xref: /openbmc/linux/net/mac80211/util.c (revision f39650de)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2005-2006, Devicescape Software, Inc.
5  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2013-2014  Intel Mobile Communications GmbH
8  * Copyright (C) 2015-2017	Intel Deutschland GmbH
9  * Copyright (C) 2018-2020 Intel Corporation
10  *
11  * utilities for mac80211
12  */
13 
14 #include <net/mac80211.h>
15 #include <linux/netdevice.h>
16 #include <linux/export.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/skbuff.h>
20 #include <linux/etherdevice.h>
21 #include <linux/if_arp.h>
22 #include <linux/bitmap.h>
23 #include <linux/crc32.h>
24 #include <net/net_namespace.h>
25 #include <net/cfg80211.h>
26 #include <net/rtnetlink.h>
27 
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
30 #include "rate.h"
31 #include "mesh.h"
32 #include "wme.h"
33 #include "led.h"
34 #include "wep.h"
35 
36 /* privid for wiphys to determine whether they belong to us or not */
37 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid;
38 
39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy)
40 {
41 	struct ieee80211_local *local;
42 
43 	local = wiphy_priv(wiphy);
44 	return &local->hw;
45 }
46 EXPORT_SYMBOL(wiphy_to_ieee80211_hw);
47 
48 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
49 			enum nl80211_iftype type)
50 {
51 	__le16 fc = hdr->frame_control;
52 
53 	if (ieee80211_is_data(fc)) {
54 		if (len < 24) /* drop incorrect hdr len (data) */
55 			return NULL;
56 
57 		if (ieee80211_has_a4(fc))
58 			return NULL;
59 		if (ieee80211_has_tods(fc))
60 			return hdr->addr1;
61 		if (ieee80211_has_fromds(fc))
62 			return hdr->addr2;
63 
64 		return hdr->addr3;
65 	}
66 
67 	if (ieee80211_is_s1g_beacon(fc)) {
68 		struct ieee80211_ext *ext = (void *) hdr;
69 
70 		return ext->u.s1g_beacon.sa;
71 	}
72 
73 	if (ieee80211_is_mgmt(fc)) {
74 		if (len < 24) /* drop incorrect hdr len (mgmt) */
75 			return NULL;
76 		return hdr->addr3;
77 	}
78 
79 	if (ieee80211_is_ctl(fc)) {
80 		if (ieee80211_is_pspoll(fc))
81 			return hdr->addr1;
82 
83 		if (ieee80211_is_back_req(fc)) {
84 			switch (type) {
85 			case NL80211_IFTYPE_STATION:
86 				return hdr->addr2;
87 			case NL80211_IFTYPE_AP:
88 			case NL80211_IFTYPE_AP_VLAN:
89 				return hdr->addr1;
90 			default:
91 				break; /* fall through to the return */
92 			}
93 		}
94 	}
95 
96 	return NULL;
97 }
98 EXPORT_SYMBOL(ieee80211_get_bssid);
99 
100 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx)
101 {
102 	struct sk_buff *skb;
103 	struct ieee80211_hdr *hdr;
104 
105 	skb_queue_walk(&tx->skbs, skb) {
106 		hdr = (struct ieee80211_hdr *) skb->data;
107 		hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
108 	}
109 }
110 
111 int ieee80211_frame_duration(enum nl80211_band band, size_t len,
112 			     int rate, int erp, int short_preamble,
113 			     int shift)
114 {
115 	int dur;
116 
117 	/* calculate duration (in microseconds, rounded up to next higher
118 	 * integer if it includes a fractional microsecond) to send frame of
119 	 * len bytes (does not include FCS) at the given rate. Duration will
120 	 * also include SIFS.
121 	 *
122 	 * rate is in 100 kbps, so divident is multiplied by 10 in the
123 	 * DIV_ROUND_UP() operations.
124 	 *
125 	 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and
126 	 * is assumed to be 0 otherwise.
127 	 */
128 
129 	if (band == NL80211_BAND_5GHZ || erp) {
130 		/*
131 		 * OFDM:
132 		 *
133 		 * N_DBPS = DATARATE x 4
134 		 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
135 		 *	(16 = SIGNAL time, 6 = tail bits)
136 		 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
137 		 *
138 		 * T_SYM = 4 usec
139 		 * 802.11a - 18.5.2: aSIFSTime = 16 usec
140 		 * 802.11g - 19.8.4: aSIFSTime = 10 usec +
141 		 *	signal ext = 6 usec
142 		 */
143 		dur = 16; /* SIFS + signal ext */
144 		dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */
145 		dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */
146 
147 		/* IEEE 802.11-2012 18.3.2.4: all values above are:
148 		 *  * times 4 for 5 MHz
149 		 *  * times 2 for 10 MHz
150 		 */
151 		dur *= 1 << shift;
152 
153 		/* rates should already consider the channel bandwidth,
154 		 * don't apply divisor again.
155 		 */
156 		dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
157 					4 * rate); /* T_SYM x N_SYM */
158 	} else {
159 		/*
160 		 * 802.11b or 802.11g with 802.11b compatibility:
161 		 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
162 		 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
163 		 *
164 		 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4
165 		 * aSIFSTime = 10 usec
166 		 * aPreambleLength = 144 usec or 72 usec with short preamble
167 		 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble
168 		 */
169 		dur = 10; /* aSIFSTime = 10 usec */
170 		dur += short_preamble ? (72 + 24) : (144 + 48);
171 
172 		dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
173 	}
174 
175 	return dur;
176 }
177 
178 /* Exported duration function for driver use */
179 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
180 					struct ieee80211_vif *vif,
181 					enum nl80211_band band,
182 					size_t frame_len,
183 					struct ieee80211_rate *rate)
184 {
185 	struct ieee80211_sub_if_data *sdata;
186 	u16 dur;
187 	int erp, shift = 0;
188 	bool short_preamble = false;
189 
190 	erp = 0;
191 	if (vif) {
192 		sdata = vif_to_sdata(vif);
193 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
194 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
195 			erp = rate->flags & IEEE80211_RATE_ERP_G;
196 		shift = ieee80211_vif_get_shift(vif);
197 	}
198 
199 	dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp,
200 				       short_preamble, shift);
201 
202 	return cpu_to_le16(dur);
203 }
204 EXPORT_SYMBOL(ieee80211_generic_frame_duration);
205 
206 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
207 			      struct ieee80211_vif *vif, size_t frame_len,
208 			      const struct ieee80211_tx_info *frame_txctl)
209 {
210 	struct ieee80211_local *local = hw_to_local(hw);
211 	struct ieee80211_rate *rate;
212 	struct ieee80211_sub_if_data *sdata;
213 	bool short_preamble;
214 	int erp, shift = 0, bitrate;
215 	u16 dur;
216 	struct ieee80211_supported_band *sband;
217 
218 	sband = local->hw.wiphy->bands[frame_txctl->band];
219 
220 	short_preamble = false;
221 
222 	rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
223 
224 	erp = 0;
225 	if (vif) {
226 		sdata = vif_to_sdata(vif);
227 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
228 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
229 			erp = rate->flags & IEEE80211_RATE_ERP_G;
230 		shift = ieee80211_vif_get_shift(vif);
231 	}
232 
233 	bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift);
234 
235 	/* CTS duration */
236 	dur = ieee80211_frame_duration(sband->band, 10, bitrate,
237 				       erp, short_preamble, shift);
238 	/* Data frame duration */
239 	dur += ieee80211_frame_duration(sband->band, frame_len, bitrate,
240 					erp, short_preamble, shift);
241 	/* ACK duration */
242 	dur += ieee80211_frame_duration(sband->band, 10, bitrate,
243 					erp, short_preamble, shift);
244 
245 	return cpu_to_le16(dur);
246 }
247 EXPORT_SYMBOL(ieee80211_rts_duration);
248 
249 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
250 				    struct ieee80211_vif *vif,
251 				    size_t frame_len,
252 				    const struct ieee80211_tx_info *frame_txctl)
253 {
254 	struct ieee80211_local *local = hw_to_local(hw);
255 	struct ieee80211_rate *rate;
256 	struct ieee80211_sub_if_data *sdata;
257 	bool short_preamble;
258 	int erp, shift = 0, bitrate;
259 	u16 dur;
260 	struct ieee80211_supported_band *sband;
261 
262 	sband = local->hw.wiphy->bands[frame_txctl->band];
263 
264 	short_preamble = false;
265 
266 	rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
267 	erp = 0;
268 	if (vif) {
269 		sdata = vif_to_sdata(vif);
270 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
271 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
272 			erp = rate->flags & IEEE80211_RATE_ERP_G;
273 		shift = ieee80211_vif_get_shift(vif);
274 	}
275 
276 	bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift);
277 
278 	/* Data frame duration */
279 	dur = ieee80211_frame_duration(sband->band, frame_len, bitrate,
280 				       erp, short_preamble, shift);
281 	if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) {
282 		/* ACK duration */
283 		dur += ieee80211_frame_duration(sband->band, 10, bitrate,
284 						erp, short_preamble, shift);
285 	}
286 
287 	return cpu_to_le16(dur);
288 }
289 EXPORT_SYMBOL(ieee80211_ctstoself_duration);
290 
291 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac)
292 {
293 	struct ieee80211_local *local = sdata->local;
294 	struct ieee80211_vif *vif = &sdata->vif;
295 	struct fq *fq = &local->fq;
296 	struct ps_data *ps = NULL;
297 	struct txq_info *txqi;
298 	struct sta_info *sta;
299 	int i;
300 
301 	local_bh_disable();
302 	spin_lock(&fq->lock);
303 
304 	if (sdata->vif.type == NL80211_IFTYPE_AP)
305 		ps = &sdata->bss->ps;
306 
307 	sdata->vif.txqs_stopped[ac] = false;
308 
309 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
310 		if (sdata != sta->sdata)
311 			continue;
312 
313 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
314 			struct ieee80211_txq *txq = sta->sta.txq[i];
315 
316 			if (!txq)
317 				continue;
318 
319 			txqi = to_txq_info(txq);
320 
321 			if (ac != txq->ac)
322 				continue;
323 
324 			if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX,
325 						&txqi->flags))
326 				continue;
327 
328 			spin_unlock(&fq->lock);
329 			drv_wake_tx_queue(local, txqi);
330 			spin_lock(&fq->lock);
331 		}
332 	}
333 
334 	if (!vif->txq)
335 		goto out;
336 
337 	txqi = to_txq_info(vif->txq);
338 
339 	if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, &txqi->flags) ||
340 	    (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac)
341 		goto out;
342 
343 	spin_unlock(&fq->lock);
344 
345 	drv_wake_tx_queue(local, txqi);
346 	local_bh_enable();
347 	return;
348 out:
349 	spin_unlock(&fq->lock);
350 	local_bh_enable();
351 }
352 
353 static void
354 __releases(&local->queue_stop_reason_lock)
355 __acquires(&local->queue_stop_reason_lock)
356 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags)
357 {
358 	struct ieee80211_sub_if_data *sdata;
359 	int n_acs = IEEE80211_NUM_ACS;
360 	int i;
361 
362 	rcu_read_lock();
363 
364 	if (local->hw.queues < IEEE80211_NUM_ACS)
365 		n_acs = 1;
366 
367 	for (i = 0; i < local->hw.queues; i++) {
368 		if (local->queue_stop_reasons[i])
369 			continue;
370 
371 		spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags);
372 		list_for_each_entry_rcu(sdata, &local->interfaces, list) {
373 			int ac;
374 
375 			for (ac = 0; ac < n_acs; ac++) {
376 				int ac_queue = sdata->vif.hw_queue[ac];
377 
378 				if (ac_queue == i ||
379 				    sdata->vif.cab_queue == i)
380 					__ieee80211_wake_txqs(sdata, ac);
381 			}
382 		}
383 		spin_lock_irqsave(&local->queue_stop_reason_lock, *flags);
384 	}
385 
386 	rcu_read_unlock();
387 }
388 
389 void ieee80211_wake_txqs(struct tasklet_struct *t)
390 {
391 	struct ieee80211_local *local = from_tasklet(local, t,
392 						     wake_txqs_tasklet);
393 	unsigned long flags;
394 
395 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
396 	_ieee80211_wake_txqs(local, &flags);
397 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
398 }
399 
400 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue)
401 {
402 	struct ieee80211_sub_if_data *sdata;
403 	int n_acs = IEEE80211_NUM_ACS;
404 
405 	if (local->ops->wake_tx_queue)
406 		return;
407 
408 	if (local->hw.queues < IEEE80211_NUM_ACS)
409 		n_acs = 1;
410 
411 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
412 		int ac;
413 
414 		if (!sdata->dev)
415 			continue;
416 
417 		if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE &&
418 		    local->queue_stop_reasons[sdata->vif.cab_queue] != 0)
419 			continue;
420 
421 		for (ac = 0; ac < n_acs; ac++) {
422 			int ac_queue = sdata->vif.hw_queue[ac];
423 
424 			if (ac_queue == queue ||
425 			    (sdata->vif.cab_queue == queue &&
426 			     local->queue_stop_reasons[ac_queue] == 0 &&
427 			     skb_queue_empty(&local->pending[ac_queue])))
428 				netif_wake_subqueue(sdata->dev, ac);
429 		}
430 	}
431 }
432 
433 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue,
434 				   enum queue_stop_reason reason,
435 				   bool refcounted,
436 				   unsigned long *flags)
437 {
438 	struct ieee80211_local *local = hw_to_local(hw);
439 
440 	trace_wake_queue(local, queue, reason);
441 
442 	if (WARN_ON(queue >= hw->queues))
443 		return;
444 
445 	if (!test_bit(reason, &local->queue_stop_reasons[queue]))
446 		return;
447 
448 	if (!refcounted) {
449 		local->q_stop_reasons[queue][reason] = 0;
450 	} else {
451 		local->q_stop_reasons[queue][reason]--;
452 		if (WARN_ON(local->q_stop_reasons[queue][reason] < 0))
453 			local->q_stop_reasons[queue][reason] = 0;
454 	}
455 
456 	if (local->q_stop_reasons[queue][reason] == 0)
457 		__clear_bit(reason, &local->queue_stop_reasons[queue]);
458 
459 	if (local->queue_stop_reasons[queue] != 0)
460 		/* someone still has this queue stopped */
461 		return;
462 
463 	if (skb_queue_empty(&local->pending[queue])) {
464 		rcu_read_lock();
465 		ieee80211_propagate_queue_wake(local, queue);
466 		rcu_read_unlock();
467 	} else
468 		tasklet_schedule(&local->tx_pending_tasklet);
469 
470 	/*
471 	 * Calling _ieee80211_wake_txqs here can be a problem because it may
472 	 * release queue_stop_reason_lock which has been taken by
473 	 * __ieee80211_wake_queue's caller. It is certainly not very nice to
474 	 * release someone's lock, but it is fine because all the callers of
475 	 * __ieee80211_wake_queue call it right before releasing the lock.
476 	 */
477 	if (local->ops->wake_tx_queue) {
478 		if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER)
479 			tasklet_schedule(&local->wake_txqs_tasklet);
480 		else
481 			_ieee80211_wake_txqs(local, flags);
482 	}
483 }
484 
485 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue,
486 				    enum queue_stop_reason reason,
487 				    bool refcounted)
488 {
489 	struct ieee80211_local *local = hw_to_local(hw);
490 	unsigned long flags;
491 
492 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
493 	__ieee80211_wake_queue(hw, queue, reason, refcounted, &flags);
494 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
495 }
496 
497 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
498 {
499 	ieee80211_wake_queue_by_reason(hw, queue,
500 				       IEEE80211_QUEUE_STOP_REASON_DRIVER,
501 				       false);
502 }
503 EXPORT_SYMBOL(ieee80211_wake_queue);
504 
505 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue,
506 				   enum queue_stop_reason reason,
507 				   bool refcounted)
508 {
509 	struct ieee80211_local *local = hw_to_local(hw);
510 	struct ieee80211_sub_if_data *sdata;
511 	int n_acs = IEEE80211_NUM_ACS;
512 
513 	trace_stop_queue(local, queue, reason);
514 
515 	if (WARN_ON(queue >= hw->queues))
516 		return;
517 
518 	if (!refcounted)
519 		local->q_stop_reasons[queue][reason] = 1;
520 	else
521 		local->q_stop_reasons[queue][reason]++;
522 
523 	if (__test_and_set_bit(reason, &local->queue_stop_reasons[queue]))
524 		return;
525 
526 	if (local->hw.queues < IEEE80211_NUM_ACS)
527 		n_acs = 1;
528 
529 	rcu_read_lock();
530 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
531 		int ac;
532 
533 		if (!sdata->dev)
534 			continue;
535 
536 		for (ac = 0; ac < n_acs; ac++) {
537 			if (sdata->vif.hw_queue[ac] == queue ||
538 			    sdata->vif.cab_queue == queue) {
539 				if (!local->ops->wake_tx_queue) {
540 					netif_stop_subqueue(sdata->dev, ac);
541 					continue;
542 				}
543 				spin_lock(&local->fq.lock);
544 				sdata->vif.txqs_stopped[ac] = true;
545 				spin_unlock(&local->fq.lock);
546 			}
547 		}
548 	}
549 	rcu_read_unlock();
550 }
551 
552 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue,
553 				    enum queue_stop_reason reason,
554 				    bool refcounted)
555 {
556 	struct ieee80211_local *local = hw_to_local(hw);
557 	unsigned long flags;
558 
559 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
560 	__ieee80211_stop_queue(hw, queue, reason, refcounted);
561 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
562 }
563 
564 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
565 {
566 	ieee80211_stop_queue_by_reason(hw, queue,
567 				       IEEE80211_QUEUE_STOP_REASON_DRIVER,
568 				       false);
569 }
570 EXPORT_SYMBOL(ieee80211_stop_queue);
571 
572 void ieee80211_add_pending_skb(struct ieee80211_local *local,
573 			       struct sk_buff *skb)
574 {
575 	struct ieee80211_hw *hw = &local->hw;
576 	unsigned long flags;
577 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
578 	int queue = info->hw_queue;
579 
580 	if (WARN_ON(!info->control.vif)) {
581 		ieee80211_free_txskb(&local->hw, skb);
582 		return;
583 	}
584 
585 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
586 	__ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
587 			       false);
588 	__skb_queue_tail(&local->pending[queue], skb);
589 	__ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
590 			       false, &flags);
591 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
592 }
593 
594 void ieee80211_add_pending_skbs(struct ieee80211_local *local,
595 				struct sk_buff_head *skbs)
596 {
597 	struct ieee80211_hw *hw = &local->hw;
598 	struct sk_buff *skb;
599 	unsigned long flags;
600 	int queue, i;
601 
602 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
603 	while ((skb = skb_dequeue(skbs))) {
604 		struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
605 
606 		if (WARN_ON(!info->control.vif)) {
607 			ieee80211_free_txskb(&local->hw, skb);
608 			continue;
609 		}
610 
611 		queue = info->hw_queue;
612 
613 		__ieee80211_stop_queue(hw, queue,
614 				IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
615 				false);
616 
617 		__skb_queue_tail(&local->pending[queue], skb);
618 	}
619 
620 	for (i = 0; i < hw->queues; i++)
621 		__ieee80211_wake_queue(hw, i,
622 			IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
623 			false, &flags);
624 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
625 }
626 
627 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw,
628 				     unsigned long queues,
629 				     enum queue_stop_reason reason,
630 				     bool refcounted)
631 {
632 	struct ieee80211_local *local = hw_to_local(hw);
633 	unsigned long flags;
634 	int i;
635 
636 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
637 
638 	for_each_set_bit(i, &queues, hw->queues)
639 		__ieee80211_stop_queue(hw, i, reason, refcounted);
640 
641 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
642 }
643 
644 void ieee80211_stop_queues(struct ieee80211_hw *hw)
645 {
646 	ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
647 					IEEE80211_QUEUE_STOP_REASON_DRIVER,
648 					false);
649 }
650 EXPORT_SYMBOL(ieee80211_stop_queues);
651 
652 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue)
653 {
654 	struct ieee80211_local *local = hw_to_local(hw);
655 	unsigned long flags;
656 	int ret;
657 
658 	if (WARN_ON(queue >= hw->queues))
659 		return true;
660 
661 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
662 	ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER,
663 		       &local->queue_stop_reasons[queue]);
664 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
665 	return ret;
666 }
667 EXPORT_SYMBOL(ieee80211_queue_stopped);
668 
669 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw,
670 				     unsigned long queues,
671 				     enum queue_stop_reason reason,
672 				     bool refcounted)
673 {
674 	struct ieee80211_local *local = hw_to_local(hw);
675 	unsigned long flags;
676 	int i;
677 
678 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
679 
680 	for_each_set_bit(i, &queues, hw->queues)
681 		__ieee80211_wake_queue(hw, i, reason, refcounted, &flags);
682 
683 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
684 }
685 
686 void ieee80211_wake_queues(struct ieee80211_hw *hw)
687 {
688 	ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
689 					IEEE80211_QUEUE_STOP_REASON_DRIVER,
690 					false);
691 }
692 EXPORT_SYMBOL(ieee80211_wake_queues);
693 
694 static unsigned int
695 ieee80211_get_vif_queues(struct ieee80211_local *local,
696 			 struct ieee80211_sub_if_data *sdata)
697 {
698 	unsigned int queues;
699 
700 	if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) {
701 		int ac;
702 
703 		queues = 0;
704 
705 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
706 			queues |= BIT(sdata->vif.hw_queue[ac]);
707 		if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE)
708 			queues |= BIT(sdata->vif.cab_queue);
709 	} else {
710 		/* all queues */
711 		queues = BIT(local->hw.queues) - 1;
712 	}
713 
714 	return queues;
715 }
716 
717 void __ieee80211_flush_queues(struct ieee80211_local *local,
718 			      struct ieee80211_sub_if_data *sdata,
719 			      unsigned int queues, bool drop)
720 {
721 	if (!local->ops->flush)
722 		return;
723 
724 	/*
725 	 * If no queue was set, or if the HW doesn't support
726 	 * IEEE80211_HW_QUEUE_CONTROL - flush all queues
727 	 */
728 	if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
729 		queues = ieee80211_get_vif_queues(local, sdata);
730 
731 	ieee80211_stop_queues_by_reason(&local->hw, queues,
732 					IEEE80211_QUEUE_STOP_REASON_FLUSH,
733 					false);
734 
735 	drv_flush(local, sdata, queues, drop);
736 
737 	ieee80211_wake_queues_by_reason(&local->hw, queues,
738 					IEEE80211_QUEUE_STOP_REASON_FLUSH,
739 					false);
740 }
741 
742 void ieee80211_flush_queues(struct ieee80211_local *local,
743 			    struct ieee80211_sub_if_data *sdata, bool drop)
744 {
745 	__ieee80211_flush_queues(local, sdata, 0, drop);
746 }
747 
748 void ieee80211_stop_vif_queues(struct ieee80211_local *local,
749 			       struct ieee80211_sub_if_data *sdata,
750 			       enum queue_stop_reason reason)
751 {
752 	ieee80211_stop_queues_by_reason(&local->hw,
753 					ieee80211_get_vif_queues(local, sdata),
754 					reason, true);
755 }
756 
757 void ieee80211_wake_vif_queues(struct ieee80211_local *local,
758 			       struct ieee80211_sub_if_data *sdata,
759 			       enum queue_stop_reason reason)
760 {
761 	ieee80211_wake_queues_by_reason(&local->hw,
762 					ieee80211_get_vif_queues(local, sdata),
763 					reason, true);
764 }
765 
766 static void __iterate_interfaces(struct ieee80211_local *local,
767 				 u32 iter_flags,
768 				 void (*iterator)(void *data, u8 *mac,
769 						  struct ieee80211_vif *vif),
770 				 void *data)
771 {
772 	struct ieee80211_sub_if_data *sdata;
773 	bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE;
774 
775 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
776 		switch (sdata->vif.type) {
777 		case NL80211_IFTYPE_MONITOR:
778 			if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE))
779 				continue;
780 			break;
781 		case NL80211_IFTYPE_AP_VLAN:
782 			continue;
783 		default:
784 			break;
785 		}
786 		if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
787 		    active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
788 			continue;
789 		if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) &&
790 		    !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
791 			continue;
792 		if (ieee80211_sdata_running(sdata) || !active_only)
793 			iterator(data, sdata->vif.addr,
794 				 &sdata->vif);
795 	}
796 
797 	sdata = rcu_dereference_check(local->monitor_sdata,
798 				      lockdep_is_held(&local->iflist_mtx) ||
799 				      lockdep_rtnl_is_held());
800 	if (sdata &&
801 	    (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only ||
802 	     sdata->flags & IEEE80211_SDATA_IN_DRIVER))
803 		iterator(data, sdata->vif.addr, &sdata->vif);
804 }
805 
806 void ieee80211_iterate_interfaces(
807 	struct ieee80211_hw *hw, u32 iter_flags,
808 	void (*iterator)(void *data, u8 *mac,
809 			 struct ieee80211_vif *vif),
810 	void *data)
811 {
812 	struct ieee80211_local *local = hw_to_local(hw);
813 
814 	mutex_lock(&local->iflist_mtx);
815 	__iterate_interfaces(local, iter_flags, iterator, data);
816 	mutex_unlock(&local->iflist_mtx);
817 }
818 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces);
819 
820 void ieee80211_iterate_active_interfaces_atomic(
821 	struct ieee80211_hw *hw, u32 iter_flags,
822 	void (*iterator)(void *data, u8 *mac,
823 			 struct ieee80211_vif *vif),
824 	void *data)
825 {
826 	struct ieee80211_local *local = hw_to_local(hw);
827 
828 	rcu_read_lock();
829 	__iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE,
830 			     iterator, data);
831 	rcu_read_unlock();
832 }
833 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic);
834 
835 void ieee80211_iterate_active_interfaces_mtx(
836 	struct ieee80211_hw *hw, u32 iter_flags,
837 	void (*iterator)(void *data, u8 *mac,
838 			 struct ieee80211_vif *vif),
839 	void *data)
840 {
841 	struct ieee80211_local *local = hw_to_local(hw);
842 
843 	lockdep_assert_wiphy(hw->wiphy);
844 
845 	__iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE,
846 			     iterator, data);
847 }
848 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx);
849 
850 static void __iterate_stations(struct ieee80211_local *local,
851 			       void (*iterator)(void *data,
852 						struct ieee80211_sta *sta),
853 			       void *data)
854 {
855 	struct sta_info *sta;
856 
857 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
858 		if (!sta->uploaded)
859 			continue;
860 
861 		iterator(data, &sta->sta);
862 	}
863 }
864 
865 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw,
866 			void (*iterator)(void *data,
867 					 struct ieee80211_sta *sta),
868 			void *data)
869 {
870 	struct ieee80211_local *local = hw_to_local(hw);
871 
872 	rcu_read_lock();
873 	__iterate_stations(local, iterator, data);
874 	rcu_read_unlock();
875 }
876 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic);
877 
878 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev)
879 {
880 	struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
881 
882 	if (!ieee80211_sdata_running(sdata) ||
883 	    !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
884 		return NULL;
885 	return &sdata->vif;
886 }
887 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif);
888 
889 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif)
890 {
891 	if (!vif)
892 		return NULL;
893 
894 	return &vif_to_sdata(vif)->wdev;
895 }
896 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev);
897 
898 /*
899  * Nothing should have been stuffed into the workqueue during
900  * the suspend->resume cycle. Since we can't check each caller
901  * of this function if we are already quiescing / suspended,
902  * check here and don't WARN since this can actually happen when
903  * the rx path (for example) is racing against __ieee80211_suspend
904  * and suspending / quiescing was set after the rx path checked
905  * them.
906  */
907 static bool ieee80211_can_queue_work(struct ieee80211_local *local)
908 {
909 	if (local->quiescing || (local->suspended && !local->resuming)) {
910 		pr_warn("queueing ieee80211 work while going to suspend\n");
911 		return false;
912 	}
913 
914 	return true;
915 }
916 
917 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work)
918 {
919 	struct ieee80211_local *local = hw_to_local(hw);
920 
921 	if (!ieee80211_can_queue_work(local))
922 		return;
923 
924 	queue_work(local->workqueue, work);
925 }
926 EXPORT_SYMBOL(ieee80211_queue_work);
927 
928 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
929 				  struct delayed_work *dwork,
930 				  unsigned long delay)
931 {
932 	struct ieee80211_local *local = hw_to_local(hw);
933 
934 	if (!ieee80211_can_queue_work(local))
935 		return;
936 
937 	queue_delayed_work(local->workqueue, dwork, delay);
938 }
939 EXPORT_SYMBOL(ieee80211_queue_delayed_work);
940 
941 static void ieee80211_parse_extension_element(u32 *crc,
942 					      const struct element *elem,
943 					      struct ieee802_11_elems *elems)
944 {
945 	const void *data = elem->data + 1;
946 	u8 len = elem->datalen - 1;
947 
948 	switch (elem->data[0]) {
949 	case WLAN_EID_EXT_HE_MU_EDCA:
950 		if (len >= sizeof(*elems->mu_edca_param_set)) {
951 			elems->mu_edca_param_set = data;
952 			if (crc)
953 				*crc = crc32_be(*crc, (void *)elem,
954 						elem->datalen + 2);
955 		}
956 		break;
957 	case WLAN_EID_EXT_HE_CAPABILITY:
958 		elems->he_cap = data;
959 		elems->he_cap_len = len;
960 		break;
961 	case WLAN_EID_EXT_HE_OPERATION:
962 		if (len >= sizeof(*elems->he_operation) &&
963 		    len >= ieee80211_he_oper_size(data) - 1) {
964 			if (crc)
965 				*crc = crc32_be(*crc, (void *)elem,
966 						elem->datalen + 2);
967 			elems->he_operation = data;
968 		}
969 		break;
970 	case WLAN_EID_EXT_UORA:
971 		if (len >= 1)
972 			elems->uora_element = data;
973 		break;
974 	case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME:
975 		if (len == 3)
976 			elems->max_channel_switch_time = data;
977 		break;
978 	case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION:
979 		if (len >= sizeof(*elems->mbssid_config_ie))
980 			elems->mbssid_config_ie = data;
981 		break;
982 	case WLAN_EID_EXT_HE_SPR:
983 		if (len >= sizeof(*elems->he_spr) &&
984 		    len >= ieee80211_he_spr_size(data))
985 			elems->he_spr = data;
986 		break;
987 	case WLAN_EID_EXT_HE_6GHZ_CAPA:
988 		if (len >= sizeof(*elems->he_6ghz_capa))
989 			elems->he_6ghz_capa = data;
990 		break;
991 	}
992 }
993 
994 static u32
995 _ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action,
996 			    struct ieee802_11_elems *elems,
997 			    u64 filter, u32 crc,
998 			    const struct element *check_inherit)
999 {
1000 	const struct element *elem;
1001 	bool calc_crc = filter != 0;
1002 	DECLARE_BITMAP(seen_elems, 256);
1003 	const u8 *ie;
1004 
1005 	bitmap_zero(seen_elems, 256);
1006 
1007 	for_each_element(elem, start, len) {
1008 		bool elem_parse_failed;
1009 		u8 id = elem->id;
1010 		u8 elen = elem->datalen;
1011 		const u8 *pos = elem->data;
1012 
1013 		if (check_inherit &&
1014 		    !cfg80211_is_element_inherited(elem,
1015 						   check_inherit))
1016 			continue;
1017 
1018 		switch (id) {
1019 		case WLAN_EID_SSID:
1020 		case WLAN_EID_SUPP_RATES:
1021 		case WLAN_EID_FH_PARAMS:
1022 		case WLAN_EID_DS_PARAMS:
1023 		case WLAN_EID_CF_PARAMS:
1024 		case WLAN_EID_TIM:
1025 		case WLAN_EID_IBSS_PARAMS:
1026 		case WLAN_EID_CHALLENGE:
1027 		case WLAN_EID_RSN:
1028 		case WLAN_EID_ERP_INFO:
1029 		case WLAN_EID_EXT_SUPP_RATES:
1030 		case WLAN_EID_HT_CAPABILITY:
1031 		case WLAN_EID_HT_OPERATION:
1032 		case WLAN_EID_VHT_CAPABILITY:
1033 		case WLAN_EID_VHT_OPERATION:
1034 		case WLAN_EID_MESH_ID:
1035 		case WLAN_EID_MESH_CONFIG:
1036 		case WLAN_EID_PEER_MGMT:
1037 		case WLAN_EID_PREQ:
1038 		case WLAN_EID_PREP:
1039 		case WLAN_EID_PERR:
1040 		case WLAN_EID_RANN:
1041 		case WLAN_EID_CHANNEL_SWITCH:
1042 		case WLAN_EID_EXT_CHANSWITCH_ANN:
1043 		case WLAN_EID_COUNTRY:
1044 		case WLAN_EID_PWR_CONSTRAINT:
1045 		case WLAN_EID_TIMEOUT_INTERVAL:
1046 		case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
1047 		case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
1048 		case WLAN_EID_CHAN_SWITCH_PARAM:
1049 		case WLAN_EID_EXT_CAPABILITY:
1050 		case WLAN_EID_CHAN_SWITCH_TIMING:
1051 		case WLAN_EID_LINK_ID:
1052 		case WLAN_EID_BSS_MAX_IDLE_PERIOD:
1053 		case WLAN_EID_RSNX:
1054 		case WLAN_EID_S1G_BCN_COMPAT:
1055 		case WLAN_EID_S1G_CAPABILITIES:
1056 		case WLAN_EID_S1G_OPERATION:
1057 		case WLAN_EID_AID_RESPONSE:
1058 		case WLAN_EID_S1G_SHORT_BCN_INTERVAL:
1059 		/*
1060 		 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible
1061 		 * that if the content gets bigger it might be needed more than once
1062 		 */
1063 			if (test_bit(id, seen_elems)) {
1064 				elems->parse_error = true;
1065 				continue;
1066 			}
1067 			break;
1068 		}
1069 
1070 		if (calc_crc && id < 64 && (filter & (1ULL << id)))
1071 			crc = crc32_be(crc, pos - 2, elen + 2);
1072 
1073 		elem_parse_failed = false;
1074 
1075 		switch (id) {
1076 		case WLAN_EID_LINK_ID:
1077 			if (elen + 2 < sizeof(struct ieee80211_tdls_lnkie)) {
1078 				elem_parse_failed = true;
1079 				break;
1080 			}
1081 			elems->lnk_id = (void *)(pos - 2);
1082 			break;
1083 		case WLAN_EID_CHAN_SWITCH_TIMING:
1084 			if (elen < sizeof(struct ieee80211_ch_switch_timing)) {
1085 				elem_parse_failed = true;
1086 				break;
1087 			}
1088 			elems->ch_sw_timing = (void *)pos;
1089 			break;
1090 		case WLAN_EID_EXT_CAPABILITY:
1091 			elems->ext_capab = pos;
1092 			elems->ext_capab_len = elen;
1093 			break;
1094 		case WLAN_EID_SSID:
1095 			elems->ssid = pos;
1096 			elems->ssid_len = elen;
1097 			break;
1098 		case WLAN_EID_SUPP_RATES:
1099 			elems->supp_rates = pos;
1100 			elems->supp_rates_len = elen;
1101 			break;
1102 		case WLAN_EID_DS_PARAMS:
1103 			if (elen >= 1)
1104 				elems->ds_params = pos;
1105 			else
1106 				elem_parse_failed = true;
1107 			break;
1108 		case WLAN_EID_TIM:
1109 			if (elen >= sizeof(struct ieee80211_tim_ie)) {
1110 				elems->tim = (void *)pos;
1111 				elems->tim_len = elen;
1112 			} else
1113 				elem_parse_failed = true;
1114 			break;
1115 		case WLAN_EID_CHALLENGE:
1116 			elems->challenge = pos;
1117 			elems->challenge_len = elen;
1118 			break;
1119 		case WLAN_EID_VENDOR_SPECIFIC:
1120 			if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
1121 			    pos[2] == 0xf2) {
1122 				/* Microsoft OUI (00:50:F2) */
1123 
1124 				if (calc_crc)
1125 					crc = crc32_be(crc, pos - 2, elen + 2);
1126 
1127 				if (elen >= 5 && pos[3] == 2) {
1128 					/* OUI Type 2 - WMM IE */
1129 					if (pos[4] == 0) {
1130 						elems->wmm_info = pos;
1131 						elems->wmm_info_len = elen;
1132 					} else if (pos[4] == 1) {
1133 						elems->wmm_param = pos;
1134 						elems->wmm_param_len = elen;
1135 					}
1136 				}
1137 			}
1138 			break;
1139 		case WLAN_EID_RSN:
1140 			elems->rsn = pos;
1141 			elems->rsn_len = elen;
1142 			break;
1143 		case WLAN_EID_ERP_INFO:
1144 			if (elen >= 1)
1145 				elems->erp_info = pos;
1146 			else
1147 				elem_parse_failed = true;
1148 			break;
1149 		case WLAN_EID_EXT_SUPP_RATES:
1150 			elems->ext_supp_rates = pos;
1151 			elems->ext_supp_rates_len = elen;
1152 			break;
1153 		case WLAN_EID_HT_CAPABILITY:
1154 			if (elen >= sizeof(struct ieee80211_ht_cap))
1155 				elems->ht_cap_elem = (void *)pos;
1156 			else
1157 				elem_parse_failed = true;
1158 			break;
1159 		case WLAN_EID_HT_OPERATION:
1160 			if (elen >= sizeof(struct ieee80211_ht_operation))
1161 				elems->ht_operation = (void *)pos;
1162 			else
1163 				elem_parse_failed = true;
1164 			break;
1165 		case WLAN_EID_VHT_CAPABILITY:
1166 			if (elen >= sizeof(struct ieee80211_vht_cap))
1167 				elems->vht_cap_elem = (void *)pos;
1168 			else
1169 				elem_parse_failed = true;
1170 			break;
1171 		case WLAN_EID_VHT_OPERATION:
1172 			if (elen >= sizeof(struct ieee80211_vht_operation)) {
1173 				elems->vht_operation = (void *)pos;
1174 				if (calc_crc)
1175 					crc = crc32_be(crc, pos - 2, elen + 2);
1176 				break;
1177 			}
1178 			elem_parse_failed = true;
1179 			break;
1180 		case WLAN_EID_OPMODE_NOTIF:
1181 			if (elen > 0) {
1182 				elems->opmode_notif = pos;
1183 				if (calc_crc)
1184 					crc = crc32_be(crc, pos - 2, elen + 2);
1185 				break;
1186 			}
1187 			elem_parse_failed = true;
1188 			break;
1189 		case WLAN_EID_MESH_ID:
1190 			elems->mesh_id = pos;
1191 			elems->mesh_id_len = elen;
1192 			break;
1193 		case WLAN_EID_MESH_CONFIG:
1194 			if (elen >= sizeof(struct ieee80211_meshconf_ie))
1195 				elems->mesh_config = (void *)pos;
1196 			else
1197 				elem_parse_failed = true;
1198 			break;
1199 		case WLAN_EID_PEER_MGMT:
1200 			elems->peering = pos;
1201 			elems->peering_len = elen;
1202 			break;
1203 		case WLAN_EID_MESH_AWAKE_WINDOW:
1204 			if (elen >= 2)
1205 				elems->awake_window = (void *)pos;
1206 			break;
1207 		case WLAN_EID_PREQ:
1208 			elems->preq = pos;
1209 			elems->preq_len = elen;
1210 			break;
1211 		case WLAN_EID_PREP:
1212 			elems->prep = pos;
1213 			elems->prep_len = elen;
1214 			break;
1215 		case WLAN_EID_PERR:
1216 			elems->perr = pos;
1217 			elems->perr_len = elen;
1218 			break;
1219 		case WLAN_EID_RANN:
1220 			if (elen >= sizeof(struct ieee80211_rann_ie))
1221 				elems->rann = (void *)pos;
1222 			else
1223 				elem_parse_failed = true;
1224 			break;
1225 		case WLAN_EID_CHANNEL_SWITCH:
1226 			if (elen != sizeof(struct ieee80211_channel_sw_ie)) {
1227 				elem_parse_failed = true;
1228 				break;
1229 			}
1230 			elems->ch_switch_ie = (void *)pos;
1231 			break;
1232 		case WLAN_EID_EXT_CHANSWITCH_ANN:
1233 			if (elen != sizeof(struct ieee80211_ext_chansw_ie)) {
1234 				elem_parse_failed = true;
1235 				break;
1236 			}
1237 			elems->ext_chansw_ie = (void *)pos;
1238 			break;
1239 		case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
1240 			if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) {
1241 				elem_parse_failed = true;
1242 				break;
1243 			}
1244 			elems->sec_chan_offs = (void *)pos;
1245 			break;
1246 		case WLAN_EID_CHAN_SWITCH_PARAM:
1247 			if (elen <
1248 			    sizeof(*elems->mesh_chansw_params_ie)) {
1249 				elem_parse_failed = true;
1250 				break;
1251 			}
1252 			elems->mesh_chansw_params_ie = (void *)pos;
1253 			break;
1254 		case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
1255 			if (!action ||
1256 			    elen < sizeof(*elems->wide_bw_chansw_ie)) {
1257 				elem_parse_failed = true;
1258 				break;
1259 			}
1260 			elems->wide_bw_chansw_ie = (void *)pos;
1261 			break;
1262 		case WLAN_EID_CHANNEL_SWITCH_WRAPPER:
1263 			if (action) {
1264 				elem_parse_failed = true;
1265 				break;
1266 			}
1267 			/*
1268 			 * This is a bit tricky, but as we only care about
1269 			 * the wide bandwidth channel switch element, so
1270 			 * just parse it out manually.
1271 			 */
1272 			ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH,
1273 					      pos, elen);
1274 			if (ie) {
1275 				if (ie[1] >= sizeof(*elems->wide_bw_chansw_ie))
1276 					elems->wide_bw_chansw_ie =
1277 						(void *)(ie + 2);
1278 				else
1279 					elem_parse_failed = true;
1280 			}
1281 			break;
1282 		case WLAN_EID_COUNTRY:
1283 			elems->country_elem = pos;
1284 			elems->country_elem_len = elen;
1285 			break;
1286 		case WLAN_EID_PWR_CONSTRAINT:
1287 			if (elen != 1) {
1288 				elem_parse_failed = true;
1289 				break;
1290 			}
1291 			elems->pwr_constr_elem = pos;
1292 			break;
1293 		case WLAN_EID_CISCO_VENDOR_SPECIFIC:
1294 			/* Lots of different options exist, but we only care
1295 			 * about the Dynamic Transmit Power Control element.
1296 			 * First check for the Cisco OUI, then for the DTPC
1297 			 * tag (0x00).
1298 			 */
1299 			if (elen < 4) {
1300 				elem_parse_failed = true;
1301 				break;
1302 			}
1303 
1304 			if (pos[0] != 0x00 || pos[1] != 0x40 ||
1305 			    pos[2] != 0x96 || pos[3] != 0x00)
1306 				break;
1307 
1308 			if (elen != 6) {
1309 				elem_parse_failed = true;
1310 				break;
1311 			}
1312 
1313 			if (calc_crc)
1314 				crc = crc32_be(crc, pos - 2, elen + 2);
1315 
1316 			elems->cisco_dtpc_elem = pos;
1317 			break;
1318 		case WLAN_EID_ADDBA_EXT:
1319 			if (elen < sizeof(struct ieee80211_addba_ext_ie)) {
1320 				elem_parse_failed = true;
1321 				break;
1322 			}
1323 			elems->addba_ext_ie = (void *)pos;
1324 			break;
1325 		case WLAN_EID_TIMEOUT_INTERVAL:
1326 			if (elen >= sizeof(struct ieee80211_timeout_interval_ie))
1327 				elems->timeout_int = (void *)pos;
1328 			else
1329 				elem_parse_failed = true;
1330 			break;
1331 		case WLAN_EID_BSS_MAX_IDLE_PERIOD:
1332 			if (elen >= sizeof(*elems->max_idle_period_ie))
1333 				elems->max_idle_period_ie = (void *)pos;
1334 			break;
1335 		case WLAN_EID_RSNX:
1336 			elems->rsnx = pos;
1337 			elems->rsnx_len = elen;
1338 			break;
1339 		case WLAN_EID_EXTENSION:
1340 			ieee80211_parse_extension_element(calc_crc ?
1341 								&crc : NULL,
1342 							  elem, elems);
1343 			break;
1344 		case WLAN_EID_S1G_CAPABILITIES:
1345 			if (elen >= sizeof(*elems->s1g_capab))
1346 				elems->s1g_capab = (void *)pos;
1347 			else
1348 				elem_parse_failed = true;
1349 			break;
1350 		case WLAN_EID_S1G_OPERATION:
1351 			if (elen == sizeof(*elems->s1g_oper))
1352 				elems->s1g_oper = (void *)pos;
1353 			else
1354 				elem_parse_failed = true;
1355 			break;
1356 		case WLAN_EID_S1G_BCN_COMPAT:
1357 			if (elen == sizeof(*elems->s1g_bcn_compat))
1358 				elems->s1g_bcn_compat = (void *)pos;
1359 			else
1360 				elem_parse_failed = true;
1361 			break;
1362 		case WLAN_EID_AID_RESPONSE:
1363 			if (elen == sizeof(struct ieee80211_aid_response_ie))
1364 				elems->aid_resp = (void *)pos;
1365 			else
1366 				elem_parse_failed = true;
1367 			break;
1368 		default:
1369 			break;
1370 		}
1371 
1372 		if (elem_parse_failed)
1373 			elems->parse_error = true;
1374 		else
1375 			__set_bit(id, seen_elems);
1376 	}
1377 
1378 	if (!for_each_element_completed(elem, start, len))
1379 		elems->parse_error = true;
1380 
1381 	return crc;
1382 }
1383 
1384 static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len,
1385 					    struct ieee802_11_elems *elems,
1386 					    u8 *transmitter_bssid,
1387 					    u8 *bss_bssid,
1388 					    u8 *nontransmitted_profile)
1389 {
1390 	const struct element *elem, *sub;
1391 	size_t profile_len = 0;
1392 	bool found = false;
1393 
1394 	if (!bss_bssid || !transmitter_bssid)
1395 		return profile_len;
1396 
1397 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) {
1398 		if (elem->datalen < 2)
1399 			continue;
1400 
1401 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
1402 			u8 new_bssid[ETH_ALEN];
1403 			const u8 *index;
1404 
1405 			if (sub->id != 0 || sub->datalen < 4) {
1406 				/* not a valid BSS profile */
1407 				continue;
1408 			}
1409 
1410 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
1411 			    sub->data[1] != 2) {
1412 				/* The first element of the
1413 				 * Nontransmitted BSSID Profile is not
1414 				 * the Nontransmitted BSSID Capability
1415 				 * element.
1416 				 */
1417 				continue;
1418 			}
1419 
1420 			memset(nontransmitted_profile, 0, len);
1421 			profile_len = cfg80211_merge_profile(start, len,
1422 							     elem,
1423 							     sub,
1424 							     nontransmitted_profile,
1425 							     len);
1426 
1427 			/* found a Nontransmitted BSSID Profile */
1428 			index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX,
1429 						 nontransmitted_profile,
1430 						 profile_len);
1431 			if (!index || index[1] < 1 || index[2] == 0) {
1432 				/* Invalid MBSSID Index element */
1433 				continue;
1434 			}
1435 
1436 			cfg80211_gen_new_bssid(transmitter_bssid,
1437 					       elem->data[0],
1438 					       index[2],
1439 					       new_bssid);
1440 			if (ether_addr_equal(new_bssid, bss_bssid)) {
1441 				found = true;
1442 				elems->bssid_index_len = index[1];
1443 				elems->bssid_index = (void *)&index[2];
1444 				break;
1445 			}
1446 		}
1447 	}
1448 
1449 	return found ? profile_len : 0;
1450 }
1451 
1452 u32 ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action,
1453 			       struct ieee802_11_elems *elems,
1454 			       u64 filter, u32 crc, u8 *transmitter_bssid,
1455 			       u8 *bss_bssid)
1456 {
1457 	const struct element *non_inherit = NULL;
1458 	u8 *nontransmitted_profile;
1459 	int nontransmitted_profile_len = 0;
1460 
1461 	memset(elems, 0, sizeof(*elems));
1462 	elems->ie_start = start;
1463 	elems->total_len = len;
1464 
1465 	nontransmitted_profile = kmalloc(len, GFP_ATOMIC);
1466 	if (nontransmitted_profile) {
1467 		nontransmitted_profile_len =
1468 			ieee802_11_find_bssid_profile(start, len, elems,
1469 						      transmitter_bssid,
1470 						      bss_bssid,
1471 						      nontransmitted_profile);
1472 		non_inherit =
1473 			cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
1474 					       nontransmitted_profile,
1475 					       nontransmitted_profile_len);
1476 	}
1477 
1478 	crc = _ieee802_11_parse_elems_crc(start, len, action, elems, filter,
1479 					  crc, non_inherit);
1480 
1481 	/* Override with nontransmitted profile, if found */
1482 	if (nontransmitted_profile_len)
1483 		_ieee802_11_parse_elems_crc(nontransmitted_profile,
1484 					    nontransmitted_profile_len,
1485 					    action, elems, 0, 0, NULL);
1486 
1487 	if (elems->tim && !elems->parse_error) {
1488 		const struct ieee80211_tim_ie *tim_ie = elems->tim;
1489 
1490 		elems->dtim_period = tim_ie->dtim_period;
1491 		elems->dtim_count = tim_ie->dtim_count;
1492 	}
1493 
1494 	/* Override DTIM period and count if needed */
1495 	if (elems->bssid_index &&
1496 	    elems->bssid_index_len >=
1497 	    offsetofend(struct ieee80211_bssid_index, dtim_period))
1498 		elems->dtim_period = elems->bssid_index->dtim_period;
1499 
1500 	if (elems->bssid_index &&
1501 	    elems->bssid_index_len >=
1502 	    offsetofend(struct ieee80211_bssid_index, dtim_count))
1503 		elems->dtim_count = elems->bssid_index->dtim_count;
1504 
1505 	kfree(nontransmitted_profile);
1506 
1507 	return crc;
1508 }
1509 
1510 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata,
1511 					   struct ieee80211_tx_queue_params
1512 					   *qparam, int ac)
1513 {
1514 	struct ieee80211_chanctx_conf *chanctx_conf;
1515 	const struct ieee80211_reg_rule *rrule;
1516 	const struct ieee80211_wmm_ac *wmm_ac;
1517 	u16 center_freq = 0;
1518 
1519 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1520 	    sdata->vif.type != NL80211_IFTYPE_STATION)
1521 		return;
1522 
1523 	rcu_read_lock();
1524 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1525 	if (chanctx_conf)
1526 		center_freq = chanctx_conf->def.chan->center_freq;
1527 
1528 	if (!center_freq) {
1529 		rcu_read_unlock();
1530 		return;
1531 	}
1532 
1533 	rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq));
1534 
1535 	if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) {
1536 		rcu_read_unlock();
1537 		return;
1538 	}
1539 
1540 	if (sdata->vif.type == NL80211_IFTYPE_AP)
1541 		wmm_ac = &rrule->wmm_rule.ap[ac];
1542 	else
1543 		wmm_ac = &rrule->wmm_rule.client[ac];
1544 	qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min);
1545 	qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max);
1546 	qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn);
1547 	qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32);
1548 	rcu_read_unlock();
1549 }
1550 
1551 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata,
1552 			       bool bss_notify, bool enable_qos)
1553 {
1554 	struct ieee80211_local *local = sdata->local;
1555 	struct ieee80211_tx_queue_params qparam;
1556 	struct ieee80211_chanctx_conf *chanctx_conf;
1557 	int ac;
1558 	bool use_11b;
1559 	bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */
1560 	int aCWmin, aCWmax;
1561 
1562 	if (!local->ops->conf_tx)
1563 		return;
1564 
1565 	if (local->hw.queues < IEEE80211_NUM_ACS)
1566 		return;
1567 
1568 	memset(&qparam, 0, sizeof(qparam));
1569 
1570 	rcu_read_lock();
1571 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1572 	use_11b = (chanctx_conf &&
1573 		   chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) &&
1574 		 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE);
1575 	rcu_read_unlock();
1576 
1577 	is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB);
1578 
1579 	/* Set defaults according to 802.11-2007 Table 7-37 */
1580 	aCWmax = 1023;
1581 	if (use_11b)
1582 		aCWmin = 31;
1583 	else
1584 		aCWmin = 15;
1585 
1586 	/* Confiure old 802.11b/g medium access rules. */
1587 	qparam.cw_max = aCWmax;
1588 	qparam.cw_min = aCWmin;
1589 	qparam.txop = 0;
1590 	qparam.aifs = 2;
1591 
1592 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1593 		/* Update if QoS is enabled. */
1594 		if (enable_qos) {
1595 			switch (ac) {
1596 			case IEEE80211_AC_BK:
1597 				qparam.cw_max = aCWmax;
1598 				qparam.cw_min = aCWmin;
1599 				qparam.txop = 0;
1600 				if (is_ocb)
1601 					qparam.aifs = 9;
1602 				else
1603 					qparam.aifs = 7;
1604 				break;
1605 			/* never happens but let's not leave undefined */
1606 			default:
1607 			case IEEE80211_AC_BE:
1608 				qparam.cw_max = aCWmax;
1609 				qparam.cw_min = aCWmin;
1610 				qparam.txop = 0;
1611 				if (is_ocb)
1612 					qparam.aifs = 6;
1613 				else
1614 					qparam.aifs = 3;
1615 				break;
1616 			case IEEE80211_AC_VI:
1617 				qparam.cw_max = aCWmin;
1618 				qparam.cw_min = (aCWmin + 1) / 2 - 1;
1619 				if (is_ocb)
1620 					qparam.txop = 0;
1621 				else if (use_11b)
1622 					qparam.txop = 6016/32;
1623 				else
1624 					qparam.txop = 3008/32;
1625 
1626 				if (is_ocb)
1627 					qparam.aifs = 3;
1628 				else
1629 					qparam.aifs = 2;
1630 				break;
1631 			case IEEE80211_AC_VO:
1632 				qparam.cw_max = (aCWmin + 1) / 2 - 1;
1633 				qparam.cw_min = (aCWmin + 1) / 4 - 1;
1634 				if (is_ocb)
1635 					qparam.txop = 0;
1636 				else if (use_11b)
1637 					qparam.txop = 3264/32;
1638 				else
1639 					qparam.txop = 1504/32;
1640 				qparam.aifs = 2;
1641 				break;
1642 			}
1643 		}
1644 		ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac);
1645 
1646 		qparam.uapsd = false;
1647 
1648 		sdata->tx_conf[ac] = qparam;
1649 		drv_conf_tx(local, sdata, ac, &qparam);
1650 	}
1651 
1652 	if (sdata->vif.type != NL80211_IFTYPE_MONITOR &&
1653 	    sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE &&
1654 	    sdata->vif.type != NL80211_IFTYPE_NAN) {
1655 		sdata->vif.bss_conf.qos = enable_qos;
1656 		if (bss_notify)
1657 			ieee80211_bss_info_change_notify(sdata,
1658 							 BSS_CHANGED_QOS);
1659 	}
1660 }
1661 
1662 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata,
1663 			 u16 transaction, u16 auth_alg, u16 status,
1664 			 const u8 *extra, size_t extra_len, const u8 *da,
1665 			 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx,
1666 			 u32 tx_flags)
1667 {
1668 	struct ieee80211_local *local = sdata->local;
1669 	struct sk_buff *skb;
1670 	struct ieee80211_mgmt *mgmt;
1671 	int err;
1672 
1673 	/* 24 + 6 = header + auth_algo + auth_transaction + status_code */
1674 	skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN +
1675 			    24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN);
1676 	if (!skb)
1677 		return;
1678 
1679 	skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN);
1680 
1681 	mgmt = skb_put_zero(skb, 24 + 6);
1682 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1683 					  IEEE80211_STYPE_AUTH);
1684 	memcpy(mgmt->da, da, ETH_ALEN);
1685 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1686 	memcpy(mgmt->bssid, bssid, ETH_ALEN);
1687 	mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg);
1688 	mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
1689 	mgmt->u.auth.status_code = cpu_to_le16(status);
1690 	if (extra)
1691 		skb_put_data(skb, extra, extra_len);
1692 
1693 	if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) {
1694 		mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1695 		err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx);
1696 		WARN_ON(err);
1697 	}
1698 
1699 	IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT |
1700 					tx_flags;
1701 	ieee80211_tx_skb(sdata, skb);
1702 }
1703 
1704 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata,
1705 				    const u8 *da, const u8 *bssid,
1706 				    u16 stype, u16 reason,
1707 				    bool send_frame, u8 *frame_buf)
1708 {
1709 	struct ieee80211_local *local = sdata->local;
1710 	struct sk_buff *skb;
1711 	struct ieee80211_mgmt *mgmt = (void *)frame_buf;
1712 
1713 	/* build frame */
1714 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype);
1715 	mgmt->duration = 0; /* initialize only */
1716 	mgmt->seq_ctrl = 0; /* initialize only */
1717 	memcpy(mgmt->da, da, ETH_ALEN);
1718 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1719 	memcpy(mgmt->bssid, bssid, ETH_ALEN);
1720 	/* u.deauth.reason_code == u.disassoc.reason_code */
1721 	mgmt->u.deauth.reason_code = cpu_to_le16(reason);
1722 
1723 	if (send_frame) {
1724 		skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1725 				    IEEE80211_DEAUTH_FRAME_LEN);
1726 		if (!skb)
1727 			return;
1728 
1729 		skb_reserve(skb, local->hw.extra_tx_headroom);
1730 
1731 		/* copy in frame */
1732 		skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN);
1733 
1734 		if (sdata->vif.type != NL80211_IFTYPE_STATION ||
1735 		    !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED))
1736 			IEEE80211_SKB_CB(skb)->flags |=
1737 				IEEE80211_TX_INTFL_DONT_ENCRYPT;
1738 
1739 		ieee80211_tx_skb(sdata, skb);
1740 	}
1741 }
1742 
1743 static u8 *ieee80211_write_he_6ghz_cap(u8 *pos, __le16 cap, u8 *end)
1744 {
1745 	if ((end - pos) < 5)
1746 		return pos;
1747 
1748 	*pos++ = WLAN_EID_EXTENSION;
1749 	*pos++ = 1 + sizeof(cap);
1750 	*pos++ = WLAN_EID_EXT_HE_6GHZ_CAPA;
1751 	memcpy(pos, &cap, sizeof(cap));
1752 
1753 	return pos + 2;
1754 }
1755 
1756 static int ieee80211_build_preq_ies_band(struct ieee80211_sub_if_data *sdata,
1757 					 u8 *buffer, size_t buffer_len,
1758 					 const u8 *ie, size_t ie_len,
1759 					 enum nl80211_band band,
1760 					 u32 rate_mask,
1761 					 struct cfg80211_chan_def *chandef,
1762 					 size_t *offset, u32 flags)
1763 {
1764 	struct ieee80211_local *local = sdata->local;
1765 	struct ieee80211_supported_band *sband;
1766 	const struct ieee80211_sta_he_cap *he_cap;
1767 	u8 *pos = buffer, *end = buffer + buffer_len;
1768 	size_t noffset;
1769 	int supp_rates_len, i;
1770 	u8 rates[32];
1771 	int num_rates;
1772 	int ext_rates_len;
1773 	int shift;
1774 	u32 rate_flags;
1775 	bool have_80mhz = false;
1776 
1777 	*offset = 0;
1778 
1779 	sband = local->hw.wiphy->bands[band];
1780 	if (WARN_ON_ONCE(!sband))
1781 		return 0;
1782 
1783 	rate_flags = ieee80211_chandef_rate_flags(chandef);
1784 	shift = ieee80211_chandef_get_shift(chandef);
1785 
1786 	num_rates = 0;
1787 	for (i = 0; i < sband->n_bitrates; i++) {
1788 		if ((BIT(i) & rate_mask) == 0)
1789 			continue; /* skip rate */
1790 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
1791 			continue;
1792 
1793 		rates[num_rates++] =
1794 			(u8) DIV_ROUND_UP(sband->bitrates[i].bitrate,
1795 					  (1 << shift) * 5);
1796 	}
1797 
1798 	supp_rates_len = min_t(int, num_rates, 8);
1799 
1800 	if (end - pos < 2 + supp_rates_len)
1801 		goto out_err;
1802 	*pos++ = WLAN_EID_SUPP_RATES;
1803 	*pos++ = supp_rates_len;
1804 	memcpy(pos, rates, supp_rates_len);
1805 	pos += supp_rates_len;
1806 
1807 	/* insert "request information" if in custom IEs */
1808 	if (ie && ie_len) {
1809 		static const u8 before_extrates[] = {
1810 			WLAN_EID_SSID,
1811 			WLAN_EID_SUPP_RATES,
1812 			WLAN_EID_REQUEST,
1813 		};
1814 		noffset = ieee80211_ie_split(ie, ie_len,
1815 					     before_extrates,
1816 					     ARRAY_SIZE(before_extrates),
1817 					     *offset);
1818 		if (end - pos < noffset - *offset)
1819 			goto out_err;
1820 		memcpy(pos, ie + *offset, noffset - *offset);
1821 		pos += noffset - *offset;
1822 		*offset = noffset;
1823 	}
1824 
1825 	ext_rates_len = num_rates - supp_rates_len;
1826 	if (ext_rates_len > 0) {
1827 		if (end - pos < 2 + ext_rates_len)
1828 			goto out_err;
1829 		*pos++ = WLAN_EID_EXT_SUPP_RATES;
1830 		*pos++ = ext_rates_len;
1831 		memcpy(pos, rates + supp_rates_len, ext_rates_len);
1832 		pos += ext_rates_len;
1833 	}
1834 
1835 	if (chandef->chan && sband->band == NL80211_BAND_2GHZ) {
1836 		if (end - pos < 3)
1837 			goto out_err;
1838 		*pos++ = WLAN_EID_DS_PARAMS;
1839 		*pos++ = 1;
1840 		*pos++ = ieee80211_frequency_to_channel(
1841 				chandef->chan->center_freq);
1842 	}
1843 
1844 	if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT)
1845 		goto done;
1846 
1847 	/* insert custom IEs that go before HT */
1848 	if (ie && ie_len) {
1849 		static const u8 before_ht[] = {
1850 			/*
1851 			 * no need to list the ones split off already
1852 			 * (or generated here)
1853 			 */
1854 			WLAN_EID_DS_PARAMS,
1855 			WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
1856 		};
1857 		noffset = ieee80211_ie_split(ie, ie_len,
1858 					     before_ht, ARRAY_SIZE(before_ht),
1859 					     *offset);
1860 		if (end - pos < noffset - *offset)
1861 			goto out_err;
1862 		memcpy(pos, ie + *offset, noffset - *offset);
1863 		pos += noffset - *offset;
1864 		*offset = noffset;
1865 	}
1866 
1867 	if (sband->ht_cap.ht_supported) {
1868 		if (end - pos < 2 + sizeof(struct ieee80211_ht_cap))
1869 			goto out_err;
1870 		pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap,
1871 						sband->ht_cap.cap);
1872 	}
1873 
1874 	/* insert custom IEs that go before VHT */
1875 	if (ie && ie_len) {
1876 		static const u8 before_vht[] = {
1877 			/*
1878 			 * no need to list the ones split off already
1879 			 * (or generated here)
1880 			 */
1881 			WLAN_EID_BSS_COEX_2040,
1882 			WLAN_EID_EXT_CAPABILITY,
1883 			WLAN_EID_SSID_LIST,
1884 			WLAN_EID_CHANNEL_USAGE,
1885 			WLAN_EID_INTERWORKING,
1886 			WLAN_EID_MESH_ID,
1887 			/* 60 GHz (Multi-band, DMG, MMS) can't happen */
1888 		};
1889 		noffset = ieee80211_ie_split(ie, ie_len,
1890 					     before_vht, ARRAY_SIZE(before_vht),
1891 					     *offset);
1892 		if (end - pos < noffset - *offset)
1893 			goto out_err;
1894 		memcpy(pos, ie + *offset, noffset - *offset);
1895 		pos += noffset - *offset;
1896 		*offset = noffset;
1897 	}
1898 
1899 	/* Check if any channel in this sband supports at least 80 MHz */
1900 	for (i = 0; i < sband->n_channels; i++) {
1901 		if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED |
1902 						IEEE80211_CHAN_NO_80MHZ))
1903 			continue;
1904 
1905 		have_80mhz = true;
1906 		break;
1907 	}
1908 
1909 	if (sband->vht_cap.vht_supported && have_80mhz) {
1910 		if (end - pos < 2 + sizeof(struct ieee80211_vht_cap))
1911 			goto out_err;
1912 		pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap,
1913 						 sband->vht_cap.cap);
1914 	}
1915 
1916 	/* insert custom IEs that go before HE */
1917 	if (ie && ie_len) {
1918 		static const u8 before_he[] = {
1919 			/*
1920 			 * no need to list the ones split off before VHT
1921 			 * or generated here
1922 			 */
1923 			WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS,
1924 			WLAN_EID_AP_CSN,
1925 			/* TODO: add 11ah/11aj/11ak elements */
1926 		};
1927 		noffset = ieee80211_ie_split(ie, ie_len,
1928 					     before_he, ARRAY_SIZE(before_he),
1929 					     *offset);
1930 		if (end - pos < noffset - *offset)
1931 			goto out_err;
1932 		memcpy(pos, ie + *offset, noffset - *offset);
1933 		pos += noffset - *offset;
1934 		*offset = noffset;
1935 	}
1936 
1937 	he_cap = ieee80211_get_he_sta_cap(sband);
1938 	if (he_cap) {
1939 		pos = ieee80211_ie_build_he_cap(pos, he_cap, end);
1940 		if (!pos)
1941 			goto out_err;
1942 
1943 		if (sband->band == NL80211_BAND_6GHZ) {
1944 			enum nl80211_iftype iftype =
1945 				ieee80211_vif_type_p2p(&sdata->vif);
1946 			__le16 cap = ieee80211_get_he_6ghz_capa(sband, iftype);
1947 
1948 			pos = ieee80211_write_he_6ghz_cap(pos, cap, end);
1949 		}
1950 	}
1951 
1952 	/*
1953 	 * If adding more here, adjust code in main.c
1954 	 * that calculates local->scan_ies_len.
1955 	 */
1956 
1957 	return pos - buffer;
1958  out_err:
1959 	WARN_ONCE(1, "not enough space for preq IEs\n");
1960  done:
1961 	return pos - buffer;
1962 }
1963 
1964 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer,
1965 			     size_t buffer_len,
1966 			     struct ieee80211_scan_ies *ie_desc,
1967 			     const u8 *ie, size_t ie_len,
1968 			     u8 bands_used, u32 *rate_masks,
1969 			     struct cfg80211_chan_def *chandef,
1970 			     u32 flags)
1971 {
1972 	size_t pos = 0, old_pos = 0, custom_ie_offset = 0;
1973 	int i;
1974 
1975 	memset(ie_desc, 0, sizeof(*ie_desc));
1976 
1977 	for (i = 0; i < NUM_NL80211_BANDS; i++) {
1978 		if (bands_used & BIT(i)) {
1979 			pos += ieee80211_build_preq_ies_band(sdata,
1980 							     buffer + pos,
1981 							     buffer_len - pos,
1982 							     ie, ie_len, i,
1983 							     rate_masks[i],
1984 							     chandef,
1985 							     &custom_ie_offset,
1986 							     flags);
1987 			ie_desc->ies[i] = buffer + old_pos;
1988 			ie_desc->len[i] = pos - old_pos;
1989 			old_pos = pos;
1990 		}
1991 	}
1992 
1993 	/* add any remaining custom IEs */
1994 	if (ie && ie_len) {
1995 		if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset,
1996 			      "not enough space for preq custom IEs\n"))
1997 			return pos;
1998 		memcpy(buffer + pos, ie + custom_ie_offset,
1999 		       ie_len - custom_ie_offset);
2000 		ie_desc->common_ies = buffer + pos;
2001 		ie_desc->common_ie_len = ie_len - custom_ie_offset;
2002 		pos += ie_len - custom_ie_offset;
2003 	}
2004 
2005 	return pos;
2006 };
2007 
2008 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata,
2009 					  const u8 *src, const u8 *dst,
2010 					  u32 ratemask,
2011 					  struct ieee80211_channel *chan,
2012 					  const u8 *ssid, size_t ssid_len,
2013 					  const u8 *ie, size_t ie_len,
2014 					  u32 flags)
2015 {
2016 	struct ieee80211_local *local = sdata->local;
2017 	struct cfg80211_chan_def chandef;
2018 	struct sk_buff *skb;
2019 	struct ieee80211_mgmt *mgmt;
2020 	int ies_len;
2021 	u32 rate_masks[NUM_NL80211_BANDS] = {};
2022 	struct ieee80211_scan_ies dummy_ie_desc;
2023 
2024 	/*
2025 	 * Do not send DS Channel parameter for directed probe requests
2026 	 * in order to maximize the chance that we get a response.  Some
2027 	 * badly-behaved APs don't respond when this parameter is included.
2028 	 */
2029 	chandef.width = sdata->vif.bss_conf.chandef.width;
2030 	if (flags & IEEE80211_PROBE_FLAG_DIRECTED)
2031 		chandef.chan = NULL;
2032 	else
2033 		chandef.chan = chan;
2034 
2035 	skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len,
2036 				     100 + ie_len);
2037 	if (!skb)
2038 		return NULL;
2039 
2040 	rate_masks[chan->band] = ratemask;
2041 	ies_len = ieee80211_build_preq_ies(sdata, skb_tail_pointer(skb),
2042 					   skb_tailroom(skb), &dummy_ie_desc,
2043 					   ie, ie_len, BIT(chan->band),
2044 					   rate_masks, &chandef, flags);
2045 	skb_put(skb, ies_len);
2046 
2047 	if (dst) {
2048 		mgmt = (struct ieee80211_mgmt *) skb->data;
2049 		memcpy(mgmt->da, dst, ETH_ALEN);
2050 		memcpy(mgmt->bssid, dst, ETH_ALEN);
2051 	}
2052 
2053 	IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
2054 
2055 	return skb;
2056 }
2057 
2058 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata,
2059 			    struct ieee802_11_elems *elems,
2060 			    enum nl80211_band band, u32 *basic_rates)
2061 {
2062 	struct ieee80211_supported_band *sband;
2063 	size_t num_rates;
2064 	u32 supp_rates, rate_flags;
2065 	int i, j, shift;
2066 
2067 	sband = sdata->local->hw.wiphy->bands[band];
2068 	if (WARN_ON(!sband))
2069 		return 1;
2070 
2071 	rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef);
2072 	shift = ieee80211_vif_get_shift(&sdata->vif);
2073 
2074 	num_rates = sband->n_bitrates;
2075 	supp_rates = 0;
2076 	for (i = 0; i < elems->supp_rates_len +
2077 		     elems->ext_supp_rates_len; i++) {
2078 		u8 rate = 0;
2079 		int own_rate;
2080 		bool is_basic;
2081 		if (i < elems->supp_rates_len)
2082 			rate = elems->supp_rates[i];
2083 		else if (elems->ext_supp_rates)
2084 			rate = elems->ext_supp_rates
2085 				[i - elems->supp_rates_len];
2086 		own_rate = 5 * (rate & 0x7f);
2087 		is_basic = !!(rate & 0x80);
2088 
2089 		if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY)
2090 			continue;
2091 
2092 		for (j = 0; j < num_rates; j++) {
2093 			int brate;
2094 			if ((rate_flags & sband->bitrates[j].flags)
2095 			    != rate_flags)
2096 				continue;
2097 
2098 			brate = DIV_ROUND_UP(sband->bitrates[j].bitrate,
2099 					     1 << shift);
2100 
2101 			if (brate == own_rate) {
2102 				supp_rates |= BIT(j);
2103 				if (basic_rates && is_basic)
2104 					*basic_rates |= BIT(j);
2105 			}
2106 		}
2107 	}
2108 	return supp_rates;
2109 }
2110 
2111 void ieee80211_stop_device(struct ieee80211_local *local)
2112 {
2113 	ieee80211_led_radio(local, false);
2114 	ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO);
2115 
2116 	cancel_work_sync(&local->reconfig_filter);
2117 
2118 	flush_workqueue(local->workqueue);
2119 	drv_stop(local);
2120 }
2121 
2122 static void ieee80211_flush_completed_scan(struct ieee80211_local *local,
2123 					   bool aborted)
2124 {
2125 	/* It's possible that we don't handle the scan completion in
2126 	 * time during suspend, so if it's still marked as completed
2127 	 * here, queue the work and flush it to clean things up.
2128 	 * Instead of calling the worker function directly here, we
2129 	 * really queue it to avoid potential races with other flows
2130 	 * scheduling the same work.
2131 	 */
2132 	if (test_bit(SCAN_COMPLETED, &local->scanning)) {
2133 		/* If coming from reconfiguration failure, abort the scan so
2134 		 * we don't attempt to continue a partial HW scan - which is
2135 		 * possible otherwise if (e.g.) the 2.4 GHz portion was the
2136 		 * completed scan, and a 5 GHz portion is still pending.
2137 		 */
2138 		if (aborted)
2139 			set_bit(SCAN_ABORTED, &local->scanning);
2140 		ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0);
2141 		flush_delayed_work(&local->scan_work);
2142 	}
2143 }
2144 
2145 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local)
2146 {
2147 	struct ieee80211_sub_if_data *sdata;
2148 	struct ieee80211_chanctx *ctx;
2149 
2150 	/*
2151 	 * We get here if during resume the device can't be restarted properly.
2152 	 * We might also get here if this happens during HW reset, which is a
2153 	 * slightly different situation and we need to drop all connections in
2154 	 * the latter case.
2155 	 *
2156 	 * Ask cfg80211 to turn off all interfaces, this will result in more
2157 	 * warnings but at least we'll then get into a clean stopped state.
2158 	 */
2159 
2160 	local->resuming = false;
2161 	local->suspended = false;
2162 	local->in_reconfig = false;
2163 
2164 	ieee80211_flush_completed_scan(local, true);
2165 
2166 	/* scheduled scan clearly can't be running any more, but tell
2167 	 * cfg80211 and clear local state
2168 	 */
2169 	ieee80211_sched_scan_end(local);
2170 
2171 	list_for_each_entry(sdata, &local->interfaces, list)
2172 		sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER;
2173 
2174 	/* Mark channel contexts as not being in the driver any more to avoid
2175 	 * removing them from the driver during the shutdown process...
2176 	 */
2177 	mutex_lock(&local->chanctx_mtx);
2178 	list_for_each_entry(ctx, &local->chanctx_list, list)
2179 		ctx->driver_present = false;
2180 	mutex_unlock(&local->chanctx_mtx);
2181 }
2182 
2183 static void ieee80211_assign_chanctx(struct ieee80211_local *local,
2184 				     struct ieee80211_sub_if_data *sdata)
2185 {
2186 	struct ieee80211_chanctx_conf *conf;
2187 	struct ieee80211_chanctx *ctx;
2188 
2189 	if (!local->use_chanctx)
2190 		return;
2191 
2192 	mutex_lock(&local->chanctx_mtx);
2193 	conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
2194 					 lockdep_is_held(&local->chanctx_mtx));
2195 	if (conf) {
2196 		ctx = container_of(conf, struct ieee80211_chanctx, conf);
2197 		drv_assign_vif_chanctx(local, sdata, ctx);
2198 	}
2199 	mutex_unlock(&local->chanctx_mtx);
2200 }
2201 
2202 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata)
2203 {
2204 	struct ieee80211_local *local = sdata->local;
2205 	struct sta_info *sta;
2206 
2207 	/* add STAs back */
2208 	mutex_lock(&local->sta_mtx);
2209 	list_for_each_entry(sta, &local->sta_list, list) {
2210 		enum ieee80211_sta_state state;
2211 
2212 		if (!sta->uploaded || sta->sdata != sdata)
2213 			continue;
2214 
2215 		for (state = IEEE80211_STA_NOTEXIST;
2216 		     state < sta->sta_state; state++)
2217 			WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
2218 					      state + 1));
2219 	}
2220 	mutex_unlock(&local->sta_mtx);
2221 }
2222 
2223 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata)
2224 {
2225 	struct cfg80211_nan_func *func, **funcs;
2226 	int res, id, i = 0;
2227 
2228 	res = drv_start_nan(sdata->local, sdata,
2229 			    &sdata->u.nan.conf);
2230 	if (WARN_ON(res))
2231 		return res;
2232 
2233 	funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1,
2234 			sizeof(*funcs),
2235 			GFP_KERNEL);
2236 	if (!funcs)
2237 		return -ENOMEM;
2238 
2239 	/* Add all the functions:
2240 	 * This is a little bit ugly. We need to call a potentially sleeping
2241 	 * callback for each NAN function, so we can't hold the spinlock.
2242 	 */
2243 	spin_lock_bh(&sdata->u.nan.func_lock);
2244 
2245 	idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id)
2246 		funcs[i++] = func;
2247 
2248 	spin_unlock_bh(&sdata->u.nan.func_lock);
2249 
2250 	for (i = 0; funcs[i]; i++) {
2251 		res = drv_add_nan_func(sdata->local, sdata, funcs[i]);
2252 		if (WARN_ON(res))
2253 			ieee80211_nan_func_terminated(&sdata->vif,
2254 						      funcs[i]->instance_id,
2255 						      NL80211_NAN_FUNC_TERM_REASON_ERROR,
2256 						      GFP_KERNEL);
2257 	}
2258 
2259 	kfree(funcs);
2260 
2261 	return 0;
2262 }
2263 
2264 int ieee80211_reconfig(struct ieee80211_local *local)
2265 {
2266 	struct ieee80211_hw *hw = &local->hw;
2267 	struct ieee80211_sub_if_data *sdata;
2268 	struct ieee80211_chanctx *ctx;
2269 	struct sta_info *sta;
2270 	int res, i;
2271 	bool reconfig_due_to_wowlan = false;
2272 	struct ieee80211_sub_if_data *sched_scan_sdata;
2273 	struct cfg80211_sched_scan_request *sched_scan_req;
2274 	bool sched_scan_stopped = false;
2275 	bool suspended = local->suspended;
2276 
2277 	/* nothing to do if HW shouldn't run */
2278 	if (!local->open_count)
2279 		goto wake_up;
2280 
2281 #ifdef CONFIG_PM
2282 	if (suspended)
2283 		local->resuming = true;
2284 
2285 	if (local->wowlan) {
2286 		/*
2287 		 * In the wowlan case, both mac80211 and the device
2288 		 * are functional when the resume op is called, so
2289 		 * clear local->suspended so the device could operate
2290 		 * normally (e.g. pass rx frames).
2291 		 */
2292 		local->suspended = false;
2293 		res = drv_resume(local);
2294 		local->wowlan = false;
2295 		if (res < 0) {
2296 			local->resuming = false;
2297 			return res;
2298 		}
2299 		if (res == 0)
2300 			goto wake_up;
2301 		WARN_ON(res > 1);
2302 		/*
2303 		 * res is 1, which means the driver requested
2304 		 * to go through a regular reset on wakeup.
2305 		 * restore local->suspended in this case.
2306 		 */
2307 		reconfig_due_to_wowlan = true;
2308 		local->suspended = true;
2309 	}
2310 #endif
2311 
2312 	/*
2313 	 * In case of hw_restart during suspend (without wowlan),
2314 	 * cancel restart work, as we are reconfiguring the device
2315 	 * anyway.
2316 	 * Note that restart_work is scheduled on a frozen workqueue,
2317 	 * so we can't deadlock in this case.
2318 	 */
2319 	if (suspended && local->in_reconfig && !reconfig_due_to_wowlan)
2320 		cancel_work_sync(&local->restart_work);
2321 
2322 	local->started = false;
2323 
2324 	/*
2325 	 * Upon resume hardware can sometimes be goofy due to
2326 	 * various platform / driver / bus issues, so restarting
2327 	 * the device may at times not work immediately. Propagate
2328 	 * the error.
2329 	 */
2330 	res = drv_start(local);
2331 	if (res) {
2332 		if (suspended)
2333 			WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n");
2334 		else
2335 			WARN(1, "Hardware became unavailable during restart.\n");
2336 		ieee80211_handle_reconfig_failure(local);
2337 		return res;
2338 	}
2339 
2340 	/* setup fragmentation threshold */
2341 	drv_set_frag_threshold(local, hw->wiphy->frag_threshold);
2342 
2343 	/* setup RTS threshold */
2344 	drv_set_rts_threshold(local, hw->wiphy->rts_threshold);
2345 
2346 	/* reset coverage class */
2347 	drv_set_coverage_class(local, hw->wiphy->coverage_class);
2348 
2349 	ieee80211_led_radio(local, true);
2350 	ieee80211_mod_tpt_led_trig(local,
2351 				   IEEE80211_TPT_LEDTRIG_FL_RADIO, 0);
2352 
2353 	/* add interfaces */
2354 	sdata = rtnl_dereference(local->monitor_sdata);
2355 	if (sdata) {
2356 		/* in HW restart it exists already */
2357 		WARN_ON(local->resuming);
2358 		res = drv_add_interface(local, sdata);
2359 		if (WARN_ON(res)) {
2360 			RCU_INIT_POINTER(local->monitor_sdata, NULL);
2361 			synchronize_net();
2362 			kfree(sdata);
2363 		}
2364 	}
2365 
2366 	list_for_each_entry(sdata, &local->interfaces, list) {
2367 		if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2368 		    sdata->vif.type != NL80211_IFTYPE_MONITOR &&
2369 		    ieee80211_sdata_running(sdata)) {
2370 			res = drv_add_interface(local, sdata);
2371 			if (WARN_ON(res))
2372 				break;
2373 		}
2374 	}
2375 
2376 	/* If adding any of the interfaces failed above, roll back and
2377 	 * report failure.
2378 	 */
2379 	if (res) {
2380 		list_for_each_entry_continue_reverse(sdata, &local->interfaces,
2381 						     list)
2382 			if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2383 			    sdata->vif.type != NL80211_IFTYPE_MONITOR &&
2384 			    ieee80211_sdata_running(sdata))
2385 				drv_remove_interface(local, sdata);
2386 		ieee80211_handle_reconfig_failure(local);
2387 		return res;
2388 	}
2389 
2390 	/* add channel contexts */
2391 	if (local->use_chanctx) {
2392 		mutex_lock(&local->chanctx_mtx);
2393 		list_for_each_entry(ctx, &local->chanctx_list, list)
2394 			if (ctx->replace_state !=
2395 			    IEEE80211_CHANCTX_REPLACES_OTHER)
2396 				WARN_ON(drv_add_chanctx(local, ctx));
2397 		mutex_unlock(&local->chanctx_mtx);
2398 
2399 		sdata = rtnl_dereference(local->monitor_sdata);
2400 		if (sdata && ieee80211_sdata_running(sdata))
2401 			ieee80211_assign_chanctx(local, sdata);
2402 	}
2403 
2404 	/* reconfigure hardware */
2405 	ieee80211_hw_config(local, ~0);
2406 
2407 	ieee80211_configure_filter(local);
2408 
2409 	/* Finally also reconfigure all the BSS information */
2410 	list_for_each_entry(sdata, &local->interfaces, list) {
2411 		u32 changed;
2412 
2413 		if (!ieee80211_sdata_running(sdata))
2414 			continue;
2415 
2416 		ieee80211_assign_chanctx(local, sdata);
2417 
2418 		switch (sdata->vif.type) {
2419 		case NL80211_IFTYPE_AP_VLAN:
2420 		case NL80211_IFTYPE_MONITOR:
2421 			break;
2422 		case NL80211_IFTYPE_ADHOC:
2423 			if (sdata->vif.bss_conf.ibss_joined)
2424 				WARN_ON(drv_join_ibss(local, sdata));
2425 			fallthrough;
2426 		default:
2427 			ieee80211_reconfig_stations(sdata);
2428 			fallthrough;
2429 		case NL80211_IFTYPE_AP: /* AP stations are handled later */
2430 			for (i = 0; i < IEEE80211_NUM_ACS; i++)
2431 				drv_conf_tx(local, sdata, i,
2432 					    &sdata->tx_conf[i]);
2433 			break;
2434 		}
2435 
2436 		/* common change flags for all interface types */
2437 		changed = BSS_CHANGED_ERP_CTS_PROT |
2438 			  BSS_CHANGED_ERP_PREAMBLE |
2439 			  BSS_CHANGED_ERP_SLOT |
2440 			  BSS_CHANGED_HT |
2441 			  BSS_CHANGED_BASIC_RATES |
2442 			  BSS_CHANGED_BEACON_INT |
2443 			  BSS_CHANGED_BSSID |
2444 			  BSS_CHANGED_CQM |
2445 			  BSS_CHANGED_QOS |
2446 			  BSS_CHANGED_IDLE |
2447 			  BSS_CHANGED_TXPOWER |
2448 			  BSS_CHANGED_MCAST_RATE;
2449 
2450 		if (sdata->vif.mu_mimo_owner)
2451 			changed |= BSS_CHANGED_MU_GROUPS;
2452 
2453 		switch (sdata->vif.type) {
2454 		case NL80211_IFTYPE_STATION:
2455 			changed |= BSS_CHANGED_ASSOC |
2456 				   BSS_CHANGED_ARP_FILTER |
2457 				   BSS_CHANGED_PS;
2458 
2459 			/* Re-send beacon info report to the driver */
2460 			if (sdata->u.mgd.have_beacon)
2461 				changed |= BSS_CHANGED_BEACON_INFO;
2462 
2463 			if (sdata->vif.bss_conf.max_idle_period ||
2464 			    sdata->vif.bss_conf.protected_keep_alive)
2465 				changed |= BSS_CHANGED_KEEP_ALIVE;
2466 
2467 			sdata_lock(sdata);
2468 			ieee80211_bss_info_change_notify(sdata, changed);
2469 			sdata_unlock(sdata);
2470 			break;
2471 		case NL80211_IFTYPE_OCB:
2472 			changed |= BSS_CHANGED_OCB;
2473 			ieee80211_bss_info_change_notify(sdata, changed);
2474 			break;
2475 		case NL80211_IFTYPE_ADHOC:
2476 			changed |= BSS_CHANGED_IBSS;
2477 			fallthrough;
2478 		case NL80211_IFTYPE_AP:
2479 			changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS;
2480 
2481 			if (sdata->vif.bss_conf.ftm_responder == 1 &&
2482 			    wiphy_ext_feature_isset(sdata->local->hw.wiphy,
2483 					NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER))
2484 				changed |= BSS_CHANGED_FTM_RESPONDER;
2485 
2486 			if (sdata->vif.type == NL80211_IFTYPE_AP) {
2487 				changed |= BSS_CHANGED_AP_PROBE_RESP;
2488 
2489 				if (rcu_access_pointer(sdata->u.ap.beacon))
2490 					drv_start_ap(local, sdata);
2491 			}
2492 			fallthrough;
2493 		case NL80211_IFTYPE_MESH_POINT:
2494 			if (sdata->vif.bss_conf.enable_beacon) {
2495 				changed |= BSS_CHANGED_BEACON |
2496 					   BSS_CHANGED_BEACON_ENABLED;
2497 				ieee80211_bss_info_change_notify(sdata, changed);
2498 			}
2499 			break;
2500 		case NL80211_IFTYPE_NAN:
2501 			res = ieee80211_reconfig_nan(sdata);
2502 			if (res < 0) {
2503 				ieee80211_handle_reconfig_failure(local);
2504 				return res;
2505 			}
2506 			break;
2507 		case NL80211_IFTYPE_AP_VLAN:
2508 		case NL80211_IFTYPE_MONITOR:
2509 		case NL80211_IFTYPE_P2P_DEVICE:
2510 			/* nothing to do */
2511 			break;
2512 		case NL80211_IFTYPE_UNSPECIFIED:
2513 		case NUM_NL80211_IFTYPES:
2514 		case NL80211_IFTYPE_P2P_CLIENT:
2515 		case NL80211_IFTYPE_P2P_GO:
2516 		case NL80211_IFTYPE_WDS:
2517 			WARN_ON(1);
2518 			break;
2519 		}
2520 	}
2521 
2522 	ieee80211_recalc_ps(local);
2523 
2524 	/*
2525 	 * The sta might be in psm against the ap (e.g. because
2526 	 * this was the state before a hw restart), so we
2527 	 * explicitly send a null packet in order to make sure
2528 	 * it'll sync against the ap (and get out of psm).
2529 	 */
2530 	if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) {
2531 		list_for_each_entry(sdata, &local->interfaces, list) {
2532 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2533 				continue;
2534 			if (!sdata->u.mgd.associated)
2535 				continue;
2536 
2537 			ieee80211_send_nullfunc(local, sdata, false);
2538 		}
2539 	}
2540 
2541 	/* APs are now beaconing, add back stations */
2542 	mutex_lock(&local->sta_mtx);
2543 	list_for_each_entry(sta, &local->sta_list, list) {
2544 		enum ieee80211_sta_state state;
2545 
2546 		if (!sta->uploaded)
2547 			continue;
2548 
2549 		if (sta->sdata->vif.type != NL80211_IFTYPE_AP &&
2550 		    sta->sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
2551 			continue;
2552 
2553 		for (state = IEEE80211_STA_NOTEXIST;
2554 		     state < sta->sta_state; state++)
2555 			WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
2556 					      state + 1));
2557 	}
2558 	mutex_unlock(&local->sta_mtx);
2559 
2560 	/* add back keys */
2561 	list_for_each_entry(sdata, &local->interfaces, list)
2562 		ieee80211_reenable_keys(sdata);
2563 
2564 	/* Reconfigure sched scan if it was interrupted by FW restart */
2565 	mutex_lock(&local->mtx);
2566 	sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata,
2567 						lockdep_is_held(&local->mtx));
2568 	sched_scan_req = rcu_dereference_protected(local->sched_scan_req,
2569 						lockdep_is_held(&local->mtx));
2570 	if (sched_scan_sdata && sched_scan_req)
2571 		/*
2572 		 * Sched scan stopped, but we don't want to report it. Instead,
2573 		 * we're trying to reschedule. However, if more than one scan
2574 		 * plan was set, we cannot reschedule since we don't know which
2575 		 * scan plan was currently running (and some scan plans may have
2576 		 * already finished).
2577 		 */
2578 		if (sched_scan_req->n_scan_plans > 1 ||
2579 		    __ieee80211_request_sched_scan_start(sched_scan_sdata,
2580 							 sched_scan_req)) {
2581 			RCU_INIT_POINTER(local->sched_scan_sdata, NULL);
2582 			RCU_INIT_POINTER(local->sched_scan_req, NULL);
2583 			sched_scan_stopped = true;
2584 		}
2585 	mutex_unlock(&local->mtx);
2586 
2587 	if (sched_scan_stopped)
2588 		cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0);
2589 
2590  wake_up:
2591 
2592 	if (local->monitors == local->open_count && local->monitors > 0)
2593 		ieee80211_add_virtual_monitor(local);
2594 
2595 	/*
2596 	 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation
2597 	 * sessions can be established after a resume.
2598 	 *
2599 	 * Also tear down aggregation sessions since reconfiguring
2600 	 * them in a hardware restart scenario is not easily done
2601 	 * right now, and the hardware will have lost information
2602 	 * about the sessions, but we and the AP still think they
2603 	 * are active. This is really a workaround though.
2604 	 */
2605 	if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) {
2606 		mutex_lock(&local->sta_mtx);
2607 
2608 		list_for_each_entry(sta, &local->sta_list, list) {
2609 			if (!local->resuming)
2610 				ieee80211_sta_tear_down_BA_sessions(
2611 						sta, AGG_STOP_LOCAL_REQUEST);
2612 			clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
2613 		}
2614 
2615 		mutex_unlock(&local->sta_mtx);
2616 	}
2617 
2618 	if (local->in_reconfig) {
2619 		local->in_reconfig = false;
2620 		barrier();
2621 
2622 		/* Restart deferred ROCs */
2623 		mutex_lock(&local->mtx);
2624 		ieee80211_start_next_roc(local);
2625 		mutex_unlock(&local->mtx);
2626 
2627 		/* Requeue all works */
2628 		list_for_each_entry(sdata, &local->interfaces, list)
2629 			ieee80211_queue_work(&local->hw, &sdata->work);
2630 	}
2631 
2632 	ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
2633 					IEEE80211_QUEUE_STOP_REASON_SUSPEND,
2634 					false);
2635 
2636 	/*
2637 	 * If this is for hw restart things are still running.
2638 	 * We may want to change that later, however.
2639 	 */
2640 	if (local->open_count && (!suspended || reconfig_due_to_wowlan))
2641 		drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART);
2642 
2643 	if (!suspended)
2644 		return 0;
2645 
2646 #ifdef CONFIG_PM
2647 	/* first set suspended false, then resuming */
2648 	local->suspended = false;
2649 	mb();
2650 	local->resuming = false;
2651 
2652 	ieee80211_flush_completed_scan(local, false);
2653 
2654 	if (local->open_count && !reconfig_due_to_wowlan)
2655 		drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND);
2656 
2657 	list_for_each_entry(sdata, &local->interfaces, list) {
2658 		if (!ieee80211_sdata_running(sdata))
2659 			continue;
2660 		if (sdata->vif.type == NL80211_IFTYPE_STATION)
2661 			ieee80211_sta_restart(sdata);
2662 	}
2663 
2664 	mod_timer(&local->sta_cleanup, jiffies + 1);
2665 #else
2666 	WARN_ON(1);
2667 #endif
2668 
2669 	return 0;
2670 }
2671 
2672 void ieee80211_resume_disconnect(struct ieee80211_vif *vif)
2673 {
2674 	struct ieee80211_sub_if_data *sdata;
2675 	struct ieee80211_local *local;
2676 	struct ieee80211_key *key;
2677 
2678 	if (WARN_ON(!vif))
2679 		return;
2680 
2681 	sdata = vif_to_sdata(vif);
2682 	local = sdata->local;
2683 
2684 	if (WARN_ON(!local->resuming))
2685 		return;
2686 
2687 	if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2688 		return;
2689 
2690 	sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME;
2691 
2692 	mutex_lock(&local->key_mtx);
2693 	list_for_each_entry(key, &sdata->key_list, list)
2694 		key->flags |= KEY_FLAG_TAINTED;
2695 	mutex_unlock(&local->key_mtx);
2696 }
2697 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect);
2698 
2699 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata)
2700 {
2701 	struct ieee80211_local *local = sdata->local;
2702 	struct ieee80211_chanctx_conf *chanctx_conf;
2703 	struct ieee80211_chanctx *chanctx;
2704 
2705 	mutex_lock(&local->chanctx_mtx);
2706 
2707 	chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
2708 					lockdep_is_held(&local->chanctx_mtx));
2709 
2710 	/*
2711 	 * This function can be called from a work, thus it may be possible
2712 	 * that the chanctx_conf is removed (due to a disconnection, for
2713 	 * example).
2714 	 * So nothing should be done in such case.
2715 	 */
2716 	if (!chanctx_conf)
2717 		goto unlock;
2718 
2719 	chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf);
2720 	ieee80211_recalc_smps_chanctx(local, chanctx);
2721  unlock:
2722 	mutex_unlock(&local->chanctx_mtx);
2723 }
2724 
2725 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata)
2726 {
2727 	struct ieee80211_local *local = sdata->local;
2728 	struct ieee80211_chanctx_conf *chanctx_conf;
2729 	struct ieee80211_chanctx *chanctx;
2730 
2731 	mutex_lock(&local->chanctx_mtx);
2732 
2733 	chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
2734 					lockdep_is_held(&local->chanctx_mtx));
2735 
2736 	if (WARN_ON_ONCE(!chanctx_conf))
2737 		goto unlock;
2738 
2739 	chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf);
2740 	ieee80211_recalc_chanctx_min_def(local, chanctx);
2741  unlock:
2742 	mutex_unlock(&local->chanctx_mtx);
2743 }
2744 
2745 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset)
2746 {
2747 	size_t pos = offset;
2748 
2749 	while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC)
2750 		pos += 2 + ies[pos + 1];
2751 
2752 	return pos;
2753 }
2754 
2755 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata,
2756 					    int rssi_min_thold,
2757 					    int rssi_max_thold)
2758 {
2759 	trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold);
2760 
2761 	if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
2762 		return;
2763 
2764 	/*
2765 	 * Scale up threshold values before storing it, as the RSSI averaging
2766 	 * algorithm uses a scaled up value as well. Change this scaling
2767 	 * factor if the RSSI averaging algorithm changes.
2768 	 */
2769 	sdata->u.mgd.rssi_min_thold = rssi_min_thold*16;
2770 	sdata->u.mgd.rssi_max_thold = rssi_max_thold*16;
2771 }
2772 
2773 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif,
2774 				    int rssi_min_thold,
2775 				    int rssi_max_thold)
2776 {
2777 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
2778 
2779 	WARN_ON(rssi_min_thold == rssi_max_thold ||
2780 		rssi_min_thold > rssi_max_thold);
2781 
2782 	_ieee80211_enable_rssi_reports(sdata, rssi_min_thold,
2783 				       rssi_max_thold);
2784 }
2785 EXPORT_SYMBOL(ieee80211_enable_rssi_reports);
2786 
2787 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif)
2788 {
2789 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
2790 
2791 	_ieee80211_enable_rssi_reports(sdata, 0, 0);
2792 }
2793 EXPORT_SYMBOL(ieee80211_disable_rssi_reports);
2794 
2795 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
2796 			      u16 cap)
2797 {
2798 	__le16 tmp;
2799 
2800 	*pos++ = WLAN_EID_HT_CAPABILITY;
2801 	*pos++ = sizeof(struct ieee80211_ht_cap);
2802 	memset(pos, 0, sizeof(struct ieee80211_ht_cap));
2803 
2804 	/* capability flags */
2805 	tmp = cpu_to_le16(cap);
2806 	memcpy(pos, &tmp, sizeof(u16));
2807 	pos += sizeof(u16);
2808 
2809 	/* AMPDU parameters */
2810 	*pos++ = ht_cap->ampdu_factor |
2811 		 (ht_cap->ampdu_density <<
2812 			IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT);
2813 
2814 	/* MCS set */
2815 	memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs));
2816 	pos += sizeof(ht_cap->mcs);
2817 
2818 	/* extended capabilities */
2819 	pos += sizeof(__le16);
2820 
2821 	/* BF capabilities */
2822 	pos += sizeof(__le32);
2823 
2824 	/* antenna selection */
2825 	pos += sizeof(u8);
2826 
2827 	return pos;
2828 }
2829 
2830 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
2831 			       u32 cap)
2832 {
2833 	__le32 tmp;
2834 
2835 	*pos++ = WLAN_EID_VHT_CAPABILITY;
2836 	*pos++ = sizeof(struct ieee80211_vht_cap);
2837 	memset(pos, 0, sizeof(struct ieee80211_vht_cap));
2838 
2839 	/* capability flags */
2840 	tmp = cpu_to_le32(cap);
2841 	memcpy(pos, &tmp, sizeof(u32));
2842 	pos += sizeof(u32);
2843 
2844 	/* VHT MCS set */
2845 	memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs));
2846 	pos += sizeof(vht_cap->vht_mcs);
2847 
2848 	return pos;
2849 }
2850 
2851 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype)
2852 {
2853 	const struct ieee80211_sta_he_cap *he_cap;
2854 	struct ieee80211_supported_band *sband;
2855 	u8 n;
2856 
2857 	sband = ieee80211_get_sband(sdata);
2858 	if (!sband)
2859 		return 0;
2860 
2861 	he_cap = ieee80211_get_he_iftype_cap(sband, iftype);
2862 	if (!he_cap)
2863 		return 0;
2864 
2865 	n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem);
2866 	return 2 + 1 +
2867 	       sizeof(he_cap->he_cap_elem) + n +
2868 	       ieee80211_he_ppe_size(he_cap->ppe_thres[0],
2869 				     he_cap->he_cap_elem.phy_cap_info);
2870 }
2871 
2872 u8 *ieee80211_ie_build_he_cap(u8 *pos,
2873 			      const struct ieee80211_sta_he_cap *he_cap,
2874 			      u8 *end)
2875 {
2876 	u8 n;
2877 	u8 ie_len;
2878 	u8 *orig_pos = pos;
2879 
2880 	/* Make sure we have place for the IE */
2881 	/*
2882 	 * TODO: the 1 added is because this temporarily is under the EXTENSION
2883 	 * IE. Get rid of it when it moves.
2884 	 */
2885 	if (!he_cap)
2886 		return orig_pos;
2887 
2888 	n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem);
2889 	ie_len = 2 + 1 +
2890 		 sizeof(he_cap->he_cap_elem) + n +
2891 		 ieee80211_he_ppe_size(he_cap->ppe_thres[0],
2892 				       he_cap->he_cap_elem.phy_cap_info);
2893 
2894 	if ((end - pos) < ie_len)
2895 		return orig_pos;
2896 
2897 	*pos++ = WLAN_EID_EXTENSION;
2898 	pos++; /* We'll set the size later below */
2899 	*pos++ = WLAN_EID_EXT_HE_CAPABILITY;
2900 
2901 	/* Fixed data */
2902 	memcpy(pos, &he_cap->he_cap_elem, sizeof(he_cap->he_cap_elem));
2903 	pos += sizeof(he_cap->he_cap_elem);
2904 
2905 	memcpy(pos, &he_cap->he_mcs_nss_supp, n);
2906 	pos += n;
2907 
2908 	/* Check if PPE Threshold should be present */
2909 	if ((he_cap->he_cap_elem.phy_cap_info[6] &
2910 	     IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0)
2911 		goto end;
2912 
2913 	/*
2914 	 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm:
2915 	 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK)
2916 	 */
2917 	n = hweight8(he_cap->ppe_thres[0] &
2918 		     IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK);
2919 	n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >>
2920 		   IEEE80211_PPE_THRES_NSS_POS));
2921 
2922 	/*
2923 	 * Each pair is 6 bits, and we need to add the 7 "header" bits to the
2924 	 * total size.
2925 	 */
2926 	n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7;
2927 	n = DIV_ROUND_UP(n, 8);
2928 
2929 	/* Copy PPE Thresholds */
2930 	memcpy(pos, &he_cap->ppe_thres, n);
2931 	pos += n;
2932 
2933 end:
2934 	orig_pos[1] = (pos - orig_pos) - 2;
2935 	return pos;
2936 }
2937 
2938 void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata,
2939 				    struct sk_buff *skb)
2940 {
2941 	struct ieee80211_supported_band *sband;
2942 	const struct ieee80211_sband_iftype_data *iftd;
2943 	enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif);
2944 	u8 *pos;
2945 	u16 cap;
2946 
2947 	sband = ieee80211_get_sband(sdata);
2948 	if (!sband)
2949 		return;
2950 
2951 	iftd = ieee80211_get_sband_iftype_data(sband, iftype);
2952 	if (WARN_ON(!iftd))
2953 		return;
2954 
2955 	/* Check for device HE 6 GHz capability before adding element */
2956 	if (!iftd->he_6ghz_capa.capa)
2957 		return;
2958 
2959 	cap = le16_to_cpu(iftd->he_6ghz_capa.capa);
2960 	cap &= ~IEEE80211_HE_6GHZ_CAP_SM_PS;
2961 
2962 	switch (sdata->smps_mode) {
2963 	case IEEE80211_SMPS_AUTOMATIC:
2964 	case IEEE80211_SMPS_NUM_MODES:
2965 		WARN_ON(1);
2966 		fallthrough;
2967 	case IEEE80211_SMPS_OFF:
2968 		cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED,
2969 				       IEEE80211_HE_6GHZ_CAP_SM_PS);
2970 		break;
2971 	case IEEE80211_SMPS_STATIC:
2972 		cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC,
2973 				       IEEE80211_HE_6GHZ_CAP_SM_PS);
2974 		break;
2975 	case IEEE80211_SMPS_DYNAMIC:
2976 		cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC,
2977 				       IEEE80211_HE_6GHZ_CAP_SM_PS);
2978 		break;
2979 	}
2980 
2981 	pos = skb_put(skb, 2 + 1 + sizeof(cap));
2982 	ieee80211_write_he_6ghz_cap(pos, cpu_to_le16(cap),
2983 				    pos + 2 + 1 + sizeof(cap));
2984 }
2985 
2986 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
2987 			       const struct cfg80211_chan_def *chandef,
2988 			       u16 prot_mode, bool rifs_mode)
2989 {
2990 	struct ieee80211_ht_operation *ht_oper;
2991 	/* Build HT Information */
2992 	*pos++ = WLAN_EID_HT_OPERATION;
2993 	*pos++ = sizeof(struct ieee80211_ht_operation);
2994 	ht_oper = (struct ieee80211_ht_operation *)pos;
2995 	ht_oper->primary_chan = ieee80211_frequency_to_channel(
2996 					chandef->chan->center_freq);
2997 	switch (chandef->width) {
2998 	case NL80211_CHAN_WIDTH_160:
2999 	case NL80211_CHAN_WIDTH_80P80:
3000 	case NL80211_CHAN_WIDTH_80:
3001 	case NL80211_CHAN_WIDTH_40:
3002 		if (chandef->center_freq1 > chandef->chan->center_freq)
3003 			ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
3004 		else
3005 			ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
3006 		break;
3007 	default:
3008 		ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE;
3009 		break;
3010 	}
3011 	if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 &&
3012 	    chandef->width != NL80211_CHAN_WIDTH_20_NOHT &&
3013 	    chandef->width != NL80211_CHAN_WIDTH_20)
3014 		ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY;
3015 
3016 	if (rifs_mode)
3017 		ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE;
3018 
3019 	ht_oper->operation_mode = cpu_to_le16(prot_mode);
3020 	ht_oper->stbc_param = 0x0000;
3021 
3022 	/* It seems that Basic MCS set and Supported MCS set
3023 	   are identical for the first 10 bytes */
3024 	memset(&ht_oper->basic_set, 0, 16);
3025 	memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10);
3026 
3027 	return pos + sizeof(struct ieee80211_ht_operation);
3028 }
3029 
3030 void ieee80211_ie_build_wide_bw_cs(u8 *pos,
3031 				   const struct cfg80211_chan_def *chandef)
3032 {
3033 	*pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH;	/* EID */
3034 	*pos++ = 3;					/* IE length */
3035 	/* New channel width */
3036 	switch (chandef->width) {
3037 	case NL80211_CHAN_WIDTH_80:
3038 		*pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ;
3039 		break;
3040 	case NL80211_CHAN_WIDTH_160:
3041 		*pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ;
3042 		break;
3043 	case NL80211_CHAN_WIDTH_80P80:
3044 		*pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ;
3045 		break;
3046 	default:
3047 		*pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT;
3048 	}
3049 
3050 	/* new center frequency segment 0 */
3051 	*pos++ = ieee80211_frequency_to_channel(chandef->center_freq1);
3052 	/* new center frequency segment 1 */
3053 	if (chandef->center_freq2)
3054 		*pos++ = ieee80211_frequency_to_channel(chandef->center_freq2);
3055 	else
3056 		*pos++ = 0;
3057 }
3058 
3059 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
3060 				const struct cfg80211_chan_def *chandef)
3061 {
3062 	struct ieee80211_vht_operation *vht_oper;
3063 
3064 	*pos++ = WLAN_EID_VHT_OPERATION;
3065 	*pos++ = sizeof(struct ieee80211_vht_operation);
3066 	vht_oper = (struct ieee80211_vht_operation *)pos;
3067 	vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel(
3068 							chandef->center_freq1);
3069 	if (chandef->center_freq2)
3070 		vht_oper->center_freq_seg1_idx =
3071 			ieee80211_frequency_to_channel(chandef->center_freq2);
3072 	else
3073 		vht_oper->center_freq_seg1_idx = 0x00;
3074 
3075 	switch (chandef->width) {
3076 	case NL80211_CHAN_WIDTH_160:
3077 		/*
3078 		 * Convert 160 MHz channel width to new style as interop
3079 		 * workaround.
3080 		 */
3081 		vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
3082 		vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx;
3083 		if (chandef->chan->center_freq < chandef->center_freq1)
3084 			vht_oper->center_freq_seg0_idx -= 8;
3085 		else
3086 			vht_oper->center_freq_seg0_idx += 8;
3087 		break;
3088 	case NL80211_CHAN_WIDTH_80P80:
3089 		/*
3090 		 * Convert 80+80 MHz channel width to new style as interop
3091 		 * workaround.
3092 		 */
3093 		vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
3094 		break;
3095 	case NL80211_CHAN_WIDTH_80:
3096 		vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
3097 		break;
3098 	default:
3099 		vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT;
3100 		break;
3101 	}
3102 
3103 	/* don't require special VHT peer rates */
3104 	vht_oper->basic_mcs_set = cpu_to_le16(0xffff);
3105 
3106 	return pos + sizeof(struct ieee80211_vht_operation);
3107 }
3108 
3109 u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef)
3110 {
3111 	struct ieee80211_he_operation *he_oper;
3112 	struct ieee80211_he_6ghz_oper *he_6ghz_op;
3113 	u32 he_oper_params;
3114 	u8 ie_len = 1 + sizeof(struct ieee80211_he_operation);
3115 
3116 	if (chandef->chan->band == NL80211_BAND_6GHZ)
3117 		ie_len += sizeof(struct ieee80211_he_6ghz_oper);
3118 
3119 	*pos++ = WLAN_EID_EXTENSION;
3120 	*pos++ = ie_len;
3121 	*pos++ = WLAN_EID_EXT_HE_OPERATION;
3122 
3123 	he_oper_params = 0;
3124 	he_oper_params |= u32_encode_bits(1023, /* disabled */
3125 				IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK);
3126 	he_oper_params |= u32_encode_bits(1,
3127 				IEEE80211_HE_OPERATION_ER_SU_DISABLE);
3128 	he_oper_params |= u32_encode_bits(1,
3129 				IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED);
3130 	if (chandef->chan->band == NL80211_BAND_6GHZ)
3131 		he_oper_params |= u32_encode_bits(1,
3132 				IEEE80211_HE_OPERATION_6GHZ_OP_INFO);
3133 
3134 	he_oper = (struct ieee80211_he_operation *)pos;
3135 	he_oper->he_oper_params = cpu_to_le32(he_oper_params);
3136 
3137 	/* don't require special HE peer rates */
3138 	he_oper->he_mcs_nss_set = cpu_to_le16(0xffff);
3139 	pos += sizeof(struct ieee80211_he_operation);
3140 
3141 	if (chandef->chan->band != NL80211_BAND_6GHZ)
3142 		goto out;
3143 
3144 	/* TODO add VHT operational */
3145 	he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos;
3146 	he_6ghz_op->minrate = 6; /* 6 Mbps */
3147 	he_6ghz_op->primary =
3148 		ieee80211_frequency_to_channel(chandef->chan->center_freq);
3149 	he_6ghz_op->ccfs0 =
3150 		ieee80211_frequency_to_channel(chandef->center_freq1);
3151 	if (chandef->center_freq2)
3152 		he_6ghz_op->ccfs1 =
3153 			ieee80211_frequency_to_channel(chandef->center_freq2);
3154 	else
3155 		he_6ghz_op->ccfs1 = 0;
3156 
3157 	switch (chandef->width) {
3158 	case NL80211_CHAN_WIDTH_160:
3159 		/* Convert 160 MHz channel width to new style as interop
3160 		 * workaround.
3161 		 */
3162 		he_6ghz_op->control =
3163 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ;
3164 		he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0;
3165 		if (chandef->chan->center_freq < chandef->center_freq1)
3166 			he_6ghz_op->ccfs0 -= 8;
3167 		else
3168 			he_6ghz_op->ccfs0 += 8;
3169 		fallthrough;
3170 	case NL80211_CHAN_WIDTH_80P80:
3171 		he_6ghz_op->control =
3172 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ;
3173 		break;
3174 	case NL80211_CHAN_WIDTH_80:
3175 		he_6ghz_op->control =
3176 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ;
3177 		break;
3178 	case NL80211_CHAN_WIDTH_40:
3179 		he_6ghz_op->control =
3180 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ;
3181 		break;
3182 	default:
3183 		he_6ghz_op->control =
3184 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ;
3185 		break;
3186 	}
3187 
3188 	pos += sizeof(struct ieee80211_he_6ghz_oper);
3189 
3190 out:
3191 	return pos;
3192 }
3193 
3194 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper,
3195 			       struct cfg80211_chan_def *chandef)
3196 {
3197 	enum nl80211_channel_type channel_type;
3198 
3199 	if (!ht_oper)
3200 		return false;
3201 
3202 	switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) {
3203 	case IEEE80211_HT_PARAM_CHA_SEC_NONE:
3204 		channel_type = NL80211_CHAN_HT20;
3205 		break;
3206 	case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
3207 		channel_type = NL80211_CHAN_HT40PLUS;
3208 		break;
3209 	case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
3210 		channel_type = NL80211_CHAN_HT40MINUS;
3211 		break;
3212 	default:
3213 		channel_type = NL80211_CHAN_NO_HT;
3214 		return false;
3215 	}
3216 
3217 	cfg80211_chandef_create(chandef, chandef->chan, channel_type);
3218 	return true;
3219 }
3220 
3221 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info,
3222 				const struct ieee80211_vht_operation *oper,
3223 				const struct ieee80211_ht_operation *htop,
3224 				struct cfg80211_chan_def *chandef)
3225 {
3226 	struct cfg80211_chan_def new = *chandef;
3227 	int cf0, cf1;
3228 	int ccfs0, ccfs1, ccfs2;
3229 	int ccf0, ccf1;
3230 	u32 vht_cap;
3231 	bool support_80_80 = false;
3232 	bool support_160 = false;
3233 	u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info,
3234 					  IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
3235 	u8 supp_chwidth = u32_get_bits(vht_cap_info,
3236 				       IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
3237 
3238 	if (!oper || !htop)
3239 		return false;
3240 
3241 	vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap;
3242 	support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK |
3243 				  IEEE80211_VHT_CAP_EXT_NSS_BW_MASK));
3244 	support_80_80 = ((vht_cap &
3245 			 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) ||
3246 			(vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ &&
3247 			 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) ||
3248 			((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >>
3249 				    IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1));
3250 	ccfs0 = oper->center_freq_seg0_idx;
3251 	ccfs1 = oper->center_freq_seg1_idx;
3252 	ccfs2 = (le16_to_cpu(htop->operation_mode) &
3253 				IEEE80211_HT_OP_MODE_CCFS2_MASK)
3254 			>> IEEE80211_HT_OP_MODE_CCFS2_SHIFT;
3255 
3256 	ccf0 = ccfs0;
3257 
3258 	/* if not supported, parse as though we didn't understand it */
3259 	if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW))
3260 		ext_nss_bw_supp = 0;
3261 
3262 	/*
3263 	 * Cf. IEEE 802.11 Table 9-250
3264 	 *
3265 	 * We really just consider that because it's inefficient to connect
3266 	 * at a higher bandwidth than we'll actually be able to use.
3267 	 */
3268 	switch ((supp_chwidth << 4) | ext_nss_bw_supp) {
3269 	default:
3270 	case 0x00:
3271 		ccf1 = 0;
3272 		support_160 = false;
3273 		support_80_80 = false;
3274 		break;
3275 	case 0x01:
3276 		support_80_80 = false;
3277 		fallthrough;
3278 	case 0x02:
3279 	case 0x03:
3280 		ccf1 = ccfs2;
3281 		break;
3282 	case 0x10:
3283 		ccf1 = ccfs1;
3284 		break;
3285 	case 0x11:
3286 	case 0x12:
3287 		if (!ccfs1)
3288 			ccf1 = ccfs2;
3289 		else
3290 			ccf1 = ccfs1;
3291 		break;
3292 	case 0x13:
3293 	case 0x20:
3294 	case 0x23:
3295 		ccf1 = ccfs1;
3296 		break;
3297 	}
3298 
3299 	cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band);
3300 	cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band);
3301 
3302 	switch (oper->chan_width) {
3303 	case IEEE80211_VHT_CHANWIDTH_USE_HT:
3304 		/* just use HT information directly */
3305 		break;
3306 	case IEEE80211_VHT_CHANWIDTH_80MHZ:
3307 		new.width = NL80211_CHAN_WIDTH_80;
3308 		new.center_freq1 = cf0;
3309 		/* If needed, adjust based on the newer interop workaround. */
3310 		if (ccf1) {
3311 			unsigned int diff;
3312 
3313 			diff = abs(ccf1 - ccf0);
3314 			if ((diff == 8) && support_160) {
3315 				new.width = NL80211_CHAN_WIDTH_160;
3316 				new.center_freq1 = cf1;
3317 			} else if ((diff > 8) && support_80_80) {
3318 				new.width = NL80211_CHAN_WIDTH_80P80;
3319 				new.center_freq2 = cf1;
3320 			}
3321 		}
3322 		break;
3323 	case IEEE80211_VHT_CHANWIDTH_160MHZ:
3324 		/* deprecated encoding */
3325 		new.width = NL80211_CHAN_WIDTH_160;
3326 		new.center_freq1 = cf0;
3327 		break;
3328 	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
3329 		/* deprecated encoding */
3330 		new.width = NL80211_CHAN_WIDTH_80P80;
3331 		new.center_freq1 = cf0;
3332 		new.center_freq2 = cf1;
3333 		break;
3334 	default:
3335 		return false;
3336 	}
3337 
3338 	if (!cfg80211_chandef_valid(&new))
3339 		return false;
3340 
3341 	*chandef = new;
3342 	return true;
3343 }
3344 
3345 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata,
3346 				    const struct ieee80211_he_operation *he_oper,
3347 				    struct cfg80211_chan_def *chandef)
3348 {
3349 	struct ieee80211_local *local = sdata->local;
3350 	struct ieee80211_supported_band *sband;
3351 	enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif);
3352 	const struct ieee80211_sta_he_cap *he_cap;
3353 	struct cfg80211_chan_def he_chandef = *chandef;
3354 	const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
3355 	bool support_80_80, support_160;
3356 	u8 he_phy_cap;
3357 	u32 freq;
3358 
3359 	if (chandef->chan->band != NL80211_BAND_6GHZ)
3360 		return true;
3361 
3362 	sband = local->hw.wiphy->bands[NL80211_BAND_6GHZ];
3363 
3364 	he_cap = ieee80211_get_he_iftype_cap(sband, iftype);
3365 	if (!he_cap) {
3366 		sdata_info(sdata, "Missing iftype sband data/HE cap");
3367 		return false;
3368 	}
3369 
3370 	he_phy_cap = he_cap->he_cap_elem.phy_cap_info[0];
3371 	support_160 =
3372 		he_phy_cap &
3373 		IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
3374 	support_80_80 =
3375 		he_phy_cap &
3376 		IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G;
3377 
3378 	if (!he_oper) {
3379 		sdata_info(sdata,
3380 			   "HE is not advertised on (on %d MHz), expect issues\n",
3381 			   chandef->chan->center_freq);
3382 		return false;
3383 	}
3384 
3385 	he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
3386 
3387 	if (!he_6ghz_oper) {
3388 		sdata_info(sdata,
3389 			   "HE 6GHz operation missing (on %d MHz), expect issues\n",
3390 			   chandef->chan->center_freq);
3391 		return false;
3392 	}
3393 
3394 	freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary,
3395 					      NL80211_BAND_6GHZ);
3396 	he_chandef.chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq);
3397 
3398 	switch (u8_get_bits(he_6ghz_oper->control,
3399 			    IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) {
3400 	case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ:
3401 		he_chandef.width = NL80211_CHAN_WIDTH_20;
3402 		break;
3403 	case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ:
3404 		he_chandef.width = NL80211_CHAN_WIDTH_40;
3405 		break;
3406 	case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ:
3407 		he_chandef.width = NL80211_CHAN_WIDTH_80;
3408 		break;
3409 	case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ:
3410 		he_chandef.width = NL80211_CHAN_WIDTH_80;
3411 		if (!he_6ghz_oper->ccfs1)
3412 			break;
3413 		if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) {
3414 			if (support_160)
3415 				he_chandef.width = NL80211_CHAN_WIDTH_160;
3416 		} else {
3417 			if (support_80_80)
3418 				he_chandef.width = NL80211_CHAN_WIDTH_80P80;
3419 		}
3420 		break;
3421 	}
3422 
3423 	if (he_chandef.width == NL80211_CHAN_WIDTH_160) {
3424 		he_chandef.center_freq1 =
3425 			ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1,
3426 						       NL80211_BAND_6GHZ);
3427 	} else {
3428 		he_chandef.center_freq1 =
3429 			ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0,
3430 						       NL80211_BAND_6GHZ);
3431 		if (support_80_80 || support_160)
3432 			he_chandef.center_freq2 =
3433 				ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1,
3434 							       NL80211_BAND_6GHZ);
3435 	}
3436 
3437 	if (!cfg80211_chandef_valid(&he_chandef)) {
3438 		sdata_info(sdata,
3439 			   "HE 6GHz operation resulted in invalid chandef: %d MHz/%d/%d MHz/%d MHz\n",
3440 			   he_chandef.chan ? he_chandef.chan->center_freq : 0,
3441 			   he_chandef.width,
3442 			   he_chandef.center_freq1,
3443 			   he_chandef.center_freq2);
3444 		return false;
3445 	}
3446 
3447 	*chandef = he_chandef;
3448 
3449 	return true;
3450 }
3451 
3452 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper,
3453 				struct cfg80211_chan_def *chandef)
3454 {
3455 	u32 oper_freq;
3456 
3457 	if (!oper)
3458 		return false;
3459 
3460 	switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) {
3461 	case IEEE80211_S1G_CHANWIDTH_1MHZ:
3462 		chandef->width = NL80211_CHAN_WIDTH_1;
3463 		break;
3464 	case IEEE80211_S1G_CHANWIDTH_2MHZ:
3465 		chandef->width = NL80211_CHAN_WIDTH_2;
3466 		break;
3467 	case IEEE80211_S1G_CHANWIDTH_4MHZ:
3468 		chandef->width = NL80211_CHAN_WIDTH_4;
3469 		break;
3470 	case IEEE80211_S1G_CHANWIDTH_8MHZ:
3471 		chandef->width = NL80211_CHAN_WIDTH_8;
3472 		break;
3473 	case IEEE80211_S1G_CHANWIDTH_16MHZ:
3474 		chandef->width = NL80211_CHAN_WIDTH_16;
3475 		break;
3476 	default:
3477 		return false;
3478 	}
3479 
3480 	oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch,
3481 						  NL80211_BAND_S1GHZ);
3482 	chandef->center_freq1 = KHZ_TO_MHZ(oper_freq);
3483 	chandef->freq1_offset = oper_freq % 1000;
3484 
3485 	return true;
3486 }
3487 
3488 int ieee80211_parse_bitrates(struct cfg80211_chan_def *chandef,
3489 			     const struct ieee80211_supported_band *sband,
3490 			     const u8 *srates, int srates_len, u32 *rates)
3491 {
3492 	u32 rate_flags = ieee80211_chandef_rate_flags(chandef);
3493 	int shift = ieee80211_chandef_get_shift(chandef);
3494 	struct ieee80211_rate *br;
3495 	int brate, rate, i, j, count = 0;
3496 
3497 	*rates = 0;
3498 
3499 	for (i = 0; i < srates_len; i++) {
3500 		rate = srates[i] & 0x7f;
3501 
3502 		for (j = 0; j < sband->n_bitrates; j++) {
3503 			br = &sband->bitrates[j];
3504 			if ((rate_flags & br->flags) != rate_flags)
3505 				continue;
3506 
3507 			brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5);
3508 			if (brate == rate) {
3509 				*rates |= BIT(j);
3510 				count++;
3511 				break;
3512 			}
3513 		}
3514 	}
3515 	return count;
3516 }
3517 
3518 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata,
3519 			    struct sk_buff *skb, bool need_basic,
3520 			    enum nl80211_band band)
3521 {
3522 	struct ieee80211_local *local = sdata->local;
3523 	struct ieee80211_supported_band *sband;
3524 	int rate, shift;
3525 	u8 i, rates, *pos;
3526 	u32 basic_rates = sdata->vif.bss_conf.basic_rates;
3527 	u32 rate_flags;
3528 
3529 	shift = ieee80211_vif_get_shift(&sdata->vif);
3530 	rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef);
3531 	sband = local->hw.wiphy->bands[band];
3532 	rates = 0;
3533 	for (i = 0; i < sband->n_bitrates; i++) {
3534 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
3535 			continue;
3536 		rates++;
3537 	}
3538 	if (rates > 8)
3539 		rates = 8;
3540 
3541 	if (skb_tailroom(skb) < rates + 2)
3542 		return -ENOMEM;
3543 
3544 	pos = skb_put(skb, rates + 2);
3545 	*pos++ = WLAN_EID_SUPP_RATES;
3546 	*pos++ = rates;
3547 	for (i = 0; i < rates; i++) {
3548 		u8 basic = 0;
3549 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
3550 			continue;
3551 
3552 		if (need_basic && basic_rates & BIT(i))
3553 			basic = 0x80;
3554 		rate = DIV_ROUND_UP(sband->bitrates[i].bitrate,
3555 				    5 * (1 << shift));
3556 		*pos++ = basic | (u8) rate;
3557 	}
3558 
3559 	return 0;
3560 }
3561 
3562 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata,
3563 				struct sk_buff *skb, bool need_basic,
3564 				enum nl80211_band band)
3565 {
3566 	struct ieee80211_local *local = sdata->local;
3567 	struct ieee80211_supported_band *sband;
3568 	int rate, shift;
3569 	u8 i, exrates, *pos;
3570 	u32 basic_rates = sdata->vif.bss_conf.basic_rates;
3571 	u32 rate_flags;
3572 
3573 	rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef);
3574 	shift = ieee80211_vif_get_shift(&sdata->vif);
3575 
3576 	sband = local->hw.wiphy->bands[band];
3577 	exrates = 0;
3578 	for (i = 0; i < sband->n_bitrates; i++) {
3579 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
3580 			continue;
3581 		exrates++;
3582 	}
3583 
3584 	if (exrates > 8)
3585 		exrates -= 8;
3586 	else
3587 		exrates = 0;
3588 
3589 	if (skb_tailroom(skb) < exrates + 2)
3590 		return -ENOMEM;
3591 
3592 	if (exrates) {
3593 		pos = skb_put(skb, exrates + 2);
3594 		*pos++ = WLAN_EID_EXT_SUPP_RATES;
3595 		*pos++ = exrates;
3596 		for (i = 8; i < sband->n_bitrates; i++) {
3597 			u8 basic = 0;
3598 			if ((rate_flags & sband->bitrates[i].flags)
3599 			    != rate_flags)
3600 				continue;
3601 			if (need_basic && basic_rates & BIT(i))
3602 				basic = 0x80;
3603 			rate = DIV_ROUND_UP(sband->bitrates[i].bitrate,
3604 					    5 * (1 << shift));
3605 			*pos++ = basic | (u8) rate;
3606 		}
3607 	}
3608 	return 0;
3609 }
3610 
3611 int ieee80211_ave_rssi(struct ieee80211_vif *vif)
3612 {
3613 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
3614 	struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
3615 
3616 	if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) {
3617 		/* non-managed type inferfaces */
3618 		return 0;
3619 	}
3620 	return -ewma_beacon_signal_read(&ifmgd->ave_beacon_signal);
3621 }
3622 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi);
3623 
3624 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs)
3625 {
3626 	if (!mcs)
3627 		return 1;
3628 
3629 	/* TODO: consider rx_highest */
3630 
3631 	if (mcs->rx_mask[3])
3632 		return 4;
3633 	if (mcs->rx_mask[2])
3634 		return 3;
3635 	if (mcs->rx_mask[1])
3636 		return 2;
3637 	return 1;
3638 }
3639 
3640 /**
3641  * ieee80211_calculate_rx_timestamp - calculate timestamp in frame
3642  * @local: mac80211 hw info struct
3643  * @status: RX status
3644  * @mpdu_len: total MPDU length (including FCS)
3645  * @mpdu_offset: offset into MPDU to calculate timestamp at
3646  *
3647  * This function calculates the RX timestamp at the given MPDU offset, taking
3648  * into account what the RX timestamp was. An offset of 0 will just normalize
3649  * the timestamp to TSF at beginning of MPDU reception.
3650  */
3651 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local,
3652 				     struct ieee80211_rx_status *status,
3653 				     unsigned int mpdu_len,
3654 				     unsigned int mpdu_offset)
3655 {
3656 	u64 ts = status->mactime;
3657 	struct rate_info ri;
3658 	u16 rate;
3659 	u8 n_ltf;
3660 
3661 	if (WARN_ON(!ieee80211_have_rx_timestamp(status)))
3662 		return 0;
3663 
3664 	memset(&ri, 0, sizeof(ri));
3665 
3666 	ri.bw = status->bw;
3667 
3668 	/* Fill cfg80211 rate info */
3669 	switch (status->encoding) {
3670 	case RX_ENC_HE:
3671 		ri.flags |= RATE_INFO_FLAGS_HE_MCS;
3672 		ri.mcs = status->rate_idx;
3673 		ri.nss = status->nss;
3674 		ri.he_ru_alloc = status->he_ru;
3675 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
3676 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
3677 
3678 		/*
3679 		 * See P802.11ax_D6.0, section 27.3.4 for
3680 		 * VHT PPDU format.
3681 		 */
3682 		if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
3683 			mpdu_offset += 2;
3684 			ts += 36;
3685 
3686 			/*
3687 			 * TODO:
3688 			 * For HE MU PPDU, add the HE-SIG-B.
3689 			 * For HE ER PPDU, add 8us for the HE-SIG-A.
3690 			 * For HE TB PPDU, add 4us for the HE-STF.
3691 			 * Add the HE-LTF durations - variable.
3692 			 */
3693 		}
3694 
3695 		break;
3696 	case RX_ENC_HT:
3697 		ri.mcs = status->rate_idx;
3698 		ri.flags |= RATE_INFO_FLAGS_MCS;
3699 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
3700 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
3701 
3702 		/*
3703 		 * See P802.11REVmd_D3.0, section 19.3.2 for
3704 		 * HT PPDU format.
3705 		 */
3706 		if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
3707 			mpdu_offset += 2;
3708 			if (status->enc_flags & RX_ENC_FLAG_HT_GF)
3709 				ts += 24;
3710 			else
3711 				ts += 32;
3712 
3713 			/*
3714 			 * Add Data HT-LTFs per streams
3715 			 * TODO: add Extension HT-LTFs, 4us per LTF
3716 			 */
3717 			n_ltf = ((ri.mcs >> 3) & 3) + 1;
3718 			n_ltf = n_ltf == 3 ? 4 : n_ltf;
3719 			ts += n_ltf * 4;
3720 		}
3721 
3722 		break;
3723 	case RX_ENC_VHT:
3724 		ri.flags |= RATE_INFO_FLAGS_VHT_MCS;
3725 		ri.mcs = status->rate_idx;
3726 		ri.nss = status->nss;
3727 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
3728 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
3729 
3730 		/*
3731 		 * See P802.11REVmd_D3.0, section 21.3.2 for
3732 		 * VHT PPDU format.
3733 		 */
3734 		if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
3735 			mpdu_offset += 2;
3736 			ts += 36;
3737 
3738 			/*
3739 			 * Add VHT-LTFs per streams
3740 			 */
3741 			n_ltf = (ri.nss != 1) && (ri.nss % 2) ?
3742 				ri.nss + 1 : ri.nss;
3743 			ts += 4 * n_ltf;
3744 		}
3745 
3746 		break;
3747 	default:
3748 		WARN_ON(1);
3749 		fallthrough;
3750 	case RX_ENC_LEGACY: {
3751 		struct ieee80211_supported_band *sband;
3752 		int shift = 0;
3753 		int bitrate;
3754 
3755 		switch (status->bw) {
3756 		case RATE_INFO_BW_10:
3757 			shift = 1;
3758 			break;
3759 		case RATE_INFO_BW_5:
3760 			shift = 2;
3761 			break;
3762 		}
3763 
3764 		sband = local->hw.wiphy->bands[status->band];
3765 		bitrate = sband->bitrates[status->rate_idx].bitrate;
3766 		ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift));
3767 
3768 		if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
3769 			if (status->band == NL80211_BAND_5GHZ) {
3770 				ts += 20 << shift;
3771 				mpdu_offset += 2;
3772 			} else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) {
3773 				ts += 96;
3774 			} else {
3775 				ts += 192;
3776 			}
3777 		}
3778 		break;
3779 		}
3780 	}
3781 
3782 	rate = cfg80211_calculate_bitrate(&ri);
3783 	if (WARN_ONCE(!rate,
3784 		      "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n",
3785 		      (unsigned long long)status->flag, status->rate_idx,
3786 		      status->nss))
3787 		return 0;
3788 
3789 	/* rewind from end of MPDU */
3790 	if (status->flag & RX_FLAG_MACTIME_END)
3791 		ts -= mpdu_len * 8 * 10 / rate;
3792 
3793 	ts += mpdu_offset * 8 * 10 / rate;
3794 
3795 	return ts;
3796 }
3797 
3798 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local)
3799 {
3800 	struct ieee80211_sub_if_data *sdata;
3801 	struct cfg80211_chan_def chandef;
3802 
3803 	/* for interface list, to avoid linking iflist_mtx and chanctx_mtx */
3804 	lockdep_assert_wiphy(local->hw.wiphy);
3805 
3806 	mutex_lock(&local->mtx);
3807 	list_for_each_entry(sdata, &local->interfaces, list) {
3808 		/* it might be waiting for the local->mtx, but then
3809 		 * by the time it gets it, sdata->wdev.cac_started
3810 		 * will no longer be true
3811 		 */
3812 		cancel_delayed_work(&sdata->dfs_cac_timer_work);
3813 
3814 		if (sdata->wdev.cac_started) {
3815 			chandef = sdata->vif.bss_conf.chandef;
3816 			ieee80211_vif_release_channel(sdata);
3817 			cfg80211_cac_event(sdata->dev,
3818 					   &chandef,
3819 					   NL80211_RADAR_CAC_ABORTED,
3820 					   GFP_KERNEL);
3821 		}
3822 	}
3823 	mutex_unlock(&local->mtx);
3824 }
3825 
3826 void ieee80211_dfs_radar_detected_work(struct work_struct *work)
3827 {
3828 	struct ieee80211_local *local =
3829 		container_of(work, struct ieee80211_local, radar_detected_work);
3830 	struct cfg80211_chan_def chandef = local->hw.conf.chandef;
3831 	struct ieee80211_chanctx *ctx;
3832 	int num_chanctx = 0;
3833 
3834 	mutex_lock(&local->chanctx_mtx);
3835 	list_for_each_entry(ctx, &local->chanctx_list, list) {
3836 		if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER)
3837 			continue;
3838 
3839 		num_chanctx++;
3840 		chandef = ctx->conf.def;
3841 	}
3842 	mutex_unlock(&local->chanctx_mtx);
3843 
3844 	wiphy_lock(local->hw.wiphy);
3845 	ieee80211_dfs_cac_cancel(local);
3846 	wiphy_unlock(local->hw.wiphy);
3847 
3848 	if (num_chanctx > 1)
3849 		/* XXX: multi-channel is not supported yet */
3850 		WARN_ON(1);
3851 	else
3852 		cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL);
3853 }
3854 
3855 void ieee80211_radar_detected(struct ieee80211_hw *hw)
3856 {
3857 	struct ieee80211_local *local = hw_to_local(hw);
3858 
3859 	trace_api_radar_detected(local);
3860 
3861 	schedule_work(&local->radar_detected_work);
3862 }
3863 EXPORT_SYMBOL(ieee80211_radar_detected);
3864 
3865 u32 ieee80211_chandef_downgrade(struct cfg80211_chan_def *c)
3866 {
3867 	u32 ret;
3868 	int tmp;
3869 
3870 	switch (c->width) {
3871 	case NL80211_CHAN_WIDTH_20:
3872 		c->width = NL80211_CHAN_WIDTH_20_NOHT;
3873 		ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT;
3874 		break;
3875 	case NL80211_CHAN_WIDTH_40:
3876 		c->width = NL80211_CHAN_WIDTH_20;
3877 		c->center_freq1 = c->chan->center_freq;
3878 		ret = IEEE80211_STA_DISABLE_40MHZ |
3879 		      IEEE80211_STA_DISABLE_VHT;
3880 		break;
3881 	case NL80211_CHAN_WIDTH_80:
3882 		tmp = (30 + c->chan->center_freq - c->center_freq1)/20;
3883 		/* n_P40 */
3884 		tmp /= 2;
3885 		/* freq_P40 */
3886 		c->center_freq1 = c->center_freq1 - 20 + 40 * tmp;
3887 		c->width = NL80211_CHAN_WIDTH_40;
3888 		ret = IEEE80211_STA_DISABLE_VHT;
3889 		break;
3890 	case NL80211_CHAN_WIDTH_80P80:
3891 		c->center_freq2 = 0;
3892 		c->width = NL80211_CHAN_WIDTH_80;
3893 		ret = IEEE80211_STA_DISABLE_80P80MHZ |
3894 		      IEEE80211_STA_DISABLE_160MHZ;
3895 		break;
3896 	case NL80211_CHAN_WIDTH_160:
3897 		/* n_P20 */
3898 		tmp = (70 + c->chan->center_freq - c->center_freq1)/20;
3899 		/* n_P80 */
3900 		tmp /= 4;
3901 		c->center_freq1 = c->center_freq1 - 40 + 80 * tmp;
3902 		c->width = NL80211_CHAN_WIDTH_80;
3903 		ret = IEEE80211_STA_DISABLE_80P80MHZ |
3904 		      IEEE80211_STA_DISABLE_160MHZ;
3905 		break;
3906 	default:
3907 	case NL80211_CHAN_WIDTH_20_NOHT:
3908 		WARN_ON_ONCE(1);
3909 		c->width = NL80211_CHAN_WIDTH_20_NOHT;
3910 		ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT;
3911 		break;
3912 	case NL80211_CHAN_WIDTH_1:
3913 	case NL80211_CHAN_WIDTH_2:
3914 	case NL80211_CHAN_WIDTH_4:
3915 	case NL80211_CHAN_WIDTH_8:
3916 	case NL80211_CHAN_WIDTH_16:
3917 	case NL80211_CHAN_WIDTH_5:
3918 	case NL80211_CHAN_WIDTH_10:
3919 		WARN_ON_ONCE(1);
3920 		/* keep c->width */
3921 		ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT;
3922 		break;
3923 	}
3924 
3925 	WARN_ON_ONCE(!cfg80211_chandef_valid(c));
3926 
3927 	return ret;
3928 }
3929 
3930 /*
3931  * Returns true if smps_mode_new is strictly more restrictive than
3932  * smps_mode_old.
3933  */
3934 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old,
3935 				   enum ieee80211_smps_mode smps_mode_new)
3936 {
3937 	if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC ||
3938 			 smps_mode_new == IEEE80211_SMPS_AUTOMATIC))
3939 		return false;
3940 
3941 	switch (smps_mode_old) {
3942 	case IEEE80211_SMPS_STATIC:
3943 		return false;
3944 	case IEEE80211_SMPS_DYNAMIC:
3945 		return smps_mode_new == IEEE80211_SMPS_STATIC;
3946 	case IEEE80211_SMPS_OFF:
3947 		return smps_mode_new != IEEE80211_SMPS_OFF;
3948 	default:
3949 		WARN_ON(1);
3950 	}
3951 
3952 	return false;
3953 }
3954 
3955 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata,
3956 			      struct cfg80211_csa_settings *csa_settings)
3957 {
3958 	struct sk_buff *skb;
3959 	struct ieee80211_mgmt *mgmt;
3960 	struct ieee80211_local *local = sdata->local;
3961 	int freq;
3962 	int hdr_len = offsetofend(struct ieee80211_mgmt,
3963 				  u.action.u.chan_switch);
3964 	u8 *pos;
3965 
3966 	if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3967 	    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3968 		return -EOPNOTSUPP;
3969 
3970 	skb = dev_alloc_skb(local->tx_headroom + hdr_len +
3971 			    5 + /* channel switch announcement element */
3972 			    3 + /* secondary channel offset element */
3973 			    5 + /* wide bandwidth channel switch announcement */
3974 			    8); /* mesh channel switch parameters element */
3975 	if (!skb)
3976 		return -ENOMEM;
3977 
3978 	skb_reserve(skb, local->tx_headroom);
3979 	mgmt = skb_put_zero(skb, hdr_len);
3980 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
3981 					  IEEE80211_STYPE_ACTION);
3982 
3983 	eth_broadcast_addr(mgmt->da);
3984 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
3985 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
3986 		memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN);
3987 	} else {
3988 		struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
3989 		memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN);
3990 	}
3991 	mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT;
3992 	mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH;
3993 	pos = skb_put(skb, 5);
3994 	*pos++ = WLAN_EID_CHANNEL_SWITCH;			/* EID */
3995 	*pos++ = 3;						/* IE length */
3996 	*pos++ = csa_settings->block_tx ? 1 : 0;		/* CSA mode */
3997 	freq = csa_settings->chandef.chan->center_freq;
3998 	*pos++ = ieee80211_frequency_to_channel(freq);		/* channel */
3999 	*pos++ = csa_settings->count;				/* count */
4000 
4001 	if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) {
4002 		enum nl80211_channel_type ch_type;
4003 
4004 		skb_put(skb, 3);
4005 		*pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET;	/* EID */
4006 		*pos++ = 1;					/* IE length */
4007 		ch_type = cfg80211_get_chandef_type(&csa_settings->chandef);
4008 		if (ch_type == NL80211_CHAN_HT40PLUS)
4009 			*pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
4010 		else
4011 			*pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
4012 	}
4013 
4014 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
4015 		struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
4016 
4017 		skb_put(skb, 8);
4018 		*pos++ = WLAN_EID_CHAN_SWITCH_PARAM;		/* EID */
4019 		*pos++ = 6;					/* IE length */
4020 		*pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL;	/* Mesh TTL */
4021 		*pos = 0x00;	/* Mesh Flag: Tx Restrict, Initiator, Reason */
4022 		*pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR;
4023 		*pos++ |= csa_settings->block_tx ?
4024 			  WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00;
4025 		put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */
4026 		pos += 2;
4027 		put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */
4028 		pos += 2;
4029 	}
4030 
4031 	if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 ||
4032 	    csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 ||
4033 	    csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) {
4034 		skb_put(skb, 5);
4035 		ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef);
4036 	}
4037 
4038 	ieee80211_tx_skb(sdata, skb);
4039 	return 0;
4040 }
4041 
4042 bool ieee80211_cs_valid(const struct ieee80211_cipher_scheme *cs)
4043 {
4044 	return !(cs == NULL || cs->cipher == 0 ||
4045 		 cs->hdr_len < cs->pn_len + cs->pn_off ||
4046 		 cs->hdr_len <= cs->key_idx_off ||
4047 		 cs->key_idx_shift > 7 ||
4048 		 cs->key_idx_mask == 0);
4049 }
4050 
4051 bool ieee80211_cs_list_valid(const struct ieee80211_cipher_scheme *cs, int n)
4052 {
4053 	int i;
4054 
4055 	/* Ensure we have enough iftype bitmap space for all iftype values */
4056 	WARN_ON((NUM_NL80211_IFTYPES / 8 + 1) > sizeof(cs[0].iftype));
4057 
4058 	for (i = 0; i < n; i++)
4059 		if (!ieee80211_cs_valid(&cs[i]))
4060 			return false;
4061 
4062 	return true;
4063 }
4064 
4065 const struct ieee80211_cipher_scheme *
4066 ieee80211_cs_get(struct ieee80211_local *local, u32 cipher,
4067 		 enum nl80211_iftype iftype)
4068 {
4069 	const struct ieee80211_cipher_scheme *l = local->hw.cipher_schemes;
4070 	int n = local->hw.n_cipher_schemes;
4071 	int i;
4072 	const struct ieee80211_cipher_scheme *cs = NULL;
4073 
4074 	for (i = 0; i < n; i++) {
4075 		if (l[i].cipher == cipher) {
4076 			cs = &l[i];
4077 			break;
4078 		}
4079 	}
4080 
4081 	if (!cs || !(cs->iftype & BIT(iftype)))
4082 		return NULL;
4083 
4084 	return cs;
4085 }
4086 
4087 int ieee80211_cs_headroom(struct ieee80211_local *local,
4088 			  struct cfg80211_crypto_settings *crypto,
4089 			  enum nl80211_iftype iftype)
4090 {
4091 	const struct ieee80211_cipher_scheme *cs;
4092 	int headroom = IEEE80211_ENCRYPT_HEADROOM;
4093 	int i;
4094 
4095 	for (i = 0; i < crypto->n_ciphers_pairwise; i++) {
4096 		cs = ieee80211_cs_get(local, crypto->ciphers_pairwise[i],
4097 				      iftype);
4098 
4099 		if (cs && headroom < cs->hdr_len)
4100 			headroom = cs->hdr_len;
4101 	}
4102 
4103 	cs = ieee80211_cs_get(local, crypto->cipher_group, iftype);
4104 	if (cs && headroom < cs->hdr_len)
4105 		headroom = cs->hdr_len;
4106 
4107 	return headroom;
4108 }
4109 
4110 static bool
4111 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i)
4112 {
4113 	s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1);
4114 	int skip;
4115 
4116 	if (end > 0)
4117 		return false;
4118 
4119 	/* One shot NOA  */
4120 	if (data->count[i] == 1)
4121 		return false;
4122 
4123 	if (data->desc[i].interval == 0)
4124 		return false;
4125 
4126 	/* End time is in the past, check for repetitions */
4127 	skip = DIV_ROUND_UP(-end, data->desc[i].interval);
4128 	if (data->count[i] < 255) {
4129 		if (data->count[i] <= skip) {
4130 			data->count[i] = 0;
4131 			return false;
4132 		}
4133 
4134 		data->count[i] -= skip;
4135 	}
4136 
4137 	data->desc[i].start += skip * data->desc[i].interval;
4138 
4139 	return true;
4140 }
4141 
4142 static bool
4143 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf,
4144 			     s32 *offset)
4145 {
4146 	bool ret = false;
4147 	int i;
4148 
4149 	for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
4150 		s32 cur;
4151 
4152 		if (!data->count[i])
4153 			continue;
4154 
4155 		if (ieee80211_extend_noa_desc(data, tsf + *offset, i))
4156 			ret = true;
4157 
4158 		cur = data->desc[i].start - tsf;
4159 		if (cur > *offset)
4160 			continue;
4161 
4162 		cur = data->desc[i].start + data->desc[i].duration - tsf;
4163 		if (cur > *offset)
4164 			*offset = cur;
4165 	}
4166 
4167 	return ret;
4168 }
4169 
4170 static u32
4171 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf)
4172 {
4173 	s32 offset = 0;
4174 	int tries = 0;
4175 	/*
4176 	 * arbitrary limit, used to avoid infinite loops when combined NoA
4177 	 * descriptors cover the full time period.
4178 	 */
4179 	int max_tries = 5;
4180 
4181 	ieee80211_extend_absent_time(data, tsf, &offset);
4182 	do {
4183 		if (!ieee80211_extend_absent_time(data, tsf, &offset))
4184 			break;
4185 
4186 		tries++;
4187 	} while (tries < max_tries);
4188 
4189 	return offset;
4190 }
4191 
4192 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf)
4193 {
4194 	u32 next_offset = BIT(31) - 1;
4195 	int i;
4196 
4197 	data->absent = 0;
4198 	data->has_next_tsf = false;
4199 	for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
4200 		s32 start;
4201 
4202 		if (!data->count[i])
4203 			continue;
4204 
4205 		ieee80211_extend_noa_desc(data, tsf, i);
4206 		start = data->desc[i].start - tsf;
4207 		if (start <= 0)
4208 			data->absent |= BIT(i);
4209 
4210 		if (next_offset > start)
4211 			next_offset = start;
4212 
4213 		data->has_next_tsf = true;
4214 	}
4215 
4216 	if (data->absent)
4217 		next_offset = ieee80211_get_noa_absent_time(data, tsf);
4218 
4219 	data->next_tsf = tsf + next_offset;
4220 }
4221 EXPORT_SYMBOL(ieee80211_update_p2p_noa);
4222 
4223 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr,
4224 			    struct ieee80211_noa_data *data, u32 tsf)
4225 {
4226 	int ret = 0;
4227 	int i;
4228 
4229 	memset(data, 0, sizeof(*data));
4230 
4231 	for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
4232 		const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i];
4233 
4234 		if (!desc->count || !desc->duration)
4235 			continue;
4236 
4237 		data->count[i] = desc->count;
4238 		data->desc[i].start = le32_to_cpu(desc->start_time);
4239 		data->desc[i].duration = le32_to_cpu(desc->duration);
4240 		data->desc[i].interval = le32_to_cpu(desc->interval);
4241 
4242 		if (data->count[i] > 1 &&
4243 		    data->desc[i].interval < data->desc[i].duration)
4244 			continue;
4245 
4246 		ieee80211_extend_noa_desc(data, tsf, i);
4247 		ret++;
4248 	}
4249 
4250 	if (ret)
4251 		ieee80211_update_p2p_noa(data, tsf);
4252 
4253 	return ret;
4254 }
4255 EXPORT_SYMBOL(ieee80211_parse_p2p_noa);
4256 
4257 void ieee80211_recalc_dtim(struct ieee80211_local *local,
4258 			   struct ieee80211_sub_if_data *sdata)
4259 {
4260 	u64 tsf = drv_get_tsf(local, sdata);
4261 	u64 dtim_count = 0;
4262 	u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024;
4263 	u8 dtim_period = sdata->vif.bss_conf.dtim_period;
4264 	struct ps_data *ps;
4265 	u8 bcns_from_dtim;
4266 
4267 	if (tsf == -1ULL || !beacon_int || !dtim_period)
4268 		return;
4269 
4270 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
4271 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
4272 		if (!sdata->bss)
4273 			return;
4274 
4275 		ps = &sdata->bss->ps;
4276 	} else if (ieee80211_vif_is_mesh(&sdata->vif)) {
4277 		ps = &sdata->u.mesh.ps;
4278 	} else {
4279 		return;
4280 	}
4281 
4282 	/*
4283 	 * actually finds last dtim_count, mac80211 will update in
4284 	 * __beacon_add_tim().
4285 	 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period
4286 	 */
4287 	do_div(tsf, beacon_int);
4288 	bcns_from_dtim = do_div(tsf, dtim_period);
4289 	/* just had a DTIM */
4290 	if (!bcns_from_dtim)
4291 		dtim_count = 0;
4292 	else
4293 		dtim_count = dtim_period - bcns_from_dtim;
4294 
4295 	ps->dtim_count = dtim_count;
4296 }
4297 
4298 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local,
4299 					 struct ieee80211_chanctx *ctx)
4300 {
4301 	struct ieee80211_sub_if_data *sdata;
4302 	u8 radar_detect = 0;
4303 
4304 	lockdep_assert_held(&local->chanctx_mtx);
4305 
4306 	if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED))
4307 		return 0;
4308 
4309 	list_for_each_entry(sdata, &ctx->reserved_vifs, reserved_chanctx_list)
4310 		if (sdata->reserved_radar_required)
4311 			radar_detect |= BIT(sdata->reserved_chandef.width);
4312 
4313 	/*
4314 	 * An in-place reservation context should not have any assigned vifs
4315 	 * until it replaces the other context.
4316 	 */
4317 	WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER &&
4318 		!list_empty(&ctx->assigned_vifs));
4319 
4320 	list_for_each_entry(sdata, &ctx->assigned_vifs, assigned_chanctx_list)
4321 		if (sdata->radar_required)
4322 			radar_detect |= BIT(sdata->vif.bss_conf.chandef.width);
4323 
4324 	return radar_detect;
4325 }
4326 
4327 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata,
4328 				 const struct cfg80211_chan_def *chandef,
4329 				 enum ieee80211_chanctx_mode chanmode,
4330 				 u8 radar_detect)
4331 {
4332 	struct ieee80211_local *local = sdata->local;
4333 	struct ieee80211_sub_if_data *sdata_iter;
4334 	enum nl80211_iftype iftype = sdata->wdev.iftype;
4335 	struct ieee80211_chanctx *ctx;
4336 	int total = 1;
4337 	struct iface_combination_params params = {
4338 		.radar_detect = radar_detect,
4339 	};
4340 
4341 	lockdep_assert_held(&local->chanctx_mtx);
4342 
4343 	if (WARN_ON(hweight32(radar_detect) > 1))
4344 		return -EINVAL;
4345 
4346 	if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED &&
4347 		    !chandef->chan))
4348 		return -EINVAL;
4349 
4350 	if (WARN_ON(iftype >= NUM_NL80211_IFTYPES))
4351 		return -EINVAL;
4352 
4353 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
4354 	    sdata->vif.type == NL80211_IFTYPE_MESH_POINT) {
4355 		/*
4356 		 * always passing this is harmless, since it'll be the
4357 		 * same value that cfg80211 finds if it finds the same
4358 		 * interface ... and that's always allowed
4359 		 */
4360 		params.new_beacon_int = sdata->vif.bss_conf.beacon_int;
4361 	}
4362 
4363 	/* Always allow software iftypes */
4364 	if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) {
4365 		if (radar_detect)
4366 			return -EINVAL;
4367 		return 0;
4368 	}
4369 
4370 	if (chandef)
4371 		params.num_different_channels = 1;
4372 
4373 	if (iftype != NL80211_IFTYPE_UNSPECIFIED)
4374 		params.iftype_num[iftype] = 1;
4375 
4376 	list_for_each_entry(ctx, &local->chanctx_list, list) {
4377 		if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)
4378 			continue;
4379 		params.radar_detect |=
4380 			ieee80211_chanctx_radar_detect(local, ctx);
4381 		if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) {
4382 			params.num_different_channels++;
4383 			continue;
4384 		}
4385 		if (chandef && chanmode == IEEE80211_CHANCTX_SHARED &&
4386 		    cfg80211_chandef_compatible(chandef,
4387 						&ctx->conf.def))
4388 			continue;
4389 		params.num_different_channels++;
4390 	}
4391 
4392 	list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) {
4393 		struct wireless_dev *wdev_iter;
4394 
4395 		wdev_iter = &sdata_iter->wdev;
4396 
4397 		if (sdata_iter == sdata ||
4398 		    !ieee80211_sdata_running(sdata_iter) ||
4399 		    cfg80211_iftype_allowed(local->hw.wiphy,
4400 					    wdev_iter->iftype, 0, 1))
4401 			continue;
4402 
4403 		params.iftype_num[wdev_iter->iftype]++;
4404 		total++;
4405 	}
4406 
4407 	if (total == 1 && !params.radar_detect)
4408 		return 0;
4409 
4410 	return cfg80211_check_combinations(local->hw.wiphy, &params);
4411 }
4412 
4413 static void
4414 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c,
4415 			 void *data)
4416 {
4417 	u32 *max_num_different_channels = data;
4418 
4419 	*max_num_different_channels = max(*max_num_different_channels,
4420 					  c->num_different_channels);
4421 }
4422 
4423 int ieee80211_max_num_channels(struct ieee80211_local *local)
4424 {
4425 	struct ieee80211_sub_if_data *sdata;
4426 	struct ieee80211_chanctx *ctx;
4427 	u32 max_num_different_channels = 1;
4428 	int err;
4429 	struct iface_combination_params params = {0};
4430 
4431 	lockdep_assert_held(&local->chanctx_mtx);
4432 
4433 	list_for_each_entry(ctx, &local->chanctx_list, list) {
4434 		if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)
4435 			continue;
4436 
4437 		params.num_different_channels++;
4438 
4439 		params.radar_detect |=
4440 			ieee80211_chanctx_radar_detect(local, ctx);
4441 	}
4442 
4443 	list_for_each_entry_rcu(sdata, &local->interfaces, list)
4444 		params.iftype_num[sdata->wdev.iftype]++;
4445 
4446 	err = cfg80211_iter_combinations(local->hw.wiphy, &params,
4447 					 ieee80211_iter_max_chans,
4448 					 &max_num_different_channels);
4449 	if (err < 0)
4450 		return err;
4451 
4452 	return max_num_different_channels;
4453 }
4454 
4455 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata,
4456 				struct ieee80211_sta_s1g_cap *caps,
4457 				struct sk_buff *skb)
4458 {
4459 	struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
4460 	struct ieee80211_s1g_cap s1g_capab;
4461 	u8 *pos;
4462 	int i;
4463 
4464 	if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
4465 		return;
4466 
4467 	if (!caps->s1g)
4468 		return;
4469 
4470 	memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap));
4471 	memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs));
4472 
4473 	/* override the capability info */
4474 	for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) {
4475 		u8 mask = ifmgd->s1g_capa_mask.capab_info[i];
4476 
4477 		s1g_capab.capab_info[i] &= ~mask;
4478 		s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask;
4479 	}
4480 
4481 	/* then MCS and NSS set */
4482 	for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) {
4483 		u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i];
4484 
4485 		s1g_capab.supp_mcs_nss[i] &= ~mask;
4486 		s1g_capab.supp_mcs_nss[i] |=
4487 			ifmgd->s1g_capa.supp_mcs_nss[i] & mask;
4488 	}
4489 
4490 	pos = skb_put(skb, 2 + sizeof(s1g_capab));
4491 	*pos++ = WLAN_EID_S1G_CAPABILITIES;
4492 	*pos++ = sizeof(s1g_capab);
4493 
4494 	memcpy(pos, &s1g_capab, sizeof(s1g_capab));
4495 }
4496 
4497 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata,
4498 				  struct sk_buff *skb)
4499 {
4500 	u8 *pos = skb_put(skb, 3);
4501 
4502 	*pos++ = WLAN_EID_AID_REQUEST;
4503 	*pos++ = 1;
4504 	*pos++ = 0;
4505 }
4506 
4507 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo)
4508 {
4509 	*buf++ = WLAN_EID_VENDOR_SPECIFIC;
4510 	*buf++ = 7; /* len */
4511 	*buf++ = 0x00; /* Microsoft OUI 00:50:F2 */
4512 	*buf++ = 0x50;
4513 	*buf++ = 0xf2;
4514 	*buf++ = 2; /* WME */
4515 	*buf++ = 0; /* WME info */
4516 	*buf++ = 1; /* WME ver */
4517 	*buf++ = qosinfo; /* U-APSD no in use */
4518 
4519 	return buf;
4520 }
4521 
4522 void ieee80211_txq_get_depth(struct ieee80211_txq *txq,
4523 			     unsigned long *frame_cnt,
4524 			     unsigned long *byte_cnt)
4525 {
4526 	struct txq_info *txqi = to_txq_info(txq);
4527 	u32 frag_cnt = 0, frag_bytes = 0;
4528 	struct sk_buff *skb;
4529 
4530 	skb_queue_walk(&txqi->frags, skb) {
4531 		frag_cnt++;
4532 		frag_bytes += skb->len;
4533 	}
4534 
4535 	if (frame_cnt)
4536 		*frame_cnt = txqi->tin.backlog_packets + frag_cnt;
4537 
4538 	if (byte_cnt)
4539 		*byte_cnt = txqi->tin.backlog_bytes + frag_bytes;
4540 }
4541 EXPORT_SYMBOL(ieee80211_txq_get_depth);
4542 
4543 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = {
4544 	IEEE80211_WMM_IE_STA_QOSINFO_AC_VO,
4545 	IEEE80211_WMM_IE_STA_QOSINFO_AC_VI,
4546 	IEEE80211_WMM_IE_STA_QOSINFO_AC_BE,
4547 	IEEE80211_WMM_IE_STA_QOSINFO_AC_BK
4548 };
4549 
4550 u16 ieee80211_encode_usf(int listen_interval)
4551 {
4552 	static const int listen_int_usf[] = { 1, 10, 1000, 10000 };
4553 	u16 ui, usf = 0;
4554 
4555 	/* find greatest USF */
4556 	while (usf < IEEE80211_MAX_USF) {
4557 		if (listen_interval % listen_int_usf[usf + 1])
4558 			break;
4559 		usf += 1;
4560 	}
4561 	ui = listen_interval / listen_int_usf[usf];
4562 
4563 	/* error if there is a remainder. Should've been checked by user */
4564 	WARN_ON_ONCE(ui > IEEE80211_MAX_UI);
4565 	listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) |
4566 			  FIELD_PREP(LISTEN_INT_UI, ui);
4567 
4568 	return (u16) listen_interval;
4569 }
4570