1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 28 #include "ieee80211_i.h" 29 #include "driver-ops.h" 30 #include "rate.h" 31 #include "mesh.h" 32 #include "wme.h" 33 #include "led.h" 34 #include "wep.h" 35 36 /* privid for wiphys to determine whether they belong to us or not */ 37 void *mac80211_wiphy_privid = &mac80211_wiphy_privid; 38 39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 40 { 41 struct ieee80211_local *local; 42 BUG_ON(!wiphy); 43 44 local = wiphy_priv(wiphy); 45 return &local->hw; 46 } 47 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 48 49 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 50 enum nl80211_iftype type) 51 { 52 __le16 fc = hdr->frame_control; 53 54 /* drop ACK/CTS frames and incorrect hdr len (ctrl) */ 55 if (len < 16) 56 return NULL; 57 58 if (ieee80211_is_data(fc)) { 59 if (len < 24) /* drop incorrect hdr len (data) */ 60 return NULL; 61 62 if (ieee80211_has_a4(fc)) 63 return NULL; 64 if (ieee80211_has_tods(fc)) 65 return hdr->addr1; 66 if (ieee80211_has_fromds(fc)) 67 return hdr->addr2; 68 69 return hdr->addr3; 70 } 71 72 if (ieee80211_is_mgmt(fc)) { 73 if (len < 24) /* drop incorrect hdr len (mgmt) */ 74 return NULL; 75 return hdr->addr3; 76 } 77 78 if (ieee80211_is_ctl(fc)) { 79 if(ieee80211_is_pspoll(fc)) 80 return hdr->addr1; 81 82 if (ieee80211_is_back_req(fc)) { 83 switch (type) { 84 case NL80211_IFTYPE_STATION: 85 return hdr->addr2; 86 case NL80211_IFTYPE_AP: 87 case NL80211_IFTYPE_AP_VLAN: 88 return hdr->addr1; 89 default: 90 break; /* fall through to the return */ 91 } 92 } 93 } 94 95 return NULL; 96 } 97 98 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 99 { 100 struct sk_buff *skb; 101 struct ieee80211_hdr *hdr; 102 103 skb_queue_walk(&tx->skbs, skb) { 104 hdr = (struct ieee80211_hdr *) skb->data; 105 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 106 } 107 } 108 109 int ieee80211_frame_duration(enum ieee80211_band band, size_t len, 110 int rate, int erp, int short_preamble, 111 int shift) 112 { 113 int dur; 114 115 /* calculate duration (in microseconds, rounded up to next higher 116 * integer if it includes a fractional microsecond) to send frame of 117 * len bytes (does not include FCS) at the given rate. Duration will 118 * also include SIFS. 119 * 120 * rate is in 100 kbps, so divident is multiplied by 10 in the 121 * DIV_ROUND_UP() operations. 122 * 123 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and 124 * is assumed to be 0 otherwise. 125 */ 126 127 if (band == IEEE80211_BAND_5GHZ || erp) { 128 /* 129 * OFDM: 130 * 131 * N_DBPS = DATARATE x 4 132 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 133 * (16 = SIGNAL time, 6 = tail bits) 134 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 135 * 136 * T_SYM = 4 usec 137 * 802.11a - 18.5.2: aSIFSTime = 16 usec 138 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 139 * signal ext = 6 usec 140 */ 141 dur = 16; /* SIFS + signal ext */ 142 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 143 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 144 145 /* IEEE 802.11-2012 18.3.2.4: all values above are: 146 * * times 4 for 5 MHz 147 * * times 2 for 10 MHz 148 */ 149 dur *= 1 << shift; 150 151 /* rates should already consider the channel bandwidth, 152 * don't apply divisor again. 153 */ 154 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 155 4 * rate); /* T_SYM x N_SYM */ 156 } else { 157 /* 158 * 802.11b or 802.11g with 802.11b compatibility: 159 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 160 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 161 * 162 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 163 * aSIFSTime = 10 usec 164 * aPreambleLength = 144 usec or 72 usec with short preamble 165 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 166 */ 167 dur = 10; /* aSIFSTime = 10 usec */ 168 dur += short_preamble ? (72 + 24) : (144 + 48); 169 170 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 171 } 172 173 return dur; 174 } 175 176 /* Exported duration function for driver use */ 177 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 178 struct ieee80211_vif *vif, 179 enum ieee80211_band band, 180 size_t frame_len, 181 struct ieee80211_rate *rate) 182 { 183 struct ieee80211_sub_if_data *sdata; 184 u16 dur; 185 int erp, shift = 0; 186 bool short_preamble = false; 187 188 erp = 0; 189 if (vif) { 190 sdata = vif_to_sdata(vif); 191 short_preamble = sdata->vif.bss_conf.use_short_preamble; 192 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 193 erp = rate->flags & IEEE80211_RATE_ERP_G; 194 shift = ieee80211_vif_get_shift(vif); 195 } 196 197 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 198 short_preamble, shift); 199 200 return cpu_to_le16(dur); 201 } 202 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 203 204 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 205 struct ieee80211_vif *vif, size_t frame_len, 206 const struct ieee80211_tx_info *frame_txctl) 207 { 208 struct ieee80211_local *local = hw_to_local(hw); 209 struct ieee80211_rate *rate; 210 struct ieee80211_sub_if_data *sdata; 211 bool short_preamble; 212 int erp, shift = 0, bitrate; 213 u16 dur; 214 struct ieee80211_supported_band *sband; 215 216 sband = local->hw.wiphy->bands[frame_txctl->band]; 217 218 short_preamble = false; 219 220 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 221 222 erp = 0; 223 if (vif) { 224 sdata = vif_to_sdata(vif); 225 short_preamble = sdata->vif.bss_conf.use_short_preamble; 226 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 227 erp = rate->flags & IEEE80211_RATE_ERP_G; 228 shift = ieee80211_vif_get_shift(vif); 229 } 230 231 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 232 233 /* CTS duration */ 234 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 235 erp, short_preamble, shift); 236 /* Data frame duration */ 237 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 238 erp, short_preamble, shift); 239 /* ACK duration */ 240 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 241 erp, short_preamble, shift); 242 243 return cpu_to_le16(dur); 244 } 245 EXPORT_SYMBOL(ieee80211_rts_duration); 246 247 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 248 struct ieee80211_vif *vif, 249 size_t frame_len, 250 const struct ieee80211_tx_info *frame_txctl) 251 { 252 struct ieee80211_local *local = hw_to_local(hw); 253 struct ieee80211_rate *rate; 254 struct ieee80211_sub_if_data *sdata; 255 bool short_preamble; 256 int erp, shift = 0, bitrate; 257 u16 dur; 258 struct ieee80211_supported_band *sband; 259 260 sband = local->hw.wiphy->bands[frame_txctl->band]; 261 262 short_preamble = false; 263 264 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 265 erp = 0; 266 if (vif) { 267 sdata = vif_to_sdata(vif); 268 short_preamble = sdata->vif.bss_conf.use_short_preamble; 269 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 270 erp = rate->flags & IEEE80211_RATE_ERP_G; 271 shift = ieee80211_vif_get_shift(vif); 272 } 273 274 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 275 276 /* Data frame duration */ 277 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 278 erp, short_preamble, shift); 279 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 280 /* ACK duration */ 281 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 282 erp, short_preamble, shift); 283 } 284 285 return cpu_to_le16(dur); 286 } 287 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 288 289 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue) 290 { 291 struct ieee80211_sub_if_data *sdata; 292 int n_acs = IEEE80211_NUM_ACS; 293 294 if (local->hw.queues < IEEE80211_NUM_ACS) 295 n_acs = 1; 296 297 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 298 int ac; 299 300 if (!sdata->dev) 301 continue; 302 303 if (test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)) 304 continue; 305 306 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE && 307 local->queue_stop_reasons[sdata->vif.cab_queue] != 0) 308 continue; 309 310 for (ac = 0; ac < n_acs; ac++) { 311 int ac_queue = sdata->vif.hw_queue[ac]; 312 313 if (ac_queue == queue || 314 (sdata->vif.cab_queue == queue && 315 local->queue_stop_reasons[ac_queue] == 0 && 316 skb_queue_empty(&local->pending[ac_queue]))) 317 netif_wake_subqueue(sdata->dev, ac); 318 } 319 } 320 } 321 322 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 323 enum queue_stop_reason reason) 324 { 325 struct ieee80211_local *local = hw_to_local(hw); 326 327 trace_wake_queue(local, queue, reason); 328 329 if (WARN_ON(queue >= hw->queues)) 330 return; 331 332 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 333 return; 334 335 __clear_bit(reason, &local->queue_stop_reasons[queue]); 336 337 if (local->queue_stop_reasons[queue] != 0) 338 /* someone still has this queue stopped */ 339 return; 340 341 if (skb_queue_empty(&local->pending[queue])) { 342 rcu_read_lock(); 343 ieee80211_propagate_queue_wake(local, queue); 344 rcu_read_unlock(); 345 } else 346 tasklet_schedule(&local->tx_pending_tasklet); 347 } 348 349 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 350 enum queue_stop_reason reason) 351 { 352 struct ieee80211_local *local = hw_to_local(hw); 353 unsigned long flags; 354 355 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 356 __ieee80211_wake_queue(hw, queue, reason); 357 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 358 } 359 360 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 361 { 362 ieee80211_wake_queue_by_reason(hw, queue, 363 IEEE80211_QUEUE_STOP_REASON_DRIVER); 364 } 365 EXPORT_SYMBOL(ieee80211_wake_queue); 366 367 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 368 enum queue_stop_reason reason) 369 { 370 struct ieee80211_local *local = hw_to_local(hw); 371 struct ieee80211_sub_if_data *sdata; 372 int n_acs = IEEE80211_NUM_ACS; 373 374 trace_stop_queue(local, queue, reason); 375 376 if (WARN_ON(queue >= hw->queues)) 377 return; 378 379 if (test_bit(reason, &local->queue_stop_reasons[queue])) 380 return; 381 382 __set_bit(reason, &local->queue_stop_reasons[queue]); 383 384 if (local->hw.queues < IEEE80211_NUM_ACS) 385 n_acs = 1; 386 387 rcu_read_lock(); 388 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 389 int ac; 390 391 if (!sdata->dev) 392 continue; 393 394 for (ac = 0; ac < n_acs; ac++) { 395 if (sdata->vif.hw_queue[ac] == queue || 396 sdata->vif.cab_queue == queue) 397 netif_stop_subqueue(sdata->dev, ac); 398 } 399 } 400 rcu_read_unlock(); 401 } 402 403 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 404 enum queue_stop_reason reason) 405 { 406 struct ieee80211_local *local = hw_to_local(hw); 407 unsigned long flags; 408 409 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 410 __ieee80211_stop_queue(hw, queue, reason); 411 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 412 } 413 414 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 415 { 416 ieee80211_stop_queue_by_reason(hw, queue, 417 IEEE80211_QUEUE_STOP_REASON_DRIVER); 418 } 419 EXPORT_SYMBOL(ieee80211_stop_queue); 420 421 void ieee80211_add_pending_skb(struct ieee80211_local *local, 422 struct sk_buff *skb) 423 { 424 struct ieee80211_hw *hw = &local->hw; 425 unsigned long flags; 426 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 427 int queue = info->hw_queue; 428 429 if (WARN_ON(!info->control.vif)) { 430 ieee80211_free_txskb(&local->hw, skb); 431 return; 432 } 433 434 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 435 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD); 436 __skb_queue_tail(&local->pending[queue], skb); 437 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD); 438 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 439 } 440 441 void ieee80211_add_pending_skbs_fn(struct ieee80211_local *local, 442 struct sk_buff_head *skbs, 443 void (*fn)(void *data), void *data) 444 { 445 struct ieee80211_hw *hw = &local->hw; 446 struct sk_buff *skb; 447 unsigned long flags; 448 int queue, i; 449 450 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 451 while ((skb = skb_dequeue(skbs))) { 452 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 453 454 if (WARN_ON(!info->control.vif)) { 455 ieee80211_free_txskb(&local->hw, skb); 456 continue; 457 } 458 459 queue = info->hw_queue; 460 461 __ieee80211_stop_queue(hw, queue, 462 IEEE80211_QUEUE_STOP_REASON_SKB_ADD); 463 464 __skb_queue_tail(&local->pending[queue], skb); 465 } 466 467 if (fn) 468 fn(data); 469 470 for (i = 0; i < hw->queues; i++) 471 __ieee80211_wake_queue(hw, i, 472 IEEE80211_QUEUE_STOP_REASON_SKB_ADD); 473 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 474 } 475 476 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 477 unsigned long queues, 478 enum queue_stop_reason reason) 479 { 480 struct ieee80211_local *local = hw_to_local(hw); 481 unsigned long flags; 482 int i; 483 484 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 485 486 for_each_set_bit(i, &queues, hw->queues) 487 __ieee80211_stop_queue(hw, i, reason); 488 489 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 490 } 491 492 void ieee80211_stop_queues(struct ieee80211_hw *hw) 493 { 494 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 495 IEEE80211_QUEUE_STOP_REASON_DRIVER); 496 } 497 EXPORT_SYMBOL(ieee80211_stop_queues); 498 499 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 500 { 501 struct ieee80211_local *local = hw_to_local(hw); 502 unsigned long flags; 503 int ret; 504 505 if (WARN_ON(queue >= hw->queues)) 506 return true; 507 508 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 509 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 510 &local->queue_stop_reasons[queue]); 511 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 512 return ret; 513 } 514 EXPORT_SYMBOL(ieee80211_queue_stopped); 515 516 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 517 unsigned long queues, 518 enum queue_stop_reason reason) 519 { 520 struct ieee80211_local *local = hw_to_local(hw); 521 unsigned long flags; 522 int i; 523 524 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 525 526 for_each_set_bit(i, &queues, hw->queues) 527 __ieee80211_wake_queue(hw, i, reason); 528 529 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 530 } 531 532 void ieee80211_wake_queues(struct ieee80211_hw *hw) 533 { 534 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 535 IEEE80211_QUEUE_STOP_REASON_DRIVER); 536 } 537 EXPORT_SYMBOL(ieee80211_wake_queues); 538 539 void ieee80211_flush_queues(struct ieee80211_local *local, 540 struct ieee80211_sub_if_data *sdata) 541 { 542 u32 queues; 543 544 if (!local->ops->flush) 545 return; 546 547 if (sdata && local->hw.flags & IEEE80211_HW_QUEUE_CONTROL) { 548 int ac; 549 550 queues = 0; 551 552 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 553 queues |= BIT(sdata->vif.hw_queue[ac]); 554 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 555 queues |= BIT(sdata->vif.cab_queue); 556 } else { 557 /* all queues */ 558 queues = BIT(local->hw.queues) - 1; 559 } 560 561 ieee80211_stop_queues_by_reason(&local->hw, IEEE80211_MAX_QUEUE_MAP, 562 IEEE80211_QUEUE_STOP_REASON_FLUSH); 563 564 drv_flush(local, queues, false); 565 566 ieee80211_wake_queues_by_reason(&local->hw, IEEE80211_MAX_QUEUE_MAP, 567 IEEE80211_QUEUE_STOP_REASON_FLUSH); 568 } 569 570 void ieee80211_iterate_active_interfaces( 571 struct ieee80211_hw *hw, u32 iter_flags, 572 void (*iterator)(void *data, u8 *mac, 573 struct ieee80211_vif *vif), 574 void *data) 575 { 576 struct ieee80211_local *local = hw_to_local(hw); 577 struct ieee80211_sub_if_data *sdata; 578 579 mutex_lock(&local->iflist_mtx); 580 581 list_for_each_entry(sdata, &local->interfaces, list) { 582 switch (sdata->vif.type) { 583 case NL80211_IFTYPE_MONITOR: 584 if (!(sdata->u.mntr_flags & MONITOR_FLAG_ACTIVE)) 585 continue; 586 break; 587 case NL80211_IFTYPE_AP_VLAN: 588 continue; 589 default: 590 break; 591 } 592 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 593 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 594 continue; 595 if (ieee80211_sdata_running(sdata)) 596 iterator(data, sdata->vif.addr, 597 &sdata->vif); 598 } 599 600 sdata = rcu_dereference_protected(local->monitor_sdata, 601 lockdep_is_held(&local->iflist_mtx)); 602 if (sdata && 603 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || 604 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 605 iterator(data, sdata->vif.addr, &sdata->vif); 606 607 mutex_unlock(&local->iflist_mtx); 608 } 609 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces); 610 611 void ieee80211_iterate_active_interfaces_atomic( 612 struct ieee80211_hw *hw, u32 iter_flags, 613 void (*iterator)(void *data, u8 *mac, 614 struct ieee80211_vif *vif), 615 void *data) 616 { 617 struct ieee80211_local *local = hw_to_local(hw); 618 struct ieee80211_sub_if_data *sdata; 619 620 rcu_read_lock(); 621 622 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 623 switch (sdata->vif.type) { 624 case NL80211_IFTYPE_MONITOR: 625 if (!(sdata->u.mntr_flags & MONITOR_FLAG_ACTIVE)) 626 continue; 627 break; 628 case NL80211_IFTYPE_AP_VLAN: 629 continue; 630 default: 631 break; 632 } 633 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 634 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 635 continue; 636 if (ieee80211_sdata_running(sdata)) 637 iterator(data, sdata->vif.addr, 638 &sdata->vif); 639 } 640 641 sdata = rcu_dereference(local->monitor_sdata); 642 if (sdata && 643 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || 644 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 645 iterator(data, sdata->vif.addr, &sdata->vif); 646 647 rcu_read_unlock(); 648 } 649 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 650 651 /* 652 * Nothing should have been stuffed into the workqueue during 653 * the suspend->resume cycle. If this WARN is seen then there 654 * is a bug with either the driver suspend or something in 655 * mac80211 stuffing into the workqueue which we haven't yet 656 * cleared during mac80211's suspend cycle. 657 */ 658 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 659 { 660 if (WARN(local->suspended && !local->resuming, 661 "queueing ieee80211 work while going to suspend\n")) 662 return false; 663 664 return true; 665 } 666 667 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 668 { 669 struct ieee80211_local *local = hw_to_local(hw); 670 671 if (!ieee80211_can_queue_work(local)) 672 return; 673 674 queue_work(local->workqueue, work); 675 } 676 EXPORT_SYMBOL(ieee80211_queue_work); 677 678 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 679 struct delayed_work *dwork, 680 unsigned long delay) 681 { 682 struct ieee80211_local *local = hw_to_local(hw); 683 684 if (!ieee80211_can_queue_work(local)) 685 return; 686 687 queue_delayed_work(local->workqueue, dwork, delay); 688 } 689 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 690 691 u32 ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, 692 struct ieee802_11_elems *elems, 693 u64 filter, u32 crc) 694 { 695 size_t left = len; 696 const u8 *pos = start; 697 bool calc_crc = filter != 0; 698 DECLARE_BITMAP(seen_elems, 256); 699 const u8 *ie; 700 701 bitmap_zero(seen_elems, 256); 702 memset(elems, 0, sizeof(*elems)); 703 elems->ie_start = start; 704 elems->total_len = len; 705 706 while (left >= 2) { 707 u8 id, elen; 708 bool elem_parse_failed; 709 710 id = *pos++; 711 elen = *pos++; 712 left -= 2; 713 714 if (elen > left) { 715 elems->parse_error = true; 716 break; 717 } 718 719 switch (id) { 720 case WLAN_EID_SSID: 721 case WLAN_EID_SUPP_RATES: 722 case WLAN_EID_FH_PARAMS: 723 case WLAN_EID_DS_PARAMS: 724 case WLAN_EID_CF_PARAMS: 725 case WLAN_EID_TIM: 726 case WLAN_EID_IBSS_PARAMS: 727 case WLAN_EID_CHALLENGE: 728 case WLAN_EID_RSN: 729 case WLAN_EID_ERP_INFO: 730 case WLAN_EID_EXT_SUPP_RATES: 731 case WLAN_EID_HT_CAPABILITY: 732 case WLAN_EID_HT_OPERATION: 733 case WLAN_EID_VHT_CAPABILITY: 734 case WLAN_EID_VHT_OPERATION: 735 case WLAN_EID_MESH_ID: 736 case WLAN_EID_MESH_CONFIG: 737 case WLAN_EID_PEER_MGMT: 738 case WLAN_EID_PREQ: 739 case WLAN_EID_PREP: 740 case WLAN_EID_PERR: 741 case WLAN_EID_RANN: 742 case WLAN_EID_CHANNEL_SWITCH: 743 case WLAN_EID_EXT_CHANSWITCH_ANN: 744 case WLAN_EID_COUNTRY: 745 case WLAN_EID_PWR_CONSTRAINT: 746 case WLAN_EID_TIMEOUT_INTERVAL: 747 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 748 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 749 /* 750 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible 751 * that if the content gets bigger it might be needed more than once 752 */ 753 if (test_bit(id, seen_elems)) { 754 elems->parse_error = true; 755 left -= elen; 756 pos += elen; 757 continue; 758 } 759 break; 760 } 761 762 if (calc_crc && id < 64 && (filter & (1ULL << id))) 763 crc = crc32_be(crc, pos - 2, elen + 2); 764 765 elem_parse_failed = false; 766 767 switch (id) { 768 case WLAN_EID_SSID: 769 elems->ssid = pos; 770 elems->ssid_len = elen; 771 break; 772 case WLAN_EID_SUPP_RATES: 773 elems->supp_rates = pos; 774 elems->supp_rates_len = elen; 775 break; 776 case WLAN_EID_DS_PARAMS: 777 if (elen >= 1) 778 elems->ds_params = pos; 779 else 780 elem_parse_failed = true; 781 break; 782 case WLAN_EID_TIM: 783 if (elen >= sizeof(struct ieee80211_tim_ie)) { 784 elems->tim = (void *)pos; 785 elems->tim_len = elen; 786 } else 787 elem_parse_failed = true; 788 break; 789 case WLAN_EID_CHALLENGE: 790 elems->challenge = pos; 791 elems->challenge_len = elen; 792 break; 793 case WLAN_EID_VENDOR_SPECIFIC: 794 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && 795 pos[2] == 0xf2) { 796 /* Microsoft OUI (00:50:F2) */ 797 798 if (calc_crc) 799 crc = crc32_be(crc, pos - 2, elen + 2); 800 801 if (elen >= 5 && pos[3] == 2) { 802 /* OUI Type 2 - WMM IE */ 803 if (pos[4] == 0) { 804 elems->wmm_info = pos; 805 elems->wmm_info_len = elen; 806 } else if (pos[4] == 1) { 807 elems->wmm_param = pos; 808 elems->wmm_param_len = elen; 809 } 810 } 811 } 812 break; 813 case WLAN_EID_RSN: 814 elems->rsn = pos; 815 elems->rsn_len = elen; 816 break; 817 case WLAN_EID_ERP_INFO: 818 if (elen >= 1) 819 elems->erp_info = pos; 820 else 821 elem_parse_failed = true; 822 break; 823 case WLAN_EID_EXT_SUPP_RATES: 824 elems->ext_supp_rates = pos; 825 elems->ext_supp_rates_len = elen; 826 break; 827 case WLAN_EID_HT_CAPABILITY: 828 if (elen >= sizeof(struct ieee80211_ht_cap)) 829 elems->ht_cap_elem = (void *)pos; 830 else 831 elem_parse_failed = true; 832 break; 833 case WLAN_EID_HT_OPERATION: 834 if (elen >= sizeof(struct ieee80211_ht_operation)) 835 elems->ht_operation = (void *)pos; 836 else 837 elem_parse_failed = true; 838 break; 839 case WLAN_EID_VHT_CAPABILITY: 840 if (elen >= sizeof(struct ieee80211_vht_cap)) 841 elems->vht_cap_elem = (void *)pos; 842 else 843 elem_parse_failed = true; 844 break; 845 case WLAN_EID_VHT_OPERATION: 846 if (elen >= sizeof(struct ieee80211_vht_operation)) 847 elems->vht_operation = (void *)pos; 848 else 849 elem_parse_failed = true; 850 break; 851 case WLAN_EID_OPMODE_NOTIF: 852 if (elen > 0) 853 elems->opmode_notif = pos; 854 else 855 elem_parse_failed = true; 856 break; 857 case WLAN_EID_MESH_ID: 858 elems->mesh_id = pos; 859 elems->mesh_id_len = elen; 860 break; 861 case WLAN_EID_MESH_CONFIG: 862 if (elen >= sizeof(struct ieee80211_meshconf_ie)) 863 elems->mesh_config = (void *)pos; 864 else 865 elem_parse_failed = true; 866 break; 867 case WLAN_EID_PEER_MGMT: 868 elems->peering = pos; 869 elems->peering_len = elen; 870 break; 871 case WLAN_EID_MESH_AWAKE_WINDOW: 872 if (elen >= 2) 873 elems->awake_window = (void *)pos; 874 break; 875 case WLAN_EID_PREQ: 876 elems->preq = pos; 877 elems->preq_len = elen; 878 break; 879 case WLAN_EID_PREP: 880 elems->prep = pos; 881 elems->prep_len = elen; 882 break; 883 case WLAN_EID_PERR: 884 elems->perr = pos; 885 elems->perr_len = elen; 886 break; 887 case WLAN_EID_RANN: 888 if (elen >= sizeof(struct ieee80211_rann_ie)) 889 elems->rann = (void *)pos; 890 else 891 elem_parse_failed = true; 892 break; 893 case WLAN_EID_CHANNEL_SWITCH: 894 if (elen != sizeof(struct ieee80211_channel_sw_ie)) { 895 elem_parse_failed = true; 896 break; 897 } 898 elems->ch_switch_ie = (void *)pos; 899 break; 900 case WLAN_EID_EXT_CHANSWITCH_ANN: 901 if (elen != sizeof(struct ieee80211_ext_chansw_ie)) { 902 elem_parse_failed = true; 903 break; 904 } 905 elems->ext_chansw_ie = (void *)pos; 906 break; 907 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 908 if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) { 909 elem_parse_failed = true; 910 break; 911 } 912 elems->sec_chan_offs = (void *)pos; 913 break; 914 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 915 if (!action || 916 elen != sizeof(*elems->wide_bw_chansw_ie)) { 917 elem_parse_failed = true; 918 break; 919 } 920 elems->wide_bw_chansw_ie = (void *)pos; 921 break; 922 case WLAN_EID_CHANNEL_SWITCH_WRAPPER: 923 if (action) { 924 elem_parse_failed = true; 925 break; 926 } 927 /* 928 * This is a bit tricky, but as we only care about 929 * the wide bandwidth channel switch element, so 930 * just parse it out manually. 931 */ 932 ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH, 933 pos, elen); 934 if (ie) { 935 if (ie[1] == sizeof(*elems->wide_bw_chansw_ie)) 936 elems->wide_bw_chansw_ie = 937 (void *)(ie + 2); 938 else 939 elem_parse_failed = true; 940 } 941 break; 942 case WLAN_EID_COUNTRY: 943 elems->country_elem = pos; 944 elems->country_elem_len = elen; 945 break; 946 case WLAN_EID_PWR_CONSTRAINT: 947 if (elen != 1) { 948 elem_parse_failed = true; 949 break; 950 } 951 elems->pwr_constr_elem = pos; 952 break; 953 case WLAN_EID_TIMEOUT_INTERVAL: 954 if (elen >= sizeof(struct ieee80211_timeout_interval_ie)) 955 elems->timeout_int = (void *)pos; 956 else 957 elem_parse_failed = true; 958 break; 959 default: 960 break; 961 } 962 963 if (elem_parse_failed) 964 elems->parse_error = true; 965 else 966 __set_bit(id, seen_elems); 967 968 left -= elen; 969 pos += elen; 970 } 971 972 if (left != 0) 973 elems->parse_error = true; 974 975 return crc; 976 } 977 978 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata, 979 bool bss_notify) 980 { 981 struct ieee80211_local *local = sdata->local; 982 struct ieee80211_tx_queue_params qparam; 983 struct ieee80211_chanctx_conf *chanctx_conf; 984 int ac; 985 bool use_11b, enable_qos; 986 int aCWmin, aCWmax; 987 988 if (!local->ops->conf_tx) 989 return; 990 991 if (local->hw.queues < IEEE80211_NUM_ACS) 992 return; 993 994 memset(&qparam, 0, sizeof(qparam)); 995 996 rcu_read_lock(); 997 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 998 use_11b = (chanctx_conf && 999 chanctx_conf->def.chan->band == IEEE80211_BAND_2GHZ) && 1000 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE); 1001 rcu_read_unlock(); 1002 1003 /* 1004 * By default disable QoS in STA mode for old access points, which do 1005 * not support 802.11e. New APs will provide proper queue parameters, 1006 * that we will configure later. 1007 */ 1008 enable_qos = (sdata->vif.type != NL80211_IFTYPE_STATION); 1009 1010 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1011 /* Set defaults according to 802.11-2007 Table 7-37 */ 1012 aCWmax = 1023; 1013 if (use_11b) 1014 aCWmin = 31; 1015 else 1016 aCWmin = 15; 1017 1018 if (enable_qos) { 1019 switch (ac) { 1020 case IEEE80211_AC_BK: 1021 qparam.cw_max = aCWmax; 1022 qparam.cw_min = aCWmin; 1023 qparam.txop = 0; 1024 qparam.aifs = 7; 1025 break; 1026 /* never happens but let's not leave undefined */ 1027 default: 1028 case IEEE80211_AC_BE: 1029 qparam.cw_max = aCWmax; 1030 qparam.cw_min = aCWmin; 1031 qparam.txop = 0; 1032 qparam.aifs = 3; 1033 break; 1034 case IEEE80211_AC_VI: 1035 qparam.cw_max = aCWmin; 1036 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1037 if (use_11b) 1038 qparam.txop = 6016/32; 1039 else 1040 qparam.txop = 3008/32; 1041 qparam.aifs = 2; 1042 break; 1043 case IEEE80211_AC_VO: 1044 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1045 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1046 if (use_11b) 1047 qparam.txop = 3264/32; 1048 else 1049 qparam.txop = 1504/32; 1050 qparam.aifs = 2; 1051 break; 1052 } 1053 } else { 1054 /* Confiure old 802.11b/g medium access rules. */ 1055 qparam.cw_max = aCWmax; 1056 qparam.cw_min = aCWmin; 1057 qparam.txop = 0; 1058 qparam.aifs = 2; 1059 } 1060 1061 qparam.uapsd = false; 1062 1063 sdata->tx_conf[ac] = qparam; 1064 drv_conf_tx(local, sdata, ac, &qparam); 1065 } 1066 1067 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1068 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE) { 1069 sdata->vif.bss_conf.qos = enable_qos; 1070 if (bss_notify) 1071 ieee80211_bss_info_change_notify(sdata, 1072 BSS_CHANGED_QOS); 1073 } 1074 } 1075 1076 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1077 u16 transaction, u16 auth_alg, u16 status, 1078 const u8 *extra, size_t extra_len, const u8 *da, 1079 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1080 u32 tx_flags) 1081 { 1082 struct ieee80211_local *local = sdata->local; 1083 struct sk_buff *skb; 1084 struct ieee80211_mgmt *mgmt; 1085 int err; 1086 1087 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1088 sizeof(*mgmt) + 6 + extra_len); 1089 if (!skb) 1090 return; 1091 1092 skb_reserve(skb, local->hw.extra_tx_headroom); 1093 1094 mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6); 1095 memset(mgmt, 0, 24 + 6); 1096 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1097 IEEE80211_STYPE_AUTH); 1098 memcpy(mgmt->da, da, ETH_ALEN); 1099 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1100 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1101 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1102 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1103 mgmt->u.auth.status_code = cpu_to_le16(status); 1104 if (extra) 1105 memcpy(skb_put(skb, extra_len), extra, extra_len); 1106 1107 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1108 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1109 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1110 WARN_ON(err); 1111 } 1112 1113 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1114 tx_flags; 1115 ieee80211_tx_skb(sdata, skb); 1116 } 1117 1118 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1119 const u8 *bssid, u16 stype, u16 reason, 1120 bool send_frame, u8 *frame_buf) 1121 { 1122 struct ieee80211_local *local = sdata->local; 1123 struct sk_buff *skb; 1124 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1125 1126 /* build frame */ 1127 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1128 mgmt->duration = 0; /* initialize only */ 1129 mgmt->seq_ctrl = 0; /* initialize only */ 1130 memcpy(mgmt->da, bssid, ETH_ALEN); 1131 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1132 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1133 /* u.deauth.reason_code == u.disassoc.reason_code */ 1134 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1135 1136 if (send_frame) { 1137 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1138 IEEE80211_DEAUTH_FRAME_LEN); 1139 if (!skb) 1140 return; 1141 1142 skb_reserve(skb, local->hw.extra_tx_headroom); 1143 1144 /* copy in frame */ 1145 memcpy(skb_put(skb, IEEE80211_DEAUTH_FRAME_LEN), 1146 mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1147 1148 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1149 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1150 IEEE80211_SKB_CB(skb)->flags |= 1151 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1152 1153 ieee80211_tx_skb(sdata, skb); 1154 } 1155 } 1156 1157 int ieee80211_build_preq_ies(struct ieee80211_local *local, u8 *buffer, 1158 size_t buffer_len, const u8 *ie, size_t ie_len, 1159 enum ieee80211_band band, u32 rate_mask, 1160 struct cfg80211_chan_def *chandef) 1161 { 1162 struct ieee80211_supported_band *sband; 1163 u8 *pos = buffer, *end = buffer + buffer_len; 1164 size_t offset = 0, noffset; 1165 int supp_rates_len, i; 1166 u8 rates[32]; 1167 int num_rates; 1168 int ext_rates_len; 1169 int shift; 1170 u32 rate_flags; 1171 1172 sband = local->hw.wiphy->bands[band]; 1173 if (WARN_ON_ONCE(!sband)) 1174 return 0; 1175 1176 rate_flags = ieee80211_chandef_rate_flags(chandef); 1177 shift = ieee80211_chandef_get_shift(chandef); 1178 1179 num_rates = 0; 1180 for (i = 0; i < sband->n_bitrates; i++) { 1181 if ((BIT(i) & rate_mask) == 0) 1182 continue; /* skip rate */ 1183 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 1184 continue; 1185 1186 rates[num_rates++] = 1187 (u8) DIV_ROUND_UP(sband->bitrates[i].bitrate, 1188 (1 << shift) * 5); 1189 } 1190 1191 supp_rates_len = min_t(int, num_rates, 8); 1192 1193 if (end - pos < 2 + supp_rates_len) 1194 goto out_err; 1195 *pos++ = WLAN_EID_SUPP_RATES; 1196 *pos++ = supp_rates_len; 1197 memcpy(pos, rates, supp_rates_len); 1198 pos += supp_rates_len; 1199 1200 /* insert "request information" if in custom IEs */ 1201 if (ie && ie_len) { 1202 static const u8 before_extrates[] = { 1203 WLAN_EID_SSID, 1204 WLAN_EID_SUPP_RATES, 1205 WLAN_EID_REQUEST, 1206 }; 1207 noffset = ieee80211_ie_split(ie, ie_len, 1208 before_extrates, 1209 ARRAY_SIZE(before_extrates), 1210 offset); 1211 if (end - pos < noffset - offset) 1212 goto out_err; 1213 memcpy(pos, ie + offset, noffset - offset); 1214 pos += noffset - offset; 1215 offset = noffset; 1216 } 1217 1218 ext_rates_len = num_rates - supp_rates_len; 1219 if (ext_rates_len > 0) { 1220 if (end - pos < 2 + ext_rates_len) 1221 goto out_err; 1222 *pos++ = WLAN_EID_EXT_SUPP_RATES; 1223 *pos++ = ext_rates_len; 1224 memcpy(pos, rates + supp_rates_len, ext_rates_len); 1225 pos += ext_rates_len; 1226 } 1227 1228 if (chandef->chan && sband->band == IEEE80211_BAND_2GHZ) { 1229 if (end - pos < 3) 1230 goto out_err; 1231 *pos++ = WLAN_EID_DS_PARAMS; 1232 *pos++ = 1; 1233 *pos++ = ieee80211_frequency_to_channel( 1234 chandef->chan->center_freq); 1235 } 1236 1237 /* insert custom IEs that go before HT */ 1238 if (ie && ie_len) { 1239 static const u8 before_ht[] = { 1240 WLAN_EID_SSID, 1241 WLAN_EID_SUPP_RATES, 1242 WLAN_EID_REQUEST, 1243 WLAN_EID_EXT_SUPP_RATES, 1244 WLAN_EID_DS_PARAMS, 1245 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1246 }; 1247 noffset = ieee80211_ie_split(ie, ie_len, 1248 before_ht, ARRAY_SIZE(before_ht), 1249 offset); 1250 if (end - pos < noffset - offset) 1251 goto out_err; 1252 memcpy(pos, ie + offset, noffset - offset); 1253 pos += noffset - offset; 1254 offset = noffset; 1255 } 1256 1257 if (sband->ht_cap.ht_supported) { 1258 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap)) 1259 goto out_err; 1260 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 1261 sband->ht_cap.cap); 1262 } 1263 1264 /* 1265 * If adding more here, adjust code in main.c 1266 * that calculates local->scan_ies_len. 1267 */ 1268 1269 /* add any remaining custom IEs */ 1270 if (ie && ie_len) { 1271 noffset = ie_len; 1272 if (end - pos < noffset - offset) 1273 goto out_err; 1274 memcpy(pos, ie + offset, noffset - offset); 1275 pos += noffset - offset; 1276 } 1277 1278 if (sband->vht_cap.vht_supported) { 1279 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap)) 1280 goto out_err; 1281 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 1282 sband->vht_cap.cap); 1283 } 1284 1285 return pos - buffer; 1286 out_err: 1287 WARN_ONCE(1, "not enough space for preq IEs\n"); 1288 return pos - buffer; 1289 } 1290 1291 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 1292 u8 *dst, u32 ratemask, 1293 struct ieee80211_channel *chan, 1294 const u8 *ssid, size_t ssid_len, 1295 const u8 *ie, size_t ie_len, 1296 bool directed) 1297 { 1298 struct ieee80211_local *local = sdata->local; 1299 struct cfg80211_chan_def chandef; 1300 struct sk_buff *skb; 1301 struct ieee80211_mgmt *mgmt; 1302 int ies_len; 1303 1304 /* 1305 * Do not send DS Channel parameter for directed probe requests 1306 * in order to maximize the chance that we get a response. Some 1307 * badly-behaved APs don't respond when this parameter is included. 1308 */ 1309 chandef.width = sdata->vif.bss_conf.chandef.width; 1310 if (directed) 1311 chandef.chan = NULL; 1312 else 1313 chandef.chan = chan; 1314 1315 skb = ieee80211_probereq_get(&local->hw, &sdata->vif, 1316 ssid, ssid_len, 100 + ie_len); 1317 if (!skb) 1318 return NULL; 1319 1320 ies_len = ieee80211_build_preq_ies(local, skb_tail_pointer(skb), 1321 skb_tailroom(skb), 1322 ie, ie_len, chan->band, 1323 ratemask, &chandef); 1324 skb_put(skb, ies_len); 1325 1326 if (dst) { 1327 mgmt = (struct ieee80211_mgmt *) skb->data; 1328 memcpy(mgmt->da, dst, ETH_ALEN); 1329 memcpy(mgmt->bssid, dst, ETH_ALEN); 1330 } 1331 1332 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 1333 1334 return skb; 1335 } 1336 1337 void ieee80211_send_probe_req(struct ieee80211_sub_if_data *sdata, u8 *dst, 1338 const u8 *ssid, size_t ssid_len, 1339 const u8 *ie, size_t ie_len, 1340 u32 ratemask, bool directed, u32 tx_flags, 1341 struct ieee80211_channel *channel, bool scan) 1342 { 1343 struct sk_buff *skb; 1344 1345 skb = ieee80211_build_probe_req(sdata, dst, ratemask, channel, 1346 ssid, ssid_len, 1347 ie, ie_len, directed); 1348 if (skb) { 1349 IEEE80211_SKB_CB(skb)->flags |= tx_flags; 1350 if (scan) 1351 ieee80211_tx_skb_tid_band(sdata, skb, 7, channel->band); 1352 else 1353 ieee80211_tx_skb(sdata, skb); 1354 } 1355 } 1356 1357 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 1358 struct ieee802_11_elems *elems, 1359 enum ieee80211_band band, u32 *basic_rates) 1360 { 1361 struct ieee80211_supported_band *sband; 1362 struct ieee80211_rate *bitrates; 1363 size_t num_rates; 1364 u32 supp_rates, rate_flags; 1365 int i, j, shift; 1366 sband = sdata->local->hw.wiphy->bands[band]; 1367 1368 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 1369 shift = ieee80211_vif_get_shift(&sdata->vif); 1370 1371 if (WARN_ON(!sband)) 1372 return 1; 1373 1374 bitrates = sband->bitrates; 1375 num_rates = sband->n_bitrates; 1376 supp_rates = 0; 1377 for (i = 0; i < elems->supp_rates_len + 1378 elems->ext_supp_rates_len; i++) { 1379 u8 rate = 0; 1380 int own_rate; 1381 bool is_basic; 1382 if (i < elems->supp_rates_len) 1383 rate = elems->supp_rates[i]; 1384 else if (elems->ext_supp_rates) 1385 rate = elems->ext_supp_rates 1386 [i - elems->supp_rates_len]; 1387 own_rate = 5 * (rate & 0x7f); 1388 is_basic = !!(rate & 0x80); 1389 1390 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 1391 continue; 1392 1393 for (j = 0; j < num_rates; j++) { 1394 int brate; 1395 if ((rate_flags & sband->bitrates[j].flags) 1396 != rate_flags) 1397 continue; 1398 1399 brate = DIV_ROUND_UP(sband->bitrates[j].bitrate, 1400 1 << shift); 1401 1402 if (brate == own_rate) { 1403 supp_rates |= BIT(j); 1404 if (basic_rates && is_basic) 1405 *basic_rates |= BIT(j); 1406 } 1407 } 1408 } 1409 return supp_rates; 1410 } 1411 1412 void ieee80211_stop_device(struct ieee80211_local *local) 1413 { 1414 ieee80211_led_radio(local, false); 1415 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 1416 1417 cancel_work_sync(&local->reconfig_filter); 1418 1419 flush_workqueue(local->workqueue); 1420 drv_stop(local); 1421 } 1422 1423 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 1424 struct ieee80211_sub_if_data *sdata) 1425 { 1426 struct ieee80211_chanctx_conf *conf; 1427 struct ieee80211_chanctx *ctx; 1428 1429 if (!local->use_chanctx) 1430 return; 1431 1432 mutex_lock(&local->chanctx_mtx); 1433 conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 1434 lockdep_is_held(&local->chanctx_mtx)); 1435 if (conf) { 1436 ctx = container_of(conf, struct ieee80211_chanctx, conf); 1437 drv_assign_vif_chanctx(local, sdata, ctx); 1438 } 1439 mutex_unlock(&local->chanctx_mtx); 1440 } 1441 1442 int ieee80211_reconfig(struct ieee80211_local *local) 1443 { 1444 struct ieee80211_hw *hw = &local->hw; 1445 struct ieee80211_sub_if_data *sdata; 1446 struct ieee80211_chanctx *ctx; 1447 struct sta_info *sta; 1448 int res, i; 1449 bool reconfig_due_to_wowlan = false; 1450 1451 #ifdef CONFIG_PM 1452 if (local->suspended) 1453 local->resuming = true; 1454 1455 if (local->wowlan) { 1456 res = drv_resume(local); 1457 local->wowlan = false; 1458 if (res < 0) { 1459 local->resuming = false; 1460 return res; 1461 } 1462 if (res == 0) 1463 goto wake_up; 1464 WARN_ON(res > 1); 1465 /* 1466 * res is 1, which means the driver requested 1467 * to go through a regular reset on wakeup. 1468 */ 1469 reconfig_due_to_wowlan = true; 1470 } 1471 #endif 1472 /* everything else happens only if HW was up & running */ 1473 if (!local->open_count) 1474 goto wake_up; 1475 1476 /* 1477 * Upon resume hardware can sometimes be goofy due to 1478 * various platform / driver / bus issues, so restarting 1479 * the device may at times not work immediately. Propagate 1480 * the error. 1481 */ 1482 res = drv_start(local); 1483 if (res) { 1484 WARN(local->suspended, "Hardware became unavailable " 1485 "upon resume. This could be a software issue " 1486 "prior to suspend or a hardware issue.\n"); 1487 return res; 1488 } 1489 1490 /* setup fragmentation threshold */ 1491 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 1492 1493 /* setup RTS threshold */ 1494 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 1495 1496 /* reset coverage class */ 1497 drv_set_coverage_class(local, hw->wiphy->coverage_class); 1498 1499 ieee80211_led_radio(local, true); 1500 ieee80211_mod_tpt_led_trig(local, 1501 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 1502 1503 /* add interfaces */ 1504 sdata = rtnl_dereference(local->monitor_sdata); 1505 if (sdata) { 1506 /* in HW restart it exists already */ 1507 WARN_ON(local->resuming); 1508 res = drv_add_interface(local, sdata); 1509 if (WARN_ON(res)) { 1510 rcu_assign_pointer(local->monitor_sdata, NULL); 1511 synchronize_net(); 1512 kfree(sdata); 1513 } 1514 } 1515 1516 list_for_each_entry(sdata, &local->interfaces, list) { 1517 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1518 sdata->vif.type != NL80211_IFTYPE_MONITOR && 1519 ieee80211_sdata_running(sdata)) 1520 res = drv_add_interface(local, sdata); 1521 } 1522 1523 /* add channel contexts */ 1524 if (local->use_chanctx) { 1525 mutex_lock(&local->chanctx_mtx); 1526 list_for_each_entry(ctx, &local->chanctx_list, list) 1527 WARN_ON(drv_add_chanctx(local, ctx)); 1528 mutex_unlock(&local->chanctx_mtx); 1529 } 1530 1531 list_for_each_entry(sdata, &local->interfaces, list) { 1532 if (!ieee80211_sdata_running(sdata)) 1533 continue; 1534 ieee80211_assign_chanctx(local, sdata); 1535 } 1536 1537 sdata = rtnl_dereference(local->monitor_sdata); 1538 if (sdata && ieee80211_sdata_running(sdata)) 1539 ieee80211_assign_chanctx(local, sdata); 1540 1541 /* add STAs back */ 1542 mutex_lock(&local->sta_mtx); 1543 list_for_each_entry(sta, &local->sta_list, list) { 1544 enum ieee80211_sta_state state; 1545 1546 if (!sta->uploaded) 1547 continue; 1548 1549 /* AP-mode stations will be added later */ 1550 if (sta->sdata->vif.type == NL80211_IFTYPE_AP) 1551 continue; 1552 1553 for (state = IEEE80211_STA_NOTEXIST; 1554 state < sta->sta_state; state++) 1555 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 1556 state + 1)); 1557 } 1558 mutex_unlock(&local->sta_mtx); 1559 1560 /* reconfigure tx conf */ 1561 if (hw->queues >= IEEE80211_NUM_ACS) { 1562 list_for_each_entry(sdata, &local->interfaces, list) { 1563 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN || 1564 sdata->vif.type == NL80211_IFTYPE_MONITOR || 1565 !ieee80211_sdata_running(sdata)) 1566 continue; 1567 1568 for (i = 0; i < IEEE80211_NUM_ACS; i++) 1569 drv_conf_tx(local, sdata, i, 1570 &sdata->tx_conf[i]); 1571 } 1572 } 1573 1574 /* reconfigure hardware */ 1575 ieee80211_hw_config(local, ~0); 1576 1577 ieee80211_configure_filter(local); 1578 1579 /* Finally also reconfigure all the BSS information */ 1580 list_for_each_entry(sdata, &local->interfaces, list) { 1581 u32 changed; 1582 1583 if (!ieee80211_sdata_running(sdata)) 1584 continue; 1585 1586 /* common change flags for all interface types */ 1587 changed = BSS_CHANGED_ERP_CTS_PROT | 1588 BSS_CHANGED_ERP_PREAMBLE | 1589 BSS_CHANGED_ERP_SLOT | 1590 BSS_CHANGED_HT | 1591 BSS_CHANGED_BASIC_RATES | 1592 BSS_CHANGED_BEACON_INT | 1593 BSS_CHANGED_BSSID | 1594 BSS_CHANGED_CQM | 1595 BSS_CHANGED_QOS | 1596 BSS_CHANGED_IDLE | 1597 BSS_CHANGED_TXPOWER; 1598 1599 switch (sdata->vif.type) { 1600 case NL80211_IFTYPE_STATION: 1601 changed |= BSS_CHANGED_ASSOC | 1602 BSS_CHANGED_ARP_FILTER | 1603 BSS_CHANGED_PS; 1604 1605 /* Re-send beacon info report to the driver */ 1606 if (sdata->u.mgd.have_beacon) 1607 changed |= BSS_CHANGED_BEACON_INFO; 1608 1609 sdata_lock(sdata); 1610 ieee80211_bss_info_change_notify(sdata, changed); 1611 sdata_unlock(sdata); 1612 break; 1613 case NL80211_IFTYPE_ADHOC: 1614 changed |= BSS_CHANGED_IBSS; 1615 /* fall through */ 1616 case NL80211_IFTYPE_AP: 1617 changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS; 1618 1619 if (sdata->vif.type == NL80211_IFTYPE_AP) { 1620 changed |= BSS_CHANGED_AP_PROBE_RESP; 1621 1622 if (rcu_access_pointer(sdata->u.ap.beacon)) 1623 drv_start_ap(local, sdata); 1624 } 1625 1626 /* fall through */ 1627 case NL80211_IFTYPE_MESH_POINT: 1628 if (sdata->vif.bss_conf.enable_beacon) { 1629 changed |= BSS_CHANGED_BEACON | 1630 BSS_CHANGED_BEACON_ENABLED; 1631 ieee80211_bss_info_change_notify(sdata, changed); 1632 } 1633 break; 1634 case NL80211_IFTYPE_WDS: 1635 break; 1636 case NL80211_IFTYPE_AP_VLAN: 1637 case NL80211_IFTYPE_MONITOR: 1638 /* ignore virtual */ 1639 break; 1640 case NL80211_IFTYPE_P2P_DEVICE: 1641 changed = BSS_CHANGED_IDLE; 1642 break; 1643 case NL80211_IFTYPE_UNSPECIFIED: 1644 case NUM_NL80211_IFTYPES: 1645 case NL80211_IFTYPE_P2P_CLIENT: 1646 case NL80211_IFTYPE_P2P_GO: 1647 WARN_ON(1); 1648 break; 1649 } 1650 } 1651 1652 ieee80211_recalc_ps(local, -1); 1653 1654 /* 1655 * The sta might be in psm against the ap (e.g. because 1656 * this was the state before a hw restart), so we 1657 * explicitly send a null packet in order to make sure 1658 * it'll sync against the ap (and get out of psm). 1659 */ 1660 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 1661 list_for_each_entry(sdata, &local->interfaces, list) { 1662 if (sdata->vif.type != NL80211_IFTYPE_STATION) 1663 continue; 1664 if (!sdata->u.mgd.associated) 1665 continue; 1666 1667 ieee80211_send_nullfunc(local, sdata, 0); 1668 } 1669 } 1670 1671 /* APs are now beaconing, add back stations */ 1672 mutex_lock(&local->sta_mtx); 1673 list_for_each_entry(sta, &local->sta_list, list) { 1674 enum ieee80211_sta_state state; 1675 1676 if (!sta->uploaded) 1677 continue; 1678 1679 if (sta->sdata->vif.type != NL80211_IFTYPE_AP) 1680 continue; 1681 1682 for (state = IEEE80211_STA_NOTEXIST; 1683 state < sta->sta_state; state++) 1684 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 1685 state + 1)); 1686 } 1687 mutex_unlock(&local->sta_mtx); 1688 1689 /* add back keys */ 1690 list_for_each_entry(sdata, &local->interfaces, list) 1691 if (ieee80211_sdata_running(sdata)) 1692 ieee80211_enable_keys(sdata); 1693 1694 wake_up: 1695 local->in_reconfig = false; 1696 barrier(); 1697 1698 if (local->monitors == local->open_count && local->monitors > 0) 1699 ieee80211_add_virtual_monitor(local); 1700 1701 /* 1702 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 1703 * sessions can be established after a resume. 1704 * 1705 * Also tear down aggregation sessions since reconfiguring 1706 * them in a hardware restart scenario is not easily done 1707 * right now, and the hardware will have lost information 1708 * about the sessions, but we and the AP still think they 1709 * are active. This is really a workaround though. 1710 */ 1711 if (hw->flags & IEEE80211_HW_AMPDU_AGGREGATION) { 1712 mutex_lock(&local->sta_mtx); 1713 1714 list_for_each_entry(sta, &local->sta_list, list) { 1715 ieee80211_sta_tear_down_BA_sessions( 1716 sta, AGG_STOP_LOCAL_REQUEST); 1717 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 1718 } 1719 1720 mutex_unlock(&local->sta_mtx); 1721 } 1722 1723 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 1724 IEEE80211_QUEUE_STOP_REASON_SUSPEND); 1725 1726 /* 1727 * If this is for hw restart things are still running. 1728 * We may want to change that later, however. 1729 */ 1730 if (!local->suspended || reconfig_due_to_wowlan) 1731 drv_restart_complete(local); 1732 1733 if (!local->suspended) 1734 return 0; 1735 1736 #ifdef CONFIG_PM 1737 /* first set suspended false, then resuming */ 1738 local->suspended = false; 1739 mb(); 1740 local->resuming = false; 1741 1742 list_for_each_entry(sdata, &local->interfaces, list) { 1743 if (!ieee80211_sdata_running(sdata)) 1744 continue; 1745 if (sdata->vif.type == NL80211_IFTYPE_STATION) 1746 ieee80211_sta_restart(sdata); 1747 } 1748 1749 mod_timer(&local->sta_cleanup, jiffies + 1); 1750 #else 1751 WARN_ON(1); 1752 #endif 1753 return 0; 1754 } 1755 1756 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 1757 { 1758 struct ieee80211_sub_if_data *sdata; 1759 struct ieee80211_local *local; 1760 struct ieee80211_key *key; 1761 1762 if (WARN_ON(!vif)) 1763 return; 1764 1765 sdata = vif_to_sdata(vif); 1766 local = sdata->local; 1767 1768 if (WARN_ON(!local->resuming)) 1769 return; 1770 1771 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 1772 return; 1773 1774 sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME; 1775 1776 mutex_lock(&local->key_mtx); 1777 list_for_each_entry(key, &sdata->key_list, list) 1778 key->flags |= KEY_FLAG_TAINTED; 1779 mutex_unlock(&local->key_mtx); 1780 } 1781 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 1782 1783 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata) 1784 { 1785 struct ieee80211_local *local = sdata->local; 1786 struct ieee80211_chanctx_conf *chanctx_conf; 1787 struct ieee80211_chanctx *chanctx; 1788 1789 mutex_lock(&local->chanctx_mtx); 1790 1791 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 1792 lockdep_is_held(&local->chanctx_mtx)); 1793 1794 if (WARN_ON_ONCE(!chanctx_conf)) 1795 goto unlock; 1796 1797 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 1798 ieee80211_recalc_smps_chanctx(local, chanctx); 1799 unlock: 1800 mutex_unlock(&local->chanctx_mtx); 1801 } 1802 1803 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id) 1804 { 1805 int i; 1806 1807 for (i = 0; i < n_ids; i++) 1808 if (ids[i] == id) 1809 return true; 1810 return false; 1811 } 1812 1813 /** 1814 * ieee80211_ie_split - split an IE buffer according to ordering 1815 * 1816 * @ies: the IE buffer 1817 * @ielen: the length of the IE buffer 1818 * @ids: an array with element IDs that are allowed before 1819 * the split 1820 * @n_ids: the size of the element ID array 1821 * @offset: offset where to start splitting in the buffer 1822 * 1823 * This function splits an IE buffer by updating the @offset 1824 * variable to point to the location where the buffer should be 1825 * split. 1826 * 1827 * It assumes that the given IE buffer is well-formed, this 1828 * has to be guaranteed by the caller! 1829 * 1830 * It also assumes that the IEs in the buffer are ordered 1831 * correctly, if not the result of using this function will not 1832 * be ordered correctly either, i.e. it does no reordering. 1833 * 1834 * The function returns the offset where the next part of the 1835 * buffer starts, which may be @ielen if the entire (remainder) 1836 * of the buffer should be used. 1837 */ 1838 size_t ieee80211_ie_split(const u8 *ies, size_t ielen, 1839 const u8 *ids, int n_ids, size_t offset) 1840 { 1841 size_t pos = offset; 1842 1843 while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) 1844 pos += 2 + ies[pos + 1]; 1845 1846 return pos; 1847 } 1848 1849 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 1850 { 1851 size_t pos = offset; 1852 1853 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 1854 pos += 2 + ies[pos + 1]; 1855 1856 return pos; 1857 } 1858 1859 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata, 1860 int rssi_min_thold, 1861 int rssi_max_thold) 1862 { 1863 trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold); 1864 1865 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 1866 return; 1867 1868 /* 1869 * Scale up threshold values before storing it, as the RSSI averaging 1870 * algorithm uses a scaled up value as well. Change this scaling 1871 * factor if the RSSI averaging algorithm changes. 1872 */ 1873 sdata->u.mgd.rssi_min_thold = rssi_min_thold*16; 1874 sdata->u.mgd.rssi_max_thold = rssi_max_thold*16; 1875 } 1876 1877 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif, 1878 int rssi_min_thold, 1879 int rssi_max_thold) 1880 { 1881 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 1882 1883 WARN_ON(rssi_min_thold == rssi_max_thold || 1884 rssi_min_thold > rssi_max_thold); 1885 1886 _ieee80211_enable_rssi_reports(sdata, rssi_min_thold, 1887 rssi_max_thold); 1888 } 1889 EXPORT_SYMBOL(ieee80211_enable_rssi_reports); 1890 1891 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif) 1892 { 1893 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 1894 1895 _ieee80211_enable_rssi_reports(sdata, 0, 0); 1896 } 1897 EXPORT_SYMBOL(ieee80211_disable_rssi_reports); 1898 1899 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 1900 u16 cap) 1901 { 1902 __le16 tmp; 1903 1904 *pos++ = WLAN_EID_HT_CAPABILITY; 1905 *pos++ = sizeof(struct ieee80211_ht_cap); 1906 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 1907 1908 /* capability flags */ 1909 tmp = cpu_to_le16(cap); 1910 memcpy(pos, &tmp, sizeof(u16)); 1911 pos += sizeof(u16); 1912 1913 /* AMPDU parameters */ 1914 *pos++ = ht_cap->ampdu_factor | 1915 (ht_cap->ampdu_density << 1916 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 1917 1918 /* MCS set */ 1919 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 1920 pos += sizeof(ht_cap->mcs); 1921 1922 /* extended capabilities */ 1923 pos += sizeof(__le16); 1924 1925 /* BF capabilities */ 1926 pos += sizeof(__le32); 1927 1928 /* antenna selection */ 1929 pos += sizeof(u8); 1930 1931 return pos; 1932 } 1933 1934 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 1935 u32 cap) 1936 { 1937 __le32 tmp; 1938 1939 *pos++ = WLAN_EID_VHT_CAPABILITY; 1940 *pos++ = sizeof(struct ieee80211_vht_cap); 1941 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 1942 1943 /* capability flags */ 1944 tmp = cpu_to_le32(cap); 1945 memcpy(pos, &tmp, sizeof(u32)); 1946 pos += sizeof(u32); 1947 1948 /* VHT MCS set */ 1949 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 1950 pos += sizeof(vht_cap->vht_mcs); 1951 1952 return pos; 1953 } 1954 1955 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 1956 const struct cfg80211_chan_def *chandef, 1957 u16 prot_mode) 1958 { 1959 struct ieee80211_ht_operation *ht_oper; 1960 /* Build HT Information */ 1961 *pos++ = WLAN_EID_HT_OPERATION; 1962 *pos++ = sizeof(struct ieee80211_ht_operation); 1963 ht_oper = (struct ieee80211_ht_operation *)pos; 1964 ht_oper->primary_chan = ieee80211_frequency_to_channel( 1965 chandef->chan->center_freq); 1966 switch (chandef->width) { 1967 case NL80211_CHAN_WIDTH_160: 1968 case NL80211_CHAN_WIDTH_80P80: 1969 case NL80211_CHAN_WIDTH_80: 1970 case NL80211_CHAN_WIDTH_40: 1971 if (chandef->center_freq1 > chandef->chan->center_freq) 1972 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 1973 else 1974 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 1975 break; 1976 default: 1977 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 1978 break; 1979 } 1980 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 1981 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 1982 chandef->width != NL80211_CHAN_WIDTH_20) 1983 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 1984 1985 ht_oper->operation_mode = cpu_to_le16(prot_mode); 1986 ht_oper->stbc_param = 0x0000; 1987 1988 /* It seems that Basic MCS set and Supported MCS set 1989 are identical for the first 10 bytes */ 1990 memset(&ht_oper->basic_set, 0, 16); 1991 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 1992 1993 return pos + sizeof(struct ieee80211_ht_operation); 1994 } 1995 1996 void ieee80211_ht_oper_to_chandef(struct ieee80211_channel *control_chan, 1997 const struct ieee80211_ht_operation *ht_oper, 1998 struct cfg80211_chan_def *chandef) 1999 { 2000 enum nl80211_channel_type channel_type; 2001 2002 if (!ht_oper) { 2003 cfg80211_chandef_create(chandef, control_chan, 2004 NL80211_CHAN_NO_HT); 2005 return; 2006 } 2007 2008 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 2009 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 2010 channel_type = NL80211_CHAN_HT20; 2011 break; 2012 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 2013 channel_type = NL80211_CHAN_HT40PLUS; 2014 break; 2015 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 2016 channel_type = NL80211_CHAN_HT40MINUS; 2017 break; 2018 default: 2019 channel_type = NL80211_CHAN_NO_HT; 2020 } 2021 2022 cfg80211_chandef_create(chandef, control_chan, channel_type); 2023 } 2024 2025 int ieee80211_parse_bitrates(struct cfg80211_chan_def *chandef, 2026 const struct ieee80211_supported_band *sband, 2027 const u8 *srates, int srates_len, u32 *rates) 2028 { 2029 u32 rate_flags = ieee80211_chandef_rate_flags(chandef); 2030 int shift = ieee80211_chandef_get_shift(chandef); 2031 struct ieee80211_rate *br; 2032 int brate, rate, i, j, count = 0; 2033 2034 *rates = 0; 2035 2036 for (i = 0; i < srates_len; i++) { 2037 rate = srates[i] & 0x7f; 2038 2039 for (j = 0; j < sband->n_bitrates; j++) { 2040 br = &sband->bitrates[j]; 2041 if ((rate_flags & br->flags) != rate_flags) 2042 continue; 2043 2044 brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5); 2045 if (brate == rate) { 2046 *rates |= BIT(j); 2047 count++; 2048 break; 2049 } 2050 } 2051 } 2052 return count; 2053 } 2054 2055 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, 2056 struct sk_buff *skb, bool need_basic, 2057 enum ieee80211_band band) 2058 { 2059 struct ieee80211_local *local = sdata->local; 2060 struct ieee80211_supported_band *sband; 2061 int rate, shift; 2062 u8 i, rates, *pos; 2063 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 2064 u32 rate_flags; 2065 2066 shift = ieee80211_vif_get_shift(&sdata->vif); 2067 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 2068 sband = local->hw.wiphy->bands[band]; 2069 rates = 0; 2070 for (i = 0; i < sband->n_bitrates; i++) { 2071 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 2072 continue; 2073 rates++; 2074 } 2075 if (rates > 8) 2076 rates = 8; 2077 2078 if (skb_tailroom(skb) < rates + 2) 2079 return -ENOMEM; 2080 2081 pos = skb_put(skb, rates + 2); 2082 *pos++ = WLAN_EID_SUPP_RATES; 2083 *pos++ = rates; 2084 for (i = 0; i < rates; i++) { 2085 u8 basic = 0; 2086 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 2087 continue; 2088 2089 if (need_basic && basic_rates & BIT(i)) 2090 basic = 0x80; 2091 rate = sband->bitrates[i].bitrate; 2092 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 2093 5 * (1 << shift)); 2094 *pos++ = basic | (u8) rate; 2095 } 2096 2097 return 0; 2098 } 2099 2100 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, 2101 struct sk_buff *skb, bool need_basic, 2102 enum ieee80211_band band) 2103 { 2104 struct ieee80211_local *local = sdata->local; 2105 struct ieee80211_supported_band *sband; 2106 int rate, shift; 2107 u8 i, exrates, *pos; 2108 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 2109 u32 rate_flags; 2110 2111 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 2112 shift = ieee80211_vif_get_shift(&sdata->vif); 2113 2114 sband = local->hw.wiphy->bands[band]; 2115 exrates = 0; 2116 for (i = 0; i < sband->n_bitrates; i++) { 2117 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 2118 continue; 2119 exrates++; 2120 } 2121 2122 if (exrates > 8) 2123 exrates -= 8; 2124 else 2125 exrates = 0; 2126 2127 if (skb_tailroom(skb) < exrates + 2) 2128 return -ENOMEM; 2129 2130 if (exrates) { 2131 pos = skb_put(skb, exrates + 2); 2132 *pos++ = WLAN_EID_EXT_SUPP_RATES; 2133 *pos++ = exrates; 2134 for (i = 8; i < sband->n_bitrates; i++) { 2135 u8 basic = 0; 2136 if ((rate_flags & sband->bitrates[i].flags) 2137 != rate_flags) 2138 continue; 2139 if (need_basic && basic_rates & BIT(i)) 2140 basic = 0x80; 2141 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 2142 5 * (1 << shift)); 2143 *pos++ = basic | (u8) rate; 2144 } 2145 } 2146 return 0; 2147 } 2148 2149 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 2150 { 2151 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2152 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 2153 2154 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) { 2155 /* non-managed type inferfaces */ 2156 return 0; 2157 } 2158 return ifmgd->ave_beacon_signal / 16; 2159 } 2160 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 2161 2162 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 2163 { 2164 if (!mcs) 2165 return 1; 2166 2167 /* TODO: consider rx_highest */ 2168 2169 if (mcs->rx_mask[3]) 2170 return 4; 2171 if (mcs->rx_mask[2]) 2172 return 3; 2173 if (mcs->rx_mask[1]) 2174 return 2; 2175 return 1; 2176 } 2177 2178 /** 2179 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 2180 * @local: mac80211 hw info struct 2181 * @status: RX status 2182 * @mpdu_len: total MPDU length (including FCS) 2183 * @mpdu_offset: offset into MPDU to calculate timestamp at 2184 * 2185 * This function calculates the RX timestamp at the given MPDU offset, taking 2186 * into account what the RX timestamp was. An offset of 0 will just normalize 2187 * the timestamp to TSF at beginning of MPDU reception. 2188 */ 2189 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 2190 struct ieee80211_rx_status *status, 2191 unsigned int mpdu_len, 2192 unsigned int mpdu_offset) 2193 { 2194 u64 ts = status->mactime; 2195 struct rate_info ri; 2196 u16 rate; 2197 2198 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 2199 return 0; 2200 2201 memset(&ri, 0, sizeof(ri)); 2202 2203 /* Fill cfg80211 rate info */ 2204 if (status->flag & RX_FLAG_HT) { 2205 ri.mcs = status->rate_idx; 2206 ri.flags |= RATE_INFO_FLAGS_MCS; 2207 if (status->flag & RX_FLAG_40MHZ) 2208 ri.flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH; 2209 if (status->flag & RX_FLAG_SHORT_GI) 2210 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 2211 } else if (status->flag & RX_FLAG_VHT) { 2212 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 2213 ri.mcs = status->rate_idx; 2214 ri.nss = status->vht_nss; 2215 if (status->flag & RX_FLAG_40MHZ) 2216 ri.flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH; 2217 if (status->flag & RX_FLAG_80MHZ) 2218 ri.flags |= RATE_INFO_FLAGS_80_MHZ_WIDTH; 2219 if (status->flag & RX_FLAG_80P80MHZ) 2220 ri.flags |= RATE_INFO_FLAGS_80P80_MHZ_WIDTH; 2221 if (status->flag & RX_FLAG_160MHZ) 2222 ri.flags |= RATE_INFO_FLAGS_160_MHZ_WIDTH; 2223 if (status->flag & RX_FLAG_SHORT_GI) 2224 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 2225 } else { 2226 struct ieee80211_supported_band *sband; 2227 int shift = 0; 2228 int bitrate; 2229 2230 if (status->flag & RX_FLAG_10MHZ) 2231 shift = 1; 2232 if (status->flag & RX_FLAG_5MHZ) 2233 shift = 2; 2234 2235 sband = local->hw.wiphy->bands[status->band]; 2236 bitrate = sband->bitrates[status->rate_idx].bitrate; 2237 ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift)); 2238 } 2239 2240 rate = cfg80211_calculate_bitrate(&ri); 2241 if (WARN_ONCE(!rate, 2242 "Invalid bitrate: flags=0x%x, idx=%d, vht_nss=%d\n", 2243 status->flag, status->rate_idx, status->vht_nss)) 2244 return 0; 2245 2246 /* rewind from end of MPDU */ 2247 if (status->flag & RX_FLAG_MACTIME_END) 2248 ts -= mpdu_len * 8 * 10 / rate; 2249 2250 ts += mpdu_offset * 8 * 10 / rate; 2251 2252 return ts; 2253 } 2254 2255 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) 2256 { 2257 struct ieee80211_sub_if_data *sdata; 2258 2259 mutex_lock(&local->iflist_mtx); 2260 list_for_each_entry(sdata, &local->interfaces, list) { 2261 cancel_delayed_work_sync(&sdata->dfs_cac_timer_work); 2262 2263 if (sdata->wdev.cac_started) { 2264 ieee80211_vif_release_channel(sdata); 2265 cfg80211_cac_event(sdata->dev, 2266 NL80211_RADAR_CAC_ABORTED, 2267 GFP_KERNEL); 2268 } 2269 } 2270 mutex_unlock(&local->iflist_mtx); 2271 } 2272 2273 void ieee80211_dfs_radar_detected_work(struct work_struct *work) 2274 { 2275 struct ieee80211_local *local = 2276 container_of(work, struct ieee80211_local, radar_detected_work); 2277 struct cfg80211_chan_def chandef; 2278 2279 ieee80211_dfs_cac_cancel(local); 2280 2281 if (local->use_chanctx) 2282 /* currently not handled */ 2283 WARN_ON(1); 2284 else { 2285 chandef = local->hw.conf.chandef; 2286 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 2287 } 2288 } 2289 2290 void ieee80211_radar_detected(struct ieee80211_hw *hw) 2291 { 2292 struct ieee80211_local *local = hw_to_local(hw); 2293 2294 trace_api_radar_detected(local); 2295 2296 ieee80211_queue_work(hw, &local->radar_detected_work); 2297 } 2298 EXPORT_SYMBOL(ieee80211_radar_detected); 2299