xref: /openbmc/linux/net/mac80211/util.c (revision d40d48e1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2005-2006, Devicescape Software, Inc.
5  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2013-2014  Intel Mobile Communications GmbH
8  * Copyright (C) 2015-2017	Intel Deutschland GmbH
9  * Copyright (C) 2018-2021 Intel Corporation
10  *
11  * utilities for mac80211
12  */
13 
14 #include <net/mac80211.h>
15 #include <linux/netdevice.h>
16 #include <linux/export.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/skbuff.h>
20 #include <linux/etherdevice.h>
21 #include <linux/if_arp.h>
22 #include <linux/bitmap.h>
23 #include <linux/crc32.h>
24 #include <net/net_namespace.h>
25 #include <net/cfg80211.h>
26 #include <net/rtnetlink.h>
27 
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
30 #include "rate.h"
31 #include "mesh.h"
32 #include "wme.h"
33 #include "led.h"
34 #include "wep.h"
35 
36 /* privid for wiphys to determine whether they belong to us or not */
37 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid;
38 
39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy)
40 {
41 	struct ieee80211_local *local;
42 
43 	local = wiphy_priv(wiphy);
44 	return &local->hw;
45 }
46 EXPORT_SYMBOL(wiphy_to_ieee80211_hw);
47 
48 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
49 			enum nl80211_iftype type)
50 {
51 	__le16 fc = hdr->frame_control;
52 
53 	if (ieee80211_is_data(fc)) {
54 		if (len < 24) /* drop incorrect hdr len (data) */
55 			return NULL;
56 
57 		if (ieee80211_has_a4(fc))
58 			return NULL;
59 		if (ieee80211_has_tods(fc))
60 			return hdr->addr1;
61 		if (ieee80211_has_fromds(fc))
62 			return hdr->addr2;
63 
64 		return hdr->addr3;
65 	}
66 
67 	if (ieee80211_is_s1g_beacon(fc)) {
68 		struct ieee80211_ext *ext = (void *) hdr;
69 
70 		return ext->u.s1g_beacon.sa;
71 	}
72 
73 	if (ieee80211_is_mgmt(fc)) {
74 		if (len < 24) /* drop incorrect hdr len (mgmt) */
75 			return NULL;
76 		return hdr->addr3;
77 	}
78 
79 	if (ieee80211_is_ctl(fc)) {
80 		if (ieee80211_is_pspoll(fc))
81 			return hdr->addr1;
82 
83 		if (ieee80211_is_back_req(fc)) {
84 			switch (type) {
85 			case NL80211_IFTYPE_STATION:
86 				return hdr->addr2;
87 			case NL80211_IFTYPE_AP:
88 			case NL80211_IFTYPE_AP_VLAN:
89 				return hdr->addr1;
90 			default:
91 				break; /* fall through to the return */
92 			}
93 		}
94 	}
95 
96 	return NULL;
97 }
98 EXPORT_SYMBOL(ieee80211_get_bssid);
99 
100 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx)
101 {
102 	struct sk_buff *skb;
103 	struct ieee80211_hdr *hdr;
104 
105 	skb_queue_walk(&tx->skbs, skb) {
106 		hdr = (struct ieee80211_hdr *) skb->data;
107 		hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
108 	}
109 }
110 
111 int ieee80211_frame_duration(enum nl80211_band band, size_t len,
112 			     int rate, int erp, int short_preamble,
113 			     int shift)
114 {
115 	int dur;
116 
117 	/* calculate duration (in microseconds, rounded up to next higher
118 	 * integer if it includes a fractional microsecond) to send frame of
119 	 * len bytes (does not include FCS) at the given rate. Duration will
120 	 * also include SIFS.
121 	 *
122 	 * rate is in 100 kbps, so divident is multiplied by 10 in the
123 	 * DIV_ROUND_UP() operations.
124 	 *
125 	 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and
126 	 * is assumed to be 0 otherwise.
127 	 */
128 
129 	if (band == NL80211_BAND_5GHZ || erp) {
130 		/*
131 		 * OFDM:
132 		 *
133 		 * N_DBPS = DATARATE x 4
134 		 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
135 		 *	(16 = SIGNAL time, 6 = tail bits)
136 		 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
137 		 *
138 		 * T_SYM = 4 usec
139 		 * 802.11a - 18.5.2: aSIFSTime = 16 usec
140 		 * 802.11g - 19.8.4: aSIFSTime = 10 usec +
141 		 *	signal ext = 6 usec
142 		 */
143 		dur = 16; /* SIFS + signal ext */
144 		dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */
145 		dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */
146 
147 		/* IEEE 802.11-2012 18.3.2.4: all values above are:
148 		 *  * times 4 for 5 MHz
149 		 *  * times 2 for 10 MHz
150 		 */
151 		dur *= 1 << shift;
152 
153 		/* rates should already consider the channel bandwidth,
154 		 * don't apply divisor again.
155 		 */
156 		dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
157 					4 * rate); /* T_SYM x N_SYM */
158 	} else {
159 		/*
160 		 * 802.11b or 802.11g with 802.11b compatibility:
161 		 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
162 		 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
163 		 *
164 		 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4
165 		 * aSIFSTime = 10 usec
166 		 * aPreambleLength = 144 usec or 72 usec with short preamble
167 		 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble
168 		 */
169 		dur = 10; /* aSIFSTime = 10 usec */
170 		dur += short_preamble ? (72 + 24) : (144 + 48);
171 
172 		dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
173 	}
174 
175 	return dur;
176 }
177 
178 /* Exported duration function for driver use */
179 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
180 					struct ieee80211_vif *vif,
181 					enum nl80211_band band,
182 					size_t frame_len,
183 					struct ieee80211_rate *rate)
184 {
185 	struct ieee80211_sub_if_data *sdata;
186 	u16 dur;
187 	int erp, shift = 0;
188 	bool short_preamble = false;
189 
190 	erp = 0;
191 	if (vif) {
192 		sdata = vif_to_sdata(vif);
193 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
194 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
195 			erp = rate->flags & IEEE80211_RATE_ERP_G;
196 		shift = ieee80211_vif_get_shift(vif);
197 	}
198 
199 	dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp,
200 				       short_preamble, shift);
201 
202 	return cpu_to_le16(dur);
203 }
204 EXPORT_SYMBOL(ieee80211_generic_frame_duration);
205 
206 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
207 			      struct ieee80211_vif *vif, size_t frame_len,
208 			      const struct ieee80211_tx_info *frame_txctl)
209 {
210 	struct ieee80211_local *local = hw_to_local(hw);
211 	struct ieee80211_rate *rate;
212 	struct ieee80211_sub_if_data *sdata;
213 	bool short_preamble;
214 	int erp, shift = 0, bitrate;
215 	u16 dur;
216 	struct ieee80211_supported_band *sband;
217 
218 	sband = local->hw.wiphy->bands[frame_txctl->band];
219 
220 	short_preamble = false;
221 
222 	rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
223 
224 	erp = 0;
225 	if (vif) {
226 		sdata = vif_to_sdata(vif);
227 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
228 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
229 			erp = rate->flags & IEEE80211_RATE_ERP_G;
230 		shift = ieee80211_vif_get_shift(vif);
231 	}
232 
233 	bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift);
234 
235 	/* CTS duration */
236 	dur = ieee80211_frame_duration(sband->band, 10, bitrate,
237 				       erp, short_preamble, shift);
238 	/* Data frame duration */
239 	dur += ieee80211_frame_duration(sband->band, frame_len, bitrate,
240 					erp, short_preamble, shift);
241 	/* ACK duration */
242 	dur += ieee80211_frame_duration(sband->band, 10, bitrate,
243 					erp, short_preamble, shift);
244 
245 	return cpu_to_le16(dur);
246 }
247 EXPORT_SYMBOL(ieee80211_rts_duration);
248 
249 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
250 				    struct ieee80211_vif *vif,
251 				    size_t frame_len,
252 				    const struct ieee80211_tx_info *frame_txctl)
253 {
254 	struct ieee80211_local *local = hw_to_local(hw);
255 	struct ieee80211_rate *rate;
256 	struct ieee80211_sub_if_data *sdata;
257 	bool short_preamble;
258 	int erp, shift = 0, bitrate;
259 	u16 dur;
260 	struct ieee80211_supported_band *sband;
261 
262 	sband = local->hw.wiphy->bands[frame_txctl->band];
263 
264 	short_preamble = false;
265 
266 	rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
267 	erp = 0;
268 	if (vif) {
269 		sdata = vif_to_sdata(vif);
270 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
271 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
272 			erp = rate->flags & IEEE80211_RATE_ERP_G;
273 		shift = ieee80211_vif_get_shift(vif);
274 	}
275 
276 	bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift);
277 
278 	/* Data frame duration */
279 	dur = ieee80211_frame_duration(sband->band, frame_len, bitrate,
280 				       erp, short_preamble, shift);
281 	if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) {
282 		/* ACK duration */
283 		dur += ieee80211_frame_duration(sband->band, 10, bitrate,
284 						erp, short_preamble, shift);
285 	}
286 
287 	return cpu_to_le16(dur);
288 }
289 EXPORT_SYMBOL(ieee80211_ctstoself_duration);
290 
291 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac)
292 {
293 	struct ieee80211_local *local = sdata->local;
294 	struct ieee80211_vif *vif = &sdata->vif;
295 	struct fq *fq = &local->fq;
296 	struct ps_data *ps = NULL;
297 	struct txq_info *txqi;
298 	struct sta_info *sta;
299 	int i;
300 
301 	local_bh_disable();
302 	spin_lock(&fq->lock);
303 
304 	if (sdata->vif.type == NL80211_IFTYPE_AP)
305 		ps = &sdata->bss->ps;
306 
307 	sdata->vif.txqs_stopped[ac] = false;
308 
309 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
310 		if (sdata != sta->sdata)
311 			continue;
312 
313 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
314 			struct ieee80211_txq *txq = sta->sta.txq[i];
315 
316 			if (!txq)
317 				continue;
318 
319 			txqi = to_txq_info(txq);
320 
321 			if (ac != txq->ac)
322 				continue;
323 
324 			if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX,
325 						&txqi->flags))
326 				continue;
327 
328 			spin_unlock(&fq->lock);
329 			drv_wake_tx_queue(local, txqi);
330 			spin_lock(&fq->lock);
331 		}
332 	}
333 
334 	if (!vif->txq)
335 		goto out;
336 
337 	txqi = to_txq_info(vif->txq);
338 
339 	if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, &txqi->flags) ||
340 	    (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac)
341 		goto out;
342 
343 	spin_unlock(&fq->lock);
344 
345 	drv_wake_tx_queue(local, txqi);
346 	local_bh_enable();
347 	return;
348 out:
349 	spin_unlock(&fq->lock);
350 	local_bh_enable();
351 }
352 
353 static void
354 __releases(&local->queue_stop_reason_lock)
355 __acquires(&local->queue_stop_reason_lock)
356 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags)
357 {
358 	struct ieee80211_sub_if_data *sdata;
359 	int n_acs = IEEE80211_NUM_ACS;
360 	int i;
361 
362 	rcu_read_lock();
363 
364 	if (local->hw.queues < IEEE80211_NUM_ACS)
365 		n_acs = 1;
366 
367 	for (i = 0; i < local->hw.queues; i++) {
368 		if (local->queue_stop_reasons[i])
369 			continue;
370 
371 		spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags);
372 		list_for_each_entry_rcu(sdata, &local->interfaces, list) {
373 			int ac;
374 
375 			for (ac = 0; ac < n_acs; ac++) {
376 				int ac_queue = sdata->vif.hw_queue[ac];
377 
378 				if (ac_queue == i ||
379 				    sdata->vif.cab_queue == i)
380 					__ieee80211_wake_txqs(sdata, ac);
381 			}
382 		}
383 		spin_lock_irqsave(&local->queue_stop_reason_lock, *flags);
384 	}
385 
386 	rcu_read_unlock();
387 }
388 
389 void ieee80211_wake_txqs(struct tasklet_struct *t)
390 {
391 	struct ieee80211_local *local = from_tasklet(local, t,
392 						     wake_txqs_tasklet);
393 	unsigned long flags;
394 
395 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
396 	_ieee80211_wake_txqs(local, &flags);
397 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
398 }
399 
400 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue)
401 {
402 	struct ieee80211_sub_if_data *sdata;
403 	int n_acs = IEEE80211_NUM_ACS;
404 
405 	if (local->ops->wake_tx_queue)
406 		return;
407 
408 	if (local->hw.queues < IEEE80211_NUM_ACS)
409 		n_acs = 1;
410 
411 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
412 		int ac;
413 
414 		if (!sdata->dev)
415 			continue;
416 
417 		if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE &&
418 		    local->queue_stop_reasons[sdata->vif.cab_queue] != 0)
419 			continue;
420 
421 		for (ac = 0; ac < n_acs; ac++) {
422 			int ac_queue = sdata->vif.hw_queue[ac];
423 
424 			if (ac_queue == queue ||
425 			    (sdata->vif.cab_queue == queue &&
426 			     local->queue_stop_reasons[ac_queue] == 0 &&
427 			     skb_queue_empty(&local->pending[ac_queue])))
428 				netif_wake_subqueue(sdata->dev, ac);
429 		}
430 	}
431 }
432 
433 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue,
434 				   enum queue_stop_reason reason,
435 				   bool refcounted,
436 				   unsigned long *flags)
437 {
438 	struct ieee80211_local *local = hw_to_local(hw);
439 
440 	trace_wake_queue(local, queue, reason);
441 
442 	if (WARN_ON(queue >= hw->queues))
443 		return;
444 
445 	if (!test_bit(reason, &local->queue_stop_reasons[queue]))
446 		return;
447 
448 	if (!refcounted) {
449 		local->q_stop_reasons[queue][reason] = 0;
450 	} else {
451 		local->q_stop_reasons[queue][reason]--;
452 		if (WARN_ON(local->q_stop_reasons[queue][reason] < 0))
453 			local->q_stop_reasons[queue][reason] = 0;
454 	}
455 
456 	if (local->q_stop_reasons[queue][reason] == 0)
457 		__clear_bit(reason, &local->queue_stop_reasons[queue]);
458 
459 	if (local->queue_stop_reasons[queue] != 0)
460 		/* someone still has this queue stopped */
461 		return;
462 
463 	if (skb_queue_empty(&local->pending[queue])) {
464 		rcu_read_lock();
465 		ieee80211_propagate_queue_wake(local, queue);
466 		rcu_read_unlock();
467 	} else
468 		tasklet_schedule(&local->tx_pending_tasklet);
469 
470 	/*
471 	 * Calling _ieee80211_wake_txqs here can be a problem because it may
472 	 * release queue_stop_reason_lock which has been taken by
473 	 * __ieee80211_wake_queue's caller. It is certainly not very nice to
474 	 * release someone's lock, but it is fine because all the callers of
475 	 * __ieee80211_wake_queue call it right before releasing the lock.
476 	 */
477 	if (local->ops->wake_tx_queue) {
478 		if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER)
479 			tasklet_schedule(&local->wake_txqs_tasklet);
480 		else
481 			_ieee80211_wake_txqs(local, flags);
482 	}
483 }
484 
485 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue,
486 				    enum queue_stop_reason reason,
487 				    bool refcounted)
488 {
489 	struct ieee80211_local *local = hw_to_local(hw);
490 	unsigned long flags;
491 
492 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
493 	__ieee80211_wake_queue(hw, queue, reason, refcounted, &flags);
494 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
495 }
496 
497 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
498 {
499 	ieee80211_wake_queue_by_reason(hw, queue,
500 				       IEEE80211_QUEUE_STOP_REASON_DRIVER,
501 				       false);
502 }
503 EXPORT_SYMBOL(ieee80211_wake_queue);
504 
505 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue,
506 				   enum queue_stop_reason reason,
507 				   bool refcounted)
508 {
509 	struct ieee80211_local *local = hw_to_local(hw);
510 	struct ieee80211_sub_if_data *sdata;
511 	int n_acs = IEEE80211_NUM_ACS;
512 
513 	trace_stop_queue(local, queue, reason);
514 
515 	if (WARN_ON(queue >= hw->queues))
516 		return;
517 
518 	if (!refcounted)
519 		local->q_stop_reasons[queue][reason] = 1;
520 	else
521 		local->q_stop_reasons[queue][reason]++;
522 
523 	if (__test_and_set_bit(reason, &local->queue_stop_reasons[queue]))
524 		return;
525 
526 	if (local->hw.queues < IEEE80211_NUM_ACS)
527 		n_acs = 1;
528 
529 	rcu_read_lock();
530 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
531 		int ac;
532 
533 		if (!sdata->dev)
534 			continue;
535 
536 		for (ac = 0; ac < n_acs; ac++) {
537 			if (sdata->vif.hw_queue[ac] == queue ||
538 			    sdata->vif.cab_queue == queue) {
539 				if (!local->ops->wake_tx_queue) {
540 					netif_stop_subqueue(sdata->dev, ac);
541 					continue;
542 				}
543 				spin_lock(&local->fq.lock);
544 				sdata->vif.txqs_stopped[ac] = true;
545 				spin_unlock(&local->fq.lock);
546 			}
547 		}
548 	}
549 	rcu_read_unlock();
550 }
551 
552 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue,
553 				    enum queue_stop_reason reason,
554 				    bool refcounted)
555 {
556 	struct ieee80211_local *local = hw_to_local(hw);
557 	unsigned long flags;
558 
559 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
560 	__ieee80211_stop_queue(hw, queue, reason, refcounted);
561 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
562 }
563 
564 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
565 {
566 	ieee80211_stop_queue_by_reason(hw, queue,
567 				       IEEE80211_QUEUE_STOP_REASON_DRIVER,
568 				       false);
569 }
570 EXPORT_SYMBOL(ieee80211_stop_queue);
571 
572 void ieee80211_add_pending_skb(struct ieee80211_local *local,
573 			       struct sk_buff *skb)
574 {
575 	struct ieee80211_hw *hw = &local->hw;
576 	unsigned long flags;
577 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
578 	int queue = info->hw_queue;
579 
580 	if (WARN_ON(!info->control.vif)) {
581 		ieee80211_free_txskb(&local->hw, skb);
582 		return;
583 	}
584 
585 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
586 	__ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
587 			       false);
588 	__skb_queue_tail(&local->pending[queue], skb);
589 	__ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
590 			       false, &flags);
591 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
592 }
593 
594 void ieee80211_add_pending_skbs(struct ieee80211_local *local,
595 				struct sk_buff_head *skbs)
596 {
597 	struct ieee80211_hw *hw = &local->hw;
598 	struct sk_buff *skb;
599 	unsigned long flags;
600 	int queue, i;
601 
602 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
603 	while ((skb = skb_dequeue(skbs))) {
604 		struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
605 
606 		if (WARN_ON(!info->control.vif)) {
607 			ieee80211_free_txskb(&local->hw, skb);
608 			continue;
609 		}
610 
611 		queue = info->hw_queue;
612 
613 		__ieee80211_stop_queue(hw, queue,
614 				IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
615 				false);
616 
617 		__skb_queue_tail(&local->pending[queue], skb);
618 	}
619 
620 	for (i = 0; i < hw->queues; i++)
621 		__ieee80211_wake_queue(hw, i,
622 			IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
623 			false, &flags);
624 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
625 }
626 
627 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw,
628 				     unsigned long queues,
629 				     enum queue_stop_reason reason,
630 				     bool refcounted)
631 {
632 	struct ieee80211_local *local = hw_to_local(hw);
633 	unsigned long flags;
634 	int i;
635 
636 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
637 
638 	for_each_set_bit(i, &queues, hw->queues)
639 		__ieee80211_stop_queue(hw, i, reason, refcounted);
640 
641 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
642 }
643 
644 void ieee80211_stop_queues(struct ieee80211_hw *hw)
645 {
646 	ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
647 					IEEE80211_QUEUE_STOP_REASON_DRIVER,
648 					false);
649 }
650 EXPORT_SYMBOL(ieee80211_stop_queues);
651 
652 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue)
653 {
654 	struct ieee80211_local *local = hw_to_local(hw);
655 	unsigned long flags;
656 	int ret;
657 
658 	if (WARN_ON(queue >= hw->queues))
659 		return true;
660 
661 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
662 	ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER,
663 		       &local->queue_stop_reasons[queue]);
664 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
665 	return ret;
666 }
667 EXPORT_SYMBOL(ieee80211_queue_stopped);
668 
669 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw,
670 				     unsigned long queues,
671 				     enum queue_stop_reason reason,
672 				     bool refcounted)
673 {
674 	struct ieee80211_local *local = hw_to_local(hw);
675 	unsigned long flags;
676 	int i;
677 
678 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
679 
680 	for_each_set_bit(i, &queues, hw->queues)
681 		__ieee80211_wake_queue(hw, i, reason, refcounted, &flags);
682 
683 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
684 }
685 
686 void ieee80211_wake_queues(struct ieee80211_hw *hw)
687 {
688 	ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
689 					IEEE80211_QUEUE_STOP_REASON_DRIVER,
690 					false);
691 }
692 EXPORT_SYMBOL(ieee80211_wake_queues);
693 
694 static unsigned int
695 ieee80211_get_vif_queues(struct ieee80211_local *local,
696 			 struct ieee80211_sub_if_data *sdata)
697 {
698 	unsigned int queues;
699 
700 	if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) {
701 		int ac;
702 
703 		queues = 0;
704 
705 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
706 			queues |= BIT(sdata->vif.hw_queue[ac]);
707 		if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE)
708 			queues |= BIT(sdata->vif.cab_queue);
709 	} else {
710 		/* all queues */
711 		queues = BIT(local->hw.queues) - 1;
712 	}
713 
714 	return queues;
715 }
716 
717 void __ieee80211_flush_queues(struct ieee80211_local *local,
718 			      struct ieee80211_sub_if_data *sdata,
719 			      unsigned int queues, bool drop)
720 {
721 	if (!local->ops->flush)
722 		return;
723 
724 	/*
725 	 * If no queue was set, or if the HW doesn't support
726 	 * IEEE80211_HW_QUEUE_CONTROL - flush all queues
727 	 */
728 	if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
729 		queues = ieee80211_get_vif_queues(local, sdata);
730 
731 	ieee80211_stop_queues_by_reason(&local->hw, queues,
732 					IEEE80211_QUEUE_STOP_REASON_FLUSH,
733 					false);
734 
735 	drv_flush(local, sdata, queues, drop);
736 
737 	ieee80211_wake_queues_by_reason(&local->hw, queues,
738 					IEEE80211_QUEUE_STOP_REASON_FLUSH,
739 					false);
740 }
741 
742 void ieee80211_flush_queues(struct ieee80211_local *local,
743 			    struct ieee80211_sub_if_data *sdata, bool drop)
744 {
745 	__ieee80211_flush_queues(local, sdata, 0, drop);
746 }
747 
748 void ieee80211_stop_vif_queues(struct ieee80211_local *local,
749 			       struct ieee80211_sub_if_data *sdata,
750 			       enum queue_stop_reason reason)
751 {
752 	ieee80211_stop_queues_by_reason(&local->hw,
753 					ieee80211_get_vif_queues(local, sdata),
754 					reason, true);
755 }
756 
757 void ieee80211_wake_vif_queues(struct ieee80211_local *local,
758 			       struct ieee80211_sub_if_data *sdata,
759 			       enum queue_stop_reason reason)
760 {
761 	ieee80211_wake_queues_by_reason(&local->hw,
762 					ieee80211_get_vif_queues(local, sdata),
763 					reason, true);
764 }
765 
766 static void __iterate_interfaces(struct ieee80211_local *local,
767 				 u32 iter_flags,
768 				 void (*iterator)(void *data, u8 *mac,
769 						  struct ieee80211_vif *vif),
770 				 void *data)
771 {
772 	struct ieee80211_sub_if_data *sdata;
773 	bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE;
774 
775 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
776 		switch (sdata->vif.type) {
777 		case NL80211_IFTYPE_MONITOR:
778 			if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE))
779 				continue;
780 			break;
781 		case NL80211_IFTYPE_AP_VLAN:
782 			continue;
783 		default:
784 			break;
785 		}
786 		if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
787 		    active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
788 			continue;
789 		if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) &&
790 		    !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
791 			continue;
792 		if (ieee80211_sdata_running(sdata) || !active_only)
793 			iterator(data, sdata->vif.addr,
794 				 &sdata->vif);
795 	}
796 
797 	sdata = rcu_dereference_check(local->monitor_sdata,
798 				      lockdep_is_held(&local->iflist_mtx) ||
799 				      lockdep_is_held(&local->hw.wiphy->mtx));
800 	if (sdata &&
801 	    (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only ||
802 	     sdata->flags & IEEE80211_SDATA_IN_DRIVER))
803 		iterator(data, sdata->vif.addr, &sdata->vif);
804 }
805 
806 void ieee80211_iterate_interfaces(
807 	struct ieee80211_hw *hw, u32 iter_flags,
808 	void (*iterator)(void *data, u8 *mac,
809 			 struct ieee80211_vif *vif),
810 	void *data)
811 {
812 	struct ieee80211_local *local = hw_to_local(hw);
813 
814 	mutex_lock(&local->iflist_mtx);
815 	__iterate_interfaces(local, iter_flags, iterator, data);
816 	mutex_unlock(&local->iflist_mtx);
817 }
818 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces);
819 
820 void ieee80211_iterate_active_interfaces_atomic(
821 	struct ieee80211_hw *hw, u32 iter_flags,
822 	void (*iterator)(void *data, u8 *mac,
823 			 struct ieee80211_vif *vif),
824 	void *data)
825 {
826 	struct ieee80211_local *local = hw_to_local(hw);
827 
828 	rcu_read_lock();
829 	__iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE,
830 			     iterator, data);
831 	rcu_read_unlock();
832 }
833 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic);
834 
835 void ieee80211_iterate_active_interfaces_mtx(
836 	struct ieee80211_hw *hw, u32 iter_flags,
837 	void (*iterator)(void *data, u8 *mac,
838 			 struct ieee80211_vif *vif),
839 	void *data)
840 {
841 	struct ieee80211_local *local = hw_to_local(hw);
842 
843 	lockdep_assert_wiphy(hw->wiphy);
844 
845 	__iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE,
846 			     iterator, data);
847 }
848 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx);
849 
850 static void __iterate_stations(struct ieee80211_local *local,
851 			       void (*iterator)(void *data,
852 						struct ieee80211_sta *sta),
853 			       void *data)
854 {
855 	struct sta_info *sta;
856 
857 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
858 		if (!sta->uploaded)
859 			continue;
860 
861 		iterator(data, &sta->sta);
862 	}
863 }
864 
865 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw,
866 			void (*iterator)(void *data,
867 					 struct ieee80211_sta *sta),
868 			void *data)
869 {
870 	struct ieee80211_local *local = hw_to_local(hw);
871 
872 	rcu_read_lock();
873 	__iterate_stations(local, iterator, data);
874 	rcu_read_unlock();
875 }
876 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic);
877 
878 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev)
879 {
880 	struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
881 
882 	if (!ieee80211_sdata_running(sdata) ||
883 	    !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
884 		return NULL;
885 	return &sdata->vif;
886 }
887 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif);
888 
889 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif)
890 {
891 	if (!vif)
892 		return NULL;
893 
894 	return &vif_to_sdata(vif)->wdev;
895 }
896 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev);
897 
898 /*
899  * Nothing should have been stuffed into the workqueue during
900  * the suspend->resume cycle. Since we can't check each caller
901  * of this function if we are already quiescing / suspended,
902  * check here and don't WARN since this can actually happen when
903  * the rx path (for example) is racing against __ieee80211_suspend
904  * and suspending / quiescing was set after the rx path checked
905  * them.
906  */
907 static bool ieee80211_can_queue_work(struct ieee80211_local *local)
908 {
909 	if (local->quiescing || (local->suspended && !local->resuming)) {
910 		pr_warn("queueing ieee80211 work while going to suspend\n");
911 		return false;
912 	}
913 
914 	return true;
915 }
916 
917 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work)
918 {
919 	struct ieee80211_local *local = hw_to_local(hw);
920 
921 	if (!ieee80211_can_queue_work(local))
922 		return;
923 
924 	queue_work(local->workqueue, work);
925 }
926 EXPORT_SYMBOL(ieee80211_queue_work);
927 
928 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
929 				  struct delayed_work *dwork,
930 				  unsigned long delay)
931 {
932 	struct ieee80211_local *local = hw_to_local(hw);
933 
934 	if (!ieee80211_can_queue_work(local))
935 		return;
936 
937 	queue_delayed_work(local->workqueue, dwork, delay);
938 }
939 EXPORT_SYMBOL(ieee80211_queue_delayed_work);
940 
941 static void ieee80211_parse_extension_element(u32 *crc,
942 					      const struct element *elem,
943 					      struct ieee802_11_elems *elems)
944 {
945 	const void *data = elem->data + 1;
946 	u8 len = elem->datalen - 1;
947 
948 	switch (elem->data[0]) {
949 	case WLAN_EID_EXT_HE_MU_EDCA:
950 		if (len >= sizeof(*elems->mu_edca_param_set)) {
951 			elems->mu_edca_param_set = data;
952 			if (crc)
953 				*crc = crc32_be(*crc, (void *)elem,
954 						elem->datalen + 2);
955 		}
956 		break;
957 	case WLAN_EID_EXT_HE_CAPABILITY:
958 		elems->he_cap = data;
959 		elems->he_cap_len = len;
960 		break;
961 	case WLAN_EID_EXT_HE_OPERATION:
962 		if (len >= sizeof(*elems->he_operation) &&
963 		    len >= ieee80211_he_oper_size(data) - 1) {
964 			if (crc)
965 				*crc = crc32_be(*crc, (void *)elem,
966 						elem->datalen + 2);
967 			elems->he_operation = data;
968 		}
969 		break;
970 	case WLAN_EID_EXT_UORA:
971 		if (len >= 1)
972 			elems->uora_element = data;
973 		break;
974 	case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME:
975 		if (len == 3)
976 			elems->max_channel_switch_time = data;
977 		break;
978 	case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION:
979 		if (len >= sizeof(*elems->mbssid_config_ie))
980 			elems->mbssid_config_ie = data;
981 		break;
982 	case WLAN_EID_EXT_HE_SPR:
983 		if (len >= sizeof(*elems->he_spr) &&
984 		    len >= ieee80211_he_spr_size(data))
985 			elems->he_spr = data;
986 		break;
987 	case WLAN_EID_EXT_HE_6GHZ_CAPA:
988 		if (len >= sizeof(*elems->he_6ghz_capa))
989 			elems->he_6ghz_capa = data;
990 		break;
991 	}
992 }
993 
994 static u32
995 _ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action,
996 			    struct ieee802_11_elems *elems,
997 			    u64 filter, u32 crc,
998 			    const struct element *check_inherit)
999 {
1000 	const struct element *elem;
1001 	bool calc_crc = filter != 0;
1002 	DECLARE_BITMAP(seen_elems, 256);
1003 	const u8 *ie;
1004 
1005 	bitmap_zero(seen_elems, 256);
1006 
1007 	for_each_element(elem, start, len) {
1008 		bool elem_parse_failed;
1009 		u8 id = elem->id;
1010 		u8 elen = elem->datalen;
1011 		const u8 *pos = elem->data;
1012 
1013 		if (check_inherit &&
1014 		    !cfg80211_is_element_inherited(elem,
1015 						   check_inherit))
1016 			continue;
1017 
1018 		switch (id) {
1019 		case WLAN_EID_SSID:
1020 		case WLAN_EID_SUPP_RATES:
1021 		case WLAN_EID_FH_PARAMS:
1022 		case WLAN_EID_DS_PARAMS:
1023 		case WLAN_EID_CF_PARAMS:
1024 		case WLAN_EID_TIM:
1025 		case WLAN_EID_IBSS_PARAMS:
1026 		case WLAN_EID_CHALLENGE:
1027 		case WLAN_EID_RSN:
1028 		case WLAN_EID_ERP_INFO:
1029 		case WLAN_EID_EXT_SUPP_RATES:
1030 		case WLAN_EID_HT_CAPABILITY:
1031 		case WLAN_EID_HT_OPERATION:
1032 		case WLAN_EID_VHT_CAPABILITY:
1033 		case WLAN_EID_VHT_OPERATION:
1034 		case WLAN_EID_MESH_ID:
1035 		case WLAN_EID_MESH_CONFIG:
1036 		case WLAN_EID_PEER_MGMT:
1037 		case WLAN_EID_PREQ:
1038 		case WLAN_EID_PREP:
1039 		case WLAN_EID_PERR:
1040 		case WLAN_EID_RANN:
1041 		case WLAN_EID_CHANNEL_SWITCH:
1042 		case WLAN_EID_EXT_CHANSWITCH_ANN:
1043 		case WLAN_EID_COUNTRY:
1044 		case WLAN_EID_PWR_CONSTRAINT:
1045 		case WLAN_EID_TIMEOUT_INTERVAL:
1046 		case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
1047 		case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
1048 		case WLAN_EID_CHAN_SWITCH_PARAM:
1049 		case WLAN_EID_EXT_CAPABILITY:
1050 		case WLAN_EID_CHAN_SWITCH_TIMING:
1051 		case WLAN_EID_LINK_ID:
1052 		case WLAN_EID_BSS_MAX_IDLE_PERIOD:
1053 		case WLAN_EID_RSNX:
1054 		case WLAN_EID_S1G_BCN_COMPAT:
1055 		case WLAN_EID_S1G_CAPABILITIES:
1056 		case WLAN_EID_S1G_OPERATION:
1057 		case WLAN_EID_AID_RESPONSE:
1058 		case WLAN_EID_S1G_SHORT_BCN_INTERVAL:
1059 		/*
1060 		 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible
1061 		 * that if the content gets bigger it might be needed more than once
1062 		 */
1063 			if (test_bit(id, seen_elems)) {
1064 				elems->parse_error = true;
1065 				continue;
1066 			}
1067 			break;
1068 		}
1069 
1070 		if (calc_crc && id < 64 && (filter & (1ULL << id)))
1071 			crc = crc32_be(crc, pos - 2, elen + 2);
1072 
1073 		elem_parse_failed = false;
1074 
1075 		switch (id) {
1076 		case WLAN_EID_LINK_ID:
1077 			if (elen + 2 < sizeof(struct ieee80211_tdls_lnkie)) {
1078 				elem_parse_failed = true;
1079 				break;
1080 			}
1081 			elems->lnk_id = (void *)(pos - 2);
1082 			break;
1083 		case WLAN_EID_CHAN_SWITCH_TIMING:
1084 			if (elen < sizeof(struct ieee80211_ch_switch_timing)) {
1085 				elem_parse_failed = true;
1086 				break;
1087 			}
1088 			elems->ch_sw_timing = (void *)pos;
1089 			break;
1090 		case WLAN_EID_EXT_CAPABILITY:
1091 			elems->ext_capab = pos;
1092 			elems->ext_capab_len = elen;
1093 			break;
1094 		case WLAN_EID_SSID:
1095 			elems->ssid = pos;
1096 			elems->ssid_len = elen;
1097 			break;
1098 		case WLAN_EID_SUPP_RATES:
1099 			elems->supp_rates = pos;
1100 			elems->supp_rates_len = elen;
1101 			break;
1102 		case WLAN_EID_DS_PARAMS:
1103 			if (elen >= 1)
1104 				elems->ds_params = pos;
1105 			else
1106 				elem_parse_failed = true;
1107 			break;
1108 		case WLAN_EID_TIM:
1109 			if (elen >= sizeof(struct ieee80211_tim_ie)) {
1110 				elems->tim = (void *)pos;
1111 				elems->tim_len = elen;
1112 			} else
1113 				elem_parse_failed = true;
1114 			break;
1115 		case WLAN_EID_VENDOR_SPECIFIC:
1116 			if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
1117 			    pos[2] == 0xf2) {
1118 				/* Microsoft OUI (00:50:F2) */
1119 
1120 				if (calc_crc)
1121 					crc = crc32_be(crc, pos - 2, elen + 2);
1122 
1123 				if (elen >= 5 && pos[3] == 2) {
1124 					/* OUI Type 2 - WMM IE */
1125 					if (pos[4] == 0) {
1126 						elems->wmm_info = pos;
1127 						elems->wmm_info_len = elen;
1128 					} else if (pos[4] == 1) {
1129 						elems->wmm_param = pos;
1130 						elems->wmm_param_len = elen;
1131 					}
1132 				}
1133 			}
1134 			break;
1135 		case WLAN_EID_RSN:
1136 			elems->rsn = pos;
1137 			elems->rsn_len = elen;
1138 			break;
1139 		case WLAN_EID_ERP_INFO:
1140 			if (elen >= 1)
1141 				elems->erp_info = pos;
1142 			else
1143 				elem_parse_failed = true;
1144 			break;
1145 		case WLAN_EID_EXT_SUPP_RATES:
1146 			elems->ext_supp_rates = pos;
1147 			elems->ext_supp_rates_len = elen;
1148 			break;
1149 		case WLAN_EID_HT_CAPABILITY:
1150 			if (elen >= sizeof(struct ieee80211_ht_cap))
1151 				elems->ht_cap_elem = (void *)pos;
1152 			else
1153 				elem_parse_failed = true;
1154 			break;
1155 		case WLAN_EID_HT_OPERATION:
1156 			if (elen >= sizeof(struct ieee80211_ht_operation))
1157 				elems->ht_operation = (void *)pos;
1158 			else
1159 				elem_parse_failed = true;
1160 			break;
1161 		case WLAN_EID_VHT_CAPABILITY:
1162 			if (elen >= sizeof(struct ieee80211_vht_cap))
1163 				elems->vht_cap_elem = (void *)pos;
1164 			else
1165 				elem_parse_failed = true;
1166 			break;
1167 		case WLAN_EID_VHT_OPERATION:
1168 			if (elen >= sizeof(struct ieee80211_vht_operation)) {
1169 				elems->vht_operation = (void *)pos;
1170 				if (calc_crc)
1171 					crc = crc32_be(crc, pos - 2, elen + 2);
1172 				break;
1173 			}
1174 			elem_parse_failed = true;
1175 			break;
1176 		case WLAN_EID_OPMODE_NOTIF:
1177 			if (elen > 0) {
1178 				elems->opmode_notif = pos;
1179 				if (calc_crc)
1180 					crc = crc32_be(crc, pos - 2, elen + 2);
1181 				break;
1182 			}
1183 			elem_parse_failed = true;
1184 			break;
1185 		case WLAN_EID_MESH_ID:
1186 			elems->mesh_id = pos;
1187 			elems->mesh_id_len = elen;
1188 			break;
1189 		case WLAN_EID_MESH_CONFIG:
1190 			if (elen >= sizeof(struct ieee80211_meshconf_ie))
1191 				elems->mesh_config = (void *)pos;
1192 			else
1193 				elem_parse_failed = true;
1194 			break;
1195 		case WLAN_EID_PEER_MGMT:
1196 			elems->peering = pos;
1197 			elems->peering_len = elen;
1198 			break;
1199 		case WLAN_EID_MESH_AWAKE_WINDOW:
1200 			if (elen >= 2)
1201 				elems->awake_window = (void *)pos;
1202 			break;
1203 		case WLAN_EID_PREQ:
1204 			elems->preq = pos;
1205 			elems->preq_len = elen;
1206 			break;
1207 		case WLAN_EID_PREP:
1208 			elems->prep = pos;
1209 			elems->prep_len = elen;
1210 			break;
1211 		case WLAN_EID_PERR:
1212 			elems->perr = pos;
1213 			elems->perr_len = elen;
1214 			break;
1215 		case WLAN_EID_RANN:
1216 			if (elen >= sizeof(struct ieee80211_rann_ie))
1217 				elems->rann = (void *)pos;
1218 			else
1219 				elem_parse_failed = true;
1220 			break;
1221 		case WLAN_EID_CHANNEL_SWITCH:
1222 			if (elen != sizeof(struct ieee80211_channel_sw_ie)) {
1223 				elem_parse_failed = true;
1224 				break;
1225 			}
1226 			elems->ch_switch_ie = (void *)pos;
1227 			break;
1228 		case WLAN_EID_EXT_CHANSWITCH_ANN:
1229 			if (elen != sizeof(struct ieee80211_ext_chansw_ie)) {
1230 				elem_parse_failed = true;
1231 				break;
1232 			}
1233 			elems->ext_chansw_ie = (void *)pos;
1234 			break;
1235 		case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
1236 			if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) {
1237 				elem_parse_failed = true;
1238 				break;
1239 			}
1240 			elems->sec_chan_offs = (void *)pos;
1241 			break;
1242 		case WLAN_EID_CHAN_SWITCH_PARAM:
1243 			if (elen <
1244 			    sizeof(*elems->mesh_chansw_params_ie)) {
1245 				elem_parse_failed = true;
1246 				break;
1247 			}
1248 			elems->mesh_chansw_params_ie = (void *)pos;
1249 			break;
1250 		case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
1251 			if (!action ||
1252 			    elen < sizeof(*elems->wide_bw_chansw_ie)) {
1253 				elem_parse_failed = true;
1254 				break;
1255 			}
1256 			elems->wide_bw_chansw_ie = (void *)pos;
1257 			break;
1258 		case WLAN_EID_CHANNEL_SWITCH_WRAPPER:
1259 			if (action) {
1260 				elem_parse_failed = true;
1261 				break;
1262 			}
1263 			/*
1264 			 * This is a bit tricky, but as we only care about
1265 			 * the wide bandwidth channel switch element, so
1266 			 * just parse it out manually.
1267 			 */
1268 			ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH,
1269 					      pos, elen);
1270 			if (ie) {
1271 				if (ie[1] >= sizeof(*elems->wide_bw_chansw_ie))
1272 					elems->wide_bw_chansw_ie =
1273 						(void *)(ie + 2);
1274 				else
1275 					elem_parse_failed = true;
1276 			}
1277 			break;
1278 		case WLAN_EID_COUNTRY:
1279 			elems->country_elem = pos;
1280 			elems->country_elem_len = elen;
1281 			break;
1282 		case WLAN_EID_PWR_CONSTRAINT:
1283 			if (elen != 1) {
1284 				elem_parse_failed = true;
1285 				break;
1286 			}
1287 			elems->pwr_constr_elem = pos;
1288 			break;
1289 		case WLAN_EID_CISCO_VENDOR_SPECIFIC:
1290 			/* Lots of different options exist, but we only care
1291 			 * about the Dynamic Transmit Power Control element.
1292 			 * First check for the Cisco OUI, then for the DTPC
1293 			 * tag (0x00).
1294 			 */
1295 			if (elen < 4) {
1296 				elem_parse_failed = true;
1297 				break;
1298 			}
1299 
1300 			if (pos[0] != 0x00 || pos[1] != 0x40 ||
1301 			    pos[2] != 0x96 || pos[3] != 0x00)
1302 				break;
1303 
1304 			if (elen != 6) {
1305 				elem_parse_failed = true;
1306 				break;
1307 			}
1308 
1309 			if (calc_crc)
1310 				crc = crc32_be(crc, pos - 2, elen + 2);
1311 
1312 			elems->cisco_dtpc_elem = pos;
1313 			break;
1314 		case WLAN_EID_ADDBA_EXT:
1315 			if (elen < sizeof(struct ieee80211_addba_ext_ie)) {
1316 				elem_parse_failed = true;
1317 				break;
1318 			}
1319 			elems->addba_ext_ie = (void *)pos;
1320 			break;
1321 		case WLAN_EID_TIMEOUT_INTERVAL:
1322 			if (elen >= sizeof(struct ieee80211_timeout_interval_ie))
1323 				elems->timeout_int = (void *)pos;
1324 			else
1325 				elem_parse_failed = true;
1326 			break;
1327 		case WLAN_EID_BSS_MAX_IDLE_PERIOD:
1328 			if (elen >= sizeof(*elems->max_idle_period_ie))
1329 				elems->max_idle_period_ie = (void *)pos;
1330 			break;
1331 		case WLAN_EID_RSNX:
1332 			elems->rsnx = pos;
1333 			elems->rsnx_len = elen;
1334 			break;
1335 		case WLAN_EID_TX_POWER_ENVELOPE:
1336 			if (elen < 1 ||
1337 			    elen > sizeof(struct ieee80211_tx_pwr_env))
1338 				break;
1339 
1340 			if (elems->tx_pwr_env_num >= ARRAY_SIZE(elems->tx_pwr_env))
1341 				break;
1342 
1343 			elems->tx_pwr_env[elems->tx_pwr_env_num] = (void *)pos;
1344 			elems->tx_pwr_env_len[elems->tx_pwr_env_num] = elen;
1345 			elems->tx_pwr_env_num++;
1346 			break;
1347 		case WLAN_EID_EXTENSION:
1348 			ieee80211_parse_extension_element(calc_crc ?
1349 								&crc : NULL,
1350 							  elem, elems);
1351 			break;
1352 		case WLAN_EID_S1G_CAPABILITIES:
1353 			if (elen >= sizeof(*elems->s1g_capab))
1354 				elems->s1g_capab = (void *)pos;
1355 			else
1356 				elem_parse_failed = true;
1357 			break;
1358 		case WLAN_EID_S1G_OPERATION:
1359 			if (elen == sizeof(*elems->s1g_oper))
1360 				elems->s1g_oper = (void *)pos;
1361 			else
1362 				elem_parse_failed = true;
1363 			break;
1364 		case WLAN_EID_S1G_BCN_COMPAT:
1365 			if (elen == sizeof(*elems->s1g_bcn_compat))
1366 				elems->s1g_bcn_compat = (void *)pos;
1367 			else
1368 				elem_parse_failed = true;
1369 			break;
1370 		case WLAN_EID_AID_RESPONSE:
1371 			if (elen == sizeof(struct ieee80211_aid_response_ie))
1372 				elems->aid_resp = (void *)pos;
1373 			else
1374 				elem_parse_failed = true;
1375 			break;
1376 		default:
1377 			break;
1378 		}
1379 
1380 		if (elem_parse_failed)
1381 			elems->parse_error = true;
1382 		else
1383 			__set_bit(id, seen_elems);
1384 	}
1385 
1386 	if (!for_each_element_completed(elem, start, len))
1387 		elems->parse_error = true;
1388 
1389 	return crc;
1390 }
1391 
1392 static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len,
1393 					    struct ieee802_11_elems *elems,
1394 					    const u8 *transmitter_bssid,
1395 					    const u8 *bss_bssid,
1396 					    u8 *nontransmitted_profile)
1397 {
1398 	const struct element *elem, *sub;
1399 	size_t profile_len = 0;
1400 	bool found = false;
1401 
1402 	if (!bss_bssid || !transmitter_bssid)
1403 		return profile_len;
1404 
1405 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) {
1406 		if (elem->datalen < 2)
1407 			continue;
1408 
1409 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
1410 			u8 new_bssid[ETH_ALEN];
1411 			const u8 *index;
1412 
1413 			if (sub->id != 0 || sub->datalen < 4) {
1414 				/* not a valid BSS profile */
1415 				continue;
1416 			}
1417 
1418 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
1419 			    sub->data[1] != 2) {
1420 				/* The first element of the
1421 				 * Nontransmitted BSSID Profile is not
1422 				 * the Nontransmitted BSSID Capability
1423 				 * element.
1424 				 */
1425 				continue;
1426 			}
1427 
1428 			memset(nontransmitted_profile, 0, len);
1429 			profile_len = cfg80211_merge_profile(start, len,
1430 							     elem,
1431 							     sub,
1432 							     nontransmitted_profile,
1433 							     len);
1434 
1435 			/* found a Nontransmitted BSSID Profile */
1436 			index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX,
1437 						 nontransmitted_profile,
1438 						 profile_len);
1439 			if (!index || index[1] < 1 || index[2] == 0) {
1440 				/* Invalid MBSSID Index element */
1441 				continue;
1442 			}
1443 
1444 			cfg80211_gen_new_bssid(transmitter_bssid,
1445 					       elem->data[0],
1446 					       index[2],
1447 					       new_bssid);
1448 			if (ether_addr_equal(new_bssid, bss_bssid)) {
1449 				found = true;
1450 				elems->bssid_index_len = index[1];
1451 				elems->bssid_index = (void *)&index[2];
1452 				break;
1453 			}
1454 		}
1455 	}
1456 
1457 	return found ? profile_len : 0;
1458 }
1459 
1460 struct ieee802_11_elems *ieee802_11_parse_elems_crc(const u8 *start, size_t len,
1461 						    bool action, u64 filter,
1462 						    u32 crc,
1463 						    const u8 *transmitter_bssid,
1464 						    const u8 *bss_bssid)
1465 {
1466 	struct ieee802_11_elems *elems;
1467 	const struct element *non_inherit = NULL;
1468 	u8 *nontransmitted_profile;
1469 	int nontransmitted_profile_len = 0;
1470 
1471 	elems = kzalloc(sizeof(*elems), GFP_ATOMIC);
1472 	if (!elems)
1473 		return NULL;
1474 	elems->ie_start = start;
1475 	elems->total_len = len;
1476 
1477 	nontransmitted_profile = kmalloc(len, GFP_ATOMIC);
1478 	if (nontransmitted_profile) {
1479 		nontransmitted_profile_len =
1480 			ieee802_11_find_bssid_profile(start, len, elems,
1481 						      transmitter_bssid,
1482 						      bss_bssid,
1483 						      nontransmitted_profile);
1484 		non_inherit =
1485 			cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
1486 					       nontransmitted_profile,
1487 					       nontransmitted_profile_len);
1488 	}
1489 
1490 	crc = _ieee802_11_parse_elems_crc(start, len, action, elems, filter,
1491 					  crc, non_inherit);
1492 
1493 	/* Override with nontransmitted profile, if found */
1494 	if (nontransmitted_profile_len)
1495 		_ieee802_11_parse_elems_crc(nontransmitted_profile,
1496 					    nontransmitted_profile_len,
1497 					    action, elems, 0, 0, NULL);
1498 
1499 	if (elems->tim && !elems->parse_error) {
1500 		const struct ieee80211_tim_ie *tim_ie = elems->tim;
1501 
1502 		elems->dtim_period = tim_ie->dtim_period;
1503 		elems->dtim_count = tim_ie->dtim_count;
1504 	}
1505 
1506 	/* Override DTIM period and count if needed */
1507 	if (elems->bssid_index &&
1508 	    elems->bssid_index_len >=
1509 	    offsetofend(struct ieee80211_bssid_index, dtim_period))
1510 		elems->dtim_period = elems->bssid_index->dtim_period;
1511 
1512 	if (elems->bssid_index &&
1513 	    elems->bssid_index_len >=
1514 	    offsetofend(struct ieee80211_bssid_index, dtim_count))
1515 		elems->dtim_count = elems->bssid_index->dtim_count;
1516 
1517 	kfree(nontransmitted_profile);
1518 
1519 	elems->crc = crc;
1520 
1521 	return elems;
1522 }
1523 
1524 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata,
1525 					   struct ieee80211_tx_queue_params
1526 					   *qparam, int ac)
1527 {
1528 	struct ieee80211_chanctx_conf *chanctx_conf;
1529 	const struct ieee80211_reg_rule *rrule;
1530 	const struct ieee80211_wmm_ac *wmm_ac;
1531 	u16 center_freq = 0;
1532 
1533 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1534 	    sdata->vif.type != NL80211_IFTYPE_STATION)
1535 		return;
1536 
1537 	rcu_read_lock();
1538 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1539 	if (chanctx_conf)
1540 		center_freq = chanctx_conf->def.chan->center_freq;
1541 
1542 	if (!center_freq) {
1543 		rcu_read_unlock();
1544 		return;
1545 	}
1546 
1547 	rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq));
1548 
1549 	if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) {
1550 		rcu_read_unlock();
1551 		return;
1552 	}
1553 
1554 	if (sdata->vif.type == NL80211_IFTYPE_AP)
1555 		wmm_ac = &rrule->wmm_rule.ap[ac];
1556 	else
1557 		wmm_ac = &rrule->wmm_rule.client[ac];
1558 	qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min);
1559 	qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max);
1560 	qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn);
1561 	qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32);
1562 	rcu_read_unlock();
1563 }
1564 
1565 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata,
1566 			       bool bss_notify, bool enable_qos)
1567 {
1568 	struct ieee80211_local *local = sdata->local;
1569 	struct ieee80211_tx_queue_params qparam;
1570 	struct ieee80211_chanctx_conf *chanctx_conf;
1571 	int ac;
1572 	bool use_11b;
1573 	bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */
1574 	int aCWmin, aCWmax;
1575 
1576 	if (!local->ops->conf_tx)
1577 		return;
1578 
1579 	if (local->hw.queues < IEEE80211_NUM_ACS)
1580 		return;
1581 
1582 	memset(&qparam, 0, sizeof(qparam));
1583 
1584 	rcu_read_lock();
1585 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1586 	use_11b = (chanctx_conf &&
1587 		   chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) &&
1588 		 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE);
1589 	rcu_read_unlock();
1590 
1591 	is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB);
1592 
1593 	/* Set defaults according to 802.11-2007 Table 7-37 */
1594 	aCWmax = 1023;
1595 	if (use_11b)
1596 		aCWmin = 31;
1597 	else
1598 		aCWmin = 15;
1599 
1600 	/* Confiure old 802.11b/g medium access rules. */
1601 	qparam.cw_max = aCWmax;
1602 	qparam.cw_min = aCWmin;
1603 	qparam.txop = 0;
1604 	qparam.aifs = 2;
1605 
1606 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1607 		/* Update if QoS is enabled. */
1608 		if (enable_qos) {
1609 			switch (ac) {
1610 			case IEEE80211_AC_BK:
1611 				qparam.cw_max = aCWmax;
1612 				qparam.cw_min = aCWmin;
1613 				qparam.txop = 0;
1614 				if (is_ocb)
1615 					qparam.aifs = 9;
1616 				else
1617 					qparam.aifs = 7;
1618 				break;
1619 			/* never happens but let's not leave undefined */
1620 			default:
1621 			case IEEE80211_AC_BE:
1622 				qparam.cw_max = aCWmax;
1623 				qparam.cw_min = aCWmin;
1624 				qparam.txop = 0;
1625 				if (is_ocb)
1626 					qparam.aifs = 6;
1627 				else
1628 					qparam.aifs = 3;
1629 				break;
1630 			case IEEE80211_AC_VI:
1631 				qparam.cw_max = aCWmin;
1632 				qparam.cw_min = (aCWmin + 1) / 2 - 1;
1633 				if (is_ocb)
1634 					qparam.txop = 0;
1635 				else if (use_11b)
1636 					qparam.txop = 6016/32;
1637 				else
1638 					qparam.txop = 3008/32;
1639 
1640 				if (is_ocb)
1641 					qparam.aifs = 3;
1642 				else
1643 					qparam.aifs = 2;
1644 				break;
1645 			case IEEE80211_AC_VO:
1646 				qparam.cw_max = (aCWmin + 1) / 2 - 1;
1647 				qparam.cw_min = (aCWmin + 1) / 4 - 1;
1648 				if (is_ocb)
1649 					qparam.txop = 0;
1650 				else if (use_11b)
1651 					qparam.txop = 3264/32;
1652 				else
1653 					qparam.txop = 1504/32;
1654 				qparam.aifs = 2;
1655 				break;
1656 			}
1657 		}
1658 		ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac);
1659 
1660 		qparam.uapsd = false;
1661 
1662 		sdata->tx_conf[ac] = qparam;
1663 		drv_conf_tx(local, sdata, ac, &qparam);
1664 	}
1665 
1666 	if (sdata->vif.type != NL80211_IFTYPE_MONITOR &&
1667 	    sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE &&
1668 	    sdata->vif.type != NL80211_IFTYPE_NAN) {
1669 		sdata->vif.bss_conf.qos = enable_qos;
1670 		if (bss_notify)
1671 			ieee80211_bss_info_change_notify(sdata,
1672 							 BSS_CHANGED_QOS);
1673 	}
1674 }
1675 
1676 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata,
1677 			 u16 transaction, u16 auth_alg, u16 status,
1678 			 const u8 *extra, size_t extra_len, const u8 *da,
1679 			 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx,
1680 			 u32 tx_flags)
1681 {
1682 	struct ieee80211_local *local = sdata->local;
1683 	struct sk_buff *skb;
1684 	struct ieee80211_mgmt *mgmt;
1685 	int err;
1686 
1687 	/* 24 + 6 = header + auth_algo + auth_transaction + status_code */
1688 	skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN +
1689 			    24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN);
1690 	if (!skb)
1691 		return;
1692 
1693 	skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN);
1694 
1695 	mgmt = skb_put_zero(skb, 24 + 6);
1696 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1697 					  IEEE80211_STYPE_AUTH);
1698 	memcpy(mgmt->da, da, ETH_ALEN);
1699 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1700 	memcpy(mgmt->bssid, bssid, ETH_ALEN);
1701 	mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg);
1702 	mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
1703 	mgmt->u.auth.status_code = cpu_to_le16(status);
1704 	if (extra)
1705 		skb_put_data(skb, extra, extra_len);
1706 
1707 	if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) {
1708 		mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1709 		err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx);
1710 		if (WARN_ON(err)) {
1711 			kfree_skb(skb);
1712 			return;
1713 		}
1714 	}
1715 
1716 	IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT |
1717 					tx_flags;
1718 	ieee80211_tx_skb(sdata, skb);
1719 }
1720 
1721 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata,
1722 				    const u8 *da, const u8 *bssid,
1723 				    u16 stype, u16 reason,
1724 				    bool send_frame, u8 *frame_buf)
1725 {
1726 	struct ieee80211_local *local = sdata->local;
1727 	struct sk_buff *skb;
1728 	struct ieee80211_mgmt *mgmt = (void *)frame_buf;
1729 
1730 	/* build frame */
1731 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype);
1732 	mgmt->duration = 0; /* initialize only */
1733 	mgmt->seq_ctrl = 0; /* initialize only */
1734 	memcpy(mgmt->da, da, ETH_ALEN);
1735 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1736 	memcpy(mgmt->bssid, bssid, ETH_ALEN);
1737 	/* u.deauth.reason_code == u.disassoc.reason_code */
1738 	mgmt->u.deauth.reason_code = cpu_to_le16(reason);
1739 
1740 	if (send_frame) {
1741 		skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1742 				    IEEE80211_DEAUTH_FRAME_LEN);
1743 		if (!skb)
1744 			return;
1745 
1746 		skb_reserve(skb, local->hw.extra_tx_headroom);
1747 
1748 		/* copy in frame */
1749 		skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN);
1750 
1751 		if (sdata->vif.type != NL80211_IFTYPE_STATION ||
1752 		    !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED))
1753 			IEEE80211_SKB_CB(skb)->flags |=
1754 				IEEE80211_TX_INTFL_DONT_ENCRYPT;
1755 
1756 		ieee80211_tx_skb(sdata, skb);
1757 	}
1758 }
1759 
1760 static u8 *ieee80211_write_he_6ghz_cap(u8 *pos, __le16 cap, u8 *end)
1761 {
1762 	if ((end - pos) < 5)
1763 		return pos;
1764 
1765 	*pos++ = WLAN_EID_EXTENSION;
1766 	*pos++ = 1 + sizeof(cap);
1767 	*pos++ = WLAN_EID_EXT_HE_6GHZ_CAPA;
1768 	memcpy(pos, &cap, sizeof(cap));
1769 
1770 	return pos + 2;
1771 }
1772 
1773 static int ieee80211_build_preq_ies_band(struct ieee80211_sub_if_data *sdata,
1774 					 u8 *buffer, size_t buffer_len,
1775 					 const u8 *ie, size_t ie_len,
1776 					 enum nl80211_band band,
1777 					 u32 rate_mask,
1778 					 struct cfg80211_chan_def *chandef,
1779 					 size_t *offset, u32 flags)
1780 {
1781 	struct ieee80211_local *local = sdata->local;
1782 	struct ieee80211_supported_band *sband;
1783 	const struct ieee80211_sta_he_cap *he_cap;
1784 	u8 *pos = buffer, *end = buffer + buffer_len;
1785 	size_t noffset;
1786 	int supp_rates_len, i;
1787 	u8 rates[32];
1788 	int num_rates;
1789 	int ext_rates_len;
1790 	int shift;
1791 	u32 rate_flags;
1792 	bool have_80mhz = false;
1793 
1794 	*offset = 0;
1795 
1796 	sband = local->hw.wiphy->bands[band];
1797 	if (WARN_ON_ONCE(!sband))
1798 		return 0;
1799 
1800 	rate_flags = ieee80211_chandef_rate_flags(chandef);
1801 	shift = ieee80211_chandef_get_shift(chandef);
1802 
1803 	num_rates = 0;
1804 	for (i = 0; i < sband->n_bitrates; i++) {
1805 		if ((BIT(i) & rate_mask) == 0)
1806 			continue; /* skip rate */
1807 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
1808 			continue;
1809 
1810 		rates[num_rates++] =
1811 			(u8) DIV_ROUND_UP(sband->bitrates[i].bitrate,
1812 					  (1 << shift) * 5);
1813 	}
1814 
1815 	supp_rates_len = min_t(int, num_rates, 8);
1816 
1817 	if (end - pos < 2 + supp_rates_len)
1818 		goto out_err;
1819 	*pos++ = WLAN_EID_SUPP_RATES;
1820 	*pos++ = supp_rates_len;
1821 	memcpy(pos, rates, supp_rates_len);
1822 	pos += supp_rates_len;
1823 
1824 	/* insert "request information" if in custom IEs */
1825 	if (ie && ie_len) {
1826 		static const u8 before_extrates[] = {
1827 			WLAN_EID_SSID,
1828 			WLAN_EID_SUPP_RATES,
1829 			WLAN_EID_REQUEST,
1830 		};
1831 		noffset = ieee80211_ie_split(ie, ie_len,
1832 					     before_extrates,
1833 					     ARRAY_SIZE(before_extrates),
1834 					     *offset);
1835 		if (end - pos < noffset - *offset)
1836 			goto out_err;
1837 		memcpy(pos, ie + *offset, noffset - *offset);
1838 		pos += noffset - *offset;
1839 		*offset = noffset;
1840 	}
1841 
1842 	ext_rates_len = num_rates - supp_rates_len;
1843 	if (ext_rates_len > 0) {
1844 		if (end - pos < 2 + ext_rates_len)
1845 			goto out_err;
1846 		*pos++ = WLAN_EID_EXT_SUPP_RATES;
1847 		*pos++ = ext_rates_len;
1848 		memcpy(pos, rates + supp_rates_len, ext_rates_len);
1849 		pos += ext_rates_len;
1850 	}
1851 
1852 	if (chandef->chan && sband->band == NL80211_BAND_2GHZ) {
1853 		if (end - pos < 3)
1854 			goto out_err;
1855 		*pos++ = WLAN_EID_DS_PARAMS;
1856 		*pos++ = 1;
1857 		*pos++ = ieee80211_frequency_to_channel(
1858 				chandef->chan->center_freq);
1859 	}
1860 
1861 	if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT)
1862 		goto done;
1863 
1864 	/* insert custom IEs that go before HT */
1865 	if (ie && ie_len) {
1866 		static const u8 before_ht[] = {
1867 			/*
1868 			 * no need to list the ones split off already
1869 			 * (or generated here)
1870 			 */
1871 			WLAN_EID_DS_PARAMS,
1872 			WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
1873 		};
1874 		noffset = ieee80211_ie_split(ie, ie_len,
1875 					     before_ht, ARRAY_SIZE(before_ht),
1876 					     *offset);
1877 		if (end - pos < noffset - *offset)
1878 			goto out_err;
1879 		memcpy(pos, ie + *offset, noffset - *offset);
1880 		pos += noffset - *offset;
1881 		*offset = noffset;
1882 	}
1883 
1884 	if (sband->ht_cap.ht_supported) {
1885 		if (end - pos < 2 + sizeof(struct ieee80211_ht_cap))
1886 			goto out_err;
1887 		pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap,
1888 						sband->ht_cap.cap);
1889 	}
1890 
1891 	/* insert custom IEs that go before VHT */
1892 	if (ie && ie_len) {
1893 		static const u8 before_vht[] = {
1894 			/*
1895 			 * no need to list the ones split off already
1896 			 * (or generated here)
1897 			 */
1898 			WLAN_EID_BSS_COEX_2040,
1899 			WLAN_EID_EXT_CAPABILITY,
1900 			WLAN_EID_SSID_LIST,
1901 			WLAN_EID_CHANNEL_USAGE,
1902 			WLAN_EID_INTERWORKING,
1903 			WLAN_EID_MESH_ID,
1904 			/* 60 GHz (Multi-band, DMG, MMS) can't happen */
1905 		};
1906 		noffset = ieee80211_ie_split(ie, ie_len,
1907 					     before_vht, ARRAY_SIZE(before_vht),
1908 					     *offset);
1909 		if (end - pos < noffset - *offset)
1910 			goto out_err;
1911 		memcpy(pos, ie + *offset, noffset - *offset);
1912 		pos += noffset - *offset;
1913 		*offset = noffset;
1914 	}
1915 
1916 	/* Check if any channel in this sband supports at least 80 MHz */
1917 	for (i = 0; i < sband->n_channels; i++) {
1918 		if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED |
1919 						IEEE80211_CHAN_NO_80MHZ))
1920 			continue;
1921 
1922 		have_80mhz = true;
1923 		break;
1924 	}
1925 
1926 	if (sband->vht_cap.vht_supported && have_80mhz) {
1927 		if (end - pos < 2 + sizeof(struct ieee80211_vht_cap))
1928 			goto out_err;
1929 		pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap,
1930 						 sband->vht_cap.cap);
1931 	}
1932 
1933 	/* insert custom IEs that go before HE */
1934 	if (ie && ie_len) {
1935 		static const u8 before_he[] = {
1936 			/*
1937 			 * no need to list the ones split off before VHT
1938 			 * or generated here
1939 			 */
1940 			WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS,
1941 			WLAN_EID_AP_CSN,
1942 			/* TODO: add 11ah/11aj/11ak elements */
1943 		};
1944 		noffset = ieee80211_ie_split(ie, ie_len,
1945 					     before_he, ARRAY_SIZE(before_he),
1946 					     *offset);
1947 		if (end - pos < noffset - *offset)
1948 			goto out_err;
1949 		memcpy(pos, ie + *offset, noffset - *offset);
1950 		pos += noffset - *offset;
1951 		*offset = noffset;
1952 	}
1953 
1954 	he_cap = ieee80211_get_he_iftype_cap(sband,
1955 					     ieee80211_vif_type_p2p(&sdata->vif));
1956 	if (he_cap &&
1957 	    cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band),
1958 					 IEEE80211_CHAN_NO_HE)) {
1959 		pos = ieee80211_ie_build_he_cap(pos, he_cap, end);
1960 		if (!pos)
1961 			goto out_err;
1962 	}
1963 
1964 	if (cfg80211_any_usable_channels(local->hw.wiphy,
1965 					 BIT(NL80211_BAND_6GHZ),
1966 					 IEEE80211_CHAN_NO_HE)) {
1967 		struct ieee80211_supported_band *sband6;
1968 
1969 		sband6 = local->hw.wiphy->bands[NL80211_BAND_6GHZ];
1970 		he_cap = ieee80211_get_he_iftype_cap(sband6,
1971 				ieee80211_vif_type_p2p(&sdata->vif));
1972 
1973 		if (he_cap) {
1974 			enum nl80211_iftype iftype =
1975 				ieee80211_vif_type_p2p(&sdata->vif);
1976 			__le16 cap = ieee80211_get_he_6ghz_capa(sband, iftype);
1977 
1978 			pos = ieee80211_write_he_6ghz_cap(pos, cap, end);
1979 		}
1980 	}
1981 
1982 	/*
1983 	 * If adding more here, adjust code in main.c
1984 	 * that calculates local->scan_ies_len.
1985 	 */
1986 
1987 	return pos - buffer;
1988  out_err:
1989 	WARN_ONCE(1, "not enough space for preq IEs\n");
1990  done:
1991 	return pos - buffer;
1992 }
1993 
1994 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer,
1995 			     size_t buffer_len,
1996 			     struct ieee80211_scan_ies *ie_desc,
1997 			     const u8 *ie, size_t ie_len,
1998 			     u8 bands_used, u32 *rate_masks,
1999 			     struct cfg80211_chan_def *chandef,
2000 			     u32 flags)
2001 {
2002 	size_t pos = 0, old_pos = 0, custom_ie_offset = 0;
2003 	int i;
2004 
2005 	memset(ie_desc, 0, sizeof(*ie_desc));
2006 
2007 	for (i = 0; i < NUM_NL80211_BANDS; i++) {
2008 		if (bands_used & BIT(i)) {
2009 			pos += ieee80211_build_preq_ies_band(sdata,
2010 							     buffer + pos,
2011 							     buffer_len - pos,
2012 							     ie, ie_len, i,
2013 							     rate_masks[i],
2014 							     chandef,
2015 							     &custom_ie_offset,
2016 							     flags);
2017 			ie_desc->ies[i] = buffer + old_pos;
2018 			ie_desc->len[i] = pos - old_pos;
2019 			old_pos = pos;
2020 		}
2021 	}
2022 
2023 	/* add any remaining custom IEs */
2024 	if (ie && ie_len) {
2025 		if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset,
2026 			      "not enough space for preq custom IEs\n"))
2027 			return pos;
2028 		memcpy(buffer + pos, ie + custom_ie_offset,
2029 		       ie_len - custom_ie_offset);
2030 		ie_desc->common_ies = buffer + pos;
2031 		ie_desc->common_ie_len = ie_len - custom_ie_offset;
2032 		pos += ie_len - custom_ie_offset;
2033 	}
2034 
2035 	return pos;
2036 };
2037 
2038 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata,
2039 					  const u8 *src, const u8 *dst,
2040 					  u32 ratemask,
2041 					  struct ieee80211_channel *chan,
2042 					  const u8 *ssid, size_t ssid_len,
2043 					  const u8 *ie, size_t ie_len,
2044 					  u32 flags)
2045 {
2046 	struct ieee80211_local *local = sdata->local;
2047 	struct cfg80211_chan_def chandef;
2048 	struct sk_buff *skb;
2049 	struct ieee80211_mgmt *mgmt;
2050 	int ies_len;
2051 	u32 rate_masks[NUM_NL80211_BANDS] = {};
2052 	struct ieee80211_scan_ies dummy_ie_desc;
2053 
2054 	/*
2055 	 * Do not send DS Channel parameter for directed probe requests
2056 	 * in order to maximize the chance that we get a response.  Some
2057 	 * badly-behaved APs don't respond when this parameter is included.
2058 	 */
2059 	chandef.width = sdata->vif.bss_conf.chandef.width;
2060 	if (flags & IEEE80211_PROBE_FLAG_DIRECTED)
2061 		chandef.chan = NULL;
2062 	else
2063 		chandef.chan = chan;
2064 
2065 	skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len,
2066 				     100 + ie_len);
2067 	if (!skb)
2068 		return NULL;
2069 
2070 	rate_masks[chan->band] = ratemask;
2071 	ies_len = ieee80211_build_preq_ies(sdata, skb_tail_pointer(skb),
2072 					   skb_tailroom(skb), &dummy_ie_desc,
2073 					   ie, ie_len, BIT(chan->band),
2074 					   rate_masks, &chandef, flags);
2075 	skb_put(skb, ies_len);
2076 
2077 	if (dst) {
2078 		mgmt = (struct ieee80211_mgmt *) skb->data;
2079 		memcpy(mgmt->da, dst, ETH_ALEN);
2080 		memcpy(mgmt->bssid, dst, ETH_ALEN);
2081 	}
2082 
2083 	IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
2084 
2085 	return skb;
2086 }
2087 
2088 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata,
2089 			    struct ieee802_11_elems *elems,
2090 			    enum nl80211_band band, u32 *basic_rates)
2091 {
2092 	struct ieee80211_supported_band *sband;
2093 	size_t num_rates;
2094 	u32 supp_rates, rate_flags;
2095 	int i, j, shift;
2096 
2097 	sband = sdata->local->hw.wiphy->bands[band];
2098 	if (WARN_ON(!sband))
2099 		return 1;
2100 
2101 	rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef);
2102 	shift = ieee80211_vif_get_shift(&sdata->vif);
2103 
2104 	num_rates = sband->n_bitrates;
2105 	supp_rates = 0;
2106 	for (i = 0; i < elems->supp_rates_len +
2107 		     elems->ext_supp_rates_len; i++) {
2108 		u8 rate = 0;
2109 		int own_rate;
2110 		bool is_basic;
2111 		if (i < elems->supp_rates_len)
2112 			rate = elems->supp_rates[i];
2113 		else if (elems->ext_supp_rates)
2114 			rate = elems->ext_supp_rates
2115 				[i - elems->supp_rates_len];
2116 		own_rate = 5 * (rate & 0x7f);
2117 		is_basic = !!(rate & 0x80);
2118 
2119 		if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY)
2120 			continue;
2121 
2122 		for (j = 0; j < num_rates; j++) {
2123 			int brate;
2124 			if ((rate_flags & sband->bitrates[j].flags)
2125 			    != rate_flags)
2126 				continue;
2127 
2128 			brate = DIV_ROUND_UP(sband->bitrates[j].bitrate,
2129 					     1 << shift);
2130 
2131 			if (brate == own_rate) {
2132 				supp_rates |= BIT(j);
2133 				if (basic_rates && is_basic)
2134 					*basic_rates |= BIT(j);
2135 			}
2136 		}
2137 	}
2138 	return supp_rates;
2139 }
2140 
2141 void ieee80211_stop_device(struct ieee80211_local *local)
2142 {
2143 	ieee80211_led_radio(local, false);
2144 	ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO);
2145 
2146 	cancel_work_sync(&local->reconfig_filter);
2147 
2148 	flush_workqueue(local->workqueue);
2149 	drv_stop(local);
2150 }
2151 
2152 static void ieee80211_flush_completed_scan(struct ieee80211_local *local,
2153 					   bool aborted)
2154 {
2155 	/* It's possible that we don't handle the scan completion in
2156 	 * time during suspend, so if it's still marked as completed
2157 	 * here, queue the work and flush it to clean things up.
2158 	 * Instead of calling the worker function directly here, we
2159 	 * really queue it to avoid potential races with other flows
2160 	 * scheduling the same work.
2161 	 */
2162 	if (test_bit(SCAN_COMPLETED, &local->scanning)) {
2163 		/* If coming from reconfiguration failure, abort the scan so
2164 		 * we don't attempt to continue a partial HW scan - which is
2165 		 * possible otherwise if (e.g.) the 2.4 GHz portion was the
2166 		 * completed scan, and a 5 GHz portion is still pending.
2167 		 */
2168 		if (aborted)
2169 			set_bit(SCAN_ABORTED, &local->scanning);
2170 		ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0);
2171 		flush_delayed_work(&local->scan_work);
2172 	}
2173 }
2174 
2175 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local)
2176 {
2177 	struct ieee80211_sub_if_data *sdata;
2178 	struct ieee80211_chanctx *ctx;
2179 
2180 	/*
2181 	 * We get here if during resume the device can't be restarted properly.
2182 	 * We might also get here if this happens during HW reset, which is a
2183 	 * slightly different situation and we need to drop all connections in
2184 	 * the latter case.
2185 	 *
2186 	 * Ask cfg80211 to turn off all interfaces, this will result in more
2187 	 * warnings but at least we'll then get into a clean stopped state.
2188 	 */
2189 
2190 	local->resuming = false;
2191 	local->suspended = false;
2192 	local->in_reconfig = false;
2193 
2194 	ieee80211_flush_completed_scan(local, true);
2195 
2196 	/* scheduled scan clearly can't be running any more, but tell
2197 	 * cfg80211 and clear local state
2198 	 */
2199 	ieee80211_sched_scan_end(local);
2200 
2201 	list_for_each_entry(sdata, &local->interfaces, list)
2202 		sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER;
2203 
2204 	/* Mark channel contexts as not being in the driver any more to avoid
2205 	 * removing them from the driver during the shutdown process...
2206 	 */
2207 	mutex_lock(&local->chanctx_mtx);
2208 	list_for_each_entry(ctx, &local->chanctx_list, list)
2209 		ctx->driver_present = false;
2210 	mutex_unlock(&local->chanctx_mtx);
2211 }
2212 
2213 static void ieee80211_assign_chanctx(struct ieee80211_local *local,
2214 				     struct ieee80211_sub_if_data *sdata)
2215 {
2216 	struct ieee80211_chanctx_conf *conf;
2217 	struct ieee80211_chanctx *ctx;
2218 
2219 	if (!local->use_chanctx)
2220 		return;
2221 
2222 	mutex_lock(&local->chanctx_mtx);
2223 	conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
2224 					 lockdep_is_held(&local->chanctx_mtx));
2225 	if (conf) {
2226 		ctx = container_of(conf, struct ieee80211_chanctx, conf);
2227 		drv_assign_vif_chanctx(local, sdata, ctx);
2228 	}
2229 	mutex_unlock(&local->chanctx_mtx);
2230 }
2231 
2232 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata)
2233 {
2234 	struct ieee80211_local *local = sdata->local;
2235 	struct sta_info *sta;
2236 
2237 	/* add STAs back */
2238 	mutex_lock(&local->sta_mtx);
2239 	list_for_each_entry(sta, &local->sta_list, list) {
2240 		enum ieee80211_sta_state state;
2241 
2242 		if (!sta->uploaded || sta->sdata != sdata)
2243 			continue;
2244 
2245 		for (state = IEEE80211_STA_NOTEXIST;
2246 		     state < sta->sta_state; state++)
2247 			WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
2248 					      state + 1));
2249 	}
2250 	mutex_unlock(&local->sta_mtx);
2251 }
2252 
2253 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata)
2254 {
2255 	struct cfg80211_nan_func *func, **funcs;
2256 	int res, id, i = 0;
2257 
2258 	res = drv_start_nan(sdata->local, sdata,
2259 			    &sdata->u.nan.conf);
2260 	if (WARN_ON(res))
2261 		return res;
2262 
2263 	funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1,
2264 			sizeof(*funcs),
2265 			GFP_KERNEL);
2266 	if (!funcs)
2267 		return -ENOMEM;
2268 
2269 	/* Add all the functions:
2270 	 * This is a little bit ugly. We need to call a potentially sleeping
2271 	 * callback for each NAN function, so we can't hold the spinlock.
2272 	 */
2273 	spin_lock_bh(&sdata->u.nan.func_lock);
2274 
2275 	idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id)
2276 		funcs[i++] = func;
2277 
2278 	spin_unlock_bh(&sdata->u.nan.func_lock);
2279 
2280 	for (i = 0; funcs[i]; i++) {
2281 		res = drv_add_nan_func(sdata->local, sdata, funcs[i]);
2282 		if (WARN_ON(res))
2283 			ieee80211_nan_func_terminated(&sdata->vif,
2284 						      funcs[i]->instance_id,
2285 						      NL80211_NAN_FUNC_TERM_REASON_ERROR,
2286 						      GFP_KERNEL);
2287 	}
2288 
2289 	kfree(funcs);
2290 
2291 	return 0;
2292 }
2293 
2294 int ieee80211_reconfig(struct ieee80211_local *local)
2295 {
2296 	struct ieee80211_hw *hw = &local->hw;
2297 	struct ieee80211_sub_if_data *sdata;
2298 	struct ieee80211_chanctx *ctx;
2299 	struct sta_info *sta;
2300 	int res, i;
2301 	bool reconfig_due_to_wowlan = false;
2302 	struct ieee80211_sub_if_data *sched_scan_sdata;
2303 	struct cfg80211_sched_scan_request *sched_scan_req;
2304 	bool sched_scan_stopped = false;
2305 	bool suspended = local->suspended;
2306 
2307 	/* nothing to do if HW shouldn't run */
2308 	if (!local->open_count)
2309 		goto wake_up;
2310 
2311 #ifdef CONFIG_PM
2312 	if (suspended)
2313 		local->resuming = true;
2314 
2315 	if (local->wowlan) {
2316 		/*
2317 		 * In the wowlan case, both mac80211 and the device
2318 		 * are functional when the resume op is called, so
2319 		 * clear local->suspended so the device could operate
2320 		 * normally (e.g. pass rx frames).
2321 		 */
2322 		local->suspended = false;
2323 		res = drv_resume(local);
2324 		local->wowlan = false;
2325 		if (res < 0) {
2326 			local->resuming = false;
2327 			return res;
2328 		}
2329 		if (res == 0)
2330 			goto wake_up;
2331 		WARN_ON(res > 1);
2332 		/*
2333 		 * res is 1, which means the driver requested
2334 		 * to go through a regular reset on wakeup.
2335 		 * restore local->suspended in this case.
2336 		 */
2337 		reconfig_due_to_wowlan = true;
2338 		local->suspended = true;
2339 	}
2340 #endif
2341 
2342 	/*
2343 	 * In case of hw_restart during suspend (without wowlan),
2344 	 * cancel restart work, as we are reconfiguring the device
2345 	 * anyway.
2346 	 * Note that restart_work is scheduled on a frozen workqueue,
2347 	 * so we can't deadlock in this case.
2348 	 */
2349 	if (suspended && local->in_reconfig && !reconfig_due_to_wowlan)
2350 		cancel_work_sync(&local->restart_work);
2351 
2352 	local->started = false;
2353 
2354 	/*
2355 	 * Upon resume hardware can sometimes be goofy due to
2356 	 * various platform / driver / bus issues, so restarting
2357 	 * the device may at times not work immediately. Propagate
2358 	 * the error.
2359 	 */
2360 	res = drv_start(local);
2361 	if (res) {
2362 		if (suspended)
2363 			WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n");
2364 		else
2365 			WARN(1, "Hardware became unavailable during restart.\n");
2366 		ieee80211_handle_reconfig_failure(local);
2367 		return res;
2368 	}
2369 
2370 	/* setup fragmentation threshold */
2371 	drv_set_frag_threshold(local, hw->wiphy->frag_threshold);
2372 
2373 	/* setup RTS threshold */
2374 	drv_set_rts_threshold(local, hw->wiphy->rts_threshold);
2375 
2376 	/* reset coverage class */
2377 	drv_set_coverage_class(local, hw->wiphy->coverage_class);
2378 
2379 	ieee80211_led_radio(local, true);
2380 	ieee80211_mod_tpt_led_trig(local,
2381 				   IEEE80211_TPT_LEDTRIG_FL_RADIO, 0);
2382 
2383 	/* add interfaces */
2384 	sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata);
2385 	if (sdata) {
2386 		/* in HW restart it exists already */
2387 		WARN_ON(local->resuming);
2388 		res = drv_add_interface(local, sdata);
2389 		if (WARN_ON(res)) {
2390 			RCU_INIT_POINTER(local->monitor_sdata, NULL);
2391 			synchronize_net();
2392 			kfree(sdata);
2393 		}
2394 	}
2395 
2396 	list_for_each_entry(sdata, &local->interfaces, list) {
2397 		if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2398 		    sdata->vif.type != NL80211_IFTYPE_MONITOR &&
2399 		    ieee80211_sdata_running(sdata)) {
2400 			res = drv_add_interface(local, sdata);
2401 			if (WARN_ON(res))
2402 				break;
2403 		}
2404 	}
2405 
2406 	/* If adding any of the interfaces failed above, roll back and
2407 	 * report failure.
2408 	 */
2409 	if (res) {
2410 		list_for_each_entry_continue_reverse(sdata, &local->interfaces,
2411 						     list)
2412 			if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2413 			    sdata->vif.type != NL80211_IFTYPE_MONITOR &&
2414 			    ieee80211_sdata_running(sdata))
2415 				drv_remove_interface(local, sdata);
2416 		ieee80211_handle_reconfig_failure(local);
2417 		return res;
2418 	}
2419 
2420 	/* add channel contexts */
2421 	if (local->use_chanctx) {
2422 		mutex_lock(&local->chanctx_mtx);
2423 		list_for_each_entry(ctx, &local->chanctx_list, list)
2424 			if (ctx->replace_state !=
2425 			    IEEE80211_CHANCTX_REPLACES_OTHER)
2426 				WARN_ON(drv_add_chanctx(local, ctx));
2427 		mutex_unlock(&local->chanctx_mtx);
2428 
2429 		sdata = wiphy_dereference(local->hw.wiphy,
2430 					  local->monitor_sdata);
2431 		if (sdata && ieee80211_sdata_running(sdata))
2432 			ieee80211_assign_chanctx(local, sdata);
2433 	}
2434 
2435 	/* reconfigure hardware */
2436 	ieee80211_hw_config(local, ~0);
2437 
2438 	ieee80211_configure_filter(local);
2439 
2440 	/* Finally also reconfigure all the BSS information */
2441 	list_for_each_entry(sdata, &local->interfaces, list) {
2442 		u32 changed;
2443 
2444 		if (!ieee80211_sdata_running(sdata))
2445 			continue;
2446 
2447 		ieee80211_assign_chanctx(local, sdata);
2448 
2449 		switch (sdata->vif.type) {
2450 		case NL80211_IFTYPE_AP_VLAN:
2451 		case NL80211_IFTYPE_MONITOR:
2452 			break;
2453 		case NL80211_IFTYPE_ADHOC:
2454 			if (sdata->vif.bss_conf.ibss_joined)
2455 				WARN_ON(drv_join_ibss(local, sdata));
2456 			fallthrough;
2457 		default:
2458 			ieee80211_reconfig_stations(sdata);
2459 			fallthrough;
2460 		case NL80211_IFTYPE_AP: /* AP stations are handled later */
2461 			for (i = 0; i < IEEE80211_NUM_ACS; i++)
2462 				drv_conf_tx(local, sdata, i,
2463 					    &sdata->tx_conf[i]);
2464 			break;
2465 		}
2466 
2467 		/* common change flags for all interface types */
2468 		changed = BSS_CHANGED_ERP_CTS_PROT |
2469 			  BSS_CHANGED_ERP_PREAMBLE |
2470 			  BSS_CHANGED_ERP_SLOT |
2471 			  BSS_CHANGED_HT |
2472 			  BSS_CHANGED_BASIC_RATES |
2473 			  BSS_CHANGED_BEACON_INT |
2474 			  BSS_CHANGED_BSSID |
2475 			  BSS_CHANGED_CQM |
2476 			  BSS_CHANGED_QOS |
2477 			  BSS_CHANGED_IDLE |
2478 			  BSS_CHANGED_TXPOWER |
2479 			  BSS_CHANGED_MCAST_RATE;
2480 
2481 		if (sdata->vif.mu_mimo_owner)
2482 			changed |= BSS_CHANGED_MU_GROUPS;
2483 
2484 		switch (sdata->vif.type) {
2485 		case NL80211_IFTYPE_STATION:
2486 			changed |= BSS_CHANGED_ASSOC |
2487 				   BSS_CHANGED_ARP_FILTER |
2488 				   BSS_CHANGED_PS;
2489 
2490 			/* Re-send beacon info report to the driver */
2491 			if (sdata->u.mgd.have_beacon)
2492 				changed |= BSS_CHANGED_BEACON_INFO;
2493 
2494 			if (sdata->vif.bss_conf.max_idle_period ||
2495 			    sdata->vif.bss_conf.protected_keep_alive)
2496 				changed |= BSS_CHANGED_KEEP_ALIVE;
2497 
2498 			sdata_lock(sdata);
2499 			ieee80211_bss_info_change_notify(sdata, changed);
2500 			sdata_unlock(sdata);
2501 			break;
2502 		case NL80211_IFTYPE_OCB:
2503 			changed |= BSS_CHANGED_OCB;
2504 			ieee80211_bss_info_change_notify(sdata, changed);
2505 			break;
2506 		case NL80211_IFTYPE_ADHOC:
2507 			changed |= BSS_CHANGED_IBSS;
2508 			fallthrough;
2509 		case NL80211_IFTYPE_AP:
2510 			changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS;
2511 
2512 			if (sdata->vif.bss_conf.ftm_responder == 1 &&
2513 			    wiphy_ext_feature_isset(sdata->local->hw.wiphy,
2514 					NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER))
2515 				changed |= BSS_CHANGED_FTM_RESPONDER;
2516 
2517 			if (sdata->vif.type == NL80211_IFTYPE_AP) {
2518 				changed |= BSS_CHANGED_AP_PROBE_RESP;
2519 
2520 				if (rcu_access_pointer(sdata->u.ap.beacon))
2521 					drv_start_ap(local, sdata);
2522 			}
2523 			fallthrough;
2524 		case NL80211_IFTYPE_MESH_POINT:
2525 			if (sdata->vif.bss_conf.enable_beacon) {
2526 				changed |= BSS_CHANGED_BEACON |
2527 					   BSS_CHANGED_BEACON_ENABLED;
2528 				ieee80211_bss_info_change_notify(sdata, changed);
2529 			}
2530 			break;
2531 		case NL80211_IFTYPE_NAN:
2532 			res = ieee80211_reconfig_nan(sdata);
2533 			if (res < 0) {
2534 				ieee80211_handle_reconfig_failure(local);
2535 				return res;
2536 			}
2537 			break;
2538 		case NL80211_IFTYPE_AP_VLAN:
2539 		case NL80211_IFTYPE_MONITOR:
2540 		case NL80211_IFTYPE_P2P_DEVICE:
2541 			/* nothing to do */
2542 			break;
2543 		case NL80211_IFTYPE_UNSPECIFIED:
2544 		case NUM_NL80211_IFTYPES:
2545 		case NL80211_IFTYPE_P2P_CLIENT:
2546 		case NL80211_IFTYPE_P2P_GO:
2547 		case NL80211_IFTYPE_WDS:
2548 			WARN_ON(1);
2549 			break;
2550 		}
2551 	}
2552 
2553 	ieee80211_recalc_ps(local);
2554 
2555 	/*
2556 	 * The sta might be in psm against the ap (e.g. because
2557 	 * this was the state before a hw restart), so we
2558 	 * explicitly send a null packet in order to make sure
2559 	 * it'll sync against the ap (and get out of psm).
2560 	 */
2561 	if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) {
2562 		list_for_each_entry(sdata, &local->interfaces, list) {
2563 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2564 				continue;
2565 			if (!sdata->u.mgd.associated)
2566 				continue;
2567 
2568 			ieee80211_send_nullfunc(local, sdata, false);
2569 		}
2570 	}
2571 
2572 	/* APs are now beaconing, add back stations */
2573 	mutex_lock(&local->sta_mtx);
2574 	list_for_each_entry(sta, &local->sta_list, list) {
2575 		enum ieee80211_sta_state state;
2576 
2577 		if (!sta->uploaded)
2578 			continue;
2579 
2580 		if (sta->sdata->vif.type != NL80211_IFTYPE_AP &&
2581 		    sta->sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
2582 			continue;
2583 
2584 		for (state = IEEE80211_STA_NOTEXIST;
2585 		     state < sta->sta_state; state++)
2586 			WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
2587 					      state + 1));
2588 	}
2589 	mutex_unlock(&local->sta_mtx);
2590 
2591 	/* add back keys */
2592 	list_for_each_entry(sdata, &local->interfaces, list)
2593 		ieee80211_reenable_keys(sdata);
2594 
2595 	/* Reconfigure sched scan if it was interrupted by FW restart */
2596 	mutex_lock(&local->mtx);
2597 	sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata,
2598 						lockdep_is_held(&local->mtx));
2599 	sched_scan_req = rcu_dereference_protected(local->sched_scan_req,
2600 						lockdep_is_held(&local->mtx));
2601 	if (sched_scan_sdata && sched_scan_req)
2602 		/*
2603 		 * Sched scan stopped, but we don't want to report it. Instead,
2604 		 * we're trying to reschedule. However, if more than one scan
2605 		 * plan was set, we cannot reschedule since we don't know which
2606 		 * scan plan was currently running (and some scan plans may have
2607 		 * already finished).
2608 		 */
2609 		if (sched_scan_req->n_scan_plans > 1 ||
2610 		    __ieee80211_request_sched_scan_start(sched_scan_sdata,
2611 							 sched_scan_req)) {
2612 			RCU_INIT_POINTER(local->sched_scan_sdata, NULL);
2613 			RCU_INIT_POINTER(local->sched_scan_req, NULL);
2614 			sched_scan_stopped = true;
2615 		}
2616 	mutex_unlock(&local->mtx);
2617 
2618 	if (sched_scan_stopped)
2619 		cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0);
2620 
2621  wake_up:
2622 
2623 	if (local->monitors == local->open_count && local->monitors > 0)
2624 		ieee80211_add_virtual_monitor(local);
2625 
2626 	/*
2627 	 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation
2628 	 * sessions can be established after a resume.
2629 	 *
2630 	 * Also tear down aggregation sessions since reconfiguring
2631 	 * them in a hardware restart scenario is not easily done
2632 	 * right now, and the hardware will have lost information
2633 	 * about the sessions, but we and the AP still think they
2634 	 * are active. This is really a workaround though.
2635 	 */
2636 	if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) {
2637 		mutex_lock(&local->sta_mtx);
2638 
2639 		list_for_each_entry(sta, &local->sta_list, list) {
2640 			if (!local->resuming)
2641 				ieee80211_sta_tear_down_BA_sessions(
2642 						sta, AGG_STOP_LOCAL_REQUEST);
2643 			clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
2644 		}
2645 
2646 		mutex_unlock(&local->sta_mtx);
2647 	}
2648 
2649 	if (local->in_reconfig) {
2650 		local->in_reconfig = false;
2651 		barrier();
2652 
2653 		/* Restart deferred ROCs */
2654 		mutex_lock(&local->mtx);
2655 		ieee80211_start_next_roc(local);
2656 		mutex_unlock(&local->mtx);
2657 
2658 		/* Requeue all works */
2659 		list_for_each_entry(sdata, &local->interfaces, list)
2660 			ieee80211_queue_work(&local->hw, &sdata->work);
2661 	}
2662 
2663 	ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
2664 					IEEE80211_QUEUE_STOP_REASON_SUSPEND,
2665 					false);
2666 
2667 	/*
2668 	 * If this is for hw restart things are still running.
2669 	 * We may want to change that later, however.
2670 	 */
2671 	if (local->open_count && (!suspended || reconfig_due_to_wowlan))
2672 		drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART);
2673 
2674 	if (!suspended)
2675 		return 0;
2676 
2677 #ifdef CONFIG_PM
2678 	/* first set suspended false, then resuming */
2679 	local->suspended = false;
2680 	mb();
2681 	local->resuming = false;
2682 
2683 	ieee80211_flush_completed_scan(local, false);
2684 
2685 	if (local->open_count && !reconfig_due_to_wowlan)
2686 		drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND);
2687 
2688 	list_for_each_entry(sdata, &local->interfaces, list) {
2689 		if (!ieee80211_sdata_running(sdata))
2690 			continue;
2691 		if (sdata->vif.type == NL80211_IFTYPE_STATION)
2692 			ieee80211_sta_restart(sdata);
2693 	}
2694 
2695 	mod_timer(&local->sta_cleanup, jiffies + 1);
2696 #else
2697 	WARN_ON(1);
2698 #endif
2699 
2700 	return 0;
2701 }
2702 
2703 void ieee80211_resume_disconnect(struct ieee80211_vif *vif)
2704 {
2705 	struct ieee80211_sub_if_data *sdata;
2706 	struct ieee80211_local *local;
2707 	struct ieee80211_key *key;
2708 
2709 	if (WARN_ON(!vif))
2710 		return;
2711 
2712 	sdata = vif_to_sdata(vif);
2713 	local = sdata->local;
2714 
2715 	if (WARN_ON(!local->resuming))
2716 		return;
2717 
2718 	if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2719 		return;
2720 
2721 	sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME;
2722 
2723 	mutex_lock(&local->key_mtx);
2724 	list_for_each_entry(key, &sdata->key_list, list)
2725 		key->flags |= KEY_FLAG_TAINTED;
2726 	mutex_unlock(&local->key_mtx);
2727 }
2728 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect);
2729 
2730 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata)
2731 {
2732 	struct ieee80211_local *local = sdata->local;
2733 	struct ieee80211_chanctx_conf *chanctx_conf;
2734 	struct ieee80211_chanctx *chanctx;
2735 
2736 	mutex_lock(&local->chanctx_mtx);
2737 
2738 	chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
2739 					lockdep_is_held(&local->chanctx_mtx));
2740 
2741 	/*
2742 	 * This function can be called from a work, thus it may be possible
2743 	 * that the chanctx_conf is removed (due to a disconnection, for
2744 	 * example).
2745 	 * So nothing should be done in such case.
2746 	 */
2747 	if (!chanctx_conf)
2748 		goto unlock;
2749 
2750 	chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf);
2751 	ieee80211_recalc_smps_chanctx(local, chanctx);
2752  unlock:
2753 	mutex_unlock(&local->chanctx_mtx);
2754 }
2755 
2756 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata)
2757 {
2758 	struct ieee80211_local *local = sdata->local;
2759 	struct ieee80211_chanctx_conf *chanctx_conf;
2760 	struct ieee80211_chanctx *chanctx;
2761 
2762 	mutex_lock(&local->chanctx_mtx);
2763 
2764 	chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
2765 					lockdep_is_held(&local->chanctx_mtx));
2766 
2767 	if (WARN_ON_ONCE(!chanctx_conf))
2768 		goto unlock;
2769 
2770 	chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf);
2771 	ieee80211_recalc_chanctx_min_def(local, chanctx);
2772  unlock:
2773 	mutex_unlock(&local->chanctx_mtx);
2774 }
2775 
2776 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset)
2777 {
2778 	size_t pos = offset;
2779 
2780 	while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC)
2781 		pos += 2 + ies[pos + 1];
2782 
2783 	return pos;
2784 }
2785 
2786 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata,
2787 					    int rssi_min_thold,
2788 					    int rssi_max_thold)
2789 {
2790 	trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold);
2791 
2792 	if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
2793 		return;
2794 
2795 	/*
2796 	 * Scale up threshold values before storing it, as the RSSI averaging
2797 	 * algorithm uses a scaled up value as well. Change this scaling
2798 	 * factor if the RSSI averaging algorithm changes.
2799 	 */
2800 	sdata->u.mgd.rssi_min_thold = rssi_min_thold*16;
2801 	sdata->u.mgd.rssi_max_thold = rssi_max_thold*16;
2802 }
2803 
2804 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif,
2805 				    int rssi_min_thold,
2806 				    int rssi_max_thold)
2807 {
2808 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
2809 
2810 	WARN_ON(rssi_min_thold == rssi_max_thold ||
2811 		rssi_min_thold > rssi_max_thold);
2812 
2813 	_ieee80211_enable_rssi_reports(sdata, rssi_min_thold,
2814 				       rssi_max_thold);
2815 }
2816 EXPORT_SYMBOL(ieee80211_enable_rssi_reports);
2817 
2818 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif)
2819 {
2820 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
2821 
2822 	_ieee80211_enable_rssi_reports(sdata, 0, 0);
2823 }
2824 EXPORT_SYMBOL(ieee80211_disable_rssi_reports);
2825 
2826 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
2827 			      u16 cap)
2828 {
2829 	__le16 tmp;
2830 
2831 	*pos++ = WLAN_EID_HT_CAPABILITY;
2832 	*pos++ = sizeof(struct ieee80211_ht_cap);
2833 	memset(pos, 0, sizeof(struct ieee80211_ht_cap));
2834 
2835 	/* capability flags */
2836 	tmp = cpu_to_le16(cap);
2837 	memcpy(pos, &tmp, sizeof(u16));
2838 	pos += sizeof(u16);
2839 
2840 	/* AMPDU parameters */
2841 	*pos++ = ht_cap->ampdu_factor |
2842 		 (ht_cap->ampdu_density <<
2843 			IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT);
2844 
2845 	/* MCS set */
2846 	memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs));
2847 	pos += sizeof(ht_cap->mcs);
2848 
2849 	/* extended capabilities */
2850 	pos += sizeof(__le16);
2851 
2852 	/* BF capabilities */
2853 	pos += sizeof(__le32);
2854 
2855 	/* antenna selection */
2856 	pos += sizeof(u8);
2857 
2858 	return pos;
2859 }
2860 
2861 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
2862 			       u32 cap)
2863 {
2864 	__le32 tmp;
2865 
2866 	*pos++ = WLAN_EID_VHT_CAPABILITY;
2867 	*pos++ = sizeof(struct ieee80211_vht_cap);
2868 	memset(pos, 0, sizeof(struct ieee80211_vht_cap));
2869 
2870 	/* capability flags */
2871 	tmp = cpu_to_le32(cap);
2872 	memcpy(pos, &tmp, sizeof(u32));
2873 	pos += sizeof(u32);
2874 
2875 	/* VHT MCS set */
2876 	memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs));
2877 	pos += sizeof(vht_cap->vht_mcs);
2878 
2879 	return pos;
2880 }
2881 
2882 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype)
2883 {
2884 	const struct ieee80211_sta_he_cap *he_cap;
2885 	struct ieee80211_supported_band *sband;
2886 	u8 n;
2887 
2888 	sband = ieee80211_get_sband(sdata);
2889 	if (!sband)
2890 		return 0;
2891 
2892 	he_cap = ieee80211_get_he_iftype_cap(sband, iftype);
2893 	if (!he_cap)
2894 		return 0;
2895 
2896 	n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem);
2897 	return 2 + 1 +
2898 	       sizeof(he_cap->he_cap_elem) + n +
2899 	       ieee80211_he_ppe_size(he_cap->ppe_thres[0],
2900 				     he_cap->he_cap_elem.phy_cap_info);
2901 }
2902 
2903 u8 *ieee80211_ie_build_he_cap(u8 *pos,
2904 			      const struct ieee80211_sta_he_cap *he_cap,
2905 			      u8 *end)
2906 {
2907 	u8 n;
2908 	u8 ie_len;
2909 	u8 *orig_pos = pos;
2910 
2911 	/* Make sure we have place for the IE */
2912 	/*
2913 	 * TODO: the 1 added is because this temporarily is under the EXTENSION
2914 	 * IE. Get rid of it when it moves.
2915 	 */
2916 	if (!he_cap)
2917 		return orig_pos;
2918 
2919 	n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem);
2920 	ie_len = 2 + 1 +
2921 		 sizeof(he_cap->he_cap_elem) + n +
2922 		 ieee80211_he_ppe_size(he_cap->ppe_thres[0],
2923 				       he_cap->he_cap_elem.phy_cap_info);
2924 
2925 	if ((end - pos) < ie_len)
2926 		return orig_pos;
2927 
2928 	*pos++ = WLAN_EID_EXTENSION;
2929 	pos++; /* We'll set the size later below */
2930 	*pos++ = WLAN_EID_EXT_HE_CAPABILITY;
2931 
2932 	/* Fixed data */
2933 	memcpy(pos, &he_cap->he_cap_elem, sizeof(he_cap->he_cap_elem));
2934 	pos += sizeof(he_cap->he_cap_elem);
2935 
2936 	memcpy(pos, &he_cap->he_mcs_nss_supp, n);
2937 	pos += n;
2938 
2939 	/* Check if PPE Threshold should be present */
2940 	if ((he_cap->he_cap_elem.phy_cap_info[6] &
2941 	     IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0)
2942 		goto end;
2943 
2944 	/*
2945 	 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm:
2946 	 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK)
2947 	 */
2948 	n = hweight8(he_cap->ppe_thres[0] &
2949 		     IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK);
2950 	n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >>
2951 		   IEEE80211_PPE_THRES_NSS_POS));
2952 
2953 	/*
2954 	 * Each pair is 6 bits, and we need to add the 7 "header" bits to the
2955 	 * total size.
2956 	 */
2957 	n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7;
2958 	n = DIV_ROUND_UP(n, 8);
2959 
2960 	/* Copy PPE Thresholds */
2961 	memcpy(pos, &he_cap->ppe_thres, n);
2962 	pos += n;
2963 
2964 end:
2965 	orig_pos[1] = (pos - orig_pos) - 2;
2966 	return pos;
2967 }
2968 
2969 void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata,
2970 				    struct sk_buff *skb)
2971 {
2972 	struct ieee80211_supported_band *sband;
2973 	const struct ieee80211_sband_iftype_data *iftd;
2974 	enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif);
2975 	u8 *pos;
2976 	u16 cap;
2977 
2978 	if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy,
2979 					  BIT(NL80211_BAND_6GHZ),
2980 					  IEEE80211_CHAN_NO_HE))
2981 		return;
2982 
2983 	sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ];
2984 
2985 	iftd = ieee80211_get_sband_iftype_data(sband, iftype);
2986 	if (!iftd)
2987 		return;
2988 
2989 	/* Check for device HE 6 GHz capability before adding element */
2990 	if (!iftd->he_6ghz_capa.capa)
2991 		return;
2992 
2993 	cap = le16_to_cpu(iftd->he_6ghz_capa.capa);
2994 	cap &= ~IEEE80211_HE_6GHZ_CAP_SM_PS;
2995 
2996 	switch (sdata->smps_mode) {
2997 	case IEEE80211_SMPS_AUTOMATIC:
2998 	case IEEE80211_SMPS_NUM_MODES:
2999 		WARN_ON(1);
3000 		fallthrough;
3001 	case IEEE80211_SMPS_OFF:
3002 		cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED,
3003 				       IEEE80211_HE_6GHZ_CAP_SM_PS);
3004 		break;
3005 	case IEEE80211_SMPS_STATIC:
3006 		cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC,
3007 				       IEEE80211_HE_6GHZ_CAP_SM_PS);
3008 		break;
3009 	case IEEE80211_SMPS_DYNAMIC:
3010 		cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC,
3011 				       IEEE80211_HE_6GHZ_CAP_SM_PS);
3012 		break;
3013 	}
3014 
3015 	pos = skb_put(skb, 2 + 1 + sizeof(cap));
3016 	ieee80211_write_he_6ghz_cap(pos, cpu_to_le16(cap),
3017 				    pos + 2 + 1 + sizeof(cap));
3018 }
3019 
3020 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
3021 			       const struct cfg80211_chan_def *chandef,
3022 			       u16 prot_mode, bool rifs_mode)
3023 {
3024 	struct ieee80211_ht_operation *ht_oper;
3025 	/* Build HT Information */
3026 	*pos++ = WLAN_EID_HT_OPERATION;
3027 	*pos++ = sizeof(struct ieee80211_ht_operation);
3028 	ht_oper = (struct ieee80211_ht_operation *)pos;
3029 	ht_oper->primary_chan = ieee80211_frequency_to_channel(
3030 					chandef->chan->center_freq);
3031 	switch (chandef->width) {
3032 	case NL80211_CHAN_WIDTH_160:
3033 	case NL80211_CHAN_WIDTH_80P80:
3034 	case NL80211_CHAN_WIDTH_80:
3035 	case NL80211_CHAN_WIDTH_40:
3036 		if (chandef->center_freq1 > chandef->chan->center_freq)
3037 			ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
3038 		else
3039 			ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
3040 		break;
3041 	default:
3042 		ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE;
3043 		break;
3044 	}
3045 	if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 &&
3046 	    chandef->width != NL80211_CHAN_WIDTH_20_NOHT &&
3047 	    chandef->width != NL80211_CHAN_WIDTH_20)
3048 		ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY;
3049 
3050 	if (rifs_mode)
3051 		ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE;
3052 
3053 	ht_oper->operation_mode = cpu_to_le16(prot_mode);
3054 	ht_oper->stbc_param = 0x0000;
3055 
3056 	/* It seems that Basic MCS set and Supported MCS set
3057 	   are identical for the first 10 bytes */
3058 	memset(&ht_oper->basic_set, 0, 16);
3059 	memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10);
3060 
3061 	return pos + sizeof(struct ieee80211_ht_operation);
3062 }
3063 
3064 void ieee80211_ie_build_wide_bw_cs(u8 *pos,
3065 				   const struct cfg80211_chan_def *chandef)
3066 {
3067 	*pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH;	/* EID */
3068 	*pos++ = 3;					/* IE length */
3069 	/* New channel width */
3070 	switch (chandef->width) {
3071 	case NL80211_CHAN_WIDTH_80:
3072 		*pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ;
3073 		break;
3074 	case NL80211_CHAN_WIDTH_160:
3075 		*pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ;
3076 		break;
3077 	case NL80211_CHAN_WIDTH_80P80:
3078 		*pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ;
3079 		break;
3080 	default:
3081 		*pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT;
3082 	}
3083 
3084 	/* new center frequency segment 0 */
3085 	*pos++ = ieee80211_frequency_to_channel(chandef->center_freq1);
3086 	/* new center frequency segment 1 */
3087 	if (chandef->center_freq2)
3088 		*pos++ = ieee80211_frequency_to_channel(chandef->center_freq2);
3089 	else
3090 		*pos++ = 0;
3091 }
3092 
3093 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
3094 				const struct cfg80211_chan_def *chandef)
3095 {
3096 	struct ieee80211_vht_operation *vht_oper;
3097 
3098 	*pos++ = WLAN_EID_VHT_OPERATION;
3099 	*pos++ = sizeof(struct ieee80211_vht_operation);
3100 	vht_oper = (struct ieee80211_vht_operation *)pos;
3101 	vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel(
3102 							chandef->center_freq1);
3103 	if (chandef->center_freq2)
3104 		vht_oper->center_freq_seg1_idx =
3105 			ieee80211_frequency_to_channel(chandef->center_freq2);
3106 	else
3107 		vht_oper->center_freq_seg1_idx = 0x00;
3108 
3109 	switch (chandef->width) {
3110 	case NL80211_CHAN_WIDTH_160:
3111 		/*
3112 		 * Convert 160 MHz channel width to new style as interop
3113 		 * workaround.
3114 		 */
3115 		vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
3116 		vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx;
3117 		if (chandef->chan->center_freq < chandef->center_freq1)
3118 			vht_oper->center_freq_seg0_idx -= 8;
3119 		else
3120 			vht_oper->center_freq_seg0_idx += 8;
3121 		break;
3122 	case NL80211_CHAN_WIDTH_80P80:
3123 		/*
3124 		 * Convert 80+80 MHz channel width to new style as interop
3125 		 * workaround.
3126 		 */
3127 		vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
3128 		break;
3129 	case NL80211_CHAN_WIDTH_80:
3130 		vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
3131 		break;
3132 	default:
3133 		vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT;
3134 		break;
3135 	}
3136 
3137 	/* don't require special VHT peer rates */
3138 	vht_oper->basic_mcs_set = cpu_to_le16(0xffff);
3139 
3140 	return pos + sizeof(struct ieee80211_vht_operation);
3141 }
3142 
3143 u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef)
3144 {
3145 	struct ieee80211_he_operation *he_oper;
3146 	struct ieee80211_he_6ghz_oper *he_6ghz_op;
3147 	u32 he_oper_params;
3148 	u8 ie_len = 1 + sizeof(struct ieee80211_he_operation);
3149 
3150 	if (chandef->chan->band == NL80211_BAND_6GHZ)
3151 		ie_len += sizeof(struct ieee80211_he_6ghz_oper);
3152 
3153 	*pos++ = WLAN_EID_EXTENSION;
3154 	*pos++ = ie_len;
3155 	*pos++ = WLAN_EID_EXT_HE_OPERATION;
3156 
3157 	he_oper_params = 0;
3158 	he_oper_params |= u32_encode_bits(1023, /* disabled */
3159 				IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK);
3160 	he_oper_params |= u32_encode_bits(1,
3161 				IEEE80211_HE_OPERATION_ER_SU_DISABLE);
3162 	he_oper_params |= u32_encode_bits(1,
3163 				IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED);
3164 	if (chandef->chan->band == NL80211_BAND_6GHZ)
3165 		he_oper_params |= u32_encode_bits(1,
3166 				IEEE80211_HE_OPERATION_6GHZ_OP_INFO);
3167 
3168 	he_oper = (struct ieee80211_he_operation *)pos;
3169 	he_oper->he_oper_params = cpu_to_le32(he_oper_params);
3170 
3171 	/* don't require special HE peer rates */
3172 	he_oper->he_mcs_nss_set = cpu_to_le16(0xffff);
3173 	pos += sizeof(struct ieee80211_he_operation);
3174 
3175 	if (chandef->chan->band != NL80211_BAND_6GHZ)
3176 		goto out;
3177 
3178 	/* TODO add VHT operational */
3179 	he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos;
3180 	he_6ghz_op->minrate = 6; /* 6 Mbps */
3181 	he_6ghz_op->primary =
3182 		ieee80211_frequency_to_channel(chandef->chan->center_freq);
3183 	he_6ghz_op->ccfs0 =
3184 		ieee80211_frequency_to_channel(chandef->center_freq1);
3185 	if (chandef->center_freq2)
3186 		he_6ghz_op->ccfs1 =
3187 			ieee80211_frequency_to_channel(chandef->center_freq2);
3188 	else
3189 		he_6ghz_op->ccfs1 = 0;
3190 
3191 	switch (chandef->width) {
3192 	case NL80211_CHAN_WIDTH_160:
3193 		/* Convert 160 MHz channel width to new style as interop
3194 		 * workaround.
3195 		 */
3196 		he_6ghz_op->control =
3197 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ;
3198 		he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0;
3199 		if (chandef->chan->center_freq < chandef->center_freq1)
3200 			he_6ghz_op->ccfs0 -= 8;
3201 		else
3202 			he_6ghz_op->ccfs0 += 8;
3203 		fallthrough;
3204 	case NL80211_CHAN_WIDTH_80P80:
3205 		he_6ghz_op->control =
3206 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ;
3207 		break;
3208 	case NL80211_CHAN_WIDTH_80:
3209 		he_6ghz_op->control =
3210 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ;
3211 		break;
3212 	case NL80211_CHAN_WIDTH_40:
3213 		he_6ghz_op->control =
3214 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ;
3215 		break;
3216 	default:
3217 		he_6ghz_op->control =
3218 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ;
3219 		break;
3220 	}
3221 
3222 	pos += sizeof(struct ieee80211_he_6ghz_oper);
3223 
3224 out:
3225 	return pos;
3226 }
3227 
3228 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper,
3229 			       struct cfg80211_chan_def *chandef)
3230 {
3231 	enum nl80211_channel_type channel_type;
3232 
3233 	if (!ht_oper)
3234 		return false;
3235 
3236 	switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) {
3237 	case IEEE80211_HT_PARAM_CHA_SEC_NONE:
3238 		channel_type = NL80211_CHAN_HT20;
3239 		break;
3240 	case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
3241 		channel_type = NL80211_CHAN_HT40PLUS;
3242 		break;
3243 	case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
3244 		channel_type = NL80211_CHAN_HT40MINUS;
3245 		break;
3246 	default:
3247 		channel_type = NL80211_CHAN_NO_HT;
3248 		return false;
3249 	}
3250 
3251 	cfg80211_chandef_create(chandef, chandef->chan, channel_type);
3252 	return true;
3253 }
3254 
3255 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info,
3256 				const struct ieee80211_vht_operation *oper,
3257 				const struct ieee80211_ht_operation *htop,
3258 				struct cfg80211_chan_def *chandef)
3259 {
3260 	struct cfg80211_chan_def new = *chandef;
3261 	int cf0, cf1;
3262 	int ccfs0, ccfs1, ccfs2;
3263 	int ccf0, ccf1;
3264 	u32 vht_cap;
3265 	bool support_80_80 = false;
3266 	bool support_160 = false;
3267 	u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info,
3268 					  IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
3269 	u8 supp_chwidth = u32_get_bits(vht_cap_info,
3270 				       IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
3271 
3272 	if (!oper || !htop)
3273 		return false;
3274 
3275 	vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap;
3276 	support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK |
3277 				  IEEE80211_VHT_CAP_EXT_NSS_BW_MASK));
3278 	support_80_80 = ((vht_cap &
3279 			 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) ||
3280 			(vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ &&
3281 			 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) ||
3282 			((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >>
3283 				    IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1));
3284 	ccfs0 = oper->center_freq_seg0_idx;
3285 	ccfs1 = oper->center_freq_seg1_idx;
3286 	ccfs2 = (le16_to_cpu(htop->operation_mode) &
3287 				IEEE80211_HT_OP_MODE_CCFS2_MASK)
3288 			>> IEEE80211_HT_OP_MODE_CCFS2_SHIFT;
3289 
3290 	ccf0 = ccfs0;
3291 
3292 	/* if not supported, parse as though we didn't understand it */
3293 	if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW))
3294 		ext_nss_bw_supp = 0;
3295 
3296 	/*
3297 	 * Cf. IEEE 802.11 Table 9-250
3298 	 *
3299 	 * We really just consider that because it's inefficient to connect
3300 	 * at a higher bandwidth than we'll actually be able to use.
3301 	 */
3302 	switch ((supp_chwidth << 4) | ext_nss_bw_supp) {
3303 	default:
3304 	case 0x00:
3305 		ccf1 = 0;
3306 		support_160 = false;
3307 		support_80_80 = false;
3308 		break;
3309 	case 0x01:
3310 		support_80_80 = false;
3311 		fallthrough;
3312 	case 0x02:
3313 	case 0x03:
3314 		ccf1 = ccfs2;
3315 		break;
3316 	case 0x10:
3317 		ccf1 = ccfs1;
3318 		break;
3319 	case 0x11:
3320 	case 0x12:
3321 		if (!ccfs1)
3322 			ccf1 = ccfs2;
3323 		else
3324 			ccf1 = ccfs1;
3325 		break;
3326 	case 0x13:
3327 	case 0x20:
3328 	case 0x23:
3329 		ccf1 = ccfs1;
3330 		break;
3331 	}
3332 
3333 	cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band);
3334 	cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band);
3335 
3336 	switch (oper->chan_width) {
3337 	case IEEE80211_VHT_CHANWIDTH_USE_HT:
3338 		/* just use HT information directly */
3339 		break;
3340 	case IEEE80211_VHT_CHANWIDTH_80MHZ:
3341 		new.width = NL80211_CHAN_WIDTH_80;
3342 		new.center_freq1 = cf0;
3343 		/* If needed, adjust based on the newer interop workaround. */
3344 		if (ccf1) {
3345 			unsigned int diff;
3346 
3347 			diff = abs(ccf1 - ccf0);
3348 			if ((diff == 8) && support_160) {
3349 				new.width = NL80211_CHAN_WIDTH_160;
3350 				new.center_freq1 = cf1;
3351 			} else if ((diff > 8) && support_80_80) {
3352 				new.width = NL80211_CHAN_WIDTH_80P80;
3353 				new.center_freq2 = cf1;
3354 			}
3355 		}
3356 		break;
3357 	case IEEE80211_VHT_CHANWIDTH_160MHZ:
3358 		/* deprecated encoding */
3359 		new.width = NL80211_CHAN_WIDTH_160;
3360 		new.center_freq1 = cf0;
3361 		break;
3362 	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
3363 		/* deprecated encoding */
3364 		new.width = NL80211_CHAN_WIDTH_80P80;
3365 		new.center_freq1 = cf0;
3366 		new.center_freq2 = cf1;
3367 		break;
3368 	default:
3369 		return false;
3370 	}
3371 
3372 	if (!cfg80211_chandef_valid(&new))
3373 		return false;
3374 
3375 	*chandef = new;
3376 	return true;
3377 }
3378 
3379 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata,
3380 				    const struct ieee80211_he_operation *he_oper,
3381 				    struct cfg80211_chan_def *chandef)
3382 {
3383 	struct ieee80211_local *local = sdata->local;
3384 	struct ieee80211_supported_band *sband;
3385 	enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif);
3386 	const struct ieee80211_sta_he_cap *he_cap;
3387 	struct cfg80211_chan_def he_chandef = *chandef;
3388 	const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
3389 	struct ieee80211_bss_conf *bss_conf = &sdata->vif.bss_conf;
3390 	bool support_80_80, support_160;
3391 	u8 he_phy_cap;
3392 	u32 freq;
3393 
3394 	if (chandef->chan->band != NL80211_BAND_6GHZ)
3395 		return true;
3396 
3397 	sband = local->hw.wiphy->bands[NL80211_BAND_6GHZ];
3398 
3399 	he_cap = ieee80211_get_he_iftype_cap(sband, iftype);
3400 	if (!he_cap) {
3401 		sdata_info(sdata, "Missing iftype sband data/HE cap");
3402 		return false;
3403 	}
3404 
3405 	he_phy_cap = he_cap->he_cap_elem.phy_cap_info[0];
3406 	support_160 =
3407 		he_phy_cap &
3408 		IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
3409 	support_80_80 =
3410 		he_phy_cap &
3411 		IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G;
3412 
3413 	if (!he_oper) {
3414 		sdata_info(sdata,
3415 			   "HE is not advertised on (on %d MHz), expect issues\n",
3416 			   chandef->chan->center_freq);
3417 		return false;
3418 	}
3419 
3420 	he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
3421 
3422 	if (!he_6ghz_oper) {
3423 		sdata_info(sdata,
3424 			   "HE 6GHz operation missing (on %d MHz), expect issues\n",
3425 			   chandef->chan->center_freq);
3426 		return false;
3427 	}
3428 
3429 	freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary,
3430 					      NL80211_BAND_6GHZ);
3431 	he_chandef.chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq);
3432 
3433 	switch (u8_get_bits(he_6ghz_oper->control,
3434 			    IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
3435 	case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
3436 		bss_conf->power_type = IEEE80211_REG_LPI_AP;
3437 		break;
3438 	case IEEE80211_6GHZ_CTRL_REG_SP_AP:
3439 		bss_conf->power_type = IEEE80211_REG_SP_AP;
3440 		break;
3441 	default:
3442 		bss_conf->power_type = IEEE80211_REG_UNSET_AP;
3443 		break;
3444 	}
3445 
3446 	switch (u8_get_bits(he_6ghz_oper->control,
3447 			    IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) {
3448 	case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ:
3449 		he_chandef.width = NL80211_CHAN_WIDTH_20;
3450 		break;
3451 	case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ:
3452 		he_chandef.width = NL80211_CHAN_WIDTH_40;
3453 		break;
3454 	case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ:
3455 		he_chandef.width = NL80211_CHAN_WIDTH_80;
3456 		break;
3457 	case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ:
3458 		he_chandef.width = NL80211_CHAN_WIDTH_80;
3459 		if (!he_6ghz_oper->ccfs1)
3460 			break;
3461 		if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) {
3462 			if (support_160)
3463 				he_chandef.width = NL80211_CHAN_WIDTH_160;
3464 		} else {
3465 			if (support_80_80)
3466 				he_chandef.width = NL80211_CHAN_WIDTH_80P80;
3467 		}
3468 		break;
3469 	}
3470 
3471 	if (he_chandef.width == NL80211_CHAN_WIDTH_160) {
3472 		he_chandef.center_freq1 =
3473 			ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1,
3474 						       NL80211_BAND_6GHZ);
3475 	} else {
3476 		he_chandef.center_freq1 =
3477 			ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0,
3478 						       NL80211_BAND_6GHZ);
3479 		if (support_80_80 || support_160)
3480 			he_chandef.center_freq2 =
3481 				ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1,
3482 							       NL80211_BAND_6GHZ);
3483 	}
3484 
3485 	if (!cfg80211_chandef_valid(&he_chandef)) {
3486 		sdata_info(sdata,
3487 			   "HE 6GHz operation resulted in invalid chandef: %d MHz/%d/%d MHz/%d MHz\n",
3488 			   he_chandef.chan ? he_chandef.chan->center_freq : 0,
3489 			   he_chandef.width,
3490 			   he_chandef.center_freq1,
3491 			   he_chandef.center_freq2);
3492 		return false;
3493 	}
3494 
3495 	*chandef = he_chandef;
3496 
3497 	return true;
3498 }
3499 
3500 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper,
3501 				struct cfg80211_chan_def *chandef)
3502 {
3503 	u32 oper_freq;
3504 
3505 	if (!oper)
3506 		return false;
3507 
3508 	switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) {
3509 	case IEEE80211_S1G_CHANWIDTH_1MHZ:
3510 		chandef->width = NL80211_CHAN_WIDTH_1;
3511 		break;
3512 	case IEEE80211_S1G_CHANWIDTH_2MHZ:
3513 		chandef->width = NL80211_CHAN_WIDTH_2;
3514 		break;
3515 	case IEEE80211_S1G_CHANWIDTH_4MHZ:
3516 		chandef->width = NL80211_CHAN_WIDTH_4;
3517 		break;
3518 	case IEEE80211_S1G_CHANWIDTH_8MHZ:
3519 		chandef->width = NL80211_CHAN_WIDTH_8;
3520 		break;
3521 	case IEEE80211_S1G_CHANWIDTH_16MHZ:
3522 		chandef->width = NL80211_CHAN_WIDTH_16;
3523 		break;
3524 	default:
3525 		return false;
3526 	}
3527 
3528 	oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch,
3529 						  NL80211_BAND_S1GHZ);
3530 	chandef->center_freq1 = KHZ_TO_MHZ(oper_freq);
3531 	chandef->freq1_offset = oper_freq % 1000;
3532 
3533 	return true;
3534 }
3535 
3536 int ieee80211_parse_bitrates(struct cfg80211_chan_def *chandef,
3537 			     const struct ieee80211_supported_band *sband,
3538 			     const u8 *srates, int srates_len, u32 *rates)
3539 {
3540 	u32 rate_flags = ieee80211_chandef_rate_flags(chandef);
3541 	int shift = ieee80211_chandef_get_shift(chandef);
3542 	struct ieee80211_rate *br;
3543 	int brate, rate, i, j, count = 0;
3544 
3545 	*rates = 0;
3546 
3547 	for (i = 0; i < srates_len; i++) {
3548 		rate = srates[i] & 0x7f;
3549 
3550 		for (j = 0; j < sband->n_bitrates; j++) {
3551 			br = &sband->bitrates[j];
3552 			if ((rate_flags & br->flags) != rate_flags)
3553 				continue;
3554 
3555 			brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5);
3556 			if (brate == rate) {
3557 				*rates |= BIT(j);
3558 				count++;
3559 				break;
3560 			}
3561 		}
3562 	}
3563 	return count;
3564 }
3565 
3566 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata,
3567 			    struct sk_buff *skb, bool need_basic,
3568 			    enum nl80211_band band)
3569 {
3570 	struct ieee80211_local *local = sdata->local;
3571 	struct ieee80211_supported_band *sband;
3572 	int rate, shift;
3573 	u8 i, rates, *pos;
3574 	u32 basic_rates = sdata->vif.bss_conf.basic_rates;
3575 	u32 rate_flags;
3576 
3577 	shift = ieee80211_vif_get_shift(&sdata->vif);
3578 	rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef);
3579 	sband = local->hw.wiphy->bands[band];
3580 	rates = 0;
3581 	for (i = 0; i < sband->n_bitrates; i++) {
3582 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
3583 			continue;
3584 		rates++;
3585 	}
3586 	if (rates > 8)
3587 		rates = 8;
3588 
3589 	if (skb_tailroom(skb) < rates + 2)
3590 		return -ENOMEM;
3591 
3592 	pos = skb_put(skb, rates + 2);
3593 	*pos++ = WLAN_EID_SUPP_RATES;
3594 	*pos++ = rates;
3595 	for (i = 0; i < rates; i++) {
3596 		u8 basic = 0;
3597 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
3598 			continue;
3599 
3600 		if (need_basic && basic_rates & BIT(i))
3601 			basic = 0x80;
3602 		rate = DIV_ROUND_UP(sband->bitrates[i].bitrate,
3603 				    5 * (1 << shift));
3604 		*pos++ = basic | (u8) rate;
3605 	}
3606 
3607 	return 0;
3608 }
3609 
3610 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata,
3611 				struct sk_buff *skb, bool need_basic,
3612 				enum nl80211_band band)
3613 {
3614 	struct ieee80211_local *local = sdata->local;
3615 	struct ieee80211_supported_band *sband;
3616 	int rate, shift;
3617 	u8 i, exrates, *pos;
3618 	u32 basic_rates = sdata->vif.bss_conf.basic_rates;
3619 	u32 rate_flags;
3620 
3621 	rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef);
3622 	shift = ieee80211_vif_get_shift(&sdata->vif);
3623 
3624 	sband = local->hw.wiphy->bands[band];
3625 	exrates = 0;
3626 	for (i = 0; i < sband->n_bitrates; i++) {
3627 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
3628 			continue;
3629 		exrates++;
3630 	}
3631 
3632 	if (exrates > 8)
3633 		exrates -= 8;
3634 	else
3635 		exrates = 0;
3636 
3637 	if (skb_tailroom(skb) < exrates + 2)
3638 		return -ENOMEM;
3639 
3640 	if (exrates) {
3641 		pos = skb_put(skb, exrates + 2);
3642 		*pos++ = WLAN_EID_EXT_SUPP_RATES;
3643 		*pos++ = exrates;
3644 		for (i = 8; i < sband->n_bitrates; i++) {
3645 			u8 basic = 0;
3646 			if ((rate_flags & sband->bitrates[i].flags)
3647 			    != rate_flags)
3648 				continue;
3649 			if (need_basic && basic_rates & BIT(i))
3650 				basic = 0x80;
3651 			rate = DIV_ROUND_UP(sband->bitrates[i].bitrate,
3652 					    5 * (1 << shift));
3653 			*pos++ = basic | (u8) rate;
3654 		}
3655 	}
3656 	return 0;
3657 }
3658 
3659 int ieee80211_ave_rssi(struct ieee80211_vif *vif)
3660 {
3661 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
3662 	struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
3663 
3664 	if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) {
3665 		/* non-managed type inferfaces */
3666 		return 0;
3667 	}
3668 	return -ewma_beacon_signal_read(&ifmgd->ave_beacon_signal);
3669 }
3670 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi);
3671 
3672 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs)
3673 {
3674 	if (!mcs)
3675 		return 1;
3676 
3677 	/* TODO: consider rx_highest */
3678 
3679 	if (mcs->rx_mask[3])
3680 		return 4;
3681 	if (mcs->rx_mask[2])
3682 		return 3;
3683 	if (mcs->rx_mask[1])
3684 		return 2;
3685 	return 1;
3686 }
3687 
3688 /**
3689  * ieee80211_calculate_rx_timestamp - calculate timestamp in frame
3690  * @local: mac80211 hw info struct
3691  * @status: RX status
3692  * @mpdu_len: total MPDU length (including FCS)
3693  * @mpdu_offset: offset into MPDU to calculate timestamp at
3694  *
3695  * This function calculates the RX timestamp at the given MPDU offset, taking
3696  * into account what the RX timestamp was. An offset of 0 will just normalize
3697  * the timestamp to TSF at beginning of MPDU reception.
3698  */
3699 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local,
3700 				     struct ieee80211_rx_status *status,
3701 				     unsigned int mpdu_len,
3702 				     unsigned int mpdu_offset)
3703 {
3704 	u64 ts = status->mactime;
3705 	struct rate_info ri;
3706 	u16 rate;
3707 	u8 n_ltf;
3708 
3709 	if (WARN_ON(!ieee80211_have_rx_timestamp(status)))
3710 		return 0;
3711 
3712 	memset(&ri, 0, sizeof(ri));
3713 
3714 	ri.bw = status->bw;
3715 
3716 	/* Fill cfg80211 rate info */
3717 	switch (status->encoding) {
3718 	case RX_ENC_HE:
3719 		ri.flags |= RATE_INFO_FLAGS_HE_MCS;
3720 		ri.mcs = status->rate_idx;
3721 		ri.nss = status->nss;
3722 		ri.he_ru_alloc = status->he_ru;
3723 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
3724 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
3725 
3726 		/*
3727 		 * See P802.11ax_D6.0, section 27.3.4 for
3728 		 * VHT PPDU format.
3729 		 */
3730 		if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
3731 			mpdu_offset += 2;
3732 			ts += 36;
3733 
3734 			/*
3735 			 * TODO:
3736 			 * For HE MU PPDU, add the HE-SIG-B.
3737 			 * For HE ER PPDU, add 8us for the HE-SIG-A.
3738 			 * For HE TB PPDU, add 4us for the HE-STF.
3739 			 * Add the HE-LTF durations - variable.
3740 			 */
3741 		}
3742 
3743 		break;
3744 	case RX_ENC_HT:
3745 		ri.mcs = status->rate_idx;
3746 		ri.flags |= RATE_INFO_FLAGS_MCS;
3747 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
3748 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
3749 
3750 		/*
3751 		 * See P802.11REVmd_D3.0, section 19.3.2 for
3752 		 * HT PPDU format.
3753 		 */
3754 		if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
3755 			mpdu_offset += 2;
3756 			if (status->enc_flags & RX_ENC_FLAG_HT_GF)
3757 				ts += 24;
3758 			else
3759 				ts += 32;
3760 
3761 			/*
3762 			 * Add Data HT-LTFs per streams
3763 			 * TODO: add Extension HT-LTFs, 4us per LTF
3764 			 */
3765 			n_ltf = ((ri.mcs >> 3) & 3) + 1;
3766 			n_ltf = n_ltf == 3 ? 4 : n_ltf;
3767 			ts += n_ltf * 4;
3768 		}
3769 
3770 		break;
3771 	case RX_ENC_VHT:
3772 		ri.flags |= RATE_INFO_FLAGS_VHT_MCS;
3773 		ri.mcs = status->rate_idx;
3774 		ri.nss = status->nss;
3775 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
3776 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
3777 
3778 		/*
3779 		 * See P802.11REVmd_D3.0, section 21.3.2 for
3780 		 * VHT PPDU format.
3781 		 */
3782 		if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
3783 			mpdu_offset += 2;
3784 			ts += 36;
3785 
3786 			/*
3787 			 * Add VHT-LTFs per streams
3788 			 */
3789 			n_ltf = (ri.nss != 1) && (ri.nss % 2) ?
3790 				ri.nss + 1 : ri.nss;
3791 			ts += 4 * n_ltf;
3792 		}
3793 
3794 		break;
3795 	default:
3796 		WARN_ON(1);
3797 		fallthrough;
3798 	case RX_ENC_LEGACY: {
3799 		struct ieee80211_supported_band *sband;
3800 		int shift = 0;
3801 		int bitrate;
3802 
3803 		switch (status->bw) {
3804 		case RATE_INFO_BW_10:
3805 			shift = 1;
3806 			break;
3807 		case RATE_INFO_BW_5:
3808 			shift = 2;
3809 			break;
3810 		}
3811 
3812 		sband = local->hw.wiphy->bands[status->band];
3813 		bitrate = sband->bitrates[status->rate_idx].bitrate;
3814 		ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift));
3815 
3816 		if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
3817 			if (status->band == NL80211_BAND_5GHZ) {
3818 				ts += 20 << shift;
3819 				mpdu_offset += 2;
3820 			} else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) {
3821 				ts += 96;
3822 			} else {
3823 				ts += 192;
3824 			}
3825 		}
3826 		break;
3827 		}
3828 	}
3829 
3830 	rate = cfg80211_calculate_bitrate(&ri);
3831 	if (WARN_ONCE(!rate,
3832 		      "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n",
3833 		      (unsigned long long)status->flag, status->rate_idx,
3834 		      status->nss))
3835 		return 0;
3836 
3837 	/* rewind from end of MPDU */
3838 	if (status->flag & RX_FLAG_MACTIME_END)
3839 		ts -= mpdu_len * 8 * 10 / rate;
3840 
3841 	ts += mpdu_offset * 8 * 10 / rate;
3842 
3843 	return ts;
3844 }
3845 
3846 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local)
3847 {
3848 	struct ieee80211_sub_if_data *sdata;
3849 	struct cfg80211_chan_def chandef;
3850 
3851 	/* for interface list, to avoid linking iflist_mtx and chanctx_mtx */
3852 	lockdep_assert_wiphy(local->hw.wiphy);
3853 
3854 	mutex_lock(&local->mtx);
3855 	list_for_each_entry(sdata, &local->interfaces, list) {
3856 		/* it might be waiting for the local->mtx, but then
3857 		 * by the time it gets it, sdata->wdev.cac_started
3858 		 * will no longer be true
3859 		 */
3860 		cancel_delayed_work(&sdata->dfs_cac_timer_work);
3861 
3862 		if (sdata->wdev.cac_started) {
3863 			chandef = sdata->vif.bss_conf.chandef;
3864 			ieee80211_vif_release_channel(sdata);
3865 			cfg80211_cac_event(sdata->dev,
3866 					   &chandef,
3867 					   NL80211_RADAR_CAC_ABORTED,
3868 					   GFP_KERNEL);
3869 		}
3870 	}
3871 	mutex_unlock(&local->mtx);
3872 }
3873 
3874 void ieee80211_dfs_radar_detected_work(struct work_struct *work)
3875 {
3876 	struct ieee80211_local *local =
3877 		container_of(work, struct ieee80211_local, radar_detected_work);
3878 	struct cfg80211_chan_def chandef = local->hw.conf.chandef;
3879 	struct ieee80211_chanctx *ctx;
3880 	int num_chanctx = 0;
3881 
3882 	mutex_lock(&local->chanctx_mtx);
3883 	list_for_each_entry(ctx, &local->chanctx_list, list) {
3884 		if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER)
3885 			continue;
3886 
3887 		num_chanctx++;
3888 		chandef = ctx->conf.def;
3889 	}
3890 	mutex_unlock(&local->chanctx_mtx);
3891 
3892 	wiphy_lock(local->hw.wiphy);
3893 	ieee80211_dfs_cac_cancel(local);
3894 	wiphy_unlock(local->hw.wiphy);
3895 
3896 	if (num_chanctx > 1)
3897 		/* XXX: multi-channel is not supported yet */
3898 		WARN_ON(1);
3899 	else
3900 		cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL);
3901 }
3902 
3903 void ieee80211_radar_detected(struct ieee80211_hw *hw)
3904 {
3905 	struct ieee80211_local *local = hw_to_local(hw);
3906 
3907 	trace_api_radar_detected(local);
3908 
3909 	schedule_work(&local->radar_detected_work);
3910 }
3911 EXPORT_SYMBOL(ieee80211_radar_detected);
3912 
3913 u32 ieee80211_chandef_downgrade(struct cfg80211_chan_def *c)
3914 {
3915 	u32 ret;
3916 	int tmp;
3917 
3918 	switch (c->width) {
3919 	case NL80211_CHAN_WIDTH_20:
3920 		c->width = NL80211_CHAN_WIDTH_20_NOHT;
3921 		ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT;
3922 		break;
3923 	case NL80211_CHAN_WIDTH_40:
3924 		c->width = NL80211_CHAN_WIDTH_20;
3925 		c->center_freq1 = c->chan->center_freq;
3926 		ret = IEEE80211_STA_DISABLE_40MHZ |
3927 		      IEEE80211_STA_DISABLE_VHT;
3928 		break;
3929 	case NL80211_CHAN_WIDTH_80:
3930 		tmp = (30 + c->chan->center_freq - c->center_freq1)/20;
3931 		/* n_P40 */
3932 		tmp /= 2;
3933 		/* freq_P40 */
3934 		c->center_freq1 = c->center_freq1 - 20 + 40 * tmp;
3935 		c->width = NL80211_CHAN_WIDTH_40;
3936 		ret = IEEE80211_STA_DISABLE_VHT;
3937 		break;
3938 	case NL80211_CHAN_WIDTH_80P80:
3939 		c->center_freq2 = 0;
3940 		c->width = NL80211_CHAN_WIDTH_80;
3941 		ret = IEEE80211_STA_DISABLE_80P80MHZ |
3942 		      IEEE80211_STA_DISABLE_160MHZ;
3943 		break;
3944 	case NL80211_CHAN_WIDTH_160:
3945 		/* n_P20 */
3946 		tmp = (70 + c->chan->center_freq - c->center_freq1)/20;
3947 		/* n_P80 */
3948 		tmp /= 4;
3949 		c->center_freq1 = c->center_freq1 - 40 + 80 * tmp;
3950 		c->width = NL80211_CHAN_WIDTH_80;
3951 		ret = IEEE80211_STA_DISABLE_80P80MHZ |
3952 		      IEEE80211_STA_DISABLE_160MHZ;
3953 		break;
3954 	default:
3955 	case NL80211_CHAN_WIDTH_20_NOHT:
3956 		WARN_ON_ONCE(1);
3957 		c->width = NL80211_CHAN_WIDTH_20_NOHT;
3958 		ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT;
3959 		break;
3960 	case NL80211_CHAN_WIDTH_1:
3961 	case NL80211_CHAN_WIDTH_2:
3962 	case NL80211_CHAN_WIDTH_4:
3963 	case NL80211_CHAN_WIDTH_8:
3964 	case NL80211_CHAN_WIDTH_16:
3965 	case NL80211_CHAN_WIDTH_5:
3966 	case NL80211_CHAN_WIDTH_10:
3967 		WARN_ON_ONCE(1);
3968 		/* keep c->width */
3969 		ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT;
3970 		break;
3971 	}
3972 
3973 	WARN_ON_ONCE(!cfg80211_chandef_valid(c));
3974 
3975 	return ret;
3976 }
3977 
3978 /*
3979  * Returns true if smps_mode_new is strictly more restrictive than
3980  * smps_mode_old.
3981  */
3982 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old,
3983 				   enum ieee80211_smps_mode smps_mode_new)
3984 {
3985 	if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC ||
3986 			 smps_mode_new == IEEE80211_SMPS_AUTOMATIC))
3987 		return false;
3988 
3989 	switch (smps_mode_old) {
3990 	case IEEE80211_SMPS_STATIC:
3991 		return false;
3992 	case IEEE80211_SMPS_DYNAMIC:
3993 		return smps_mode_new == IEEE80211_SMPS_STATIC;
3994 	case IEEE80211_SMPS_OFF:
3995 		return smps_mode_new != IEEE80211_SMPS_OFF;
3996 	default:
3997 		WARN_ON(1);
3998 	}
3999 
4000 	return false;
4001 }
4002 
4003 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata,
4004 			      struct cfg80211_csa_settings *csa_settings)
4005 {
4006 	struct sk_buff *skb;
4007 	struct ieee80211_mgmt *mgmt;
4008 	struct ieee80211_local *local = sdata->local;
4009 	int freq;
4010 	int hdr_len = offsetofend(struct ieee80211_mgmt,
4011 				  u.action.u.chan_switch);
4012 	u8 *pos;
4013 
4014 	if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
4015 	    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
4016 		return -EOPNOTSUPP;
4017 
4018 	skb = dev_alloc_skb(local->tx_headroom + hdr_len +
4019 			    5 + /* channel switch announcement element */
4020 			    3 + /* secondary channel offset element */
4021 			    5 + /* wide bandwidth channel switch announcement */
4022 			    8); /* mesh channel switch parameters element */
4023 	if (!skb)
4024 		return -ENOMEM;
4025 
4026 	skb_reserve(skb, local->tx_headroom);
4027 	mgmt = skb_put_zero(skb, hdr_len);
4028 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
4029 					  IEEE80211_STYPE_ACTION);
4030 
4031 	eth_broadcast_addr(mgmt->da);
4032 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
4033 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
4034 		memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN);
4035 	} else {
4036 		struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
4037 		memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN);
4038 	}
4039 	mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT;
4040 	mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH;
4041 	pos = skb_put(skb, 5);
4042 	*pos++ = WLAN_EID_CHANNEL_SWITCH;			/* EID */
4043 	*pos++ = 3;						/* IE length */
4044 	*pos++ = csa_settings->block_tx ? 1 : 0;		/* CSA mode */
4045 	freq = csa_settings->chandef.chan->center_freq;
4046 	*pos++ = ieee80211_frequency_to_channel(freq);		/* channel */
4047 	*pos++ = csa_settings->count;				/* count */
4048 
4049 	if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) {
4050 		enum nl80211_channel_type ch_type;
4051 
4052 		skb_put(skb, 3);
4053 		*pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET;	/* EID */
4054 		*pos++ = 1;					/* IE length */
4055 		ch_type = cfg80211_get_chandef_type(&csa_settings->chandef);
4056 		if (ch_type == NL80211_CHAN_HT40PLUS)
4057 			*pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
4058 		else
4059 			*pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
4060 	}
4061 
4062 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
4063 		struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
4064 
4065 		skb_put(skb, 8);
4066 		*pos++ = WLAN_EID_CHAN_SWITCH_PARAM;		/* EID */
4067 		*pos++ = 6;					/* IE length */
4068 		*pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL;	/* Mesh TTL */
4069 		*pos = 0x00;	/* Mesh Flag: Tx Restrict, Initiator, Reason */
4070 		*pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR;
4071 		*pos++ |= csa_settings->block_tx ?
4072 			  WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00;
4073 		put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */
4074 		pos += 2;
4075 		put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */
4076 		pos += 2;
4077 	}
4078 
4079 	if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 ||
4080 	    csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 ||
4081 	    csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) {
4082 		skb_put(skb, 5);
4083 		ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef);
4084 	}
4085 
4086 	ieee80211_tx_skb(sdata, skb);
4087 	return 0;
4088 }
4089 
4090 bool ieee80211_cs_valid(const struct ieee80211_cipher_scheme *cs)
4091 {
4092 	return !(cs == NULL || cs->cipher == 0 ||
4093 		 cs->hdr_len < cs->pn_len + cs->pn_off ||
4094 		 cs->hdr_len <= cs->key_idx_off ||
4095 		 cs->key_idx_shift > 7 ||
4096 		 cs->key_idx_mask == 0);
4097 }
4098 
4099 bool ieee80211_cs_list_valid(const struct ieee80211_cipher_scheme *cs, int n)
4100 {
4101 	int i;
4102 
4103 	/* Ensure we have enough iftype bitmap space for all iftype values */
4104 	WARN_ON((NUM_NL80211_IFTYPES / 8 + 1) > sizeof(cs[0].iftype));
4105 
4106 	for (i = 0; i < n; i++)
4107 		if (!ieee80211_cs_valid(&cs[i]))
4108 			return false;
4109 
4110 	return true;
4111 }
4112 
4113 const struct ieee80211_cipher_scheme *
4114 ieee80211_cs_get(struct ieee80211_local *local, u32 cipher,
4115 		 enum nl80211_iftype iftype)
4116 {
4117 	const struct ieee80211_cipher_scheme *l = local->hw.cipher_schemes;
4118 	int n = local->hw.n_cipher_schemes;
4119 	int i;
4120 	const struct ieee80211_cipher_scheme *cs = NULL;
4121 
4122 	for (i = 0; i < n; i++) {
4123 		if (l[i].cipher == cipher) {
4124 			cs = &l[i];
4125 			break;
4126 		}
4127 	}
4128 
4129 	if (!cs || !(cs->iftype & BIT(iftype)))
4130 		return NULL;
4131 
4132 	return cs;
4133 }
4134 
4135 int ieee80211_cs_headroom(struct ieee80211_local *local,
4136 			  struct cfg80211_crypto_settings *crypto,
4137 			  enum nl80211_iftype iftype)
4138 {
4139 	const struct ieee80211_cipher_scheme *cs;
4140 	int headroom = IEEE80211_ENCRYPT_HEADROOM;
4141 	int i;
4142 
4143 	for (i = 0; i < crypto->n_ciphers_pairwise; i++) {
4144 		cs = ieee80211_cs_get(local, crypto->ciphers_pairwise[i],
4145 				      iftype);
4146 
4147 		if (cs && headroom < cs->hdr_len)
4148 			headroom = cs->hdr_len;
4149 	}
4150 
4151 	cs = ieee80211_cs_get(local, crypto->cipher_group, iftype);
4152 	if (cs && headroom < cs->hdr_len)
4153 		headroom = cs->hdr_len;
4154 
4155 	return headroom;
4156 }
4157 
4158 static bool
4159 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i)
4160 {
4161 	s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1);
4162 	int skip;
4163 
4164 	if (end > 0)
4165 		return false;
4166 
4167 	/* One shot NOA  */
4168 	if (data->count[i] == 1)
4169 		return false;
4170 
4171 	if (data->desc[i].interval == 0)
4172 		return false;
4173 
4174 	/* End time is in the past, check for repetitions */
4175 	skip = DIV_ROUND_UP(-end, data->desc[i].interval);
4176 	if (data->count[i] < 255) {
4177 		if (data->count[i] <= skip) {
4178 			data->count[i] = 0;
4179 			return false;
4180 		}
4181 
4182 		data->count[i] -= skip;
4183 	}
4184 
4185 	data->desc[i].start += skip * data->desc[i].interval;
4186 
4187 	return true;
4188 }
4189 
4190 static bool
4191 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf,
4192 			     s32 *offset)
4193 {
4194 	bool ret = false;
4195 	int i;
4196 
4197 	for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
4198 		s32 cur;
4199 
4200 		if (!data->count[i])
4201 			continue;
4202 
4203 		if (ieee80211_extend_noa_desc(data, tsf + *offset, i))
4204 			ret = true;
4205 
4206 		cur = data->desc[i].start - tsf;
4207 		if (cur > *offset)
4208 			continue;
4209 
4210 		cur = data->desc[i].start + data->desc[i].duration - tsf;
4211 		if (cur > *offset)
4212 			*offset = cur;
4213 	}
4214 
4215 	return ret;
4216 }
4217 
4218 static u32
4219 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf)
4220 {
4221 	s32 offset = 0;
4222 	int tries = 0;
4223 	/*
4224 	 * arbitrary limit, used to avoid infinite loops when combined NoA
4225 	 * descriptors cover the full time period.
4226 	 */
4227 	int max_tries = 5;
4228 
4229 	ieee80211_extend_absent_time(data, tsf, &offset);
4230 	do {
4231 		if (!ieee80211_extend_absent_time(data, tsf, &offset))
4232 			break;
4233 
4234 		tries++;
4235 	} while (tries < max_tries);
4236 
4237 	return offset;
4238 }
4239 
4240 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf)
4241 {
4242 	u32 next_offset = BIT(31) - 1;
4243 	int i;
4244 
4245 	data->absent = 0;
4246 	data->has_next_tsf = false;
4247 	for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
4248 		s32 start;
4249 
4250 		if (!data->count[i])
4251 			continue;
4252 
4253 		ieee80211_extend_noa_desc(data, tsf, i);
4254 		start = data->desc[i].start - tsf;
4255 		if (start <= 0)
4256 			data->absent |= BIT(i);
4257 
4258 		if (next_offset > start)
4259 			next_offset = start;
4260 
4261 		data->has_next_tsf = true;
4262 	}
4263 
4264 	if (data->absent)
4265 		next_offset = ieee80211_get_noa_absent_time(data, tsf);
4266 
4267 	data->next_tsf = tsf + next_offset;
4268 }
4269 EXPORT_SYMBOL(ieee80211_update_p2p_noa);
4270 
4271 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr,
4272 			    struct ieee80211_noa_data *data, u32 tsf)
4273 {
4274 	int ret = 0;
4275 	int i;
4276 
4277 	memset(data, 0, sizeof(*data));
4278 
4279 	for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
4280 		const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i];
4281 
4282 		if (!desc->count || !desc->duration)
4283 			continue;
4284 
4285 		data->count[i] = desc->count;
4286 		data->desc[i].start = le32_to_cpu(desc->start_time);
4287 		data->desc[i].duration = le32_to_cpu(desc->duration);
4288 		data->desc[i].interval = le32_to_cpu(desc->interval);
4289 
4290 		if (data->count[i] > 1 &&
4291 		    data->desc[i].interval < data->desc[i].duration)
4292 			continue;
4293 
4294 		ieee80211_extend_noa_desc(data, tsf, i);
4295 		ret++;
4296 	}
4297 
4298 	if (ret)
4299 		ieee80211_update_p2p_noa(data, tsf);
4300 
4301 	return ret;
4302 }
4303 EXPORT_SYMBOL(ieee80211_parse_p2p_noa);
4304 
4305 void ieee80211_recalc_dtim(struct ieee80211_local *local,
4306 			   struct ieee80211_sub_if_data *sdata)
4307 {
4308 	u64 tsf = drv_get_tsf(local, sdata);
4309 	u64 dtim_count = 0;
4310 	u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024;
4311 	u8 dtim_period = sdata->vif.bss_conf.dtim_period;
4312 	struct ps_data *ps;
4313 	u8 bcns_from_dtim;
4314 
4315 	if (tsf == -1ULL || !beacon_int || !dtim_period)
4316 		return;
4317 
4318 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
4319 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
4320 		if (!sdata->bss)
4321 			return;
4322 
4323 		ps = &sdata->bss->ps;
4324 	} else if (ieee80211_vif_is_mesh(&sdata->vif)) {
4325 		ps = &sdata->u.mesh.ps;
4326 	} else {
4327 		return;
4328 	}
4329 
4330 	/*
4331 	 * actually finds last dtim_count, mac80211 will update in
4332 	 * __beacon_add_tim().
4333 	 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period
4334 	 */
4335 	do_div(tsf, beacon_int);
4336 	bcns_from_dtim = do_div(tsf, dtim_period);
4337 	/* just had a DTIM */
4338 	if (!bcns_from_dtim)
4339 		dtim_count = 0;
4340 	else
4341 		dtim_count = dtim_period - bcns_from_dtim;
4342 
4343 	ps->dtim_count = dtim_count;
4344 }
4345 
4346 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local,
4347 					 struct ieee80211_chanctx *ctx)
4348 {
4349 	struct ieee80211_sub_if_data *sdata;
4350 	u8 radar_detect = 0;
4351 
4352 	lockdep_assert_held(&local->chanctx_mtx);
4353 
4354 	if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED))
4355 		return 0;
4356 
4357 	list_for_each_entry(sdata, &ctx->reserved_vifs, reserved_chanctx_list)
4358 		if (sdata->reserved_radar_required)
4359 			radar_detect |= BIT(sdata->reserved_chandef.width);
4360 
4361 	/*
4362 	 * An in-place reservation context should not have any assigned vifs
4363 	 * until it replaces the other context.
4364 	 */
4365 	WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER &&
4366 		!list_empty(&ctx->assigned_vifs));
4367 
4368 	list_for_each_entry(sdata, &ctx->assigned_vifs, assigned_chanctx_list)
4369 		if (sdata->radar_required)
4370 			radar_detect |= BIT(sdata->vif.bss_conf.chandef.width);
4371 
4372 	return radar_detect;
4373 }
4374 
4375 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata,
4376 				 const struct cfg80211_chan_def *chandef,
4377 				 enum ieee80211_chanctx_mode chanmode,
4378 				 u8 radar_detect)
4379 {
4380 	struct ieee80211_local *local = sdata->local;
4381 	struct ieee80211_sub_if_data *sdata_iter;
4382 	enum nl80211_iftype iftype = sdata->wdev.iftype;
4383 	struct ieee80211_chanctx *ctx;
4384 	int total = 1;
4385 	struct iface_combination_params params = {
4386 		.radar_detect = radar_detect,
4387 	};
4388 
4389 	lockdep_assert_held(&local->chanctx_mtx);
4390 
4391 	if (WARN_ON(hweight32(radar_detect) > 1))
4392 		return -EINVAL;
4393 
4394 	if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED &&
4395 		    !chandef->chan))
4396 		return -EINVAL;
4397 
4398 	if (WARN_ON(iftype >= NUM_NL80211_IFTYPES))
4399 		return -EINVAL;
4400 
4401 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
4402 	    sdata->vif.type == NL80211_IFTYPE_MESH_POINT) {
4403 		/*
4404 		 * always passing this is harmless, since it'll be the
4405 		 * same value that cfg80211 finds if it finds the same
4406 		 * interface ... and that's always allowed
4407 		 */
4408 		params.new_beacon_int = sdata->vif.bss_conf.beacon_int;
4409 	}
4410 
4411 	/* Always allow software iftypes */
4412 	if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) {
4413 		if (radar_detect)
4414 			return -EINVAL;
4415 		return 0;
4416 	}
4417 
4418 	if (chandef)
4419 		params.num_different_channels = 1;
4420 
4421 	if (iftype != NL80211_IFTYPE_UNSPECIFIED)
4422 		params.iftype_num[iftype] = 1;
4423 
4424 	list_for_each_entry(ctx, &local->chanctx_list, list) {
4425 		if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)
4426 			continue;
4427 		params.radar_detect |=
4428 			ieee80211_chanctx_radar_detect(local, ctx);
4429 		if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) {
4430 			params.num_different_channels++;
4431 			continue;
4432 		}
4433 		if (chandef && chanmode == IEEE80211_CHANCTX_SHARED &&
4434 		    cfg80211_chandef_compatible(chandef,
4435 						&ctx->conf.def))
4436 			continue;
4437 		params.num_different_channels++;
4438 	}
4439 
4440 	list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) {
4441 		struct wireless_dev *wdev_iter;
4442 
4443 		wdev_iter = &sdata_iter->wdev;
4444 
4445 		if (sdata_iter == sdata ||
4446 		    !ieee80211_sdata_running(sdata_iter) ||
4447 		    cfg80211_iftype_allowed(local->hw.wiphy,
4448 					    wdev_iter->iftype, 0, 1))
4449 			continue;
4450 
4451 		params.iftype_num[wdev_iter->iftype]++;
4452 		total++;
4453 	}
4454 
4455 	if (total == 1 && !params.radar_detect)
4456 		return 0;
4457 
4458 	return cfg80211_check_combinations(local->hw.wiphy, &params);
4459 }
4460 
4461 static void
4462 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c,
4463 			 void *data)
4464 {
4465 	u32 *max_num_different_channels = data;
4466 
4467 	*max_num_different_channels = max(*max_num_different_channels,
4468 					  c->num_different_channels);
4469 }
4470 
4471 int ieee80211_max_num_channels(struct ieee80211_local *local)
4472 {
4473 	struct ieee80211_sub_if_data *sdata;
4474 	struct ieee80211_chanctx *ctx;
4475 	u32 max_num_different_channels = 1;
4476 	int err;
4477 	struct iface_combination_params params = {0};
4478 
4479 	lockdep_assert_held(&local->chanctx_mtx);
4480 
4481 	list_for_each_entry(ctx, &local->chanctx_list, list) {
4482 		if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)
4483 			continue;
4484 
4485 		params.num_different_channels++;
4486 
4487 		params.radar_detect |=
4488 			ieee80211_chanctx_radar_detect(local, ctx);
4489 	}
4490 
4491 	list_for_each_entry_rcu(sdata, &local->interfaces, list)
4492 		params.iftype_num[sdata->wdev.iftype]++;
4493 
4494 	err = cfg80211_iter_combinations(local->hw.wiphy, &params,
4495 					 ieee80211_iter_max_chans,
4496 					 &max_num_different_channels);
4497 	if (err < 0)
4498 		return err;
4499 
4500 	return max_num_different_channels;
4501 }
4502 
4503 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata,
4504 				struct ieee80211_sta_s1g_cap *caps,
4505 				struct sk_buff *skb)
4506 {
4507 	struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
4508 	struct ieee80211_s1g_cap s1g_capab;
4509 	u8 *pos;
4510 	int i;
4511 
4512 	if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
4513 		return;
4514 
4515 	if (!caps->s1g)
4516 		return;
4517 
4518 	memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap));
4519 	memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs));
4520 
4521 	/* override the capability info */
4522 	for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) {
4523 		u8 mask = ifmgd->s1g_capa_mask.capab_info[i];
4524 
4525 		s1g_capab.capab_info[i] &= ~mask;
4526 		s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask;
4527 	}
4528 
4529 	/* then MCS and NSS set */
4530 	for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) {
4531 		u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i];
4532 
4533 		s1g_capab.supp_mcs_nss[i] &= ~mask;
4534 		s1g_capab.supp_mcs_nss[i] |=
4535 			ifmgd->s1g_capa.supp_mcs_nss[i] & mask;
4536 	}
4537 
4538 	pos = skb_put(skb, 2 + sizeof(s1g_capab));
4539 	*pos++ = WLAN_EID_S1G_CAPABILITIES;
4540 	*pos++ = sizeof(s1g_capab);
4541 
4542 	memcpy(pos, &s1g_capab, sizeof(s1g_capab));
4543 }
4544 
4545 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata,
4546 				  struct sk_buff *skb)
4547 {
4548 	u8 *pos = skb_put(skb, 3);
4549 
4550 	*pos++ = WLAN_EID_AID_REQUEST;
4551 	*pos++ = 1;
4552 	*pos++ = 0;
4553 }
4554 
4555 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo)
4556 {
4557 	*buf++ = WLAN_EID_VENDOR_SPECIFIC;
4558 	*buf++ = 7; /* len */
4559 	*buf++ = 0x00; /* Microsoft OUI 00:50:F2 */
4560 	*buf++ = 0x50;
4561 	*buf++ = 0xf2;
4562 	*buf++ = 2; /* WME */
4563 	*buf++ = 0; /* WME info */
4564 	*buf++ = 1; /* WME ver */
4565 	*buf++ = qosinfo; /* U-APSD no in use */
4566 
4567 	return buf;
4568 }
4569 
4570 void ieee80211_txq_get_depth(struct ieee80211_txq *txq,
4571 			     unsigned long *frame_cnt,
4572 			     unsigned long *byte_cnt)
4573 {
4574 	struct txq_info *txqi = to_txq_info(txq);
4575 	u32 frag_cnt = 0, frag_bytes = 0;
4576 	struct sk_buff *skb;
4577 
4578 	skb_queue_walk(&txqi->frags, skb) {
4579 		frag_cnt++;
4580 		frag_bytes += skb->len;
4581 	}
4582 
4583 	if (frame_cnt)
4584 		*frame_cnt = txqi->tin.backlog_packets + frag_cnt;
4585 
4586 	if (byte_cnt)
4587 		*byte_cnt = txqi->tin.backlog_bytes + frag_bytes;
4588 }
4589 EXPORT_SYMBOL(ieee80211_txq_get_depth);
4590 
4591 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = {
4592 	IEEE80211_WMM_IE_STA_QOSINFO_AC_VO,
4593 	IEEE80211_WMM_IE_STA_QOSINFO_AC_VI,
4594 	IEEE80211_WMM_IE_STA_QOSINFO_AC_BE,
4595 	IEEE80211_WMM_IE_STA_QOSINFO_AC_BK
4596 };
4597 
4598 u16 ieee80211_encode_usf(int listen_interval)
4599 {
4600 	static const int listen_int_usf[] = { 1, 10, 1000, 10000 };
4601 	u16 ui, usf = 0;
4602 
4603 	/* find greatest USF */
4604 	while (usf < IEEE80211_MAX_USF) {
4605 		if (listen_interval % listen_int_usf[usf + 1])
4606 			break;
4607 		usf += 1;
4608 	}
4609 	ui = listen_interval / listen_int_usf[usf];
4610 
4611 	/* error if there is a remainder. Should've been checked by user */
4612 	WARN_ON_ONCE(ui > IEEE80211_MAX_UI);
4613 	listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) |
4614 			  FIELD_PREP(LISTEN_INT_UI, ui);
4615 
4616 	return (u16) listen_interval;
4617 }
4618