xref: /openbmc/linux/net/mac80211/util.c (revision d0b73b48)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * utilities for mac80211
12  */
13 
14 #include <net/mac80211.h>
15 #include <linux/netdevice.h>
16 #include <linux/export.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/skbuff.h>
20 #include <linux/etherdevice.h>
21 #include <linux/if_arp.h>
22 #include <linux/bitmap.h>
23 #include <linux/crc32.h>
24 #include <net/net_namespace.h>
25 #include <net/cfg80211.h>
26 #include <net/rtnetlink.h>
27 
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
30 #include "rate.h"
31 #include "mesh.h"
32 #include "wme.h"
33 #include "led.h"
34 #include "wep.h"
35 
36 /* privid for wiphys to determine whether they belong to us or not */
37 void *mac80211_wiphy_privid = &mac80211_wiphy_privid;
38 
39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy)
40 {
41 	struct ieee80211_local *local;
42 	BUG_ON(!wiphy);
43 
44 	local = wiphy_priv(wiphy);
45 	return &local->hw;
46 }
47 EXPORT_SYMBOL(wiphy_to_ieee80211_hw);
48 
49 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
50 			enum nl80211_iftype type)
51 {
52 	__le16 fc = hdr->frame_control;
53 
54 	 /* drop ACK/CTS frames and incorrect hdr len (ctrl) */
55 	if (len < 16)
56 		return NULL;
57 
58 	if (ieee80211_is_data(fc)) {
59 		if (len < 24) /* drop incorrect hdr len (data) */
60 			return NULL;
61 
62 		if (ieee80211_has_a4(fc))
63 			return NULL;
64 		if (ieee80211_has_tods(fc))
65 			return hdr->addr1;
66 		if (ieee80211_has_fromds(fc))
67 			return hdr->addr2;
68 
69 		return hdr->addr3;
70 	}
71 
72 	if (ieee80211_is_mgmt(fc)) {
73 		if (len < 24) /* drop incorrect hdr len (mgmt) */
74 			return NULL;
75 		return hdr->addr3;
76 	}
77 
78 	if (ieee80211_is_ctl(fc)) {
79 		if(ieee80211_is_pspoll(fc))
80 			return hdr->addr1;
81 
82 		if (ieee80211_is_back_req(fc)) {
83 			switch (type) {
84 			case NL80211_IFTYPE_STATION:
85 				return hdr->addr2;
86 			case NL80211_IFTYPE_AP:
87 			case NL80211_IFTYPE_AP_VLAN:
88 				return hdr->addr1;
89 			default:
90 				break; /* fall through to the return */
91 			}
92 		}
93 	}
94 
95 	return NULL;
96 }
97 
98 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx)
99 {
100 	struct sk_buff *skb;
101 	struct ieee80211_hdr *hdr;
102 
103 	skb_queue_walk(&tx->skbs, skb) {
104 		hdr = (struct ieee80211_hdr *) skb->data;
105 		hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
106 	}
107 }
108 
109 int ieee80211_frame_duration(enum ieee80211_band band, size_t len,
110 			     int rate, int erp, int short_preamble)
111 {
112 	int dur;
113 
114 	/* calculate duration (in microseconds, rounded up to next higher
115 	 * integer if it includes a fractional microsecond) to send frame of
116 	 * len bytes (does not include FCS) at the given rate. Duration will
117 	 * also include SIFS.
118 	 *
119 	 * rate is in 100 kbps, so divident is multiplied by 10 in the
120 	 * DIV_ROUND_UP() operations.
121 	 */
122 
123 	if (band == IEEE80211_BAND_5GHZ || erp) {
124 		/*
125 		 * OFDM:
126 		 *
127 		 * N_DBPS = DATARATE x 4
128 		 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
129 		 *	(16 = SIGNAL time, 6 = tail bits)
130 		 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
131 		 *
132 		 * T_SYM = 4 usec
133 		 * 802.11a - 17.5.2: aSIFSTime = 16 usec
134 		 * 802.11g - 19.8.4: aSIFSTime = 10 usec +
135 		 *	signal ext = 6 usec
136 		 */
137 		dur = 16; /* SIFS + signal ext */
138 		dur += 16; /* 17.3.2.3: T_PREAMBLE = 16 usec */
139 		dur += 4; /* 17.3.2.3: T_SIGNAL = 4 usec */
140 		dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
141 					4 * rate); /* T_SYM x N_SYM */
142 	} else {
143 		/*
144 		 * 802.11b or 802.11g with 802.11b compatibility:
145 		 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
146 		 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
147 		 *
148 		 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4
149 		 * aSIFSTime = 10 usec
150 		 * aPreambleLength = 144 usec or 72 usec with short preamble
151 		 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble
152 		 */
153 		dur = 10; /* aSIFSTime = 10 usec */
154 		dur += short_preamble ? (72 + 24) : (144 + 48);
155 
156 		dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
157 	}
158 
159 	return dur;
160 }
161 
162 /* Exported duration function for driver use */
163 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
164 					struct ieee80211_vif *vif,
165 					enum ieee80211_band band,
166 					size_t frame_len,
167 					struct ieee80211_rate *rate)
168 {
169 	struct ieee80211_sub_if_data *sdata;
170 	u16 dur;
171 	int erp;
172 	bool short_preamble = false;
173 
174 	erp = 0;
175 	if (vif) {
176 		sdata = vif_to_sdata(vif);
177 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
178 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
179 			erp = rate->flags & IEEE80211_RATE_ERP_G;
180 	}
181 
182 	dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp,
183 				       short_preamble);
184 
185 	return cpu_to_le16(dur);
186 }
187 EXPORT_SYMBOL(ieee80211_generic_frame_duration);
188 
189 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
190 			      struct ieee80211_vif *vif, size_t frame_len,
191 			      const struct ieee80211_tx_info *frame_txctl)
192 {
193 	struct ieee80211_local *local = hw_to_local(hw);
194 	struct ieee80211_rate *rate;
195 	struct ieee80211_sub_if_data *sdata;
196 	bool short_preamble;
197 	int erp;
198 	u16 dur;
199 	struct ieee80211_supported_band *sband;
200 
201 	sband = local->hw.wiphy->bands[frame_txctl->band];
202 
203 	short_preamble = false;
204 
205 	rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
206 
207 	erp = 0;
208 	if (vif) {
209 		sdata = vif_to_sdata(vif);
210 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
211 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
212 			erp = rate->flags & IEEE80211_RATE_ERP_G;
213 	}
214 
215 	/* CTS duration */
216 	dur = ieee80211_frame_duration(sband->band, 10, rate->bitrate,
217 				       erp, short_preamble);
218 	/* Data frame duration */
219 	dur += ieee80211_frame_duration(sband->band, frame_len, rate->bitrate,
220 					erp, short_preamble);
221 	/* ACK duration */
222 	dur += ieee80211_frame_duration(sband->band, 10, rate->bitrate,
223 					erp, short_preamble);
224 
225 	return cpu_to_le16(dur);
226 }
227 EXPORT_SYMBOL(ieee80211_rts_duration);
228 
229 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
230 				    struct ieee80211_vif *vif,
231 				    size_t frame_len,
232 				    const struct ieee80211_tx_info *frame_txctl)
233 {
234 	struct ieee80211_local *local = hw_to_local(hw);
235 	struct ieee80211_rate *rate;
236 	struct ieee80211_sub_if_data *sdata;
237 	bool short_preamble;
238 	int erp;
239 	u16 dur;
240 	struct ieee80211_supported_band *sband;
241 
242 	sband = local->hw.wiphy->bands[frame_txctl->band];
243 
244 	short_preamble = false;
245 
246 	rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
247 	erp = 0;
248 	if (vif) {
249 		sdata = vif_to_sdata(vif);
250 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
251 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
252 			erp = rate->flags & IEEE80211_RATE_ERP_G;
253 	}
254 
255 	/* Data frame duration */
256 	dur = ieee80211_frame_duration(sband->band, frame_len, rate->bitrate,
257 				       erp, short_preamble);
258 	if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) {
259 		/* ACK duration */
260 		dur += ieee80211_frame_duration(sband->band, 10, rate->bitrate,
261 						erp, short_preamble);
262 	}
263 
264 	return cpu_to_le16(dur);
265 }
266 EXPORT_SYMBOL(ieee80211_ctstoself_duration);
267 
268 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue)
269 {
270 	struct ieee80211_sub_if_data *sdata;
271 	int n_acs = IEEE80211_NUM_ACS;
272 
273 	if (local->hw.queues < IEEE80211_NUM_ACS)
274 		n_acs = 1;
275 
276 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
277 		int ac;
278 
279 		if (!sdata->dev)
280 			continue;
281 
282 		if (test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))
283 			continue;
284 
285 		if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE &&
286 		    local->queue_stop_reasons[sdata->vif.cab_queue] != 0)
287 			continue;
288 
289 		for (ac = 0; ac < n_acs; ac++) {
290 			int ac_queue = sdata->vif.hw_queue[ac];
291 
292 			if (ac_queue == queue ||
293 			    (sdata->vif.cab_queue == queue &&
294 			     local->queue_stop_reasons[ac_queue] == 0 &&
295 			     skb_queue_empty(&local->pending[ac_queue])))
296 				netif_wake_subqueue(sdata->dev, ac);
297 		}
298 	}
299 }
300 
301 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue,
302 				   enum queue_stop_reason reason)
303 {
304 	struct ieee80211_local *local = hw_to_local(hw);
305 
306 	trace_wake_queue(local, queue, reason);
307 
308 	if (WARN_ON(queue >= hw->queues))
309 		return;
310 
311 	if (!test_bit(reason, &local->queue_stop_reasons[queue]))
312 		return;
313 
314 	__clear_bit(reason, &local->queue_stop_reasons[queue]);
315 
316 	if (local->queue_stop_reasons[queue] != 0)
317 		/* someone still has this queue stopped */
318 		return;
319 
320 	if (skb_queue_empty(&local->pending[queue])) {
321 		rcu_read_lock();
322 		ieee80211_propagate_queue_wake(local, queue);
323 		rcu_read_unlock();
324 	} else
325 		tasklet_schedule(&local->tx_pending_tasklet);
326 }
327 
328 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue,
329 				    enum queue_stop_reason reason)
330 {
331 	struct ieee80211_local *local = hw_to_local(hw);
332 	unsigned long flags;
333 
334 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
335 	__ieee80211_wake_queue(hw, queue, reason);
336 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
337 }
338 
339 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
340 {
341 	ieee80211_wake_queue_by_reason(hw, queue,
342 				       IEEE80211_QUEUE_STOP_REASON_DRIVER);
343 }
344 EXPORT_SYMBOL(ieee80211_wake_queue);
345 
346 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue,
347 				   enum queue_stop_reason reason)
348 {
349 	struct ieee80211_local *local = hw_to_local(hw);
350 	struct ieee80211_sub_if_data *sdata;
351 	int n_acs = IEEE80211_NUM_ACS;
352 
353 	trace_stop_queue(local, queue, reason);
354 
355 	if (WARN_ON(queue >= hw->queues))
356 		return;
357 
358 	if (test_bit(reason, &local->queue_stop_reasons[queue]))
359 		return;
360 
361 	__set_bit(reason, &local->queue_stop_reasons[queue]);
362 
363 	if (local->hw.queues < IEEE80211_NUM_ACS)
364 		n_acs = 1;
365 
366 	rcu_read_lock();
367 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
368 		int ac;
369 
370 		if (!sdata->dev)
371 			continue;
372 
373 		for (ac = 0; ac < n_acs; ac++) {
374 			if (sdata->vif.hw_queue[ac] == queue ||
375 			    sdata->vif.cab_queue == queue)
376 				netif_stop_subqueue(sdata->dev, ac);
377 		}
378 	}
379 	rcu_read_unlock();
380 }
381 
382 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue,
383 				    enum queue_stop_reason reason)
384 {
385 	struct ieee80211_local *local = hw_to_local(hw);
386 	unsigned long flags;
387 
388 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
389 	__ieee80211_stop_queue(hw, queue, reason);
390 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
391 }
392 
393 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
394 {
395 	ieee80211_stop_queue_by_reason(hw, queue,
396 				       IEEE80211_QUEUE_STOP_REASON_DRIVER);
397 }
398 EXPORT_SYMBOL(ieee80211_stop_queue);
399 
400 void ieee80211_add_pending_skb(struct ieee80211_local *local,
401 			       struct sk_buff *skb)
402 {
403 	struct ieee80211_hw *hw = &local->hw;
404 	unsigned long flags;
405 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
406 	int queue = info->hw_queue;
407 
408 	if (WARN_ON(!info->control.vif)) {
409 		ieee80211_free_txskb(&local->hw, skb);
410 		return;
411 	}
412 
413 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
414 	__ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
415 	__skb_queue_tail(&local->pending[queue], skb);
416 	__ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
417 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
418 }
419 
420 void ieee80211_add_pending_skbs_fn(struct ieee80211_local *local,
421 				   struct sk_buff_head *skbs,
422 				   void (*fn)(void *data), void *data)
423 {
424 	struct ieee80211_hw *hw = &local->hw;
425 	struct sk_buff *skb;
426 	unsigned long flags;
427 	int queue, i;
428 
429 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
430 	while ((skb = skb_dequeue(skbs))) {
431 		struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
432 
433 		if (WARN_ON(!info->control.vif)) {
434 			ieee80211_free_txskb(&local->hw, skb);
435 			continue;
436 		}
437 
438 		queue = info->hw_queue;
439 
440 		__ieee80211_stop_queue(hw, queue,
441 				IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
442 
443 		__skb_queue_tail(&local->pending[queue], skb);
444 	}
445 
446 	if (fn)
447 		fn(data);
448 
449 	for (i = 0; i < hw->queues; i++)
450 		__ieee80211_wake_queue(hw, i,
451 			IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
452 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
453 }
454 
455 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw,
456 				    enum queue_stop_reason reason)
457 {
458 	struct ieee80211_local *local = hw_to_local(hw);
459 	unsigned long flags;
460 	int i;
461 
462 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
463 
464 	for (i = 0; i < hw->queues; i++)
465 		__ieee80211_stop_queue(hw, i, reason);
466 
467 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
468 }
469 
470 void ieee80211_stop_queues(struct ieee80211_hw *hw)
471 {
472 	ieee80211_stop_queues_by_reason(hw,
473 					IEEE80211_QUEUE_STOP_REASON_DRIVER);
474 }
475 EXPORT_SYMBOL(ieee80211_stop_queues);
476 
477 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue)
478 {
479 	struct ieee80211_local *local = hw_to_local(hw);
480 	unsigned long flags;
481 	int ret;
482 
483 	if (WARN_ON(queue >= hw->queues))
484 		return true;
485 
486 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
487 	ret = !!local->queue_stop_reasons[queue];
488 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
489 	return ret;
490 }
491 EXPORT_SYMBOL(ieee80211_queue_stopped);
492 
493 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw,
494 				     enum queue_stop_reason reason)
495 {
496 	struct ieee80211_local *local = hw_to_local(hw);
497 	unsigned long flags;
498 	int i;
499 
500 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
501 
502 	for (i = 0; i < hw->queues; i++)
503 		__ieee80211_wake_queue(hw, i, reason);
504 
505 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
506 }
507 
508 void ieee80211_wake_queues(struct ieee80211_hw *hw)
509 {
510 	ieee80211_wake_queues_by_reason(hw, IEEE80211_QUEUE_STOP_REASON_DRIVER);
511 }
512 EXPORT_SYMBOL(ieee80211_wake_queues);
513 
514 void ieee80211_iterate_active_interfaces(
515 	struct ieee80211_hw *hw, u32 iter_flags,
516 	void (*iterator)(void *data, u8 *mac,
517 			 struct ieee80211_vif *vif),
518 	void *data)
519 {
520 	struct ieee80211_local *local = hw_to_local(hw);
521 	struct ieee80211_sub_if_data *sdata;
522 
523 	mutex_lock(&local->iflist_mtx);
524 
525 	list_for_each_entry(sdata, &local->interfaces, list) {
526 		switch (sdata->vif.type) {
527 		case NL80211_IFTYPE_MONITOR:
528 		case NL80211_IFTYPE_AP_VLAN:
529 			continue;
530 		default:
531 			break;
532 		}
533 		if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
534 		    !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
535 			continue;
536 		if (ieee80211_sdata_running(sdata))
537 			iterator(data, sdata->vif.addr,
538 				 &sdata->vif);
539 	}
540 
541 	sdata = rcu_dereference_protected(local->monitor_sdata,
542 					  lockdep_is_held(&local->iflist_mtx));
543 	if (sdata &&
544 	    (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL ||
545 	     sdata->flags & IEEE80211_SDATA_IN_DRIVER))
546 		iterator(data, sdata->vif.addr, &sdata->vif);
547 
548 	mutex_unlock(&local->iflist_mtx);
549 }
550 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces);
551 
552 void ieee80211_iterate_active_interfaces_atomic(
553 	struct ieee80211_hw *hw, u32 iter_flags,
554 	void (*iterator)(void *data, u8 *mac,
555 			 struct ieee80211_vif *vif),
556 	void *data)
557 {
558 	struct ieee80211_local *local = hw_to_local(hw);
559 	struct ieee80211_sub_if_data *sdata;
560 
561 	rcu_read_lock();
562 
563 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
564 		switch (sdata->vif.type) {
565 		case NL80211_IFTYPE_MONITOR:
566 		case NL80211_IFTYPE_AP_VLAN:
567 			continue;
568 		default:
569 			break;
570 		}
571 		if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
572 		    !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
573 			continue;
574 		if (ieee80211_sdata_running(sdata))
575 			iterator(data, sdata->vif.addr,
576 				 &sdata->vif);
577 	}
578 
579 	sdata = rcu_dereference(local->monitor_sdata);
580 	if (sdata &&
581 	    (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL ||
582 	     sdata->flags & IEEE80211_SDATA_IN_DRIVER))
583 		iterator(data, sdata->vif.addr, &sdata->vif);
584 
585 	rcu_read_unlock();
586 }
587 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic);
588 
589 /*
590  * Nothing should have been stuffed into the workqueue during
591  * the suspend->resume cycle. If this WARN is seen then there
592  * is a bug with either the driver suspend or something in
593  * mac80211 stuffing into the workqueue which we haven't yet
594  * cleared during mac80211's suspend cycle.
595  */
596 static bool ieee80211_can_queue_work(struct ieee80211_local *local)
597 {
598 	if (WARN(local->suspended && !local->resuming,
599 		 "queueing ieee80211 work while going to suspend\n"))
600 		return false;
601 
602 	return true;
603 }
604 
605 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work)
606 {
607 	struct ieee80211_local *local = hw_to_local(hw);
608 
609 	if (!ieee80211_can_queue_work(local))
610 		return;
611 
612 	queue_work(local->workqueue, work);
613 }
614 EXPORT_SYMBOL(ieee80211_queue_work);
615 
616 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
617 				  struct delayed_work *dwork,
618 				  unsigned long delay)
619 {
620 	struct ieee80211_local *local = hw_to_local(hw);
621 
622 	if (!ieee80211_can_queue_work(local))
623 		return;
624 
625 	queue_delayed_work(local->workqueue, dwork, delay);
626 }
627 EXPORT_SYMBOL(ieee80211_queue_delayed_work);
628 
629 u32 ieee802_11_parse_elems_crc(u8 *start, size_t len,
630 			       struct ieee802_11_elems *elems,
631 			       u64 filter, u32 crc)
632 {
633 	size_t left = len;
634 	u8 *pos = start;
635 	bool calc_crc = filter != 0;
636 	DECLARE_BITMAP(seen_elems, 256);
637 
638 	bitmap_zero(seen_elems, 256);
639 	memset(elems, 0, sizeof(*elems));
640 	elems->ie_start = start;
641 	elems->total_len = len;
642 
643 	while (left >= 2) {
644 		u8 id, elen;
645 		bool elem_parse_failed;
646 
647 		id = *pos++;
648 		elen = *pos++;
649 		left -= 2;
650 
651 		if (elen > left) {
652 			elems->parse_error = true;
653 			break;
654 		}
655 
656 		switch (id) {
657 		case WLAN_EID_SSID:
658 		case WLAN_EID_SUPP_RATES:
659 		case WLAN_EID_FH_PARAMS:
660 		case WLAN_EID_DS_PARAMS:
661 		case WLAN_EID_CF_PARAMS:
662 		case WLAN_EID_TIM:
663 		case WLAN_EID_IBSS_PARAMS:
664 		case WLAN_EID_CHALLENGE:
665 		case WLAN_EID_RSN:
666 		case WLAN_EID_ERP_INFO:
667 		case WLAN_EID_EXT_SUPP_RATES:
668 		case WLAN_EID_HT_CAPABILITY:
669 		case WLAN_EID_HT_OPERATION:
670 		case WLAN_EID_VHT_CAPABILITY:
671 		case WLAN_EID_VHT_OPERATION:
672 		case WLAN_EID_MESH_ID:
673 		case WLAN_EID_MESH_CONFIG:
674 		case WLAN_EID_PEER_MGMT:
675 		case WLAN_EID_PREQ:
676 		case WLAN_EID_PREP:
677 		case WLAN_EID_PERR:
678 		case WLAN_EID_RANN:
679 		case WLAN_EID_CHANNEL_SWITCH:
680 		case WLAN_EID_EXT_CHANSWITCH_ANN:
681 		case WLAN_EID_COUNTRY:
682 		case WLAN_EID_PWR_CONSTRAINT:
683 		case WLAN_EID_TIMEOUT_INTERVAL:
684 			if (test_bit(id, seen_elems)) {
685 				elems->parse_error = true;
686 				left -= elen;
687 				pos += elen;
688 				continue;
689 			}
690 			break;
691 		}
692 
693 		if (calc_crc && id < 64 && (filter & (1ULL << id)))
694 			crc = crc32_be(crc, pos - 2, elen + 2);
695 
696 		elem_parse_failed = false;
697 
698 		switch (id) {
699 		case WLAN_EID_SSID:
700 			elems->ssid = pos;
701 			elems->ssid_len = elen;
702 			break;
703 		case WLAN_EID_SUPP_RATES:
704 			elems->supp_rates = pos;
705 			elems->supp_rates_len = elen;
706 			break;
707 		case WLAN_EID_FH_PARAMS:
708 			elems->fh_params = pos;
709 			elems->fh_params_len = elen;
710 			break;
711 		case WLAN_EID_DS_PARAMS:
712 			elems->ds_params = pos;
713 			elems->ds_params_len = elen;
714 			break;
715 		case WLAN_EID_CF_PARAMS:
716 			elems->cf_params = pos;
717 			elems->cf_params_len = elen;
718 			break;
719 		case WLAN_EID_TIM:
720 			if (elen >= sizeof(struct ieee80211_tim_ie)) {
721 				elems->tim = (void *)pos;
722 				elems->tim_len = elen;
723 			} else
724 				elem_parse_failed = true;
725 			break;
726 		case WLAN_EID_IBSS_PARAMS:
727 			elems->ibss_params = pos;
728 			elems->ibss_params_len = elen;
729 			break;
730 		case WLAN_EID_CHALLENGE:
731 			elems->challenge = pos;
732 			elems->challenge_len = elen;
733 			break;
734 		case WLAN_EID_VENDOR_SPECIFIC:
735 			if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
736 			    pos[2] == 0xf2) {
737 				/* Microsoft OUI (00:50:F2) */
738 
739 				if (calc_crc)
740 					crc = crc32_be(crc, pos - 2, elen + 2);
741 
742 				if (pos[3] == 1) {
743 					/* OUI Type 1 - WPA IE */
744 					elems->wpa = pos;
745 					elems->wpa_len = elen;
746 				} else if (elen >= 5 && pos[3] == 2) {
747 					/* OUI Type 2 - WMM IE */
748 					if (pos[4] == 0) {
749 						elems->wmm_info = pos;
750 						elems->wmm_info_len = elen;
751 					} else if (pos[4] == 1) {
752 						elems->wmm_param = pos;
753 						elems->wmm_param_len = elen;
754 					}
755 				}
756 			}
757 			break;
758 		case WLAN_EID_RSN:
759 			elems->rsn = pos;
760 			elems->rsn_len = elen;
761 			break;
762 		case WLAN_EID_ERP_INFO:
763 			elems->erp_info = pos;
764 			elems->erp_info_len = elen;
765 			break;
766 		case WLAN_EID_EXT_SUPP_RATES:
767 			elems->ext_supp_rates = pos;
768 			elems->ext_supp_rates_len = elen;
769 			break;
770 		case WLAN_EID_HT_CAPABILITY:
771 			if (elen >= sizeof(struct ieee80211_ht_cap))
772 				elems->ht_cap_elem = (void *)pos;
773 			else
774 				elem_parse_failed = true;
775 			break;
776 		case WLAN_EID_HT_OPERATION:
777 			if (elen >= sizeof(struct ieee80211_ht_operation))
778 				elems->ht_operation = (void *)pos;
779 			else
780 				elem_parse_failed = true;
781 			break;
782 		case WLAN_EID_VHT_CAPABILITY:
783 			if (elen >= sizeof(struct ieee80211_vht_cap))
784 				elems->vht_cap_elem = (void *)pos;
785 			else
786 				elem_parse_failed = true;
787 			break;
788 		case WLAN_EID_VHT_OPERATION:
789 			if (elen >= sizeof(struct ieee80211_vht_operation))
790 				elems->vht_operation = (void *)pos;
791 			else
792 				elem_parse_failed = true;
793 			break;
794 		case WLAN_EID_MESH_ID:
795 			elems->mesh_id = pos;
796 			elems->mesh_id_len = elen;
797 			break;
798 		case WLAN_EID_MESH_CONFIG:
799 			if (elen >= sizeof(struct ieee80211_meshconf_ie))
800 				elems->mesh_config = (void *)pos;
801 			else
802 				elem_parse_failed = true;
803 			break;
804 		case WLAN_EID_PEER_MGMT:
805 			elems->peering = pos;
806 			elems->peering_len = elen;
807 			break;
808 		case WLAN_EID_PREQ:
809 			elems->preq = pos;
810 			elems->preq_len = elen;
811 			break;
812 		case WLAN_EID_PREP:
813 			elems->prep = pos;
814 			elems->prep_len = elen;
815 			break;
816 		case WLAN_EID_PERR:
817 			elems->perr = pos;
818 			elems->perr_len = elen;
819 			break;
820 		case WLAN_EID_RANN:
821 			if (elen >= sizeof(struct ieee80211_rann_ie))
822 				elems->rann = (void *)pos;
823 			else
824 				elem_parse_failed = true;
825 			break;
826 		case WLAN_EID_CHANNEL_SWITCH:
827 			if (elen != sizeof(struct ieee80211_channel_sw_ie)) {
828 				elem_parse_failed = true;
829 				break;
830 			}
831 			elems->ch_switch_ie = (void *)pos;
832 			break;
833 		case WLAN_EID_QUIET:
834 			if (!elems->quiet_elem) {
835 				elems->quiet_elem = pos;
836 				elems->quiet_elem_len = elen;
837 			}
838 			elems->num_of_quiet_elem++;
839 			break;
840 		case WLAN_EID_COUNTRY:
841 			elems->country_elem = pos;
842 			elems->country_elem_len = elen;
843 			break;
844 		case WLAN_EID_PWR_CONSTRAINT:
845 			if (elen != 1) {
846 				elem_parse_failed = true;
847 				break;
848 			}
849 			elems->pwr_constr_elem = pos;
850 			break;
851 		case WLAN_EID_TIMEOUT_INTERVAL:
852 			elems->timeout_int = pos;
853 			elems->timeout_int_len = elen;
854 			break;
855 		default:
856 			break;
857 		}
858 
859 		if (elem_parse_failed)
860 			elems->parse_error = true;
861 		else
862 			__set_bit(id, seen_elems);
863 
864 		left -= elen;
865 		pos += elen;
866 	}
867 
868 	if (left != 0)
869 		elems->parse_error = true;
870 
871 	return crc;
872 }
873 
874 void ieee802_11_parse_elems(u8 *start, size_t len,
875 			    struct ieee802_11_elems *elems)
876 {
877 	ieee802_11_parse_elems_crc(start, len, elems, 0, 0);
878 }
879 
880 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata,
881 			       bool bss_notify)
882 {
883 	struct ieee80211_local *local = sdata->local;
884 	struct ieee80211_tx_queue_params qparam;
885 	struct ieee80211_chanctx_conf *chanctx_conf;
886 	int ac;
887 	bool use_11b, enable_qos;
888 	int aCWmin, aCWmax;
889 
890 	if (!local->ops->conf_tx)
891 		return;
892 
893 	if (local->hw.queues < IEEE80211_NUM_ACS)
894 		return;
895 
896 	memset(&qparam, 0, sizeof(qparam));
897 
898 	rcu_read_lock();
899 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
900 	use_11b = (chanctx_conf &&
901 		   chanctx_conf->def.chan->band == IEEE80211_BAND_2GHZ) &&
902 		 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE);
903 	rcu_read_unlock();
904 
905 	/*
906 	 * By default disable QoS in STA mode for old access points, which do
907 	 * not support 802.11e. New APs will provide proper queue parameters,
908 	 * that we will configure later.
909 	 */
910 	enable_qos = (sdata->vif.type != NL80211_IFTYPE_STATION);
911 
912 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
913 		/* Set defaults according to 802.11-2007 Table 7-37 */
914 		aCWmax = 1023;
915 		if (use_11b)
916 			aCWmin = 31;
917 		else
918 			aCWmin = 15;
919 
920 		if (enable_qos) {
921 			switch (ac) {
922 			case IEEE80211_AC_BK:
923 				qparam.cw_max = aCWmax;
924 				qparam.cw_min = aCWmin;
925 				qparam.txop = 0;
926 				qparam.aifs = 7;
927 				break;
928 			/* never happens but let's not leave undefined */
929 			default:
930 			case IEEE80211_AC_BE:
931 				qparam.cw_max = aCWmax;
932 				qparam.cw_min = aCWmin;
933 				qparam.txop = 0;
934 				qparam.aifs = 3;
935 				break;
936 			case IEEE80211_AC_VI:
937 				qparam.cw_max = aCWmin;
938 				qparam.cw_min = (aCWmin + 1) / 2 - 1;
939 				if (use_11b)
940 					qparam.txop = 6016/32;
941 				else
942 					qparam.txop = 3008/32;
943 				qparam.aifs = 2;
944 				break;
945 			case IEEE80211_AC_VO:
946 				qparam.cw_max = (aCWmin + 1) / 2 - 1;
947 				qparam.cw_min = (aCWmin + 1) / 4 - 1;
948 				if (use_11b)
949 					qparam.txop = 3264/32;
950 				else
951 					qparam.txop = 1504/32;
952 				qparam.aifs = 2;
953 				break;
954 			}
955 		} else {
956 			/* Confiure old 802.11b/g medium access rules. */
957 			qparam.cw_max = aCWmax;
958 			qparam.cw_min = aCWmin;
959 			qparam.txop = 0;
960 			qparam.aifs = 2;
961 		}
962 
963 		qparam.uapsd = false;
964 
965 		sdata->tx_conf[ac] = qparam;
966 		drv_conf_tx(local, sdata, ac, &qparam);
967 	}
968 
969 	if (sdata->vif.type != NL80211_IFTYPE_MONITOR &&
970 	    sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE) {
971 		sdata->vif.bss_conf.qos = enable_qos;
972 		if (bss_notify)
973 			ieee80211_bss_info_change_notify(sdata,
974 							 BSS_CHANGED_QOS);
975 	}
976 }
977 
978 void ieee80211_sta_def_wmm_params(struct ieee80211_sub_if_data *sdata,
979 				  const size_t supp_rates_len,
980 				  const u8 *supp_rates)
981 {
982 	struct ieee80211_chanctx_conf *chanctx_conf;
983 	int i, have_higher_than_11mbit = 0;
984 
985 	/* cf. IEEE 802.11 9.2.12 */
986 	for (i = 0; i < supp_rates_len; i++)
987 		if ((supp_rates[i] & 0x7f) * 5 > 110)
988 			have_higher_than_11mbit = 1;
989 
990 	rcu_read_lock();
991 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
992 
993 	if (chanctx_conf &&
994 	    chanctx_conf->def.chan->band == IEEE80211_BAND_2GHZ &&
995 	    have_higher_than_11mbit)
996 		sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
997 	else
998 		sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
999 	rcu_read_unlock();
1000 
1001 	ieee80211_set_wmm_default(sdata, true);
1002 }
1003 
1004 u32 ieee80211_mandatory_rates(struct ieee80211_local *local,
1005 			      enum ieee80211_band band)
1006 {
1007 	struct ieee80211_supported_band *sband;
1008 	struct ieee80211_rate *bitrates;
1009 	u32 mandatory_rates;
1010 	enum ieee80211_rate_flags mandatory_flag;
1011 	int i;
1012 
1013 	sband = local->hw.wiphy->bands[band];
1014 	if (WARN_ON(!sband))
1015 		return 1;
1016 
1017 	if (band == IEEE80211_BAND_2GHZ)
1018 		mandatory_flag = IEEE80211_RATE_MANDATORY_B;
1019 	else
1020 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
1021 
1022 	bitrates = sband->bitrates;
1023 	mandatory_rates = 0;
1024 	for (i = 0; i < sband->n_bitrates; i++)
1025 		if (bitrates[i].flags & mandatory_flag)
1026 			mandatory_rates |= BIT(i);
1027 	return mandatory_rates;
1028 }
1029 
1030 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata,
1031 			 u16 transaction, u16 auth_alg, u16 status,
1032 			 u8 *extra, size_t extra_len, const u8 *da,
1033 			 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx)
1034 {
1035 	struct ieee80211_local *local = sdata->local;
1036 	struct sk_buff *skb;
1037 	struct ieee80211_mgmt *mgmt;
1038 	int err;
1039 
1040 	skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1041 			    sizeof(*mgmt) + 6 + extra_len);
1042 	if (!skb)
1043 		return;
1044 
1045 	skb_reserve(skb, local->hw.extra_tx_headroom);
1046 
1047 	mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
1048 	memset(mgmt, 0, 24 + 6);
1049 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1050 					  IEEE80211_STYPE_AUTH);
1051 	memcpy(mgmt->da, da, ETH_ALEN);
1052 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1053 	memcpy(mgmt->bssid, bssid, ETH_ALEN);
1054 	mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg);
1055 	mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
1056 	mgmt->u.auth.status_code = cpu_to_le16(status);
1057 	if (extra)
1058 		memcpy(skb_put(skb, extra_len), extra, extra_len);
1059 
1060 	if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) {
1061 		mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1062 		err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx);
1063 		WARN_ON(err);
1064 	}
1065 
1066 	IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1067 	ieee80211_tx_skb(sdata, skb);
1068 }
1069 
1070 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata,
1071 				    const u8 *bssid, u16 stype, u16 reason,
1072 				    bool send_frame, u8 *frame_buf)
1073 {
1074 	struct ieee80211_local *local = sdata->local;
1075 	struct sk_buff *skb;
1076 	struct ieee80211_mgmt *mgmt = (void *)frame_buf;
1077 
1078 	/* build frame */
1079 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype);
1080 	mgmt->duration = 0; /* initialize only */
1081 	mgmt->seq_ctrl = 0; /* initialize only */
1082 	memcpy(mgmt->da, bssid, ETH_ALEN);
1083 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1084 	memcpy(mgmt->bssid, bssid, ETH_ALEN);
1085 	/* u.deauth.reason_code == u.disassoc.reason_code */
1086 	mgmt->u.deauth.reason_code = cpu_to_le16(reason);
1087 
1088 	if (send_frame) {
1089 		skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1090 				    IEEE80211_DEAUTH_FRAME_LEN);
1091 		if (!skb)
1092 			return;
1093 
1094 		skb_reserve(skb, local->hw.extra_tx_headroom);
1095 
1096 		/* copy in frame */
1097 		memcpy(skb_put(skb, IEEE80211_DEAUTH_FRAME_LEN),
1098 		       mgmt, IEEE80211_DEAUTH_FRAME_LEN);
1099 
1100 		if (sdata->vif.type != NL80211_IFTYPE_STATION ||
1101 		    !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED))
1102 			IEEE80211_SKB_CB(skb)->flags |=
1103 				IEEE80211_TX_INTFL_DONT_ENCRYPT;
1104 
1105 		ieee80211_tx_skb(sdata, skb);
1106 	}
1107 }
1108 
1109 int ieee80211_build_preq_ies(struct ieee80211_local *local, u8 *buffer,
1110 			     size_t buffer_len, const u8 *ie, size_t ie_len,
1111 			     enum ieee80211_band band, u32 rate_mask,
1112 			     u8 channel)
1113 {
1114 	struct ieee80211_supported_band *sband;
1115 	u8 *pos = buffer, *end = buffer + buffer_len;
1116 	size_t offset = 0, noffset;
1117 	int supp_rates_len, i;
1118 	u8 rates[32];
1119 	int num_rates;
1120 	int ext_rates_len;
1121 
1122 	sband = local->hw.wiphy->bands[band];
1123 	if (WARN_ON_ONCE(!sband))
1124 		return 0;
1125 
1126 	num_rates = 0;
1127 	for (i = 0; i < sband->n_bitrates; i++) {
1128 		if ((BIT(i) & rate_mask) == 0)
1129 			continue; /* skip rate */
1130 		rates[num_rates++] = (u8) (sband->bitrates[i].bitrate / 5);
1131 	}
1132 
1133 	supp_rates_len = min_t(int, num_rates, 8);
1134 
1135 	if (end - pos < 2 + supp_rates_len)
1136 		goto out_err;
1137 	*pos++ = WLAN_EID_SUPP_RATES;
1138 	*pos++ = supp_rates_len;
1139 	memcpy(pos, rates, supp_rates_len);
1140 	pos += supp_rates_len;
1141 
1142 	/* insert "request information" if in custom IEs */
1143 	if (ie && ie_len) {
1144 		static const u8 before_extrates[] = {
1145 			WLAN_EID_SSID,
1146 			WLAN_EID_SUPP_RATES,
1147 			WLAN_EID_REQUEST,
1148 		};
1149 		noffset = ieee80211_ie_split(ie, ie_len,
1150 					     before_extrates,
1151 					     ARRAY_SIZE(before_extrates),
1152 					     offset);
1153 		if (end - pos < noffset - offset)
1154 			goto out_err;
1155 		memcpy(pos, ie + offset, noffset - offset);
1156 		pos += noffset - offset;
1157 		offset = noffset;
1158 	}
1159 
1160 	ext_rates_len = num_rates - supp_rates_len;
1161 	if (ext_rates_len > 0) {
1162 		if (end - pos < 2 + ext_rates_len)
1163 			goto out_err;
1164 		*pos++ = WLAN_EID_EXT_SUPP_RATES;
1165 		*pos++ = ext_rates_len;
1166 		memcpy(pos, rates + supp_rates_len, ext_rates_len);
1167 		pos += ext_rates_len;
1168 	}
1169 
1170 	if (channel && sband->band == IEEE80211_BAND_2GHZ) {
1171 		if (end - pos < 3)
1172 			goto out_err;
1173 		*pos++ = WLAN_EID_DS_PARAMS;
1174 		*pos++ = 1;
1175 		*pos++ = channel;
1176 	}
1177 
1178 	/* insert custom IEs that go before HT */
1179 	if (ie && ie_len) {
1180 		static const u8 before_ht[] = {
1181 			WLAN_EID_SSID,
1182 			WLAN_EID_SUPP_RATES,
1183 			WLAN_EID_REQUEST,
1184 			WLAN_EID_EXT_SUPP_RATES,
1185 			WLAN_EID_DS_PARAMS,
1186 			WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
1187 		};
1188 		noffset = ieee80211_ie_split(ie, ie_len,
1189 					     before_ht, ARRAY_SIZE(before_ht),
1190 					     offset);
1191 		if (end - pos < noffset - offset)
1192 			goto out_err;
1193 		memcpy(pos, ie + offset, noffset - offset);
1194 		pos += noffset - offset;
1195 		offset = noffset;
1196 	}
1197 
1198 	if (sband->ht_cap.ht_supported) {
1199 		if (end - pos < 2 + sizeof(struct ieee80211_ht_cap))
1200 			goto out_err;
1201 		pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap,
1202 						sband->ht_cap.cap);
1203 	}
1204 
1205 	/*
1206 	 * If adding more here, adjust code in main.c
1207 	 * that calculates local->scan_ies_len.
1208 	 */
1209 
1210 	/* add any remaining custom IEs */
1211 	if (ie && ie_len) {
1212 		noffset = ie_len;
1213 		if (end - pos < noffset - offset)
1214 			goto out_err;
1215 		memcpy(pos, ie + offset, noffset - offset);
1216 		pos += noffset - offset;
1217 	}
1218 
1219 	if (sband->vht_cap.vht_supported) {
1220 		if (end - pos < 2 + sizeof(struct ieee80211_vht_cap))
1221 			goto out_err;
1222 		pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap,
1223 						 sband->vht_cap.cap);
1224 	}
1225 
1226 	return pos - buffer;
1227  out_err:
1228 	WARN_ONCE(1, "not enough space for preq IEs\n");
1229 	return pos - buffer;
1230 }
1231 
1232 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata,
1233 					  u8 *dst, u32 ratemask,
1234 					  struct ieee80211_channel *chan,
1235 					  const u8 *ssid, size_t ssid_len,
1236 					  const u8 *ie, size_t ie_len,
1237 					  bool directed)
1238 {
1239 	struct ieee80211_local *local = sdata->local;
1240 	struct sk_buff *skb;
1241 	struct ieee80211_mgmt *mgmt;
1242 	u8 chan_no;
1243 	int ies_len;
1244 
1245 	/*
1246 	 * Do not send DS Channel parameter for directed probe requests
1247 	 * in order to maximize the chance that we get a response.  Some
1248 	 * badly-behaved APs don't respond when this parameter is included.
1249 	 */
1250 	if (directed)
1251 		chan_no = 0;
1252 	else
1253 		chan_no = ieee80211_frequency_to_channel(chan->center_freq);
1254 
1255 	skb = ieee80211_probereq_get(&local->hw, &sdata->vif,
1256 				     ssid, ssid_len, 100 + ie_len);
1257 	if (!skb)
1258 		return NULL;
1259 
1260 	ies_len = ieee80211_build_preq_ies(local, skb_tail_pointer(skb),
1261 					   skb_tailroom(skb),
1262 					   ie, ie_len, chan->band,
1263 					   ratemask, chan_no);
1264 	skb_put(skb, ies_len);
1265 
1266 	if (dst) {
1267 		mgmt = (struct ieee80211_mgmt *) skb->data;
1268 		memcpy(mgmt->da, dst, ETH_ALEN);
1269 		memcpy(mgmt->bssid, dst, ETH_ALEN);
1270 	}
1271 
1272 	IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1273 
1274 	return skb;
1275 }
1276 
1277 void ieee80211_send_probe_req(struct ieee80211_sub_if_data *sdata, u8 *dst,
1278 			      const u8 *ssid, size_t ssid_len,
1279 			      const u8 *ie, size_t ie_len,
1280 			      u32 ratemask, bool directed, bool no_cck,
1281 			      struct ieee80211_channel *channel, bool scan)
1282 {
1283 	struct sk_buff *skb;
1284 
1285 	skb = ieee80211_build_probe_req(sdata, dst, ratemask, channel,
1286 					ssid, ssid_len,
1287 					ie, ie_len, directed);
1288 	if (skb) {
1289 		if (no_cck)
1290 			IEEE80211_SKB_CB(skb)->flags |=
1291 				IEEE80211_TX_CTL_NO_CCK_RATE;
1292 		if (scan)
1293 			ieee80211_tx_skb_tid_band(sdata, skb, 7, channel->band);
1294 		else
1295 			ieee80211_tx_skb(sdata, skb);
1296 	}
1297 }
1298 
1299 u32 ieee80211_sta_get_rates(struct ieee80211_local *local,
1300 			    struct ieee802_11_elems *elems,
1301 			    enum ieee80211_band band, u32 *basic_rates)
1302 {
1303 	struct ieee80211_supported_band *sband;
1304 	struct ieee80211_rate *bitrates;
1305 	size_t num_rates;
1306 	u32 supp_rates;
1307 	int i, j;
1308 	sband = local->hw.wiphy->bands[band];
1309 
1310 	if (WARN_ON(!sband))
1311 		return 1;
1312 
1313 	bitrates = sband->bitrates;
1314 	num_rates = sband->n_bitrates;
1315 	supp_rates = 0;
1316 	for (i = 0; i < elems->supp_rates_len +
1317 		     elems->ext_supp_rates_len; i++) {
1318 		u8 rate = 0;
1319 		int own_rate;
1320 		bool is_basic;
1321 		if (i < elems->supp_rates_len)
1322 			rate = elems->supp_rates[i];
1323 		else if (elems->ext_supp_rates)
1324 			rate = elems->ext_supp_rates
1325 				[i - elems->supp_rates_len];
1326 		own_rate = 5 * (rate & 0x7f);
1327 		is_basic = !!(rate & 0x80);
1328 
1329 		if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY)
1330 			continue;
1331 
1332 		for (j = 0; j < num_rates; j++) {
1333 			if (bitrates[j].bitrate == own_rate) {
1334 				supp_rates |= BIT(j);
1335 				if (basic_rates && is_basic)
1336 					*basic_rates |= BIT(j);
1337 			}
1338 		}
1339 	}
1340 	return supp_rates;
1341 }
1342 
1343 void ieee80211_stop_device(struct ieee80211_local *local)
1344 {
1345 	ieee80211_led_radio(local, false);
1346 	ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO);
1347 
1348 	cancel_work_sync(&local->reconfig_filter);
1349 
1350 	flush_workqueue(local->workqueue);
1351 	drv_stop(local);
1352 }
1353 
1354 int ieee80211_reconfig(struct ieee80211_local *local)
1355 {
1356 	struct ieee80211_hw *hw = &local->hw;
1357 	struct ieee80211_sub_if_data *sdata;
1358 	struct ieee80211_chanctx *ctx;
1359 	struct sta_info *sta;
1360 	int res, i;
1361 
1362 #ifdef CONFIG_PM
1363 	if (local->suspended)
1364 		local->resuming = true;
1365 
1366 	if (local->wowlan) {
1367 		local->wowlan = false;
1368 		res = drv_resume(local);
1369 		if (res < 0) {
1370 			local->resuming = false;
1371 			return res;
1372 		}
1373 		if (res == 0)
1374 			goto wake_up;
1375 		WARN_ON(res > 1);
1376 		/*
1377 		 * res is 1, which means the driver requested
1378 		 * to go through a regular reset on wakeup.
1379 		 */
1380 	}
1381 #endif
1382 	/* everything else happens only if HW was up & running */
1383 	if (!local->open_count)
1384 		goto wake_up;
1385 
1386 	/*
1387 	 * Upon resume hardware can sometimes be goofy due to
1388 	 * various platform / driver / bus issues, so restarting
1389 	 * the device may at times not work immediately. Propagate
1390 	 * the error.
1391 	 */
1392 	res = drv_start(local);
1393 	if (res) {
1394 		WARN(local->suspended, "Hardware became unavailable "
1395 		     "upon resume. This could be a software issue "
1396 		     "prior to suspend or a hardware issue.\n");
1397 		return res;
1398 	}
1399 
1400 	/* setup fragmentation threshold */
1401 	drv_set_frag_threshold(local, hw->wiphy->frag_threshold);
1402 
1403 	/* setup RTS threshold */
1404 	drv_set_rts_threshold(local, hw->wiphy->rts_threshold);
1405 
1406 	/* reset coverage class */
1407 	drv_set_coverage_class(local, hw->wiphy->coverage_class);
1408 
1409 	ieee80211_led_radio(local, true);
1410 	ieee80211_mod_tpt_led_trig(local,
1411 				   IEEE80211_TPT_LEDTRIG_FL_RADIO, 0);
1412 
1413 	/* add interfaces */
1414 	sdata = rtnl_dereference(local->monitor_sdata);
1415 	if (sdata) {
1416 		res = drv_add_interface(local, sdata);
1417 		if (WARN_ON(res)) {
1418 			rcu_assign_pointer(local->monitor_sdata, NULL);
1419 			synchronize_net();
1420 			kfree(sdata);
1421 		}
1422 	}
1423 
1424 	list_for_each_entry(sdata, &local->interfaces, list) {
1425 		if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
1426 		    sdata->vif.type != NL80211_IFTYPE_MONITOR &&
1427 		    ieee80211_sdata_running(sdata))
1428 			res = drv_add_interface(local, sdata);
1429 	}
1430 
1431 	/* add channel contexts */
1432 	if (local->use_chanctx) {
1433 		mutex_lock(&local->chanctx_mtx);
1434 		list_for_each_entry(ctx, &local->chanctx_list, list)
1435 			WARN_ON(drv_add_chanctx(local, ctx));
1436 		mutex_unlock(&local->chanctx_mtx);
1437 	}
1438 
1439 	list_for_each_entry(sdata, &local->interfaces, list) {
1440 		struct ieee80211_chanctx_conf *ctx_conf;
1441 
1442 		if (!ieee80211_sdata_running(sdata))
1443 			continue;
1444 
1445 		mutex_lock(&local->chanctx_mtx);
1446 		ctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
1447 				lockdep_is_held(&local->chanctx_mtx));
1448 		if (ctx_conf) {
1449 			ctx = container_of(ctx_conf, struct ieee80211_chanctx,
1450 					   conf);
1451 			drv_assign_vif_chanctx(local, sdata, ctx);
1452 		}
1453 		mutex_unlock(&local->chanctx_mtx);
1454 	}
1455 
1456 	sdata = rtnl_dereference(local->monitor_sdata);
1457 	if (sdata && local->use_chanctx && ieee80211_sdata_running(sdata)) {
1458 		struct ieee80211_chanctx_conf *ctx_conf;
1459 
1460 		mutex_lock(&local->chanctx_mtx);
1461 		ctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
1462 				lockdep_is_held(&local->chanctx_mtx));
1463 		if (ctx_conf) {
1464 			ctx = container_of(ctx_conf, struct ieee80211_chanctx,
1465 					   conf);
1466 			drv_assign_vif_chanctx(local, sdata, ctx);
1467 		}
1468 		mutex_unlock(&local->chanctx_mtx);
1469 	}
1470 
1471 	/* add STAs back */
1472 	mutex_lock(&local->sta_mtx);
1473 	list_for_each_entry(sta, &local->sta_list, list) {
1474 		enum ieee80211_sta_state state;
1475 
1476 		if (!sta->uploaded)
1477 			continue;
1478 
1479 		/* AP-mode stations will be added later */
1480 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP)
1481 			continue;
1482 
1483 		for (state = IEEE80211_STA_NOTEXIST;
1484 		     state < sta->sta_state; state++)
1485 			WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
1486 					      state + 1));
1487 	}
1488 	mutex_unlock(&local->sta_mtx);
1489 
1490 	/* reconfigure tx conf */
1491 	if (hw->queues >= IEEE80211_NUM_ACS) {
1492 		list_for_each_entry(sdata, &local->interfaces, list) {
1493 			if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
1494 			    sdata->vif.type == NL80211_IFTYPE_MONITOR ||
1495 			    !ieee80211_sdata_running(sdata))
1496 				continue;
1497 
1498 			for (i = 0; i < IEEE80211_NUM_ACS; i++)
1499 				drv_conf_tx(local, sdata, i,
1500 					    &sdata->tx_conf[i]);
1501 		}
1502 	}
1503 
1504 	/* reconfigure hardware */
1505 	ieee80211_hw_config(local, ~0);
1506 
1507 	ieee80211_configure_filter(local);
1508 
1509 	/* Finally also reconfigure all the BSS information */
1510 	list_for_each_entry(sdata, &local->interfaces, list) {
1511 		u32 changed;
1512 
1513 		if (!ieee80211_sdata_running(sdata))
1514 			continue;
1515 
1516 		/* common change flags for all interface types */
1517 		changed = BSS_CHANGED_ERP_CTS_PROT |
1518 			  BSS_CHANGED_ERP_PREAMBLE |
1519 			  BSS_CHANGED_ERP_SLOT |
1520 			  BSS_CHANGED_HT |
1521 			  BSS_CHANGED_BASIC_RATES |
1522 			  BSS_CHANGED_BEACON_INT |
1523 			  BSS_CHANGED_BSSID |
1524 			  BSS_CHANGED_CQM |
1525 			  BSS_CHANGED_QOS |
1526 			  BSS_CHANGED_IDLE |
1527 			  BSS_CHANGED_TXPOWER;
1528 
1529 		switch (sdata->vif.type) {
1530 		case NL80211_IFTYPE_STATION:
1531 			changed |= BSS_CHANGED_ASSOC |
1532 				   BSS_CHANGED_ARP_FILTER |
1533 				   BSS_CHANGED_PS;
1534 			mutex_lock(&sdata->u.mgd.mtx);
1535 			ieee80211_bss_info_change_notify(sdata, changed);
1536 			mutex_unlock(&sdata->u.mgd.mtx);
1537 			break;
1538 		case NL80211_IFTYPE_ADHOC:
1539 			changed |= BSS_CHANGED_IBSS;
1540 			/* fall through */
1541 		case NL80211_IFTYPE_AP:
1542 			changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS;
1543 
1544 			if (sdata->vif.type == NL80211_IFTYPE_AP) {
1545 				changed |= BSS_CHANGED_AP_PROBE_RESP;
1546 
1547 				if (rcu_access_pointer(sdata->u.ap.beacon))
1548 					drv_start_ap(local, sdata);
1549 			}
1550 
1551 			/* fall through */
1552 		case NL80211_IFTYPE_MESH_POINT:
1553 			changed |= BSS_CHANGED_BEACON |
1554 				   BSS_CHANGED_BEACON_ENABLED;
1555 			ieee80211_bss_info_change_notify(sdata, changed);
1556 			break;
1557 		case NL80211_IFTYPE_WDS:
1558 			break;
1559 		case NL80211_IFTYPE_AP_VLAN:
1560 		case NL80211_IFTYPE_MONITOR:
1561 			/* ignore virtual */
1562 			break;
1563 		case NL80211_IFTYPE_P2P_DEVICE:
1564 			changed = BSS_CHANGED_IDLE;
1565 			break;
1566 		case NL80211_IFTYPE_UNSPECIFIED:
1567 		case NUM_NL80211_IFTYPES:
1568 		case NL80211_IFTYPE_P2P_CLIENT:
1569 		case NL80211_IFTYPE_P2P_GO:
1570 			WARN_ON(1);
1571 			break;
1572 		}
1573 	}
1574 
1575 	ieee80211_recalc_ps(local, -1);
1576 
1577 	/*
1578 	 * The sta might be in psm against the ap (e.g. because
1579 	 * this was the state before a hw restart), so we
1580 	 * explicitly send a null packet in order to make sure
1581 	 * it'll sync against the ap (and get out of psm).
1582 	 */
1583 	if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) {
1584 		list_for_each_entry(sdata, &local->interfaces, list) {
1585 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
1586 				continue;
1587 			if (!sdata->u.mgd.associated)
1588 				continue;
1589 
1590 			ieee80211_send_nullfunc(local, sdata, 0);
1591 		}
1592 	}
1593 
1594 	/* APs are now beaconing, add back stations */
1595 	mutex_lock(&local->sta_mtx);
1596 	list_for_each_entry(sta, &local->sta_list, list) {
1597 		enum ieee80211_sta_state state;
1598 
1599 		if (!sta->uploaded)
1600 			continue;
1601 
1602 		if (sta->sdata->vif.type != NL80211_IFTYPE_AP)
1603 			continue;
1604 
1605 		for (state = IEEE80211_STA_NOTEXIST;
1606 		     state < sta->sta_state; state++)
1607 			WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
1608 					      state + 1));
1609 	}
1610 	mutex_unlock(&local->sta_mtx);
1611 
1612 	/* add back keys */
1613 	list_for_each_entry(sdata, &local->interfaces, list)
1614 		if (ieee80211_sdata_running(sdata))
1615 			ieee80211_enable_keys(sdata);
1616 
1617  wake_up:
1618 	local->in_reconfig = false;
1619 	barrier();
1620 
1621 	/*
1622 	 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation
1623 	 * sessions can be established after a resume.
1624 	 *
1625 	 * Also tear down aggregation sessions since reconfiguring
1626 	 * them in a hardware restart scenario is not easily done
1627 	 * right now, and the hardware will have lost information
1628 	 * about the sessions, but we and the AP still think they
1629 	 * are active. This is really a workaround though.
1630 	 */
1631 	if (hw->flags & IEEE80211_HW_AMPDU_AGGREGATION) {
1632 		mutex_lock(&local->sta_mtx);
1633 
1634 		list_for_each_entry(sta, &local->sta_list, list) {
1635 			ieee80211_sta_tear_down_BA_sessions(sta, true);
1636 			clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
1637 		}
1638 
1639 		mutex_unlock(&local->sta_mtx);
1640 	}
1641 
1642 	ieee80211_wake_queues_by_reason(hw,
1643 			IEEE80211_QUEUE_STOP_REASON_SUSPEND);
1644 
1645 	/*
1646 	 * If this is for hw restart things are still running.
1647 	 * We may want to change that later, however.
1648 	 */
1649 	if (!local->suspended) {
1650 		drv_restart_complete(local);
1651 		return 0;
1652 	}
1653 
1654 #ifdef CONFIG_PM
1655 	/* first set suspended false, then resuming */
1656 	local->suspended = false;
1657 	mb();
1658 	local->resuming = false;
1659 
1660 	list_for_each_entry(sdata, &local->interfaces, list) {
1661 		switch(sdata->vif.type) {
1662 		case NL80211_IFTYPE_STATION:
1663 			ieee80211_sta_restart(sdata);
1664 			break;
1665 		case NL80211_IFTYPE_ADHOC:
1666 			ieee80211_ibss_restart(sdata);
1667 			break;
1668 		case NL80211_IFTYPE_MESH_POINT:
1669 			ieee80211_mesh_restart(sdata);
1670 			break;
1671 		default:
1672 			break;
1673 		}
1674 	}
1675 
1676 	mod_timer(&local->sta_cleanup, jiffies + 1);
1677 
1678 	mutex_lock(&local->sta_mtx);
1679 	list_for_each_entry(sta, &local->sta_list, list)
1680 		mesh_plink_restart(sta);
1681 	mutex_unlock(&local->sta_mtx);
1682 #else
1683 	WARN_ON(1);
1684 #endif
1685 	return 0;
1686 }
1687 
1688 void ieee80211_resume_disconnect(struct ieee80211_vif *vif)
1689 {
1690 	struct ieee80211_sub_if_data *sdata;
1691 	struct ieee80211_local *local;
1692 	struct ieee80211_key *key;
1693 
1694 	if (WARN_ON(!vif))
1695 		return;
1696 
1697 	sdata = vif_to_sdata(vif);
1698 	local = sdata->local;
1699 
1700 	if (WARN_ON(!local->resuming))
1701 		return;
1702 
1703 	if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1704 		return;
1705 
1706 	sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME;
1707 
1708 	mutex_lock(&local->key_mtx);
1709 	list_for_each_entry(key, &sdata->key_list, list)
1710 		key->flags |= KEY_FLAG_TAINTED;
1711 	mutex_unlock(&local->key_mtx);
1712 }
1713 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect);
1714 
1715 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata)
1716 {
1717 	struct ieee80211_local *local = sdata->local;
1718 	struct ieee80211_chanctx_conf *chanctx_conf;
1719 	struct ieee80211_chanctx *chanctx;
1720 
1721 	mutex_lock(&local->chanctx_mtx);
1722 
1723 	chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
1724 					lockdep_is_held(&local->chanctx_mtx));
1725 
1726 	if (WARN_ON_ONCE(!chanctx_conf))
1727 		goto unlock;
1728 
1729 	chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf);
1730 	ieee80211_recalc_smps_chanctx(local, chanctx);
1731  unlock:
1732 	mutex_unlock(&local->chanctx_mtx);
1733 }
1734 
1735 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1736 {
1737 	int i;
1738 
1739 	for (i = 0; i < n_ids; i++)
1740 		if (ids[i] == id)
1741 			return true;
1742 	return false;
1743 }
1744 
1745 /**
1746  * ieee80211_ie_split - split an IE buffer according to ordering
1747  *
1748  * @ies: the IE buffer
1749  * @ielen: the length of the IE buffer
1750  * @ids: an array with element IDs that are allowed before
1751  *	the split
1752  * @n_ids: the size of the element ID array
1753  * @offset: offset where to start splitting in the buffer
1754  *
1755  * This function splits an IE buffer by updating the @offset
1756  * variable to point to the location where the buffer should be
1757  * split.
1758  *
1759  * It assumes that the given IE buffer is well-formed, this
1760  * has to be guaranteed by the caller!
1761  *
1762  * It also assumes that the IEs in the buffer are ordered
1763  * correctly, if not the result of using this function will not
1764  * be ordered correctly either, i.e. it does no reordering.
1765  *
1766  * The function returns the offset where the next part of the
1767  * buffer starts, which may be @ielen if the entire (remainder)
1768  * of the buffer should be used.
1769  */
1770 size_t ieee80211_ie_split(const u8 *ies, size_t ielen,
1771 			  const u8 *ids, int n_ids, size_t offset)
1772 {
1773 	size_t pos = offset;
1774 
1775 	while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos]))
1776 		pos += 2 + ies[pos + 1];
1777 
1778 	return pos;
1779 }
1780 
1781 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset)
1782 {
1783 	size_t pos = offset;
1784 
1785 	while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC)
1786 		pos += 2 + ies[pos + 1];
1787 
1788 	return pos;
1789 }
1790 
1791 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata,
1792 					    int rssi_min_thold,
1793 					    int rssi_max_thold)
1794 {
1795 	trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold);
1796 
1797 	if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
1798 		return;
1799 
1800 	/*
1801 	 * Scale up threshold values before storing it, as the RSSI averaging
1802 	 * algorithm uses a scaled up value as well. Change this scaling
1803 	 * factor if the RSSI averaging algorithm changes.
1804 	 */
1805 	sdata->u.mgd.rssi_min_thold = rssi_min_thold*16;
1806 	sdata->u.mgd.rssi_max_thold = rssi_max_thold*16;
1807 }
1808 
1809 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif,
1810 				    int rssi_min_thold,
1811 				    int rssi_max_thold)
1812 {
1813 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1814 
1815 	WARN_ON(rssi_min_thold == rssi_max_thold ||
1816 		rssi_min_thold > rssi_max_thold);
1817 
1818 	_ieee80211_enable_rssi_reports(sdata, rssi_min_thold,
1819 				       rssi_max_thold);
1820 }
1821 EXPORT_SYMBOL(ieee80211_enable_rssi_reports);
1822 
1823 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif)
1824 {
1825 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1826 
1827 	_ieee80211_enable_rssi_reports(sdata, 0, 0);
1828 }
1829 EXPORT_SYMBOL(ieee80211_disable_rssi_reports);
1830 
1831 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
1832 			      u16 cap)
1833 {
1834 	__le16 tmp;
1835 
1836 	*pos++ = WLAN_EID_HT_CAPABILITY;
1837 	*pos++ = sizeof(struct ieee80211_ht_cap);
1838 	memset(pos, 0, sizeof(struct ieee80211_ht_cap));
1839 
1840 	/* capability flags */
1841 	tmp = cpu_to_le16(cap);
1842 	memcpy(pos, &tmp, sizeof(u16));
1843 	pos += sizeof(u16);
1844 
1845 	/* AMPDU parameters */
1846 	*pos++ = ht_cap->ampdu_factor |
1847 		 (ht_cap->ampdu_density <<
1848 			IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT);
1849 
1850 	/* MCS set */
1851 	memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs));
1852 	pos += sizeof(ht_cap->mcs);
1853 
1854 	/* extended capabilities */
1855 	pos += sizeof(__le16);
1856 
1857 	/* BF capabilities */
1858 	pos += sizeof(__le32);
1859 
1860 	/* antenna selection */
1861 	pos += sizeof(u8);
1862 
1863 	return pos;
1864 }
1865 
1866 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
1867 							   u32 cap)
1868 {
1869 	__le32 tmp;
1870 
1871 	*pos++ = WLAN_EID_VHT_CAPABILITY;
1872 	*pos++ = sizeof(struct ieee80211_vht_cap);
1873 	memset(pos, 0, sizeof(struct ieee80211_vht_cap));
1874 
1875 	/* capability flags */
1876 	tmp = cpu_to_le32(cap);
1877 	memcpy(pos, &tmp, sizeof(u32));
1878 	pos += sizeof(u32);
1879 
1880 	/* VHT MCS set */
1881 	memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs));
1882 	pos += sizeof(vht_cap->vht_mcs);
1883 
1884 	return pos;
1885 }
1886 
1887 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
1888 			       const struct cfg80211_chan_def *chandef,
1889 			       u16 prot_mode)
1890 {
1891 	struct ieee80211_ht_operation *ht_oper;
1892 	/* Build HT Information */
1893 	*pos++ = WLAN_EID_HT_OPERATION;
1894 	*pos++ = sizeof(struct ieee80211_ht_operation);
1895 	ht_oper = (struct ieee80211_ht_operation *)pos;
1896 	ht_oper->primary_chan = ieee80211_frequency_to_channel(
1897 					chandef->chan->center_freq);
1898 	switch (chandef->width) {
1899 	case NL80211_CHAN_WIDTH_160:
1900 	case NL80211_CHAN_WIDTH_80P80:
1901 	case NL80211_CHAN_WIDTH_80:
1902 	case NL80211_CHAN_WIDTH_40:
1903 		if (chandef->center_freq1 > chandef->chan->center_freq)
1904 			ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
1905 		else
1906 			ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
1907 		break;
1908 	default:
1909 		ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE;
1910 		break;
1911 	}
1912 	if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 &&
1913 	    chandef->width != NL80211_CHAN_WIDTH_20_NOHT &&
1914 	    chandef->width != NL80211_CHAN_WIDTH_20)
1915 		ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY;
1916 
1917 	ht_oper->operation_mode = cpu_to_le16(prot_mode);
1918 	ht_oper->stbc_param = 0x0000;
1919 
1920 	/* It seems that Basic MCS set and Supported MCS set
1921 	   are identical for the first 10 bytes */
1922 	memset(&ht_oper->basic_set, 0, 16);
1923 	memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10);
1924 
1925 	return pos + sizeof(struct ieee80211_ht_operation);
1926 }
1927 
1928 void ieee80211_ht_oper_to_chandef(struct ieee80211_channel *control_chan,
1929 				  struct ieee80211_ht_operation *ht_oper,
1930 				  struct cfg80211_chan_def *chandef)
1931 {
1932 	enum nl80211_channel_type channel_type;
1933 
1934 	if (!ht_oper) {
1935 		cfg80211_chandef_create(chandef, control_chan,
1936 					NL80211_CHAN_NO_HT);
1937 		return;
1938 	}
1939 
1940 	switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) {
1941 	case IEEE80211_HT_PARAM_CHA_SEC_NONE:
1942 		channel_type = NL80211_CHAN_HT20;
1943 		break;
1944 	case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
1945 		channel_type = NL80211_CHAN_HT40PLUS;
1946 		break;
1947 	case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
1948 		channel_type = NL80211_CHAN_HT40MINUS;
1949 		break;
1950 	default:
1951 		channel_type = NL80211_CHAN_NO_HT;
1952 	}
1953 
1954 	cfg80211_chandef_create(chandef, control_chan, channel_type);
1955 }
1956 
1957 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata,
1958 			    struct sk_buff *skb, bool need_basic,
1959 			    enum ieee80211_band band)
1960 {
1961 	struct ieee80211_local *local = sdata->local;
1962 	struct ieee80211_supported_band *sband;
1963 	int rate;
1964 	u8 i, rates, *pos;
1965 	u32 basic_rates = sdata->vif.bss_conf.basic_rates;
1966 
1967 	sband = local->hw.wiphy->bands[band];
1968 	rates = sband->n_bitrates;
1969 	if (rates > 8)
1970 		rates = 8;
1971 
1972 	if (skb_tailroom(skb) < rates + 2)
1973 		return -ENOMEM;
1974 
1975 	pos = skb_put(skb, rates + 2);
1976 	*pos++ = WLAN_EID_SUPP_RATES;
1977 	*pos++ = rates;
1978 	for (i = 0; i < rates; i++) {
1979 		u8 basic = 0;
1980 		if (need_basic && basic_rates & BIT(i))
1981 			basic = 0x80;
1982 		rate = sband->bitrates[i].bitrate;
1983 		*pos++ = basic | (u8) (rate / 5);
1984 	}
1985 
1986 	return 0;
1987 }
1988 
1989 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata,
1990 				struct sk_buff *skb, bool need_basic,
1991 				enum ieee80211_band band)
1992 {
1993 	struct ieee80211_local *local = sdata->local;
1994 	struct ieee80211_supported_band *sband;
1995 	int rate;
1996 	u8 i, exrates, *pos;
1997 	u32 basic_rates = sdata->vif.bss_conf.basic_rates;
1998 
1999 	sband = local->hw.wiphy->bands[band];
2000 	exrates = sband->n_bitrates;
2001 	if (exrates > 8)
2002 		exrates -= 8;
2003 	else
2004 		exrates = 0;
2005 
2006 	if (skb_tailroom(skb) < exrates + 2)
2007 		return -ENOMEM;
2008 
2009 	if (exrates) {
2010 		pos = skb_put(skb, exrates + 2);
2011 		*pos++ = WLAN_EID_EXT_SUPP_RATES;
2012 		*pos++ = exrates;
2013 		for (i = 8; i < sband->n_bitrates; i++) {
2014 			u8 basic = 0;
2015 			if (need_basic && basic_rates & BIT(i))
2016 				basic = 0x80;
2017 			rate = sband->bitrates[i].bitrate;
2018 			*pos++ = basic | (u8) (rate / 5);
2019 		}
2020 	}
2021 	return 0;
2022 }
2023 
2024 int ieee80211_ave_rssi(struct ieee80211_vif *vif)
2025 {
2026 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
2027 	struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
2028 
2029 	if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) {
2030 		/* non-managed type inferfaces */
2031 		return 0;
2032 	}
2033 	return ifmgd->ave_beacon_signal;
2034 }
2035 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi);
2036 
2037 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs)
2038 {
2039 	if (!mcs)
2040 		return 1;
2041 
2042 	/* TODO: consider rx_highest */
2043 
2044 	if (mcs->rx_mask[3])
2045 		return 4;
2046 	if (mcs->rx_mask[2])
2047 		return 3;
2048 	if (mcs->rx_mask[1])
2049 		return 2;
2050 	return 1;
2051 }
2052 
2053 /**
2054  * ieee80211_calculate_rx_timestamp - calculate timestamp in frame
2055  * @local: mac80211 hw info struct
2056  * @status: RX status
2057  * @mpdu_len: total MPDU length (including FCS)
2058  * @mpdu_offset: offset into MPDU to calculate timestamp at
2059  *
2060  * This function calculates the RX timestamp at the given MPDU offset, taking
2061  * into account what the RX timestamp was. An offset of 0 will just normalize
2062  * the timestamp to TSF at beginning of MPDU reception.
2063  */
2064 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local,
2065 				     struct ieee80211_rx_status *status,
2066 				     unsigned int mpdu_len,
2067 				     unsigned int mpdu_offset)
2068 {
2069 	u64 ts = status->mactime;
2070 	struct rate_info ri;
2071 	u16 rate;
2072 
2073 	if (WARN_ON(!ieee80211_have_rx_timestamp(status)))
2074 		return 0;
2075 
2076 	memset(&ri, 0, sizeof(ri));
2077 
2078 	/* Fill cfg80211 rate info */
2079 	if (status->flag & RX_FLAG_HT) {
2080 		ri.mcs = status->rate_idx;
2081 		ri.flags |= RATE_INFO_FLAGS_MCS;
2082 		if (status->flag & RX_FLAG_40MHZ)
2083 			ri.flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH;
2084 		if (status->flag & RX_FLAG_SHORT_GI)
2085 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
2086 	} else if (status->flag & RX_FLAG_VHT) {
2087 		ri.flags |= RATE_INFO_FLAGS_VHT_MCS;
2088 		ri.mcs = status->rate_idx;
2089 		ri.nss = status->vht_nss;
2090 		if (status->flag & RX_FLAG_40MHZ)
2091 			ri.flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH;
2092 		if (status->flag & RX_FLAG_80MHZ)
2093 			ri.flags |= RATE_INFO_FLAGS_80_MHZ_WIDTH;
2094 		if (status->flag & RX_FLAG_80P80MHZ)
2095 			ri.flags |= RATE_INFO_FLAGS_80P80_MHZ_WIDTH;
2096 		if (status->flag & RX_FLAG_160MHZ)
2097 			ri.flags |= RATE_INFO_FLAGS_160_MHZ_WIDTH;
2098 		if (status->flag & RX_FLAG_SHORT_GI)
2099 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
2100 	} else {
2101 		struct ieee80211_supported_band *sband;
2102 
2103 		sband = local->hw.wiphy->bands[status->band];
2104 		ri.legacy = sband->bitrates[status->rate_idx].bitrate;
2105 	}
2106 
2107 	rate = cfg80211_calculate_bitrate(&ri);
2108 
2109 	/* rewind from end of MPDU */
2110 	if (status->flag & RX_FLAG_MACTIME_END)
2111 		ts -= mpdu_len * 8 * 10 / rate;
2112 
2113 	ts += mpdu_offset * 8 * 10 / rate;
2114 
2115 	return ts;
2116 }
2117