); 270 short_preamble = sdata->vif.bss_conf.use_short_preamble; 271 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 272 erp = rate->flags & IEEE80211_RATE_ERP_G; 273 shift = ieee80211_vif_get_shift(vif); 274 } 275 276 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 277 278 /* Data frame duration */ 279 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 280 erp, short_preamble, shift); 281 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 282 /* ACK duration */ 283 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 284 erp, short_preamble, shift); 285 } 286 287 return cpu_to_le16(dur); 288 } 289 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 290 291 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 292 { 293 struct ieee80211_local *local = sdata->local; 294 struct ieee80211_vif *vif = &sdata->vif; 295 struct fq *fq = &local->fq; 296 struct ps_data *ps = NULL; 297 struct txq_info *txqi; 298 struct sta_info *sta; 299 int i; 300 301 local_bh_disable(); 302 spin_lock(&fq->lock); 303 304 if (sdata->vif.type == NL80211_IFTYPE_AP) 305 ps = &sdata->bss->ps; 306 307 sdata->vif.txqs_stopped[ac] = false; 308 309 list_for_each_entry_rcu(sta, &local->sta_list, list) { 310 if (sdata != sta->sdata) 311 continue; 312 313 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 314 struct ieee80211_txq *txq = sta->sta.txq[i]; 315 316 if (!txq) 317 continue; 318 319 txqi = to_txq_info(txq); 320 321 if (ac != txq->ac) 322 continue; 323 324 if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, 325 &txqi->flags)) 326 continue; 327 328 spin_unlock(&fq->lock); 329 drv_wake_tx_queue(local, txqi); 330 spin_lock(&fq->lock); 331 } 332 } 333 334 if (!vif->txq) 335 goto out; 336 337 txqi = to_txq_info(vif->txq); 338 339 if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, &txqi->flags) || 340 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 341 goto out; 342 343 spin_unlock(&fq->lock); 344 345 drv_wake_tx_queue(local, txqi); 346 local_bh_enable(); 347 return; 348 out: 349 spin_unlock(&fq->lock); 350 local_bh_enable(); 351 } 352 353 static void 354 __releases(&local->queue_stop_reason_lock) 355 __acquires(&local->queue_stop_reason_lock) 356 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 357 { 358 struct ieee80211_sub_if_data *sdata; 359 int n_acs = IEEE80211_NUM_ACS; 360 int i; 361 362 rcu_read_lock(); 363 364 if (local->hw.queues < IEEE80211_NUM_ACS) 365 n_acs = 1; 366 367 for (i = 0; i < local->hw.queues; i++) { 368 if (local->queue_stop_reasons[i]) 369 continue; 370 371 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 372 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 373 int ac; 374 375 for (ac = 0; ac < n_acs; ac++) { 376 int ac_queue = sdata->vif.hw_queue[ac]; 377 378 if (ac_queue == i || 379 sdata->vif.cab_queue == i) 380 __ieee80211_wake_txqs(sdata, ac); 381 } 382 } 383 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 384 } 385 386 rcu_read_unlock(); 387 } 388 389 void ieee80211_wake_txqs(struct tasklet_struct *t) 390 { 391 struct ieee80211_local *local = from_tasklet(local, t, 392 wake_txqs_tasklet); 393 unsigned long flags; 394 395 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 396 _ieee80211_wake_txqs(local, &flags); 397 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 398 } 399 400 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue) 401 { 402 struct ieee80211_sub_if_data *sdata; 403 int n_acs = IEEE80211_NUM_ACS; 404 405 if (local->ops->wake_tx_queue) 406 return; 407 408 if (local->hw.queues < IEEE80211_NUM_ACS) 409 n_acs = 1; 410 411 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 412 int ac; 413 414 if (!sdata->dev) 415 continue; 416 417 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE && 418 local->queue_stop_reasons[sdata->vif.cab_queue] != 0) 419 continue; 420 421 for (ac = 0; ac < n_acs; ac++) { 422 int ac_queue = sdata->vif.hw_queue[ac]; 423 424 if (ac_queue == queue || 425 (sdata->vif.cab_queue == queue && 426 local->queue_stop_reasons[ac_queue] == 0 && 427 skb_queue_empty(&local->pending[ac_queue]))) 428 netif_wake_subqueue(sdata->dev, ac); 429 } 430 } 431 } 432 433 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 434 enum queue_stop_reason reason, 435 bool refcounted, 436 unsigned long *flags) 437 { 438 struct ieee80211_local *local = hw_to_local(hw); 439 440 trace_wake_queue(local, queue, reason); 441 442 if (WARN_ON(queue >= hw->queues)) 443 return; 444 445 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 446 return; 447 448 if (!refcounted) { 449 local->q_stop_reasons[queue][reason] = 0; 450 } else { 451 local->q_stop_reasons[queue][reason]--; 452 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 453 local->q_stop_reasons[queue][reason] = 0; 454 } 455 456 if (local->q_stop_reasons[queue][reason] == 0) 457 __clear_bit(reason, &local->queue_stop_reasons[queue]); 458 459 if (local->queue_stop_reasons[queue] != 0) 460 /* someone still has this queue stopped */ 461 return; 462 463 if (skb_queue_empty(&local->pending[queue])) { 464 rcu_read_lock(); 465 ieee80211_propagate_queue_wake(local, queue); 466 rcu_read_unlock(); 467 } else 468 tasklet_schedule(&local->tx_pending_tasklet); 469 470 /* 471 * Calling _ieee80211_wake_txqs here can be a problem because it may 472 * release queue_stop_reason_lock which has been taken by 473 * __ieee80211_wake_queue's caller. It is certainly not very nice to 474 * release someone's lock, but it is fine because all the callers of 475 * __ieee80211_wake_queue call it right before releasing the lock. 476 */ 477 if (local->ops->wake_tx_queue) { 478 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 479 tasklet_schedule(&local->wake_txqs_tasklet); 480 else 481 _ieee80211_wake_txqs(local, flags); 482 } 483 } 484 485 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 486 enum queue_stop_reason reason, 487 bool refcounted) 488 { 489 struct ieee80211_local *local = hw_to_local(hw); 490 unsigned long flags; 491 492 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 493 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 494 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 495 } 496 497 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 498 { 499 ieee80211_wake_queue_by_reason(hw, queue, 500 IEEE80211_QUEUE_STOP_REASON_DRIVER, 501 false); 502 } 503 EXPORT_SYMBOL(ieee80211_wake_queue); 504 505 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 506 enum queue_stop_reason reason, 507 bool refcounted) 508 { 509 struct ieee80211_local *local = hw_to_local(hw); 510 struct ieee80211_sub_if_data *sdata; 511 int n_acs = IEEE80211_NUM_ACS; 512 513 trace_stop_queue(local, queue, reason); 514 515 if (WARN_ON(queue >= hw->queues)) 516 return; 517 518 if (!refcounted) 519 local->q_stop_reasons[queue][reason] = 1; 520 else 521 local->q_stop_reasons[queue][reason]++; 522 523 if (__test_and_set_bit(reason, &local->queue_stop_reasons[queue])) 524 return; 525 526 if (local->hw.queues < IEEE80211_NUM_ACS) 527 n_acs = 1; 528 529 rcu_read_lock(); 530 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 531 int ac; 532 533 if (!sdata->dev) 534 continue; 535 536 for (ac = 0; ac < n_acs; ac++) { 537 if (sdata->vif.hw_queue[ac] == queue || 538 sdata->vif.cab_queue == queue) { 539 if (!local->ops->wake_tx_queue) { 540 netif_stop_subqueue(sdata->dev, ac); 541 continue; 542 } 543 spin_lock(&local->fq.lock); 544 sdata->vif.txqs_stopped[ac] = true; 545 spin_unlock(&local->fq.lock); 546 } 547 } 548 } 549 rcu_read_unlock(); 550 } 551 552 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 553 enum queue_stop_reason reason, 554 bool refcounted) 555 { 556 struct ieee80211_local *local = hw_to_local(hw); 557 unsigned long flags; 558 559 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 560 __ieee80211_stop_queue(hw, queue, reason, refcounted); 561 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 562 } 563 564 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 565 { 566 ieee80211_stop_queue_by_reason(hw, queue, 567 IEEE80211_QUEUE_STOP_REASON_DRIVER, 568 false); 569 } 570 EXPORT_SYMBOL(ieee80211_stop_queue); 571 572 void ieee80211_add_pending_skb(struct ieee80211_local *local, 573 struct sk_buff *skb) 574 { 575 struct ieee80211_hw *hw = &local->hw; 576 unsigned long flags; 577 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 578 int queue = info->hw_queue; 579 580 if (WARN_ON(!info->control.vif)) { 581 ieee80211_free_txskb(&local->hw, skb); 582 return; 583 } 584 585 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 586 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 587 false); 588 __skb_queue_tail(&local->pending[queue], skb); 589 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 590 false, &flags); 591 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 592 } 593 594 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 595 struct sk_buff_head *skbs) 596 { 597 struct ieee80211_hw *hw = &local->hw; 598 struct sk_buff *skb; 599 unsigned long flags; 600 int queue, i; 601 602 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 603 while ((skb = skb_dequeue(skbs))) { 604 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 605 606 if (WARN_ON(!info->control.vif)) { 607 ieee80211_free_txskb(&local->hw, skb); 608 continue; 609 } 610 611 queue = info->hw_queue; 612 613 __ieee80211_stop_queue(hw, queue, 614 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 615 false); 616 617 __skb_queue_tail(&local->pending[queue], skb); 618 } 619 620 for (i = 0; i < hw->queues; i++) 621 __ieee80211_wake_queue(hw, i, 622 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 623 false, &flags); 624 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 625 } 626 627 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 628 unsigned long queues, 629 enum queue_stop_reason reason, 630 bool refcounted) 631 { 632 struct ieee80211_local *local = hw_to_local(hw); 633 unsigned long flags; 634 int i; 635 636 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 637 638 for_each_set_bit(i, &queues, hw->queues) 639 __ieee80211_stop_queue(hw, i, reason, refcounted); 640 641 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 642 } 643 644 void ieee80211_stop_queues(struct ieee80211_hw *hw) 645 { 646 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 647 IEEE80211_QUEUE_STOP_REASON_DRIVER, 648 false); 649 } 650 EXPORT_SYMBOL(ieee80211_stop_queues); 651 652 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 653 { 654 struct ieee80211_local *local = hw_to_local(hw); 655 unsigned long flags; 656 int ret; 657 658 if (WARN_ON(queue >= hw->queues)) 659 return true; 660 661 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 662 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 663 &local->queue_stop_reasons[queue]); 664 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 665 return ret; 666 } 667 EXPORT_SYMBOL(ieee80211_queue_stopped); 668 669 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 670 unsigned long queues, 671 enum queue_stop_reason reason, 672 bool refcounted) 673 { 674 struct ieee80211_local *local = hw_to_local(hw); 675 unsigned long flags; 676 int i; 677 678 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 679 680 for_each_set_bit(i, &queues, hw->queues) 681 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 682 683 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 684 } 685 686 void ieee80211_wake_queues(struct ieee80211_hw *hw) 687 { 688 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 689 IEEE80211_QUEUE_STOP_REASON_DRIVER, 690 false); 691 } 692 EXPORT_SYMBOL(ieee80211_wake_queues); 693 694 static unsigned int 695 ieee80211_get_vif_queues(struct ieee80211_local *local, 696 struct ieee80211_sub_if_data *sdata) 697 { 698 unsigned int queues; 699 700 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 701 int ac; 702 703 queues = 0; 704 705 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 706 queues |= BIT(sdata->vif.hw_queue[ac]); 707 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 708 queues |= BIT(sdata->vif.cab_queue); 709 } else { 710 /* all queues */ 711 queues = BIT(local->hw.queues) - 1; 712 } 713 714 return queues; 715 } 716 717 void __ieee80211_flush_queues(struct ieee80211_local *local, 718 struct ieee80211_sub_if_data *sdata, 719 unsigned int queues, bool drop) 720 { 721 if (!local->ops->flush) 722 return; 723 724 /* 725 * If no queue was set, or if the HW doesn't support 726 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 727 */ 728 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 729 queues = ieee80211_get_vif_queues(local, sdata); 730 731 ieee80211_stop_queues_by_reason(&local->hw, queues, 732 IEEE80211_QUEUE_STOP_REASON_FLUSH, 733 false); 734 735 drv_flush(local, sdata, queues, drop); 736 737 ieee80211_wake_queues_by_reason(&local->hw, queues, 738 IEEE80211_QUEUE_STOP_REASON_FLUSH, 739 false); 740 } 741 742 void ieee80211_flush_queues(struct ieee80211_local *local, 743 struct ieee80211_sub_if_data *sdata, bool drop) 744 { 745 __ieee80211_flush_queues(local, sdata, 0, drop); 746 } 747 748 void ieee80211_stop_vif_queues(struct ieee80211_local *local, 749 struct ieee80211_sub_if_data *sdata, 750 enum queue_stop_reason reason) 751 { 752 ieee80211_stop_queues_by_reason(&local->hw, 753 ieee80211_get_vif_queues(local, sdata), 754 reason, true); 755 } 756 757 void ieee80211_wake_vif_queues(struct ieee80211_local *local, 758 struct ieee80211_sub_if_data *sdata, 759 enum queue_stop_reason reason) 760 { 761 ieee80211_wake_queues_by_reason(&local->hw, 762 ieee80211_get_vif_queues(local, sdata), 763 reason, true); 764 } 765 766 static void __iterate_interfaces(struct ieee80211_local *local, 767 u32 iter_flags, 768 void (*iterator)(void *data, u8 *mac, 769 struct ieee80211_vif *vif), 770 void *data) 771 { 772 struct ieee80211_sub_if_data *sdata; 773 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 774 775 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 776 switch (sdata->vif.type) { 777 case NL80211_IFTYPE_MONITOR: 778 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) 779 continue; 780 break; 781 case NL80211_IFTYPE_AP_VLAN: 782 continue; 783 default: 784 break; 785 } 786 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 787 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 788 continue; 789 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && 790 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 791 continue; 792 if (ieee80211_sdata_running(sdata) || !active_only) 793 iterator(data, sdata->vif.addr, 794 &sdata->vif); 795 } 796 797 sdata = rcu_dereference_check(local->monitor_sdata, 798 lockdep_is_held(&local->iflist_mtx) || 799 lockdep_rtnl_is_held()); 800 if (sdata && 801 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 802 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 803 iterator(data, sdata->vif.addr, &sdata->vif); 804 } 805 806 void ieee80211_iterate_interfaces( 807 struct ieee80211_hw *hw, u32 iter_flags, 808 void (*iterator)(void *data, u8 *mac, 809 struct ieee80211_vif *vif), 810 void *data) 811 { 812 struct ieee80211_local *local = hw_to_local(hw); 813 814 mutex_lock(&local->iflist_mtx); 815 __iterate_interfaces(local, iter_flags, iterator, data); 816 mutex_unlock(&local->iflist_mtx); 817 } 818 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 819 820 void ieee80211_iterate_active_interfaces_atomic( 821 struct ieee80211_hw *hw, u32 iter_flags, 822 void (*iterator)(void *data, u8 *mac, 823 struct ieee80211_vif *vif), 824 void *data) 825 { 826 struct ieee80211_local *local = hw_to_local(hw); 827 828 rcu_read_lock(); 829 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 830 iterator, data); 831 rcu_read_unlock(); 832 } 833 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 834 835 void ieee80211_iterate_active_interfaces_mtx( 836 struct ieee80211_hw *hw, u32 iter_flags, 837 void (*iterator)(void *data, u8 *mac, 838 struct ieee80211_vif *vif), 839 void *data) 840 { 841 struct ieee80211_local *local = hw_to_local(hw); 842 843 lockdep_assert_wiphy(hw->wiphy); 844 845 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 846 iterator, data); 847 } 848 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx); 849 850 static void __iterate_stations(struct ieee80211_local *local, 851 void (*iterator)(void *data, 852 struct ieee80211_sta *sta), 853 void *data) 854 { 855 struct sta_info *sta; 856 857 list_for_each_entry_rcu(sta, &local->sta_list, list) { 858 if (!sta->uploaded) 859 continue; 860 861 iterator(data, &sta->sta); 862 } 863 } 864 865 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 866 void (*iterator)(void *data, 867 struct ieee80211_sta *sta), 868 void *data) 869 { 870 struct ieee80211_local *local = hw_to_local(hw); 871 872 rcu_read_lock(); 873 __iterate_stations(local, iterator, data); 874 rcu_read_unlock(); 875 } 876 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 877 878 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 879 { 880 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 881 882 if (!ieee80211_sdata_running(sdata) || 883 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 884 return NULL; 885 return &sdata->vif; 886 } 887 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 888 889 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 890 { 891 if (!vif) 892 return NULL; 893 894 return &vif_to_sdata(vif)->wdev; 895 } 896 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 897 898 /* 899 * Nothing should have been stuffed into the workqueue during 900 * the suspend->resume cycle. Since we can't check each caller 901 * of this function if we are already quiescing / suspended, 902 * check here and don't WARN since this can actually happen when 903 * the rx path (for example) is racing against __ieee80211_suspend 904 * and suspending / quiescing was set after the rx path checked 905 * them. 906 */ 907 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 908 { 909 if (local->quiescing || (local->suspended && !local->resuming)) { 910 pr_warn("queueing ieee80211 work while going to suspend\n"); 911 return false; 912 } 913 914 return true; 915 } 916 917 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 918 { 919 struct ieee80211_local *local = hw_to_local(hw); 920 921 if (!ieee80211_can_queue_work(local)) 922 return; 923 924 queue_work(local->workqueue, work); 925 } 926 EXPORT_SYMBOL(ieee80211_queue_work); 927 928 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 929 struct delayed_work *dwork, 930 unsigned long delay) 931 { 932 struct ieee80211_local *local = hw_to_local(hw); 933 934 if (!ieee80211_can_queue_work(local)) 935 return; 936 937 queue_delayed_work(local->workqueue, dwork, delay); 938 } 939 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 940 941 static void ieee80211_parse_extension_element(u32 *crc, 942 const struct element *elem, 943 struct ieee802_11_elems *elems) 944 { 945 const void *data = elem->data + 1; 946 u8 len = elem->datalen - 1; 947 948 switch (elem->data[0]) { 949 case WLAN_EID_EXT_HE_MU_EDCA: 950 if (len == sizeof(*elems->mu_edca_param_set)) { 951 elems->mu_edca_param_set = data; 952 if (crc) 953 *crc = crc32_be(*crc, (void *)elem, 954 elem->datalen + 2); 955 } 956 break; 957 case WLAN_EID_EXT_HE_CAPABILITY: 958 elems->he_cap = data; 959 elems->he_cap_len = len; 960 break; 961 case WLAN_EID_EXT_HE_OPERATION: 962 if (len >= sizeof(*elems->he_operation) && 963 len >= ieee80211_he_oper_size(data) - 1) { 964 if (crc) 965 *crc = crc32_be(*crc, (void *)elem, 966 elem->datalen + 2); 967 elems->he_operation = data; 968 } 969 break; 970 case WLAN_EID_EXT_UORA: 971 if (len == 1) 972 elems->uora_element = data; 973 break; 974 case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME: 975 if (len == 3) 976 elems->max_channel_switch_time = data; 977 break; 978 case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION: 979 if (len == sizeof(*elems->mbssid_config_ie)) 980 elems->mbssid_config_ie = data; 981 break; 982 case WLAN_EID_EXT_HE_SPR: 983 if (len >= sizeof(*elems->he_spr) && 984 len >= ieee80211_he_spr_size(data)) 985 elems->he_spr = data; 986 break; 987 case WLAN_EID_EXT_HE_6GHZ_CAPA: 988 if (len == sizeof(*elems->he_6ghz_capa)) 989 elems->he_6ghz_capa = data; 990 break; 991 } 992 } 993 994 static u32 995 _ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, 996 struct ieee802_11_elems *elems, 997 u64 filter, u32 crc, 998 const struct element *check_inherit) 999 { 1000 const struct element *elem; 1001 bool calc_crc = filter != 0; 1002 DECLARE_BITMAP(seen_elems, 256); 1003 const u8 *ie; 1004 1005 bitmap_zero(seen_elems, 256); 1006 1007 for_each_element(elem, start, len) { 1008 bool elem_parse_failed; 1009 u8 id = elem->id; 1010 u8 elen = elem->datalen; 1011 const u8 *pos = elem->data; 1012 1013 if (check_inherit && 1014 !cfg80211_is_element_inherited(elem, 1015 check_inherit)) 1016 continue; 1017 1018 switch (id) { 1019 case WLAN_EID_SSID: 1020 case WLAN_EID_SUPP_RATES: 1021 case WLAN_EID_FH_PARAMS: 1022 case WLAN_EID_DS_PARAMS: 1023 case WLAN_EID_CF_PARAMS: 1024 case WLAN_EID_TIM: 1025 case WLAN_EID_IBSS_PARAMS: 1026 case WLAN_EID_CHALLENGE: 1027 case WLAN_EID_RSN: 1028 case WLAN_EID_ERP_INFO: 1029 case WLAN_EID_EXT_SUPP_RATES: 1030 case WLAN_EID_HT_CAPABILITY: 1031 case WLAN_EID_HT_OPERATION: 1032 case WLAN_EID_VHT_CAPABILITY: 1033 case WLAN_EID_VHT_OPERATION: 1034 case WLAN_EID_MESH_ID: 1035 case WLAN_EID_MESH_CONFIG: 1036 case WLAN_EID_PEER_MGMT: 1037 case WLAN_EID_PREQ: 1038 case WLAN_EID_PREP: 1039 case WLAN_EID_PERR: 1040 case WLAN_EID_RANN: 1041 case WLAN_EID_CHANNEL_SWITCH: 1042 case WLAN_EID_EXT_CHANSWITCH_ANN: 1043 case WLAN_EID_COUNTRY: 1044 case WLAN_EID_PWR_CONSTRAINT: 1045 case WLAN_EID_TIMEOUT_INTERVAL: 1046 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1047 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1048 case WLAN_EID_CHAN_SWITCH_PARAM: 1049 case WLAN_EID_EXT_CAPABILITY: 1050 case WLAN_EID_CHAN_SWITCH_TIMING: 1051 case WLAN_EID_LINK_ID: 1052 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1053 case WLAN_EID_RSNX: 1054 case WLAN_EID_S1G_BCN_COMPAT: 1055 case WLAN_EID_S1G_CAPABILITIES: 1056 case WLAN_EID_S1G_OPERATION: 1057 case WLAN_EID_AID_RESPONSE: 1058 case WLAN_EID_S1G_SHORT_BCN_INTERVAL: 1059 /* 1060 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible 1061 * that if the content gets bigger it might be needed more than once 1062 */ 1063 if (test_bit(id, seen_elems)) { 1064 elems->parse_error = true; 1065 continue; 1066 } 1067 break; 1068 } 1069 1070 if (calc_crc && id < 64 && (filter & (1ULL << id))) 1071 crc = crc32_be(crc, pos - 2, elen + 2); 1072 1073 elem_parse_failed = false; 1074 1075 switch (id) { 1076 case WLAN_EID_LINK_ID: 1077 if (elen + 2 != sizeof(struct ieee80211_tdls_lnkie)) { 1078 elem_parse_failed = true; 1079 break; 1080 } 1081 elems->lnk_id = (void *)(pos - 2); 1082 break; 1083 case WLAN_EID_CHAN_SWITCH_TIMING: 1084 if (elen != sizeof(struct ieee80211_ch_switch_timing)) { 1085 elem_parse_failed = true; 1086 break; 1087 } 1088 elems->ch_sw_timing = (void *)pos; 1089 break; 1090 case WLAN_EID_EXT_CAPABILITY: 1091 elems->ext_capab = pos; 1092 elems->ext_capab_len = elen; 1093 break; 1094 case WLAN_EID_SSID: 1095 elems->ssid = pos; 1096 elems->ssid_len = elen; 1097 break; 1098 case WLAN_EID_SUPP_RATES: 1099 elems->supp_rates = pos; 1100 elems->supp_rates_len = elen; 1101 break; 1102 case WLAN_EID_DS_PARAMS: 1103 if (elen >= 1) 1104 elems->ds_params = pos; 1105 else 1106 elem_parse_failed = true; 1107 break; 1108 case WLAN_EID_TIM: 1109 if (elen >= sizeof(struct ieee80211_tim_ie)) { 1110 elems->tim = (void *)pos; 1111 elems->tim_len = elen; 1112 } else 1113 elem_parse_failed = true; 1114 break; 1115 case WLAN_EID_CHALLENGE: 1116 elems->challenge = pos; 1117 elems->challenge_len = elen; 1118 break; 1119 case WLAN_EID_VENDOR_SPECIFIC: 1120 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && 1121 pos[2] == 0xf2) { 1122 /* Microsoft OUI (00:50:F2) */ 1123 1124 if (calc_crc) 1125 crc = crc32_be(crc, pos - 2, elen + 2); 1126 1127 if (elen >= 5 && pos[3] == 2) { 1128 /* OUI Type 2 - WMM IE */ 1129 if (pos[4] == 0) { 1130 elems->wmm_info = pos; 1131 elems->wmm_info_len = elen; 1132 } else if (pos[4] == 1) { 1133 elems->wmm_param = pos; 1134 elems->wmm_param_len = elen; 1135 } 1136 } 1137 } 1138 break; 1139 case WLAN_EID_RSN: 1140 elems->rsn = pos; 1141 elems->rsn_len = elen; 1142 break; 1143 case WLAN_EID_ERP_INFO: 1144 if (elen >= 1) 1145 elems->erp_info = pos; 1146 else 1147 elem_parse_failed = true; 1148 break; 1149 case WLAN_EID_EXT_SUPP_RATES: 1150 elems->ext_supp_rates = pos; 1151 elems->ext_supp_rates_len = elen; 1152 break; 1153 case WLAN_EID_HT_CAPABILITY: 1154 if (elen >= sizeof(struct ieee80211_ht_cap)) 1155 elems->ht_cap_elem = (void *)pos; 1156 else 1157 elem_parse_failed = true; 1158 break; 1159 case WLAN_EID_HT_OPERATION: 1160 if (elen >= sizeof(struct ieee80211_ht_operation)) 1161 elems->ht_operation = (void *)pos; 1162 else 1163 elem_parse_failed = true; 1164 break; 1165 case WLAN_EID_VHT_CAPABILITY: 1166 if (elen >= sizeof(struct ieee80211_vht_cap)) 1167 elems->vht_cap_elem = (void *)pos; 1168 else 1169 elem_parse_failed = true; 1170 break; 1171 case WLAN_EID_VHT_OPERATION: 1172 if (elen >= sizeof(struct ieee80211_vht_operation)) { 1173 elems->vht_operation = (void *)pos; 1174 if (calc_crc) 1175 crc = crc32_be(crc, pos - 2, elen + 2); 1176 break; 1177 } 1178 elem_parse_failed = true; 1179 break; 1180 case WLAN_EID_OPMODE_NOTIF: 1181 if (elen > 0) { 1182 elems->opmode_notif = pos; 1183 if (calc_crc) 1184 crc = crc32_be(crc, pos - 2, elen + 2); 1185 break; 1186 } 1187 elem_parse_failed = true; 1188 break; 1189 case WLAN_EID_MESH_ID: 1190 elems->mesh_id = pos; 1191 elems->mesh_id_len = elen; 1192 break; 1193 case WLAN_EID_MESH_CONFIG: 1194 if (elen >= sizeof(struct ieee80211_meshconf_ie)) 1195 elems->mesh_config = (void *)pos; 1196 else 1197 elem_parse_failed = true; 1198 break; 1199 case WLAN_EID_PEER_MGMT: 1200 elems->peering = pos; 1201 elems->peering_len = elen; 1202 break; 1203 case WLAN_EID_MESH_AWAKE_WINDOW: 1204 if (elen >= 2) 1205 elems->awake_window = (void *)pos; 1206 break; 1207 case WLAN_EID_PREQ: 1208 elems->preq = pos; 1209 elems->preq_len = elen; 1210 break; 1211 case WLAN_EID_PREP: 1212 elems->prep = pos; 1213 elems->prep_len = elen; 1214 break; 1215 case WLAN_EID_PERR: 1216 elems->perr = pos; 1217 elems->perr_len = elen; 1218 break; 1219 case WLAN_EID_RANN: 1220 if (elen >= sizeof(struct ieee80211_rann_ie)) 1221 elems->rann = (void *)pos; 1222 else 1223 elem_parse_failed = true; 1224 break; 1225 case WLAN_EID_CHANNEL_SWITCH: 1226 if (elen != sizeof(struct ieee80211_channel_sw_ie)) { 1227 elem_parse_failed = true; 1228 break; 1229 } 1230 elems->ch_switch_ie = (void *)pos; 1231 break; 1232 case WLAN_EID_EXT_CHANSWITCH_ANN: 1233 if (elen != sizeof(struct ieee80211_ext_chansw_ie)) { 1234 elem_parse_failed = true; 1235 break; 1236 } 1237 elems->ext_chansw_ie = (void *)pos; 1238 break; 1239 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1240 if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) { 1241 elem_parse_failed = true; 1242 break; 1243 } 1244 elems->sec_chan_offs = (void *)pos; 1245 break; 1246 case WLAN_EID_CHAN_SWITCH_PARAM: 1247 if (elen != 1248 sizeof(*elems->mesh_chansw_params_ie)) { 1249 elem_parse_failed = true; 1250 break; 1251 } 1252 elems->mesh_chansw_params_ie = (void *)pos; 1253 break; 1254 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1255 if (!action || 1256 elen != sizeof(*elems->wide_bw_chansw_ie)) { 1257 elem_parse_failed = true; 1258 break; 1259 } 1260 elems->wide_bw_chansw_ie = (void *)pos; 1261 break; 1262 case WLAN_EID_CHANNEL_SWITCH_WRAPPER: 1263 if (action) { 1264 elem_parse_failed = true; 1265 break; 1266 } 1267 /* 1268 * This is a bit tricky, but as we only care about 1269 * the wide bandwidth channel switch element, so 1270 * just parse it out manually. 1271 */ 1272 ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH, 1273 pos, elen); 1274 if (ie) { 1275 if (ie[1] == sizeof(*elems->wide_bw_chansw_ie)) 1276 elems->wide_bw_chansw_ie = 1277 (void *)(ie + 2); 1278 else 1279 elem_parse_failed = true; 1280 } 1281 break; 1282 case WLAN_EID_COUNTRY: 1283 elems->country_elem = pos; 1284 elems->country_elem_len = elen; 1285 break; 1286 case WLAN_EID_PWR_CONSTRAINT: 1287 if (elen != 1) { 1288 elem_parse_failed = true; 1289 break; 1290 } 1291 elems->pwr_constr_elem = pos; 1292 break; 1293 case WLAN_EID_CISCO_VENDOR_SPECIFIC: 1294 /* Lots of different options exist, but we only care 1295 * about the Dynamic Transmit Power Control element. 1296 * First check for the Cisco OUI, then for the DTPC 1297 * tag (0x00). 1298 */ 1299 if (elen < 4) { 1300 elem_parse_failed = true; 1301 break; 1302 } 1303 1304 if (pos[0] != 0x00 || pos[1] != 0x40 || 1305 pos[2] != 0x96 || pos[3] != 0x00) 1306 break; 1307 1308 if (elen != 6) { 1309 elem_parse_failed = true; 1310 break; 1311 } 1312 1313 if (calc_crc) 1314 crc = crc32_be(crc, pos - 2, elen + 2); 1315 1316 elems->cisco_dtpc_elem = pos; 1317 break; 1318 case WLAN_EID_ADDBA_EXT: 1319 if (elen != sizeof(struct ieee80211_addba_ext_ie)) { 1320 elem_parse_failed = true; 1321 break; 1322 } 1323 elems->addba_ext_ie = (void *)pos; 1324 break; 1325 case WLAN_EID_TIMEOUT_INTERVAL: 1326 if (elen >= sizeof(struct ieee80211_timeout_interval_ie)) 1327 elems->timeout_int = (void *)pos; 1328 else 1329 elem_parse_failed = true; 1330 break; 1331 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1332 if (elen >= sizeof(*elems->max_idle_period_ie)) 1333 elems->max_idle_period_ie = (void *)pos; 1334 break; 1335 case WLAN_EID_RSNX: 1336 elems->rsnx = pos; 1337 elems->rsnx_len = elen; 1338 break; 1339 case WLAN_EID_EXTENSION: 1340 ieee80211_parse_extension_element(calc_crc ? 1341 &crc : NULL, 1342 elem, elems); 1343 break; 1344 case WLAN_EID_S1G_CAPABILITIES: 1345 if (elen == sizeof(*elems->s1g_capab)) 1346 elems->s1g_capab = (void *)pos; 1347 else 1348 elem_parse_failed = true; 1349 break; 1350 case WLAN_EID_S1G_OPERATION: 1351 if (elen == sizeof(*elems->s1g_oper)) 1352 elems->s1g_oper = (void *)pos; 1353 else 1354 elem_parse_failed = true; 1355 break; 1356 case WLAN_EID_S1G_BCN_COMPAT: 1357 if (elen == sizeof(*elems->s1g_bcn_compat)) 1358 elems->s1g_bcn_compat = (void *)pos; 1359 else 1360 elem_parse_failed = true; 1361 break; 1362 case WLAN_EID_AID_RESPONSE: 1363 if (elen == sizeof(struct ieee80211_aid_response_ie)) 1364 elems->aid_resp = (void *)pos; 1365 else 1366 elem_parse_failed = true; 1367 break; 1368 default: 1369 break; 1370 } 1371 1372 if (elem_parse_failed) 1373 elems->parse_error = true; 1374 else 1375 __set_bit(id, seen_elems); 1376 } 1377 1378 if (!for_each_element_completed(elem, start, len)) 1379 elems->parse_error = true; 1380 1381 return crc; 1382 } 1383 1384 static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len, 1385 struct ieee802_11_elems *elems, 1386 u8 *transmitter_bssid, 1387 u8 *bss_bssid, 1388 u8 *nontransmitted_profile) 1389 { 1390 const struct element *elem, *sub; 1391 size_t profile_len = 0; 1392 bool found = false; 1393 1394 if (!bss_bssid || !transmitter_bssid) 1395 return profile_len; 1396 1397 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) { 1398 if (elem->datalen < 2) 1399 continue; 1400 1401 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 1402 u8 new_bssid[ETH_ALEN]; 1403 const u8 *index; 1404 1405 if (sub->id != 0 || sub->datalen < 4) { 1406 /* not a valid BSS profile */ 1407 continue; 1408 } 1409 1410 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 1411 sub->data[1] != 2) { 1412 /* The first element of the 1413 * Nontransmitted BSSID Profile is not 1414 * the Nontransmitted BSSID Capability 1415 * element. 1416 */ 1417 continue; 1418 } 1419 1420 memset(nontransmitted_profile, 0, len); 1421 profile_len = cfg80211_merge_profile(start, len, 1422 elem, 1423 sub, 1424 nontransmitted_profile, 1425 len); 1426 1427 /* found a Nontransmitted BSSID Profile */ 1428 index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, 1429 nontransmitted_profile, 1430 profile_len); 1431 if (!index || index[1] < 1 || index[2] == 0) { 1432 /* Invalid MBSSID Index element */ 1433 continue; 1434 } 1435 1436 cfg80211_gen_new_bssid(transmitter_bssid, 1437 elem->data[0], 1438 index[2], 1439 new_bssid); 1440 if (ether_addr_equal(new_bssid, bss_bssid)) { 1441 found = true; 1442 elems->bssid_index_len = index[1]; 1443 elems->bssid_index = (void *)&index[2]; 1444 break; 1445 } 1446 } 1447 } 1448 1449 return found ? profile_len : 0; 1450 } 1451 1452 u32 ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, 1453 struct ieee802_11_elems *elems, 1454 u64 filter, u32 crc, u8 *transmitter_bssid, 1455 u8 *bss_bssid) 1456 { 1457 const struct element *non_inherit = NULL; 1458 u8 *nontransmitted_profile; 1459 int nontransmitted_profile_len = 0; 1460 1461 memset(elems, 0, sizeof(*elems)); 1462 elems->ie_start = start; 1463 elems->total_len = len; 1464 1465 nontransmitted_profile = kmalloc(len, GFP_ATOMIC); 1466 if (nontransmitted_profile) { 1467 nontransmitted_profile_len = 1468 ieee802_11_find_bssid_profile(start, len, elems, 1469 transmitter_bssid, 1470 bss_bssid, 1471 nontransmitted_profile); 1472 non_inherit = 1473 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 1474 nontransmitted_profile, 1475 nontransmitted_profile_len); 1476 } 1477 1478 crc = _ieee802_11_parse_elems_crc(start, len, action, elems, filter, 1479 crc, non_inherit); 1480 1481 /* Override with nontransmitted profile, if found */ 1482 if (nontransmitted_profile_len) 1483 _ieee802_11_parse_elems_crc(nontransmitted_profile, 1484 nontransmitted_profile_len, 1485 action, elems, 0, 0, NULL); 1486 1487 if (elems->tim && !elems->parse_error) { 1488 const struct ieee80211_tim_ie *tim_ie = elems->tim; 1489 1490 elems->dtim_period = tim_ie->dtim_period; 1491 elems->dtim_count = tim_ie->dtim_count; 1492 } 1493 1494 /* Override DTIM period and count if needed */ 1495 if (elems->bssid_index && 1496 elems->bssid_index_len >= 1497 offsetofend(struct ieee80211_bssid_index, dtim_period)) 1498 elems->dtim_period = elems->bssid_index->dtim_period; 1499 1500 if (elems->bssid_index && 1501 elems->bssid_index_len >= 1502 offsetofend(struct ieee80211_bssid_index, dtim_count)) 1503 elems->dtim_count = elems->bssid_index->dtim_count; 1504 1505 kfree(nontransmitted_profile); 1506 1507 return crc; 1508 } 1509 1510 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 1511 struct ieee80211_tx_queue_params 1512 *qparam, int ac) 1513 { 1514 struct ieee80211_chanctx_conf *chanctx_conf; 1515 const struct ieee80211_reg_rule *rrule; 1516 const struct ieee80211_wmm_ac *wmm_ac; 1517 u16 center_freq = 0; 1518 1519 if (sdata->vif.type != NL80211_IFTYPE_AP && 1520 sdata->vif.type != NL80211_IFTYPE_STATION) 1521 return; 1522 1523 rcu_read_lock(); 1524 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1525 if (chanctx_conf) 1526 center_freq = chanctx_conf->def.chan->center_freq; 1527 1528 if (!center_freq) { 1529 rcu_read_unlock(); 1530 return; 1531 } 1532 1533 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 1534 1535 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 1536 rcu_read_unlock(); 1537 return; 1538 } 1539 1540 if (sdata->vif.type == NL80211_IFTYPE_AP) 1541 wmm_ac = &rrule->wmm_rule.ap[ac]; 1542 else 1543 wmm_ac = &rrule->wmm_rule.client[ac]; 1544 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 1545 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 1546 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 1547 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 1548 rcu_read_unlock(); 1549 } 1550 1551 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata, 1552 bool bss_notify, bool enable_qos) 1553 { 1554 struct ieee80211_local *local = sdata->local; 1555 struct ieee80211_tx_queue_params qparam; 1556 struct ieee80211_chanctx_conf *chanctx_conf; 1557 int ac; 1558 bool use_11b; 1559 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 1560 int aCWmin, aCWmax; 1561 1562 if (!local->ops->conf_tx) 1563 return; 1564 1565 if (local->hw.queues < IEEE80211_NUM_ACS) 1566 return; 1567 1568 memset(&qparam, 0, sizeof(qparam)); 1569 1570 rcu_read_lock(); 1571 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1572 use_11b = (chanctx_conf && 1573 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 1574 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE); 1575 rcu_read_unlock(); 1576 1577 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 1578 1579 /* Set defaults according to 802.11-2007 Table 7-37 */ 1580 aCWmax = 1023; 1581 if (use_11b) 1582 aCWmin = 31; 1583 else 1584 aCWmin = 15; 1585 1586 /* Confiure old 802.11b/g medium access rules. */ 1587 qparam.cw_max = aCWmax; 1588 qparam.cw_min = aCWmin; 1589 qparam.txop = 0; 1590 qparam.aifs = 2; 1591 1592 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1593 /* Update if QoS is enabled. */ 1594 if (enable_qos) { 1595 switch (ac) { 1596 case IEEE80211_AC_BK: 1597 qparam.cw_max = aCWmax; 1598 qparam.cw_min = aCWmin; 1599 qparam.txop = 0; 1600 if (is_ocb) 1601 qparam.aifs = 9; 1602 else 1603 qparam.aifs = 7; 1604 break; 1605 /* never happens but let's not leave undefined */ 1606 default: 1607 case IEEE80211_AC_BE: 1608 qparam.cw_max = aCWmax; 1609 qparam.cw_min = aCWmin; 1610 qparam.txop = 0; 1611 if (is_ocb) 1612 qparam.aifs = 6; 1613 else 1614 qparam.aifs = 3; 1615 break; 1616 case IEEE80211_AC_VI: 1617 qparam.cw_max = aCWmin; 1618 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1619 if (is_ocb) 1620 qparam.txop = 0; 1621 else if (use_11b) 1622 qparam.txop = 6016/32; 1623 else 1624 qparam.txop = 3008/32; 1625 1626 if (is_ocb) 1627 qparam.aifs = 3; 1628 else 1629 qparam.aifs = 2; 1630 break; 1631 case IEEE80211_AC_VO: 1632 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1633 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1634 if (is_ocb) 1635 qparam.txop = 0; 1636 else if (use_11b) 1637 qparam.txop = 3264/32; 1638 else 1639 qparam.txop = 1504/32; 1640 qparam.aifs = 2; 1641 break; 1642 } 1643 } 1644 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1645 1646 qparam.uapsd = false; 1647 1648 sdata->tx_conf[ac] = qparam; 1649 drv_conf_tx(local, sdata, ac, &qparam); 1650 } 1651 1652 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1653 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1654 sdata->vif.type != NL80211_IFTYPE_NAN) { 1655 sdata->vif.bss_conf.qos = enable_qos; 1656 if (bss_notify) 1657 ieee80211_bss_info_change_notify(sdata, 1658 BSS_CHANGED_QOS); 1659 } 1660 } 1661 1662 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1663 u16 transaction, u16 auth_alg, u16 status, 1664 const u8 *extra, size_t extra_len, const u8 *da, 1665 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1666 u32 tx_flags) 1667 { 1668 struct ieee80211_local *local = sdata->local; 1669 struct sk_buff *skb; 1670 struct ieee80211_mgmt *mgmt; 1671 int err; 1672 1673 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1674 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1675 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN); 1676 if (!skb) 1677 return; 1678 1679 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1680 1681 mgmt = skb_put_zero(skb, 24 + 6); 1682 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1683 IEEE80211_STYPE_AUTH); 1684 memcpy(mgmt->da, da, ETH_ALEN); 1685 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1686 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1687 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1688 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1689 mgmt->u.auth.status_code = cpu_to_le16(status); 1690 if (extra) 1691 skb_put_data(skb, extra, extra_len); 1692 1693 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1694 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1695 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1696 WARN_ON(err); 1697 } 1698 1699 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1700 tx_flags; 1701 ieee80211_tx_skb(sdata, skb); 1702 } 1703 1704 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1705 const u8 *da, const u8 *bssid, 1706 u16 stype, u16 reason, 1707 bool send_frame, u8 *frame_buf) 1708 { 1709 struct ieee80211_local *local = sdata->local; 1710 struct sk_buff *skb; 1711 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1712 1713 /* build frame */ 1714 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1715 mgmt->duration = 0; /* initialize only */ 1716 mgmt->seq_ctrl = 0; /* initialize only */ 1717 memcpy(mgmt->da, da, ETH_ALEN); 1718 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1719 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1720 /* u.deauth.reason_code == u.disassoc.reason_code */ 1721 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1722 1723 if (send_frame) { 1724 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1725 IEEE80211_DEAUTH_FRAME_LEN); 1726 if (!skb) 1727 return; 1728 1729 skb_reserve(skb, local->hw.extra_tx_headroom); 1730 1731 /* copy in frame */ 1732 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1733 1734 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1735 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1736 IEEE80211_SKB_CB(skb)->flags |= 1737 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1738 1739 ieee80211_tx_skb(sdata, skb); 1740 } 1741 } 1742 1743 static u8 *ieee80211_write_he_6ghz_cap(u8 *pos, __le16 cap, u8 *end) 1744 { 1745 if ((end - pos) < 5) 1746 return pos; 1747 1748 *pos++ = WLAN_EID_EXTENSION; 1749 *pos++ = 1 + sizeof(cap); 1750 *pos++ = WLAN_EID_EXT_HE_6GHZ_CAPA; 1751 memcpy(pos, &cap, sizeof(cap)); 1752 1753 return pos + 2; 1754 } 1755 1756 static int ieee80211_build_preq_ies_band(struct ieee80211_sub_if_data *sdata, 1757 u8 *buffer, size_t buffer_len, 1758 const u8 *ie, size_t ie_len, 1759 enum nl80211_band band, 1760 u32 rate_mask, 1761 struct cfg80211_chan_def *chandef, 1762 size_t *offset, u32 flags) 1763 { 1764 struct ieee80211_local *local = sdata->local; 1765 struct ieee80211_supported_band *sband; 1766 const struct ieee80211_sta_he_cap *he_cap; 1767 u8 *pos = buffer, *end = buffer + buffer_len; 1768 size_t noffset; 1769 int supp_rates_len, i; 1770 u8 rates[32]; 1771 int num_rates; 1772 int ext_rates_len; 1773 int shift; 1774 u32 rate_flags; 1775 bool have_80mhz = false; 1776 1777 *offset = 0; 1778 1779 sband = local->hw.wiphy->bands[band]; 1780 if (WARN_ON_ONCE(!sband)) 1781 return 0; 1782 1783 rate_flags = ieee80211_chandef_rate_flags(chandef); 1784 shift = ieee80211_chandef_get_shift(chandef); 1785 1786 num_rates = 0; 1787 for (i = 0; i < sband->n_bitrates; i++) { 1788 if ((BIT(i) & rate_mask) == 0) 1789 continue; /* skip rate */ 1790 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 1791 continue; 1792 1793 rates[num_rates++] = 1794 (u8) DIV_ROUND_UP(sband->bitrates[i].bitrate, 1795 (1 << shift) * 5); 1796 } 1797 1798 supp_rates_len = min_t(int, num_rates, 8); 1799 1800 if (end - pos < 2 + supp_rates_len) 1801 goto out_err; 1802 *pos++ = WLAN_EID_SUPP_RATES; 1803 *pos++ = supp_rates_len; 1804 memcpy(pos, rates, supp_rates_len); 1805 pos += supp_rates_len; 1806 1807 /* insert "request information" if in custom IEs */ 1808 if (ie && ie_len) { 1809 static const u8 before_extrates[] = { 1810 WLAN_EID_SSID, 1811 WLAN_EID_SUPP_RATES, 1812 WLAN_EID_REQUEST, 1813 }; 1814 noffset = ieee80211_ie_split(ie, ie_len, 1815 before_extrates, 1816 ARRAY_SIZE(before_extrates), 1817 *offset); 1818 if (end - pos < noffset - *offset) 1819 goto out_err; 1820 memcpy(pos, ie + *offset, noffset - *offset); 1821 pos += noffset - *offset; 1822 *offset = noffset; 1823 } 1824 1825 ext_rates_len = num_rates - supp_rates_len; 1826 if (ext_rates_len > 0) { 1827 if (end - pos < 2 + ext_rates_len) 1828 goto out_err; 1829 *pos++ = WLAN_EID_EXT_SUPP_RATES; 1830 *pos++ = ext_rates_len; 1831 memcpy(pos, rates + supp_rates_len, ext_rates_len); 1832 pos += ext_rates_len; 1833 } 1834 1835 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 1836 if (end - pos < 3) 1837 goto out_err; 1838 *pos++ = WLAN_EID_DS_PARAMS; 1839 *pos++ = 1; 1840 *pos++ = ieee80211_frequency_to_channel( 1841 chandef->chan->center_freq); 1842 } 1843 1844 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 1845 goto done; 1846 1847 /* insert custom IEs that go before HT */ 1848 if (ie && ie_len) { 1849 static const u8 before_ht[] = { 1850 /* 1851 * no need to list the ones split off already 1852 * (or generated here) 1853 */ 1854 WLAN_EID_DS_PARAMS, 1855 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1856 }; 1857 noffset = ieee80211_ie_split(ie, ie_len, 1858 before_ht, ARRAY_SIZE(before_ht), 1859 *offset); 1860 if (end - pos < noffset - *offset) 1861 goto out_err; 1862 memcpy(pos, ie + *offset, noffset - *offset); 1863 pos += noffset - *offset; 1864 *offset = noffset; 1865 } 1866 1867 if (sband->ht_cap.ht_supported) { 1868 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap)) 1869 goto out_err; 1870 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 1871 sband->ht_cap.cap); 1872 } 1873 1874 /* insert custom IEs that go before VHT */ 1875 if (ie && ie_len) { 1876 static const u8 before_vht[] = { 1877 /* 1878 * no need to list the ones split off already 1879 * (or generated here) 1880 */ 1881 WLAN_EID_BSS_COEX_2040, 1882 WLAN_EID_EXT_CAPABILITY, 1883 WLAN_EID_SSID_LIST, 1884 WLAN_EID_CHANNEL_USAGE, 1885 WLAN_EID_INTERWORKING, 1886 WLAN_EID_MESH_ID, 1887 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 1888 }; 1889 noffset = ieee80211_ie_split(ie, ie_len, 1890 before_vht, ARRAY_SIZE(before_vht), 1891 *offset); 1892 if (end - pos < noffset - *offset) 1893 goto out_err; 1894 memcpy(pos, ie + *offset, noffset - *offset); 1895 pos += noffset - *offset; 1896 *offset = noffset; 1897 } 1898 1899 /* Check if any channel in this sband supports at least 80 MHz */ 1900 for (i = 0; i < sband->n_channels; i++) { 1901 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 1902 IEEE80211_CHAN_NO_80MHZ)) 1903 continue; 1904 1905 have_80mhz = true; 1906 break; 1907 } 1908 1909 if (sband->vht_cap.vht_supported && have_80mhz) { 1910 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap)) 1911 goto out_err; 1912 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 1913 sband->vht_cap.cap); 1914 } 1915 1916 /* insert custom IEs that go before HE */ 1917 if (ie && ie_len) { 1918 static const u8 before_he[] = { 1919 /* 1920 * no need to list the ones split off before VHT 1921 * or generated here 1922 */ 1923 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 1924 WLAN_EID_AP_CSN, 1925 /* TODO: add 11ah/11aj/11ak elements */ 1926 }; 1927 noffset = ieee80211_ie_split(ie, ie_len, 1928 before_he, ARRAY_SIZE(before_he), 1929 *offset); 1930 if (end - pos < noffset - *offset) 1931 goto out_err; 1932 memcpy(pos, ie + *offset, noffset - *offset); 1933 pos += noffset - *offset; 1934 *offset = noffset; 1935 } 1936 1937 he_cap = ieee80211_get_he_sta_cap(sband); 1938 if (he_cap) { 1939 pos = ieee80211_ie_build_he_cap(pos, he_cap, end); 1940 if (!pos) 1941 goto out_err; 1942 1943 if (sband->band == NL80211_BAND_6GHZ) { 1944 enum nl80211_iftype iftype = 1945 ieee80211_vif_type_p2p(&sdata->vif); 1946 __le16 cap = ieee80211_get_he_6ghz_capa(sband, iftype); 1947 1948 pos = ieee80211_write_he_6ghz_cap(pos, cap, end); 1949 } 1950 } 1951 1952 /* 1953 * If adding more here, adjust code in main.c 1954 * that calculates local->scan_ies_len. 1955 */ 1956 1957 return pos - buffer; 1958 out_err: 1959 WARN_ONCE(1, "not enough space for preq IEs\n"); 1960 done: 1961 return pos - buffer; 1962 } 1963 1964 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 1965 size_t buffer_len, 1966 struct ieee80211_scan_ies *ie_desc, 1967 const u8 *ie, size_t ie_len, 1968 u8 bands_used, u32 *rate_masks, 1969 struct cfg80211_chan_def *chandef, 1970 u32 flags) 1971 { 1972 size_t pos = 0, old_pos = 0, custom_ie_offset = 0; 1973 int i; 1974 1975 memset(ie_desc, 0, sizeof(*ie_desc)); 1976 1977 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1978 if (bands_used & BIT(i)) { 1979 pos += ieee80211_build_preq_ies_band(sdata, 1980 buffer + pos, 1981 buffer_len - pos, 1982 ie, ie_len, i, 1983 rate_masks[i], 1984 chandef, 1985 &custom_ie_offset, 1986 flags); 1987 ie_desc->ies[i] = buffer + old_pos; 1988 ie_desc->len[i] = pos - old_pos; 1989 old_pos = pos; 1990 } 1991 } 1992 1993 /* add any remaining custom IEs */ 1994 if (ie && ie_len) { 1995 if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset, 1996 "not enough space for preq custom IEs\n")) 1997 return pos; 1998 memcpy(buffer + pos, ie + custom_ie_offset, 1999 ie_len - custom_ie_offset); 2000 ie_desc->common_ies = buffer + pos; 2001 ie_desc->common_ie_len = ie_len - custom_ie_offset; 2002 pos += ie_len - custom_ie_offset; 2003 } 2004 2005 return pos; 2006 }; 2007 2008 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 2009 const u8 *src, const u8 *dst, 2010 u32 ratemask, 2011 struct ieee80211_channel *chan, 2012 const u8 *ssid, size_t ssid_len, 2013 const u8 *ie, size_t ie_len, 2014 u32 flags) 2015 { 2016 struct ieee80211_local *local = sdata->local; 2017 struct cfg80211_chan_def chandef; 2018 struct sk_buff *skb; 2019 struct ieee80211_mgmt *mgmt; 2020 int ies_len; 2021 u32 rate_masks[NUM_NL80211_BANDS] = {}; 2022 struct ieee80211_scan_ies dummy_ie_desc; 2023 2024 /* 2025 * Do not send DS Channel parameter for directed probe requests 2026 * in order to maximize the chance that we get a response. Some 2027 * badly-behaved APs don't respond when this parameter is included. 2028 */ 2029 chandef.width = sdata->vif.bss_conf.chandef.width; 2030 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 2031 chandef.chan = NULL; 2032 else 2033 chandef.chan = chan; 2034 2035 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 2036 100 + ie_len); 2037 if (!skb) 2038 return NULL; 2039 2040 rate_masks[chan->band] = ratemask; 2041 ies_len = ieee80211_build_preq_ies(sdata, skb_tail_pointer(skb), 2042 skb_tailroom(skb), &dummy_ie_desc, 2043 ie, ie_len, BIT(chan->band), 2044 rate_masks, &chandef, flags); 2045 skb_put(skb, ies_len); 2046 2047 if (dst) { 2048 mgmt = (struct ieee80211_mgmt *) skb->data; 2049 memcpy(mgmt->da, dst, ETH_ALEN); 2050 memcpy(mgmt->bssid, dst, ETH_ALEN); 2051 } 2052 2053 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 2054 2055 return skb; 2056 } 2057 2058 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 2059 struct ieee802_11_elems *elems, 2060 enum nl80211_band band, u32 *basic_rates) 2061 { 2062 struct ieee80211_supported_band *sband; 2063 size_t num_rates; 2064 u32 supp_rates, rate_flags; 2065 int i, j, shift; 2066 2067 sband = sdata->local->hw.wiphy->bands[band]; 2068 if (WARN_ON(!sband)) 2069 return 1; 2070 2071 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 2072 shift = ieee80211_vif_get_shift(&sdata->vif); 2073 2074 num_rates = sband->n_bitrates; 2075 supp_rates = 0; 2076 for (i = 0; i < elems->supp_rates_len + 2077 elems->ext_supp_rates_len; i++) { 2078 u8 rate = 0; 2079 int own_rate; 2080 bool is_basic; 2081 if (i < elems->supp_rates_len) 2082 rate = elems->supp_rates[i]; 2083 else if (elems->ext_supp_rates) 2084 rate = elems->ext_supp_rates 2085 [i - elems->supp_rates_len]; 2086 own_rate = 5 * (rate & 0x7f); 2087 is_basic = !!(rate & 0x80); 2088 2089 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 2090 continue; 2091 2092 for (j = 0; j < num_rates; j++) { 2093 int brate; 2094 if ((rate_flags & sband->bitrates[j].flags) 2095 != rate_flags) 2096 continue; 2097 2098 brate = DIV_ROUND_UP(sband->bitrates[j].bitrate, 2099 1 << shift); 2100 2101 if (brate == own_rate) { 2102 supp_rates |= BIT(j); 2103 if (basic_rates && is_basic) 2104 *basic_rates |= BIT(j); 2105 } 2106 } 2107 } 2108 return supp_rates; 2109 } 2110 2111 void ieee80211_stop_device(struct ieee80211_local *local) 2112 { 2113 ieee80211_led_radio(local, false); 2114 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 2115 2116 cancel_work_sync(&local->reconfig_filter); 2117 2118 flush_workqueue(local->workqueue); 2119 drv_stop(local); 2120 } 2121 2122 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 2123 bool aborted) 2124 { 2125 /* It's possible that we don't handle the scan completion in 2126 * time during suspend, so if it's still marked as completed 2127 * here, queue the work and flush it to clean things up. 2128 * Instead of calling the worker function directly here, we 2129 * really queue it to avoid potential races with other flows 2130 * scheduling the same work. 2131 */ 2132 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 2133 /* If coming from reconfiguration failure, abort the scan so 2134 * we don't attempt to continue a partial HW scan - which is 2135 * possible otherwise if (e.g.) the 2.4 GHz portion was the 2136 * completed scan, and a 5 GHz portion is still pending. 2137 */ 2138 if (aborted) 2139 set_bit(SCAN_ABORTED, &local->scanning); 2140 ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0); 2141 flush_delayed_work(&local->scan_work); 2142 } 2143 } 2144 2145 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 2146 { 2147 struct ieee80211_sub_if_data *sdata; 2148 struct ieee80211_chanctx *ctx; 2149 2150 /* 2151 * We get here if during resume the device can't be restarted properly. 2152 * We might also get here if this happens during HW reset, which is a 2153 * slightly different situation and we need to drop all connections in 2154 * the latter case. 2155 * 2156 * Ask cfg80211 to turn off all interfaces, this will result in more 2157 * warnings but at least we'll then get into a clean stopped state. 2158 */ 2159 2160 local->resuming = false; 2161 local->suspended = false; 2162 local->in_reconfig = false; 2163 2164 ieee80211_flush_completed_scan(local, true); 2165 2166 /* scheduled scan clearly can't be running any more, but tell 2167 * cfg80211 and clear local state 2168 */ 2169 ieee80211_sched_scan_end(local); 2170 2171 list_for_each_entry(sdata, &local->interfaces, list) 2172 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 2173 2174 /* Mark channel contexts as not being in the driver any more to avoid 2175 * removing them from the driver during the shutdown process... 2176 */ 2177 mutex_lock(&local->chanctx_mtx); 2178 list_for_each_entry(ctx, &local->chanctx_list, list) 2179 ctx->driver_present = false; 2180 mutex_unlock(&local->chanctx_mtx); 2181 2182 cfg80211_shutdown_all_interfaces(local->hw.wiphy); 2183 } 2184 2185 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 2186 struct ieee80211_sub_if_data *sdata) 2187 { 2188 struct ieee80211_chanctx_conf *conf; 2189 struct ieee80211_chanctx *ctx; 2190 2191 if (!local->use_chanctx) 2192 return; 2193 2194 mutex_lock(&local->chanctx_mtx); 2195 conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2196 lockdep_is_held(&local->chanctx_mtx)); 2197 if (conf) { 2198 ctx = container_of(conf, struct ieee80211_chanctx, conf); 2199 drv_assign_vif_chanctx(local, sdata, ctx); 2200 } 2201 mutex_unlock(&local->chanctx_mtx); 2202 } 2203 2204 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 2205 { 2206 struct ieee80211_local *local = sdata->local; 2207 struct sta_info *sta; 2208 2209 /* add STAs back */ 2210 mutex_lock(&local->sta_mtx); 2211 list_for_each_entry(sta, &local->sta_list, list) { 2212 enum ieee80211_sta_state state; 2213 2214 if (!sta->uploaded || sta->sdata != sdata) 2215 continue; 2216 2217 for (state = IEEE80211_STA_NOTEXIST; 2218 state < sta->sta_state; state++) 2219 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2220 state + 1)); 2221 } 2222 mutex_unlock(&local->sta_mtx); 2223 } 2224 2225 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 2226 { 2227 struct cfg80211_nan_func *func, **funcs; 2228 int res, id, i = 0; 2229 2230 res = drv_start_nan(sdata->local, sdata, 2231 &sdata->u.nan.conf); 2232 if (WARN_ON(res)) 2233 return res; 2234 2235 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 2236 sizeof(*funcs), 2237 GFP_KERNEL); 2238 if (!funcs) 2239 return -ENOMEM; 2240 2241 /* Add all the functions: 2242 * This is a little bit ugly. We need to call a potentially sleeping 2243 * callback for each NAN function, so we can't hold the spinlock. 2244 */ 2245 spin_lock_bh(&sdata->u.nan.func_lock); 2246 2247 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 2248 funcs[i++] = func; 2249 2250 spin_unlock_bh(&sdata->u.nan.func_lock); 2251 2252 for (i = 0; funcs[i]; i++) { 2253 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 2254 if (WARN_ON(res)) 2255 ieee80211_nan_func_terminated(&sdata->vif, 2256 funcs[i]->instance_id, 2257 NL80211_NAN_FUNC_TERM_REASON_ERROR, 2258 GFP_KERNEL); 2259 } 2260 2261 kfree(funcs); 2262 2263 return 0; 2264 } 2265 2266 int ieee80211_reconfig(struct ieee80211_local *local) 2267 { 2268 struct ieee80211_hw *hw = &local->hw; 2269 struct ieee80211_sub_if_data *sdata; 2270 struct ieee80211_chanctx *ctx; 2271 struct sta_info *sta; 2272 int res, i; 2273 bool reconfig_due_to_wowlan = false; 2274 struct ieee80211_sub_if_data *sched_scan_sdata; 2275 struct cfg80211_sched_scan_request *sched_scan_req; 2276 bool sched_scan_stopped = false; 2277 bool suspended = local->suspended; 2278 2279 /* nothing to do if HW shouldn't run */ 2280 if (!local->open_count) 2281 goto wake_up; 2282 2283 #ifdef CONFIG_PM 2284 if (suspended) 2285 local->resuming = true; 2286 2287 if (local->wowlan) { 2288 /* 2289 * In the wowlan case, both mac80211 and the device 2290 * are functional when the resume op is called, so 2291 * clear local->suspended so the device could operate 2292 * normally (e.g. pass rx frames). 2293 */ 2294 local->suspended = false; 2295 res = drv_resume(local); 2296 local->wowlan = false; 2297 if (res < 0) { 2298 local->resuming = false; 2299 return res; 2300 } 2301 if (res == 0) 2302 goto wake_up; 2303 WARN_ON(res > 1); 2304 /* 2305 * res is 1, which means the driver requested 2306 * to go through a regular reset on wakeup. 2307 * restore local->suspended in this case. 2308 */ 2309 reconfig_due_to_wowlan = true; 2310 local->suspended = true; 2311 } 2312 #endif 2313 2314 /* 2315 * In case of hw_restart during suspend (without wowlan), 2316 * cancel restart work, as we are reconfiguring the device 2317 * anyway. 2318 * Note that restart_work is scheduled on a frozen workqueue, 2319 * so we can't deadlock in this case. 2320 */ 2321 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 2322 cancel_work_sync(&local->restart_work); 2323 2324 local->started = false; 2325 2326 /* 2327 * Upon resume hardware can sometimes be goofy due to 2328 * various platform / driver / bus issues, so restarting 2329 * the device may at times not work immediately. Propagate 2330 * the error. 2331 */ 2332 res = drv_start(local); 2333 if (res) { 2334 if (suspended) 2335 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 2336 else 2337 WARN(1, "Hardware became unavailable during restart.\n"); 2338 ieee80211_handle_reconfig_failure(local); 2339 return res; 2340 } 2341 2342 /* setup fragmentation threshold */ 2343 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 2344 2345 /* setup RTS threshold */ 2346 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 2347 2348 /* reset coverage class */ 2349 drv_set_coverage_class(local, hw->wiphy->coverage_class); 2350 2351 ieee80211_led_radio(local, true); 2352 ieee80211_mod_tpt_led_trig(local, 2353 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 2354 2355 /* add interfaces */ 2356 sdata = rtnl_dereference(local->monitor_sdata); 2357 if (sdata) { 2358 /* in HW restart it exists already */ 2359 WARN_ON(local->resuming); 2360 res = drv_add_interface(local, sdata); 2361 if (WARN_ON(res)) { 2362 RCU_INIT_POINTER(local->monitor_sdata, NULL); 2363 synchronize_net(); 2364 kfree(sdata); 2365 } 2366 } 2367 2368 list_for_each_entry(sdata, &local->interfaces, list) { 2369 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2370 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2371 ieee80211_sdata_running(sdata)) { 2372 res = drv_add_interface(local, sdata); 2373 if (WARN_ON(res)) 2374 break; 2375 } 2376 } 2377 2378 /* If adding any of the interfaces failed above, roll back and 2379 * report failure. 2380 */ 2381 if (res) { 2382 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 2383 list) 2384 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2385 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2386 ieee80211_sdata_running(sdata)) 2387 drv_remove_interface(local, sdata); 2388 ieee80211_handle_reconfig_failure(local); 2389 return res; 2390 } 2391 2392 /* add channel contexts */ 2393 if (local->use_chanctx) { 2394 mutex_lock(&local->chanctx_mtx); 2395 list_for_each_entry(ctx, &local->chanctx_list, list) 2396 if (ctx->replace_state != 2397 IEEE80211_CHANCTX_REPLACES_OTHER) 2398 WARN_ON(drv_add_chanctx(local, ctx)); 2399 mutex_unlock(&local->chanctx_mtx); 2400 2401 sdata = rtnl_dereference(local->monitor_sdata); 2402 if (sdata && ieee80211_sdata_running(sdata)) 2403 ieee80211_assign_chanctx(local, sdata); 2404 } 2405 2406 /* reconfigure hardware */ 2407 ieee80211_hw_config(local, ~0); 2408 2409 ieee80211_configure_filter(local); 2410 2411 /* Finally also reconfigure all the BSS information */ 2412 list_for_each_entry(sdata, &local->interfaces, list) { 2413 u32 changed; 2414 2415 if (!ieee80211_sdata_running(sdata)) 2416 continue; 2417 2418 ieee80211_assign_chanctx(local, sdata); 2419 2420 switch (sdata->vif.type) { 2421 case NL80211_IFTYPE_AP_VLAN: 2422 case NL80211_IFTYPE_MONITOR: 2423 break; 2424 case NL80211_IFTYPE_ADHOC: 2425 if (sdata->vif.bss_conf.ibss_joined) 2426 WARN_ON(drv_join_ibss(local, sdata)); 2427 fallthrough; 2428 default: 2429 ieee80211_reconfig_stations(sdata); 2430 fallthrough; 2431 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 2432 for (i = 0; i < IEEE80211_NUM_ACS; i++) 2433 drv_conf_tx(local, sdata, i, 2434 &sdata->tx_conf[i]); 2435 break; 2436 } 2437 2438 /* common change flags for all interface types */ 2439 changed = BSS_CHANGED_ERP_CTS_PROT | 2440 BSS_CHANGED_ERP_PREAMBLE | 2441 BSS_CHANGED_ERP_SLOT | 2442 BSS_CHANGED_HT | 2443 BSS_CHANGED_BASIC_RATES | 2444 BSS_CHANGED_BEACON_INT | 2445 BSS_CHANGED_BSSID | 2446 BSS_CHANGED_CQM | 2447 BSS_CHANGED_QOS | 2448 BSS_CHANGED_IDLE | 2449 BSS_CHANGED_TXPOWER | 2450 BSS_CHANGED_MCAST_RATE; 2451 2452 if (sdata->vif.mu_mimo_owner) 2453 changed |= BSS_CHANGED_MU_GROUPS; 2454 2455 switch (sdata->vif.type) { 2456 case NL80211_IFTYPE_STATION: 2457 changed |= BSS_CHANGED_ASSOC | 2458 BSS_CHANGED_ARP_FILTER | 2459 BSS_CHANGED_PS; 2460 2461 /* Re-send beacon info report to the driver */ 2462 if (sdata->u.mgd.have_beacon) 2463 changed |= BSS_CHANGED_BEACON_INFO; 2464 2465 if (sdata->vif.bss_conf.max_idle_period || 2466 sdata->vif.bss_conf.protected_keep_alive) 2467 changed |= BSS_CHANGED_KEEP_ALIVE; 2468 2469 sdata_lock(sdata); 2470 ieee80211_bss_info_change_notify(sdata, changed); 2471 sdata_unlock(sdata); 2472 break; 2473 case NL80211_IFTYPE_OCB: 2474 changed |= BSS_CHANGED_OCB; 2475 ieee80211_bss_info_change_notify(sdata, changed); 2476 break; 2477 case NL80211_IFTYPE_ADHOC: 2478 changed |= BSS_CHANGED_IBSS; 2479 fallthrough; 2480 case NL80211_IFTYPE_AP: 2481 changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS; 2482 2483 if (sdata->vif.bss_conf.ftm_responder == 1 && 2484 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2485 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2486 changed |= BSS_CHANGED_FTM_RESPONDER; 2487 2488 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2489 changed |= BSS_CHANGED_AP_PROBE_RESP; 2490 2491 if (rcu_access_pointer(sdata->u.ap.beacon)) 2492 drv_start_ap(local, sdata); 2493 } 2494 fallthrough; 2495 case NL80211_IFTYPE_MESH_POINT: 2496 if (sdata->vif.bss_conf.enable_beacon) { 2497 changed |= BSS_CHANGED_BEACON | 2498 BSS_CHANGED_BEACON_ENABLED; 2499 ieee80211_bss_info_change_notify(sdata, changed); 2500 } 2501 break; 2502 case NL80211_IFTYPE_NAN: 2503 res = ieee80211_reconfig_nan(sdata); 2504 if (res < 0) { 2505 ieee80211_handle_reconfig_failure(local); 2506 return res; 2507 } 2508 break; 2509 case NL80211_IFTYPE_AP_VLAN: 2510 case NL80211_IFTYPE_MONITOR: 2511 case NL80211_IFTYPE_P2P_DEVICE: 2512 /* nothing to do */ 2513 break; 2514 case NL80211_IFTYPE_UNSPECIFIED: 2515 case NUM_NL80211_IFTYPES: 2516 case NL80211_IFTYPE_P2P_CLIENT: 2517 case NL80211_IFTYPE_P2P_GO: 2518 case NL80211_IFTYPE_WDS: 2519 WARN_ON(1); 2520 break; 2521 } 2522 } 2523 2524 ieee80211_recalc_ps(local); 2525 2526 /* 2527 * The sta might be in psm against the ap (e.g. because 2528 * this was the state before a hw restart), so we 2529 * explicitly send a null packet in order to make sure 2530 * it'll sync against the ap (and get out of psm). 2531 */ 2532 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2533 list_for_each_entry(sdata, &local->interfaces, list) { 2534 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2535 continue; 2536 if (!sdata->u.mgd.associated) 2537 continue; 2538 2539 ieee80211_send_nullfunc(local, sdata, false); 2540 } 2541 } 2542 2543 /* APs are now beaconing, add back stations */ 2544 mutex_lock(&local->sta_mtx); 2545 list_for_each_entry(sta, &local->sta_list, list) { 2546 enum ieee80211_sta_state state; 2547 2548 if (!sta->uploaded) 2549 continue; 2550 2551 if (sta->sdata->vif.type != NL80211_IFTYPE_AP && 2552 sta->sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 2553 continue; 2554 2555 for (state = IEEE80211_STA_NOTEXIST; 2556 state < sta->sta_state; state++) 2557 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2558 state + 1)); 2559 } 2560 mutex_unlock(&local->sta_mtx); 2561 2562 /* add back keys */ 2563 list_for_each_entry(sdata, &local->interfaces, list) 2564 ieee80211_reenable_keys(sdata); 2565 2566 /* Reconfigure sched scan if it was interrupted by FW restart */ 2567 mutex_lock(&local->mtx); 2568 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2569 lockdep_is_held(&local->mtx)); 2570 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2571 lockdep_is_held(&local->mtx)); 2572 if (sched_scan_sdata && sched_scan_req) 2573 /* 2574 * Sched scan stopped, but we don't want to report it. Instead, 2575 * we're trying to reschedule. However, if more than one scan 2576 * plan was set, we cannot reschedule since we don't know which 2577 * scan plan was currently running (and some scan plans may have 2578 * already finished). 2579 */ 2580 if (sched_scan_req->n_scan_plans > 1 || 2581 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2582 sched_scan_req)) { 2583 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2584 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2585 sched_scan_stopped = true; 2586 } 2587 mutex_unlock(&local->mtx); 2588 2589 if (sched_scan_stopped) 2590 cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0); 2591 2592 wake_up: 2593 2594 if (local->monitors == local->open_count && local->monitors > 0) 2595 ieee80211_add_virtual_monitor(local); 2596 2597 /* 2598 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2599 * sessions can be established after a resume. 2600 * 2601 * Also tear down aggregation sessions since reconfiguring 2602 * them in a hardware restart scenario is not easily done 2603 * right now, and the hardware will have lost information 2604 * about the sessions, but we and the AP still think they 2605 * are active. This is really a workaround though. 2606 */ 2607 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2608 mutex_lock(&local->sta_mtx); 2609 2610 list_for_each_entry(sta, &local->sta_list, list) { 2611 if (!local->resuming) 2612 ieee80211_sta_tear_down_BA_sessions( 2613 sta, AGG_STOP_LOCAL_REQUEST); 2614 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2615 } 2616 2617 mutex_unlock(&local->sta_mtx); 2618 } 2619 2620 if (local->in_reconfig) { 2621 local->in_reconfig = false; 2622 barrier(); 2623 2624 /* Restart deferred ROCs */ 2625 mutex_lock(&local->mtx); 2626 ieee80211_start_next_roc(local); 2627 mutex_unlock(&local->mtx); 2628 2629 /* Requeue all works */ 2630 list_for_each_entry(sdata, &local->interfaces, list) 2631 ieee80211_queue_work(&local->hw, &sdata->work); 2632 } 2633 2634 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2635 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2636 false); 2637 2638 /* 2639 * If this is for hw restart things are still running. 2640 * We may want to change that later, however. 2641 */ 2642 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2643 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2644 2645 if (!suspended) 2646 return 0; 2647 2648 #ifdef CONFIG_PM 2649 /* first set suspended false, then resuming */ 2650 local->suspended = false; 2651 mb(); 2652 local->resuming = false; 2653 2654 ieee80211_flush_completed_scan(local, false); 2655 2656 if (local->open_count && !reconfig_due_to_wowlan) 2657 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2658 2659 list_for_each_entry(sdata, &local->interfaces, list) { 2660 if (!ieee80211_sdata_running(sdata)) 2661 continue; 2662 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2663 ieee80211_sta_restart(sdata); 2664 } 2665 2666 mod_timer(&local->sta_cleanup, jiffies + 1); 2667 #else 2668 WARN_ON(1); 2669 #endif 2670 2671 return 0; 2672 } 2673 2674 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 2675 { 2676 struct ieee80211_sub_if_data *sdata; 2677 struct ieee80211_local *local; 2678 struct ieee80211_key *key; 2679 2680 if (WARN_ON(!vif)) 2681 return; 2682 2683 sdata = vif_to_sdata(vif); 2684 local = sdata->local; 2685 2686 if (WARN_ON(!local->resuming)) 2687 return; 2688 2689 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2690 return; 2691 2692 sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME; 2693 2694 mutex_lock(&local->key_mtx); 2695 list_for_each_entry(key, &sdata->key_list, list) 2696 key->flags |= KEY_FLAG_TAINTED; 2697 mutex_unlock(&local->key_mtx); 2698 } 2699 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 2700 2701 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata) 2702 { 2703 struct ieee80211_local *local = sdata->local; 2704 struct ieee80211_chanctx_conf *chanctx_conf; 2705 struct ieee80211_chanctx *chanctx; 2706 2707 mutex_lock(&local->chanctx_mtx); 2708 2709 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2710 lockdep_is_held(&local->chanctx_mtx)); 2711 2712 /* 2713 * This function can be called from a work, thus it may be possible 2714 * that the chanctx_conf is removed (due to a disconnection, for 2715 * example). 2716 * So nothing should be done in such case. 2717 */ 2718 if (!chanctx_conf) 2719 goto unlock; 2720 2721 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2722 ieee80211_recalc_smps_chanctx(local, chanctx); 2723 unlock: 2724 mutex_unlock(&local->chanctx_mtx); 2725 } 2726 2727 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata) 2728 { 2729 struct ieee80211_local *local = sdata->local; 2730 struct ieee80211_chanctx_conf *chanctx_conf; 2731 struct ieee80211_chanctx *chanctx; 2732 2733 mutex_lock(&local->chanctx_mtx); 2734 2735 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2736 lockdep_is_held(&local->chanctx_mtx)); 2737 2738 if (WARN_ON_ONCE(!chanctx_conf)) 2739 goto unlock; 2740 2741 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2742 ieee80211_recalc_chanctx_min_def(local, chanctx); 2743 unlock: 2744 mutex_unlock(&local->chanctx_mtx); 2745 } 2746 2747 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 2748 { 2749 size_t pos = offset; 2750 2751 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 2752 pos += 2 + ies[pos + 1]; 2753 2754 return pos; 2755 } 2756 2757 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata, 2758 int rssi_min_thold, 2759 int rssi_max_thold) 2760 { 2761 trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold); 2762 2763 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 2764 return; 2765 2766 /* 2767 * Scale up threshold values before storing it, as the RSSI averaging 2768 * algorithm uses a scaled up value as well. Change this scaling 2769 * factor if the RSSI averaging algorithm changes. 2770 */ 2771 sdata->u.mgd.rssi_min_thold = rssi_min_thold*16; 2772 sdata->u.mgd.rssi_max_thold = rssi_max_thold*16; 2773 } 2774 2775 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif, 2776 int rssi_min_thold, 2777 int rssi_max_thold) 2778 { 2779 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2780 2781 WARN_ON(rssi_min_thold == rssi_max_thold || 2782 rssi_min_thold > rssi_max_thold); 2783 2784 _ieee80211_enable_rssi_reports(sdata, rssi_min_thold, 2785 rssi_max_thold); 2786 } 2787 EXPORT_SYMBOL(ieee80211_enable_rssi_reports); 2788 2789 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif) 2790 { 2791 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2792 2793 _ieee80211_enable_rssi_reports(sdata, 0, 0); 2794 } 2795 EXPORT_SYMBOL(ieee80211_disable_rssi_reports); 2796 2797 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2798 u16 cap) 2799 { 2800 __le16 tmp; 2801 2802 *pos++ = WLAN_EID_HT_CAPABILITY; 2803 *pos++ = sizeof(struct ieee80211_ht_cap); 2804 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 2805 2806 /* capability flags */ 2807 tmp = cpu_to_le16(cap); 2808 memcpy(pos, &tmp, sizeof(u16)); 2809 pos += sizeof(u16); 2810 2811 /* AMPDU parameters */ 2812 *pos++ = ht_cap->ampdu_factor | 2813 (ht_cap->ampdu_density << 2814 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 2815 2816 /* MCS set */ 2817 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 2818 pos += sizeof(ht_cap->mcs); 2819 2820 /* extended capabilities */ 2821 pos += sizeof(__le16); 2822 2823 /* BF capabilities */ 2824 pos += sizeof(__le32); 2825 2826 /* antenna selection */ 2827 pos += sizeof(u8); 2828 2829 return pos; 2830 } 2831 2832 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2833 u32 cap) 2834 { 2835 __le32 tmp; 2836 2837 *pos++ = WLAN_EID_VHT_CAPABILITY; 2838 *pos++ = sizeof(struct ieee80211_vht_cap); 2839 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 2840 2841 /* capability flags */ 2842 tmp = cpu_to_le32(cap); 2843 memcpy(pos, &tmp, sizeof(u32)); 2844 pos += sizeof(u32); 2845 2846 /* VHT MCS set */ 2847 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 2848 pos += sizeof(vht_cap->vht_mcs); 2849 2850 return pos; 2851 } 2852 2853 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 2854 { 2855 const struct ieee80211_sta_he_cap *he_cap; 2856 struct ieee80211_supported_band *sband; 2857 u8 n; 2858 2859 sband = ieee80211_get_sband(sdata); 2860 if (!sband) 2861 return 0; 2862 2863 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 2864 if (!he_cap) 2865 return 0; 2866 2867 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2868 return 2 + 1 + 2869 sizeof(he_cap->he_cap_elem) + n + 2870 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2871 he_cap->he_cap_elem.phy_cap_info); 2872 } 2873 2874 u8 *ieee80211_ie_build_he_cap(u8 *pos, 2875 const struct ieee80211_sta_he_cap *he_cap, 2876 u8 *end) 2877 { 2878 u8 n; 2879 u8 ie_len; 2880 u8 *orig_pos = pos; 2881 2882 /* Make sure we have place for the IE */ 2883 /* 2884 * TODO: the 1 added is because this temporarily is under the EXTENSION 2885 * IE. Get rid of it when it moves. 2886 */ 2887 if (!he_cap) 2888 return orig_pos; 2889 2890 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2891 ie_len = 2 + 1 + 2892 sizeof(he_cap->he_cap_elem) + n + 2893 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2894 he_cap->he_cap_elem.phy_cap_info); 2895 2896 if ((end - pos) < ie_len) 2897 return orig_pos; 2898 2899 *pos++ = WLAN_EID_EXTENSION; 2900 pos++; /* We'll set the size later below */ 2901 *pos++ = WLAN_EID_EXT_HE_CAPABILITY; 2902 2903 /* Fixed data */ 2904 memcpy(pos, &he_cap->he_cap_elem, sizeof(he_cap->he_cap_elem)); 2905 pos += sizeof(he_cap->he_cap_elem); 2906 2907 memcpy(pos, &he_cap->he_mcs_nss_supp, n); 2908 pos += n; 2909 2910 /* Check if PPE Threshold should be present */ 2911 if ((he_cap->he_cap_elem.phy_cap_info[6] & 2912 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 2913 goto end; 2914 2915 /* 2916 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 2917 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 2918 */ 2919 n = hweight8(he_cap->ppe_thres[0] & 2920 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 2921 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 2922 IEEE80211_PPE_THRES_NSS_POS)); 2923 2924 /* 2925 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 2926 * total size. 2927 */ 2928 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 2929 n = DIV_ROUND_UP(n, 8); 2930 2931 /* Copy PPE Thresholds */ 2932 memcpy(pos, &he_cap->ppe_thres, n); 2933 pos += n; 2934 2935 end: 2936 orig_pos[1] = (pos - orig_pos) - 2; 2937 return pos; 2938 } 2939 2940 void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata, 2941 struct sk_buff *skb) 2942 { 2943 struct ieee80211_supported_band *sband; 2944 const struct ieee80211_sband_iftype_data *iftd; 2945 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 2946 u8 *pos; 2947 u16 cap; 2948 2949 sband = ieee80211_get_sband(sdata); 2950 if (!sband) 2951 return; 2952 2953 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 2954 if (WARN_ON(!iftd)) 2955 return; 2956 2957 /* Check for device HE 6 GHz capability before adding element */ 2958 if (!iftd->he_6ghz_capa.capa) 2959 return; 2960 2961 cap = le16_to_cpu(iftd->he_6ghz_capa.capa); 2962 cap &= ~IEEE80211_HE_6GHZ_CAP_SM_PS; 2963 2964 switch (sdata->smps_mode) { 2965 case IEEE80211_SMPS_AUTOMATIC: 2966 case IEEE80211_SMPS_NUM_MODES: 2967 WARN_ON(1); 2968 fallthrough; 2969 case IEEE80211_SMPS_OFF: 2970 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 2971 IEEE80211_HE_6GHZ_CAP_SM_PS); 2972 break; 2973 case IEEE80211_SMPS_STATIC: 2974 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 2975 IEEE80211_HE_6GHZ_CAP_SM_PS); 2976 break; 2977 case IEEE80211_SMPS_DYNAMIC: 2978 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 2979 IEEE80211_HE_6GHZ_CAP_SM_PS); 2980 break; 2981 } 2982 2983 pos = skb_put(skb, 2 + 1 + sizeof(cap)); 2984 ieee80211_write_he_6ghz_cap(pos, cpu_to_le16(cap), 2985 pos + 2 + 1 + sizeof(cap)); 2986 } 2987 2988 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2989 const struct cfg80211_chan_def *chandef, 2990 u16 prot_mode, bool rifs_mode) 2991 { 2992 struct ieee80211_ht_operation *ht_oper; 2993 /* Build HT Information */ 2994 *pos++ = WLAN_EID_HT_OPERATION; 2995 *pos++ = sizeof(struct ieee80211_ht_operation); 2996 ht_oper = (struct ieee80211_ht_operation *)pos; 2997 ht_oper->primary_chan = ieee80211_frequency_to_channel( 2998 chandef->chan->center_freq); 2999 switch (chandef->width) { 3000 case NL80211_CHAN_WIDTH_160: 3001 case NL80211_CHAN_WIDTH_80P80: 3002 case NL80211_CHAN_WIDTH_80: 3003 case NL80211_CHAN_WIDTH_40: 3004 if (chandef->center_freq1 > chandef->chan->center_freq) 3005 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3006 else 3007 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3008 break; 3009 default: 3010 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 3011 break; 3012 } 3013 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 3014 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 3015 chandef->width != NL80211_CHAN_WIDTH_20) 3016 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 3017 3018 if (rifs_mode) 3019 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 3020 3021 ht_oper->operation_mode = cpu_to_le16(prot_mode); 3022 ht_oper->stbc_param = 0x0000; 3023 3024 /* It seems that Basic MCS set and Supported MCS set 3025 are identical for the first 10 bytes */ 3026 memset(&ht_oper->basic_set, 0, 16); 3027 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 3028 3029 return pos + sizeof(struct ieee80211_ht_operation); 3030 } 3031 3032 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 3033 const struct cfg80211_chan_def *chandef) 3034 { 3035 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 3036 *pos++ = 3; /* IE length */ 3037 /* New channel width */ 3038 switch (chandef->width) { 3039 case NL80211_CHAN_WIDTH_80: 3040 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 3041 break; 3042 case NL80211_CHAN_WIDTH_160: 3043 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 3044 break; 3045 case NL80211_CHAN_WIDTH_80P80: 3046 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 3047 break; 3048 default: 3049 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 3050 } 3051 3052 /* new center frequency segment 0 */ 3053 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 3054 /* new center frequency segment 1 */ 3055 if (chandef->center_freq2) 3056 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 3057 else 3058 *pos++ = 0; 3059 } 3060 3061 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 3062 const struct cfg80211_chan_def *chandef) 3063 { 3064 struct ieee80211_vht_operation *vht_oper; 3065 3066 *pos++ = WLAN_EID_VHT_OPERATION; 3067 *pos++ = sizeof(struct ieee80211_vht_operation); 3068 vht_oper = (struct ieee80211_vht_operation *)pos; 3069 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 3070 chandef->center_freq1); 3071 if (chandef->center_freq2) 3072 vht_oper->center_freq_seg1_idx = 3073 ieee80211_frequency_to_channel(chandef->center_freq2); 3074 else 3075 vht_oper->center_freq_seg1_idx = 0x00; 3076 3077 switch (chandef->width) { 3078 case NL80211_CHAN_WIDTH_160: 3079 /* 3080 * Convert 160 MHz channel width to new style as interop 3081 * workaround. 3082 */ 3083 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3084 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 3085 if (chandef->chan->center_freq < chandef->center_freq1) 3086 vht_oper->center_freq_seg0_idx -= 8; 3087 else 3088 vht_oper->center_freq_seg0_idx += 8; 3089 break; 3090 case NL80211_CHAN_WIDTH_80P80: 3091 /* 3092 * Convert 80+80 MHz channel width to new style as interop 3093 * workaround. 3094 */ 3095 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3096 break; 3097 case NL80211_CHAN_WIDTH_80: 3098 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3099 break; 3100 default: 3101 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 3102 break; 3103 } 3104 3105 /* don't require special VHT peer rates */ 3106 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 3107 3108 return pos + sizeof(struct ieee80211_vht_operation); 3109 } 3110 3111 u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef) 3112 { 3113 struct ieee80211_he_operation *he_oper; 3114 struct ieee80211_he_6ghz_oper *he_6ghz_op; 3115 u32 he_oper_params; 3116 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 3117 3118 if (chandef->chan->band == NL80211_BAND_6GHZ) 3119 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 3120 3121 *pos++ = WLAN_EID_EXTENSION; 3122 *pos++ = ie_len; 3123 *pos++ = WLAN_EID_EXT_HE_OPERATION; 3124 3125 he_oper_params = 0; 3126 he_oper_params |= u32_encode_bits(1023, /* disabled */ 3127 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 3128 he_oper_params |= u32_encode_bits(1, 3129 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 3130 he_oper_params |= u32_encode_bits(1, 3131 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 3132 if (chandef->chan->band == NL80211_BAND_6GHZ) 3133 he_oper_params |= u32_encode_bits(1, 3134 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 3135 3136 he_oper = (struct ieee80211_he_operation *)pos; 3137 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 3138 3139 /* don't require special HE peer rates */ 3140 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 3141 pos += sizeof(struct ieee80211_he_operation); 3142 3143 if (chandef->chan->band != NL80211_BAND_6GHZ) 3144 goto out; 3145 3146 /* TODO add VHT operational */ 3147 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 3148 he_6ghz_op->minrate = 6; /* 6 Mbps */ 3149 he_6ghz_op->primary = 3150 ieee80211_frequency_to_channel(chandef->chan->center_freq); 3151 he_6ghz_op->ccfs0 = 3152 ieee80211_frequency_to_channel(chandef->center_freq1); 3153 if (chandef->center_freq2) 3154 he_6ghz_op->ccfs1 = 3155 ieee80211_frequency_to_channel(chandef->center_freq2); 3156 else 3157 he_6ghz_op->ccfs1 = 0; 3158 3159 switch (chandef->width) { 3160 case NL80211_CHAN_WIDTH_160: 3161 /* Convert 160 MHz channel width to new style as interop 3162 * workaround. 3163 */ 3164 he_6ghz_op->control = 3165 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3166 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 3167 if (chandef->chan->center_freq < chandef->center_freq1) 3168 he_6ghz_op->ccfs0 -= 8; 3169 else 3170 he_6ghz_op->ccfs0 += 8; 3171 fallthrough; 3172 case NL80211_CHAN_WIDTH_80P80: 3173 he_6ghz_op->control = 3174 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3175 break; 3176 case NL80211_CHAN_WIDTH_80: 3177 he_6ghz_op->control = 3178 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 3179 break; 3180 case NL80211_CHAN_WIDTH_40: 3181 he_6ghz_op->control = 3182 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 3183 break; 3184 default: 3185 he_6ghz_op->control = 3186 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 3187 break; 3188 } 3189 3190 pos += sizeof(struct ieee80211_he_6ghz_oper); 3191 3192 out: 3193 return pos; 3194 } 3195 3196 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 3197 struct cfg80211_chan_def *chandef) 3198 { 3199 enum nl80211_channel_type channel_type; 3200 3201 if (!ht_oper) 3202 return false; 3203 3204 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 3205 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 3206 channel_type = NL80211_CHAN_HT20; 3207 break; 3208 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 3209 channel_type = NL80211_CHAN_HT40PLUS; 3210 break; 3211 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 3212 channel_type = NL80211_CHAN_HT40MINUS; 3213 break; 3214 default: 3215 channel_type = NL80211_CHAN_NO_HT; 3216 return false; 3217 } 3218 3219 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 3220 return true; 3221 } 3222 3223 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 3224 const struct ieee80211_vht_operation *oper, 3225 const struct ieee80211_ht_operation *htop, 3226 struct cfg80211_chan_def *chandef) 3227 { 3228 struct cfg80211_chan_def new = *chandef; 3229 int cf0, cf1; 3230 int ccfs0, ccfs1, ccfs2; 3231 int ccf0, ccf1; 3232 u32 vht_cap; 3233 bool support_80_80 = false; 3234 bool support_160 = false; 3235 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 3236 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 3237 u8 supp_chwidth = u32_get_bits(vht_cap_info, 3238 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 3239 3240 if (!oper || !htop) 3241 return false; 3242 3243 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 3244 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 3245 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 3246 support_80_80 = ((vht_cap & 3247 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 3248 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 3249 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 3250 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 3251 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 3252 ccfs0 = oper->center_freq_seg0_idx; 3253 ccfs1 = oper->center_freq_seg1_idx; 3254 ccfs2 = (le16_to_cpu(htop->operation_mode) & 3255 IEEE80211_HT_OP_MODE_CCFS2_MASK) 3256 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 3257 3258 ccf0 = ccfs0; 3259 3260 /* if not supported, parse as though we didn't understand it */ 3261 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 3262 ext_nss_bw_supp = 0; 3263 3264 /* 3265 * Cf. IEEE 802.11 Table 9-250 3266 * 3267 * We really just consider that because it's inefficient to connect 3268 * at a higher bandwidth than we'll actually be able to use. 3269 */ 3270 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 3271 default: 3272 case 0x00: 3273 ccf1 = 0; 3274 support_160 = false; 3275 support_80_80 = false; 3276 break; 3277 case 0x01: 3278 support_80_80 = false; 3279 fallthrough; 3280 case 0x02: 3281 case 0x03: 3282 ccf1 = ccfs2; 3283 break; 3284 case 0x10: 3285 ccf1 = ccfs1; 3286 break; 3287 case 0x11: 3288 case 0x12: 3289 if (!ccfs1) 3290 ccf1 = ccfs2; 3291 else 3292 ccf1 = ccfs1; 3293 break; 3294 case 0x13: 3295 case 0x20: 3296 case 0x23: 3297 ccf1 = ccfs1; 3298 break; 3299 } 3300 3301 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3302 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3303 3304 switch (oper->chan_width) { 3305 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3306 /* just use HT information directly */ 3307 break; 3308 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3309 new.width = NL80211_CHAN_WIDTH_80; 3310 new.center_freq1 = cf0; 3311 /* If needed, adjust based on the newer interop workaround. */ 3312 if (ccf1) { 3313 unsigned int diff; 3314 3315 diff = abs(ccf1 - ccf0); 3316 if ((diff == 8) && support_160) { 3317 new.width = NL80211_CHAN_WIDTH_160; 3318 new.center_freq1 = cf1; 3319 } else if ((diff > 8) && support_80_80) { 3320 new.width = NL80211_CHAN_WIDTH_80P80; 3321 new.center_freq2 = cf1; 3322 } 3323 } 3324 break; 3325 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3326 /* deprecated encoding */ 3327 new.width = NL80211_CHAN_WIDTH_160; 3328 new.center_freq1 = cf0; 3329 break; 3330 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3331 /* deprecated encoding */ 3332 new.width = NL80211_CHAN_WIDTH_80P80; 3333 new.center_freq1 = cf0; 3334 new.center_freq2 = cf1; 3335 break; 3336 default: 3337 return false; 3338 } 3339 3340 if (!cfg80211_chandef_valid(&new)) 3341 return false; 3342 3343 *chandef = new; 3344 return true; 3345 } 3346 3347 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata, 3348 const struct ieee80211_he_operation *he_oper, 3349 struct cfg80211_chan_def *chandef) 3350 { 3351 struct ieee80211_local *local = sdata->local; 3352 struct ieee80211_supported_band *sband; 3353 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3354 const struct ieee80211_sta_he_cap *he_cap; 3355 struct cfg80211_chan_def he_chandef = *chandef; 3356 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3357 bool support_80_80, support_160; 3358 u8 he_phy_cap; 3359 u32 freq; 3360 3361 if (chandef->chan->band != NL80211_BAND_6GHZ) 3362 return true; 3363 3364 sband = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3365 3366 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 3367 if (!he_cap) { 3368 sdata_info(sdata, "Missing iftype sband data/HE cap"); 3369 return false; 3370 } 3371 3372 he_phy_cap = he_cap->he_cap_elem.phy_cap_info[0]; 3373 support_160 = 3374 he_phy_cap & 3375 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 3376 support_80_80 = 3377 he_phy_cap & 3378 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 3379 3380 if (!he_oper) { 3381 sdata_info(sdata, 3382 "HE is not advertised on (on %d MHz), expect issues\n", 3383 chandef->chan->center_freq); 3384 return false; 3385 } 3386 3387 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3388 3389 if (!he_6ghz_oper) { 3390 sdata_info(sdata, 3391 "HE 6GHz operation missing (on %d MHz), expect issues\n", 3392 chandef->chan->center_freq); 3393 return false; 3394 } 3395 3396 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3397 NL80211_BAND_6GHZ); 3398 he_chandef.chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq); 3399 3400 switch (u8_get_bits(he_6ghz_oper->control, 3401 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3402 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3403 he_chandef.width = NL80211_CHAN_WIDTH_20; 3404 break; 3405 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3406 he_chandef.width = NL80211_CHAN_WIDTH_40; 3407 break; 3408 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3409 he_chandef.width = NL80211_CHAN_WIDTH_80; 3410 break; 3411 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3412 he_chandef.width = NL80211_CHAN_WIDTH_80; 3413 if (!he_6ghz_oper->ccfs1) 3414 break; 3415 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) { 3416 if (support_160) 3417 he_chandef.width = NL80211_CHAN_WIDTH_160; 3418 } else { 3419 if (support_80_80) 3420 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3421 } 3422 break; 3423 } 3424 3425 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3426 he_chandef.center_freq1 = 3427 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3428 NL80211_BAND_6GHZ); 3429 } else { 3430 he_chandef.center_freq1 = 3431 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3432 NL80211_BAND_6GHZ); 3433 if (support_80_80 || support_160) 3434 he_chandef.center_freq2 = 3435 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3436 NL80211_BAND_6GHZ); 3437 } 3438 3439 if (!cfg80211_chandef_valid(&he_chandef)) { 3440 sdata_info(sdata, 3441 "HE 6GHz operation resulted in invalid chandef: %d MHz/%d/%d MHz/%d MHz\n", 3442 he_chandef.chan ? he_chandef.chan->center_freq : 0, 3443 he_chandef.width, 3444 he_chandef.center_freq1, 3445 he_chandef.center_freq2); 3446 return false; 3447 } 3448 3449 *chandef = he_chandef; 3450 3451 return true; 3452 } 3453 3454 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, 3455 struct cfg80211_chan_def *chandef) 3456 { 3457 u32 oper_freq; 3458 3459 if (!oper) 3460 return false; 3461 3462 switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { 3463 case IEEE80211_S1G_CHANWIDTH_1MHZ: 3464 chandef->width = NL80211_CHAN_WIDTH_1; 3465 break; 3466 case IEEE80211_S1G_CHANWIDTH_2MHZ: 3467 chandef->width = NL80211_CHAN_WIDTH_2; 3468 break; 3469 case IEEE80211_S1G_CHANWIDTH_4MHZ: 3470 chandef->width = NL80211_CHAN_WIDTH_4; 3471 break; 3472 case IEEE80211_S1G_CHANWIDTH_8MHZ: 3473 chandef->width = NL80211_CHAN_WIDTH_8; 3474 break; 3475 case IEEE80211_S1G_CHANWIDTH_16MHZ: 3476 chandef->width = NL80211_CHAN_WIDTH_16; 3477 break; 3478 default: 3479 return false; 3480 } 3481 3482 oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch, 3483 NL80211_BAND_S1GHZ); 3484 chandef->center_freq1 = KHZ_TO_MHZ(oper_freq); 3485 chandef->freq1_offset = oper_freq % 1000; 3486 3487 return true; 3488 } 3489 3490 int ieee80211_parse_bitrates(struct cfg80211_chan_def *chandef, 3491 const struct ieee80211_supported_band *sband, 3492 const u8 *srates, int srates_len, u32 *rates) 3493 { 3494 u32 rate_flags = ieee80211_chandef_rate_flags(chandef); 3495 int shift = ieee80211_chandef_get_shift(chandef); 3496 struct ieee80211_rate *br; 3497 int brate, rate, i, j, count = 0; 3498 3499 *rates = 0; 3500 3501 for (i = 0; i < srates_len; i++) { 3502 rate = srates[i] & 0x7f; 3503 3504 for (j = 0; j < sband->n_bitrates; j++) { 3505 br = &sband->bitrates[j]; 3506 if ((rate_flags & br->flags) != rate_flags) 3507 continue; 3508 3509 brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5); 3510 if (brate == rate) { 3511 *rates |= BIT(j); 3512 count++; 3513 break; 3514 } 3515 } 3516 } 3517 return count; 3518 } 3519 3520 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, 3521 struct sk_buff *skb, bool need_basic, 3522 enum nl80211_band band) 3523 { 3524 struct ieee80211_local *local = sdata->local; 3525 struct ieee80211_supported_band *sband; 3526 int rate, shift; 3527 u8 i, rates, *pos; 3528 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3529 u32 rate_flags; 3530 3531 shift = ieee80211_vif_get_shift(&sdata->vif); 3532 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3533 sband = local->hw.wiphy->bands[band]; 3534 rates = 0; 3535 for (i = 0; i < sband->n_bitrates; i++) { 3536 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3537 continue; 3538 rates++; 3539 } 3540 if (rates > 8) 3541 rates = 8; 3542 3543 if (skb_tailroom(skb) < rates + 2) 3544 return -ENOMEM; 3545 3546 pos = skb_put(skb, rates + 2); 3547 *pos++ = WLAN_EID_SUPP_RATES; 3548 *pos++ = rates; 3549 for (i = 0; i < rates; i++) { 3550 u8 basic = 0; 3551 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3552 continue; 3553 3554 if (need_basic && basic_rates & BIT(i)) 3555 basic = 0x80; 3556 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3557 5 * (1 << shift)); 3558 *pos++ = basic | (u8) rate; 3559 } 3560 3561 return 0; 3562 } 3563 3564 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, 3565 struct sk_buff *skb, bool need_basic, 3566 enum nl80211_band band) 3567 { 3568 struct ieee80211_local *local = sdata->local; 3569 struct ieee80211_supported_band *sband; 3570 int rate, shift; 3571 u8 i, exrates, *pos; 3572 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3573 u32 rate_flags; 3574 3575 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3576 shift = ieee80211_vif_get_shift(&sdata->vif); 3577 3578 sband = local->hw.wiphy->bands[band]; 3579 exrates = 0; 3580 for (i = 0; i < sband->n_bitrates; i++) { 3581 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3582 continue; 3583 exrates++; 3584 } 3585 3586 if (exrates > 8) 3587 exrates -= 8; 3588 else 3589 exrates = 0; 3590 3591 if (skb_tailroom(skb) < exrates + 2) 3592 return -ENOMEM; 3593 3594 if (exrates) { 3595 pos = skb_put(skb, exrates + 2); 3596 *pos++ = WLAN_EID_EXT_SUPP_RATES; 3597 *pos++ = exrates; 3598 for (i = 8; i < sband->n_bitrates; i++) { 3599 u8 basic = 0; 3600 if ((rate_flags & sband->bitrates[i].flags) 3601 != rate_flags) 3602 continue; 3603 if (need_basic && basic_rates & BIT(i)) 3604 basic = 0x80; 3605 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3606 5 * (1 << shift)); 3607 *pos++ = basic | (u8) rate; 3608 } 3609 } 3610 return 0; 3611 } 3612 3613 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 3614 { 3615 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 3616 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 3617 3618 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) { 3619 /* non-managed type inferfaces */ 3620 return 0; 3621 } 3622 return -ewma_beacon_signal_read(&ifmgd->ave_beacon_signal); 3623 } 3624 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 3625 3626 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 3627 { 3628 if (!mcs) 3629 return 1; 3630 3631 /* TODO: consider rx_highest */ 3632 3633 if (mcs->rx_mask[3]) 3634 return 4; 3635 if (mcs->rx_mask[2]) 3636 return 3; 3637 if (mcs->rx_mask[1]) 3638 return 2; 3639 return 1; 3640 } 3641 3642 /** 3643 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 3644 * @local: mac80211 hw info struct 3645 * @status: RX status 3646 * @mpdu_len: total MPDU length (including FCS) 3647 * @mpdu_offset: offset into MPDU to calculate timestamp at 3648 * 3649 * This function calculates the RX timestamp at the given MPDU offset, taking 3650 * into account what the RX timestamp was. An offset of 0 will just normalize 3651 * the timestamp to TSF at beginning of MPDU reception. 3652 */ 3653 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 3654 struct ieee80211_rx_status *status, 3655 unsigned int mpdu_len, 3656 unsigned int mpdu_offset) 3657 { 3658 u64 ts = status->mactime; 3659 struct rate_info ri; 3660 u16 rate; 3661 u8 n_ltf; 3662 3663 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 3664 return 0; 3665 3666 memset(&ri, 0, sizeof(ri)); 3667 3668 ri.bw = status->bw; 3669 3670 /* Fill cfg80211 rate info */ 3671 switch (status->encoding) { 3672 case RX_ENC_HE: 3673 ri.flags |= RATE_INFO_FLAGS_HE_MCS; 3674 ri.mcs = status->rate_idx; 3675 ri.nss = status->nss; 3676 ri.he_ru_alloc = status->he_ru; 3677 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3678 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3679 3680 /* 3681 * See P802.11ax_D6.0, section 27.3.4 for 3682 * VHT PPDU format. 3683 */ 3684 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3685 mpdu_offset += 2; 3686 ts += 36; 3687 3688 /* 3689 * TODO: 3690 * For HE MU PPDU, add the HE-SIG-B. 3691 * For HE ER PPDU, add 8us for the HE-SIG-A. 3692 * For HE TB PPDU, add 4us for the HE-STF. 3693 * Add the HE-LTF durations - variable. 3694 */ 3695 } 3696 3697 break; 3698 case RX_ENC_HT: 3699 ri.mcs = status->rate_idx; 3700 ri.flags |= RATE_INFO_FLAGS_MCS; 3701 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3702 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3703 3704 /* 3705 * See P802.11REVmd_D3.0, section 19.3.2 for 3706 * HT PPDU format. 3707 */ 3708 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3709 mpdu_offset += 2; 3710 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 3711 ts += 24; 3712 else 3713 ts += 32; 3714 3715 /* 3716 * Add Data HT-LTFs per streams 3717 * TODO: add Extension HT-LTFs, 4us per LTF 3718 */ 3719 n_ltf = ((ri.mcs >> 3) & 3) + 1; 3720 n_ltf = n_ltf == 3 ? 4 : n_ltf; 3721 ts += n_ltf * 4; 3722 } 3723 3724 break; 3725 case RX_ENC_VHT: 3726 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 3727 ri.mcs = status->rate_idx; 3728 ri.nss = status->nss; 3729 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3730 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3731 3732 /* 3733 * See P802.11REVmd_D3.0, section 21.3.2 for 3734 * VHT PPDU format. 3735 */ 3736 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3737 mpdu_offset += 2; 3738 ts += 36; 3739 3740 /* 3741 * Add VHT-LTFs per streams 3742 */ 3743 n_ltf = (ri.nss != 1) && (ri.nss % 2) ? 3744 ri.nss + 1 : ri.nss; 3745 ts += 4 * n_ltf; 3746 } 3747 3748 break; 3749 default: 3750 WARN_ON(1); 3751 fallthrough; 3752 case RX_ENC_LEGACY: { 3753 struct ieee80211_supported_band *sband; 3754 int shift = 0; 3755 int bitrate; 3756 3757 switch (status->bw) { 3758 case RATE_INFO_BW_10: 3759 shift = 1; 3760 break; 3761 case RATE_INFO_BW_5: 3762 shift = 2; 3763 break; 3764 } 3765 3766 sband = local->hw.wiphy->bands[status->band]; 3767 bitrate = sband->bitrates[status->rate_idx].bitrate; 3768 ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift)); 3769 3770 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3771 if (status->band == NL80211_BAND_5GHZ) { 3772 ts += 20 << shift; 3773 mpdu_offset += 2; 3774 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 3775 ts += 96; 3776 } else { 3777 ts += 192; 3778 } 3779 } 3780 break; 3781 } 3782 } 3783 3784 rate = cfg80211_calculate_bitrate(&ri); 3785 if (WARN_ONCE(!rate, 3786 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 3787 (unsigned long long)status->flag, status->rate_idx, 3788 status->nss)) 3789 return 0; 3790 3791 /* rewind from end of MPDU */ 3792 if (status->flag & RX_FLAG_MACTIME_END) 3793 ts -= mpdu_len * 8 * 10 / rate; 3794 3795 ts += mpdu_offset * 8 * 10 / rate; 3796 3797 return ts; 3798 } 3799 3800 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) 3801 { 3802 struct ieee80211_sub_if_data *sdata; 3803 struct cfg80211_chan_def chandef; 3804 3805 /* for interface list, to avoid linking iflist_mtx and chanctx_mtx */ 3806 lockdep_assert_wiphy(local->hw.wiphy); 3807 3808 mutex_lock(&local->mtx); 3809 list_for_each_entry(sdata, &local->interfaces, list) { 3810 /* it might be waiting for the local->mtx, but then 3811 * by the time it gets it, sdata->wdev.cac_started 3812 * will no longer be true 3813 */ 3814 cancel_delayed_work(&sdata->dfs_cac_timer_work); 3815 3816 if (sdata->wdev.cac_started) { 3817 chandef = sdata->vif.bss_conf.chandef; 3818 ieee80211_vif_release_channel(sdata); 3819 cfg80211_cac_event(sdata->dev, 3820 &chandef, 3821 NL80211_RADAR_CAC_ABORTED, 3822 GFP_KERNEL); 3823 } 3824 } 3825 mutex_unlock(&local->mtx); 3826 } 3827 3828 void ieee80211_dfs_radar_detected_work(struct work_struct *work) 3829 { 3830 struct ieee80211_local *local = 3831 container_of(work, struct ieee80211_local, radar_detected_work); 3832 struct cfg80211_chan_def chandef = local->hw.conf.chandef; 3833 struct ieee80211_chanctx *ctx; 3834 int num_chanctx = 0; 3835 3836 mutex_lock(&local->chanctx_mtx); 3837 list_for_each_entry(ctx, &local->chanctx_list, list) { 3838 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 3839 continue; 3840 3841 num_chanctx++; 3842 chandef = ctx->conf.def; 3843 } 3844 mutex_unlock(&local->chanctx_mtx); 3845 3846 wiphy_lock(local->hw.wiphy); 3847 ieee80211_dfs_cac_cancel(local); 3848 wiphy_unlock(local->hw.wiphy); 3849 3850 if (num_chanctx > 1) 3851 /* XXX: multi-channel is not supported yet */ 3852 WARN_ON(1); 3853 else 3854 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 3855 } 3856 3857 void ieee80211_radar_detected(struct ieee80211_hw *hw) 3858 { 3859 struct ieee80211_local *local = hw_to_local(hw); 3860 3861 trace_api_radar_detected(local); 3862 3863 schedule_work(&local->radar_detected_work); 3864 } 3865 EXPORT_SYMBOL(ieee80211_radar_detected); 3866 3867 u32 ieee80211_chandef_downgrade(struct cfg80211_chan_def *c) 3868 { 3869 u32 ret; 3870 int tmp; 3871 3872 switch (c->width) { 3873 case NL80211_CHAN_WIDTH_20: 3874 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3875 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3876 break; 3877 case NL80211_CHAN_WIDTH_40: 3878 c->width = NL80211_CHAN_WIDTH_20; 3879 c->center_freq1 = c->chan->center_freq; 3880 ret = IEEE80211_STA_DISABLE_40MHZ | 3881 IEEE80211_STA_DISABLE_VHT; 3882 break; 3883 case NL80211_CHAN_WIDTH_80: 3884 tmp = (30 + c->chan->center_freq - c->center_freq1)/20; 3885 /* n_P40 */ 3886 tmp /= 2; 3887 /* freq_P40 */ 3888 c->center_freq1 = c->center_freq1 - 20 + 40 * tmp; 3889 c->width = NL80211_CHAN_WIDTH_40; 3890 ret = IEEE80211_STA_DISABLE_VHT; 3891 break; 3892 case NL80211_CHAN_WIDTH_80P80: 3893 c->center_freq2 = 0; 3894 c->width = NL80211_CHAN_WIDTH_80; 3895 ret = IEEE80211_STA_DISABLE_80P80MHZ | 3896 IEEE80211_STA_DISABLE_160MHZ; 3897 break; 3898 case NL80211_CHAN_WIDTH_160: 3899 /* n_P20 */ 3900 tmp = (70 + c->chan->center_freq - c->center_freq1)/20; 3901 /* n_P80 */ 3902 tmp /= 4; 3903 c->center_freq1 = c->center_freq1 - 40 + 80 * tmp; 3904 c->width = NL80211_CHAN_WIDTH_80; 3905 ret = IEEE80211_STA_DISABLE_80P80MHZ | 3906 IEEE80211_STA_DISABLE_160MHZ; 3907 break; 3908 default: 3909 case NL80211_CHAN_WIDTH_20_NOHT: 3910 WARN_ON_ONCE(1); 3911 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3912 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3913 break; 3914 case NL80211_CHAN_WIDTH_1: 3915 case NL80211_CHAN_WIDTH_2: 3916 case NL80211_CHAN_WIDTH_4: 3917 case NL80211_CHAN_WIDTH_8: 3918 case NL80211_CHAN_WIDTH_16: 3919 case NL80211_CHAN_WIDTH_5: 3920 case NL80211_CHAN_WIDTH_10: 3921 WARN_ON_ONCE(1); 3922 /* keep c->width */ 3923 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3924 break; 3925 } 3926 3927 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 3928 3929 return ret; 3930 } 3931 3932 /* 3933 * Returns true if smps_mode_new is strictly more restrictive than 3934 * smps_mode_old. 3935 */ 3936 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 3937 enum ieee80211_smps_mode smps_mode_new) 3938 { 3939 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 3940 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 3941 return false; 3942 3943 switch (smps_mode_old) { 3944 case IEEE80211_SMPS_STATIC: 3945 return false; 3946 case IEEE80211_SMPS_DYNAMIC: 3947 return smps_mode_new == IEEE80211_SMPS_STATIC; 3948 case IEEE80211_SMPS_OFF: 3949 return smps_mode_new != IEEE80211_SMPS_OFF; 3950 default: 3951 WARN_ON(1); 3952 } 3953 3954 return false; 3955 } 3956 3957 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 3958 struct cfg80211_csa_settings *csa_settings) 3959 { 3960 struct sk_buff *skb; 3961 struct ieee80211_mgmt *mgmt; 3962 struct ieee80211_local *local = sdata->local; 3963 int freq; 3964 int hdr_len = offsetofend(struct ieee80211_mgmt, 3965 u.action.u.chan_switch); 3966 u8 *pos; 3967 3968 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3969 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3970 return -EOPNOTSUPP; 3971 3972 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 3973 5 + /* channel switch announcement element */ 3974 3 + /* secondary channel offset element */ 3975 5 + /* wide bandwidth channel switch announcement */ 3976 8); /* mesh channel switch parameters element */ 3977 if (!skb) 3978 return -ENOMEM; 3979 3980 skb_reserve(skb, local->tx_headroom); 3981 mgmt = skb_put_zero(skb, hdr_len); 3982 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3983 IEEE80211_STYPE_ACTION); 3984 3985 eth_broadcast_addr(mgmt->da); 3986 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 3987 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3988 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 3989 } else { 3990 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 3991 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 3992 } 3993 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 3994 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 3995 pos = skb_put(skb, 5); 3996 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 3997 *pos++ = 3; /* IE length */ 3998 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 3999 freq = csa_settings->chandef.chan->center_freq; 4000 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 4001 *pos++ = csa_settings->count; /* count */ 4002 4003 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 4004 enum nl80211_channel_type ch_type; 4005 4006 skb_put(skb, 3); 4007 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 4008 *pos++ = 1; /* IE length */ 4009 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 4010 if (ch_type == NL80211_CHAN_HT40PLUS) 4011 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 4012 else 4013 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 4014 } 4015 4016 if (ieee80211_vif_is_mesh(&sdata->vif)) { 4017 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 4018 4019 skb_put(skb, 8); 4020 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 4021 *pos++ = 6; /* IE length */ 4022 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 4023 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 4024 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 4025 *pos++ |= csa_settings->block_tx ? 4026 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 4027 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 4028 pos += 2; 4029 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 4030 pos += 2; 4031 } 4032 4033 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 4034 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 4035 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 4036 skb_put(skb, 5); 4037 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 4038 } 4039 4040 ieee80211_tx_skb(sdata, skb); 4041 return 0; 4042 } 4043 4044 bool ieee80211_cs_valid(const struct ieee80211_cipher_scheme *cs) 4045 { 4046 return !(cs == NULL || cs->cipher == 0 || 4047 cs->hdr_len < cs->pn_len + cs->pn_off || 4048 cs->hdr_len <= cs->key_idx_off || 4049 cs->key_idx_shift > 7 || 4050 cs->key_idx_mask == 0); 4051 } 4052 4053 bool ieee80211_cs_list_valid(const struct ieee80211_cipher_scheme *cs, int n) 4054 { 4055 int i; 4056 4057 /* Ensure we have enough iftype bitmap space for all iftype values */ 4058 WARN_ON((NUM_NL80211_IFTYPES / 8 + 1) > sizeof(cs[0].iftype)); 4059 4060 for (i = 0; i < n; i++) 4061 if (!ieee80211_cs_valid(&cs[i])) 4062 return false; 4063 4064 return true; 4065 } 4066 4067 const struct ieee80211_cipher_scheme * 4068 ieee80211_cs_get(struct ieee80211_local *local, u32 cipher, 4069 enum nl80211_iftype iftype) 4070 { 4071 const struct ieee80211_cipher_scheme *l = local->hw.cipher_schemes; 4072 int n = local->hw.n_cipher_schemes; 4073 int i; 4074 const struct ieee80211_cipher_scheme *cs = NULL; 4075 4076 for (i = 0; i < n; i++) { 4077 if (l[i].cipher == cipher) { 4078 cs = &l[i]; 4079 break; 4080 } 4081 } 4082 4083 if (!cs || !(cs->iftype & BIT(iftype))) 4084 return NULL; 4085 4086 return cs; 4087 } 4088 4089 int ieee80211_cs_headroom(struct ieee80211_local *local, 4090 struct cfg80211_crypto_settings *crypto, 4091 enum nl80211_iftype iftype) 4092 { 4093 const struct ieee80211_cipher_scheme *cs; 4094 int headroom = IEEE80211_ENCRYPT_HEADROOM; 4095 int i; 4096 4097 for (i = 0; i < crypto->n_ciphers_pairwise; i++) { 4098 cs = ieee80211_cs_get(local, crypto->ciphers_pairwise[i], 4099 iftype); 4100 4101 if (cs && headroom < cs->hdr_len) 4102 headroom = cs->hdr_len; 4103 } 4104 4105 cs = ieee80211_cs_get(local, crypto->cipher_group, iftype); 4106 if (cs && headroom < cs->hdr_len) 4107 headroom = cs->hdr_len; 4108 4109 return headroom; 4110 } 4111 4112 static bool 4113 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 4114 { 4115 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 4116 int skip; 4117 4118 if (end > 0) 4119 return false; 4120 4121 /* One shot NOA */ 4122 if (data->count[i] == 1) 4123 return false; 4124 4125 if (data->desc[i].interval == 0) 4126 return false; 4127 4128 /* End time is in the past, check for repetitions */ 4129 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 4130 if (data->count[i] < 255) { 4131 if (data->count[i] <= skip) { 4132 data->count[i] = 0; 4133 return false; 4134 } 4135 4136 data->count[i] -= skip; 4137 } 4138 4139 data->desc[i].start += skip * data->desc[i].interval; 4140 4141 return true; 4142 } 4143 4144 static bool 4145 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 4146 s32 *offset) 4147 { 4148 bool ret = false; 4149 int i; 4150 4151 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4152 s32 cur; 4153 4154 if (!data->count[i]) 4155 continue; 4156 4157 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 4158 ret = true; 4159 4160 cur = data->desc[i].start - tsf; 4161 if (cur > *offset) 4162 continue; 4163 4164 cur = data->desc[i].start + data->desc[i].duration - tsf; 4165 if (cur > *offset) 4166 *offset = cur; 4167 } 4168 4169 return ret; 4170 } 4171 4172 static u32 4173 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 4174 { 4175 s32 offset = 0; 4176 int tries = 0; 4177 /* 4178 * arbitrary limit, used to avoid infinite loops when combined NoA 4179 * descriptors cover the full time period. 4180 */ 4181 int max_tries = 5; 4182 4183 ieee80211_extend_absent_time(data, tsf, &offset); 4184 do { 4185 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 4186 break; 4187 4188 tries++; 4189 } while (tries < max_tries); 4190 4191 return offset; 4192 } 4193 4194 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 4195 { 4196 u32 next_offset = BIT(31) - 1; 4197 int i; 4198 4199 data->absent = 0; 4200 data->has_next_tsf = false; 4201 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4202 s32 start; 4203 4204 if (!data->count[i]) 4205 continue; 4206 4207 ieee80211_extend_noa_desc(data, tsf, i); 4208 start = data->desc[i].start - tsf; 4209 if (start <= 0) 4210 data->absent |= BIT(i); 4211 4212 if (next_offset > start) 4213 next_offset = start; 4214 4215 data->has_next_tsf = true; 4216 } 4217 4218 if (data->absent) 4219 next_offset = ieee80211_get_noa_absent_time(data, tsf); 4220 4221 data->next_tsf = tsf + next_offset; 4222 } 4223 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 4224 4225 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 4226 struct ieee80211_noa_data *data, u32 tsf) 4227 { 4228 int ret = 0; 4229 int i; 4230 4231 memset(data, 0, sizeof(*data)); 4232 4233 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4234 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 4235 4236 if (!desc->count || !desc->duration) 4237 continue; 4238 4239 data->count[i] = desc->count; 4240 data->desc[i].start = le32_to_cpu(desc->start_time); 4241 data->desc[i].duration = le32_to_cpu(desc->duration); 4242 data->desc[i].interval = le32_to_cpu(desc->interval); 4243 4244 if (data->count[i] > 1 && 4245 data->desc[i].interval < data->desc[i].duration) 4246 continue; 4247 4248 ieee80211_extend_noa_desc(data, tsf, i); 4249 ret++; 4250 } 4251 4252 if (ret) 4253 ieee80211_update_p2p_noa(data, tsf); 4254 4255 return ret; 4256 } 4257 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 4258 4259 void ieee80211_recalc_dtim(struct ieee80211_local *local, 4260 struct ieee80211_sub_if_data *sdata) 4261 { 4262 u64 tsf = drv_get_tsf(local, sdata); 4263 u64 dtim_count = 0; 4264 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 4265 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 4266 struct ps_data *ps; 4267 u8 bcns_from_dtim; 4268 4269 if (tsf == -1ULL || !beacon_int || !dtim_period) 4270 return; 4271 4272 if (sdata->vif.type == NL80211_IFTYPE_AP || 4273 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 4274 if (!sdata->bss) 4275 return; 4276 4277 ps = &sdata->bss->ps; 4278 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 4279 ps = &sdata->u.mesh.ps; 4280 } else { 4281 return; 4282 } 4283 4284 /* 4285 * actually finds last dtim_count, mac80211 will update in 4286 * __beacon_add_tim(). 4287 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 4288 */ 4289 do_div(tsf, beacon_int); 4290 bcns_from_dtim = do_div(tsf, dtim_period); 4291 /* just had a DTIM */ 4292 if (!bcns_from_dtim) 4293 dtim_count = 0; 4294 else 4295 dtim_count = dtim_period - bcns_from_dtim; 4296 4297 ps->dtim_count = dtim_count; 4298 } 4299 4300 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 4301 struct ieee80211_chanctx *ctx) 4302 { 4303 struct ieee80211_sub_if_data *sdata; 4304 u8 radar_detect = 0; 4305 4306 lockdep_assert_held(&local->chanctx_mtx); 4307 4308 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 4309 return 0; 4310 4311 list_for_each_entry(sdata, &ctx->reserved_vifs, reserved_chanctx_list) 4312 if (sdata->reserved_radar_required) 4313 radar_detect |= BIT(sdata->reserved_chandef.width); 4314 4315 /* 4316 * An in-place reservation context should not have any assigned vifs 4317 * until it replaces the other context. 4318 */ 4319 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 4320 !list_empty(&ctx->assigned_vifs)); 4321 4322 list_for_each_entry(sdata, &ctx->assigned_vifs, assigned_chanctx_list) 4323 if (sdata->radar_required) 4324 radar_detect |= BIT(sdata->vif.bss_conf.chandef.width); 4325 4326 return radar_detect; 4327 } 4328 4329 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 4330 const struct cfg80211_chan_def *chandef, 4331 enum ieee80211_chanctx_mode chanmode, 4332 u8 radar_detect) 4333 { 4334 struct ieee80211_local *local = sdata->local; 4335 struct ieee80211_sub_if_data *sdata_iter; 4336 enum nl80211_iftype iftype = sdata->wdev.iftype; 4337 struct ieee80211_chanctx *ctx; 4338 int total = 1; 4339 struct iface_combination_params params = { 4340 .radar_detect = radar_detect, 4341 }; 4342 4343 lockdep_assert_held(&local->chanctx_mtx); 4344 4345 if (WARN_ON(hweight32(radar_detect) > 1)) 4346 return -EINVAL; 4347 4348 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4349 !chandef->chan)) 4350 return -EINVAL; 4351 4352 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 4353 return -EINVAL; 4354 4355 if (sdata->vif.type == NL80211_IFTYPE_AP || 4356 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 4357 /* 4358 * always passing this is harmless, since it'll be the 4359 * same value that cfg80211 finds if it finds the same 4360 * interface ... and that's always allowed 4361 */ 4362 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 4363 } 4364 4365 /* Always allow software iftypes */ 4366 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 4367 if (radar_detect) 4368 return -EINVAL; 4369 return 0; 4370 } 4371 4372 if (chandef) 4373 params.num_different_channels = 1; 4374 4375 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 4376 params.iftype_num[iftype] = 1; 4377 4378 list_for_each_entry(ctx, &local->chanctx_list, list) { 4379 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4380 continue; 4381 params.radar_detect |= 4382 ieee80211_chanctx_radar_detect(local, ctx); 4383 if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) { 4384 params.num_different_channels++; 4385 continue; 4386 } 4387 if (chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4388 cfg80211_chandef_compatible(chandef, 4389 &ctx->conf.def)) 4390 continue; 4391 params.num_different_channels++; 4392 } 4393 4394 list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) { 4395 struct wireless_dev *wdev_iter; 4396 4397 wdev_iter = &sdata_iter->wdev; 4398 4399 if (sdata_iter == sdata || 4400 !ieee80211_sdata_running(sdata_iter) || 4401 cfg80211_iftype_allowed(local->hw.wiphy, 4402 wdev_iter->iftype, 0, 1)) 4403 continue; 4404 4405 params.iftype_num[wdev_iter->iftype]++; 4406 total++; 4407 } 4408 4409 if (total == 1 && !params.radar_detect) 4410 return 0; 4411 4412 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4413 } 4414 4415 static void 4416 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4417 void *data) 4418 { 4419 u32 *max_num_different_channels = data; 4420 4421 *max_num_different_channels = max(*max_num_different_channels, 4422 c->num_different_channels); 4423 } 4424 4425 int ieee80211_max_num_channels(struct ieee80211_local *local) 4426 { 4427 struct ieee80211_sub_if_data *sdata; 4428 struct ieee80211_chanctx *ctx; 4429 u32 max_num_different_channels = 1; 4430 int err; 4431 struct iface_combination_params params = {0}; 4432 4433 lockdep_assert_held(&local->chanctx_mtx); 4434 4435 list_for_each_entry(ctx, &local->chanctx_list, list) { 4436 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4437 continue; 4438 4439 params.num_different_channels++; 4440 4441 params.radar_detect |= 4442 ieee80211_chanctx_radar_detect(local, ctx); 4443 } 4444 4445 list_for_each_entry_rcu(sdata, &local->interfaces, list) 4446 params.iftype_num[sdata->wdev.iftype]++; 4447 4448 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4449 ieee80211_iter_max_chans, 4450 &max_num_different_channels); 4451 if (err < 0) 4452 return err; 4453 4454 return max_num_different_channels; 4455 } 4456 4457 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, 4458 struct ieee80211_sta_s1g_cap *caps, 4459 struct sk_buff *skb) 4460 { 4461 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 4462 struct ieee80211_s1g_cap s1g_capab; 4463 u8 *pos; 4464 int i; 4465 4466 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 4467 return; 4468 4469 if (!caps->s1g) 4470 return; 4471 4472 memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); 4473 memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); 4474 4475 /* override the capability info */ 4476 for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { 4477 u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; 4478 4479 s1g_capab.capab_info[i] &= ~mask; 4480 s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; 4481 } 4482 4483 /* then MCS and NSS set */ 4484 for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { 4485 u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; 4486 4487 s1g_capab.supp_mcs_nss[i] &= ~mask; 4488 s1g_capab.supp_mcs_nss[i] |= 4489 ifmgd->s1g_capa.supp_mcs_nss[i] & mask; 4490 } 4491 4492 pos = skb_put(skb, 2 + sizeof(s1g_capab)); 4493 *pos++ = WLAN_EID_S1G_CAPABILITIES; 4494 *pos++ = sizeof(s1g_capab); 4495 4496 memcpy(pos, &s1g_capab, sizeof(s1g_capab)); 4497 } 4498 4499 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, 4500 struct sk_buff *skb) 4501 { 4502 u8 *pos = skb_put(skb, 3); 4503 4504 *pos++ = WLAN_EID_AID_REQUEST; 4505 *pos++ = 1; 4506 *pos++ = 0; 4507 } 4508 4509 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 4510 { 4511 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 4512 *buf++ = 7; /* len */ 4513 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 4514 *buf++ = 0x50; 4515 *buf++ = 0xf2; 4516 *buf++ = 2; /* WME */ 4517 *buf++ = 0; /* WME info */ 4518 *buf++ = 1; /* WME ver */ 4519 *buf++ = qosinfo; /* U-APSD no in use */ 4520 4521 return buf; 4522 } 4523 4524 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 4525 unsigned long *frame_cnt, 4526 unsigned long *byte_cnt) 4527 { 4528 struct txq_info *txqi = to_txq_info(txq); 4529 u32 frag_cnt = 0, frag_bytes = 0; 4530 struct sk_buff *skb; 4531 4532 skb_queue_walk(&txqi->frags, skb) { 4533 frag_cnt++; 4534 frag_bytes += skb->len; 4535 } 4536 4537 if (frame_cnt) 4538 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 4539 4540 if (byte_cnt) 4541 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 4542 } 4543 EXPORT_SYMBOL(ieee80211_txq_get_depth); 4544 4545 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 4546 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 4547 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 4548 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 4549 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 4550 }; 4551 4552 u16 ieee80211_encode_usf(int listen_interval) 4553 { 4554 static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; 4555 u16 ui, usf = 0; 4556 4557 /* find greatest USF */ 4558 while (usf < IEEE80211_MAX_USF) { 4559 if (listen_interval % listen_int_usf[usf + 1]) 4560 break; 4561 usf += 1; 4562 } 4563 ui = listen_interval / listen_int_usf[usf]; 4564 4565 /* error if there is a remainder. Should've been checked by user */ 4566 WARN_ON_ONCE(ui > IEEE80211_MAX_UI); 4567 listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | 4568 FIELD_PREP(LISTEN_INT_UI, ui); 4569 4570 return (u16) listen_interval; 4571 } 4572