1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2021 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 28 #include "ieee80211_i.h" 29 #include "driver-ops.h" 30 #include "rate.h" 31 #include "mesh.h" 32 #include "wme.h" 33 #include "led.h" 34 #include "wep.h" 35 36 /* privid for wiphys to determine whether they belong to us or not */ 37 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 38 39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 40 { 41 struct ieee80211_local *local; 42 43 local = wiphy_priv(wiphy); 44 return &local->hw; 45 } 46 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 47 48 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 49 enum nl80211_iftype type) 50 { 51 __le16 fc = hdr->frame_control; 52 53 if (ieee80211_is_data(fc)) { 54 if (len < 24) /* drop incorrect hdr len (data) */ 55 return NULL; 56 57 if (ieee80211_has_a4(fc)) 58 return NULL; 59 if (ieee80211_has_tods(fc)) 60 return hdr->addr1; 61 if (ieee80211_has_fromds(fc)) 62 return hdr->addr2; 63 64 return hdr->addr3; 65 } 66 67 if (ieee80211_is_s1g_beacon(fc)) { 68 struct ieee80211_ext *ext = (void *) hdr; 69 70 return ext->u.s1g_beacon.sa; 71 } 72 73 if (ieee80211_is_mgmt(fc)) { 74 if (len < 24) /* drop incorrect hdr len (mgmt) */ 75 return NULL; 76 return hdr->addr3; 77 } 78 79 if (ieee80211_is_ctl(fc)) { 80 if (ieee80211_is_pspoll(fc)) 81 return hdr->addr1; 82 83 if (ieee80211_is_back_req(fc)) { 84 switch (type) { 85 case NL80211_IFTYPE_STATION: 86 return hdr->addr2; 87 case NL80211_IFTYPE_AP: 88 case NL80211_IFTYPE_AP_VLAN: 89 return hdr->addr1; 90 default: 91 break; /* fall through to the return */ 92 } 93 } 94 } 95 96 return NULL; 97 } 98 EXPORT_SYMBOL(ieee80211_get_bssid); 99 100 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 101 { 102 struct sk_buff *skb; 103 struct ieee80211_hdr *hdr; 104 105 skb_queue_walk(&tx->skbs, skb) { 106 hdr = (struct ieee80211_hdr *) skb->data; 107 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 108 } 109 } 110 111 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 112 int rate, int erp, int short_preamble, 113 int shift) 114 { 115 int dur; 116 117 /* calculate duration (in microseconds, rounded up to next higher 118 * integer if it includes a fractional microsecond) to send frame of 119 * len bytes (does not include FCS) at the given rate. Duration will 120 * also include SIFS. 121 * 122 * rate is in 100 kbps, so divident is multiplied by 10 in the 123 * DIV_ROUND_UP() operations. 124 * 125 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and 126 * is assumed to be 0 otherwise. 127 */ 128 129 if (band == NL80211_BAND_5GHZ || erp) { 130 /* 131 * OFDM: 132 * 133 * N_DBPS = DATARATE x 4 134 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 135 * (16 = SIGNAL time, 6 = tail bits) 136 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 137 * 138 * T_SYM = 4 usec 139 * 802.11a - 18.5.2: aSIFSTime = 16 usec 140 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 141 * signal ext = 6 usec 142 */ 143 dur = 16; /* SIFS + signal ext */ 144 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 145 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 146 147 /* IEEE 802.11-2012 18.3.2.4: all values above are: 148 * * times 4 for 5 MHz 149 * * times 2 for 10 MHz 150 */ 151 dur *= 1 << shift; 152 153 /* rates should already consider the channel bandwidth, 154 * don't apply divisor again. 155 */ 156 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 157 4 * rate); /* T_SYM x N_SYM */ 158 } else { 159 /* 160 * 802.11b or 802.11g with 802.11b compatibility: 161 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 162 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 163 * 164 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 165 * aSIFSTime = 10 usec 166 * aPreambleLength = 144 usec or 72 usec with short preamble 167 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 168 */ 169 dur = 10; /* aSIFSTime = 10 usec */ 170 dur += short_preamble ? (72 + 24) : (144 + 48); 171 172 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 173 } 174 175 return dur; 176 } 177 178 /* Exported duration function for driver use */ 179 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 180 struct ieee80211_vif *vif, 181 enum nl80211_band band, 182 size_t frame_len, 183 struct ieee80211_rate *rate) 184 { 185 struct ieee80211_sub_if_data *sdata; 186 u16 dur; 187 int erp, shift = 0; 188 bool short_preamble = false; 189 190 erp = 0; 191 if (vif) { 192 sdata = vif_to_sdata(vif); 193 short_preamble = sdata->vif.bss_conf.use_short_preamble; 194 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 195 erp = rate->flags & IEEE80211_RATE_ERP_G; 196 shift = ieee80211_vif_get_shift(vif); 197 } 198 199 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 200 short_preamble, shift); 201 202 return cpu_to_le16(dur); 203 } 204 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 205 206 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 207 struct ieee80211_vif *vif, size_t frame_len, 208 const struct ieee80211_tx_info *frame_txctl) 209 { 210 struct ieee80211_local *local = hw_to_local(hw); 211 struct ieee80211_rate *rate; 212 struct ieee80211_sub_if_data *sdata; 213 bool short_preamble; 214 int erp, shift = 0, bitrate; 215 u16 dur; 216 struct ieee80211_supported_band *sband; 217 218 sband = local->hw.wiphy->bands[frame_txctl->band]; 219 220 short_preamble = false; 221 222 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 223 224 erp = 0; 225 if (vif) { 226 sdata = vif_to_sdata(vif); 227 short_preamble = sdata->vif.bss_conf.use_short_preamble; 228 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 229 erp = rate->flags & IEEE80211_RATE_ERP_G; 230 shift = ieee80211_vif_get_shift(vif); 231 } 232 233 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 234 235 /* CTS duration */ 236 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 237 erp, short_preamble, shift); 238 /* Data frame duration */ 239 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 240 erp, short_preamble, shift); 241 /* ACK duration */ 242 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 243 erp, short_preamble, shift); 244 245 return cpu_to_le16(dur); 246 } 247 EXPORT_SYMBOL(ieee80211_rts_duration); 248 249 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 250 struct ieee80211_vif *vif, 251 size_t frame_len, 252 const struct ieee80211_tx_info *frame_txctl) 253 { 254 struct ieee80211_local *local = hw_to_local(hw); 255 struct ieee80211_rate *rate; 256 struct ieee80211_sub_if_data *sdata; 257 bool short_preamble; 258 int erp, shift = 0, bitrate; 259 u16 dur; 260 struct ieee80211_supported_band *sband; 261 262 sband = local->hw.wiphy->bands[frame_txctl->band]; 263 264 short_preamble = false; 265 266 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 267 erp = 0; 268 if (vif) { 269 sdata = vif_to_sdata(vif); 270 short_preamble = sdata->vif.bss_conf.use_short_preamble; 271 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 272 erp = rate->flags & IEEE80211_RATE_ERP_G; 273 shift = ieee80211_vif_get_shift(vif); 274 } 275 276 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 277 278 /* Data frame duration */ 279 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 280 erp, short_preamble, shift); 281 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 282 /* ACK duration */ 283 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 284 erp, short_preamble, shift); 285 } 286 287 return cpu_to_le16(dur); 288 } 289 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 290 291 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 292 { 293 struct ieee80211_local *local = sdata->local; 294 struct ieee80211_vif *vif = &sdata->vif; 295 struct fq *fq = &local->fq; 296 struct ps_data *ps = NULL; 297 struct txq_info *txqi; 298 struct sta_info *sta; 299 int i; 300 301 local_bh_disable(); 302 spin_lock(&fq->lock); 303 304 if (sdata->vif.type == NL80211_IFTYPE_AP) 305 ps = &sdata->bss->ps; 306 307 sdata->vif.txqs_stopped[ac] = false; 308 309 list_for_each_entry_rcu(sta, &local->sta_list, list) { 310 if (sdata != sta->sdata) 311 continue; 312 313 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 314 struct ieee80211_txq *txq = sta->sta.txq[i]; 315 316 if (!txq) 317 continue; 318 319 txqi = to_txq_info(txq); 320 321 if (ac != txq->ac) 322 continue; 323 324 if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, 325 &txqi->flags)) 326 continue; 327 328 spin_unlock(&fq->lock); 329 drv_wake_tx_queue(local, txqi); 330 spin_lock(&fq->lock); 331 } 332 } 333 334 if (!vif->txq) 335 goto out; 336 337 txqi = to_txq_info(vif->txq); 338 339 if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, &txqi->flags) || 340 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 341 goto out; 342 343 spin_unlock(&fq->lock); 344 345 drv_wake_tx_queue(local, txqi); 346 local_bh_enable(); 347 return; 348 out: 349 spin_unlock(&fq->lock); 350 local_bh_enable(); 351 } 352 353 static void 354 __releases(&local->queue_stop_reason_lock) 355 __acquires(&local->queue_stop_reason_lock) 356 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 357 { 358 struct ieee80211_sub_if_data *sdata; 359 int n_acs = IEEE80211_NUM_ACS; 360 int i; 361 362 rcu_read_lock(); 363 364 if (local->hw.queues < IEEE80211_NUM_ACS) 365 n_acs = 1; 366 367 for (i = 0; i < local->hw.queues; i++) { 368 if (local->queue_stop_reasons[i]) 369 continue; 370 371 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 372 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 373 int ac; 374 375 for (ac = 0; ac < n_acs; ac++) { 376 int ac_queue = sdata->vif.hw_queue[ac]; 377 378 if (ac_queue == i || 379 sdata->vif.cab_queue == i) 380 __ieee80211_wake_txqs(sdata, ac); 381 } 382 } 383 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 384 } 385 386 rcu_read_unlock(); 387 } 388 389 void ieee80211_wake_txqs(struct tasklet_struct *t) 390 { 391 struct ieee80211_local *local = from_tasklet(local, t, 392 wake_txqs_tasklet); 393 unsigned long flags; 394 395 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 396 _ieee80211_wake_txqs(local, &flags); 397 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 398 } 399 400 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue) 401 { 402 struct ieee80211_sub_if_data *sdata; 403 int n_acs = IEEE80211_NUM_ACS; 404 405 if (local->ops->wake_tx_queue) 406 return; 407 408 if (local->hw.queues < IEEE80211_NUM_ACS) 409 n_acs = 1; 410 411 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 412 int ac; 413 414 if (!sdata->dev) 415 continue; 416 417 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE && 418 local->queue_stop_reasons[sdata->vif.cab_queue] != 0) 419 continue; 420 421 for (ac = 0; ac < n_acs; ac++) { 422 int ac_queue = sdata->vif.hw_queue[ac]; 423 424 if (ac_queue == queue || 425 (sdata->vif.cab_queue == queue && 426 local->queue_stop_reasons[ac_queue] == 0 && 427 skb_queue_empty(&local->pending[ac_queue]))) 428 netif_wake_subqueue(sdata->dev, ac); 429 } 430 } 431 } 432 433 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 434 enum queue_stop_reason reason, 435 bool refcounted, 436 unsigned long *flags) 437 { 438 struct ieee80211_local *local = hw_to_local(hw); 439 440 trace_wake_queue(local, queue, reason); 441 442 if (WARN_ON(queue >= hw->queues)) 443 return; 444 445 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 446 return; 447 448 if (!refcounted) { 449 local->q_stop_reasons[queue][reason] = 0; 450 } else { 451 local->q_stop_reasons[queue][reason]--; 452 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 453 local->q_stop_reasons[queue][reason] = 0; 454 } 455 456 if (local->q_stop_reasons[queue][reason] == 0) 457 __clear_bit(reason, &local->queue_stop_reasons[queue]); 458 459 if (local->queue_stop_reasons[queue] != 0) 460 /* someone still has this queue stopped */ 461 return; 462 463 if (skb_queue_empty(&local->pending[queue])) { 464 rcu_read_lock(); 465 ieee80211_propagate_queue_wake(local, queue); 466 rcu_read_unlock(); 467 } else 468 tasklet_schedule(&local->tx_pending_tasklet); 469 470 /* 471 * Calling _ieee80211_wake_txqs here can be a problem because it may 472 * release queue_stop_reason_lock which has been taken by 473 * __ieee80211_wake_queue's caller. It is certainly not very nice to 474 * release someone's lock, but it is fine because all the callers of 475 * __ieee80211_wake_queue call it right before releasing the lock. 476 */ 477 if (local->ops->wake_tx_queue) { 478 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 479 tasklet_schedule(&local->wake_txqs_tasklet); 480 else 481 _ieee80211_wake_txqs(local, flags); 482 } 483 } 484 485 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 486 enum queue_stop_reason reason, 487 bool refcounted) 488 { 489 struct ieee80211_local *local = hw_to_local(hw); 490 unsigned long flags; 491 492 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 493 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 494 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 495 } 496 497 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 498 { 499 ieee80211_wake_queue_by_reason(hw, queue, 500 IEEE80211_QUEUE_STOP_REASON_DRIVER, 501 false); 502 } 503 EXPORT_SYMBOL(ieee80211_wake_queue); 504 505 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 506 enum queue_stop_reason reason, 507 bool refcounted) 508 { 509 struct ieee80211_local *local = hw_to_local(hw); 510 struct ieee80211_sub_if_data *sdata; 511 int n_acs = IEEE80211_NUM_ACS; 512 513 trace_stop_queue(local, queue, reason); 514 515 if (WARN_ON(queue >= hw->queues)) 516 return; 517 518 if (!refcounted) 519 local->q_stop_reasons[queue][reason] = 1; 520 else 521 local->q_stop_reasons[queue][reason]++; 522 523 if (__test_and_set_bit(reason, &local->queue_stop_reasons[queue])) 524 return; 525 526 if (local->hw.queues < IEEE80211_NUM_ACS) 527 n_acs = 1; 528 529 rcu_read_lock(); 530 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 531 int ac; 532 533 if (!sdata->dev) 534 continue; 535 536 for (ac = 0; ac < n_acs; ac++) { 537 if (sdata->vif.hw_queue[ac] == queue || 538 sdata->vif.cab_queue == queue) { 539 if (!local->ops->wake_tx_queue) { 540 netif_stop_subqueue(sdata->dev, ac); 541 continue; 542 } 543 spin_lock(&local->fq.lock); 544 sdata->vif.txqs_stopped[ac] = true; 545 spin_unlock(&local->fq.lock); 546 } 547 } 548 } 549 rcu_read_unlock(); 550 } 551 552 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 553 enum queue_stop_reason reason, 554 bool refcounted) 555 { 556 struct ieee80211_local *local = hw_to_local(hw); 557 unsigned long flags; 558 559 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 560 __ieee80211_stop_queue(hw, queue, reason, refcounted); 561 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 562 } 563 564 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 565 { 566 ieee80211_stop_queue_by_reason(hw, queue, 567 IEEE80211_QUEUE_STOP_REASON_DRIVER, 568 false); 569 } 570 EXPORT_SYMBOL(ieee80211_stop_queue); 571 572 void ieee80211_add_pending_skb(struct ieee80211_local *local, 573 struct sk_buff *skb) 574 { 575 struct ieee80211_hw *hw = &local->hw; 576 unsigned long flags; 577 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 578 int queue = info->hw_queue; 579 580 if (WARN_ON(!info->control.vif)) { 581 ieee80211_free_txskb(&local->hw, skb); 582 return; 583 } 584 585 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 586 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 587 false); 588 __skb_queue_tail(&local->pending[queue], skb); 589 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 590 false, &flags); 591 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 592 } 593 594 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 595 struct sk_buff_head *skbs) 596 { 597 struct ieee80211_hw *hw = &local->hw; 598 struct sk_buff *skb; 599 unsigned long flags; 600 int queue, i; 601 602 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 603 while ((skb = skb_dequeue(skbs))) { 604 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 605 606 if (WARN_ON(!info->control.vif)) { 607 ieee80211_free_txskb(&local->hw, skb); 608 continue; 609 } 610 611 queue = info->hw_queue; 612 613 __ieee80211_stop_queue(hw, queue, 614 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 615 false); 616 617 __skb_queue_tail(&local->pending[queue], skb); 618 } 619 620 for (i = 0; i < hw->queues; i++) 621 __ieee80211_wake_queue(hw, i, 622 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 623 false, &flags); 624 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 625 } 626 627 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 628 unsigned long queues, 629 enum queue_stop_reason reason, 630 bool refcounted) 631 { 632 struct ieee80211_local *local = hw_to_local(hw); 633 unsigned long flags; 634 int i; 635 636 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 637 638 for_each_set_bit(i, &queues, hw->queues) 639 __ieee80211_stop_queue(hw, i, reason, refcounted); 640 641 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 642 } 643 644 void ieee80211_stop_queues(struct ieee80211_hw *hw) 645 { 646 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 647 IEEE80211_QUEUE_STOP_REASON_DRIVER, 648 false); 649 } 650 EXPORT_SYMBOL(ieee80211_stop_queues); 651 652 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 653 { 654 struct ieee80211_local *local = hw_to_local(hw); 655 unsigned long flags; 656 int ret; 657 658 if (WARN_ON(queue >= hw->queues)) 659 return true; 660 661 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 662 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 663 &local->queue_stop_reasons[queue]); 664 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 665 return ret; 666 } 667 EXPORT_SYMBOL(ieee80211_queue_stopped); 668 669 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 670 unsigned long queues, 671 enum queue_stop_reason reason, 672 bool refcounted) 673 { 674 struct ieee80211_local *local = hw_to_local(hw); 675 unsigned long flags; 676 int i; 677 678 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 679 680 for_each_set_bit(i, &queues, hw->queues) 681 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 682 683 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 684 } 685 686 void ieee80211_wake_queues(struct ieee80211_hw *hw) 687 { 688 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 689 IEEE80211_QUEUE_STOP_REASON_DRIVER, 690 false); 691 } 692 EXPORT_SYMBOL(ieee80211_wake_queues); 693 694 static unsigned int 695 ieee80211_get_vif_queues(struct ieee80211_local *local, 696 struct ieee80211_sub_if_data *sdata) 697 { 698 unsigned int queues; 699 700 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 701 int ac; 702 703 queues = 0; 704 705 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 706 queues |= BIT(sdata->vif.hw_queue[ac]); 707 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 708 queues |= BIT(sdata->vif.cab_queue); 709 } else { 710 /* all queues */ 711 queues = BIT(local->hw.queues) - 1; 712 } 713 714 return queues; 715 } 716 717 void __ieee80211_flush_queues(struct ieee80211_local *local, 718 struct ieee80211_sub_if_data *sdata, 719 unsigned int queues, bool drop) 720 { 721 if (!local->ops->flush) 722 return; 723 724 /* 725 * If no queue was set, or if the HW doesn't support 726 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 727 */ 728 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 729 queues = ieee80211_get_vif_queues(local, sdata); 730 731 ieee80211_stop_queues_by_reason(&local->hw, queues, 732 IEEE80211_QUEUE_STOP_REASON_FLUSH, 733 false); 734 735 drv_flush(local, sdata, queues, drop); 736 737 ieee80211_wake_queues_by_reason(&local->hw, queues, 738 IEEE80211_QUEUE_STOP_REASON_FLUSH, 739 false); 740 } 741 742 void ieee80211_flush_queues(struct ieee80211_local *local, 743 struct ieee80211_sub_if_data *sdata, bool drop) 744 { 745 __ieee80211_flush_queues(local, sdata, 0, drop); 746 } 747 748 void ieee80211_stop_vif_queues(struct ieee80211_local *local, 749 struct ieee80211_sub_if_data *sdata, 750 enum queue_stop_reason reason) 751 { 752 ieee80211_stop_queues_by_reason(&local->hw, 753 ieee80211_get_vif_queues(local, sdata), 754 reason, true); 755 } 756 757 void ieee80211_wake_vif_queues(struct ieee80211_local *local, 758 struct ieee80211_sub_if_data *sdata, 759 enum queue_stop_reason reason) 760 { 761 ieee80211_wake_queues_by_reason(&local->hw, 762 ieee80211_get_vif_queues(local, sdata), 763 reason, true); 764 } 765 766 static void __iterate_interfaces(struct ieee80211_local *local, 767 u32 iter_flags, 768 void (*iterator)(void *data, u8 *mac, 769 struct ieee80211_vif *vif), 770 void *data) 771 { 772 struct ieee80211_sub_if_data *sdata; 773 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 774 775 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 776 switch (sdata->vif.type) { 777 case NL80211_IFTYPE_MONITOR: 778 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) 779 continue; 780 break; 781 case NL80211_IFTYPE_AP_VLAN: 782 continue; 783 default: 784 break; 785 } 786 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 787 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 788 continue; 789 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && 790 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 791 continue; 792 if (ieee80211_sdata_running(sdata) || !active_only) 793 iterator(data, sdata->vif.addr, 794 &sdata->vif); 795 } 796 797 sdata = rcu_dereference_check(local->monitor_sdata, 798 lockdep_is_held(&local->iflist_mtx) || 799 lockdep_rtnl_is_held()); 800 if (sdata && 801 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 802 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 803 iterator(data, sdata->vif.addr, &sdata->vif); 804 } 805 806 void ieee80211_iterate_interfaces( 807 struct ieee80211_hw *hw, u32 iter_flags, 808 void (*iterator)(void *data, u8 *mac, 809 struct ieee80211_vif *vif), 810 void *data) 811 { 812 struct ieee80211_local *local = hw_to_local(hw); 813 814 mutex_lock(&local->iflist_mtx); 815 __iterate_interfaces(local, iter_flags, iterator, data); 816 mutex_unlock(&local->iflist_mtx); 817 } 818 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 819 820 void ieee80211_iterate_active_interfaces_atomic( 821 struct ieee80211_hw *hw, u32 iter_flags, 822 void (*iterator)(void *data, u8 *mac, 823 struct ieee80211_vif *vif), 824 void *data) 825 { 826 struct ieee80211_local *local = hw_to_local(hw); 827 828 rcu_read_lock(); 829 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 830 iterator, data); 831 rcu_read_unlock(); 832 } 833 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 834 835 void ieee80211_iterate_active_interfaces_mtx( 836 struct ieee80211_hw *hw, u32 iter_flags, 837 void (*iterator)(void *data, u8 *mac, 838 struct ieee80211_vif *vif), 839 void *data) 840 { 841 struct ieee80211_local *local = hw_to_local(hw); 842 843 lockdep_assert_wiphy(hw->wiphy); 844 845 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 846 iterator, data); 847 } 848 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx); 849 850 static void __iterate_stations(struct ieee80211_local *local, 851 void (*iterator)(void *data, 852 struct ieee80211_sta *sta), 853 void *data) 854 { 855 struct sta_info *sta; 856 857 list_for_each_entry_rcu(sta, &local->sta_list, list) { 858 if (!sta->uploaded) 859 continue; 860 861 iterator(data, &sta->sta); 862 } 863 } 864 865 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 866 void (*iterator)(void *data, 867 struct ieee80211_sta *sta), 868 void *data) 869 { 870 struct ieee80211_local *local = hw_to_local(hw); 871 872 rcu_read_lock(); 873 __iterate_stations(local, iterator, data); 874 rcu_read_unlock(); 875 } 876 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 877 878 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 879 { 880 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 881 882 if (!ieee80211_sdata_running(sdata) || 883 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 884 return NULL; 885 return &sdata->vif; 886 } 887 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 888 889 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 890 { 891 if (!vif) 892 return NULL; 893 894 return &vif_to_sdata(vif)->wdev; 895 } 896 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 897 898 /* 899 * Nothing should have been stuffed into the workqueue during 900 * the suspend->resume cycle. Since we can't check each caller 901 * of this function if we are already quiescing / suspended, 902 * check here and don't WARN since this can actually happen when 903 * the rx path (for example) is racing against __ieee80211_suspend 904 * and suspending / quiescing was set after the rx path checked 905 * them. 906 */ 907 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 908 { 909 if (local->quiescing || (local->suspended && !local->resuming)) { 910 pr_warn("queueing ieee80211 work while going to suspend\n"); 911 return false; 912 } 913 914 return true; 915 } 916 917 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 918 { 919 struct ieee80211_local *local = hw_to_local(hw); 920 921 if (!ieee80211_can_queue_work(local)) 922 return; 923 924 queue_work(local->workqueue, work); 925 } 926 EXPORT_SYMBOL(ieee80211_queue_work); 927 928 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 929 struct delayed_work *dwork, 930 unsigned long delay) 931 { 932 struct ieee80211_local *local = hw_to_local(hw); 933 934 if (!ieee80211_can_queue_work(local)) 935 return; 936 937 queue_delayed_work(local->workqueue, dwork, delay); 938 } 939 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 940 941 static void ieee80211_parse_extension_element(u32 *crc, 942 const struct element *elem, 943 struct ieee802_11_elems *elems) 944 { 945 const void *data = elem->data + 1; 946 u8 len = elem->datalen - 1; 947 948 switch (elem->data[0]) { 949 case WLAN_EID_EXT_HE_MU_EDCA: 950 if (len >= sizeof(*elems->mu_edca_param_set)) { 951 elems->mu_edca_param_set = data; 952 if (crc) 953 *crc = crc32_be(*crc, (void *)elem, 954 elem->datalen + 2); 955 } 956 break; 957 case WLAN_EID_EXT_HE_CAPABILITY: 958 elems->he_cap = data; 959 elems->he_cap_len = len; 960 break; 961 case WLAN_EID_EXT_HE_OPERATION: 962 if (len >= sizeof(*elems->he_operation) && 963 len >= ieee80211_he_oper_size(data) - 1) { 964 if (crc) 965 *crc = crc32_be(*crc, (void *)elem, 966 elem->datalen + 2); 967 elems->he_operation = data; 968 } 969 break; 970 case WLAN_EID_EXT_UORA: 971 if (len >= 1) 972 elems->uora_element = data; 973 break; 974 case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME: 975 if (len == 3) 976 elems->max_channel_switch_time = data; 977 break; 978 case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION: 979 if (len >= sizeof(*elems->mbssid_config_ie)) 980 elems->mbssid_config_ie = data; 981 break; 982 case WLAN_EID_EXT_HE_SPR: 983 if (len >= sizeof(*elems->he_spr) && 984 len >= ieee80211_he_spr_size(data)) 985 elems->he_spr = data; 986 break; 987 case WLAN_EID_EXT_HE_6GHZ_CAPA: 988 if (len >= sizeof(*elems->he_6ghz_capa)) 989 elems->he_6ghz_capa = data; 990 break; 991 } 992 } 993 994 static u32 995 _ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, 996 struct ieee802_11_elems *elems, 997 u64 filter, u32 crc, 998 const struct element *check_inherit) 999 { 1000 const struct element *elem; 1001 bool calc_crc = filter != 0; 1002 DECLARE_BITMAP(seen_elems, 256); 1003 const u8 *ie; 1004 1005 bitmap_zero(seen_elems, 256); 1006 1007 for_each_element(elem, start, len) { 1008 bool elem_parse_failed; 1009 u8 id = elem->id; 1010 u8 elen = elem->datalen; 1011 const u8 *pos = elem->data; 1012 1013 if (check_inherit && 1014 !cfg80211_is_element_inherited(elem, 1015 check_inherit)) 1016 continue; 1017 1018 switch (id) { 1019 case WLAN_EID_SSID: 1020 case WLAN_EID_SUPP_RATES: 1021 case WLAN_EID_FH_PARAMS: 1022 case WLAN_EID_DS_PARAMS: 1023 case WLAN_EID_CF_PARAMS: 1024 case WLAN_EID_TIM: 1025 case WLAN_EID_IBSS_PARAMS: 1026 case WLAN_EID_CHALLENGE: 1027 case WLAN_EID_RSN: 1028 case WLAN_EID_ERP_INFO: 1029 case WLAN_EID_EXT_SUPP_RATES: 1030 case WLAN_EID_HT_CAPABILITY: 1031 case WLAN_EID_HT_OPERATION: 1032 case WLAN_EID_VHT_CAPABILITY: 1033 case WLAN_EID_VHT_OPERATION: 1034 case WLAN_EID_MESH_ID: 1035 case WLAN_EID_MESH_CONFIG: 1036 case WLAN_EID_PEER_MGMT: 1037 case WLAN_EID_PREQ: 1038 case WLAN_EID_PREP: 1039 case WLAN_EID_PERR: 1040 case WLAN_EID_RANN: 1041 case WLAN_EID_CHANNEL_SWITCH: 1042 case WLAN_EID_EXT_CHANSWITCH_ANN: 1043 case WLAN_EID_COUNTRY: 1044 case WLAN_EID_PWR_CONSTRAINT: 1045 case WLAN_EID_TIMEOUT_INTERVAL: 1046 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1047 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1048 case WLAN_EID_CHAN_SWITCH_PARAM: 1049 case WLAN_EID_EXT_CAPABILITY: 1050 case WLAN_EID_CHAN_SWITCH_TIMING: 1051 case WLAN_EID_LINK_ID: 1052 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1053 case WLAN_EID_RSNX: 1054 case WLAN_EID_S1G_BCN_COMPAT: 1055 case WLAN_EID_S1G_CAPABILITIES: 1056 case WLAN_EID_S1G_OPERATION: 1057 case WLAN_EID_AID_RESPONSE: 1058 case WLAN_EID_S1G_SHORT_BCN_INTERVAL: 1059 /* 1060 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible 1061 * that if the content gets bigger it might be needed more than once 1062 */ 1063 if (test_bit(id, seen_elems)) { 1064 elems->parse_error = true; 1065 continue; 1066 } 1067 break; 1068 } 1069 1070 if (calc_crc && id < 64 && (filter & (1ULL << id))) 1071 crc = crc32_be(crc, pos - 2, elen + 2); 1072 1073 elem_parse_failed = false; 1074 1075 switch (id) { 1076 case WLAN_EID_LINK_ID: 1077 if (elen + 2 < sizeof(struct ieee80211_tdls_lnkie)) { 1078 elem_parse_failed = true; 1079 break; 1080 } 1081 elems->lnk_id = (void *)(pos - 2); 1082 break; 1083 case WLAN_EID_CHAN_SWITCH_TIMING: 1084 if (elen < sizeof(struct ieee80211_ch_switch_timing)) { 1085 elem_parse_failed = true; 1086 break; 1087 } 1088 elems->ch_sw_timing = (void *)pos; 1089 break; 1090 case WLAN_EID_EXT_CAPABILITY: 1091 elems->ext_capab = pos; 1092 elems->ext_capab_len = elen; 1093 break; 1094 case WLAN_EID_SSID: 1095 elems->ssid = pos; 1096 elems->ssid_len = elen; 1097 break; 1098 case WLAN_EID_SUPP_RATES: 1099 elems->supp_rates = pos; 1100 elems->supp_rates_len = elen; 1101 break; 1102 case WLAN_EID_DS_PARAMS: 1103 if (elen >= 1) 1104 elems->ds_params = pos; 1105 else 1106 elem_parse_failed = true; 1107 break; 1108 case WLAN_EID_TIM: 1109 if (elen >= sizeof(struct ieee80211_tim_ie)) { 1110 elems->tim = (void *)pos; 1111 elems->tim_len = elen; 1112 } else 1113 elem_parse_failed = true; 1114 break; 1115 case WLAN_EID_CHALLENGE: 1116 elems->challenge = pos; 1117 elems->challenge_len = elen; 1118 break; 1119 case WLAN_EID_VENDOR_SPECIFIC: 1120 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && 1121 pos[2] == 0xf2) { 1122 /* Microsoft OUI (00:50:F2) */ 1123 1124 if (calc_crc) 1125 crc = crc32_be(crc, pos - 2, elen + 2); 1126 1127 if (elen >= 5 && pos[3] == 2) { 1128 /* OUI Type 2 - WMM IE */ 1129 if (pos[4] == 0) { 1130 elems->wmm_info = pos; 1131 elems->wmm_info_len = elen; 1132 } else if (pos[4] == 1) { 1133 elems->wmm_param = pos; 1134 elems->wmm_param_len = elen; 1135 } 1136 } 1137 } 1138 break; 1139 case WLAN_EID_RSN: 1140 elems->rsn = pos; 1141 elems->rsn_len = elen; 1142 break; 1143 case WLAN_EID_ERP_INFO: 1144 if (elen >= 1) 1145 elems->erp_info = pos; 1146 else 1147 elem_parse_failed = true; 1148 break; 1149 case WLAN_EID_EXT_SUPP_RATES: 1150 elems->ext_supp_rates = pos; 1151 elems->ext_supp_rates_len = elen; 1152 break; 1153 case WLAN_EID_HT_CAPABILITY: 1154 if (elen >= sizeof(struct ieee80211_ht_cap)) 1155 elems->ht_cap_elem = (void *)pos; 1156 else 1157 elem_parse_failed = true; 1158 break; 1159 case WLAN_EID_HT_OPERATION: 1160 if (elen >= sizeof(struct ieee80211_ht_operation)) 1161 elems->ht_operation = (void *)pos; 1162 else 1163 elem_parse_failed = true; 1164 break; 1165 case WLAN_EID_VHT_CAPABILITY: 1166 if (elen >= sizeof(struct ieee80211_vht_cap)) 1167 elems->vht_cap_elem = (void *)pos; 1168 else 1169 elem_parse_failed = true; 1170 break; 1171 case WLAN_EID_VHT_OPERATION: 1172 if (elen >= sizeof(struct ieee80211_vht_operation)) { 1173 elems->vht_operation = (void *)pos; 1174 if (calc_crc) 1175 crc = crc32_be(crc, pos - 2, elen + 2); 1176 break; 1177 } 1178 elem_parse_failed = true; 1179 break; 1180 case WLAN_EID_OPMODE_NOTIF: 1181 if (elen > 0) { 1182 elems->opmode_notif = pos; 1183 if (calc_crc) 1184 crc = crc32_be(crc, pos - 2, elen + 2); 1185 break; 1186 } 1187 elem_parse_failed = true; 1188 break; 1189 case WLAN_EID_MESH_ID: 1190 elems->mesh_id = pos; 1191 elems->mesh_id_len = elen; 1192 break; 1193 case WLAN_EID_MESH_CONFIG: 1194 if (elen >= sizeof(struct ieee80211_meshconf_ie)) 1195 elems->mesh_config = (void *)pos; 1196 else 1197 elem_parse_failed = true; 1198 break; 1199 case WLAN_EID_PEER_MGMT: 1200 elems->peering = pos; 1201 elems->peering_len = elen; 1202 break; 1203 case WLAN_EID_MESH_AWAKE_WINDOW: 1204 if (elen >= 2) 1205 elems->awake_window = (void *)pos; 1206 break; 1207 case WLAN_EID_PREQ: 1208 elems->preq = pos; 1209 elems->preq_len = elen; 1210 break; 1211 case WLAN_EID_PREP: 1212 elems->prep = pos; 1213 elems->prep_len = elen; 1214 break; 1215 case WLAN_EID_PERR: 1216 elems->perr = pos; 1217 elems->perr_len = elen; 1218 break; 1219 case WLAN_EID_RANN: 1220 if (elen >= sizeof(struct ieee80211_rann_ie)) 1221 elems->rann = (void *)pos; 1222 else 1223 elem_parse_failed = true; 1224 break; 1225 case WLAN_EID_CHANNEL_SWITCH: 1226 if (elen != sizeof(struct ieee80211_channel_sw_ie)) { 1227 elem_parse_failed = true; 1228 break; 1229 } 1230 elems->ch_switch_ie = (void *)pos; 1231 break; 1232 case WLAN_EID_EXT_CHANSWITCH_ANN: 1233 if (elen != sizeof(struct ieee80211_ext_chansw_ie)) { 1234 elem_parse_failed = true; 1235 break; 1236 } 1237 elems->ext_chansw_ie = (void *)pos; 1238 break; 1239 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1240 if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) { 1241 elem_parse_failed = true; 1242 break; 1243 } 1244 elems->sec_chan_offs = (void *)pos; 1245 break; 1246 case WLAN_EID_CHAN_SWITCH_PARAM: 1247 if (elen < 1248 sizeof(*elems->mesh_chansw_params_ie)) { 1249 elem_parse_failed = true; 1250 break; 1251 } 1252 elems->mesh_chansw_params_ie = (void *)pos; 1253 break; 1254 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1255 if (!action || 1256 elen < sizeof(*elems->wide_bw_chansw_ie)) { 1257 elem_parse_failed = true; 1258 break; 1259 } 1260 elems->wide_bw_chansw_ie = (void *)pos; 1261 break; 1262 case WLAN_EID_CHANNEL_SWITCH_WRAPPER: 1263 if (action) { 1264 elem_parse_failed = true; 1265 break; 1266 } 1267 /* 1268 * This is a bit tricky, but as we only care about 1269 * the wide bandwidth channel switch element, so 1270 * just parse it out manually. 1271 */ 1272 ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH, 1273 pos, elen); 1274 if (ie) { 1275 if (ie[1] >= sizeof(*elems->wide_bw_chansw_ie)) 1276 elems->wide_bw_chansw_ie = 1277 (void *)(ie + 2); 1278 else 1279 elem_parse_failed = true; 1280 } 1281 break; 1282 case WLAN_EID_COUNTRY: 1283 elems->country_elem = pos; 1284 elems->country_elem_len = elen; 1285 break; 1286 case WLAN_EID_PWR_CONSTRAINT: 1287 if (elen != 1) { 1288 elem_parse_failed = true; 1289 break; 1290 } 1291 elems->pwr_constr_elem = pos; 1292 break; 1293 case WLAN_EID_CISCO_VENDOR_SPECIFIC: 1294 /* Lots of different options exist, but we only care 1295 * about the Dynamic Transmit Power Control element. 1296 * First check for the Cisco OUI, then for the DTPC 1297 * tag (0x00). 1298 */ 1299 if (elen < 4) { 1300 elem_parse_failed = true; 1301 break; 1302 } 1303 1304 if (pos[0] != 0x00 || pos[1] != 0x40 || 1305 pos[2] != 0x96 || pos[3] != 0x00) 1306 break; 1307 1308 if (elen != 6) { 1309 elem_parse_failed = true; 1310 break; 1311 } 1312 1313 if (calc_crc) 1314 crc = crc32_be(crc, pos - 2, elen + 2); 1315 1316 elems->cisco_dtpc_elem = pos; 1317 break; 1318 case WLAN_EID_ADDBA_EXT: 1319 if (elen < sizeof(struct ieee80211_addba_ext_ie)) { 1320 elem_parse_failed = true; 1321 break; 1322 } 1323 elems->addba_ext_ie = (void *)pos; 1324 break; 1325 case WLAN_EID_TIMEOUT_INTERVAL: 1326 if (elen >= sizeof(struct ieee80211_timeout_interval_ie)) 1327 elems->timeout_int = (void *)pos; 1328 else 1329 elem_parse_failed = true; 1330 break; 1331 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1332 if (elen >= sizeof(*elems->max_idle_period_ie)) 1333 elems->max_idle_period_ie = (void *)pos; 1334 break; 1335 case WLAN_EID_RSNX: 1336 elems->rsnx = pos; 1337 elems->rsnx_len = elen; 1338 break; 1339 case WLAN_EID_TX_POWER_ENVELOPE: 1340 if (elen < 1 || 1341 elen > sizeof(struct ieee80211_tx_pwr_env)) 1342 break; 1343 1344 if (elems->tx_pwr_env_num >= ARRAY_SIZE(elems->tx_pwr_env)) 1345 break; 1346 1347 elems->tx_pwr_env[elems->tx_pwr_env_num] = (void *)pos; 1348 elems->tx_pwr_env_len[elems->tx_pwr_env_num] = elen; 1349 elems->tx_pwr_env_num++; 1350 break; 1351 case WLAN_EID_EXTENSION: 1352 ieee80211_parse_extension_element(calc_crc ? 1353 &crc : NULL, 1354 elem, elems); 1355 break; 1356 case WLAN_EID_S1G_CAPABILITIES: 1357 if (elen >= sizeof(*elems->s1g_capab)) 1358 elems->s1g_capab = (void *)pos; 1359 else 1360 elem_parse_failed = true; 1361 break; 1362 case WLAN_EID_S1G_OPERATION: 1363 if (elen == sizeof(*elems->s1g_oper)) 1364 elems->s1g_oper = (void *)pos; 1365 else 1366 elem_parse_failed = true; 1367 break; 1368 case WLAN_EID_S1G_BCN_COMPAT: 1369 if (elen == sizeof(*elems->s1g_bcn_compat)) 1370 elems->s1g_bcn_compat = (void *)pos; 1371 else 1372 elem_parse_failed = true; 1373 break; 1374 case WLAN_EID_AID_RESPONSE: 1375 if (elen == sizeof(struct ieee80211_aid_response_ie)) 1376 elems->aid_resp = (void *)pos; 1377 else 1378 elem_parse_failed = true; 1379 break; 1380 default: 1381 break; 1382 } 1383 1384 if (elem_parse_failed) 1385 elems->parse_error = true; 1386 else 1387 __set_bit(id, seen_elems); 1388 } 1389 1390 if (!for_each_element_completed(elem, start, len)) 1391 elems->parse_error = true; 1392 1393 return crc; 1394 } 1395 1396 static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len, 1397 struct ieee802_11_elems *elems, 1398 u8 *transmitter_bssid, 1399 u8 *bss_bssid, 1400 u8 *nontransmitted_profile) 1401 { 1402 const struct element *elem, *sub; 1403 size_t profile_len = 0; 1404 bool found = false; 1405 1406 if (!bss_bssid || !transmitter_bssid) 1407 return profile_len; 1408 1409 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) { 1410 if (elem->datalen < 2) 1411 continue; 1412 1413 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 1414 u8 new_bssid[ETH_ALEN]; 1415 const u8 *index; 1416 1417 if (sub->id != 0 || sub->datalen < 4) { 1418 /* not a valid BSS profile */ 1419 continue; 1420 } 1421 1422 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 1423 sub->data[1] != 2) { 1424 /* The first element of the 1425 * Nontransmitted BSSID Profile is not 1426 * the Nontransmitted BSSID Capability 1427 * element. 1428 */ 1429 continue; 1430 } 1431 1432 memset(nontransmitted_profile, 0, len); 1433 profile_len = cfg80211_merge_profile(start, len, 1434 elem, 1435 sub, 1436 nontransmitted_profile, 1437 len); 1438 1439 /* found a Nontransmitted BSSID Profile */ 1440 index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, 1441 nontransmitted_profile, 1442 profile_len); 1443 if (!index || index[1] < 1 || index[2] == 0) { 1444 /* Invalid MBSSID Index element */ 1445 continue; 1446 } 1447 1448 cfg80211_gen_new_bssid(transmitter_bssid, 1449 elem->data[0], 1450 index[2], 1451 new_bssid); 1452 if (ether_addr_equal(new_bssid, bss_bssid)) { 1453 found = true; 1454 elems->bssid_index_len = index[1]; 1455 elems->bssid_index = (void *)&index[2]; 1456 break; 1457 } 1458 } 1459 } 1460 1461 return found ? profile_len : 0; 1462 } 1463 1464 u32 ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, 1465 struct ieee802_11_elems *elems, 1466 u64 filter, u32 crc, u8 *transmitter_bssid, 1467 u8 *bss_bssid) 1468 { 1469 const struct element *non_inherit = NULL; 1470 u8 *nontransmitted_profile; 1471 int nontransmitted_profile_len = 0; 1472 1473 memset(elems, 0, sizeof(*elems)); 1474 elems->ie_start = start; 1475 elems->total_len = len; 1476 1477 nontransmitted_profile = kmalloc(len, GFP_ATOMIC); 1478 if (nontransmitted_profile) { 1479 nontransmitted_profile_len = 1480 ieee802_11_find_bssid_profile(start, len, elems, 1481 transmitter_bssid, 1482 bss_bssid, 1483 nontransmitted_profile); 1484 non_inherit = 1485 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 1486 nontransmitted_profile, 1487 nontransmitted_profile_len); 1488 } 1489 1490 crc = _ieee802_11_parse_elems_crc(start, len, action, elems, filter, 1491 crc, non_inherit); 1492 1493 /* Override with nontransmitted profile, if found */ 1494 if (nontransmitted_profile_len) 1495 _ieee802_11_parse_elems_crc(nontransmitted_profile, 1496 nontransmitted_profile_len, 1497 action, elems, 0, 0, NULL); 1498 1499 if (elems->tim && !elems->parse_error) { 1500 const struct ieee80211_tim_ie *tim_ie = elems->tim; 1501 1502 elems->dtim_period = tim_ie->dtim_period; 1503 elems->dtim_count = tim_ie->dtim_count; 1504 } 1505 1506 /* Override DTIM period and count if needed */ 1507 if (elems->bssid_index && 1508 elems->bssid_index_len >= 1509 offsetofend(struct ieee80211_bssid_index, dtim_period)) 1510 elems->dtim_period = elems->bssid_index->dtim_period; 1511 1512 if (elems->bssid_index && 1513 elems->bssid_index_len >= 1514 offsetofend(struct ieee80211_bssid_index, dtim_count)) 1515 elems->dtim_count = elems->bssid_index->dtim_count; 1516 1517 kfree(nontransmitted_profile); 1518 1519 return crc; 1520 } 1521 1522 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 1523 struct ieee80211_tx_queue_params 1524 *qparam, int ac) 1525 { 1526 struct ieee80211_chanctx_conf *chanctx_conf; 1527 const struct ieee80211_reg_rule *rrule; 1528 const struct ieee80211_wmm_ac *wmm_ac; 1529 u16 center_freq = 0; 1530 1531 if (sdata->vif.type != NL80211_IFTYPE_AP && 1532 sdata->vif.type != NL80211_IFTYPE_STATION) 1533 return; 1534 1535 rcu_read_lock(); 1536 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1537 if (chanctx_conf) 1538 center_freq = chanctx_conf->def.chan->center_freq; 1539 1540 if (!center_freq) { 1541 rcu_read_unlock(); 1542 return; 1543 } 1544 1545 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 1546 1547 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 1548 rcu_read_unlock(); 1549 return; 1550 } 1551 1552 if (sdata->vif.type == NL80211_IFTYPE_AP) 1553 wmm_ac = &rrule->wmm_rule.ap[ac]; 1554 else 1555 wmm_ac = &rrule->wmm_rule.client[ac]; 1556 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 1557 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 1558 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 1559 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 1560 rcu_read_unlock(); 1561 } 1562 1563 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata, 1564 bool bss_notify, bool enable_qos) 1565 { 1566 struct ieee80211_local *local = sdata->local; 1567 struct ieee80211_tx_queue_params qparam; 1568 struct ieee80211_chanctx_conf *chanctx_conf; 1569 int ac; 1570 bool use_11b; 1571 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 1572 int aCWmin, aCWmax; 1573 1574 if (!local->ops->conf_tx) 1575 return; 1576 1577 if (local->hw.queues < IEEE80211_NUM_ACS) 1578 return; 1579 1580 memset(&qparam, 0, sizeof(qparam)); 1581 1582 rcu_read_lock(); 1583 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1584 use_11b = (chanctx_conf && 1585 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 1586 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE); 1587 rcu_read_unlock(); 1588 1589 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 1590 1591 /* Set defaults according to 802.11-2007 Table 7-37 */ 1592 aCWmax = 1023; 1593 if (use_11b) 1594 aCWmin = 31; 1595 else 1596 aCWmin = 15; 1597 1598 /* Confiure old 802.11b/g medium access rules. */ 1599 qparam.cw_max = aCWmax; 1600 qparam.cw_min = aCWmin; 1601 qparam.txop = 0; 1602 qparam.aifs = 2; 1603 1604 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1605 /* Update if QoS is enabled. */ 1606 if (enable_qos) { 1607 switch (ac) { 1608 case IEEE80211_AC_BK: 1609 qparam.cw_max = aCWmax; 1610 qparam.cw_min = aCWmin; 1611 qparam.txop = 0; 1612 if (is_ocb) 1613 qparam.aifs = 9; 1614 else 1615 qparam.aifs = 7; 1616 break; 1617 /* never happens but let's not leave undefined */ 1618 default: 1619 case IEEE80211_AC_BE: 1620 qparam.cw_max = aCWmax; 1621 qparam.cw_min = aCWmin; 1622 qparam.txop = 0; 1623 if (is_ocb) 1624 qparam.aifs = 6; 1625 else 1626 qparam.aifs = 3; 1627 break; 1628 case IEEE80211_AC_VI: 1629 qparam.cw_max = aCWmin; 1630 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1631 if (is_ocb) 1632 qparam.txop = 0; 1633 else if (use_11b) 1634 qparam.txop = 6016/32; 1635 else 1636 qparam.txop = 3008/32; 1637 1638 if (is_ocb) 1639 qparam.aifs = 3; 1640 else 1641 qparam.aifs = 2; 1642 break; 1643 case IEEE80211_AC_VO: 1644 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1645 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1646 if (is_ocb) 1647 qparam.txop = 0; 1648 else if (use_11b) 1649 qparam.txop = 3264/32; 1650 else 1651 qparam.txop = 1504/32; 1652 qparam.aifs = 2; 1653 break; 1654 } 1655 } 1656 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1657 1658 qparam.uapsd = false; 1659 1660 sdata->tx_conf[ac] = qparam; 1661 drv_conf_tx(local, sdata, ac, &qparam); 1662 } 1663 1664 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1665 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1666 sdata->vif.type != NL80211_IFTYPE_NAN) { 1667 sdata->vif.bss_conf.qos = enable_qos; 1668 if (bss_notify) 1669 ieee80211_bss_info_change_notify(sdata, 1670 BSS_CHANGED_QOS); 1671 } 1672 } 1673 1674 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1675 u16 transaction, u16 auth_alg, u16 status, 1676 const u8 *extra, size_t extra_len, const u8 *da, 1677 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1678 u32 tx_flags) 1679 { 1680 struct ieee80211_local *local = sdata->local; 1681 struct sk_buff *skb; 1682 struct ieee80211_mgmt *mgmt; 1683 int err; 1684 1685 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1686 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1687 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN); 1688 if (!skb) 1689 return; 1690 1691 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1692 1693 mgmt = skb_put_zero(skb, 24 + 6); 1694 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1695 IEEE80211_STYPE_AUTH); 1696 memcpy(mgmt->da, da, ETH_ALEN); 1697 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1698 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1699 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1700 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1701 mgmt->u.auth.status_code = cpu_to_le16(status); 1702 if (extra) 1703 skb_put_data(skb, extra, extra_len); 1704 1705 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1706 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1707 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1708 if (WARN_ON(err)) { 1709 kfree_skb(skb); 1710 return; 1711 } 1712 } 1713 1714 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1715 tx_flags; 1716 ieee80211_tx_skb(sdata, skb); 1717 } 1718 1719 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1720 const u8 *da, const u8 *bssid, 1721 u16 stype, u16 reason, 1722 bool send_frame, u8 *frame_buf) 1723 { 1724 struct ieee80211_local *local = sdata->local; 1725 struct sk_buff *skb; 1726 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1727 1728 /* build frame */ 1729 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1730 mgmt->duration = 0; /* initialize only */ 1731 mgmt->seq_ctrl = 0; /* initialize only */ 1732 memcpy(mgmt->da, da, ETH_ALEN); 1733 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1734 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1735 /* u.deauth.reason_code == u.disassoc.reason_code */ 1736 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1737 1738 if (send_frame) { 1739 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1740 IEEE80211_DEAUTH_FRAME_LEN); 1741 if (!skb) 1742 return; 1743 1744 skb_reserve(skb, local->hw.extra_tx_headroom); 1745 1746 /* copy in frame */ 1747 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1748 1749 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1750 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1751 IEEE80211_SKB_CB(skb)->flags |= 1752 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1753 1754 ieee80211_tx_skb(sdata, skb); 1755 } 1756 } 1757 1758 static u8 *ieee80211_write_he_6ghz_cap(u8 *pos, __le16 cap, u8 *end) 1759 { 1760 if ((end - pos) < 5) 1761 return pos; 1762 1763 *pos++ = WLAN_EID_EXTENSION; 1764 *pos++ = 1 + sizeof(cap); 1765 *pos++ = WLAN_EID_EXT_HE_6GHZ_CAPA; 1766 memcpy(pos, &cap, sizeof(cap)); 1767 1768 return pos + 2; 1769 } 1770 1771 static int ieee80211_build_preq_ies_band(struct ieee80211_sub_if_data *sdata, 1772 u8 *buffer, size_t buffer_len, 1773 const u8 *ie, size_t ie_len, 1774 enum nl80211_band band, 1775 u32 rate_mask, 1776 struct cfg80211_chan_def *chandef, 1777 size_t *offset, u32 flags) 1778 { 1779 struct ieee80211_local *local = sdata->local; 1780 struct ieee80211_supported_band *sband; 1781 const struct ieee80211_sta_he_cap *he_cap; 1782 u8 *pos = buffer, *end = buffer + buffer_len; 1783 size_t noffset; 1784 int supp_rates_len, i; 1785 u8 rates[32]; 1786 int num_rates; 1787 int ext_rates_len; 1788 int shift; 1789 u32 rate_flags; 1790 bool have_80mhz = false; 1791 1792 *offset = 0; 1793 1794 sband = local->hw.wiphy->bands[band]; 1795 if (WARN_ON_ONCE(!sband)) 1796 return 0; 1797 1798 rate_flags = ieee80211_chandef_rate_flags(chandef); 1799 shift = ieee80211_chandef_get_shift(chandef); 1800 1801 num_rates = 0; 1802 for (i = 0; i < sband->n_bitrates; i++) { 1803 if ((BIT(i) & rate_mask) == 0) 1804 continue; /* skip rate */ 1805 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 1806 continue; 1807 1808 rates[num_rates++] = 1809 (u8) DIV_ROUND_UP(sband->bitrates[i].bitrate, 1810 (1 << shift) * 5); 1811 } 1812 1813 supp_rates_len = min_t(int, num_rates, 8); 1814 1815 if (end - pos < 2 + supp_rates_len) 1816 goto out_err; 1817 *pos++ = WLAN_EID_SUPP_RATES; 1818 *pos++ = supp_rates_len; 1819 memcpy(pos, rates, supp_rates_len); 1820 pos += supp_rates_len; 1821 1822 /* insert "request information" if in custom IEs */ 1823 if (ie && ie_len) { 1824 static const u8 before_extrates[] = { 1825 WLAN_EID_SSID, 1826 WLAN_EID_SUPP_RATES, 1827 WLAN_EID_REQUEST, 1828 }; 1829 noffset = ieee80211_ie_split(ie, ie_len, 1830 before_extrates, 1831 ARRAY_SIZE(before_extrates), 1832 *offset); 1833 if (end - pos < noffset - *offset) 1834 goto out_err; 1835 memcpy(pos, ie + *offset, noffset - *offset); 1836 pos += noffset - *offset; 1837 *offset = noffset; 1838 } 1839 1840 ext_rates_len = num_rates - supp_rates_len; 1841 if (ext_rates_len > 0) { 1842 if (end - pos < 2 + ext_rates_len) 1843 goto out_err; 1844 *pos++ = WLAN_EID_EXT_SUPP_RATES; 1845 *pos++ = ext_rates_len; 1846 memcpy(pos, rates + supp_rates_len, ext_rates_len); 1847 pos += ext_rates_len; 1848 } 1849 1850 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 1851 if (end - pos < 3) 1852 goto out_err; 1853 *pos++ = WLAN_EID_DS_PARAMS; 1854 *pos++ = 1; 1855 *pos++ = ieee80211_frequency_to_channel( 1856 chandef->chan->center_freq); 1857 } 1858 1859 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 1860 goto done; 1861 1862 /* insert custom IEs that go before HT */ 1863 if (ie && ie_len) { 1864 static const u8 before_ht[] = { 1865 /* 1866 * no need to list the ones split off already 1867 * (or generated here) 1868 */ 1869 WLAN_EID_DS_PARAMS, 1870 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1871 }; 1872 noffset = ieee80211_ie_split(ie, ie_len, 1873 before_ht, ARRAY_SIZE(before_ht), 1874 *offset); 1875 if (end - pos < noffset - *offset) 1876 goto out_err; 1877 memcpy(pos, ie + *offset, noffset - *offset); 1878 pos += noffset - *offset; 1879 *offset = noffset; 1880 } 1881 1882 if (sband->ht_cap.ht_supported) { 1883 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap)) 1884 goto out_err; 1885 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 1886 sband->ht_cap.cap); 1887 } 1888 1889 /* insert custom IEs that go before VHT */ 1890 if (ie && ie_len) { 1891 static const u8 before_vht[] = { 1892 /* 1893 * no need to list the ones split off already 1894 * (or generated here) 1895 */ 1896 WLAN_EID_BSS_COEX_2040, 1897 WLAN_EID_EXT_CAPABILITY, 1898 WLAN_EID_SSID_LIST, 1899 WLAN_EID_CHANNEL_USAGE, 1900 WLAN_EID_INTERWORKING, 1901 WLAN_EID_MESH_ID, 1902 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 1903 }; 1904 noffset = ieee80211_ie_split(ie, ie_len, 1905 before_vht, ARRAY_SIZE(before_vht), 1906 *offset); 1907 if (end - pos < noffset - *offset) 1908 goto out_err; 1909 memcpy(pos, ie + *offset, noffset - *offset); 1910 pos += noffset - *offset; 1911 *offset = noffset; 1912 } 1913 1914 /* Check if any channel in this sband supports at least 80 MHz */ 1915 for (i = 0; i < sband->n_channels; i++) { 1916 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 1917 IEEE80211_CHAN_NO_80MHZ)) 1918 continue; 1919 1920 have_80mhz = true; 1921 break; 1922 } 1923 1924 if (sband->vht_cap.vht_supported && have_80mhz) { 1925 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap)) 1926 goto out_err; 1927 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 1928 sband->vht_cap.cap); 1929 } 1930 1931 /* insert custom IEs that go before HE */ 1932 if (ie && ie_len) { 1933 static const u8 before_he[] = { 1934 /* 1935 * no need to list the ones split off before VHT 1936 * or generated here 1937 */ 1938 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 1939 WLAN_EID_AP_CSN, 1940 /* TODO: add 11ah/11aj/11ak elements */ 1941 }; 1942 noffset = ieee80211_ie_split(ie, ie_len, 1943 before_he, ARRAY_SIZE(before_he), 1944 *offset); 1945 if (end - pos < noffset - *offset) 1946 goto out_err; 1947 memcpy(pos, ie + *offset, noffset - *offset); 1948 pos += noffset - *offset; 1949 *offset = noffset; 1950 } 1951 1952 he_cap = ieee80211_get_he_iftype_cap(sband, 1953 ieee80211_vif_type_p2p(&sdata->vif)); 1954 if (he_cap && 1955 cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 1956 IEEE80211_CHAN_NO_HE)) { 1957 pos = ieee80211_ie_build_he_cap(pos, he_cap, end); 1958 if (!pos) 1959 goto out_err; 1960 } 1961 1962 if (cfg80211_any_usable_channels(local->hw.wiphy, 1963 BIT(NL80211_BAND_6GHZ), 1964 IEEE80211_CHAN_NO_HE)) { 1965 struct ieee80211_supported_band *sband6; 1966 1967 sband6 = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 1968 he_cap = ieee80211_get_he_iftype_cap(sband6, 1969 ieee80211_vif_type_p2p(&sdata->vif)); 1970 1971 if (he_cap) { 1972 enum nl80211_iftype iftype = 1973 ieee80211_vif_type_p2p(&sdata->vif); 1974 __le16 cap = ieee80211_get_he_6ghz_capa(sband, iftype); 1975 1976 pos = ieee80211_write_he_6ghz_cap(pos, cap, end); 1977 } 1978 } 1979 1980 /* 1981 * If adding more here, adjust code in main.c 1982 * that calculates local->scan_ies_len. 1983 */ 1984 1985 return pos - buffer; 1986 out_err: 1987 WARN_ONCE(1, "not enough space for preq IEs\n"); 1988 done: 1989 return pos - buffer; 1990 } 1991 1992 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 1993 size_t buffer_len, 1994 struct ieee80211_scan_ies *ie_desc, 1995 const u8 *ie, size_t ie_len, 1996 u8 bands_used, u32 *rate_masks, 1997 struct cfg80211_chan_def *chandef, 1998 u32 flags) 1999 { 2000 size_t pos = 0, old_pos = 0, custom_ie_offset = 0; 2001 int i; 2002 2003 memset(ie_desc, 0, sizeof(*ie_desc)); 2004 2005 for (i = 0; i < NUM_NL80211_BANDS; i++) { 2006 if (bands_used & BIT(i)) { 2007 pos += ieee80211_build_preq_ies_band(sdata, 2008 buffer + pos, 2009 buffer_len - pos, 2010 ie, ie_len, i, 2011 rate_masks[i], 2012 chandef, 2013 &custom_ie_offset, 2014 flags); 2015 ie_desc->ies[i] = buffer + old_pos; 2016 ie_desc->len[i] = pos - old_pos; 2017 old_pos = pos; 2018 } 2019 } 2020 2021 /* add any remaining custom IEs */ 2022 if (ie && ie_len) { 2023 if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset, 2024 "not enough space for preq custom IEs\n")) 2025 return pos; 2026 memcpy(buffer + pos, ie + custom_ie_offset, 2027 ie_len - custom_ie_offset); 2028 ie_desc->common_ies = buffer + pos; 2029 ie_desc->common_ie_len = ie_len - custom_ie_offset; 2030 pos += ie_len - custom_ie_offset; 2031 } 2032 2033 return pos; 2034 }; 2035 2036 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 2037 const u8 *src, const u8 *dst, 2038 u32 ratemask, 2039 struct ieee80211_channel *chan, 2040 const u8 *ssid, size_t ssid_len, 2041 const u8 *ie, size_t ie_len, 2042 u32 flags) 2043 { 2044 struct ieee80211_local *local = sdata->local; 2045 struct cfg80211_chan_def chandef; 2046 struct sk_buff *skb; 2047 struct ieee80211_mgmt *mgmt; 2048 int ies_len; 2049 u32 rate_masks[NUM_NL80211_BANDS] = {}; 2050 struct ieee80211_scan_ies dummy_ie_desc; 2051 2052 /* 2053 * Do not send DS Channel parameter for directed probe requests 2054 * in order to maximize the chance that we get a response. Some 2055 * badly-behaved APs don't respond when this parameter is included. 2056 */ 2057 chandef.width = sdata->vif.bss_conf.chandef.width; 2058 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 2059 chandef.chan = NULL; 2060 else 2061 chandef.chan = chan; 2062 2063 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 2064 100 + ie_len); 2065 if (!skb) 2066 return NULL; 2067 2068 rate_masks[chan->band] = ratemask; 2069 ies_len = ieee80211_build_preq_ies(sdata, skb_tail_pointer(skb), 2070 skb_tailroom(skb), &dummy_ie_desc, 2071 ie, ie_len, BIT(chan->band), 2072 rate_masks, &chandef, flags); 2073 skb_put(skb, ies_len); 2074 2075 if (dst) { 2076 mgmt = (struct ieee80211_mgmt *) skb->data; 2077 memcpy(mgmt->da, dst, ETH_ALEN); 2078 memcpy(mgmt->bssid, dst, ETH_ALEN); 2079 } 2080 2081 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 2082 2083 return skb; 2084 } 2085 2086 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 2087 struct ieee802_11_elems *elems, 2088 enum nl80211_band band, u32 *basic_rates) 2089 { 2090 struct ieee80211_supported_band *sband; 2091 size_t num_rates; 2092 u32 supp_rates, rate_flags; 2093 int i, j, shift; 2094 2095 sband = sdata->local->hw.wiphy->bands[band]; 2096 if (WARN_ON(!sband)) 2097 return 1; 2098 2099 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 2100 shift = ieee80211_vif_get_shift(&sdata->vif); 2101 2102 num_rates = sband->n_bitrates; 2103 supp_rates = 0; 2104 for (i = 0; i < elems->supp_rates_len + 2105 elems->ext_supp_rates_len; i++) { 2106 u8 rate = 0; 2107 int own_rate; 2108 bool is_basic; 2109 if (i < elems->supp_rates_len) 2110 rate = elems->supp_rates[i]; 2111 else if (elems->ext_supp_rates) 2112 rate = elems->ext_supp_rates 2113 [i - elems->supp_rates_len]; 2114 own_rate = 5 * (rate & 0x7f); 2115 is_basic = !!(rate & 0x80); 2116 2117 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 2118 continue; 2119 2120 for (j = 0; j < num_rates; j++) { 2121 int brate; 2122 if ((rate_flags & sband->bitrates[j].flags) 2123 != rate_flags) 2124 continue; 2125 2126 brate = DIV_ROUND_UP(sband->bitrates[j].bitrate, 2127 1 << shift); 2128 2129 if (brate == own_rate) { 2130 supp_rates |= BIT(j); 2131 if (basic_rates && is_basic) 2132 *basic_rates |= BIT(j); 2133 } 2134 } 2135 } 2136 return supp_rates; 2137 } 2138 2139 void ieee80211_stop_device(struct ieee80211_local *local) 2140 { 2141 ieee80211_led_radio(local, false); 2142 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 2143 2144 cancel_work_sync(&local->reconfig_filter); 2145 2146 flush_workqueue(local->workqueue); 2147 drv_stop(local); 2148 } 2149 2150 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 2151 bool aborted) 2152 { 2153 /* It's possible that we don't handle the scan completion in 2154 * time during suspend, so if it's still marked as completed 2155 * here, queue the work and flush it to clean things up. 2156 * Instead of calling the worker function directly here, we 2157 * really queue it to avoid potential races with other flows 2158 * scheduling the same work. 2159 */ 2160 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 2161 /* If coming from reconfiguration failure, abort the scan so 2162 * we don't attempt to continue a partial HW scan - which is 2163 * possible otherwise if (e.g.) the 2.4 GHz portion was the 2164 * completed scan, and a 5 GHz portion is still pending. 2165 */ 2166 if (aborted) 2167 set_bit(SCAN_ABORTED, &local->scanning); 2168 ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0); 2169 flush_delayed_work(&local->scan_work); 2170 } 2171 } 2172 2173 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 2174 { 2175 struct ieee80211_sub_if_data *sdata; 2176 struct ieee80211_chanctx *ctx; 2177 2178 /* 2179 * We get here if during resume the device can't be restarted properly. 2180 * We might also get here if this happens during HW reset, which is a 2181 * slightly different situation and we need to drop all connections in 2182 * the latter case. 2183 * 2184 * Ask cfg80211 to turn off all interfaces, this will result in more 2185 * warnings but at least we'll then get into a clean stopped state. 2186 */ 2187 2188 local->resuming = false; 2189 local->suspended = false; 2190 local->in_reconfig = false; 2191 2192 ieee80211_flush_completed_scan(local, true); 2193 2194 /* scheduled scan clearly can't be running any more, but tell 2195 * cfg80211 and clear local state 2196 */ 2197 ieee80211_sched_scan_end(local); 2198 2199 list_for_each_entry(sdata, &local->interfaces, list) 2200 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 2201 2202 /* Mark channel contexts as not being in the driver any more to avoid 2203 * removing them from the driver during the shutdown process... 2204 */ 2205 mutex_lock(&local->chanctx_mtx); 2206 list_for_each_entry(ctx, &local->chanctx_list, list) 2207 ctx->driver_present = false; 2208 mutex_unlock(&local->chanctx_mtx); 2209 } 2210 2211 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 2212 struct ieee80211_sub_if_data *sdata) 2213 { 2214 struct ieee80211_chanctx_conf *conf; 2215 struct ieee80211_chanctx *ctx; 2216 2217 if (!local->use_chanctx) 2218 return; 2219 2220 mutex_lock(&local->chanctx_mtx); 2221 conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2222 lockdep_is_held(&local->chanctx_mtx)); 2223 if (conf) { 2224 ctx = container_of(conf, struct ieee80211_chanctx, conf); 2225 drv_assign_vif_chanctx(local, sdata, ctx); 2226 } 2227 mutex_unlock(&local->chanctx_mtx); 2228 } 2229 2230 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 2231 { 2232 struct ieee80211_local *local = sdata->local; 2233 struct sta_info *sta; 2234 2235 /* add STAs back */ 2236 mutex_lock(&local->sta_mtx); 2237 list_for_each_entry(sta, &local->sta_list, list) { 2238 enum ieee80211_sta_state state; 2239 2240 if (!sta->uploaded || sta->sdata != sdata) 2241 continue; 2242 2243 for (state = IEEE80211_STA_NOTEXIST; 2244 state < sta->sta_state; state++) 2245 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2246 state + 1)); 2247 } 2248 mutex_unlock(&local->sta_mtx); 2249 } 2250 2251 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 2252 { 2253 struct cfg80211_nan_func *func, **funcs; 2254 int res, id, i = 0; 2255 2256 res = drv_start_nan(sdata->local, sdata, 2257 &sdata->u.nan.conf); 2258 if (WARN_ON(res)) 2259 return res; 2260 2261 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 2262 sizeof(*funcs), 2263 GFP_KERNEL); 2264 if (!funcs) 2265 return -ENOMEM; 2266 2267 /* Add all the functions: 2268 * This is a little bit ugly. We need to call a potentially sleeping 2269 * callback for each NAN function, so we can't hold the spinlock. 2270 */ 2271 spin_lock_bh(&sdata->u.nan.func_lock); 2272 2273 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 2274 funcs[i++] = func; 2275 2276 spin_unlock_bh(&sdata->u.nan.func_lock); 2277 2278 for (i = 0; funcs[i]; i++) { 2279 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 2280 if (WARN_ON(res)) 2281 ieee80211_nan_func_terminated(&sdata->vif, 2282 funcs[i]->instance_id, 2283 NL80211_NAN_FUNC_TERM_REASON_ERROR, 2284 GFP_KERNEL); 2285 } 2286 2287 kfree(funcs); 2288 2289 return 0; 2290 } 2291 2292 int ieee80211_reconfig(struct ieee80211_local *local) 2293 { 2294 struct ieee80211_hw *hw = &local->hw; 2295 struct ieee80211_sub_if_data *sdata; 2296 struct ieee80211_chanctx *ctx; 2297 struct sta_info *sta; 2298 int res, i; 2299 bool reconfig_due_to_wowlan = false; 2300 struct ieee80211_sub_if_data *sched_scan_sdata; 2301 struct cfg80211_sched_scan_request *sched_scan_req; 2302 bool sched_scan_stopped = false; 2303 bool suspended = local->suspended; 2304 2305 /* nothing to do if HW shouldn't run */ 2306 if (!local->open_count) 2307 goto wake_up; 2308 2309 #ifdef CONFIG_PM 2310 if (suspended) 2311 local->resuming = true; 2312 2313 if (local->wowlan) { 2314 /* 2315 * In the wowlan case, both mac80211 and the device 2316 * are functional when the resume op is called, so 2317 * clear local->suspended so the device could operate 2318 * normally (e.g. pass rx frames). 2319 */ 2320 local->suspended = false; 2321 res = drv_resume(local); 2322 local->wowlan = false; 2323 if (res < 0) { 2324 local->resuming = false; 2325 return res; 2326 } 2327 if (res == 0) 2328 goto wake_up; 2329 WARN_ON(res > 1); 2330 /* 2331 * res is 1, which means the driver requested 2332 * to go through a regular reset on wakeup. 2333 * restore local->suspended in this case. 2334 */ 2335 reconfig_due_to_wowlan = true; 2336 local->suspended = true; 2337 } 2338 #endif 2339 2340 /* 2341 * In case of hw_restart during suspend (without wowlan), 2342 * cancel restart work, as we are reconfiguring the device 2343 * anyway. 2344 * Note that restart_work is scheduled on a frozen workqueue, 2345 * so we can't deadlock in this case. 2346 */ 2347 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 2348 cancel_work_sync(&local->restart_work); 2349 2350 local->started = false; 2351 2352 /* 2353 * Upon resume hardware can sometimes be goofy due to 2354 * various platform / driver / bus issues, so restarting 2355 * the device may at times not work immediately. Propagate 2356 * the error. 2357 */ 2358 res = drv_start(local); 2359 if (res) { 2360 if (suspended) 2361 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 2362 else 2363 WARN(1, "Hardware became unavailable during restart.\n"); 2364 ieee80211_handle_reconfig_failure(local); 2365 return res; 2366 } 2367 2368 /* setup fragmentation threshold */ 2369 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 2370 2371 /* setup RTS threshold */ 2372 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 2373 2374 /* reset coverage class */ 2375 drv_set_coverage_class(local, hw->wiphy->coverage_class); 2376 2377 ieee80211_led_radio(local, true); 2378 ieee80211_mod_tpt_led_trig(local, 2379 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 2380 2381 /* add interfaces */ 2382 sdata = rtnl_dereference(local->monitor_sdata); 2383 if (sdata) { 2384 /* in HW restart it exists already */ 2385 WARN_ON(local->resuming); 2386 res = drv_add_interface(local, sdata); 2387 if (WARN_ON(res)) { 2388 RCU_INIT_POINTER(local->monitor_sdata, NULL); 2389 synchronize_net(); 2390 kfree(sdata); 2391 } 2392 } 2393 2394 list_for_each_entry(sdata, &local->interfaces, list) { 2395 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2396 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2397 ieee80211_sdata_running(sdata)) { 2398 res = drv_add_interface(local, sdata); 2399 if (WARN_ON(res)) 2400 break; 2401 } 2402 } 2403 2404 /* If adding any of the interfaces failed above, roll back and 2405 * report failure. 2406 */ 2407 if (res) { 2408 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 2409 list) 2410 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2411 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2412 ieee80211_sdata_running(sdata)) 2413 drv_remove_interface(local, sdata); 2414 ieee80211_handle_reconfig_failure(local); 2415 return res; 2416 } 2417 2418 /* add channel contexts */ 2419 if (local->use_chanctx) { 2420 mutex_lock(&local->chanctx_mtx); 2421 list_for_each_entry(ctx, &local->chanctx_list, list) 2422 if (ctx->replace_state != 2423 IEEE80211_CHANCTX_REPLACES_OTHER) 2424 WARN_ON(drv_add_chanctx(local, ctx)); 2425 mutex_unlock(&local->chanctx_mtx); 2426 2427 sdata = rtnl_dereference(local->monitor_sdata); 2428 if (sdata && ieee80211_sdata_running(sdata)) 2429 ieee80211_assign_chanctx(local, sdata); 2430 } 2431 2432 /* reconfigure hardware */ 2433 ieee80211_hw_config(local, ~0); 2434 2435 ieee80211_configure_filter(local); 2436 2437 /* Finally also reconfigure all the BSS information */ 2438 list_for_each_entry(sdata, &local->interfaces, list) { 2439 u32 changed; 2440 2441 if (!ieee80211_sdata_running(sdata)) 2442 continue; 2443 2444 ieee80211_assign_chanctx(local, sdata); 2445 2446 switch (sdata->vif.type) { 2447 case NL80211_IFTYPE_AP_VLAN: 2448 case NL80211_IFTYPE_MONITOR: 2449 break; 2450 case NL80211_IFTYPE_ADHOC: 2451 if (sdata->vif.bss_conf.ibss_joined) 2452 WARN_ON(drv_join_ibss(local, sdata)); 2453 fallthrough; 2454 default: 2455 ieee80211_reconfig_stations(sdata); 2456 fallthrough; 2457 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 2458 for (i = 0; i < IEEE80211_NUM_ACS; i++) 2459 drv_conf_tx(local, sdata, i, 2460 &sdata->tx_conf[i]); 2461 break; 2462 } 2463 2464 /* common change flags for all interface types */ 2465 changed = BSS_CHANGED_ERP_CTS_PROT | 2466 BSS_CHANGED_ERP_PREAMBLE | 2467 BSS_CHANGED_ERP_SLOT | 2468 BSS_CHANGED_HT | 2469 BSS_CHANGED_BASIC_RATES | 2470 BSS_CHANGED_BEACON_INT | 2471 BSS_CHANGED_BSSID | 2472 BSS_CHANGED_CQM | 2473 BSS_CHANGED_QOS | 2474 BSS_CHANGED_IDLE | 2475 BSS_CHANGED_TXPOWER | 2476 BSS_CHANGED_MCAST_RATE; 2477 2478 if (sdata->vif.mu_mimo_owner) 2479 changed |= BSS_CHANGED_MU_GROUPS; 2480 2481 switch (sdata->vif.type) { 2482 case NL80211_IFTYPE_STATION: 2483 changed |= BSS_CHANGED_ASSOC | 2484 BSS_CHANGED_ARP_FILTER | 2485 BSS_CHANGED_PS; 2486 2487 /* Re-send beacon info report to the driver */ 2488 if (sdata->u.mgd.have_beacon) 2489 changed |= BSS_CHANGED_BEACON_INFO; 2490 2491 if (sdata->vif.bss_conf.max_idle_period || 2492 sdata->vif.bss_conf.protected_keep_alive) 2493 changed |= BSS_CHANGED_KEEP_ALIVE; 2494 2495 sdata_lock(sdata); 2496 ieee80211_bss_info_change_notify(sdata, changed); 2497 sdata_unlock(sdata); 2498 break; 2499 case NL80211_IFTYPE_OCB: 2500 changed |= BSS_CHANGED_OCB; 2501 ieee80211_bss_info_change_notify(sdata, changed); 2502 break; 2503 case NL80211_IFTYPE_ADHOC: 2504 changed |= BSS_CHANGED_IBSS; 2505 fallthrough; 2506 case NL80211_IFTYPE_AP: 2507 changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS; 2508 2509 if (sdata->vif.bss_conf.ftm_responder == 1 && 2510 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2511 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2512 changed |= BSS_CHANGED_FTM_RESPONDER; 2513 2514 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2515 changed |= BSS_CHANGED_AP_PROBE_RESP; 2516 2517 if (rcu_access_pointer(sdata->u.ap.beacon)) 2518 drv_start_ap(local, sdata); 2519 } 2520 fallthrough; 2521 case NL80211_IFTYPE_MESH_POINT: 2522 if (sdata->vif.bss_conf.enable_beacon) { 2523 changed |= BSS_CHANGED_BEACON | 2524 BSS_CHANGED_BEACON_ENABLED; 2525 ieee80211_bss_info_change_notify(sdata, changed); 2526 } 2527 break; 2528 case NL80211_IFTYPE_NAN: 2529 res = ieee80211_reconfig_nan(sdata); 2530 if (res < 0) { 2531 ieee80211_handle_reconfig_failure(local); 2532 return res; 2533 } 2534 break; 2535 case NL80211_IFTYPE_AP_VLAN: 2536 case NL80211_IFTYPE_MONITOR: 2537 case NL80211_IFTYPE_P2P_DEVICE: 2538 /* nothing to do */ 2539 break; 2540 case NL80211_IFTYPE_UNSPECIFIED: 2541 case NUM_NL80211_IFTYPES: 2542 case NL80211_IFTYPE_P2P_CLIENT: 2543 case NL80211_IFTYPE_P2P_GO: 2544 case NL80211_IFTYPE_WDS: 2545 WARN_ON(1); 2546 break; 2547 } 2548 } 2549 2550 ieee80211_recalc_ps(local); 2551 2552 /* 2553 * The sta might be in psm against the ap (e.g. because 2554 * this was the state before a hw restart), so we 2555 * explicitly send a null packet in order to make sure 2556 * it'll sync against the ap (and get out of psm). 2557 */ 2558 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2559 list_for_each_entry(sdata, &local->interfaces, list) { 2560 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2561 continue; 2562 if (!sdata->u.mgd.associated) 2563 continue; 2564 2565 ieee80211_send_nullfunc(local, sdata, false); 2566 } 2567 } 2568 2569 /* APs are now beaconing, add back stations */ 2570 mutex_lock(&local->sta_mtx); 2571 list_for_each_entry(sta, &local->sta_list, list) { 2572 enum ieee80211_sta_state state; 2573 2574 if (!sta->uploaded) 2575 continue; 2576 2577 if (sta->sdata->vif.type != NL80211_IFTYPE_AP && 2578 sta->sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 2579 continue; 2580 2581 for (state = IEEE80211_STA_NOTEXIST; 2582 state < sta->sta_state; state++) 2583 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2584 state + 1)); 2585 } 2586 mutex_unlock(&local->sta_mtx); 2587 2588 /* add back keys */ 2589 list_for_each_entry(sdata, &local->interfaces, list) 2590 ieee80211_reenable_keys(sdata); 2591 2592 /* Reconfigure sched scan if it was interrupted by FW restart */ 2593 mutex_lock(&local->mtx); 2594 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2595 lockdep_is_held(&local->mtx)); 2596 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2597 lockdep_is_held(&local->mtx)); 2598 if (sched_scan_sdata && sched_scan_req) 2599 /* 2600 * Sched scan stopped, but we don't want to report it. Instead, 2601 * we're trying to reschedule. However, if more than one scan 2602 * plan was set, we cannot reschedule since we don't know which 2603 * scan plan was currently running (and some scan plans may have 2604 * already finished). 2605 */ 2606 if (sched_scan_req->n_scan_plans > 1 || 2607 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2608 sched_scan_req)) { 2609 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2610 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2611 sched_scan_stopped = true; 2612 } 2613 mutex_unlock(&local->mtx); 2614 2615 if (sched_scan_stopped) 2616 cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0); 2617 2618 wake_up: 2619 2620 if (local->monitors == local->open_count && local->monitors > 0) 2621 ieee80211_add_virtual_monitor(local); 2622 2623 /* 2624 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2625 * sessions can be established after a resume. 2626 * 2627 * Also tear down aggregation sessions since reconfiguring 2628 * them in a hardware restart scenario is not easily done 2629 * right now, and the hardware will have lost information 2630 * about the sessions, but we and the AP still think they 2631 * are active. This is really a workaround though. 2632 */ 2633 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2634 mutex_lock(&local->sta_mtx); 2635 2636 list_for_each_entry(sta, &local->sta_list, list) { 2637 if (!local->resuming) 2638 ieee80211_sta_tear_down_BA_sessions( 2639 sta, AGG_STOP_LOCAL_REQUEST); 2640 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2641 } 2642 2643 mutex_unlock(&local->sta_mtx); 2644 } 2645 2646 if (local->in_reconfig) { 2647 local->in_reconfig = false; 2648 barrier(); 2649 2650 /* Restart deferred ROCs */ 2651 mutex_lock(&local->mtx); 2652 ieee80211_start_next_roc(local); 2653 mutex_unlock(&local->mtx); 2654 2655 /* Requeue all works */ 2656 list_for_each_entry(sdata, &local->interfaces, list) 2657 ieee80211_queue_work(&local->hw, &sdata->work); 2658 } 2659 2660 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2661 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2662 false); 2663 2664 /* 2665 * If this is for hw restart things are still running. 2666 * We may want to change that later, however. 2667 */ 2668 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2669 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2670 2671 if (!suspended) 2672 return 0; 2673 2674 #ifdef CONFIG_PM 2675 /* first set suspended false, then resuming */ 2676 local->suspended = false; 2677 mb(); 2678 local->resuming = false; 2679 2680 ieee80211_flush_completed_scan(local, false); 2681 2682 if (local->open_count && !reconfig_due_to_wowlan) 2683 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2684 2685 list_for_each_entry(sdata, &local->interfaces, list) { 2686 if (!ieee80211_sdata_running(sdata)) 2687 continue; 2688 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2689 ieee80211_sta_restart(sdata); 2690 } 2691 2692 mod_timer(&local->sta_cleanup, jiffies + 1); 2693 #else 2694 WARN_ON(1); 2695 #endif 2696 2697 return 0; 2698 } 2699 2700 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 2701 { 2702 struct ieee80211_sub_if_data *sdata; 2703 struct ieee80211_local *local; 2704 struct ieee80211_key *key; 2705 2706 if (WARN_ON(!vif)) 2707 return; 2708 2709 sdata = vif_to_sdata(vif); 2710 local = sdata->local; 2711 2712 if (WARN_ON(!local->resuming)) 2713 return; 2714 2715 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2716 return; 2717 2718 sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME; 2719 2720 mutex_lock(&local->key_mtx); 2721 list_for_each_entry(key, &sdata->key_list, list) 2722 key->flags |= KEY_FLAG_TAINTED; 2723 mutex_unlock(&local->key_mtx); 2724 } 2725 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 2726 2727 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata) 2728 { 2729 struct ieee80211_local *local = sdata->local; 2730 struct ieee80211_chanctx_conf *chanctx_conf; 2731 struct ieee80211_chanctx *chanctx; 2732 2733 mutex_lock(&local->chanctx_mtx); 2734 2735 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2736 lockdep_is_held(&local->chanctx_mtx)); 2737 2738 /* 2739 * This function can be called from a work, thus it may be possible 2740 * that the chanctx_conf is removed (due to a disconnection, for 2741 * example). 2742 * So nothing should be done in such case. 2743 */ 2744 if (!chanctx_conf) 2745 goto unlock; 2746 2747 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2748 ieee80211_recalc_smps_chanctx(local, chanctx); 2749 unlock: 2750 mutex_unlock(&local->chanctx_mtx); 2751 } 2752 2753 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata) 2754 { 2755 struct ieee80211_local *local = sdata->local; 2756 struct ieee80211_chanctx_conf *chanctx_conf; 2757 struct ieee80211_chanctx *chanctx; 2758 2759 mutex_lock(&local->chanctx_mtx); 2760 2761 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2762 lockdep_is_held(&local->chanctx_mtx)); 2763 2764 if (WARN_ON_ONCE(!chanctx_conf)) 2765 goto unlock; 2766 2767 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2768 ieee80211_recalc_chanctx_min_def(local, chanctx); 2769 unlock: 2770 mutex_unlock(&local->chanctx_mtx); 2771 } 2772 2773 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 2774 { 2775 size_t pos = offset; 2776 2777 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 2778 pos += 2 + ies[pos + 1]; 2779 2780 return pos; 2781 } 2782 2783 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata, 2784 int rssi_min_thold, 2785 int rssi_max_thold) 2786 { 2787 trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold); 2788 2789 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 2790 return; 2791 2792 /* 2793 * Scale up threshold values before storing it, as the RSSI averaging 2794 * algorithm uses a scaled up value as well. Change this scaling 2795 * factor if the RSSI averaging algorithm changes. 2796 */ 2797 sdata->u.mgd.rssi_min_thold = rssi_min_thold*16; 2798 sdata->u.mgd.rssi_max_thold = rssi_max_thold*16; 2799 } 2800 2801 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif, 2802 int rssi_min_thold, 2803 int rssi_max_thold) 2804 { 2805 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2806 2807 WARN_ON(rssi_min_thold == rssi_max_thold || 2808 rssi_min_thold > rssi_max_thold); 2809 2810 _ieee80211_enable_rssi_reports(sdata, rssi_min_thold, 2811 rssi_max_thold); 2812 } 2813 EXPORT_SYMBOL(ieee80211_enable_rssi_reports); 2814 2815 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif) 2816 { 2817 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2818 2819 _ieee80211_enable_rssi_reports(sdata, 0, 0); 2820 } 2821 EXPORT_SYMBOL(ieee80211_disable_rssi_reports); 2822 2823 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2824 u16 cap) 2825 { 2826 __le16 tmp; 2827 2828 *pos++ = WLAN_EID_HT_CAPABILITY; 2829 *pos++ = sizeof(struct ieee80211_ht_cap); 2830 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 2831 2832 /* capability flags */ 2833 tmp = cpu_to_le16(cap); 2834 memcpy(pos, &tmp, sizeof(u16)); 2835 pos += sizeof(u16); 2836 2837 /* AMPDU parameters */ 2838 *pos++ = ht_cap->ampdu_factor | 2839 (ht_cap->ampdu_density << 2840 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 2841 2842 /* MCS set */ 2843 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 2844 pos += sizeof(ht_cap->mcs); 2845 2846 /* extended capabilities */ 2847 pos += sizeof(__le16); 2848 2849 /* BF capabilities */ 2850 pos += sizeof(__le32); 2851 2852 /* antenna selection */ 2853 pos += sizeof(u8); 2854 2855 return pos; 2856 } 2857 2858 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2859 u32 cap) 2860 { 2861 __le32 tmp; 2862 2863 *pos++ = WLAN_EID_VHT_CAPABILITY; 2864 *pos++ = sizeof(struct ieee80211_vht_cap); 2865 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 2866 2867 /* capability flags */ 2868 tmp = cpu_to_le32(cap); 2869 memcpy(pos, &tmp, sizeof(u32)); 2870 pos += sizeof(u32); 2871 2872 /* VHT MCS set */ 2873 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 2874 pos += sizeof(vht_cap->vht_mcs); 2875 2876 return pos; 2877 } 2878 2879 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 2880 { 2881 const struct ieee80211_sta_he_cap *he_cap; 2882 struct ieee80211_supported_band *sband; 2883 u8 n; 2884 2885 sband = ieee80211_get_sband(sdata); 2886 if (!sband) 2887 return 0; 2888 2889 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 2890 if (!he_cap) 2891 return 0; 2892 2893 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2894 return 2 + 1 + 2895 sizeof(he_cap->he_cap_elem) + n + 2896 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2897 he_cap->he_cap_elem.phy_cap_info); 2898 } 2899 2900 u8 *ieee80211_ie_build_he_cap(u8 *pos, 2901 const struct ieee80211_sta_he_cap *he_cap, 2902 u8 *end) 2903 { 2904 u8 n; 2905 u8 ie_len; 2906 u8 *orig_pos = pos; 2907 2908 /* Make sure we have place for the IE */ 2909 /* 2910 * TODO: the 1 added is because this temporarily is under the EXTENSION 2911 * IE. Get rid of it when it moves. 2912 */ 2913 if (!he_cap) 2914 return orig_pos; 2915 2916 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2917 ie_len = 2 + 1 + 2918 sizeof(he_cap->he_cap_elem) + n + 2919 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2920 he_cap->he_cap_elem.phy_cap_info); 2921 2922 if ((end - pos) < ie_len) 2923 return orig_pos; 2924 2925 *pos++ = WLAN_EID_EXTENSION; 2926 pos++; /* We'll set the size later below */ 2927 *pos++ = WLAN_EID_EXT_HE_CAPABILITY; 2928 2929 /* Fixed data */ 2930 memcpy(pos, &he_cap->he_cap_elem, sizeof(he_cap->he_cap_elem)); 2931 pos += sizeof(he_cap->he_cap_elem); 2932 2933 memcpy(pos, &he_cap->he_mcs_nss_supp, n); 2934 pos += n; 2935 2936 /* Check if PPE Threshold should be present */ 2937 if ((he_cap->he_cap_elem.phy_cap_info[6] & 2938 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 2939 goto end; 2940 2941 /* 2942 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 2943 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 2944 */ 2945 n = hweight8(he_cap->ppe_thres[0] & 2946 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 2947 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 2948 IEEE80211_PPE_THRES_NSS_POS)); 2949 2950 /* 2951 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 2952 * total size. 2953 */ 2954 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 2955 n = DIV_ROUND_UP(n, 8); 2956 2957 /* Copy PPE Thresholds */ 2958 memcpy(pos, &he_cap->ppe_thres, n); 2959 pos += n; 2960 2961 end: 2962 orig_pos[1] = (pos - orig_pos) - 2; 2963 return pos; 2964 } 2965 2966 void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata, 2967 struct sk_buff *skb) 2968 { 2969 struct ieee80211_supported_band *sband; 2970 const struct ieee80211_sband_iftype_data *iftd; 2971 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 2972 u8 *pos; 2973 u16 cap; 2974 2975 if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy, 2976 BIT(NL80211_BAND_6GHZ), 2977 IEEE80211_CHAN_NO_HE)) 2978 return; 2979 2980 sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 2981 2982 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 2983 if (!iftd) 2984 return; 2985 2986 /* Check for device HE 6 GHz capability before adding element */ 2987 if (!iftd->he_6ghz_capa.capa) 2988 return; 2989 2990 cap = le16_to_cpu(iftd->he_6ghz_capa.capa); 2991 cap &= ~IEEE80211_HE_6GHZ_CAP_SM_PS; 2992 2993 switch (sdata->smps_mode) { 2994 case IEEE80211_SMPS_AUTOMATIC: 2995 case IEEE80211_SMPS_NUM_MODES: 2996 WARN_ON(1); 2997 fallthrough; 2998 case IEEE80211_SMPS_OFF: 2999 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 3000 IEEE80211_HE_6GHZ_CAP_SM_PS); 3001 break; 3002 case IEEE80211_SMPS_STATIC: 3003 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 3004 IEEE80211_HE_6GHZ_CAP_SM_PS); 3005 break; 3006 case IEEE80211_SMPS_DYNAMIC: 3007 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 3008 IEEE80211_HE_6GHZ_CAP_SM_PS); 3009 break; 3010 } 3011 3012 pos = skb_put(skb, 2 + 1 + sizeof(cap)); 3013 ieee80211_write_he_6ghz_cap(pos, cpu_to_le16(cap), 3014 pos + 2 + 1 + sizeof(cap)); 3015 } 3016 3017 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 3018 const struct cfg80211_chan_def *chandef, 3019 u16 prot_mode, bool rifs_mode) 3020 { 3021 struct ieee80211_ht_operation *ht_oper; 3022 /* Build HT Information */ 3023 *pos++ = WLAN_EID_HT_OPERATION; 3024 *pos++ = sizeof(struct ieee80211_ht_operation); 3025 ht_oper = (struct ieee80211_ht_operation *)pos; 3026 ht_oper->primary_chan = ieee80211_frequency_to_channel( 3027 chandef->chan->center_freq); 3028 switch (chandef->width) { 3029 case NL80211_CHAN_WIDTH_160: 3030 case NL80211_CHAN_WIDTH_80P80: 3031 case NL80211_CHAN_WIDTH_80: 3032 case NL80211_CHAN_WIDTH_40: 3033 if (chandef->center_freq1 > chandef->chan->center_freq) 3034 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3035 else 3036 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3037 break; 3038 default: 3039 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 3040 break; 3041 } 3042 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 3043 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 3044 chandef->width != NL80211_CHAN_WIDTH_20) 3045 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 3046 3047 if (rifs_mode) 3048 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 3049 3050 ht_oper->operation_mode = cpu_to_le16(prot_mode); 3051 ht_oper->stbc_param = 0x0000; 3052 3053 /* It seems that Basic MCS set and Supported MCS set 3054 are identical for the first 10 bytes */ 3055 memset(&ht_oper->basic_set, 0, 16); 3056 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 3057 3058 return pos + sizeof(struct ieee80211_ht_operation); 3059 } 3060 3061 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 3062 const struct cfg80211_chan_def *chandef) 3063 { 3064 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 3065 *pos++ = 3; /* IE length */ 3066 /* New channel width */ 3067 switch (chandef->width) { 3068 case NL80211_CHAN_WIDTH_80: 3069 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 3070 break; 3071 case NL80211_CHAN_WIDTH_160: 3072 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 3073 break; 3074 case NL80211_CHAN_WIDTH_80P80: 3075 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 3076 break; 3077 default: 3078 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 3079 } 3080 3081 /* new center frequency segment 0 */ 3082 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 3083 /* new center frequency segment 1 */ 3084 if (chandef->center_freq2) 3085 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 3086 else 3087 *pos++ = 0; 3088 } 3089 3090 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 3091 const struct cfg80211_chan_def *chandef) 3092 { 3093 struct ieee80211_vht_operation *vht_oper; 3094 3095 *pos++ = WLAN_EID_VHT_OPERATION; 3096 *pos++ = sizeof(struct ieee80211_vht_operation); 3097 vht_oper = (struct ieee80211_vht_operation *)pos; 3098 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 3099 chandef->center_freq1); 3100 if (chandef->center_freq2) 3101 vht_oper->center_freq_seg1_idx = 3102 ieee80211_frequency_to_channel(chandef->center_freq2); 3103 else 3104 vht_oper->center_freq_seg1_idx = 0x00; 3105 3106 switch (chandef->width) { 3107 case NL80211_CHAN_WIDTH_160: 3108 /* 3109 * Convert 160 MHz channel width to new style as interop 3110 * workaround. 3111 */ 3112 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3113 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 3114 if (chandef->chan->center_freq < chandef->center_freq1) 3115 vht_oper->center_freq_seg0_idx -= 8; 3116 else 3117 vht_oper->center_freq_seg0_idx += 8; 3118 break; 3119 case NL80211_CHAN_WIDTH_80P80: 3120 /* 3121 * Convert 80+80 MHz channel width to new style as interop 3122 * workaround. 3123 */ 3124 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3125 break; 3126 case NL80211_CHAN_WIDTH_80: 3127 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3128 break; 3129 default: 3130 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 3131 break; 3132 } 3133 3134 /* don't require special VHT peer rates */ 3135 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 3136 3137 return pos + sizeof(struct ieee80211_vht_operation); 3138 } 3139 3140 u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef) 3141 { 3142 struct ieee80211_he_operation *he_oper; 3143 struct ieee80211_he_6ghz_oper *he_6ghz_op; 3144 u32 he_oper_params; 3145 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 3146 3147 if (chandef->chan->band == NL80211_BAND_6GHZ) 3148 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 3149 3150 *pos++ = WLAN_EID_EXTENSION; 3151 *pos++ = ie_len; 3152 *pos++ = WLAN_EID_EXT_HE_OPERATION; 3153 3154 he_oper_params = 0; 3155 he_oper_params |= u32_encode_bits(1023, /* disabled */ 3156 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 3157 he_oper_params |= u32_encode_bits(1, 3158 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 3159 he_oper_params |= u32_encode_bits(1, 3160 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 3161 if (chandef->chan->band == NL80211_BAND_6GHZ) 3162 he_oper_params |= u32_encode_bits(1, 3163 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 3164 3165 he_oper = (struct ieee80211_he_operation *)pos; 3166 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 3167 3168 /* don't require special HE peer rates */ 3169 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 3170 pos += sizeof(struct ieee80211_he_operation); 3171 3172 if (chandef->chan->band != NL80211_BAND_6GHZ) 3173 goto out; 3174 3175 /* TODO add VHT operational */ 3176 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 3177 he_6ghz_op->minrate = 6; /* 6 Mbps */ 3178 he_6ghz_op->primary = 3179 ieee80211_frequency_to_channel(chandef->chan->center_freq); 3180 he_6ghz_op->ccfs0 = 3181 ieee80211_frequency_to_channel(chandef->center_freq1); 3182 if (chandef->center_freq2) 3183 he_6ghz_op->ccfs1 = 3184 ieee80211_frequency_to_channel(chandef->center_freq2); 3185 else 3186 he_6ghz_op->ccfs1 = 0; 3187 3188 switch (chandef->width) { 3189 case NL80211_CHAN_WIDTH_160: 3190 /* Convert 160 MHz channel width to new style as interop 3191 * workaround. 3192 */ 3193 he_6ghz_op->control = 3194 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3195 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 3196 if (chandef->chan->center_freq < chandef->center_freq1) 3197 he_6ghz_op->ccfs0 -= 8; 3198 else 3199 he_6ghz_op->ccfs0 += 8; 3200 fallthrough; 3201 case NL80211_CHAN_WIDTH_80P80: 3202 he_6ghz_op->control = 3203 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3204 break; 3205 case NL80211_CHAN_WIDTH_80: 3206 he_6ghz_op->control = 3207 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 3208 break; 3209 case NL80211_CHAN_WIDTH_40: 3210 he_6ghz_op->control = 3211 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 3212 break; 3213 default: 3214 he_6ghz_op->control = 3215 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 3216 break; 3217 } 3218 3219 pos += sizeof(struct ieee80211_he_6ghz_oper); 3220 3221 out: 3222 return pos; 3223 } 3224 3225 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 3226 struct cfg80211_chan_def *chandef) 3227 { 3228 enum nl80211_channel_type channel_type; 3229 3230 if (!ht_oper) 3231 return false; 3232 3233 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 3234 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 3235 channel_type = NL80211_CHAN_HT20; 3236 break; 3237 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 3238 channel_type = NL80211_CHAN_HT40PLUS; 3239 break; 3240 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 3241 channel_type = NL80211_CHAN_HT40MINUS; 3242 break; 3243 default: 3244 channel_type = NL80211_CHAN_NO_HT; 3245 return false; 3246 } 3247 3248 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 3249 return true; 3250 } 3251 3252 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 3253 const struct ieee80211_vht_operation *oper, 3254 const struct ieee80211_ht_operation *htop, 3255 struct cfg80211_chan_def *chandef) 3256 { 3257 struct cfg80211_chan_def new = *chandef; 3258 int cf0, cf1; 3259 int ccfs0, ccfs1, ccfs2; 3260 int ccf0, ccf1; 3261 u32 vht_cap; 3262 bool support_80_80 = false; 3263 bool support_160 = false; 3264 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 3265 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 3266 u8 supp_chwidth = u32_get_bits(vht_cap_info, 3267 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 3268 3269 if (!oper || !htop) 3270 return false; 3271 3272 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 3273 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 3274 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 3275 support_80_80 = ((vht_cap & 3276 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 3277 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 3278 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 3279 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 3280 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 3281 ccfs0 = oper->center_freq_seg0_idx; 3282 ccfs1 = oper->center_freq_seg1_idx; 3283 ccfs2 = (le16_to_cpu(htop->operation_mode) & 3284 IEEE80211_HT_OP_MODE_CCFS2_MASK) 3285 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 3286 3287 ccf0 = ccfs0; 3288 3289 /* if not supported, parse as though we didn't understand it */ 3290 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 3291 ext_nss_bw_supp = 0; 3292 3293 /* 3294 * Cf. IEEE 802.11 Table 9-250 3295 * 3296 * We really just consider that because it's inefficient to connect 3297 * at a higher bandwidth than we'll actually be able to use. 3298 */ 3299 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 3300 default: 3301 case 0x00: 3302 ccf1 = 0; 3303 support_160 = false; 3304 support_80_80 = false; 3305 break; 3306 case 0x01: 3307 support_80_80 = false; 3308 fallthrough; 3309 case 0x02: 3310 case 0x03: 3311 ccf1 = ccfs2; 3312 break; 3313 case 0x10: 3314 ccf1 = ccfs1; 3315 break; 3316 case 0x11: 3317 case 0x12: 3318 if (!ccfs1) 3319 ccf1 = ccfs2; 3320 else 3321 ccf1 = ccfs1; 3322 break; 3323 case 0x13: 3324 case 0x20: 3325 case 0x23: 3326 ccf1 = ccfs1; 3327 break; 3328 } 3329 3330 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3331 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3332 3333 switch (oper->chan_width) { 3334 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3335 /* just use HT information directly */ 3336 break; 3337 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3338 new.width = NL80211_CHAN_WIDTH_80; 3339 new.center_freq1 = cf0; 3340 /* If needed, adjust based on the newer interop workaround. */ 3341 if (ccf1) { 3342 unsigned int diff; 3343 3344 diff = abs(ccf1 - ccf0); 3345 if ((diff == 8) && support_160) { 3346 new.width = NL80211_CHAN_WIDTH_160; 3347 new.center_freq1 = cf1; 3348 } else if ((diff > 8) && support_80_80) { 3349 new.width = NL80211_CHAN_WIDTH_80P80; 3350 new.center_freq2 = cf1; 3351 } 3352 } 3353 break; 3354 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3355 /* deprecated encoding */ 3356 new.width = NL80211_CHAN_WIDTH_160; 3357 new.center_freq1 = cf0; 3358 break; 3359 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3360 /* deprecated encoding */ 3361 new.width = NL80211_CHAN_WIDTH_80P80; 3362 new.center_freq1 = cf0; 3363 new.center_freq2 = cf1; 3364 break; 3365 default: 3366 return false; 3367 } 3368 3369 if (!cfg80211_chandef_valid(&new)) 3370 return false; 3371 3372 *chandef = new; 3373 return true; 3374 } 3375 3376 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata, 3377 const struct ieee80211_he_operation *he_oper, 3378 struct cfg80211_chan_def *chandef) 3379 { 3380 struct ieee80211_local *local = sdata->local; 3381 struct ieee80211_supported_band *sband; 3382 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3383 const struct ieee80211_sta_he_cap *he_cap; 3384 struct cfg80211_chan_def he_chandef = *chandef; 3385 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3386 bool support_80_80, support_160; 3387 u8 he_phy_cap; 3388 u32 freq; 3389 3390 if (chandef->chan->band != NL80211_BAND_6GHZ) 3391 return true; 3392 3393 sband = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3394 3395 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 3396 if (!he_cap) { 3397 sdata_info(sdata, "Missing iftype sband data/HE cap"); 3398 return false; 3399 } 3400 3401 he_phy_cap = he_cap->he_cap_elem.phy_cap_info[0]; 3402 support_160 = 3403 he_phy_cap & 3404 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 3405 support_80_80 = 3406 he_phy_cap & 3407 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 3408 3409 if (!he_oper) { 3410 sdata_info(sdata, 3411 "HE is not advertised on (on %d MHz), expect issues\n", 3412 chandef->chan->center_freq); 3413 return false; 3414 } 3415 3416 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3417 3418 if (!he_6ghz_oper) { 3419 sdata_info(sdata, 3420 "HE 6GHz operation missing (on %d MHz), expect issues\n", 3421 chandef->chan->center_freq); 3422 return false; 3423 } 3424 3425 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3426 NL80211_BAND_6GHZ); 3427 he_chandef.chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq); 3428 3429 switch (u8_get_bits(he_6ghz_oper->control, 3430 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3431 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3432 he_chandef.width = NL80211_CHAN_WIDTH_20; 3433 break; 3434 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3435 he_chandef.width = NL80211_CHAN_WIDTH_40; 3436 break; 3437 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3438 he_chandef.width = NL80211_CHAN_WIDTH_80; 3439 break; 3440 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3441 he_chandef.width = NL80211_CHAN_WIDTH_80; 3442 if (!he_6ghz_oper->ccfs1) 3443 break; 3444 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) { 3445 if (support_160) 3446 he_chandef.width = NL80211_CHAN_WIDTH_160; 3447 } else { 3448 if (support_80_80) 3449 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3450 } 3451 break; 3452 } 3453 3454 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3455 he_chandef.center_freq1 = 3456 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3457 NL80211_BAND_6GHZ); 3458 } else { 3459 he_chandef.center_freq1 = 3460 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3461 NL80211_BAND_6GHZ); 3462 if (support_80_80 || support_160) 3463 he_chandef.center_freq2 = 3464 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3465 NL80211_BAND_6GHZ); 3466 } 3467 3468 if (!cfg80211_chandef_valid(&he_chandef)) { 3469 sdata_info(sdata, 3470 "HE 6GHz operation resulted in invalid chandef: %d MHz/%d/%d MHz/%d MHz\n", 3471 he_chandef.chan ? he_chandef.chan->center_freq : 0, 3472 he_chandef.width, 3473 he_chandef.center_freq1, 3474 he_chandef.center_freq2); 3475 return false; 3476 } 3477 3478 *chandef = he_chandef; 3479 3480 return true; 3481 } 3482 3483 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, 3484 struct cfg80211_chan_def *chandef) 3485 { 3486 u32 oper_freq; 3487 3488 if (!oper) 3489 return false; 3490 3491 switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { 3492 case IEEE80211_S1G_CHANWIDTH_1MHZ: 3493 chandef->width = NL80211_CHAN_WIDTH_1; 3494 break; 3495 case IEEE80211_S1G_CHANWIDTH_2MHZ: 3496 chandef->width = NL80211_CHAN_WIDTH_2; 3497 break; 3498 case IEEE80211_S1G_CHANWIDTH_4MHZ: 3499 chandef->width = NL80211_CHAN_WIDTH_4; 3500 break; 3501 case IEEE80211_S1G_CHANWIDTH_8MHZ: 3502 chandef->width = NL80211_CHAN_WIDTH_8; 3503 break; 3504 case IEEE80211_S1G_CHANWIDTH_16MHZ: 3505 chandef->width = NL80211_CHAN_WIDTH_16; 3506 break; 3507 default: 3508 return false; 3509 } 3510 3511 oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch, 3512 NL80211_BAND_S1GHZ); 3513 chandef->center_freq1 = KHZ_TO_MHZ(oper_freq); 3514 chandef->freq1_offset = oper_freq % 1000; 3515 3516 return true; 3517 } 3518 3519 int ieee80211_parse_bitrates(struct cfg80211_chan_def *chandef, 3520 const struct ieee80211_supported_band *sband, 3521 const u8 *srates, int srates_len, u32 *rates) 3522 { 3523 u32 rate_flags = ieee80211_chandef_rate_flags(chandef); 3524 int shift = ieee80211_chandef_get_shift(chandef); 3525 struct ieee80211_rate *br; 3526 int brate, rate, i, j, count = 0; 3527 3528 *rates = 0; 3529 3530 for (i = 0; i < srates_len; i++) { 3531 rate = srates[i] & 0x7f; 3532 3533 for (j = 0; j < sband->n_bitrates; j++) { 3534 br = &sband->bitrates[j]; 3535 if ((rate_flags & br->flags) != rate_flags) 3536 continue; 3537 3538 brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5); 3539 if (brate == rate) { 3540 *rates |= BIT(j); 3541 count++; 3542 break; 3543 } 3544 } 3545 } 3546 return count; 3547 } 3548 3549 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, 3550 struct sk_buff *skb, bool need_basic, 3551 enum nl80211_band band) 3552 { 3553 struct ieee80211_local *local = sdata->local; 3554 struct ieee80211_supported_band *sband; 3555 int rate, shift; 3556 u8 i, rates, *pos; 3557 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3558 u32 rate_flags; 3559 3560 shift = ieee80211_vif_get_shift(&sdata->vif); 3561 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3562 sband = local->hw.wiphy->bands[band]; 3563 rates = 0; 3564 for (i = 0; i < sband->n_bitrates; i++) { 3565 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3566 continue; 3567 rates++; 3568 } 3569 if (rates > 8) 3570 rates = 8; 3571 3572 if (skb_tailroom(skb) < rates + 2) 3573 return -ENOMEM; 3574 3575 pos = skb_put(skb, rates + 2); 3576 *pos++ = WLAN_EID_SUPP_RATES; 3577 *pos++ = rates; 3578 for (i = 0; i < rates; i++) { 3579 u8 basic = 0; 3580 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3581 continue; 3582 3583 if (need_basic && basic_rates & BIT(i)) 3584 basic = 0x80; 3585 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3586 5 * (1 << shift)); 3587 *pos++ = basic | (u8) rate; 3588 } 3589 3590 return 0; 3591 } 3592 3593 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, 3594 struct sk_buff *skb, bool need_basic, 3595 enum nl80211_band band) 3596 { 3597 struct ieee80211_local *local = sdata->local; 3598 struct ieee80211_supported_band *sband; 3599 int rate, shift; 3600 u8 i, exrates, *pos; 3601 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3602 u32 rate_flags; 3603 3604 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3605 shift = ieee80211_vif_get_shift(&sdata->vif); 3606 3607 sband = local->hw.wiphy->bands[band]; 3608 exrates = 0; 3609 for (i = 0; i < sband->n_bitrates; i++) { 3610 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3611 continue; 3612 exrates++; 3613 } 3614 3615 if (exrates > 8) 3616 exrates -= 8; 3617 else 3618 exrates = 0; 3619 3620 if (skb_tailroom(skb) < exrates + 2) 3621 return -ENOMEM; 3622 3623 if (exrates) { 3624 pos = skb_put(skb, exrates + 2); 3625 *pos++ = WLAN_EID_EXT_SUPP_RATES; 3626 *pos++ = exrates; 3627 for (i = 8; i < sband->n_bitrates; i++) { 3628 u8 basic = 0; 3629 if ((rate_flags & sband->bitrates[i].flags) 3630 != rate_flags) 3631 continue; 3632 if (need_basic && basic_rates & BIT(i)) 3633 basic = 0x80; 3634 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3635 5 * (1 << shift)); 3636 *pos++ = basic | (u8) rate; 3637 } 3638 } 3639 return 0; 3640 } 3641 3642 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 3643 { 3644 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 3645 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 3646 3647 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) { 3648 /* non-managed type inferfaces */ 3649 return 0; 3650 } 3651 return -ewma_beacon_signal_read(&ifmgd->ave_beacon_signal); 3652 } 3653 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 3654 3655 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 3656 { 3657 if (!mcs) 3658 return 1; 3659 3660 /* TODO: consider rx_highest */ 3661 3662 if (mcs->rx_mask[3]) 3663 return 4; 3664 if (mcs->rx_mask[2]) 3665 return 3; 3666 if (mcs->rx_mask[1]) 3667 return 2; 3668 return 1; 3669 } 3670 3671 /** 3672 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 3673 * @local: mac80211 hw info struct 3674 * @status: RX status 3675 * @mpdu_len: total MPDU length (including FCS) 3676 * @mpdu_offset: offset into MPDU to calculate timestamp at 3677 * 3678 * This function calculates the RX timestamp at the given MPDU offset, taking 3679 * into account what the RX timestamp was. An offset of 0 will just normalize 3680 * the timestamp to TSF at beginning of MPDU reception. 3681 */ 3682 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 3683 struct ieee80211_rx_status *status, 3684 unsigned int mpdu_len, 3685 unsigned int mpdu_offset) 3686 { 3687 u64 ts = status->mactime; 3688 struct rate_info ri; 3689 u16 rate; 3690 u8 n_ltf; 3691 3692 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 3693 return 0; 3694 3695 memset(&ri, 0, sizeof(ri)); 3696 3697 ri.bw = status->bw; 3698 3699 /* Fill cfg80211 rate info */ 3700 switch (status->encoding) { 3701 case RX_ENC_HE: 3702 ri.flags |= RATE_INFO_FLAGS_HE_MCS; 3703 ri.mcs = status->rate_idx; 3704 ri.nss = status->nss; 3705 ri.he_ru_alloc = status->he_ru; 3706 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3707 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3708 3709 /* 3710 * See P802.11ax_D6.0, section 27.3.4 for 3711 * VHT PPDU format. 3712 */ 3713 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3714 mpdu_offset += 2; 3715 ts += 36; 3716 3717 /* 3718 * TODO: 3719 * For HE MU PPDU, add the HE-SIG-B. 3720 * For HE ER PPDU, add 8us for the HE-SIG-A. 3721 * For HE TB PPDU, add 4us for the HE-STF. 3722 * Add the HE-LTF durations - variable. 3723 */ 3724 } 3725 3726 break; 3727 case RX_ENC_HT: 3728 ri.mcs = status->rate_idx; 3729 ri.flags |= RATE_INFO_FLAGS_MCS; 3730 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3731 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3732 3733 /* 3734 * See P802.11REVmd_D3.0, section 19.3.2 for 3735 * HT PPDU format. 3736 */ 3737 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3738 mpdu_offset += 2; 3739 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 3740 ts += 24; 3741 else 3742 ts += 32; 3743 3744 /* 3745 * Add Data HT-LTFs per streams 3746 * TODO: add Extension HT-LTFs, 4us per LTF 3747 */ 3748 n_ltf = ((ri.mcs >> 3) & 3) + 1; 3749 n_ltf = n_ltf == 3 ? 4 : n_ltf; 3750 ts += n_ltf * 4; 3751 } 3752 3753 break; 3754 case RX_ENC_VHT: 3755 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 3756 ri.mcs = status->rate_idx; 3757 ri.nss = status->nss; 3758 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3759 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3760 3761 /* 3762 * See P802.11REVmd_D3.0, section 21.3.2 for 3763 * VHT PPDU format. 3764 */ 3765 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3766 mpdu_offset += 2; 3767 ts += 36; 3768 3769 /* 3770 * Add VHT-LTFs per streams 3771 */ 3772 n_ltf = (ri.nss != 1) && (ri.nss % 2) ? 3773 ri.nss + 1 : ri.nss; 3774 ts += 4 * n_ltf; 3775 } 3776 3777 break; 3778 default: 3779 WARN_ON(1); 3780 fallthrough; 3781 case RX_ENC_LEGACY: { 3782 struct ieee80211_supported_band *sband; 3783 int shift = 0; 3784 int bitrate; 3785 3786 switch (status->bw) { 3787 case RATE_INFO_BW_10: 3788 shift = 1; 3789 break; 3790 case RATE_INFO_BW_5: 3791 shift = 2; 3792 break; 3793 } 3794 3795 sband = local->hw.wiphy->bands[status->band]; 3796 bitrate = sband->bitrates[status->rate_idx].bitrate; 3797 ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift)); 3798 3799 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3800 if (status->band == NL80211_BAND_5GHZ) { 3801 ts += 20 << shift; 3802 mpdu_offset += 2; 3803 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 3804 ts += 96; 3805 } else { 3806 ts += 192; 3807 } 3808 } 3809 break; 3810 } 3811 } 3812 3813 rate = cfg80211_calculate_bitrate(&ri); 3814 if (WARN_ONCE(!rate, 3815 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 3816 (unsigned long long)status->flag, status->rate_idx, 3817 status->nss)) 3818 return 0; 3819 3820 /* rewind from end of MPDU */ 3821 if (status->flag & RX_FLAG_MACTIME_END) 3822 ts -= mpdu_len * 8 * 10 / rate; 3823 3824 ts += mpdu_offset * 8 * 10 / rate; 3825 3826 return ts; 3827 } 3828 3829 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) 3830 { 3831 struct ieee80211_sub_if_data *sdata; 3832 struct cfg80211_chan_def chandef; 3833 3834 /* for interface list, to avoid linking iflist_mtx and chanctx_mtx */ 3835 lockdep_assert_wiphy(local->hw.wiphy); 3836 3837 mutex_lock(&local->mtx); 3838 list_for_each_entry(sdata, &local->interfaces, list) { 3839 /* it might be waiting for the local->mtx, but then 3840 * by the time it gets it, sdata->wdev.cac_started 3841 * will no longer be true 3842 */ 3843 cancel_delayed_work(&sdata->dfs_cac_timer_work); 3844 3845 if (sdata->wdev.cac_started) { 3846 chandef = sdata->vif.bss_conf.chandef; 3847 ieee80211_vif_release_channel(sdata); 3848 cfg80211_cac_event(sdata->dev, 3849 &chandef, 3850 NL80211_RADAR_CAC_ABORTED, 3851 GFP_KERNEL); 3852 } 3853 } 3854 mutex_unlock(&local->mtx); 3855 } 3856 3857 void ieee80211_dfs_radar_detected_work(struct work_struct *work) 3858 { 3859 struct ieee80211_local *local = 3860 container_of(work, struct ieee80211_local, radar_detected_work); 3861 struct cfg80211_chan_def chandef = local->hw.conf.chandef; 3862 struct ieee80211_chanctx *ctx; 3863 int num_chanctx = 0; 3864 3865 mutex_lock(&local->chanctx_mtx); 3866 list_for_each_entry(ctx, &local->chanctx_list, list) { 3867 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 3868 continue; 3869 3870 num_chanctx++; 3871 chandef = ctx->conf.def; 3872 } 3873 mutex_unlock(&local->chanctx_mtx); 3874 3875 wiphy_lock(local->hw.wiphy); 3876 ieee80211_dfs_cac_cancel(local); 3877 wiphy_unlock(local->hw.wiphy); 3878 3879 if (num_chanctx > 1) 3880 /* XXX: multi-channel is not supported yet */ 3881 WARN_ON(1); 3882 else 3883 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 3884 } 3885 3886 void ieee80211_radar_detected(struct ieee80211_hw *hw) 3887 { 3888 struct ieee80211_local *local = hw_to_local(hw); 3889 3890 trace_api_radar_detected(local); 3891 3892 schedule_work(&local->radar_detected_work); 3893 } 3894 EXPORT_SYMBOL(ieee80211_radar_detected); 3895 3896 u32 ieee80211_chandef_downgrade(struct cfg80211_chan_def *c) 3897 { 3898 u32 ret; 3899 int tmp; 3900 3901 switch (c->width) { 3902 case NL80211_CHAN_WIDTH_20: 3903 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3904 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3905 break; 3906 case NL80211_CHAN_WIDTH_40: 3907 c->width = NL80211_CHAN_WIDTH_20; 3908 c->center_freq1 = c->chan->center_freq; 3909 ret = IEEE80211_STA_DISABLE_40MHZ | 3910 IEEE80211_STA_DISABLE_VHT; 3911 break; 3912 case NL80211_CHAN_WIDTH_80: 3913 tmp = (30 + c->chan->center_freq - c->center_freq1)/20; 3914 /* n_P40 */ 3915 tmp /= 2; 3916 /* freq_P40 */ 3917 c->center_freq1 = c->center_freq1 - 20 + 40 * tmp; 3918 c->width = NL80211_CHAN_WIDTH_40; 3919 ret = IEEE80211_STA_DISABLE_VHT; 3920 break; 3921 case NL80211_CHAN_WIDTH_80P80: 3922 c->center_freq2 = 0; 3923 c->width = NL80211_CHAN_WIDTH_80; 3924 ret = IEEE80211_STA_DISABLE_80P80MHZ | 3925 IEEE80211_STA_DISABLE_160MHZ; 3926 break; 3927 case NL80211_CHAN_WIDTH_160: 3928 /* n_P20 */ 3929 tmp = (70 + c->chan->center_freq - c->center_freq1)/20; 3930 /* n_P80 */ 3931 tmp /= 4; 3932 c->center_freq1 = c->center_freq1 - 40 + 80 * tmp; 3933 c->width = NL80211_CHAN_WIDTH_80; 3934 ret = IEEE80211_STA_DISABLE_80P80MHZ | 3935 IEEE80211_STA_DISABLE_160MHZ; 3936 break; 3937 default: 3938 case NL80211_CHAN_WIDTH_20_NOHT: 3939 WARN_ON_ONCE(1); 3940 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3941 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3942 break; 3943 case NL80211_CHAN_WIDTH_1: 3944 case NL80211_CHAN_WIDTH_2: 3945 case NL80211_CHAN_WIDTH_4: 3946 case NL80211_CHAN_WIDTH_8: 3947 case NL80211_CHAN_WIDTH_16: 3948 case NL80211_CHAN_WIDTH_5: 3949 case NL80211_CHAN_WIDTH_10: 3950 WARN_ON_ONCE(1); 3951 /* keep c->width */ 3952 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3953 break; 3954 } 3955 3956 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 3957 3958 return ret; 3959 } 3960 3961 /* 3962 * Returns true if smps_mode_new is strictly more restrictive than 3963 * smps_mode_old. 3964 */ 3965 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 3966 enum ieee80211_smps_mode smps_mode_new) 3967 { 3968 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 3969 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 3970 return false; 3971 3972 switch (smps_mode_old) { 3973 case IEEE80211_SMPS_STATIC: 3974 return false; 3975 case IEEE80211_SMPS_DYNAMIC: 3976 return smps_mode_new == IEEE80211_SMPS_STATIC; 3977 case IEEE80211_SMPS_OFF: 3978 return smps_mode_new != IEEE80211_SMPS_OFF; 3979 default: 3980 WARN_ON(1); 3981 } 3982 3983 return false; 3984 } 3985 3986 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 3987 struct cfg80211_csa_settings *csa_settings) 3988 { 3989 struct sk_buff *skb; 3990 struct ieee80211_mgmt *mgmt; 3991 struct ieee80211_local *local = sdata->local; 3992 int freq; 3993 int hdr_len = offsetofend(struct ieee80211_mgmt, 3994 u.action.u.chan_switch); 3995 u8 *pos; 3996 3997 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3998 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3999 return -EOPNOTSUPP; 4000 4001 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 4002 5 + /* channel switch announcement element */ 4003 3 + /* secondary channel offset element */ 4004 5 + /* wide bandwidth channel switch announcement */ 4005 8); /* mesh channel switch parameters element */ 4006 if (!skb) 4007 return -ENOMEM; 4008 4009 skb_reserve(skb, local->tx_headroom); 4010 mgmt = skb_put_zero(skb, hdr_len); 4011 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 4012 IEEE80211_STYPE_ACTION); 4013 4014 eth_broadcast_addr(mgmt->da); 4015 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 4016 if (ieee80211_vif_is_mesh(&sdata->vif)) { 4017 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 4018 } else { 4019 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 4020 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 4021 } 4022 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 4023 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 4024 pos = skb_put(skb, 5); 4025 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 4026 *pos++ = 3; /* IE length */ 4027 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 4028 freq = csa_settings->chandef.chan->center_freq; 4029 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 4030 *pos++ = csa_settings->count; /* count */ 4031 4032 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 4033 enum nl80211_channel_type ch_type; 4034 4035 skb_put(skb, 3); 4036 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 4037 *pos++ = 1; /* IE length */ 4038 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 4039 if (ch_type == NL80211_CHAN_HT40PLUS) 4040 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 4041 else 4042 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 4043 } 4044 4045 if (ieee80211_vif_is_mesh(&sdata->vif)) { 4046 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 4047 4048 skb_put(skb, 8); 4049 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 4050 *pos++ = 6; /* IE length */ 4051 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 4052 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 4053 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 4054 *pos++ |= csa_settings->block_tx ? 4055 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 4056 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 4057 pos += 2; 4058 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 4059 pos += 2; 4060 } 4061 4062 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 4063 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 4064 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 4065 skb_put(skb, 5); 4066 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 4067 } 4068 4069 ieee80211_tx_skb(sdata, skb); 4070 return 0; 4071 } 4072 4073 bool ieee80211_cs_valid(const struct ieee80211_cipher_scheme *cs) 4074 { 4075 return !(cs == NULL || cs->cipher == 0 || 4076 cs->hdr_len < cs->pn_len + cs->pn_off || 4077 cs->hdr_len <= cs->key_idx_off || 4078 cs->key_idx_shift > 7 || 4079 cs->key_idx_mask == 0); 4080 } 4081 4082 bool ieee80211_cs_list_valid(const struct ieee80211_cipher_scheme *cs, int n) 4083 { 4084 int i; 4085 4086 /* Ensure we have enough iftype bitmap space for all iftype values */ 4087 WARN_ON((NUM_NL80211_IFTYPES / 8 + 1) > sizeof(cs[0].iftype)); 4088 4089 for (i = 0; i < n; i++) 4090 if (!ieee80211_cs_valid(&cs[i])) 4091 return false; 4092 4093 return true; 4094 } 4095 4096 const struct ieee80211_cipher_scheme * 4097 ieee80211_cs_get(struct ieee80211_local *local, u32 cipher, 4098 enum nl80211_iftype iftype) 4099 { 4100 const struct ieee80211_cipher_scheme *l = local->hw.cipher_schemes; 4101 int n = local->hw.n_cipher_schemes; 4102 int i; 4103 const struct ieee80211_cipher_scheme *cs = NULL; 4104 4105 for (i = 0; i < n; i++) { 4106 if (l[i].cipher == cipher) { 4107 cs = &l[i]; 4108 break; 4109 } 4110 } 4111 4112 if (!cs || !(cs->iftype & BIT(iftype))) 4113 return NULL; 4114 4115 return cs; 4116 } 4117 4118 int ieee80211_cs_headroom(struct ieee80211_local *local, 4119 struct cfg80211_crypto_settings *crypto, 4120 enum nl80211_iftype iftype) 4121 { 4122 const struct ieee80211_cipher_scheme *cs; 4123 int headroom = IEEE80211_ENCRYPT_HEADROOM; 4124 int i; 4125 4126 for (i = 0; i < crypto->n_ciphers_pairwise; i++) { 4127 cs = ieee80211_cs_get(local, crypto->ciphers_pairwise[i], 4128 iftype); 4129 4130 if (cs && headroom < cs->hdr_len) 4131 headroom = cs->hdr_len; 4132 } 4133 4134 cs = ieee80211_cs_get(local, crypto->cipher_group, iftype); 4135 if (cs && headroom < cs->hdr_len) 4136 headroom = cs->hdr_len; 4137 4138 return headroom; 4139 } 4140 4141 static bool 4142 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 4143 { 4144 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 4145 int skip; 4146 4147 if (end > 0) 4148 return false; 4149 4150 /* One shot NOA */ 4151 if (data->count[i] == 1) 4152 return false; 4153 4154 if (data->desc[i].interval == 0) 4155 return false; 4156 4157 /* End time is in the past, check for repetitions */ 4158 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 4159 if (data->count[i] < 255) { 4160 if (data->count[i] <= skip) { 4161 data->count[i] = 0; 4162 return false; 4163 } 4164 4165 data->count[i] -= skip; 4166 } 4167 4168 data->desc[i].start += skip * data->desc[i].interval; 4169 4170 return true; 4171 } 4172 4173 static bool 4174 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 4175 s32 *offset) 4176 { 4177 bool ret = false; 4178 int i; 4179 4180 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4181 s32 cur; 4182 4183 if (!data->count[i]) 4184 continue; 4185 4186 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 4187 ret = true; 4188 4189 cur = data->desc[i].start - tsf; 4190 if (cur > *offset) 4191 continue; 4192 4193 cur = data->desc[i].start + data->desc[i].duration - tsf; 4194 if (cur > *offset) 4195 *offset = cur; 4196 } 4197 4198 return ret; 4199 } 4200 4201 static u32 4202 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 4203 { 4204 s32 offset = 0; 4205 int tries = 0; 4206 /* 4207 * arbitrary limit, used to avoid infinite loops when combined NoA 4208 * descriptors cover the full time period. 4209 */ 4210 int max_tries = 5; 4211 4212 ieee80211_extend_absent_time(data, tsf, &offset); 4213 do { 4214 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 4215 break; 4216 4217 tries++; 4218 } while (tries < max_tries); 4219 4220 return offset; 4221 } 4222 4223 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 4224 { 4225 u32 next_offset = BIT(31) - 1; 4226 int i; 4227 4228 data->absent = 0; 4229 data->has_next_tsf = false; 4230 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4231 s32 start; 4232 4233 if (!data->count[i]) 4234 continue; 4235 4236 ieee80211_extend_noa_desc(data, tsf, i); 4237 start = data->desc[i].start - tsf; 4238 if (start <= 0) 4239 data->absent |= BIT(i); 4240 4241 if (next_offset > start) 4242 next_offset = start; 4243 4244 data->has_next_tsf = true; 4245 } 4246 4247 if (data->absent) 4248 next_offset = ieee80211_get_noa_absent_time(data, tsf); 4249 4250 data->next_tsf = tsf + next_offset; 4251 } 4252 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 4253 4254 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 4255 struct ieee80211_noa_data *data, u32 tsf) 4256 { 4257 int ret = 0; 4258 int i; 4259 4260 memset(data, 0, sizeof(*data)); 4261 4262 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4263 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 4264 4265 if (!desc->count || !desc->duration) 4266 continue; 4267 4268 data->count[i] = desc->count; 4269 data->desc[i].start = le32_to_cpu(desc->start_time); 4270 data->desc[i].duration = le32_to_cpu(desc->duration); 4271 data->desc[i].interval = le32_to_cpu(desc->interval); 4272 4273 if (data->count[i] > 1 && 4274 data->desc[i].interval < data->desc[i].duration) 4275 continue; 4276 4277 ieee80211_extend_noa_desc(data, tsf, i); 4278 ret++; 4279 } 4280 4281 if (ret) 4282 ieee80211_update_p2p_noa(data, tsf); 4283 4284 return ret; 4285 } 4286 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 4287 4288 void ieee80211_recalc_dtim(struct ieee80211_local *local, 4289 struct ieee80211_sub_if_data *sdata) 4290 { 4291 u64 tsf = drv_get_tsf(local, sdata); 4292 u64 dtim_count = 0; 4293 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 4294 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 4295 struct ps_data *ps; 4296 u8 bcns_from_dtim; 4297 4298 if (tsf == -1ULL || !beacon_int || !dtim_period) 4299 return; 4300 4301 if (sdata->vif.type == NL80211_IFTYPE_AP || 4302 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 4303 if (!sdata->bss) 4304 return; 4305 4306 ps = &sdata->bss->ps; 4307 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 4308 ps = &sdata->u.mesh.ps; 4309 } else { 4310 return; 4311 } 4312 4313 /* 4314 * actually finds last dtim_count, mac80211 will update in 4315 * __beacon_add_tim(). 4316 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 4317 */ 4318 do_div(tsf, beacon_int); 4319 bcns_from_dtim = do_div(tsf, dtim_period); 4320 /* just had a DTIM */ 4321 if (!bcns_from_dtim) 4322 dtim_count = 0; 4323 else 4324 dtim_count = dtim_period - bcns_from_dtim; 4325 4326 ps->dtim_count = dtim_count; 4327 } 4328 4329 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 4330 struct ieee80211_chanctx *ctx) 4331 { 4332 struct ieee80211_sub_if_data *sdata; 4333 u8 radar_detect = 0; 4334 4335 lockdep_assert_held(&local->chanctx_mtx); 4336 4337 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 4338 return 0; 4339 4340 list_for_each_entry(sdata, &ctx->reserved_vifs, reserved_chanctx_list) 4341 if (sdata->reserved_radar_required) 4342 radar_detect |= BIT(sdata->reserved_chandef.width); 4343 4344 /* 4345 * An in-place reservation context should not have any assigned vifs 4346 * until it replaces the other context. 4347 */ 4348 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 4349 !list_empty(&ctx->assigned_vifs)); 4350 4351 list_for_each_entry(sdata, &ctx->assigned_vifs, assigned_chanctx_list) 4352 if (sdata->radar_required) 4353 radar_detect |= BIT(sdata->vif.bss_conf.chandef.width); 4354 4355 return radar_detect; 4356 } 4357 4358 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 4359 const struct cfg80211_chan_def *chandef, 4360 enum ieee80211_chanctx_mode chanmode, 4361 u8 radar_detect) 4362 { 4363 struct ieee80211_local *local = sdata->local; 4364 struct ieee80211_sub_if_data *sdata_iter; 4365 enum nl80211_iftype iftype = sdata->wdev.iftype; 4366 struct ieee80211_chanctx *ctx; 4367 int total = 1; 4368 struct iface_combination_params params = { 4369 .radar_detect = radar_detect, 4370 }; 4371 4372 lockdep_assert_held(&local->chanctx_mtx); 4373 4374 if (WARN_ON(hweight32(radar_detect) > 1)) 4375 return -EINVAL; 4376 4377 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4378 !chandef->chan)) 4379 return -EINVAL; 4380 4381 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 4382 return -EINVAL; 4383 4384 if (sdata->vif.type == NL80211_IFTYPE_AP || 4385 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 4386 /* 4387 * always passing this is harmless, since it'll be the 4388 * same value that cfg80211 finds if it finds the same 4389 * interface ... and that's always allowed 4390 */ 4391 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 4392 } 4393 4394 /* Always allow software iftypes */ 4395 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 4396 if (radar_detect) 4397 return -EINVAL; 4398 return 0; 4399 } 4400 4401 if (chandef) 4402 params.num_different_channels = 1; 4403 4404 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 4405 params.iftype_num[iftype] = 1; 4406 4407 list_for_each_entry(ctx, &local->chanctx_list, list) { 4408 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4409 continue; 4410 params.radar_detect |= 4411 ieee80211_chanctx_radar_detect(local, ctx); 4412 if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) { 4413 params.num_different_channels++; 4414 continue; 4415 } 4416 if (chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4417 cfg80211_chandef_compatible(chandef, 4418 &ctx->conf.def)) 4419 continue; 4420 params.num_different_channels++; 4421 } 4422 4423 list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) { 4424 struct wireless_dev *wdev_iter; 4425 4426 wdev_iter = &sdata_iter->wdev; 4427 4428 if (sdata_iter == sdata || 4429 !ieee80211_sdata_running(sdata_iter) || 4430 cfg80211_iftype_allowed(local->hw.wiphy, 4431 wdev_iter->iftype, 0, 1)) 4432 continue; 4433 4434 params.iftype_num[wdev_iter->iftype]++; 4435 total++; 4436 } 4437 4438 if (total == 1 && !params.radar_detect) 4439 return 0; 4440 4441 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4442 } 4443 4444 static void 4445 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4446 void *data) 4447 { 4448 u32 *max_num_different_channels = data; 4449 4450 *max_num_different_channels = max(*max_num_different_channels, 4451 c->num_different_channels); 4452 } 4453 4454 int ieee80211_max_num_channels(struct ieee80211_local *local) 4455 { 4456 struct ieee80211_sub_if_data *sdata; 4457 struct ieee80211_chanctx *ctx; 4458 u32 max_num_different_channels = 1; 4459 int err; 4460 struct iface_combination_params params = {0}; 4461 4462 lockdep_assert_held(&local->chanctx_mtx); 4463 4464 list_for_each_entry(ctx, &local->chanctx_list, list) { 4465 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4466 continue; 4467 4468 params.num_different_channels++; 4469 4470 params.radar_detect |= 4471 ieee80211_chanctx_radar_detect(local, ctx); 4472 } 4473 4474 list_for_each_entry_rcu(sdata, &local->interfaces, list) 4475 params.iftype_num[sdata->wdev.iftype]++; 4476 4477 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4478 ieee80211_iter_max_chans, 4479 &max_num_different_channels); 4480 if (err < 0) 4481 return err; 4482 4483 return max_num_different_channels; 4484 } 4485 4486 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, 4487 struct ieee80211_sta_s1g_cap *caps, 4488 struct sk_buff *skb) 4489 { 4490 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 4491 struct ieee80211_s1g_cap s1g_capab; 4492 u8 *pos; 4493 int i; 4494 4495 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 4496 return; 4497 4498 if (!caps->s1g) 4499 return; 4500 4501 memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); 4502 memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); 4503 4504 /* override the capability info */ 4505 for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { 4506 u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; 4507 4508 s1g_capab.capab_info[i] &= ~mask; 4509 s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; 4510 } 4511 4512 /* then MCS and NSS set */ 4513 for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { 4514 u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; 4515 4516 s1g_capab.supp_mcs_nss[i] &= ~mask; 4517 s1g_capab.supp_mcs_nss[i] |= 4518 ifmgd->s1g_capa.supp_mcs_nss[i] & mask; 4519 } 4520 4521 pos = skb_put(skb, 2 + sizeof(s1g_capab)); 4522 *pos++ = WLAN_EID_S1G_CAPABILITIES; 4523 *pos++ = sizeof(s1g_capab); 4524 4525 memcpy(pos, &s1g_capab, sizeof(s1g_capab)); 4526 } 4527 4528 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, 4529 struct sk_buff *skb) 4530 { 4531 u8 *pos = skb_put(skb, 3); 4532 4533 *pos++ = WLAN_EID_AID_REQUEST; 4534 *pos++ = 1; 4535 *pos++ = 0; 4536 } 4537 4538 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 4539 { 4540 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 4541 *buf++ = 7; /* len */ 4542 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 4543 *buf++ = 0x50; 4544 *buf++ = 0xf2; 4545 *buf++ = 2; /* WME */ 4546 *buf++ = 0; /* WME info */ 4547 *buf++ = 1; /* WME ver */ 4548 *buf++ = qosinfo; /* U-APSD no in use */ 4549 4550 return buf; 4551 } 4552 4553 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 4554 unsigned long *frame_cnt, 4555 unsigned long *byte_cnt) 4556 { 4557 struct txq_info *txqi = to_txq_info(txq); 4558 u32 frag_cnt = 0, frag_bytes = 0; 4559 struct sk_buff *skb; 4560 4561 skb_queue_walk(&txqi->frags, skb) { 4562 frag_cnt++; 4563 frag_bytes += skb->len; 4564 } 4565 4566 if (frame_cnt) 4567 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 4568 4569 if (byte_cnt) 4570 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 4571 } 4572 EXPORT_SYMBOL(ieee80211_txq_get_depth); 4573 4574 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 4575 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 4576 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 4577 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 4578 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 4579 }; 4580 4581 u16 ieee80211_encode_usf(int listen_interval) 4582 { 4583 static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; 4584 u16 ui, usf = 0; 4585 4586 /* find greatest USF */ 4587 while (usf < IEEE80211_MAX_USF) { 4588 if (listen_interval % listen_int_usf[usf + 1]) 4589 break; 4590 usf += 1; 4591 } 4592 ui = listen_interval / listen_int_usf[usf]; 4593 4594 /* error if there is a remainder. Should've been checked by user */ 4595 WARN_ON_ONCE(ui > IEEE80211_MAX_UI); 4596 listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | 4597 FIELD_PREP(LISTEN_INT_UI, ui); 4598 4599 return (u16) listen_interval; 4600 } 4601