1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2023 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 28 #include "ieee80211_i.h" 29 #include "driver-ops.h" 30 #include "rate.h" 31 #include "mesh.h" 32 #include "wme.h" 33 #include "led.h" 34 #include "wep.h" 35 36 /* privid for wiphys to determine whether they belong to us or not */ 37 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 38 39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 40 { 41 struct ieee80211_local *local; 42 43 local = wiphy_priv(wiphy); 44 return &local->hw; 45 } 46 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 47 48 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 49 enum nl80211_iftype type) 50 { 51 __le16 fc = hdr->frame_control; 52 53 if (ieee80211_is_data(fc)) { 54 if (len < 24) /* drop incorrect hdr len (data) */ 55 return NULL; 56 57 if (ieee80211_has_a4(fc)) 58 return NULL; 59 if (ieee80211_has_tods(fc)) 60 return hdr->addr1; 61 if (ieee80211_has_fromds(fc)) 62 return hdr->addr2; 63 64 return hdr->addr3; 65 } 66 67 if (ieee80211_is_s1g_beacon(fc)) { 68 struct ieee80211_ext *ext = (void *) hdr; 69 70 return ext->u.s1g_beacon.sa; 71 } 72 73 if (ieee80211_is_mgmt(fc)) { 74 if (len < 24) /* drop incorrect hdr len (mgmt) */ 75 return NULL; 76 return hdr->addr3; 77 } 78 79 if (ieee80211_is_ctl(fc)) { 80 if (ieee80211_is_pspoll(fc)) 81 return hdr->addr1; 82 83 if (ieee80211_is_back_req(fc)) { 84 switch (type) { 85 case NL80211_IFTYPE_STATION: 86 return hdr->addr2; 87 case NL80211_IFTYPE_AP: 88 case NL80211_IFTYPE_AP_VLAN: 89 return hdr->addr1; 90 default: 91 break; /* fall through to the return */ 92 } 93 } 94 } 95 96 return NULL; 97 } 98 EXPORT_SYMBOL(ieee80211_get_bssid); 99 100 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 101 { 102 struct sk_buff *skb; 103 struct ieee80211_hdr *hdr; 104 105 skb_queue_walk(&tx->skbs, skb) { 106 hdr = (struct ieee80211_hdr *) skb->data; 107 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 108 } 109 } 110 111 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 112 int rate, int erp, int short_preamble, 113 int shift) 114 { 115 int dur; 116 117 /* calculate duration (in microseconds, rounded up to next higher 118 * integer if it includes a fractional microsecond) to send frame of 119 * len bytes (does not include FCS) at the given rate. Duration will 120 * also include SIFS. 121 * 122 * rate is in 100 kbps, so divident is multiplied by 10 in the 123 * DIV_ROUND_UP() operations. 124 * 125 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and 126 * is assumed to be 0 otherwise. 127 */ 128 129 if (band == NL80211_BAND_5GHZ || erp) { 130 /* 131 * OFDM: 132 * 133 * N_DBPS = DATARATE x 4 134 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 135 * (16 = SIGNAL time, 6 = tail bits) 136 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 137 * 138 * T_SYM = 4 usec 139 * 802.11a - 18.5.2: aSIFSTime = 16 usec 140 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 141 * signal ext = 6 usec 142 */ 143 dur = 16; /* SIFS + signal ext */ 144 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 145 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 146 147 /* IEEE 802.11-2012 18.3.2.4: all values above are: 148 * * times 4 for 5 MHz 149 * * times 2 for 10 MHz 150 */ 151 dur *= 1 << shift; 152 153 /* rates should already consider the channel bandwidth, 154 * don't apply divisor again. 155 */ 156 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 157 4 * rate); /* T_SYM x N_SYM */ 158 } else { 159 /* 160 * 802.11b or 802.11g with 802.11b compatibility: 161 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 162 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 163 * 164 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 165 * aSIFSTime = 10 usec 166 * aPreambleLength = 144 usec or 72 usec with short preamble 167 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 168 */ 169 dur = 10; /* aSIFSTime = 10 usec */ 170 dur += short_preamble ? (72 + 24) : (144 + 48); 171 172 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 173 } 174 175 return dur; 176 } 177 178 /* Exported duration function for driver use */ 179 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 180 struct ieee80211_vif *vif, 181 enum nl80211_band band, 182 size_t frame_len, 183 struct ieee80211_rate *rate) 184 { 185 struct ieee80211_sub_if_data *sdata; 186 u16 dur; 187 int erp, shift = 0; 188 bool short_preamble = false; 189 190 erp = 0; 191 if (vif) { 192 sdata = vif_to_sdata(vif); 193 short_preamble = sdata->vif.bss_conf.use_short_preamble; 194 if (sdata->deflink.operating_11g_mode) 195 erp = rate->flags & IEEE80211_RATE_ERP_G; 196 shift = ieee80211_vif_get_shift(vif); 197 } 198 199 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 200 short_preamble, shift); 201 202 return cpu_to_le16(dur); 203 } 204 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 205 206 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 207 struct ieee80211_vif *vif, size_t frame_len, 208 const struct ieee80211_tx_info *frame_txctl) 209 { 210 struct ieee80211_local *local = hw_to_local(hw); 211 struct ieee80211_rate *rate; 212 struct ieee80211_sub_if_data *sdata; 213 bool short_preamble; 214 int erp, shift = 0, bitrate; 215 u16 dur; 216 struct ieee80211_supported_band *sband; 217 218 sband = local->hw.wiphy->bands[frame_txctl->band]; 219 220 short_preamble = false; 221 222 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 223 224 erp = 0; 225 if (vif) { 226 sdata = vif_to_sdata(vif); 227 short_preamble = sdata->vif.bss_conf.use_short_preamble; 228 if (sdata->deflink.operating_11g_mode) 229 erp = rate->flags & IEEE80211_RATE_ERP_G; 230 shift = ieee80211_vif_get_shift(vif); 231 } 232 233 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 234 235 /* CTS duration */ 236 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 237 erp, short_preamble, shift); 238 /* Data frame duration */ 239 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 240 erp, short_preamble, shift); 241 /* ACK duration */ 242 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 243 erp, short_preamble, shift); 244 245 return cpu_to_le16(dur); 246 } 247 EXPORT_SYMBOL(ieee80211_rts_duration); 248 249 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 250 struct ieee80211_vif *vif, 251 size_t frame_len, 252 const struct ieee80211_tx_info *frame_txctl) 253 { 254 struct ieee80211_local *local = hw_to_local(hw); 255 struct ieee80211_rate *rate; 256 struct ieee80211_sub_if_data *sdata; 257 bool short_preamble; 258 int erp, shift = 0, bitrate; 259 u16 dur; 260 struct ieee80211_supported_band *sband; 261 262 sband = local->hw.wiphy->bands[frame_txctl->band]; 263 264 short_preamble = false; 265 266 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 267 erp = 0; 268 if (vif) { 269 sdata = vif_to_sdata(vif); 270 short_preamble = sdata->vif.bss_conf.use_short_preamble; 271 if (sdata->deflink.operating_11g_mode) 272 erp = rate->flags & IEEE80211_RATE_ERP_G; 273 shift = ieee80211_vif_get_shift(vif); 274 } 275 276 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 277 278 /* Data frame duration */ 279 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 280 erp, short_preamble, shift); 281 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 282 /* ACK duration */ 283 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 284 erp, short_preamble, shift); 285 } 286 287 return cpu_to_le16(dur); 288 } 289 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 290 291 static void wake_tx_push_queue(struct ieee80211_local *local, 292 struct ieee80211_sub_if_data *sdata, 293 struct ieee80211_txq *queue) 294 { 295 struct ieee80211_tx_control control = { 296 .sta = queue->sta, 297 }; 298 struct sk_buff *skb; 299 300 while (1) { 301 skb = ieee80211_tx_dequeue(&local->hw, queue); 302 if (!skb) 303 break; 304 305 drv_tx(local, &control, skb); 306 } 307 } 308 309 /* wake_tx_queue handler for driver not implementing a custom one*/ 310 void ieee80211_handle_wake_tx_queue(struct ieee80211_hw *hw, 311 struct ieee80211_txq *txq) 312 { 313 struct ieee80211_local *local = hw_to_local(hw); 314 struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif); 315 struct ieee80211_txq *queue; 316 317 spin_lock(&local->handle_wake_tx_queue_lock); 318 319 /* Use ieee80211_next_txq() for airtime fairness accounting */ 320 ieee80211_txq_schedule_start(hw, txq->ac); 321 while ((queue = ieee80211_next_txq(hw, txq->ac))) { 322 wake_tx_push_queue(local, sdata, queue); 323 ieee80211_return_txq(hw, queue, false); 324 } 325 ieee80211_txq_schedule_end(hw, txq->ac); 326 spin_unlock(&local->handle_wake_tx_queue_lock); 327 } 328 EXPORT_SYMBOL(ieee80211_handle_wake_tx_queue); 329 330 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 331 { 332 struct ieee80211_local *local = sdata->local; 333 struct ieee80211_vif *vif = &sdata->vif; 334 struct fq *fq = &local->fq; 335 struct ps_data *ps = NULL; 336 struct txq_info *txqi; 337 struct sta_info *sta; 338 int i; 339 340 local_bh_disable(); 341 spin_lock(&fq->lock); 342 343 if (!test_bit(SDATA_STATE_RUNNING, &sdata->state)) 344 goto out; 345 346 if (sdata->vif.type == NL80211_IFTYPE_AP) 347 ps = &sdata->bss->ps; 348 349 list_for_each_entry_rcu(sta, &local->sta_list, list) { 350 if (sdata != sta->sdata) 351 continue; 352 353 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 354 struct ieee80211_txq *txq = sta->sta.txq[i]; 355 356 if (!txq) 357 continue; 358 359 txqi = to_txq_info(txq); 360 361 if (ac != txq->ac) 362 continue; 363 364 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, 365 &txqi->flags)) 366 continue; 367 368 spin_unlock(&fq->lock); 369 drv_wake_tx_queue(local, txqi); 370 spin_lock(&fq->lock); 371 } 372 } 373 374 if (!vif->txq) 375 goto out; 376 377 txqi = to_txq_info(vif->txq); 378 379 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, &txqi->flags) || 380 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 381 goto out; 382 383 spin_unlock(&fq->lock); 384 385 drv_wake_tx_queue(local, txqi); 386 local_bh_enable(); 387 return; 388 out: 389 spin_unlock(&fq->lock); 390 local_bh_enable(); 391 } 392 393 static void 394 __releases(&local->queue_stop_reason_lock) 395 __acquires(&local->queue_stop_reason_lock) 396 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 397 { 398 struct ieee80211_sub_if_data *sdata; 399 int n_acs = IEEE80211_NUM_ACS; 400 int i; 401 402 rcu_read_lock(); 403 404 if (local->hw.queues < IEEE80211_NUM_ACS) 405 n_acs = 1; 406 407 for (i = 0; i < local->hw.queues; i++) { 408 if (local->queue_stop_reasons[i]) 409 continue; 410 411 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 412 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 413 int ac; 414 415 for (ac = 0; ac < n_acs; ac++) { 416 int ac_queue = sdata->vif.hw_queue[ac]; 417 418 if (ac_queue == i || 419 sdata->vif.cab_queue == i) 420 __ieee80211_wake_txqs(sdata, ac); 421 } 422 } 423 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 424 } 425 426 rcu_read_unlock(); 427 } 428 429 void ieee80211_wake_txqs(struct tasklet_struct *t) 430 { 431 struct ieee80211_local *local = from_tasklet(local, t, 432 wake_txqs_tasklet); 433 unsigned long flags; 434 435 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 436 _ieee80211_wake_txqs(local, &flags); 437 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 438 } 439 440 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 441 enum queue_stop_reason reason, 442 bool refcounted, 443 unsigned long *flags) 444 { 445 struct ieee80211_local *local = hw_to_local(hw); 446 447 trace_wake_queue(local, queue, reason); 448 449 if (WARN_ON(queue >= hw->queues)) 450 return; 451 452 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 453 return; 454 455 if (!refcounted) { 456 local->q_stop_reasons[queue][reason] = 0; 457 } else { 458 local->q_stop_reasons[queue][reason]--; 459 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 460 local->q_stop_reasons[queue][reason] = 0; 461 } 462 463 if (local->q_stop_reasons[queue][reason] == 0) 464 __clear_bit(reason, &local->queue_stop_reasons[queue]); 465 466 if (local->queue_stop_reasons[queue] != 0) 467 /* someone still has this queue stopped */ 468 return; 469 470 if (!skb_queue_empty(&local->pending[queue])) 471 tasklet_schedule(&local->tx_pending_tasklet); 472 473 /* 474 * Calling _ieee80211_wake_txqs here can be a problem because it may 475 * release queue_stop_reason_lock which has been taken by 476 * __ieee80211_wake_queue's caller. It is certainly not very nice to 477 * release someone's lock, but it is fine because all the callers of 478 * __ieee80211_wake_queue call it right before releasing the lock. 479 */ 480 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 481 tasklet_schedule(&local->wake_txqs_tasklet); 482 else 483 _ieee80211_wake_txqs(local, flags); 484 } 485 486 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 487 enum queue_stop_reason reason, 488 bool refcounted) 489 { 490 struct ieee80211_local *local = hw_to_local(hw); 491 unsigned long flags; 492 493 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 494 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 495 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 496 } 497 498 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 499 { 500 ieee80211_wake_queue_by_reason(hw, queue, 501 IEEE80211_QUEUE_STOP_REASON_DRIVER, 502 false); 503 } 504 EXPORT_SYMBOL(ieee80211_wake_queue); 505 506 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 507 enum queue_stop_reason reason, 508 bool refcounted) 509 { 510 struct ieee80211_local *local = hw_to_local(hw); 511 512 trace_stop_queue(local, queue, reason); 513 514 if (WARN_ON(queue >= hw->queues)) 515 return; 516 517 if (!refcounted) 518 local->q_stop_reasons[queue][reason] = 1; 519 else 520 local->q_stop_reasons[queue][reason]++; 521 522 set_bit(reason, &local->queue_stop_reasons[queue]); 523 } 524 525 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 526 enum queue_stop_reason reason, 527 bool refcounted) 528 { 529 struct ieee80211_local *local = hw_to_local(hw); 530 unsigned long flags; 531 532 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 533 __ieee80211_stop_queue(hw, queue, reason, refcounted); 534 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 535 } 536 537 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 538 { 539 ieee80211_stop_queue_by_reason(hw, queue, 540 IEEE80211_QUEUE_STOP_REASON_DRIVER, 541 false); 542 } 543 EXPORT_SYMBOL(ieee80211_stop_queue); 544 545 void ieee80211_add_pending_skb(struct ieee80211_local *local, 546 struct sk_buff *skb) 547 { 548 struct ieee80211_hw *hw = &local->hw; 549 unsigned long flags; 550 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 551 int queue = info->hw_queue; 552 553 if (WARN_ON(!info->control.vif)) { 554 ieee80211_free_txskb(&local->hw, skb); 555 return; 556 } 557 558 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 559 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 560 false); 561 __skb_queue_tail(&local->pending[queue], skb); 562 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 563 false, &flags); 564 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 565 } 566 567 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 568 struct sk_buff_head *skbs) 569 { 570 struct ieee80211_hw *hw = &local->hw; 571 struct sk_buff *skb; 572 unsigned long flags; 573 int queue, i; 574 575 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 576 while ((skb = skb_dequeue(skbs))) { 577 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 578 579 if (WARN_ON(!info->control.vif)) { 580 ieee80211_free_txskb(&local->hw, skb); 581 continue; 582 } 583 584 queue = info->hw_queue; 585 586 __ieee80211_stop_queue(hw, queue, 587 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 588 false); 589 590 __skb_queue_tail(&local->pending[queue], skb); 591 } 592 593 for (i = 0; i < hw->queues; i++) 594 __ieee80211_wake_queue(hw, i, 595 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 596 false, &flags); 597 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 598 } 599 600 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 601 unsigned long queues, 602 enum queue_stop_reason reason, 603 bool refcounted) 604 { 605 struct ieee80211_local *local = hw_to_local(hw); 606 unsigned long flags; 607 int i; 608 609 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 610 611 for_each_set_bit(i, &queues, hw->queues) 612 __ieee80211_stop_queue(hw, i, reason, refcounted); 613 614 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 615 } 616 617 void ieee80211_stop_queues(struct ieee80211_hw *hw) 618 { 619 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 620 IEEE80211_QUEUE_STOP_REASON_DRIVER, 621 false); 622 } 623 EXPORT_SYMBOL(ieee80211_stop_queues); 624 625 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 626 { 627 struct ieee80211_local *local = hw_to_local(hw); 628 unsigned long flags; 629 int ret; 630 631 if (WARN_ON(queue >= hw->queues)) 632 return true; 633 634 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 635 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 636 &local->queue_stop_reasons[queue]); 637 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 638 return ret; 639 } 640 EXPORT_SYMBOL(ieee80211_queue_stopped); 641 642 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 643 unsigned long queues, 644 enum queue_stop_reason reason, 645 bool refcounted) 646 { 647 struct ieee80211_local *local = hw_to_local(hw); 648 unsigned long flags; 649 int i; 650 651 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 652 653 for_each_set_bit(i, &queues, hw->queues) 654 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 655 656 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 657 } 658 659 void ieee80211_wake_queues(struct ieee80211_hw *hw) 660 { 661 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 662 IEEE80211_QUEUE_STOP_REASON_DRIVER, 663 false); 664 } 665 EXPORT_SYMBOL(ieee80211_wake_queues); 666 667 static unsigned int 668 ieee80211_get_vif_queues(struct ieee80211_local *local, 669 struct ieee80211_sub_if_data *sdata) 670 { 671 unsigned int queues; 672 673 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 674 int ac; 675 676 queues = 0; 677 678 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 679 queues |= BIT(sdata->vif.hw_queue[ac]); 680 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 681 queues |= BIT(sdata->vif.cab_queue); 682 } else { 683 /* all queues */ 684 queues = BIT(local->hw.queues) - 1; 685 } 686 687 return queues; 688 } 689 690 void __ieee80211_flush_queues(struct ieee80211_local *local, 691 struct ieee80211_sub_if_data *sdata, 692 unsigned int queues, bool drop) 693 { 694 if (!local->ops->flush) 695 return; 696 697 /* 698 * If no queue was set, or if the HW doesn't support 699 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 700 */ 701 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 702 queues = ieee80211_get_vif_queues(local, sdata); 703 704 ieee80211_stop_queues_by_reason(&local->hw, queues, 705 IEEE80211_QUEUE_STOP_REASON_FLUSH, 706 false); 707 708 drv_flush(local, sdata, queues, drop); 709 710 ieee80211_wake_queues_by_reason(&local->hw, queues, 711 IEEE80211_QUEUE_STOP_REASON_FLUSH, 712 false); 713 } 714 715 void ieee80211_flush_queues(struct ieee80211_local *local, 716 struct ieee80211_sub_if_data *sdata, bool drop) 717 { 718 __ieee80211_flush_queues(local, sdata, 0, drop); 719 } 720 721 void ieee80211_stop_vif_queues(struct ieee80211_local *local, 722 struct ieee80211_sub_if_data *sdata, 723 enum queue_stop_reason reason) 724 { 725 ieee80211_stop_queues_by_reason(&local->hw, 726 ieee80211_get_vif_queues(local, sdata), 727 reason, true); 728 } 729 730 void ieee80211_wake_vif_queues(struct ieee80211_local *local, 731 struct ieee80211_sub_if_data *sdata, 732 enum queue_stop_reason reason) 733 { 734 ieee80211_wake_queues_by_reason(&local->hw, 735 ieee80211_get_vif_queues(local, sdata), 736 reason, true); 737 } 738 739 static void __iterate_interfaces(struct ieee80211_local *local, 740 u32 iter_flags, 741 void (*iterator)(void *data, u8 *mac, 742 struct ieee80211_vif *vif), 743 void *data) 744 { 745 struct ieee80211_sub_if_data *sdata; 746 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 747 748 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 749 switch (sdata->vif.type) { 750 case NL80211_IFTYPE_MONITOR: 751 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) 752 continue; 753 break; 754 case NL80211_IFTYPE_AP_VLAN: 755 continue; 756 default: 757 break; 758 } 759 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 760 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 761 continue; 762 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && 763 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 764 continue; 765 if (ieee80211_sdata_running(sdata) || !active_only) 766 iterator(data, sdata->vif.addr, 767 &sdata->vif); 768 } 769 770 sdata = rcu_dereference_check(local->monitor_sdata, 771 lockdep_is_held(&local->iflist_mtx) || 772 lockdep_is_held(&local->hw.wiphy->mtx)); 773 if (sdata && 774 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 775 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 776 iterator(data, sdata->vif.addr, &sdata->vif); 777 } 778 779 void ieee80211_iterate_interfaces( 780 struct ieee80211_hw *hw, u32 iter_flags, 781 void (*iterator)(void *data, u8 *mac, 782 struct ieee80211_vif *vif), 783 void *data) 784 { 785 struct ieee80211_local *local = hw_to_local(hw); 786 787 mutex_lock(&local->iflist_mtx); 788 __iterate_interfaces(local, iter_flags, iterator, data); 789 mutex_unlock(&local->iflist_mtx); 790 } 791 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 792 793 void ieee80211_iterate_active_interfaces_atomic( 794 struct ieee80211_hw *hw, u32 iter_flags, 795 void (*iterator)(void *data, u8 *mac, 796 struct ieee80211_vif *vif), 797 void *data) 798 { 799 struct ieee80211_local *local = hw_to_local(hw); 800 801 rcu_read_lock(); 802 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 803 iterator, data); 804 rcu_read_unlock(); 805 } 806 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 807 808 void ieee80211_iterate_active_interfaces_mtx( 809 struct ieee80211_hw *hw, u32 iter_flags, 810 void (*iterator)(void *data, u8 *mac, 811 struct ieee80211_vif *vif), 812 void *data) 813 { 814 struct ieee80211_local *local = hw_to_local(hw); 815 816 lockdep_assert_wiphy(hw->wiphy); 817 818 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 819 iterator, data); 820 } 821 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx); 822 823 static void __iterate_stations(struct ieee80211_local *local, 824 void (*iterator)(void *data, 825 struct ieee80211_sta *sta), 826 void *data) 827 { 828 struct sta_info *sta; 829 830 list_for_each_entry_rcu(sta, &local->sta_list, list, 831 lockdep_is_held(&local->hw.wiphy->mtx)) { 832 if (!sta->uploaded) 833 continue; 834 835 iterator(data, &sta->sta); 836 } 837 } 838 839 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 840 void (*iterator)(void *data, 841 struct ieee80211_sta *sta), 842 void *data) 843 { 844 struct ieee80211_local *local = hw_to_local(hw); 845 846 rcu_read_lock(); 847 __iterate_stations(local, iterator, data); 848 rcu_read_unlock(); 849 } 850 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 851 852 void ieee80211_iterate_stations_mtx(struct ieee80211_hw *hw, 853 void (*iterator)(void *data, 854 struct ieee80211_sta *sta), 855 void *data) 856 { 857 struct ieee80211_local *local = hw_to_local(hw); 858 859 lockdep_assert_wiphy(local->hw.wiphy); 860 861 __iterate_stations(local, iterator, data); 862 } 863 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_mtx); 864 865 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 866 { 867 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 868 869 if (!ieee80211_sdata_running(sdata) || 870 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 871 return NULL; 872 return &sdata->vif; 873 } 874 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 875 876 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 877 { 878 if (!vif) 879 return NULL; 880 881 return &vif_to_sdata(vif)->wdev; 882 } 883 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 884 885 /* 886 * Nothing should have been stuffed into the workqueue during 887 * the suspend->resume cycle. Since we can't check each caller 888 * of this function if we are already quiescing / suspended, 889 * check here and don't WARN since this can actually happen when 890 * the rx path (for example) is racing against __ieee80211_suspend 891 * and suspending / quiescing was set after the rx path checked 892 * them. 893 */ 894 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 895 { 896 if (local->quiescing || (local->suspended && !local->resuming)) { 897 pr_warn("queueing ieee80211 work while going to suspend\n"); 898 return false; 899 } 900 901 return true; 902 } 903 904 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 905 { 906 struct ieee80211_local *local = hw_to_local(hw); 907 908 if (!ieee80211_can_queue_work(local)) 909 return; 910 911 queue_work(local->workqueue, work); 912 } 913 EXPORT_SYMBOL(ieee80211_queue_work); 914 915 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 916 struct delayed_work *dwork, 917 unsigned long delay) 918 { 919 struct ieee80211_local *local = hw_to_local(hw); 920 921 if (!ieee80211_can_queue_work(local)) 922 return; 923 924 queue_delayed_work(local->workqueue, dwork, delay); 925 } 926 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 927 928 static void 929 ieee80211_parse_extension_element(u32 *crc, 930 const struct element *elem, 931 struct ieee802_11_elems *elems, 932 struct ieee80211_elems_parse_params *params) 933 { 934 const void *data = elem->data + 1; 935 bool calc_crc = false; 936 u8 len; 937 938 if (!elem->datalen) 939 return; 940 941 len = elem->datalen - 1; 942 943 switch (elem->data[0]) { 944 case WLAN_EID_EXT_HE_MU_EDCA: 945 calc_crc = true; 946 if (len >= sizeof(*elems->mu_edca_param_set)) 947 elems->mu_edca_param_set = data; 948 break; 949 case WLAN_EID_EXT_HE_CAPABILITY: 950 if (ieee80211_he_capa_size_ok(data, len)) { 951 elems->he_cap = data; 952 elems->he_cap_len = len; 953 } 954 break; 955 case WLAN_EID_EXT_HE_OPERATION: 956 calc_crc = true; 957 if (len >= sizeof(*elems->he_operation) && 958 len >= ieee80211_he_oper_size(data) - 1) 959 elems->he_operation = data; 960 break; 961 case WLAN_EID_EXT_UORA: 962 if (len >= 1) 963 elems->uora_element = data; 964 break; 965 case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME: 966 if (len == 3) 967 elems->max_channel_switch_time = data; 968 break; 969 case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION: 970 if (len >= sizeof(*elems->mbssid_config_ie)) 971 elems->mbssid_config_ie = data; 972 break; 973 case WLAN_EID_EXT_HE_SPR: 974 if (len >= sizeof(*elems->he_spr) && 975 len >= ieee80211_he_spr_size(data)) 976 elems->he_spr = data; 977 break; 978 case WLAN_EID_EXT_HE_6GHZ_CAPA: 979 if (len >= sizeof(*elems->he_6ghz_capa)) 980 elems->he_6ghz_capa = data; 981 break; 982 case WLAN_EID_EXT_EHT_CAPABILITY: 983 if (ieee80211_eht_capa_size_ok(elems->he_cap, 984 data, len, 985 params->from_ap)) { 986 elems->eht_cap = data; 987 elems->eht_cap_len = len; 988 } 989 break; 990 case WLAN_EID_EXT_EHT_OPERATION: 991 if (ieee80211_eht_oper_size_ok(data, len)) 992 elems->eht_operation = data; 993 calc_crc = true; 994 break; 995 case WLAN_EID_EXT_EHT_MULTI_LINK: 996 calc_crc = true; 997 998 if (ieee80211_mle_size_ok(data, len)) { 999 const struct ieee80211_multi_link_elem *mle = 1000 (void *)data; 1001 1002 switch (le16_get_bits(mle->control, 1003 IEEE80211_ML_CONTROL_TYPE)) { 1004 case IEEE80211_ML_CONTROL_TYPE_BASIC: 1005 elems->ml_basic_elem = (void *)elem; 1006 elems->ml_basic = data; 1007 elems->ml_basic_len = len; 1008 break; 1009 case IEEE80211_ML_CONTROL_TYPE_RECONF: 1010 elems->ml_reconf_elem = (void *)elem; 1011 elems->ml_reconf = data; 1012 elems->ml_reconf_len = len; 1013 break; 1014 default: 1015 break; 1016 } 1017 } 1018 break; 1019 } 1020 1021 if (crc && calc_crc) 1022 *crc = crc32_be(*crc, (void *)elem, elem->datalen + 2); 1023 } 1024 1025 static u32 1026 _ieee802_11_parse_elems_full(struct ieee80211_elems_parse_params *params, 1027 struct ieee802_11_elems *elems, 1028 const struct element *check_inherit) 1029 { 1030 const struct element *elem; 1031 bool calc_crc = params->filter != 0; 1032 DECLARE_BITMAP(seen_elems, 256); 1033 u32 crc = params->crc; 1034 const u8 *ie; 1035 1036 bitmap_zero(seen_elems, 256); 1037 1038 for_each_element(elem, params->start, params->len) { 1039 bool elem_parse_failed; 1040 u8 id = elem->id; 1041 u8 elen = elem->datalen; 1042 const u8 *pos = elem->data; 1043 1044 if (check_inherit && 1045 !cfg80211_is_element_inherited(elem, 1046 check_inherit)) 1047 continue; 1048 1049 switch (id) { 1050 case WLAN_EID_SSID: 1051 case WLAN_EID_SUPP_RATES: 1052 case WLAN_EID_FH_PARAMS: 1053 case WLAN_EID_DS_PARAMS: 1054 case WLAN_EID_CF_PARAMS: 1055 case WLAN_EID_TIM: 1056 case WLAN_EID_IBSS_PARAMS: 1057 case WLAN_EID_CHALLENGE: 1058 case WLAN_EID_RSN: 1059 case WLAN_EID_ERP_INFO: 1060 case WLAN_EID_EXT_SUPP_RATES: 1061 case WLAN_EID_HT_CAPABILITY: 1062 case WLAN_EID_HT_OPERATION: 1063 case WLAN_EID_VHT_CAPABILITY: 1064 case WLAN_EID_VHT_OPERATION: 1065 case WLAN_EID_MESH_ID: 1066 case WLAN_EID_MESH_CONFIG: 1067 case WLAN_EID_PEER_MGMT: 1068 case WLAN_EID_PREQ: 1069 case WLAN_EID_PREP: 1070 case WLAN_EID_PERR: 1071 case WLAN_EID_RANN: 1072 case WLAN_EID_CHANNEL_SWITCH: 1073 case WLAN_EID_EXT_CHANSWITCH_ANN: 1074 case WLAN_EID_COUNTRY: 1075 case WLAN_EID_PWR_CONSTRAINT: 1076 case WLAN_EID_TIMEOUT_INTERVAL: 1077 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1078 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1079 case WLAN_EID_CHAN_SWITCH_PARAM: 1080 case WLAN_EID_EXT_CAPABILITY: 1081 case WLAN_EID_CHAN_SWITCH_TIMING: 1082 case WLAN_EID_LINK_ID: 1083 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1084 case WLAN_EID_RSNX: 1085 case WLAN_EID_S1G_BCN_COMPAT: 1086 case WLAN_EID_S1G_CAPABILITIES: 1087 case WLAN_EID_S1G_OPERATION: 1088 case WLAN_EID_AID_RESPONSE: 1089 case WLAN_EID_S1G_SHORT_BCN_INTERVAL: 1090 /* 1091 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible 1092 * that if the content gets bigger it might be needed more than once 1093 */ 1094 if (test_bit(id, seen_elems)) { 1095 elems->parse_error = true; 1096 continue; 1097 } 1098 break; 1099 } 1100 1101 if (calc_crc && id < 64 && (params->filter & (1ULL << id))) 1102 crc = crc32_be(crc, pos - 2, elen + 2); 1103 1104 elem_parse_failed = false; 1105 1106 switch (id) { 1107 case WLAN_EID_LINK_ID: 1108 if (elen + 2 < sizeof(struct ieee80211_tdls_lnkie)) { 1109 elem_parse_failed = true; 1110 break; 1111 } 1112 elems->lnk_id = (void *)(pos - 2); 1113 break; 1114 case WLAN_EID_CHAN_SWITCH_TIMING: 1115 if (elen < sizeof(struct ieee80211_ch_switch_timing)) { 1116 elem_parse_failed = true; 1117 break; 1118 } 1119 elems->ch_sw_timing = (void *)pos; 1120 break; 1121 case WLAN_EID_EXT_CAPABILITY: 1122 elems->ext_capab = pos; 1123 elems->ext_capab_len = elen; 1124 break; 1125 case WLAN_EID_SSID: 1126 elems->ssid = pos; 1127 elems->ssid_len = elen; 1128 break; 1129 case WLAN_EID_SUPP_RATES: 1130 elems->supp_rates = pos; 1131 elems->supp_rates_len = elen; 1132 break; 1133 case WLAN_EID_DS_PARAMS: 1134 if (elen >= 1) 1135 elems->ds_params = pos; 1136 else 1137 elem_parse_failed = true; 1138 break; 1139 case WLAN_EID_TIM: 1140 if (elen >= sizeof(struct ieee80211_tim_ie)) { 1141 elems->tim = (void *)pos; 1142 elems->tim_len = elen; 1143 } else 1144 elem_parse_failed = true; 1145 break; 1146 case WLAN_EID_VENDOR_SPECIFIC: 1147 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && 1148 pos[2] == 0xf2) { 1149 /* Microsoft OUI (00:50:F2) */ 1150 1151 if (calc_crc) 1152 crc = crc32_be(crc, pos - 2, elen + 2); 1153 1154 if (elen >= 5 && pos[3] == 2) { 1155 /* OUI Type 2 - WMM IE */ 1156 if (pos[4] == 0) { 1157 elems->wmm_info = pos; 1158 elems->wmm_info_len = elen; 1159 } else if (pos[4] == 1) { 1160 elems->wmm_param = pos; 1161 elems->wmm_param_len = elen; 1162 } 1163 } 1164 } 1165 break; 1166 case WLAN_EID_RSN: 1167 elems->rsn = pos; 1168 elems->rsn_len = elen; 1169 break; 1170 case WLAN_EID_ERP_INFO: 1171 if (elen >= 1) 1172 elems->erp_info = pos; 1173 else 1174 elem_parse_failed = true; 1175 break; 1176 case WLAN_EID_EXT_SUPP_RATES: 1177 elems->ext_supp_rates = pos; 1178 elems->ext_supp_rates_len = elen; 1179 break; 1180 case WLAN_EID_HT_CAPABILITY: 1181 if (elen >= sizeof(struct ieee80211_ht_cap)) 1182 elems->ht_cap_elem = (void *)pos; 1183 else 1184 elem_parse_failed = true; 1185 break; 1186 case WLAN_EID_HT_OPERATION: 1187 if (elen >= sizeof(struct ieee80211_ht_operation)) 1188 elems->ht_operation = (void *)pos; 1189 else 1190 elem_parse_failed = true; 1191 break; 1192 case WLAN_EID_VHT_CAPABILITY: 1193 if (elen >= sizeof(struct ieee80211_vht_cap)) 1194 elems->vht_cap_elem = (void *)pos; 1195 else 1196 elem_parse_failed = true; 1197 break; 1198 case WLAN_EID_VHT_OPERATION: 1199 if (elen >= sizeof(struct ieee80211_vht_operation)) { 1200 elems->vht_operation = (void *)pos; 1201 if (calc_crc) 1202 crc = crc32_be(crc, pos - 2, elen + 2); 1203 break; 1204 } 1205 elem_parse_failed = true; 1206 break; 1207 case WLAN_EID_OPMODE_NOTIF: 1208 if (elen > 0) { 1209 elems->opmode_notif = pos; 1210 if (calc_crc) 1211 crc = crc32_be(crc, pos - 2, elen + 2); 1212 break; 1213 } 1214 elem_parse_failed = true; 1215 break; 1216 case WLAN_EID_MESH_ID: 1217 elems->mesh_id = pos; 1218 elems->mesh_id_len = elen; 1219 break; 1220 case WLAN_EID_MESH_CONFIG: 1221 if (elen >= sizeof(struct ieee80211_meshconf_ie)) 1222 elems->mesh_config = (void *)pos; 1223 else 1224 elem_parse_failed = true; 1225 break; 1226 case WLAN_EID_PEER_MGMT: 1227 elems->peering = pos; 1228 elems->peering_len = elen; 1229 break; 1230 case WLAN_EID_MESH_AWAKE_WINDOW: 1231 if (elen >= 2) 1232 elems->awake_window = (void *)pos; 1233 break; 1234 case WLAN_EID_PREQ: 1235 elems->preq = pos; 1236 elems->preq_len = elen; 1237 break; 1238 case WLAN_EID_PREP: 1239 elems->prep = pos; 1240 elems->prep_len = elen; 1241 break; 1242 case WLAN_EID_PERR: 1243 elems->perr = pos; 1244 elems->perr_len = elen; 1245 break; 1246 case WLAN_EID_RANN: 1247 if (elen >= sizeof(struct ieee80211_rann_ie)) 1248 elems->rann = (void *)pos; 1249 else 1250 elem_parse_failed = true; 1251 break; 1252 case WLAN_EID_CHANNEL_SWITCH: 1253 if (elen != sizeof(struct ieee80211_channel_sw_ie)) { 1254 elem_parse_failed = true; 1255 break; 1256 } 1257 elems->ch_switch_ie = (void *)pos; 1258 break; 1259 case WLAN_EID_EXT_CHANSWITCH_ANN: 1260 if (elen != sizeof(struct ieee80211_ext_chansw_ie)) { 1261 elem_parse_failed = true; 1262 break; 1263 } 1264 elems->ext_chansw_ie = (void *)pos; 1265 break; 1266 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1267 if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) { 1268 elem_parse_failed = true; 1269 break; 1270 } 1271 elems->sec_chan_offs = (void *)pos; 1272 break; 1273 case WLAN_EID_CHAN_SWITCH_PARAM: 1274 if (elen < 1275 sizeof(*elems->mesh_chansw_params_ie)) { 1276 elem_parse_failed = true; 1277 break; 1278 } 1279 elems->mesh_chansw_params_ie = (void *)pos; 1280 break; 1281 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1282 if (!params->action || 1283 elen < sizeof(*elems->wide_bw_chansw_ie)) { 1284 elem_parse_failed = true; 1285 break; 1286 } 1287 elems->wide_bw_chansw_ie = (void *)pos; 1288 break; 1289 case WLAN_EID_CHANNEL_SWITCH_WRAPPER: 1290 if (params->action) { 1291 elem_parse_failed = true; 1292 break; 1293 } 1294 /* 1295 * This is a bit tricky, but as we only care about 1296 * the wide bandwidth channel switch element, so 1297 * just parse it out manually. 1298 */ 1299 ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH, 1300 pos, elen); 1301 if (ie) { 1302 if (ie[1] >= sizeof(*elems->wide_bw_chansw_ie)) 1303 elems->wide_bw_chansw_ie = 1304 (void *)(ie + 2); 1305 else 1306 elem_parse_failed = true; 1307 } 1308 break; 1309 case WLAN_EID_COUNTRY: 1310 elems->country_elem = pos; 1311 elems->country_elem_len = elen; 1312 break; 1313 case WLAN_EID_PWR_CONSTRAINT: 1314 if (elen != 1) { 1315 elem_parse_failed = true; 1316 break; 1317 } 1318 elems->pwr_constr_elem = pos; 1319 break; 1320 case WLAN_EID_CISCO_VENDOR_SPECIFIC: 1321 /* Lots of different options exist, but we only care 1322 * about the Dynamic Transmit Power Control element. 1323 * First check for the Cisco OUI, then for the DTPC 1324 * tag (0x00). 1325 */ 1326 if (elen < 4) { 1327 elem_parse_failed = true; 1328 break; 1329 } 1330 1331 if (pos[0] != 0x00 || pos[1] != 0x40 || 1332 pos[2] != 0x96 || pos[3] != 0x00) 1333 break; 1334 1335 if (elen != 6) { 1336 elem_parse_failed = true; 1337 break; 1338 } 1339 1340 if (calc_crc) 1341 crc = crc32_be(crc, pos - 2, elen + 2); 1342 1343 elems->cisco_dtpc_elem = pos; 1344 break; 1345 case WLAN_EID_ADDBA_EXT: 1346 if (elen < sizeof(struct ieee80211_addba_ext_ie)) { 1347 elem_parse_failed = true; 1348 break; 1349 } 1350 elems->addba_ext_ie = (void *)pos; 1351 break; 1352 case WLAN_EID_TIMEOUT_INTERVAL: 1353 if (elen >= sizeof(struct ieee80211_timeout_interval_ie)) 1354 elems->timeout_int = (void *)pos; 1355 else 1356 elem_parse_failed = true; 1357 break; 1358 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1359 if (elen >= sizeof(*elems->max_idle_period_ie)) 1360 elems->max_idle_period_ie = (void *)pos; 1361 break; 1362 case WLAN_EID_RSNX: 1363 elems->rsnx = pos; 1364 elems->rsnx_len = elen; 1365 break; 1366 case WLAN_EID_TX_POWER_ENVELOPE: 1367 if (elen < 1 || 1368 elen > sizeof(struct ieee80211_tx_pwr_env)) 1369 break; 1370 1371 if (elems->tx_pwr_env_num >= ARRAY_SIZE(elems->tx_pwr_env)) 1372 break; 1373 1374 elems->tx_pwr_env[elems->tx_pwr_env_num] = (void *)pos; 1375 elems->tx_pwr_env_len[elems->tx_pwr_env_num] = elen; 1376 elems->tx_pwr_env_num++; 1377 break; 1378 case WLAN_EID_EXTENSION: 1379 ieee80211_parse_extension_element(calc_crc ? 1380 &crc : NULL, 1381 elem, elems, params); 1382 break; 1383 case WLAN_EID_S1G_CAPABILITIES: 1384 if (elen >= sizeof(*elems->s1g_capab)) 1385 elems->s1g_capab = (void *)pos; 1386 else 1387 elem_parse_failed = true; 1388 break; 1389 case WLAN_EID_S1G_OPERATION: 1390 if (elen == sizeof(*elems->s1g_oper)) 1391 elems->s1g_oper = (void *)pos; 1392 else 1393 elem_parse_failed = true; 1394 break; 1395 case WLAN_EID_S1G_BCN_COMPAT: 1396 if (elen == sizeof(*elems->s1g_bcn_compat)) 1397 elems->s1g_bcn_compat = (void *)pos; 1398 else 1399 elem_parse_failed = true; 1400 break; 1401 case WLAN_EID_AID_RESPONSE: 1402 if (elen == sizeof(struct ieee80211_aid_response_ie)) 1403 elems->aid_resp = (void *)pos; 1404 else 1405 elem_parse_failed = true; 1406 break; 1407 default: 1408 break; 1409 } 1410 1411 if (elem_parse_failed) 1412 elems->parse_error = true; 1413 else 1414 __set_bit(id, seen_elems); 1415 } 1416 1417 if (!for_each_element_completed(elem, params->start, params->len)) 1418 elems->parse_error = true; 1419 1420 return crc; 1421 } 1422 1423 static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len, 1424 struct ieee802_11_elems *elems, 1425 struct cfg80211_bss *bss, 1426 u8 *nontransmitted_profile) 1427 { 1428 const struct element *elem, *sub; 1429 size_t profile_len = 0; 1430 bool found = false; 1431 1432 if (!bss || !bss->transmitted_bss) 1433 return profile_len; 1434 1435 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) { 1436 if (elem->datalen < 2) 1437 continue; 1438 if (elem->data[0] < 1 || elem->data[0] > 8) 1439 continue; 1440 1441 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 1442 u8 new_bssid[ETH_ALEN]; 1443 const u8 *index; 1444 1445 if (sub->id != 0 || sub->datalen < 4) { 1446 /* not a valid BSS profile */ 1447 continue; 1448 } 1449 1450 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 1451 sub->data[1] != 2) { 1452 /* The first element of the 1453 * Nontransmitted BSSID Profile is not 1454 * the Nontransmitted BSSID Capability 1455 * element. 1456 */ 1457 continue; 1458 } 1459 1460 memset(nontransmitted_profile, 0, len); 1461 profile_len = cfg80211_merge_profile(start, len, 1462 elem, 1463 sub, 1464 nontransmitted_profile, 1465 len); 1466 1467 /* found a Nontransmitted BSSID Profile */ 1468 index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, 1469 nontransmitted_profile, 1470 profile_len); 1471 if (!index || index[1] < 1 || index[2] == 0) { 1472 /* Invalid MBSSID Index element */ 1473 continue; 1474 } 1475 1476 cfg80211_gen_new_bssid(bss->transmitted_bss->bssid, 1477 elem->data[0], 1478 index[2], 1479 new_bssid); 1480 if (ether_addr_equal(new_bssid, bss->bssid)) { 1481 found = true; 1482 elems->bssid_index_len = index[1]; 1483 elems->bssid_index = (void *)&index[2]; 1484 break; 1485 } 1486 } 1487 } 1488 1489 return found ? profile_len : 0; 1490 } 1491 1492 static void ieee80211_mle_get_sta_prof(struct ieee802_11_elems *elems, 1493 u8 link_id) 1494 { 1495 const struct ieee80211_multi_link_elem *ml = elems->ml_basic; 1496 ssize_t ml_len = elems->ml_basic_len; 1497 const struct element *sub; 1498 1499 if (!ml || !ml_len) 1500 return; 1501 1502 if (le16_get_bits(ml->control, IEEE80211_ML_CONTROL_TYPE) != 1503 IEEE80211_ML_CONTROL_TYPE_BASIC) 1504 return; 1505 1506 for_each_mle_subelement(sub, (u8 *)ml, ml_len) { 1507 struct ieee80211_mle_per_sta_profile *prof = (void *)sub->data; 1508 ssize_t sta_prof_len; 1509 u16 control; 1510 1511 if (sub->id != IEEE80211_MLE_SUBELEM_PER_STA_PROFILE) 1512 continue; 1513 1514 if (!ieee80211_mle_basic_sta_prof_size_ok(sub->data, 1515 sub->datalen)) 1516 return; 1517 1518 control = le16_to_cpu(prof->control); 1519 1520 if (link_id != u16_get_bits(control, 1521 IEEE80211_MLE_STA_CONTROL_LINK_ID)) 1522 continue; 1523 1524 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE)) 1525 return; 1526 1527 /* the sub element can be fragmented */ 1528 sta_prof_len = 1529 cfg80211_defragment_element(sub, 1530 (u8 *)ml, ml_len, 1531 elems->scratch_pos, 1532 elems->scratch + 1533 elems->scratch_len - 1534 elems->scratch_pos, 1535 IEEE80211_MLE_SUBELEM_FRAGMENT); 1536 1537 if (sta_prof_len < 0) 1538 return; 1539 1540 elems->prof = (void *)elems->scratch_pos; 1541 elems->sta_prof_len = sta_prof_len; 1542 elems->scratch_pos += sta_prof_len; 1543 1544 return; 1545 } 1546 } 1547 1548 static void ieee80211_mle_parse_link(struct ieee802_11_elems *elems, 1549 struct ieee80211_elems_parse_params *params) 1550 { 1551 struct ieee80211_mle_per_sta_profile *prof; 1552 struct ieee80211_elems_parse_params sub = { 1553 .action = params->action, 1554 .from_ap = params->from_ap, 1555 .link_id = -1, 1556 }; 1557 ssize_t ml_len = elems->ml_basic_len; 1558 const struct element *non_inherit = NULL; 1559 const u8 *end; 1560 1561 if (params->link_id == -1) 1562 return; 1563 1564 ml_len = cfg80211_defragment_element(elems->ml_basic_elem, 1565 elems->ie_start, 1566 elems->total_len, 1567 elems->scratch_pos, 1568 elems->scratch + 1569 elems->scratch_len - 1570 elems->scratch_pos, 1571 WLAN_EID_FRAGMENT); 1572 1573 if (ml_len < 0) 1574 return; 1575 1576 elems->ml_basic = (const void *)elems->scratch_pos; 1577 elems->ml_basic_len = ml_len; 1578 1579 ieee80211_mle_get_sta_prof(elems, params->link_id); 1580 prof = elems->prof; 1581 1582 if (!prof) 1583 return; 1584 1585 /* check if we have the 4 bytes for the fixed part in assoc response */ 1586 if (elems->sta_prof_len < sizeof(*prof) + prof->sta_info_len - 1 + 4) { 1587 elems->prof = NULL; 1588 elems->sta_prof_len = 0; 1589 return; 1590 } 1591 1592 /* 1593 * Skip the capability information and the status code that are expected 1594 * as part of the station profile in association response frames. Note 1595 * the -1 is because the 'sta_info_len' is accounted to as part of the 1596 * per-STA profile, but not part of the 'u8 variable[]' portion. 1597 */ 1598 sub.start = prof->variable + prof->sta_info_len - 1 + 4; 1599 end = (const u8 *)prof + elems->sta_prof_len; 1600 sub.len = end - sub.start; 1601 1602 non_inherit = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 1603 sub.start, sub.len); 1604 _ieee802_11_parse_elems_full(&sub, elems, non_inherit); 1605 } 1606 1607 struct ieee802_11_elems * 1608 ieee802_11_parse_elems_full(struct ieee80211_elems_parse_params *params) 1609 { 1610 struct ieee802_11_elems *elems; 1611 const struct element *non_inherit = NULL; 1612 u8 *nontransmitted_profile; 1613 int nontransmitted_profile_len = 0; 1614 size_t scratch_len = 3 * params->len; 1615 1616 elems = kzalloc(sizeof(*elems) + scratch_len, GFP_ATOMIC); 1617 if (!elems) 1618 return NULL; 1619 elems->ie_start = params->start; 1620 elems->total_len = params->len; 1621 elems->scratch_len = scratch_len; 1622 elems->scratch_pos = elems->scratch; 1623 1624 nontransmitted_profile = elems->scratch_pos; 1625 nontransmitted_profile_len = 1626 ieee802_11_find_bssid_profile(params->start, params->len, 1627 elems, params->bss, 1628 nontransmitted_profile); 1629 elems->scratch_pos += nontransmitted_profile_len; 1630 elems->scratch_len -= nontransmitted_profile_len; 1631 non_inherit = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 1632 nontransmitted_profile, 1633 nontransmitted_profile_len); 1634 1635 elems->crc = _ieee802_11_parse_elems_full(params, elems, non_inherit); 1636 1637 /* Override with nontransmitted profile, if found */ 1638 if (nontransmitted_profile_len) { 1639 struct ieee80211_elems_parse_params sub = { 1640 .start = nontransmitted_profile, 1641 .len = nontransmitted_profile_len, 1642 .action = params->action, 1643 .link_id = params->link_id, 1644 }; 1645 1646 _ieee802_11_parse_elems_full(&sub, elems, NULL); 1647 } 1648 1649 ieee80211_mle_parse_link(elems, params); 1650 1651 if (elems->tim && !elems->parse_error) { 1652 const struct ieee80211_tim_ie *tim_ie = elems->tim; 1653 1654 elems->dtim_period = tim_ie->dtim_period; 1655 elems->dtim_count = tim_ie->dtim_count; 1656 } 1657 1658 /* Override DTIM period and count if needed */ 1659 if (elems->bssid_index && 1660 elems->bssid_index_len >= 1661 offsetofend(struct ieee80211_bssid_index, dtim_period)) 1662 elems->dtim_period = elems->bssid_index->dtim_period; 1663 1664 if (elems->bssid_index && 1665 elems->bssid_index_len >= 1666 offsetofend(struct ieee80211_bssid_index, dtim_count)) 1667 elems->dtim_count = elems->bssid_index->dtim_count; 1668 1669 return elems; 1670 } 1671 1672 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 1673 struct ieee80211_tx_queue_params 1674 *qparam, int ac) 1675 { 1676 struct ieee80211_chanctx_conf *chanctx_conf; 1677 const struct ieee80211_reg_rule *rrule; 1678 const struct ieee80211_wmm_ac *wmm_ac; 1679 u16 center_freq = 0; 1680 1681 if (sdata->vif.type != NL80211_IFTYPE_AP && 1682 sdata->vif.type != NL80211_IFTYPE_STATION) 1683 return; 1684 1685 rcu_read_lock(); 1686 chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); 1687 if (chanctx_conf) 1688 center_freq = chanctx_conf->def.chan->center_freq; 1689 1690 if (!center_freq) { 1691 rcu_read_unlock(); 1692 return; 1693 } 1694 1695 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 1696 1697 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 1698 rcu_read_unlock(); 1699 return; 1700 } 1701 1702 if (sdata->vif.type == NL80211_IFTYPE_AP) 1703 wmm_ac = &rrule->wmm_rule.ap[ac]; 1704 else 1705 wmm_ac = &rrule->wmm_rule.client[ac]; 1706 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 1707 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 1708 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 1709 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 1710 rcu_read_unlock(); 1711 } 1712 1713 void ieee80211_set_wmm_default(struct ieee80211_link_data *link, 1714 bool bss_notify, bool enable_qos) 1715 { 1716 struct ieee80211_sub_if_data *sdata = link->sdata; 1717 struct ieee80211_local *local = sdata->local; 1718 struct ieee80211_tx_queue_params qparam; 1719 struct ieee80211_chanctx_conf *chanctx_conf; 1720 int ac; 1721 bool use_11b; 1722 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 1723 int aCWmin, aCWmax; 1724 1725 if (!local->ops->conf_tx) 1726 return; 1727 1728 if (local->hw.queues < IEEE80211_NUM_ACS) 1729 return; 1730 1731 memset(&qparam, 0, sizeof(qparam)); 1732 1733 rcu_read_lock(); 1734 chanctx_conf = rcu_dereference(link->conf->chanctx_conf); 1735 use_11b = (chanctx_conf && 1736 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 1737 !link->operating_11g_mode; 1738 rcu_read_unlock(); 1739 1740 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 1741 1742 /* Set defaults according to 802.11-2007 Table 7-37 */ 1743 aCWmax = 1023; 1744 if (use_11b) 1745 aCWmin = 31; 1746 else 1747 aCWmin = 15; 1748 1749 /* Confiure old 802.11b/g medium access rules. */ 1750 qparam.cw_max = aCWmax; 1751 qparam.cw_min = aCWmin; 1752 qparam.txop = 0; 1753 qparam.aifs = 2; 1754 1755 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1756 /* Update if QoS is enabled. */ 1757 if (enable_qos) { 1758 switch (ac) { 1759 case IEEE80211_AC_BK: 1760 qparam.cw_max = aCWmax; 1761 qparam.cw_min = aCWmin; 1762 qparam.txop = 0; 1763 if (is_ocb) 1764 qparam.aifs = 9; 1765 else 1766 qparam.aifs = 7; 1767 break; 1768 /* never happens but let's not leave undefined */ 1769 default: 1770 case IEEE80211_AC_BE: 1771 qparam.cw_max = aCWmax; 1772 qparam.cw_min = aCWmin; 1773 qparam.txop = 0; 1774 if (is_ocb) 1775 qparam.aifs = 6; 1776 else 1777 qparam.aifs = 3; 1778 break; 1779 case IEEE80211_AC_VI: 1780 qparam.cw_max = aCWmin; 1781 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1782 if (is_ocb) 1783 qparam.txop = 0; 1784 else if (use_11b) 1785 qparam.txop = 6016/32; 1786 else 1787 qparam.txop = 3008/32; 1788 1789 if (is_ocb) 1790 qparam.aifs = 3; 1791 else 1792 qparam.aifs = 2; 1793 break; 1794 case IEEE80211_AC_VO: 1795 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1796 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1797 if (is_ocb) 1798 qparam.txop = 0; 1799 else if (use_11b) 1800 qparam.txop = 3264/32; 1801 else 1802 qparam.txop = 1504/32; 1803 qparam.aifs = 2; 1804 break; 1805 } 1806 } 1807 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1808 1809 qparam.uapsd = false; 1810 1811 link->tx_conf[ac] = qparam; 1812 drv_conf_tx(local, link, ac, &qparam); 1813 } 1814 1815 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1816 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1817 sdata->vif.type != NL80211_IFTYPE_NAN) { 1818 link->conf->qos = enable_qos; 1819 if (bss_notify) 1820 ieee80211_link_info_change_notify(sdata, link, 1821 BSS_CHANGED_QOS); 1822 } 1823 } 1824 1825 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1826 u16 transaction, u16 auth_alg, u16 status, 1827 const u8 *extra, size_t extra_len, const u8 *da, 1828 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1829 u32 tx_flags) 1830 { 1831 struct ieee80211_local *local = sdata->local; 1832 struct sk_buff *skb; 1833 struct ieee80211_mgmt *mgmt; 1834 bool multi_link = ieee80211_vif_is_mld(&sdata->vif); 1835 struct { 1836 u8 id; 1837 u8 len; 1838 u8 ext_id; 1839 struct ieee80211_multi_link_elem ml; 1840 struct ieee80211_mle_basic_common_info basic; 1841 } __packed mle = { 1842 .id = WLAN_EID_EXTENSION, 1843 .len = sizeof(mle) - 2, 1844 .ext_id = WLAN_EID_EXT_EHT_MULTI_LINK, 1845 .ml.control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_BASIC), 1846 .basic.len = sizeof(mle.basic), 1847 }; 1848 int err; 1849 1850 memcpy(mle.basic.mld_mac_addr, sdata->vif.addr, ETH_ALEN); 1851 1852 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1853 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1854 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN + 1855 multi_link * sizeof(mle)); 1856 if (!skb) 1857 return; 1858 1859 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1860 1861 mgmt = skb_put_zero(skb, 24 + 6); 1862 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1863 IEEE80211_STYPE_AUTH); 1864 memcpy(mgmt->da, da, ETH_ALEN); 1865 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1866 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1867 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1868 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1869 mgmt->u.auth.status_code = cpu_to_le16(status); 1870 if (extra) 1871 skb_put_data(skb, extra, extra_len); 1872 if (multi_link) 1873 skb_put_data(skb, &mle, sizeof(mle)); 1874 1875 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1876 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1877 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1878 if (WARN_ON(err)) { 1879 kfree_skb(skb); 1880 return; 1881 } 1882 } 1883 1884 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1885 tx_flags; 1886 ieee80211_tx_skb(sdata, skb); 1887 } 1888 1889 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1890 const u8 *da, const u8 *bssid, 1891 u16 stype, u16 reason, 1892 bool send_frame, u8 *frame_buf) 1893 { 1894 struct ieee80211_local *local = sdata->local; 1895 struct sk_buff *skb; 1896 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1897 1898 /* build frame */ 1899 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1900 mgmt->duration = 0; /* initialize only */ 1901 mgmt->seq_ctrl = 0; /* initialize only */ 1902 memcpy(mgmt->da, da, ETH_ALEN); 1903 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1904 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1905 /* u.deauth.reason_code == u.disassoc.reason_code */ 1906 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1907 1908 if (send_frame) { 1909 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1910 IEEE80211_DEAUTH_FRAME_LEN); 1911 if (!skb) 1912 return; 1913 1914 skb_reserve(skb, local->hw.extra_tx_headroom); 1915 1916 /* copy in frame */ 1917 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1918 1919 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1920 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1921 IEEE80211_SKB_CB(skb)->flags |= 1922 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1923 1924 ieee80211_tx_skb(sdata, skb); 1925 } 1926 } 1927 1928 u8 *ieee80211_write_he_6ghz_cap(u8 *pos, __le16 cap, u8 *end) 1929 { 1930 if ((end - pos) < 5) 1931 return pos; 1932 1933 *pos++ = WLAN_EID_EXTENSION; 1934 *pos++ = 1 + sizeof(cap); 1935 *pos++ = WLAN_EID_EXT_HE_6GHZ_CAPA; 1936 memcpy(pos, &cap, sizeof(cap)); 1937 1938 return pos + 2; 1939 } 1940 1941 static int ieee80211_build_preq_ies_band(struct ieee80211_sub_if_data *sdata, 1942 u8 *buffer, size_t buffer_len, 1943 const u8 *ie, size_t ie_len, 1944 enum nl80211_band band, 1945 u32 rate_mask, 1946 struct cfg80211_chan_def *chandef, 1947 size_t *offset, u32 flags) 1948 { 1949 struct ieee80211_local *local = sdata->local; 1950 struct ieee80211_supported_band *sband; 1951 const struct ieee80211_sta_he_cap *he_cap; 1952 const struct ieee80211_sta_eht_cap *eht_cap; 1953 u8 *pos = buffer, *end = buffer + buffer_len; 1954 size_t noffset; 1955 int supp_rates_len, i; 1956 u8 rates[32]; 1957 int num_rates; 1958 int ext_rates_len; 1959 int shift; 1960 u32 rate_flags; 1961 bool have_80mhz = false; 1962 1963 *offset = 0; 1964 1965 sband = local->hw.wiphy->bands[band]; 1966 if (WARN_ON_ONCE(!sband)) 1967 return 0; 1968 1969 rate_flags = ieee80211_chandef_rate_flags(chandef); 1970 shift = ieee80211_chandef_get_shift(chandef); 1971 1972 /* For direct scan add S1G IE and consider its override bits */ 1973 if (band == NL80211_BAND_S1GHZ) { 1974 if (end - pos < 2 + sizeof(struct ieee80211_s1g_cap)) 1975 goto out_err; 1976 pos = ieee80211_ie_build_s1g_cap(pos, &sband->s1g_cap); 1977 goto done; 1978 } 1979 1980 num_rates = 0; 1981 for (i = 0; i < sband->n_bitrates; i++) { 1982 if ((BIT(i) & rate_mask) == 0) 1983 continue; /* skip rate */ 1984 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 1985 continue; 1986 1987 rates[num_rates++] = 1988 (u8) DIV_ROUND_UP(sband->bitrates[i].bitrate, 1989 (1 << shift) * 5); 1990 } 1991 1992 supp_rates_len = min_t(int, num_rates, 8); 1993 1994 if (end - pos < 2 + supp_rates_len) 1995 goto out_err; 1996 *pos++ = WLAN_EID_SUPP_RATES; 1997 *pos++ = supp_rates_len; 1998 memcpy(pos, rates, supp_rates_len); 1999 pos += supp_rates_len; 2000 2001 /* insert "request information" if in custom IEs */ 2002 if (ie && ie_len) { 2003 static const u8 before_extrates[] = { 2004 WLAN_EID_SSID, 2005 WLAN_EID_SUPP_RATES, 2006 WLAN_EID_REQUEST, 2007 }; 2008 noffset = ieee80211_ie_split(ie, ie_len, 2009 before_extrates, 2010 ARRAY_SIZE(before_extrates), 2011 *offset); 2012 if (end - pos < noffset - *offset) 2013 goto out_err; 2014 memcpy(pos, ie + *offset, noffset - *offset); 2015 pos += noffset - *offset; 2016 *offset = noffset; 2017 } 2018 2019 ext_rates_len = num_rates - supp_rates_len; 2020 if (ext_rates_len > 0) { 2021 if (end - pos < 2 + ext_rates_len) 2022 goto out_err; 2023 *pos++ = WLAN_EID_EXT_SUPP_RATES; 2024 *pos++ = ext_rates_len; 2025 memcpy(pos, rates + supp_rates_len, ext_rates_len); 2026 pos += ext_rates_len; 2027 } 2028 2029 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 2030 if (end - pos < 3) 2031 goto out_err; 2032 *pos++ = WLAN_EID_DS_PARAMS; 2033 *pos++ = 1; 2034 *pos++ = ieee80211_frequency_to_channel( 2035 chandef->chan->center_freq); 2036 } 2037 2038 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 2039 goto done; 2040 2041 /* insert custom IEs that go before HT */ 2042 if (ie && ie_len) { 2043 static const u8 before_ht[] = { 2044 /* 2045 * no need to list the ones split off already 2046 * (or generated here) 2047 */ 2048 WLAN_EID_DS_PARAMS, 2049 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 2050 }; 2051 noffset = ieee80211_ie_split(ie, ie_len, 2052 before_ht, ARRAY_SIZE(before_ht), 2053 *offset); 2054 if (end - pos < noffset - *offset) 2055 goto out_err; 2056 memcpy(pos, ie + *offset, noffset - *offset); 2057 pos += noffset - *offset; 2058 *offset = noffset; 2059 } 2060 2061 if (sband->ht_cap.ht_supported) { 2062 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap)) 2063 goto out_err; 2064 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 2065 sband->ht_cap.cap); 2066 } 2067 2068 /* insert custom IEs that go before VHT */ 2069 if (ie && ie_len) { 2070 static const u8 before_vht[] = { 2071 /* 2072 * no need to list the ones split off already 2073 * (or generated here) 2074 */ 2075 WLAN_EID_BSS_COEX_2040, 2076 WLAN_EID_EXT_CAPABILITY, 2077 WLAN_EID_SSID_LIST, 2078 WLAN_EID_CHANNEL_USAGE, 2079 WLAN_EID_INTERWORKING, 2080 WLAN_EID_MESH_ID, 2081 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 2082 }; 2083 noffset = ieee80211_ie_split(ie, ie_len, 2084 before_vht, ARRAY_SIZE(before_vht), 2085 *offset); 2086 if (end - pos < noffset - *offset) 2087 goto out_err; 2088 memcpy(pos, ie + *offset, noffset - *offset); 2089 pos += noffset - *offset; 2090 *offset = noffset; 2091 } 2092 2093 /* Check if any channel in this sband supports at least 80 MHz */ 2094 for (i = 0; i < sband->n_channels; i++) { 2095 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 2096 IEEE80211_CHAN_NO_80MHZ)) 2097 continue; 2098 2099 have_80mhz = true; 2100 break; 2101 } 2102 2103 if (sband->vht_cap.vht_supported && have_80mhz) { 2104 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap)) 2105 goto out_err; 2106 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 2107 sband->vht_cap.cap); 2108 } 2109 2110 /* insert custom IEs that go before HE */ 2111 if (ie && ie_len) { 2112 static const u8 before_he[] = { 2113 /* 2114 * no need to list the ones split off before VHT 2115 * or generated here 2116 */ 2117 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 2118 WLAN_EID_AP_CSN, 2119 /* TODO: add 11ah/11aj/11ak elements */ 2120 }; 2121 noffset = ieee80211_ie_split(ie, ie_len, 2122 before_he, ARRAY_SIZE(before_he), 2123 *offset); 2124 if (end - pos < noffset - *offset) 2125 goto out_err; 2126 memcpy(pos, ie + *offset, noffset - *offset); 2127 pos += noffset - *offset; 2128 *offset = noffset; 2129 } 2130 2131 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 2132 if (he_cap && 2133 cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 2134 IEEE80211_CHAN_NO_HE)) { 2135 pos = ieee80211_ie_build_he_cap(0, pos, he_cap, end); 2136 if (!pos) 2137 goto out_err; 2138 } 2139 2140 eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); 2141 2142 if (eht_cap && 2143 cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 2144 IEEE80211_CHAN_NO_HE | 2145 IEEE80211_CHAN_NO_EHT)) { 2146 pos = ieee80211_ie_build_eht_cap(pos, he_cap, eht_cap, end, 2147 sdata->vif.type == NL80211_IFTYPE_AP); 2148 if (!pos) 2149 goto out_err; 2150 } 2151 2152 if (cfg80211_any_usable_channels(local->hw.wiphy, 2153 BIT(NL80211_BAND_6GHZ), 2154 IEEE80211_CHAN_NO_HE)) { 2155 struct ieee80211_supported_band *sband6; 2156 2157 sband6 = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 2158 he_cap = ieee80211_get_he_iftype_cap_vif(sband6, &sdata->vif); 2159 2160 if (he_cap) { 2161 enum nl80211_iftype iftype = 2162 ieee80211_vif_type_p2p(&sdata->vif); 2163 __le16 cap = ieee80211_get_he_6ghz_capa(sband6, iftype); 2164 2165 pos = ieee80211_write_he_6ghz_cap(pos, cap, end); 2166 } 2167 } 2168 2169 /* 2170 * If adding more here, adjust code in main.c 2171 * that calculates local->scan_ies_len. 2172 */ 2173 2174 return pos - buffer; 2175 out_err: 2176 WARN_ONCE(1, "not enough space for preq IEs\n"); 2177 done: 2178 return pos - buffer; 2179 } 2180 2181 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 2182 size_t buffer_len, 2183 struct ieee80211_scan_ies *ie_desc, 2184 const u8 *ie, size_t ie_len, 2185 u8 bands_used, u32 *rate_masks, 2186 struct cfg80211_chan_def *chandef, 2187 u32 flags) 2188 { 2189 size_t pos = 0, old_pos = 0, custom_ie_offset = 0; 2190 int i; 2191 2192 memset(ie_desc, 0, sizeof(*ie_desc)); 2193 2194 for (i = 0; i < NUM_NL80211_BANDS; i++) { 2195 if (bands_used & BIT(i)) { 2196 pos += ieee80211_build_preq_ies_band(sdata, 2197 buffer + pos, 2198 buffer_len - pos, 2199 ie, ie_len, i, 2200 rate_masks[i], 2201 chandef, 2202 &custom_ie_offset, 2203 flags); 2204 ie_desc->ies[i] = buffer + old_pos; 2205 ie_desc->len[i] = pos - old_pos; 2206 old_pos = pos; 2207 } 2208 } 2209 2210 /* add any remaining custom IEs */ 2211 if (ie && ie_len) { 2212 if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset, 2213 "not enough space for preq custom IEs\n")) 2214 return pos; 2215 memcpy(buffer + pos, ie + custom_ie_offset, 2216 ie_len - custom_ie_offset); 2217 ie_desc->common_ies = buffer + pos; 2218 ie_desc->common_ie_len = ie_len - custom_ie_offset; 2219 pos += ie_len - custom_ie_offset; 2220 } 2221 2222 return pos; 2223 }; 2224 2225 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 2226 const u8 *src, const u8 *dst, 2227 u32 ratemask, 2228 struct ieee80211_channel *chan, 2229 const u8 *ssid, size_t ssid_len, 2230 const u8 *ie, size_t ie_len, 2231 u32 flags) 2232 { 2233 struct ieee80211_local *local = sdata->local; 2234 struct cfg80211_chan_def chandef; 2235 struct sk_buff *skb; 2236 struct ieee80211_mgmt *mgmt; 2237 int ies_len; 2238 u32 rate_masks[NUM_NL80211_BANDS] = {}; 2239 struct ieee80211_scan_ies dummy_ie_desc; 2240 2241 /* 2242 * Do not send DS Channel parameter for directed probe requests 2243 * in order to maximize the chance that we get a response. Some 2244 * badly-behaved APs don't respond when this parameter is included. 2245 */ 2246 chandef.width = sdata->vif.bss_conf.chandef.width; 2247 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 2248 chandef.chan = NULL; 2249 else 2250 chandef.chan = chan; 2251 2252 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 2253 local->scan_ies_len + ie_len); 2254 if (!skb) 2255 return NULL; 2256 2257 rate_masks[chan->band] = ratemask; 2258 ies_len = ieee80211_build_preq_ies(sdata, skb_tail_pointer(skb), 2259 skb_tailroom(skb), &dummy_ie_desc, 2260 ie, ie_len, BIT(chan->band), 2261 rate_masks, &chandef, flags); 2262 skb_put(skb, ies_len); 2263 2264 if (dst) { 2265 mgmt = (struct ieee80211_mgmt *) skb->data; 2266 memcpy(mgmt->da, dst, ETH_ALEN); 2267 memcpy(mgmt->bssid, dst, ETH_ALEN); 2268 } 2269 2270 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 2271 2272 return skb; 2273 } 2274 2275 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 2276 struct ieee802_11_elems *elems, 2277 enum nl80211_band band, u32 *basic_rates) 2278 { 2279 struct ieee80211_supported_band *sband; 2280 size_t num_rates; 2281 u32 supp_rates, rate_flags; 2282 int i, j, shift; 2283 2284 sband = sdata->local->hw.wiphy->bands[band]; 2285 if (WARN_ON(!sband)) 2286 return 1; 2287 2288 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 2289 shift = ieee80211_vif_get_shift(&sdata->vif); 2290 2291 num_rates = sband->n_bitrates; 2292 supp_rates = 0; 2293 for (i = 0; i < elems->supp_rates_len + 2294 elems->ext_supp_rates_len; i++) { 2295 u8 rate = 0; 2296 int own_rate; 2297 bool is_basic; 2298 if (i < elems->supp_rates_len) 2299 rate = elems->supp_rates[i]; 2300 else if (elems->ext_supp_rates) 2301 rate = elems->ext_supp_rates 2302 [i - elems->supp_rates_len]; 2303 own_rate = 5 * (rate & 0x7f); 2304 is_basic = !!(rate & 0x80); 2305 2306 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 2307 continue; 2308 2309 for (j = 0; j < num_rates; j++) { 2310 int brate; 2311 if ((rate_flags & sband->bitrates[j].flags) 2312 != rate_flags) 2313 continue; 2314 2315 brate = DIV_ROUND_UP(sband->bitrates[j].bitrate, 2316 1 << shift); 2317 2318 if (brate == own_rate) { 2319 supp_rates |= BIT(j); 2320 if (basic_rates && is_basic) 2321 *basic_rates |= BIT(j); 2322 } 2323 } 2324 } 2325 return supp_rates; 2326 } 2327 2328 void ieee80211_stop_device(struct ieee80211_local *local) 2329 { 2330 local_bh_disable(); 2331 ieee80211_handle_queued_frames(local); 2332 local_bh_enable(); 2333 2334 ieee80211_led_radio(local, false); 2335 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 2336 2337 cancel_work_sync(&local->reconfig_filter); 2338 2339 flush_workqueue(local->workqueue); 2340 drv_stop(local); 2341 } 2342 2343 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 2344 bool aborted) 2345 { 2346 /* It's possible that we don't handle the scan completion in 2347 * time during suspend, so if it's still marked as completed 2348 * here, queue the work and flush it to clean things up. 2349 * Instead of calling the worker function directly here, we 2350 * really queue it to avoid potential races with other flows 2351 * scheduling the same work. 2352 */ 2353 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 2354 /* If coming from reconfiguration failure, abort the scan so 2355 * we don't attempt to continue a partial HW scan - which is 2356 * possible otherwise if (e.g.) the 2.4 GHz portion was the 2357 * completed scan, and a 5 GHz portion is still pending. 2358 */ 2359 if (aborted) 2360 set_bit(SCAN_ABORTED, &local->scanning); 2361 wiphy_delayed_work_queue(local->hw.wiphy, &local->scan_work, 0); 2362 wiphy_delayed_work_flush(local->hw.wiphy, &local->scan_work); 2363 } 2364 } 2365 2366 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 2367 { 2368 struct ieee80211_sub_if_data *sdata; 2369 struct ieee80211_chanctx *ctx; 2370 2371 /* 2372 * We get here if during resume the device can't be restarted properly. 2373 * We might also get here if this happens during HW reset, which is a 2374 * slightly different situation and we need to drop all connections in 2375 * the latter case. 2376 * 2377 * Ask cfg80211 to turn off all interfaces, this will result in more 2378 * warnings but at least we'll then get into a clean stopped state. 2379 */ 2380 2381 local->resuming = false; 2382 local->suspended = false; 2383 local->in_reconfig = false; 2384 local->reconfig_failure = true; 2385 2386 ieee80211_flush_completed_scan(local, true); 2387 2388 /* scheduled scan clearly can't be running any more, but tell 2389 * cfg80211 and clear local state 2390 */ 2391 ieee80211_sched_scan_end(local); 2392 2393 list_for_each_entry(sdata, &local->interfaces, list) 2394 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 2395 2396 /* Mark channel contexts as not being in the driver any more to avoid 2397 * removing them from the driver during the shutdown process... 2398 */ 2399 mutex_lock(&local->chanctx_mtx); 2400 list_for_each_entry(ctx, &local->chanctx_list, list) 2401 ctx->driver_present = false; 2402 mutex_unlock(&local->chanctx_mtx); 2403 } 2404 2405 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 2406 struct ieee80211_sub_if_data *sdata, 2407 struct ieee80211_link_data *link) 2408 { 2409 struct ieee80211_chanctx_conf *conf; 2410 struct ieee80211_chanctx *ctx; 2411 2412 if (!local->use_chanctx) 2413 return; 2414 2415 mutex_lock(&local->chanctx_mtx); 2416 conf = rcu_dereference_protected(link->conf->chanctx_conf, 2417 lockdep_is_held(&local->chanctx_mtx)); 2418 if (conf) { 2419 ctx = container_of(conf, struct ieee80211_chanctx, conf); 2420 drv_assign_vif_chanctx(local, sdata, link->conf, ctx); 2421 } 2422 mutex_unlock(&local->chanctx_mtx); 2423 } 2424 2425 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 2426 { 2427 struct ieee80211_local *local = sdata->local; 2428 struct sta_info *sta; 2429 2430 /* add STAs back */ 2431 mutex_lock(&local->sta_mtx); 2432 list_for_each_entry(sta, &local->sta_list, list) { 2433 enum ieee80211_sta_state state; 2434 2435 if (!sta->uploaded || sta->sdata != sdata) 2436 continue; 2437 2438 for (state = IEEE80211_STA_NOTEXIST; 2439 state < sta->sta_state; state++) 2440 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2441 state + 1)); 2442 } 2443 mutex_unlock(&local->sta_mtx); 2444 } 2445 2446 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 2447 { 2448 struct cfg80211_nan_func *func, **funcs; 2449 int res, id, i = 0; 2450 2451 res = drv_start_nan(sdata->local, sdata, 2452 &sdata->u.nan.conf); 2453 if (WARN_ON(res)) 2454 return res; 2455 2456 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 2457 sizeof(*funcs), 2458 GFP_KERNEL); 2459 if (!funcs) 2460 return -ENOMEM; 2461 2462 /* Add all the functions: 2463 * This is a little bit ugly. We need to call a potentially sleeping 2464 * callback for each NAN function, so we can't hold the spinlock. 2465 */ 2466 spin_lock_bh(&sdata->u.nan.func_lock); 2467 2468 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 2469 funcs[i++] = func; 2470 2471 spin_unlock_bh(&sdata->u.nan.func_lock); 2472 2473 for (i = 0; funcs[i]; i++) { 2474 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 2475 if (WARN_ON(res)) 2476 ieee80211_nan_func_terminated(&sdata->vif, 2477 funcs[i]->instance_id, 2478 NL80211_NAN_FUNC_TERM_REASON_ERROR, 2479 GFP_KERNEL); 2480 } 2481 2482 kfree(funcs); 2483 2484 return 0; 2485 } 2486 2487 static void ieee80211_reconfig_ap_links(struct ieee80211_local *local, 2488 struct ieee80211_sub_if_data *sdata, 2489 u64 changed) 2490 { 2491 int link_id; 2492 2493 for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { 2494 struct ieee80211_link_data *link; 2495 2496 if (!(sdata->vif.active_links & BIT(link_id))) 2497 continue; 2498 2499 link = sdata_dereference(sdata->link[link_id], sdata); 2500 if (!link) 2501 continue; 2502 2503 if (rcu_access_pointer(link->u.ap.beacon)) 2504 drv_start_ap(local, sdata, link->conf); 2505 2506 if (!link->conf->enable_beacon) 2507 continue; 2508 2509 changed |= BSS_CHANGED_BEACON | 2510 BSS_CHANGED_BEACON_ENABLED; 2511 2512 ieee80211_link_info_change_notify(sdata, link, changed); 2513 } 2514 } 2515 2516 int ieee80211_reconfig(struct ieee80211_local *local) 2517 { 2518 struct ieee80211_hw *hw = &local->hw; 2519 struct ieee80211_sub_if_data *sdata; 2520 struct ieee80211_chanctx *ctx; 2521 struct sta_info *sta; 2522 int res, i; 2523 bool reconfig_due_to_wowlan = false; 2524 struct ieee80211_sub_if_data *sched_scan_sdata; 2525 struct cfg80211_sched_scan_request *sched_scan_req; 2526 bool sched_scan_stopped = false; 2527 bool suspended = local->suspended; 2528 bool in_reconfig = false; 2529 2530 /* nothing to do if HW shouldn't run */ 2531 if (!local->open_count) 2532 goto wake_up; 2533 2534 #ifdef CONFIG_PM 2535 if (suspended) 2536 local->resuming = true; 2537 2538 if (local->wowlan) { 2539 /* 2540 * In the wowlan case, both mac80211 and the device 2541 * are functional when the resume op is called, so 2542 * clear local->suspended so the device could operate 2543 * normally (e.g. pass rx frames). 2544 */ 2545 local->suspended = false; 2546 res = drv_resume(local); 2547 local->wowlan = false; 2548 if (res < 0) { 2549 local->resuming = false; 2550 return res; 2551 } 2552 if (res == 0) 2553 goto wake_up; 2554 WARN_ON(res > 1); 2555 /* 2556 * res is 1, which means the driver requested 2557 * to go through a regular reset on wakeup. 2558 * restore local->suspended in this case. 2559 */ 2560 reconfig_due_to_wowlan = true; 2561 local->suspended = true; 2562 } 2563 #endif 2564 2565 /* 2566 * In case of hw_restart during suspend (without wowlan), 2567 * cancel restart work, as we are reconfiguring the device 2568 * anyway. 2569 * Note that restart_work is scheduled on a frozen workqueue, 2570 * so we can't deadlock in this case. 2571 */ 2572 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 2573 cancel_work_sync(&local->restart_work); 2574 2575 local->started = false; 2576 2577 /* 2578 * Upon resume hardware can sometimes be goofy due to 2579 * various platform / driver / bus issues, so restarting 2580 * the device may at times not work immediately. Propagate 2581 * the error. 2582 */ 2583 res = drv_start(local); 2584 if (res) { 2585 if (suspended) 2586 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 2587 else 2588 WARN(1, "Hardware became unavailable during restart.\n"); 2589 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2590 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2591 false); 2592 ieee80211_handle_reconfig_failure(local); 2593 return res; 2594 } 2595 2596 /* setup fragmentation threshold */ 2597 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 2598 2599 /* setup RTS threshold */ 2600 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 2601 2602 /* reset coverage class */ 2603 drv_set_coverage_class(local, hw->wiphy->coverage_class); 2604 2605 ieee80211_led_radio(local, true); 2606 ieee80211_mod_tpt_led_trig(local, 2607 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 2608 2609 /* add interfaces */ 2610 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 2611 if (sdata) { 2612 /* in HW restart it exists already */ 2613 WARN_ON(local->resuming); 2614 res = drv_add_interface(local, sdata); 2615 if (WARN_ON(res)) { 2616 RCU_INIT_POINTER(local->monitor_sdata, NULL); 2617 synchronize_net(); 2618 kfree(sdata); 2619 } 2620 } 2621 2622 list_for_each_entry(sdata, &local->interfaces, list) { 2623 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2624 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2625 ieee80211_sdata_running(sdata)) { 2626 res = drv_add_interface(local, sdata); 2627 if (WARN_ON(res)) 2628 break; 2629 } 2630 } 2631 2632 /* If adding any of the interfaces failed above, roll back and 2633 * report failure. 2634 */ 2635 if (res) { 2636 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 2637 list) 2638 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2639 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2640 ieee80211_sdata_running(sdata)) 2641 drv_remove_interface(local, sdata); 2642 ieee80211_handle_reconfig_failure(local); 2643 return res; 2644 } 2645 2646 /* add channel contexts */ 2647 if (local->use_chanctx) { 2648 mutex_lock(&local->chanctx_mtx); 2649 list_for_each_entry(ctx, &local->chanctx_list, list) 2650 if (ctx->replace_state != 2651 IEEE80211_CHANCTX_REPLACES_OTHER) 2652 WARN_ON(drv_add_chanctx(local, ctx)); 2653 mutex_unlock(&local->chanctx_mtx); 2654 2655 sdata = wiphy_dereference(local->hw.wiphy, 2656 local->monitor_sdata); 2657 if (sdata && ieee80211_sdata_running(sdata)) 2658 ieee80211_assign_chanctx(local, sdata, &sdata->deflink); 2659 } 2660 2661 /* reconfigure hardware */ 2662 ieee80211_hw_config(local, ~0); 2663 2664 ieee80211_configure_filter(local); 2665 2666 /* Finally also reconfigure all the BSS information */ 2667 list_for_each_entry(sdata, &local->interfaces, list) { 2668 /* common change flags for all interface types - link only */ 2669 u64 changed = BSS_CHANGED_ERP_CTS_PROT | 2670 BSS_CHANGED_ERP_PREAMBLE | 2671 BSS_CHANGED_ERP_SLOT | 2672 BSS_CHANGED_HT | 2673 BSS_CHANGED_BASIC_RATES | 2674 BSS_CHANGED_BEACON_INT | 2675 BSS_CHANGED_BSSID | 2676 BSS_CHANGED_CQM | 2677 BSS_CHANGED_QOS | 2678 BSS_CHANGED_TXPOWER | 2679 BSS_CHANGED_MCAST_RATE; 2680 struct ieee80211_link_data *link = NULL; 2681 unsigned int link_id; 2682 u32 active_links = 0; 2683 2684 if (!ieee80211_sdata_running(sdata)) 2685 continue; 2686 2687 sdata_lock(sdata); 2688 if (ieee80211_vif_is_mld(&sdata->vif)) { 2689 struct ieee80211_bss_conf *old[IEEE80211_MLD_MAX_NUM_LINKS] = { 2690 [0] = &sdata->vif.bss_conf, 2691 }; 2692 2693 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 2694 /* start with a single active link */ 2695 active_links = sdata->vif.active_links; 2696 link_id = ffs(active_links) - 1; 2697 sdata->vif.active_links = BIT(link_id); 2698 } 2699 2700 drv_change_vif_links(local, sdata, 0, 2701 sdata->vif.active_links, 2702 old); 2703 } 2704 2705 for (link_id = 0; 2706 link_id < ARRAY_SIZE(sdata->vif.link_conf); 2707 link_id++) { 2708 if (ieee80211_vif_is_mld(&sdata->vif) && 2709 !(sdata->vif.active_links & BIT(link_id))) 2710 continue; 2711 2712 link = sdata_dereference(sdata->link[link_id], sdata); 2713 if (!link) 2714 continue; 2715 2716 ieee80211_assign_chanctx(local, sdata, link); 2717 } 2718 2719 switch (sdata->vif.type) { 2720 case NL80211_IFTYPE_AP_VLAN: 2721 case NL80211_IFTYPE_MONITOR: 2722 break; 2723 case NL80211_IFTYPE_ADHOC: 2724 if (sdata->vif.cfg.ibss_joined) 2725 WARN_ON(drv_join_ibss(local, sdata)); 2726 fallthrough; 2727 default: 2728 ieee80211_reconfig_stations(sdata); 2729 fallthrough; 2730 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 2731 for (i = 0; i < IEEE80211_NUM_ACS; i++) 2732 drv_conf_tx(local, &sdata->deflink, i, 2733 &sdata->deflink.tx_conf[i]); 2734 break; 2735 } 2736 2737 if (sdata->vif.bss_conf.mu_mimo_owner) 2738 changed |= BSS_CHANGED_MU_GROUPS; 2739 2740 if (!ieee80211_vif_is_mld(&sdata->vif)) 2741 changed |= BSS_CHANGED_IDLE; 2742 2743 switch (sdata->vif.type) { 2744 case NL80211_IFTYPE_STATION: 2745 if (!ieee80211_vif_is_mld(&sdata->vif)) { 2746 changed |= BSS_CHANGED_ASSOC | 2747 BSS_CHANGED_ARP_FILTER | 2748 BSS_CHANGED_PS; 2749 2750 /* Re-send beacon info report to the driver */ 2751 if (sdata->deflink.u.mgd.have_beacon) 2752 changed |= BSS_CHANGED_BEACON_INFO; 2753 2754 if (sdata->vif.bss_conf.max_idle_period || 2755 sdata->vif.bss_conf.protected_keep_alive) 2756 changed |= BSS_CHANGED_KEEP_ALIVE; 2757 2758 if (sdata->vif.bss_conf.eht_puncturing) 2759 changed |= BSS_CHANGED_EHT_PUNCTURING; 2760 2761 ieee80211_bss_info_change_notify(sdata, 2762 changed); 2763 } else if (!WARN_ON(!link)) { 2764 ieee80211_link_info_change_notify(sdata, link, 2765 changed); 2766 changed = BSS_CHANGED_ASSOC | 2767 BSS_CHANGED_IDLE | 2768 BSS_CHANGED_PS | 2769 BSS_CHANGED_ARP_FILTER; 2770 ieee80211_vif_cfg_change_notify(sdata, changed); 2771 } 2772 break; 2773 case NL80211_IFTYPE_OCB: 2774 changed |= BSS_CHANGED_OCB; 2775 ieee80211_bss_info_change_notify(sdata, changed); 2776 break; 2777 case NL80211_IFTYPE_ADHOC: 2778 changed |= BSS_CHANGED_IBSS; 2779 fallthrough; 2780 case NL80211_IFTYPE_AP: 2781 changed |= BSS_CHANGED_P2P_PS; 2782 2783 if (ieee80211_vif_is_mld(&sdata->vif)) 2784 ieee80211_vif_cfg_change_notify(sdata, 2785 BSS_CHANGED_SSID); 2786 else 2787 changed |= BSS_CHANGED_SSID; 2788 2789 if (sdata->vif.bss_conf.ftm_responder == 1 && 2790 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2791 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2792 changed |= BSS_CHANGED_FTM_RESPONDER; 2793 2794 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2795 changed |= BSS_CHANGED_AP_PROBE_RESP; 2796 2797 if (ieee80211_vif_is_mld(&sdata->vif)) { 2798 ieee80211_reconfig_ap_links(local, 2799 sdata, 2800 changed); 2801 break; 2802 } 2803 2804 if (rcu_access_pointer(sdata->deflink.u.ap.beacon)) 2805 drv_start_ap(local, sdata, 2806 sdata->deflink.conf); 2807 } 2808 fallthrough; 2809 case NL80211_IFTYPE_MESH_POINT: 2810 if (sdata->vif.bss_conf.enable_beacon) { 2811 changed |= BSS_CHANGED_BEACON | 2812 BSS_CHANGED_BEACON_ENABLED; 2813 ieee80211_bss_info_change_notify(sdata, changed); 2814 } 2815 break; 2816 case NL80211_IFTYPE_NAN: 2817 res = ieee80211_reconfig_nan(sdata); 2818 if (res < 0) { 2819 sdata_unlock(sdata); 2820 ieee80211_handle_reconfig_failure(local); 2821 return res; 2822 } 2823 break; 2824 case NL80211_IFTYPE_AP_VLAN: 2825 case NL80211_IFTYPE_MONITOR: 2826 case NL80211_IFTYPE_P2P_DEVICE: 2827 /* nothing to do */ 2828 break; 2829 case NL80211_IFTYPE_UNSPECIFIED: 2830 case NUM_NL80211_IFTYPES: 2831 case NL80211_IFTYPE_P2P_CLIENT: 2832 case NL80211_IFTYPE_P2P_GO: 2833 case NL80211_IFTYPE_WDS: 2834 WARN_ON(1); 2835 break; 2836 } 2837 sdata_unlock(sdata); 2838 2839 if (active_links) 2840 ieee80211_set_active_links(&sdata->vif, active_links); 2841 } 2842 2843 ieee80211_recalc_ps(local); 2844 2845 /* 2846 * The sta might be in psm against the ap (e.g. because 2847 * this was the state before a hw restart), so we 2848 * explicitly send a null packet in order to make sure 2849 * it'll sync against the ap (and get out of psm). 2850 */ 2851 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2852 list_for_each_entry(sdata, &local->interfaces, list) { 2853 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2854 continue; 2855 if (!sdata->u.mgd.associated) 2856 continue; 2857 2858 ieee80211_send_nullfunc(local, sdata, false); 2859 } 2860 } 2861 2862 /* APs are now beaconing, add back stations */ 2863 list_for_each_entry(sdata, &local->interfaces, list) { 2864 if (!ieee80211_sdata_running(sdata)) 2865 continue; 2866 2867 sdata_lock(sdata); 2868 switch (sdata->vif.type) { 2869 case NL80211_IFTYPE_AP_VLAN: 2870 case NL80211_IFTYPE_AP: 2871 ieee80211_reconfig_stations(sdata); 2872 break; 2873 default: 2874 break; 2875 } 2876 sdata_unlock(sdata); 2877 } 2878 2879 /* add back keys */ 2880 list_for_each_entry(sdata, &local->interfaces, list) 2881 ieee80211_reenable_keys(sdata); 2882 2883 /* Reconfigure sched scan if it was interrupted by FW restart */ 2884 mutex_lock(&local->mtx); 2885 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2886 lockdep_is_held(&local->mtx)); 2887 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2888 lockdep_is_held(&local->mtx)); 2889 if (sched_scan_sdata && sched_scan_req) 2890 /* 2891 * Sched scan stopped, but we don't want to report it. Instead, 2892 * we're trying to reschedule. However, if more than one scan 2893 * plan was set, we cannot reschedule since we don't know which 2894 * scan plan was currently running (and some scan plans may have 2895 * already finished). 2896 */ 2897 if (sched_scan_req->n_scan_plans > 1 || 2898 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2899 sched_scan_req)) { 2900 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2901 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2902 sched_scan_stopped = true; 2903 } 2904 mutex_unlock(&local->mtx); 2905 2906 if (sched_scan_stopped) 2907 cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0); 2908 2909 wake_up: 2910 2911 if (local->monitors == local->open_count && local->monitors > 0) 2912 ieee80211_add_virtual_monitor(local); 2913 2914 /* 2915 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2916 * sessions can be established after a resume. 2917 * 2918 * Also tear down aggregation sessions since reconfiguring 2919 * them in a hardware restart scenario is not easily done 2920 * right now, and the hardware will have lost information 2921 * about the sessions, but we and the AP still think they 2922 * are active. This is really a workaround though. 2923 */ 2924 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2925 mutex_lock(&local->sta_mtx); 2926 2927 list_for_each_entry(sta, &local->sta_list, list) { 2928 if (!local->resuming) 2929 ieee80211_sta_tear_down_BA_sessions( 2930 sta, AGG_STOP_LOCAL_REQUEST); 2931 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2932 } 2933 2934 mutex_unlock(&local->sta_mtx); 2935 } 2936 2937 /* 2938 * If this is for hw restart things are still running. 2939 * We may want to change that later, however. 2940 */ 2941 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2942 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2943 2944 if (local->in_reconfig) { 2945 in_reconfig = local->in_reconfig; 2946 local->in_reconfig = false; 2947 barrier(); 2948 2949 /* Restart deferred ROCs */ 2950 mutex_lock(&local->mtx); 2951 ieee80211_start_next_roc(local); 2952 mutex_unlock(&local->mtx); 2953 2954 /* Requeue all works */ 2955 list_for_each_entry(sdata, &local->interfaces, list) 2956 wiphy_work_queue(local->hw.wiphy, &sdata->work); 2957 } 2958 2959 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2960 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2961 false); 2962 2963 if (in_reconfig) { 2964 list_for_each_entry(sdata, &local->interfaces, list) { 2965 if (!ieee80211_sdata_running(sdata)) 2966 continue; 2967 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2968 ieee80211_sta_restart(sdata); 2969 } 2970 } 2971 2972 if (!suspended) 2973 return 0; 2974 2975 #ifdef CONFIG_PM 2976 /* first set suspended false, then resuming */ 2977 local->suspended = false; 2978 mb(); 2979 local->resuming = false; 2980 2981 ieee80211_flush_completed_scan(local, false); 2982 2983 if (local->open_count && !reconfig_due_to_wowlan) 2984 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2985 2986 list_for_each_entry(sdata, &local->interfaces, list) { 2987 if (!ieee80211_sdata_running(sdata)) 2988 continue; 2989 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2990 ieee80211_sta_restart(sdata); 2991 } 2992 2993 mod_timer(&local->sta_cleanup, jiffies + 1); 2994 #else 2995 WARN_ON(1); 2996 #endif 2997 2998 return 0; 2999 } 3000 3001 static void ieee80211_reconfig_disconnect(struct ieee80211_vif *vif, u8 flag) 3002 { 3003 struct ieee80211_sub_if_data *sdata; 3004 struct ieee80211_local *local; 3005 struct ieee80211_key *key; 3006 3007 if (WARN_ON(!vif)) 3008 return; 3009 3010 sdata = vif_to_sdata(vif); 3011 local = sdata->local; 3012 3013 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_RESUME && 3014 !local->resuming)) 3015 return; 3016 3017 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_HW_RESTART && 3018 !local->in_reconfig)) 3019 return; 3020 3021 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 3022 return; 3023 3024 sdata->flags |= flag; 3025 3026 mutex_lock(&local->key_mtx); 3027 list_for_each_entry(key, &sdata->key_list, list) 3028 key->flags |= KEY_FLAG_TAINTED; 3029 mutex_unlock(&local->key_mtx); 3030 } 3031 3032 void ieee80211_hw_restart_disconnect(struct ieee80211_vif *vif) 3033 { 3034 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_HW_RESTART); 3035 } 3036 EXPORT_SYMBOL_GPL(ieee80211_hw_restart_disconnect); 3037 3038 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 3039 { 3040 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_RESUME); 3041 } 3042 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 3043 3044 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata, 3045 struct ieee80211_link_data *link) 3046 { 3047 struct ieee80211_local *local = sdata->local; 3048 struct ieee80211_chanctx_conf *chanctx_conf; 3049 struct ieee80211_chanctx *chanctx; 3050 3051 mutex_lock(&local->chanctx_mtx); 3052 3053 chanctx_conf = rcu_dereference_protected(link->conf->chanctx_conf, 3054 lockdep_is_held(&local->chanctx_mtx)); 3055 3056 /* 3057 * This function can be called from a work, thus it may be possible 3058 * that the chanctx_conf is removed (due to a disconnection, for 3059 * example). 3060 * So nothing should be done in such case. 3061 */ 3062 if (!chanctx_conf) 3063 goto unlock; 3064 3065 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 3066 ieee80211_recalc_smps_chanctx(local, chanctx); 3067 unlock: 3068 mutex_unlock(&local->chanctx_mtx); 3069 } 3070 3071 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata, 3072 int link_id) 3073 { 3074 struct ieee80211_local *local = sdata->local; 3075 struct ieee80211_chanctx_conf *chanctx_conf; 3076 struct ieee80211_chanctx *chanctx; 3077 int i; 3078 3079 mutex_lock(&local->chanctx_mtx); 3080 3081 for (i = 0; i < ARRAY_SIZE(sdata->vif.link_conf); i++) { 3082 struct ieee80211_bss_conf *bss_conf; 3083 3084 if (link_id >= 0 && link_id != i) 3085 continue; 3086 3087 rcu_read_lock(); 3088 bss_conf = rcu_dereference(sdata->vif.link_conf[i]); 3089 if (!bss_conf) { 3090 rcu_read_unlock(); 3091 continue; 3092 } 3093 3094 chanctx_conf = rcu_dereference_protected(bss_conf->chanctx_conf, 3095 lockdep_is_held(&local->chanctx_mtx)); 3096 /* 3097 * Since we hold the chanctx_mtx (checked above) 3098 * we can take the chanctx_conf pointer out of the 3099 * RCU critical section, it cannot go away without 3100 * the mutex. Just the way we reached it could - in 3101 * theory - go away, but we don't really care and 3102 * it really shouldn't happen anyway. 3103 */ 3104 rcu_read_unlock(); 3105 3106 if (!chanctx_conf) 3107 goto unlock; 3108 3109 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, 3110 conf); 3111 ieee80211_recalc_chanctx_min_def(local, chanctx, NULL); 3112 } 3113 unlock: 3114 mutex_unlock(&local->chanctx_mtx); 3115 } 3116 3117 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 3118 { 3119 size_t pos = offset; 3120 3121 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 3122 pos += 2 + ies[pos + 1]; 3123 3124 return pos; 3125 } 3126 3127 u8 *ieee80211_ie_build_s1g_cap(u8 *pos, struct ieee80211_sta_s1g_cap *s1g_cap) 3128 { 3129 *pos++ = WLAN_EID_S1G_CAPABILITIES; 3130 *pos++ = sizeof(struct ieee80211_s1g_cap); 3131 memset(pos, 0, sizeof(struct ieee80211_s1g_cap)); 3132 3133 memcpy(pos, &s1g_cap->cap, sizeof(s1g_cap->cap)); 3134 pos += sizeof(s1g_cap->cap); 3135 3136 memcpy(pos, &s1g_cap->nss_mcs, sizeof(s1g_cap->nss_mcs)); 3137 pos += sizeof(s1g_cap->nss_mcs); 3138 3139 return pos; 3140 } 3141 3142 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 3143 u16 cap) 3144 { 3145 __le16 tmp; 3146 3147 *pos++ = WLAN_EID_HT_CAPABILITY; 3148 *pos++ = sizeof(struct ieee80211_ht_cap); 3149 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 3150 3151 /* capability flags */ 3152 tmp = cpu_to_le16(cap); 3153 memcpy(pos, &tmp, sizeof(u16)); 3154 pos += sizeof(u16); 3155 3156 /* AMPDU parameters */ 3157 *pos++ = ht_cap->ampdu_factor | 3158 (ht_cap->ampdu_density << 3159 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 3160 3161 /* MCS set */ 3162 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 3163 pos += sizeof(ht_cap->mcs); 3164 3165 /* extended capabilities */ 3166 pos += sizeof(__le16); 3167 3168 /* BF capabilities */ 3169 pos += sizeof(__le32); 3170 3171 /* antenna selection */ 3172 pos += sizeof(u8); 3173 3174 return pos; 3175 } 3176 3177 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 3178 u32 cap) 3179 { 3180 __le32 tmp; 3181 3182 *pos++ = WLAN_EID_VHT_CAPABILITY; 3183 *pos++ = sizeof(struct ieee80211_vht_cap); 3184 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 3185 3186 /* capability flags */ 3187 tmp = cpu_to_le32(cap); 3188 memcpy(pos, &tmp, sizeof(u32)); 3189 pos += sizeof(u32); 3190 3191 /* VHT MCS set */ 3192 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 3193 pos += sizeof(vht_cap->vht_mcs); 3194 3195 return pos; 3196 } 3197 3198 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 3199 { 3200 const struct ieee80211_sta_he_cap *he_cap; 3201 struct ieee80211_supported_band *sband; 3202 u8 n; 3203 3204 sband = ieee80211_get_sband(sdata); 3205 if (!sband) 3206 return 0; 3207 3208 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 3209 if (!he_cap) 3210 return 0; 3211 3212 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 3213 return 2 + 1 + 3214 sizeof(he_cap->he_cap_elem) + n + 3215 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 3216 he_cap->he_cap_elem.phy_cap_info); 3217 } 3218 3219 u8 *ieee80211_ie_build_he_cap(ieee80211_conn_flags_t disable_flags, u8 *pos, 3220 const struct ieee80211_sta_he_cap *he_cap, 3221 u8 *end) 3222 { 3223 struct ieee80211_he_cap_elem elem; 3224 u8 n; 3225 u8 ie_len; 3226 u8 *orig_pos = pos; 3227 3228 /* Make sure we have place for the IE */ 3229 /* 3230 * TODO: the 1 added is because this temporarily is under the EXTENSION 3231 * IE. Get rid of it when it moves. 3232 */ 3233 if (!he_cap) 3234 return orig_pos; 3235 3236 /* modify on stack first to calculate 'n' and 'ie_len' correctly */ 3237 elem = he_cap->he_cap_elem; 3238 3239 if (disable_flags & IEEE80211_CONN_DISABLE_40MHZ) 3240 elem.phy_cap_info[0] &= 3241 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | 3242 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G); 3243 3244 if (disable_flags & IEEE80211_CONN_DISABLE_160MHZ) 3245 elem.phy_cap_info[0] &= 3246 ~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 3247 3248 if (disable_flags & IEEE80211_CONN_DISABLE_80P80MHZ) 3249 elem.phy_cap_info[0] &= 3250 ~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 3251 3252 n = ieee80211_he_mcs_nss_size(&elem); 3253 ie_len = 2 + 1 + 3254 sizeof(he_cap->he_cap_elem) + n + 3255 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 3256 he_cap->he_cap_elem.phy_cap_info); 3257 3258 if ((end - pos) < ie_len) 3259 return orig_pos; 3260 3261 *pos++ = WLAN_EID_EXTENSION; 3262 pos++; /* We'll set the size later below */ 3263 *pos++ = WLAN_EID_EXT_HE_CAPABILITY; 3264 3265 /* Fixed data */ 3266 memcpy(pos, &elem, sizeof(elem)); 3267 pos += sizeof(elem); 3268 3269 memcpy(pos, &he_cap->he_mcs_nss_supp, n); 3270 pos += n; 3271 3272 /* Check if PPE Threshold should be present */ 3273 if ((he_cap->he_cap_elem.phy_cap_info[6] & 3274 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 3275 goto end; 3276 3277 /* 3278 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 3279 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 3280 */ 3281 n = hweight8(he_cap->ppe_thres[0] & 3282 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 3283 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 3284 IEEE80211_PPE_THRES_NSS_POS)); 3285 3286 /* 3287 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 3288 * total size. 3289 */ 3290 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 3291 n = DIV_ROUND_UP(n, 8); 3292 3293 /* Copy PPE Thresholds */ 3294 memcpy(pos, &he_cap->ppe_thres, n); 3295 pos += n; 3296 3297 end: 3298 orig_pos[1] = (pos - orig_pos) - 2; 3299 return pos; 3300 } 3301 3302 void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata, 3303 enum ieee80211_smps_mode smps_mode, 3304 struct sk_buff *skb) 3305 { 3306 struct ieee80211_supported_band *sband; 3307 const struct ieee80211_sband_iftype_data *iftd; 3308 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3309 u8 *pos; 3310 u16 cap; 3311 3312 if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy, 3313 BIT(NL80211_BAND_6GHZ), 3314 IEEE80211_CHAN_NO_HE)) 3315 return; 3316 3317 sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3318 3319 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 3320 if (!iftd) 3321 return; 3322 3323 /* Check for device HE 6 GHz capability before adding element */ 3324 if (!iftd->he_6ghz_capa.capa) 3325 return; 3326 3327 cap = le16_to_cpu(iftd->he_6ghz_capa.capa); 3328 cap &= ~IEEE80211_HE_6GHZ_CAP_SM_PS; 3329 3330 switch (smps_mode) { 3331 case IEEE80211_SMPS_AUTOMATIC: 3332 case IEEE80211_SMPS_NUM_MODES: 3333 WARN_ON(1); 3334 fallthrough; 3335 case IEEE80211_SMPS_OFF: 3336 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 3337 IEEE80211_HE_6GHZ_CAP_SM_PS); 3338 break; 3339 case IEEE80211_SMPS_STATIC: 3340 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 3341 IEEE80211_HE_6GHZ_CAP_SM_PS); 3342 break; 3343 case IEEE80211_SMPS_DYNAMIC: 3344 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 3345 IEEE80211_HE_6GHZ_CAP_SM_PS); 3346 break; 3347 } 3348 3349 pos = skb_put(skb, 2 + 1 + sizeof(cap)); 3350 ieee80211_write_he_6ghz_cap(pos, cpu_to_le16(cap), 3351 pos + 2 + 1 + sizeof(cap)); 3352 } 3353 3354 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 3355 const struct cfg80211_chan_def *chandef, 3356 u16 prot_mode, bool rifs_mode) 3357 { 3358 struct ieee80211_ht_operation *ht_oper; 3359 /* Build HT Information */ 3360 *pos++ = WLAN_EID_HT_OPERATION; 3361 *pos++ = sizeof(struct ieee80211_ht_operation); 3362 ht_oper = (struct ieee80211_ht_operation *)pos; 3363 ht_oper->primary_chan = ieee80211_frequency_to_channel( 3364 chandef->chan->center_freq); 3365 switch (chandef->width) { 3366 case NL80211_CHAN_WIDTH_160: 3367 case NL80211_CHAN_WIDTH_80P80: 3368 case NL80211_CHAN_WIDTH_80: 3369 case NL80211_CHAN_WIDTH_40: 3370 if (chandef->center_freq1 > chandef->chan->center_freq) 3371 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3372 else 3373 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3374 break; 3375 case NL80211_CHAN_WIDTH_320: 3376 /* HT information element should not be included on 6GHz */ 3377 WARN_ON(1); 3378 return pos; 3379 default: 3380 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 3381 break; 3382 } 3383 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 3384 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 3385 chandef->width != NL80211_CHAN_WIDTH_20) 3386 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 3387 3388 if (rifs_mode) 3389 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 3390 3391 ht_oper->operation_mode = cpu_to_le16(prot_mode); 3392 ht_oper->stbc_param = 0x0000; 3393 3394 /* It seems that Basic MCS set and Supported MCS set 3395 are identical for the first 10 bytes */ 3396 memset(&ht_oper->basic_set, 0, 16); 3397 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 3398 3399 return pos + sizeof(struct ieee80211_ht_operation); 3400 } 3401 3402 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 3403 const struct cfg80211_chan_def *chandef) 3404 { 3405 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 3406 *pos++ = 3; /* IE length */ 3407 /* New channel width */ 3408 switch (chandef->width) { 3409 case NL80211_CHAN_WIDTH_80: 3410 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 3411 break; 3412 case NL80211_CHAN_WIDTH_160: 3413 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 3414 break; 3415 case NL80211_CHAN_WIDTH_80P80: 3416 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 3417 break; 3418 case NL80211_CHAN_WIDTH_320: 3419 /* The behavior is not defined for 320 MHz channels */ 3420 WARN_ON(1); 3421 fallthrough; 3422 default: 3423 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 3424 } 3425 3426 /* new center frequency segment 0 */ 3427 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 3428 /* new center frequency segment 1 */ 3429 if (chandef->center_freq2) 3430 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 3431 else 3432 *pos++ = 0; 3433 } 3434 3435 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 3436 const struct cfg80211_chan_def *chandef) 3437 { 3438 struct ieee80211_vht_operation *vht_oper; 3439 3440 *pos++ = WLAN_EID_VHT_OPERATION; 3441 *pos++ = sizeof(struct ieee80211_vht_operation); 3442 vht_oper = (struct ieee80211_vht_operation *)pos; 3443 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 3444 chandef->center_freq1); 3445 if (chandef->center_freq2) 3446 vht_oper->center_freq_seg1_idx = 3447 ieee80211_frequency_to_channel(chandef->center_freq2); 3448 else 3449 vht_oper->center_freq_seg1_idx = 0x00; 3450 3451 switch (chandef->width) { 3452 case NL80211_CHAN_WIDTH_160: 3453 /* 3454 * Convert 160 MHz channel width to new style as interop 3455 * workaround. 3456 */ 3457 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3458 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 3459 if (chandef->chan->center_freq < chandef->center_freq1) 3460 vht_oper->center_freq_seg0_idx -= 8; 3461 else 3462 vht_oper->center_freq_seg0_idx += 8; 3463 break; 3464 case NL80211_CHAN_WIDTH_80P80: 3465 /* 3466 * Convert 80+80 MHz channel width to new style as interop 3467 * workaround. 3468 */ 3469 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3470 break; 3471 case NL80211_CHAN_WIDTH_80: 3472 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3473 break; 3474 case NL80211_CHAN_WIDTH_320: 3475 /* VHT information element should not be included on 6GHz */ 3476 WARN_ON(1); 3477 return pos; 3478 default: 3479 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 3480 break; 3481 } 3482 3483 /* don't require special VHT peer rates */ 3484 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 3485 3486 return pos + sizeof(struct ieee80211_vht_operation); 3487 } 3488 3489 u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef) 3490 { 3491 struct ieee80211_he_operation *he_oper; 3492 struct ieee80211_he_6ghz_oper *he_6ghz_op; 3493 u32 he_oper_params; 3494 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 3495 3496 if (chandef->chan->band == NL80211_BAND_6GHZ) 3497 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 3498 3499 *pos++ = WLAN_EID_EXTENSION; 3500 *pos++ = ie_len; 3501 *pos++ = WLAN_EID_EXT_HE_OPERATION; 3502 3503 he_oper_params = 0; 3504 he_oper_params |= u32_encode_bits(1023, /* disabled */ 3505 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 3506 he_oper_params |= u32_encode_bits(1, 3507 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 3508 he_oper_params |= u32_encode_bits(1, 3509 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 3510 if (chandef->chan->band == NL80211_BAND_6GHZ) 3511 he_oper_params |= u32_encode_bits(1, 3512 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 3513 3514 he_oper = (struct ieee80211_he_operation *)pos; 3515 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 3516 3517 /* don't require special HE peer rates */ 3518 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 3519 pos += sizeof(struct ieee80211_he_operation); 3520 3521 if (chandef->chan->band != NL80211_BAND_6GHZ) 3522 goto out; 3523 3524 /* TODO add VHT operational */ 3525 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 3526 he_6ghz_op->minrate = 6; /* 6 Mbps */ 3527 he_6ghz_op->primary = 3528 ieee80211_frequency_to_channel(chandef->chan->center_freq); 3529 he_6ghz_op->ccfs0 = 3530 ieee80211_frequency_to_channel(chandef->center_freq1); 3531 if (chandef->center_freq2) 3532 he_6ghz_op->ccfs1 = 3533 ieee80211_frequency_to_channel(chandef->center_freq2); 3534 else 3535 he_6ghz_op->ccfs1 = 0; 3536 3537 switch (chandef->width) { 3538 case NL80211_CHAN_WIDTH_320: 3539 /* 3540 * TODO: mesh operation is not defined over 6GHz 320 MHz 3541 * channels. 3542 */ 3543 WARN_ON(1); 3544 break; 3545 case NL80211_CHAN_WIDTH_160: 3546 /* Convert 160 MHz channel width to new style as interop 3547 * workaround. 3548 */ 3549 he_6ghz_op->control = 3550 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3551 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 3552 if (chandef->chan->center_freq < chandef->center_freq1) 3553 he_6ghz_op->ccfs0 -= 8; 3554 else 3555 he_6ghz_op->ccfs0 += 8; 3556 fallthrough; 3557 case NL80211_CHAN_WIDTH_80P80: 3558 he_6ghz_op->control = 3559 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3560 break; 3561 case NL80211_CHAN_WIDTH_80: 3562 he_6ghz_op->control = 3563 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 3564 break; 3565 case NL80211_CHAN_WIDTH_40: 3566 he_6ghz_op->control = 3567 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 3568 break; 3569 default: 3570 he_6ghz_op->control = 3571 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 3572 break; 3573 } 3574 3575 pos += sizeof(struct ieee80211_he_6ghz_oper); 3576 3577 out: 3578 return pos; 3579 } 3580 3581 u8 *ieee80211_ie_build_eht_oper(u8 *pos, struct cfg80211_chan_def *chandef, 3582 const struct ieee80211_sta_eht_cap *eht_cap) 3583 3584 { 3585 const struct ieee80211_eht_mcs_nss_supp_20mhz_only *eht_mcs_nss = 3586 &eht_cap->eht_mcs_nss_supp.only_20mhz; 3587 struct ieee80211_eht_operation *eht_oper; 3588 struct ieee80211_eht_operation_info *eht_oper_info; 3589 u8 eht_oper_len = offsetof(struct ieee80211_eht_operation, optional); 3590 u8 eht_oper_info_len = 3591 offsetof(struct ieee80211_eht_operation_info, optional); 3592 u8 chan_width = 0; 3593 3594 *pos++ = WLAN_EID_EXTENSION; 3595 *pos++ = 1 + eht_oper_len + eht_oper_info_len; 3596 *pos++ = WLAN_EID_EXT_EHT_OPERATION; 3597 3598 eht_oper = (struct ieee80211_eht_operation *)pos; 3599 3600 memcpy(&eht_oper->basic_mcs_nss, eht_mcs_nss, sizeof(*eht_mcs_nss)); 3601 eht_oper->params |= IEEE80211_EHT_OPER_INFO_PRESENT; 3602 pos += eht_oper_len; 3603 3604 eht_oper_info = 3605 (struct ieee80211_eht_operation_info *)eht_oper->optional; 3606 3607 eht_oper_info->ccfs0 = 3608 ieee80211_frequency_to_channel(chandef->center_freq1); 3609 if (chandef->center_freq2) 3610 eht_oper_info->ccfs1 = 3611 ieee80211_frequency_to_channel(chandef->center_freq2); 3612 else 3613 eht_oper_info->ccfs1 = 0; 3614 3615 switch (chandef->width) { 3616 case NL80211_CHAN_WIDTH_320: 3617 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ; 3618 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 3619 if (chandef->chan->center_freq < chandef->center_freq1) 3620 eht_oper_info->ccfs0 -= 16; 3621 else 3622 eht_oper_info->ccfs0 += 16; 3623 break; 3624 case NL80211_CHAN_WIDTH_160: 3625 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 3626 if (chandef->chan->center_freq < chandef->center_freq1) 3627 eht_oper_info->ccfs0 -= 8; 3628 else 3629 eht_oper_info->ccfs0 += 8; 3630 fallthrough; 3631 case NL80211_CHAN_WIDTH_80P80: 3632 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ; 3633 break; 3634 case NL80211_CHAN_WIDTH_80: 3635 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ; 3636 break; 3637 case NL80211_CHAN_WIDTH_40: 3638 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ; 3639 break; 3640 default: 3641 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ; 3642 break; 3643 } 3644 eht_oper_info->control = chan_width; 3645 pos += eht_oper_info_len; 3646 3647 /* TODO: eht_oper_info->optional */ 3648 3649 return pos; 3650 } 3651 3652 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 3653 struct cfg80211_chan_def *chandef) 3654 { 3655 enum nl80211_channel_type channel_type; 3656 3657 if (!ht_oper) 3658 return false; 3659 3660 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 3661 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 3662 channel_type = NL80211_CHAN_HT20; 3663 break; 3664 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 3665 channel_type = NL80211_CHAN_HT40PLUS; 3666 break; 3667 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 3668 channel_type = NL80211_CHAN_HT40MINUS; 3669 break; 3670 default: 3671 return false; 3672 } 3673 3674 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 3675 return true; 3676 } 3677 3678 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 3679 const struct ieee80211_vht_operation *oper, 3680 const struct ieee80211_ht_operation *htop, 3681 struct cfg80211_chan_def *chandef) 3682 { 3683 struct cfg80211_chan_def new = *chandef; 3684 int cf0, cf1; 3685 int ccfs0, ccfs1, ccfs2; 3686 int ccf0, ccf1; 3687 u32 vht_cap; 3688 bool support_80_80 = false; 3689 bool support_160 = false; 3690 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 3691 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 3692 u8 supp_chwidth = u32_get_bits(vht_cap_info, 3693 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 3694 3695 if (!oper || !htop) 3696 return false; 3697 3698 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 3699 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 3700 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 3701 support_80_80 = ((vht_cap & 3702 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 3703 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 3704 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 3705 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 3706 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 3707 ccfs0 = oper->center_freq_seg0_idx; 3708 ccfs1 = oper->center_freq_seg1_idx; 3709 ccfs2 = (le16_to_cpu(htop->operation_mode) & 3710 IEEE80211_HT_OP_MODE_CCFS2_MASK) 3711 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 3712 3713 ccf0 = ccfs0; 3714 3715 /* if not supported, parse as though we didn't understand it */ 3716 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 3717 ext_nss_bw_supp = 0; 3718 3719 /* 3720 * Cf. IEEE 802.11 Table 9-250 3721 * 3722 * We really just consider that because it's inefficient to connect 3723 * at a higher bandwidth than we'll actually be able to use. 3724 */ 3725 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 3726 default: 3727 case 0x00: 3728 ccf1 = 0; 3729 support_160 = false; 3730 support_80_80 = false; 3731 break; 3732 case 0x01: 3733 support_80_80 = false; 3734 fallthrough; 3735 case 0x02: 3736 case 0x03: 3737 ccf1 = ccfs2; 3738 break; 3739 case 0x10: 3740 ccf1 = ccfs1; 3741 break; 3742 case 0x11: 3743 case 0x12: 3744 if (!ccfs1) 3745 ccf1 = ccfs2; 3746 else 3747 ccf1 = ccfs1; 3748 break; 3749 case 0x13: 3750 case 0x20: 3751 case 0x23: 3752 ccf1 = ccfs1; 3753 break; 3754 } 3755 3756 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3757 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3758 3759 switch (oper->chan_width) { 3760 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3761 /* just use HT information directly */ 3762 break; 3763 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3764 new.width = NL80211_CHAN_WIDTH_80; 3765 new.center_freq1 = cf0; 3766 /* If needed, adjust based on the newer interop workaround. */ 3767 if (ccf1) { 3768 unsigned int diff; 3769 3770 diff = abs(ccf1 - ccf0); 3771 if ((diff == 8) && support_160) { 3772 new.width = NL80211_CHAN_WIDTH_160; 3773 new.center_freq1 = cf1; 3774 } else if ((diff > 8) && support_80_80) { 3775 new.width = NL80211_CHAN_WIDTH_80P80; 3776 new.center_freq2 = cf1; 3777 } 3778 } 3779 break; 3780 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3781 /* deprecated encoding */ 3782 new.width = NL80211_CHAN_WIDTH_160; 3783 new.center_freq1 = cf0; 3784 break; 3785 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3786 /* deprecated encoding */ 3787 new.width = NL80211_CHAN_WIDTH_80P80; 3788 new.center_freq1 = cf0; 3789 new.center_freq2 = cf1; 3790 break; 3791 default: 3792 return false; 3793 } 3794 3795 if (!cfg80211_chandef_valid(&new)) 3796 return false; 3797 3798 *chandef = new; 3799 return true; 3800 } 3801 3802 void ieee80211_chandef_eht_oper(const struct ieee80211_eht_operation *eht_oper, 3803 bool support_160, bool support_320, 3804 struct cfg80211_chan_def *chandef) 3805 { 3806 struct ieee80211_eht_operation_info *info = (void *)eht_oper->optional; 3807 3808 chandef->center_freq1 = 3809 ieee80211_channel_to_frequency(info->ccfs0, 3810 chandef->chan->band); 3811 3812 switch (u8_get_bits(info->control, 3813 IEEE80211_EHT_OPER_CHAN_WIDTH)) { 3814 case IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ: 3815 chandef->width = NL80211_CHAN_WIDTH_20; 3816 break; 3817 case IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ: 3818 chandef->width = NL80211_CHAN_WIDTH_40; 3819 break; 3820 case IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ: 3821 chandef->width = NL80211_CHAN_WIDTH_80; 3822 break; 3823 case IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ: 3824 if (support_160) { 3825 chandef->width = NL80211_CHAN_WIDTH_160; 3826 chandef->center_freq1 = 3827 ieee80211_channel_to_frequency(info->ccfs1, 3828 chandef->chan->band); 3829 } else { 3830 chandef->width = NL80211_CHAN_WIDTH_80; 3831 } 3832 break; 3833 case IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ: 3834 if (support_320) { 3835 chandef->width = NL80211_CHAN_WIDTH_320; 3836 chandef->center_freq1 = 3837 ieee80211_channel_to_frequency(info->ccfs1, 3838 chandef->chan->band); 3839 } else if (support_160) { 3840 chandef->width = NL80211_CHAN_WIDTH_160; 3841 } else { 3842 chandef->width = NL80211_CHAN_WIDTH_80; 3843 3844 if (chandef->center_freq1 > chandef->chan->center_freq) 3845 chandef->center_freq1 -= 40; 3846 else 3847 chandef->center_freq1 += 40; 3848 } 3849 break; 3850 } 3851 } 3852 3853 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata, 3854 const struct ieee80211_he_operation *he_oper, 3855 const struct ieee80211_eht_operation *eht_oper, 3856 struct cfg80211_chan_def *chandef) 3857 { 3858 struct ieee80211_local *local = sdata->local; 3859 struct ieee80211_supported_band *sband; 3860 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3861 const struct ieee80211_sta_he_cap *he_cap; 3862 const struct ieee80211_sta_eht_cap *eht_cap; 3863 struct cfg80211_chan_def he_chandef = *chandef; 3864 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3865 struct ieee80211_bss_conf *bss_conf = &sdata->vif.bss_conf; 3866 bool support_80_80, support_160, support_320; 3867 u8 he_phy_cap, eht_phy_cap; 3868 u32 freq; 3869 3870 if (chandef->chan->band != NL80211_BAND_6GHZ) 3871 return true; 3872 3873 sband = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3874 3875 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 3876 if (!he_cap) { 3877 sdata_info(sdata, "Missing iftype sband data/HE cap"); 3878 return false; 3879 } 3880 3881 he_phy_cap = he_cap->he_cap_elem.phy_cap_info[0]; 3882 support_160 = 3883 he_phy_cap & 3884 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 3885 support_80_80 = 3886 he_phy_cap & 3887 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 3888 3889 if (!he_oper) { 3890 sdata_info(sdata, 3891 "HE is not advertised on (on %d MHz), expect issues\n", 3892 chandef->chan->center_freq); 3893 return false; 3894 } 3895 3896 eht_cap = ieee80211_get_eht_iftype_cap(sband, iftype); 3897 if (!eht_cap) 3898 eht_oper = NULL; 3899 3900 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3901 3902 if (!he_6ghz_oper) { 3903 sdata_info(sdata, 3904 "HE 6GHz operation missing (on %d MHz), expect issues\n", 3905 chandef->chan->center_freq); 3906 return false; 3907 } 3908 3909 /* 3910 * The EHT operation IE does not contain the primary channel so the 3911 * primary channel frequency should be taken from the 6 GHz operation 3912 * information. 3913 */ 3914 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3915 NL80211_BAND_6GHZ); 3916 he_chandef.chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq); 3917 3918 switch (u8_get_bits(he_6ghz_oper->control, 3919 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) { 3920 case IEEE80211_6GHZ_CTRL_REG_LPI_AP: 3921 bss_conf->power_type = IEEE80211_REG_LPI_AP; 3922 break; 3923 case IEEE80211_6GHZ_CTRL_REG_SP_AP: 3924 bss_conf->power_type = IEEE80211_REG_SP_AP; 3925 break; 3926 default: 3927 bss_conf->power_type = IEEE80211_REG_UNSET_AP; 3928 break; 3929 } 3930 3931 if (!eht_oper || 3932 !(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) { 3933 switch (u8_get_bits(he_6ghz_oper->control, 3934 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3935 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3936 he_chandef.width = NL80211_CHAN_WIDTH_20; 3937 break; 3938 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3939 he_chandef.width = NL80211_CHAN_WIDTH_40; 3940 break; 3941 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3942 he_chandef.width = NL80211_CHAN_WIDTH_80; 3943 break; 3944 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3945 he_chandef.width = NL80211_CHAN_WIDTH_80; 3946 if (!he_6ghz_oper->ccfs1) 3947 break; 3948 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) { 3949 if (support_160) 3950 he_chandef.width = NL80211_CHAN_WIDTH_160; 3951 } else { 3952 if (support_80_80) 3953 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3954 } 3955 break; 3956 } 3957 3958 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3959 he_chandef.center_freq1 = 3960 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3961 NL80211_BAND_6GHZ); 3962 } else { 3963 he_chandef.center_freq1 = 3964 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3965 NL80211_BAND_6GHZ); 3966 if (support_80_80 || support_160) 3967 he_chandef.center_freq2 = 3968 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3969 NL80211_BAND_6GHZ); 3970 } 3971 } else { 3972 eht_phy_cap = eht_cap->eht_cap_elem.phy_cap_info[0]; 3973 support_320 = 3974 eht_phy_cap & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ; 3975 3976 ieee80211_chandef_eht_oper(eht_oper, support_160, 3977 support_320, &he_chandef); 3978 } 3979 3980 if (!cfg80211_chandef_valid(&he_chandef)) { 3981 sdata_info(sdata, 3982 "HE 6GHz operation resulted in invalid chandef: %d MHz/%d/%d MHz/%d MHz\n", 3983 he_chandef.chan ? he_chandef.chan->center_freq : 0, 3984 he_chandef.width, 3985 he_chandef.center_freq1, 3986 he_chandef.center_freq2); 3987 return false; 3988 } 3989 3990 *chandef = he_chandef; 3991 3992 return true; 3993 } 3994 3995 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, 3996 struct cfg80211_chan_def *chandef) 3997 { 3998 u32 oper_freq; 3999 4000 if (!oper) 4001 return false; 4002 4003 switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { 4004 case IEEE80211_S1G_CHANWIDTH_1MHZ: 4005 chandef->width = NL80211_CHAN_WIDTH_1; 4006 break; 4007 case IEEE80211_S1G_CHANWIDTH_2MHZ: 4008 chandef->width = NL80211_CHAN_WIDTH_2; 4009 break; 4010 case IEEE80211_S1G_CHANWIDTH_4MHZ: 4011 chandef->width = NL80211_CHAN_WIDTH_4; 4012 break; 4013 case IEEE80211_S1G_CHANWIDTH_8MHZ: 4014 chandef->width = NL80211_CHAN_WIDTH_8; 4015 break; 4016 case IEEE80211_S1G_CHANWIDTH_16MHZ: 4017 chandef->width = NL80211_CHAN_WIDTH_16; 4018 break; 4019 default: 4020 return false; 4021 } 4022 4023 oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch, 4024 NL80211_BAND_S1GHZ); 4025 chandef->center_freq1 = KHZ_TO_MHZ(oper_freq); 4026 chandef->freq1_offset = oper_freq % 1000; 4027 4028 return true; 4029 } 4030 4031 int ieee80211_parse_bitrates(enum nl80211_chan_width width, 4032 const struct ieee80211_supported_band *sband, 4033 const u8 *srates, int srates_len, u32 *rates) 4034 { 4035 u32 rate_flags = ieee80211_chanwidth_rate_flags(width); 4036 int shift = ieee80211_chanwidth_get_shift(width); 4037 struct ieee80211_rate *br; 4038 int brate, rate, i, j, count = 0; 4039 4040 *rates = 0; 4041 4042 for (i = 0; i < srates_len; i++) { 4043 rate = srates[i] & 0x7f; 4044 4045 for (j = 0; j < sband->n_bitrates; j++) { 4046 br = &sband->bitrates[j]; 4047 if ((rate_flags & br->flags) != rate_flags) 4048 continue; 4049 4050 brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5); 4051 if (brate == rate) { 4052 *rates |= BIT(j); 4053 count++; 4054 break; 4055 } 4056 } 4057 } 4058 return count; 4059 } 4060 4061 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, 4062 struct sk_buff *skb, bool need_basic, 4063 enum nl80211_band band) 4064 { 4065 struct ieee80211_local *local = sdata->local; 4066 struct ieee80211_supported_band *sband; 4067 int rate, shift; 4068 u8 i, rates, *pos; 4069 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 4070 u32 rate_flags; 4071 4072 shift = ieee80211_vif_get_shift(&sdata->vif); 4073 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 4074 sband = local->hw.wiphy->bands[band]; 4075 rates = 0; 4076 for (i = 0; i < sband->n_bitrates; i++) { 4077 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 4078 continue; 4079 rates++; 4080 } 4081 if (rates > 8) 4082 rates = 8; 4083 4084 if (skb_tailroom(skb) < rates + 2) 4085 return -ENOMEM; 4086 4087 pos = skb_put(skb, rates + 2); 4088 *pos++ = WLAN_EID_SUPP_RATES; 4089 *pos++ = rates; 4090 for (i = 0; i < rates; i++) { 4091 u8 basic = 0; 4092 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 4093 continue; 4094 4095 if (need_basic && basic_rates & BIT(i)) 4096 basic = 0x80; 4097 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 4098 5 * (1 << shift)); 4099 *pos++ = basic | (u8) rate; 4100 } 4101 4102 return 0; 4103 } 4104 4105 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, 4106 struct sk_buff *skb, bool need_basic, 4107 enum nl80211_band band) 4108 { 4109 struct ieee80211_local *local = sdata->local; 4110 struct ieee80211_supported_band *sband; 4111 int rate, shift; 4112 u8 i, exrates, *pos; 4113 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 4114 u32 rate_flags; 4115 4116 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 4117 shift = ieee80211_vif_get_shift(&sdata->vif); 4118 4119 sband = local->hw.wiphy->bands[band]; 4120 exrates = 0; 4121 for (i = 0; i < sband->n_bitrates; i++) { 4122 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 4123 continue; 4124 exrates++; 4125 } 4126 4127 if (exrates > 8) 4128 exrates -= 8; 4129 else 4130 exrates = 0; 4131 4132 if (skb_tailroom(skb) < exrates + 2) 4133 return -ENOMEM; 4134 4135 if (exrates) { 4136 pos = skb_put(skb, exrates + 2); 4137 *pos++ = WLAN_EID_EXT_SUPP_RATES; 4138 *pos++ = exrates; 4139 for (i = 8; i < sband->n_bitrates; i++) { 4140 u8 basic = 0; 4141 if ((rate_flags & sband->bitrates[i].flags) 4142 != rate_flags) 4143 continue; 4144 if (need_basic && basic_rates & BIT(i)) 4145 basic = 0x80; 4146 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 4147 5 * (1 << shift)); 4148 *pos++ = basic | (u8) rate; 4149 } 4150 } 4151 return 0; 4152 } 4153 4154 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 4155 { 4156 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 4157 4158 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) 4159 return 0; 4160 4161 return -ewma_beacon_signal_read(&sdata->deflink.u.mgd.ave_beacon_signal); 4162 } 4163 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 4164 4165 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 4166 { 4167 if (!mcs) 4168 return 1; 4169 4170 /* TODO: consider rx_highest */ 4171 4172 if (mcs->rx_mask[3]) 4173 return 4; 4174 if (mcs->rx_mask[2]) 4175 return 3; 4176 if (mcs->rx_mask[1]) 4177 return 2; 4178 return 1; 4179 } 4180 4181 /** 4182 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 4183 * @local: mac80211 hw info struct 4184 * @status: RX status 4185 * @mpdu_len: total MPDU length (including FCS) 4186 * @mpdu_offset: offset into MPDU to calculate timestamp at 4187 * 4188 * This function calculates the RX timestamp at the given MPDU offset, taking 4189 * into account what the RX timestamp was. An offset of 0 will just normalize 4190 * the timestamp to TSF at beginning of MPDU reception. 4191 */ 4192 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 4193 struct ieee80211_rx_status *status, 4194 unsigned int mpdu_len, 4195 unsigned int mpdu_offset) 4196 { 4197 u64 ts = status->mactime; 4198 struct rate_info ri; 4199 u16 rate; 4200 u8 n_ltf; 4201 4202 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 4203 return 0; 4204 4205 memset(&ri, 0, sizeof(ri)); 4206 4207 ri.bw = status->bw; 4208 4209 /* Fill cfg80211 rate info */ 4210 switch (status->encoding) { 4211 case RX_ENC_EHT: 4212 ri.flags |= RATE_INFO_FLAGS_EHT_MCS; 4213 ri.mcs = status->rate_idx; 4214 ri.nss = status->nss; 4215 ri.eht_ru_alloc = status->eht.ru; 4216 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4217 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4218 /* TODO/FIXME: is this right? handle other PPDUs */ 4219 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4220 mpdu_offset += 2; 4221 ts += 36; 4222 } 4223 break; 4224 case RX_ENC_HE: 4225 ri.flags |= RATE_INFO_FLAGS_HE_MCS; 4226 ri.mcs = status->rate_idx; 4227 ri.nss = status->nss; 4228 ri.he_ru_alloc = status->he_ru; 4229 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4230 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4231 4232 /* 4233 * See P802.11ax_D6.0, section 27.3.4 for 4234 * VHT PPDU format. 4235 */ 4236 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4237 mpdu_offset += 2; 4238 ts += 36; 4239 4240 /* 4241 * TODO: 4242 * For HE MU PPDU, add the HE-SIG-B. 4243 * For HE ER PPDU, add 8us for the HE-SIG-A. 4244 * For HE TB PPDU, add 4us for the HE-STF. 4245 * Add the HE-LTF durations - variable. 4246 */ 4247 } 4248 4249 break; 4250 case RX_ENC_HT: 4251 ri.mcs = status->rate_idx; 4252 ri.flags |= RATE_INFO_FLAGS_MCS; 4253 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4254 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4255 4256 /* 4257 * See P802.11REVmd_D3.0, section 19.3.2 for 4258 * HT PPDU format. 4259 */ 4260 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4261 mpdu_offset += 2; 4262 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 4263 ts += 24; 4264 else 4265 ts += 32; 4266 4267 /* 4268 * Add Data HT-LTFs per streams 4269 * TODO: add Extension HT-LTFs, 4us per LTF 4270 */ 4271 n_ltf = ((ri.mcs >> 3) & 3) + 1; 4272 n_ltf = n_ltf == 3 ? 4 : n_ltf; 4273 ts += n_ltf * 4; 4274 } 4275 4276 break; 4277 case RX_ENC_VHT: 4278 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 4279 ri.mcs = status->rate_idx; 4280 ri.nss = status->nss; 4281 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4282 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4283 4284 /* 4285 * See P802.11REVmd_D3.0, section 21.3.2 for 4286 * VHT PPDU format. 4287 */ 4288 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4289 mpdu_offset += 2; 4290 ts += 36; 4291 4292 /* 4293 * Add VHT-LTFs per streams 4294 */ 4295 n_ltf = (ri.nss != 1) && (ri.nss % 2) ? 4296 ri.nss + 1 : ri.nss; 4297 ts += 4 * n_ltf; 4298 } 4299 4300 break; 4301 default: 4302 WARN_ON(1); 4303 fallthrough; 4304 case RX_ENC_LEGACY: { 4305 struct ieee80211_supported_band *sband; 4306 int shift = 0; 4307 int bitrate; 4308 4309 switch (status->bw) { 4310 case RATE_INFO_BW_10: 4311 shift = 1; 4312 break; 4313 case RATE_INFO_BW_5: 4314 shift = 2; 4315 break; 4316 } 4317 4318 sband = local->hw.wiphy->bands[status->band]; 4319 bitrate = sband->bitrates[status->rate_idx].bitrate; 4320 ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift)); 4321 4322 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4323 if (status->band == NL80211_BAND_5GHZ) { 4324 ts += 20 << shift; 4325 mpdu_offset += 2; 4326 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 4327 ts += 96; 4328 } else { 4329 ts += 192; 4330 } 4331 } 4332 break; 4333 } 4334 } 4335 4336 rate = cfg80211_calculate_bitrate(&ri); 4337 if (WARN_ONCE(!rate, 4338 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 4339 (unsigned long long)status->flag, status->rate_idx, 4340 status->nss)) 4341 return 0; 4342 4343 /* rewind from end of MPDU */ 4344 if (status->flag & RX_FLAG_MACTIME_END) 4345 ts -= mpdu_len * 8 * 10 / rate; 4346 4347 ts += mpdu_offset * 8 * 10 / rate; 4348 4349 return ts; 4350 } 4351 4352 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) 4353 { 4354 struct ieee80211_sub_if_data *sdata; 4355 struct cfg80211_chan_def chandef; 4356 4357 /* for interface list, to avoid linking iflist_mtx and chanctx_mtx */ 4358 lockdep_assert_wiphy(local->hw.wiphy); 4359 4360 mutex_lock(&local->mtx); 4361 list_for_each_entry(sdata, &local->interfaces, list) { 4362 /* it might be waiting for the local->mtx, but then 4363 * by the time it gets it, sdata->wdev.cac_started 4364 * will no longer be true 4365 */ 4366 cancel_delayed_work(&sdata->deflink.dfs_cac_timer_work); 4367 4368 if (sdata->wdev.cac_started) { 4369 chandef = sdata->vif.bss_conf.chandef; 4370 ieee80211_link_release_channel(&sdata->deflink); 4371 cfg80211_cac_event(sdata->dev, 4372 &chandef, 4373 NL80211_RADAR_CAC_ABORTED, 4374 GFP_KERNEL); 4375 } 4376 } 4377 mutex_unlock(&local->mtx); 4378 } 4379 4380 void ieee80211_dfs_radar_detected_work(struct wiphy *wiphy, 4381 struct wiphy_work *work) 4382 { 4383 struct ieee80211_local *local = 4384 container_of(work, struct ieee80211_local, radar_detected_work); 4385 struct cfg80211_chan_def chandef = local->hw.conf.chandef; 4386 struct ieee80211_chanctx *ctx; 4387 int num_chanctx = 0; 4388 4389 mutex_lock(&local->chanctx_mtx); 4390 list_for_each_entry(ctx, &local->chanctx_list, list) { 4391 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 4392 continue; 4393 4394 num_chanctx++; 4395 chandef = ctx->conf.def; 4396 } 4397 mutex_unlock(&local->chanctx_mtx); 4398 4399 ieee80211_dfs_cac_cancel(local); 4400 4401 if (num_chanctx > 1) 4402 /* XXX: multi-channel is not supported yet */ 4403 WARN_ON(1); 4404 else 4405 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 4406 } 4407 4408 void ieee80211_radar_detected(struct ieee80211_hw *hw) 4409 { 4410 struct ieee80211_local *local = hw_to_local(hw); 4411 4412 trace_api_radar_detected(local); 4413 4414 wiphy_work_queue(hw->wiphy, &local->radar_detected_work); 4415 } 4416 EXPORT_SYMBOL(ieee80211_radar_detected); 4417 4418 ieee80211_conn_flags_t ieee80211_chandef_downgrade(struct cfg80211_chan_def *c) 4419 { 4420 ieee80211_conn_flags_t ret; 4421 int tmp; 4422 4423 switch (c->width) { 4424 case NL80211_CHAN_WIDTH_20: 4425 c->width = NL80211_CHAN_WIDTH_20_NOHT; 4426 ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT; 4427 break; 4428 case NL80211_CHAN_WIDTH_40: 4429 c->width = NL80211_CHAN_WIDTH_20; 4430 c->center_freq1 = c->chan->center_freq; 4431 ret = IEEE80211_CONN_DISABLE_40MHZ | 4432 IEEE80211_CONN_DISABLE_VHT; 4433 break; 4434 case NL80211_CHAN_WIDTH_80: 4435 tmp = (30 + c->chan->center_freq - c->center_freq1)/20; 4436 /* n_P40 */ 4437 tmp /= 2; 4438 /* freq_P40 */ 4439 c->center_freq1 = c->center_freq1 - 20 + 40 * tmp; 4440 c->width = NL80211_CHAN_WIDTH_40; 4441 ret = IEEE80211_CONN_DISABLE_VHT; 4442 break; 4443 case NL80211_CHAN_WIDTH_80P80: 4444 c->center_freq2 = 0; 4445 c->width = NL80211_CHAN_WIDTH_80; 4446 ret = IEEE80211_CONN_DISABLE_80P80MHZ | 4447 IEEE80211_CONN_DISABLE_160MHZ; 4448 break; 4449 case NL80211_CHAN_WIDTH_160: 4450 /* n_P20 */ 4451 tmp = (70 + c->chan->center_freq - c->center_freq1)/20; 4452 /* n_P80 */ 4453 tmp /= 4; 4454 c->center_freq1 = c->center_freq1 - 40 + 80 * tmp; 4455 c->width = NL80211_CHAN_WIDTH_80; 4456 ret = IEEE80211_CONN_DISABLE_80P80MHZ | 4457 IEEE80211_CONN_DISABLE_160MHZ; 4458 break; 4459 case NL80211_CHAN_WIDTH_320: 4460 /* n_P20 */ 4461 tmp = (150 + c->chan->center_freq - c->center_freq1) / 20; 4462 /* n_P160 */ 4463 tmp /= 8; 4464 c->center_freq1 = c->center_freq1 - 80 + 160 * tmp; 4465 c->width = NL80211_CHAN_WIDTH_160; 4466 ret = IEEE80211_CONN_DISABLE_320MHZ; 4467 break; 4468 default: 4469 case NL80211_CHAN_WIDTH_20_NOHT: 4470 WARN_ON_ONCE(1); 4471 c->width = NL80211_CHAN_WIDTH_20_NOHT; 4472 ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT; 4473 break; 4474 case NL80211_CHAN_WIDTH_1: 4475 case NL80211_CHAN_WIDTH_2: 4476 case NL80211_CHAN_WIDTH_4: 4477 case NL80211_CHAN_WIDTH_8: 4478 case NL80211_CHAN_WIDTH_16: 4479 case NL80211_CHAN_WIDTH_5: 4480 case NL80211_CHAN_WIDTH_10: 4481 WARN_ON_ONCE(1); 4482 /* keep c->width */ 4483 ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT; 4484 break; 4485 } 4486 4487 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 4488 4489 return ret; 4490 } 4491 4492 /* 4493 * Returns true if smps_mode_new is strictly more restrictive than 4494 * smps_mode_old. 4495 */ 4496 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 4497 enum ieee80211_smps_mode smps_mode_new) 4498 { 4499 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 4500 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 4501 return false; 4502 4503 switch (smps_mode_old) { 4504 case IEEE80211_SMPS_STATIC: 4505 return false; 4506 case IEEE80211_SMPS_DYNAMIC: 4507 return smps_mode_new == IEEE80211_SMPS_STATIC; 4508 case IEEE80211_SMPS_OFF: 4509 return smps_mode_new != IEEE80211_SMPS_OFF; 4510 default: 4511 WARN_ON(1); 4512 } 4513 4514 return false; 4515 } 4516 4517 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 4518 struct cfg80211_csa_settings *csa_settings) 4519 { 4520 struct sk_buff *skb; 4521 struct ieee80211_mgmt *mgmt; 4522 struct ieee80211_local *local = sdata->local; 4523 int freq; 4524 int hdr_len = offsetofend(struct ieee80211_mgmt, 4525 u.action.u.chan_switch); 4526 u8 *pos; 4527 4528 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 4529 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 4530 return -EOPNOTSUPP; 4531 4532 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 4533 5 + /* channel switch announcement element */ 4534 3 + /* secondary channel offset element */ 4535 5 + /* wide bandwidth channel switch announcement */ 4536 8); /* mesh channel switch parameters element */ 4537 if (!skb) 4538 return -ENOMEM; 4539 4540 skb_reserve(skb, local->tx_headroom); 4541 mgmt = skb_put_zero(skb, hdr_len); 4542 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 4543 IEEE80211_STYPE_ACTION); 4544 4545 eth_broadcast_addr(mgmt->da); 4546 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 4547 if (ieee80211_vif_is_mesh(&sdata->vif)) { 4548 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 4549 } else { 4550 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 4551 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 4552 } 4553 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 4554 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 4555 pos = skb_put(skb, 5); 4556 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 4557 *pos++ = 3; /* IE length */ 4558 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 4559 freq = csa_settings->chandef.chan->center_freq; 4560 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 4561 *pos++ = csa_settings->count; /* count */ 4562 4563 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 4564 enum nl80211_channel_type ch_type; 4565 4566 skb_put(skb, 3); 4567 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 4568 *pos++ = 1; /* IE length */ 4569 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 4570 if (ch_type == NL80211_CHAN_HT40PLUS) 4571 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 4572 else 4573 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 4574 } 4575 4576 if (ieee80211_vif_is_mesh(&sdata->vif)) { 4577 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 4578 4579 skb_put(skb, 8); 4580 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 4581 *pos++ = 6; /* IE length */ 4582 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 4583 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 4584 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 4585 *pos++ |= csa_settings->block_tx ? 4586 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 4587 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 4588 pos += 2; 4589 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 4590 pos += 2; 4591 } 4592 4593 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 4594 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 4595 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 4596 skb_put(skb, 5); 4597 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 4598 } 4599 4600 ieee80211_tx_skb(sdata, skb); 4601 return 0; 4602 } 4603 4604 static bool 4605 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 4606 { 4607 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 4608 int skip; 4609 4610 if (end > 0) 4611 return false; 4612 4613 /* One shot NOA */ 4614 if (data->count[i] == 1) 4615 return false; 4616 4617 if (data->desc[i].interval == 0) 4618 return false; 4619 4620 /* End time is in the past, check for repetitions */ 4621 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 4622 if (data->count[i] < 255) { 4623 if (data->count[i] <= skip) { 4624 data->count[i] = 0; 4625 return false; 4626 } 4627 4628 data->count[i] -= skip; 4629 } 4630 4631 data->desc[i].start += skip * data->desc[i].interval; 4632 4633 return true; 4634 } 4635 4636 static bool 4637 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 4638 s32 *offset) 4639 { 4640 bool ret = false; 4641 int i; 4642 4643 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4644 s32 cur; 4645 4646 if (!data->count[i]) 4647 continue; 4648 4649 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 4650 ret = true; 4651 4652 cur = data->desc[i].start - tsf; 4653 if (cur > *offset) 4654 continue; 4655 4656 cur = data->desc[i].start + data->desc[i].duration - tsf; 4657 if (cur > *offset) 4658 *offset = cur; 4659 } 4660 4661 return ret; 4662 } 4663 4664 static u32 4665 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 4666 { 4667 s32 offset = 0; 4668 int tries = 0; 4669 /* 4670 * arbitrary limit, used to avoid infinite loops when combined NoA 4671 * descriptors cover the full time period. 4672 */ 4673 int max_tries = 5; 4674 4675 ieee80211_extend_absent_time(data, tsf, &offset); 4676 do { 4677 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 4678 break; 4679 4680 tries++; 4681 } while (tries < max_tries); 4682 4683 return offset; 4684 } 4685 4686 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 4687 { 4688 u32 next_offset = BIT(31) - 1; 4689 int i; 4690 4691 data->absent = 0; 4692 data->has_next_tsf = false; 4693 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4694 s32 start; 4695 4696 if (!data->count[i]) 4697 continue; 4698 4699 ieee80211_extend_noa_desc(data, tsf, i); 4700 start = data->desc[i].start - tsf; 4701 if (start <= 0) 4702 data->absent |= BIT(i); 4703 4704 if (next_offset > start) 4705 next_offset = start; 4706 4707 data->has_next_tsf = true; 4708 } 4709 4710 if (data->absent) 4711 next_offset = ieee80211_get_noa_absent_time(data, tsf); 4712 4713 data->next_tsf = tsf + next_offset; 4714 } 4715 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 4716 4717 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 4718 struct ieee80211_noa_data *data, u32 tsf) 4719 { 4720 int ret = 0; 4721 int i; 4722 4723 memset(data, 0, sizeof(*data)); 4724 4725 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4726 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 4727 4728 if (!desc->count || !desc->duration) 4729 continue; 4730 4731 data->count[i] = desc->count; 4732 data->desc[i].start = le32_to_cpu(desc->start_time); 4733 data->desc[i].duration = le32_to_cpu(desc->duration); 4734 data->desc[i].interval = le32_to_cpu(desc->interval); 4735 4736 if (data->count[i] > 1 && 4737 data->desc[i].interval < data->desc[i].duration) 4738 continue; 4739 4740 ieee80211_extend_noa_desc(data, tsf, i); 4741 ret++; 4742 } 4743 4744 if (ret) 4745 ieee80211_update_p2p_noa(data, tsf); 4746 4747 return ret; 4748 } 4749 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 4750 4751 void ieee80211_recalc_dtim(struct ieee80211_local *local, 4752 struct ieee80211_sub_if_data *sdata) 4753 { 4754 u64 tsf = drv_get_tsf(local, sdata); 4755 u64 dtim_count = 0; 4756 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 4757 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 4758 struct ps_data *ps; 4759 u8 bcns_from_dtim; 4760 4761 if (tsf == -1ULL || !beacon_int || !dtim_period) 4762 return; 4763 4764 if (sdata->vif.type == NL80211_IFTYPE_AP || 4765 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 4766 if (!sdata->bss) 4767 return; 4768 4769 ps = &sdata->bss->ps; 4770 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 4771 ps = &sdata->u.mesh.ps; 4772 } else { 4773 return; 4774 } 4775 4776 /* 4777 * actually finds last dtim_count, mac80211 will update in 4778 * __beacon_add_tim(). 4779 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 4780 */ 4781 do_div(tsf, beacon_int); 4782 bcns_from_dtim = do_div(tsf, dtim_period); 4783 /* just had a DTIM */ 4784 if (!bcns_from_dtim) 4785 dtim_count = 0; 4786 else 4787 dtim_count = dtim_period - bcns_from_dtim; 4788 4789 ps->dtim_count = dtim_count; 4790 } 4791 4792 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 4793 struct ieee80211_chanctx *ctx) 4794 { 4795 struct ieee80211_link_data *link; 4796 u8 radar_detect = 0; 4797 4798 lockdep_assert_held(&local->chanctx_mtx); 4799 4800 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 4801 return 0; 4802 4803 list_for_each_entry(link, &ctx->reserved_links, reserved_chanctx_list) 4804 if (link->reserved_radar_required) 4805 radar_detect |= BIT(link->reserved_chandef.width); 4806 4807 /* 4808 * An in-place reservation context should not have any assigned vifs 4809 * until it replaces the other context. 4810 */ 4811 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 4812 !list_empty(&ctx->assigned_links)); 4813 4814 list_for_each_entry(link, &ctx->assigned_links, assigned_chanctx_list) { 4815 if (!link->radar_required) 4816 continue; 4817 4818 radar_detect |= 4819 BIT(link->conf->chandef.width); 4820 } 4821 4822 return radar_detect; 4823 } 4824 4825 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 4826 const struct cfg80211_chan_def *chandef, 4827 enum ieee80211_chanctx_mode chanmode, 4828 u8 radar_detect) 4829 { 4830 struct ieee80211_local *local = sdata->local; 4831 struct ieee80211_sub_if_data *sdata_iter; 4832 enum nl80211_iftype iftype = sdata->wdev.iftype; 4833 struct ieee80211_chanctx *ctx; 4834 int total = 1; 4835 struct iface_combination_params params = { 4836 .radar_detect = radar_detect, 4837 }; 4838 4839 lockdep_assert_held(&local->chanctx_mtx); 4840 4841 if (WARN_ON(hweight32(radar_detect) > 1)) 4842 return -EINVAL; 4843 4844 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4845 !chandef->chan)) 4846 return -EINVAL; 4847 4848 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 4849 return -EINVAL; 4850 4851 if (sdata->vif.type == NL80211_IFTYPE_AP || 4852 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 4853 /* 4854 * always passing this is harmless, since it'll be the 4855 * same value that cfg80211 finds if it finds the same 4856 * interface ... and that's always allowed 4857 */ 4858 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 4859 } 4860 4861 /* Always allow software iftypes */ 4862 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 4863 if (radar_detect) 4864 return -EINVAL; 4865 return 0; 4866 } 4867 4868 if (chandef) 4869 params.num_different_channels = 1; 4870 4871 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 4872 params.iftype_num[iftype] = 1; 4873 4874 list_for_each_entry(ctx, &local->chanctx_list, list) { 4875 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4876 continue; 4877 params.radar_detect |= 4878 ieee80211_chanctx_radar_detect(local, ctx); 4879 if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) { 4880 params.num_different_channels++; 4881 continue; 4882 } 4883 if (chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4884 cfg80211_chandef_compatible(chandef, 4885 &ctx->conf.def)) 4886 continue; 4887 params.num_different_channels++; 4888 } 4889 4890 list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) { 4891 struct wireless_dev *wdev_iter; 4892 4893 wdev_iter = &sdata_iter->wdev; 4894 4895 if (sdata_iter == sdata || 4896 !ieee80211_sdata_running(sdata_iter) || 4897 cfg80211_iftype_allowed(local->hw.wiphy, 4898 wdev_iter->iftype, 0, 1)) 4899 continue; 4900 4901 params.iftype_num[wdev_iter->iftype]++; 4902 total++; 4903 } 4904 4905 if (total == 1 && !params.radar_detect) 4906 return 0; 4907 4908 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4909 } 4910 4911 static void 4912 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4913 void *data) 4914 { 4915 u32 *max_num_different_channels = data; 4916 4917 *max_num_different_channels = max(*max_num_different_channels, 4918 c->num_different_channels); 4919 } 4920 4921 int ieee80211_max_num_channels(struct ieee80211_local *local) 4922 { 4923 struct ieee80211_sub_if_data *sdata; 4924 struct ieee80211_chanctx *ctx; 4925 u32 max_num_different_channels = 1; 4926 int err; 4927 struct iface_combination_params params = {0}; 4928 4929 lockdep_assert_held(&local->chanctx_mtx); 4930 4931 list_for_each_entry(ctx, &local->chanctx_list, list) { 4932 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4933 continue; 4934 4935 params.num_different_channels++; 4936 4937 params.radar_detect |= 4938 ieee80211_chanctx_radar_detect(local, ctx); 4939 } 4940 4941 list_for_each_entry_rcu(sdata, &local->interfaces, list) 4942 params.iftype_num[sdata->wdev.iftype]++; 4943 4944 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4945 ieee80211_iter_max_chans, 4946 &max_num_different_channels); 4947 if (err < 0) 4948 return err; 4949 4950 return max_num_different_channels; 4951 } 4952 4953 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, 4954 struct ieee80211_sta_s1g_cap *caps, 4955 struct sk_buff *skb) 4956 { 4957 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 4958 struct ieee80211_s1g_cap s1g_capab; 4959 u8 *pos; 4960 int i; 4961 4962 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 4963 return; 4964 4965 if (!caps->s1g) 4966 return; 4967 4968 memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); 4969 memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); 4970 4971 /* override the capability info */ 4972 for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { 4973 u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; 4974 4975 s1g_capab.capab_info[i] &= ~mask; 4976 s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; 4977 } 4978 4979 /* then MCS and NSS set */ 4980 for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { 4981 u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; 4982 4983 s1g_capab.supp_mcs_nss[i] &= ~mask; 4984 s1g_capab.supp_mcs_nss[i] |= 4985 ifmgd->s1g_capa.supp_mcs_nss[i] & mask; 4986 } 4987 4988 pos = skb_put(skb, 2 + sizeof(s1g_capab)); 4989 *pos++ = WLAN_EID_S1G_CAPABILITIES; 4990 *pos++ = sizeof(s1g_capab); 4991 4992 memcpy(pos, &s1g_capab, sizeof(s1g_capab)); 4993 } 4994 4995 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, 4996 struct sk_buff *skb) 4997 { 4998 u8 *pos = skb_put(skb, 3); 4999 5000 *pos++ = WLAN_EID_AID_REQUEST; 5001 *pos++ = 1; 5002 *pos++ = 0; 5003 } 5004 5005 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 5006 { 5007 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 5008 *buf++ = 7; /* len */ 5009 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 5010 *buf++ = 0x50; 5011 *buf++ = 0xf2; 5012 *buf++ = 2; /* WME */ 5013 *buf++ = 0; /* WME info */ 5014 *buf++ = 1; /* WME ver */ 5015 *buf++ = qosinfo; /* U-APSD no in use */ 5016 5017 return buf; 5018 } 5019 5020 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 5021 unsigned long *frame_cnt, 5022 unsigned long *byte_cnt) 5023 { 5024 struct txq_info *txqi = to_txq_info(txq); 5025 u32 frag_cnt = 0, frag_bytes = 0; 5026 struct sk_buff *skb; 5027 5028 skb_queue_walk(&txqi->frags, skb) { 5029 frag_cnt++; 5030 frag_bytes += skb->len; 5031 } 5032 5033 if (frame_cnt) 5034 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 5035 5036 if (byte_cnt) 5037 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 5038 } 5039 EXPORT_SYMBOL(ieee80211_txq_get_depth); 5040 5041 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 5042 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 5043 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 5044 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 5045 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 5046 }; 5047 5048 u16 ieee80211_encode_usf(int listen_interval) 5049 { 5050 static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; 5051 u16 ui, usf = 0; 5052 5053 /* find greatest USF */ 5054 while (usf < IEEE80211_MAX_USF) { 5055 if (listen_interval % listen_int_usf[usf + 1]) 5056 break; 5057 usf += 1; 5058 } 5059 ui = listen_interval / listen_int_usf[usf]; 5060 5061 /* error if there is a remainder. Should've been checked by user */ 5062 WARN_ON_ONCE(ui > IEEE80211_MAX_UI); 5063 listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | 5064 FIELD_PREP(LISTEN_INT_UI, ui); 5065 5066 return (u16) listen_interval; 5067 } 5068 5069 u8 ieee80211_ie_len_eht_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 5070 { 5071 const struct ieee80211_sta_he_cap *he_cap; 5072 const struct ieee80211_sta_eht_cap *eht_cap; 5073 struct ieee80211_supported_band *sband; 5074 bool is_ap; 5075 u8 n; 5076 5077 sband = ieee80211_get_sband(sdata); 5078 if (!sband) 5079 return 0; 5080 5081 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 5082 eht_cap = ieee80211_get_eht_iftype_cap(sband, iftype); 5083 if (!he_cap || !eht_cap) 5084 return 0; 5085 5086 is_ap = iftype == NL80211_IFTYPE_AP || 5087 iftype == NL80211_IFTYPE_P2P_GO; 5088 5089 n = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 5090 &eht_cap->eht_cap_elem, 5091 is_ap); 5092 return 2 + 1 + 5093 sizeof(eht_cap->eht_cap_elem) + n + 5094 ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 5095 eht_cap->eht_cap_elem.phy_cap_info); 5096 return 0; 5097 } 5098 5099 u8 *ieee80211_ie_build_eht_cap(u8 *pos, 5100 const struct ieee80211_sta_he_cap *he_cap, 5101 const struct ieee80211_sta_eht_cap *eht_cap, 5102 u8 *end, 5103 bool for_ap) 5104 { 5105 u8 mcs_nss_len, ppet_len; 5106 u8 ie_len; 5107 u8 *orig_pos = pos; 5108 5109 /* Make sure we have place for the IE */ 5110 if (!he_cap || !eht_cap) 5111 return orig_pos; 5112 5113 mcs_nss_len = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 5114 &eht_cap->eht_cap_elem, 5115 for_ap); 5116 ppet_len = ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 5117 eht_cap->eht_cap_elem.phy_cap_info); 5118 5119 ie_len = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + mcs_nss_len + ppet_len; 5120 if ((end - pos) < ie_len) 5121 return orig_pos; 5122 5123 *pos++ = WLAN_EID_EXTENSION; 5124 *pos++ = ie_len - 2; 5125 *pos++ = WLAN_EID_EXT_EHT_CAPABILITY; 5126 5127 /* Fixed data */ 5128 memcpy(pos, &eht_cap->eht_cap_elem, sizeof(eht_cap->eht_cap_elem)); 5129 pos += sizeof(eht_cap->eht_cap_elem); 5130 5131 memcpy(pos, &eht_cap->eht_mcs_nss_supp, mcs_nss_len); 5132 pos += mcs_nss_len; 5133 5134 if (ppet_len) { 5135 memcpy(pos, &eht_cap->eht_ppe_thres, ppet_len); 5136 pos += ppet_len; 5137 } 5138 5139 return pos; 5140 } 5141 5142 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id) 5143 { 5144 unsigned int elem_len; 5145 5146 if (!len_pos) 5147 return; 5148 5149 elem_len = skb->data + skb->len - len_pos - 1; 5150 5151 while (elem_len > 255) { 5152 /* this one is 255 */ 5153 *len_pos = 255; 5154 /* remaining data gets smaller */ 5155 elem_len -= 255; 5156 /* make space for the fragment ID/len in SKB */ 5157 skb_put(skb, 2); 5158 /* shift back the remaining data to place fragment ID/len */ 5159 memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len); 5160 /* place the fragment ID */ 5161 len_pos += 255 + 1; 5162 *len_pos = frag_id; 5163 /* and point to fragment length to update later */ 5164 len_pos++; 5165 } 5166 5167 *len_pos = elem_len; 5168 } 5169