1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2019 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 28 #include "ieee80211_i.h" 29 #include "driver-ops.h" 30 #include "rate.h" 31 #include "mesh.h" 32 #include "wme.h" 33 #include "led.h" 34 #include "wep.h" 35 36 /* privid for wiphys to determine whether they belong to us or not */ 37 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 38 39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 40 { 41 struct ieee80211_local *local; 42 BUG_ON(!wiphy); 43 44 local = wiphy_priv(wiphy); 45 return &local->hw; 46 } 47 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 48 49 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 50 { 51 struct sk_buff *skb; 52 struct ieee80211_hdr *hdr; 53 54 skb_queue_walk(&tx->skbs, skb) { 55 hdr = (struct ieee80211_hdr *) skb->data; 56 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 57 } 58 } 59 60 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 61 int rate, int erp, int short_preamble, 62 int shift) 63 { 64 int dur; 65 66 /* calculate duration (in microseconds, rounded up to next higher 67 * integer if it includes a fractional microsecond) to send frame of 68 * len bytes (does not include FCS) at the given rate. Duration will 69 * also include SIFS. 70 * 71 * rate is in 100 kbps, so divident is multiplied by 10 in the 72 * DIV_ROUND_UP() operations. 73 * 74 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and 75 * is assumed to be 0 otherwise. 76 */ 77 78 if (band == NL80211_BAND_5GHZ || erp) { 79 /* 80 * OFDM: 81 * 82 * N_DBPS = DATARATE x 4 83 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 84 * (16 = SIGNAL time, 6 = tail bits) 85 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 86 * 87 * T_SYM = 4 usec 88 * 802.11a - 18.5.2: aSIFSTime = 16 usec 89 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 90 * signal ext = 6 usec 91 */ 92 dur = 16; /* SIFS + signal ext */ 93 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 94 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 95 96 /* IEEE 802.11-2012 18.3.2.4: all values above are: 97 * * times 4 for 5 MHz 98 * * times 2 for 10 MHz 99 */ 100 dur *= 1 << shift; 101 102 /* rates should already consider the channel bandwidth, 103 * don't apply divisor again. 104 */ 105 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 106 4 * rate); /* T_SYM x N_SYM */ 107 } else { 108 /* 109 * 802.11b or 802.11g with 802.11b compatibility: 110 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 111 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 112 * 113 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 114 * aSIFSTime = 10 usec 115 * aPreambleLength = 144 usec or 72 usec with short preamble 116 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 117 */ 118 dur = 10; /* aSIFSTime = 10 usec */ 119 dur += short_preamble ? (72 + 24) : (144 + 48); 120 121 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 122 } 123 124 return dur; 125 } 126 127 /* Exported duration function for driver use */ 128 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 129 struct ieee80211_vif *vif, 130 enum nl80211_band band, 131 size_t frame_len, 132 struct ieee80211_rate *rate) 133 { 134 struct ieee80211_sub_if_data *sdata; 135 u16 dur; 136 int erp, shift = 0; 137 bool short_preamble = false; 138 139 erp = 0; 140 if (vif) { 141 sdata = vif_to_sdata(vif); 142 short_preamble = sdata->vif.bss_conf.use_short_preamble; 143 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 144 erp = rate->flags & IEEE80211_RATE_ERP_G; 145 shift = ieee80211_vif_get_shift(vif); 146 } 147 148 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 149 short_preamble, shift); 150 151 return cpu_to_le16(dur); 152 } 153 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 154 155 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 156 struct ieee80211_vif *vif, size_t frame_len, 157 const struct ieee80211_tx_info *frame_txctl) 158 { 159 struct ieee80211_local *local = hw_to_local(hw); 160 struct ieee80211_rate *rate; 161 struct ieee80211_sub_if_data *sdata; 162 bool short_preamble; 163 int erp, shift = 0, bitrate; 164 u16 dur; 165 struct ieee80211_supported_band *sband; 166 167 sband = local->hw.wiphy->bands[frame_txctl->band]; 168 169 short_preamble = false; 170 171 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 172 173 erp = 0; 174 if (vif) { 175 sdata = vif_to_sdata(vif); 176 short_preamble = sdata->vif.bss_conf.use_short_preamble; 177 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 178 erp = rate->flags & IEEE80211_RATE_ERP_G; 179 shift = ieee80211_vif_get_shift(vif); 180 } 181 182 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 183 184 /* CTS duration */ 185 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 186 erp, short_preamble, shift); 187 /* Data frame duration */ 188 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 189 erp, short_preamble, shift); 190 /* ACK duration */ 191 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 192 erp, short_preamble, shift); 193 194 return cpu_to_le16(dur); 195 } 196 EXPORT_SYMBOL(ieee80211_rts_duration); 197 198 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 199 struct ieee80211_vif *vif, 200 size_t frame_len, 201 const struct ieee80211_tx_info *frame_txctl) 202 { 203 struct ieee80211_local *local = hw_to_local(hw); 204 struct ieee80211_rate *rate; 205 struct ieee80211_sub_if_data *sdata; 206 bool short_preamble; 207 int erp, shift = 0, bitrate; 208 u16 dur; 209 struct ieee80211_supported_band *sband; 210 211 sband = local->hw.wiphy->bands[frame_txctl->band]; 212 213 short_preamble = false; 214 215 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 216 erp = 0; 217 if (vif) { 218 sdata = vif_to_sdata(vif); 219 short_preamble = sdata->vif.bss_conf.use_short_preamble; 220 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 221 erp = rate->flags & IEEE80211_RATE_ERP_G; 222 shift = ieee80211_vif_get_shift(vif); 223 } 224 225 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 226 227 /* Data frame duration */ 228 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 229 erp, short_preamble, shift); 230 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 231 /* ACK duration */ 232 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 233 erp, short_preamble, shift); 234 } 235 236 return cpu_to_le16(dur); 237 } 238 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 239 240 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 241 { 242 struct ieee80211_local *local = sdata->local; 243 struct ieee80211_vif *vif = &sdata->vif; 244 struct fq *fq = &local->fq; 245 struct ps_data *ps = NULL; 246 struct txq_info *txqi; 247 struct sta_info *sta; 248 int i; 249 250 local_bh_disable(); 251 spin_lock(&fq->lock); 252 253 if (sdata->vif.type == NL80211_IFTYPE_AP) 254 ps = &sdata->bss->ps; 255 256 sdata->vif.txqs_stopped[ac] = false; 257 258 list_for_each_entry_rcu(sta, &local->sta_list, list) { 259 if (sdata != sta->sdata) 260 continue; 261 262 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 263 struct ieee80211_txq *txq = sta->sta.txq[i]; 264 265 if (!txq) 266 continue; 267 268 txqi = to_txq_info(txq); 269 270 if (ac != txq->ac) 271 continue; 272 273 if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, 274 &txqi->flags)) 275 continue; 276 277 spin_unlock(&fq->lock); 278 drv_wake_tx_queue(local, txqi); 279 spin_lock(&fq->lock); 280 } 281 } 282 283 if (!vif->txq) 284 goto out; 285 286 txqi = to_txq_info(vif->txq); 287 288 if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, &txqi->flags) || 289 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 290 goto out; 291 292 spin_unlock(&fq->lock); 293 294 drv_wake_tx_queue(local, txqi); 295 local_bh_enable(); 296 return; 297 out: 298 spin_unlock(&fq->lock); 299 local_bh_enable(); 300 } 301 302 static void 303 __releases(&local->queue_stop_reason_lock) 304 __acquires(&local->queue_stop_reason_lock) 305 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 306 { 307 struct ieee80211_sub_if_data *sdata; 308 int n_acs = IEEE80211_NUM_ACS; 309 int i; 310 311 rcu_read_lock(); 312 313 if (local->hw.queues < IEEE80211_NUM_ACS) 314 n_acs = 1; 315 316 for (i = 0; i < local->hw.queues; i++) { 317 if (local->queue_stop_reasons[i]) 318 continue; 319 320 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 321 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 322 int ac; 323 324 for (ac = 0; ac < n_acs; ac++) { 325 int ac_queue = sdata->vif.hw_queue[ac]; 326 327 if (ac_queue == i || 328 sdata->vif.cab_queue == i) 329 __ieee80211_wake_txqs(sdata, ac); 330 } 331 } 332 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 333 } 334 335 rcu_read_unlock(); 336 } 337 338 void ieee80211_wake_txqs(unsigned long data) 339 { 340 struct ieee80211_local *local = (struct ieee80211_local *)data; 341 unsigned long flags; 342 343 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 344 _ieee80211_wake_txqs(local, &flags); 345 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 346 } 347 348 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue) 349 { 350 struct ieee80211_sub_if_data *sdata; 351 int n_acs = IEEE80211_NUM_ACS; 352 353 if (local->ops->wake_tx_queue) 354 return; 355 356 if (local->hw.queues < IEEE80211_NUM_ACS) 357 n_acs = 1; 358 359 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 360 int ac; 361 362 if (!sdata->dev) 363 continue; 364 365 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE && 366 local->queue_stop_reasons[sdata->vif.cab_queue] != 0) 367 continue; 368 369 for (ac = 0; ac < n_acs; ac++) { 370 int ac_queue = sdata->vif.hw_queue[ac]; 371 372 if (ac_queue == queue || 373 (sdata->vif.cab_queue == queue && 374 local->queue_stop_reasons[ac_queue] == 0 && 375 skb_queue_empty(&local->pending[ac_queue]))) 376 netif_wake_subqueue(sdata->dev, ac); 377 } 378 } 379 } 380 381 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 382 enum queue_stop_reason reason, 383 bool refcounted, 384 unsigned long *flags) 385 { 386 struct ieee80211_local *local = hw_to_local(hw); 387 388 trace_wake_queue(local, queue, reason); 389 390 if (WARN_ON(queue >= hw->queues)) 391 return; 392 393 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 394 return; 395 396 if (!refcounted) { 397 local->q_stop_reasons[queue][reason] = 0; 398 } else { 399 local->q_stop_reasons[queue][reason]--; 400 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 401 local->q_stop_reasons[queue][reason] = 0; 402 } 403 404 if (local->q_stop_reasons[queue][reason] == 0) 405 __clear_bit(reason, &local->queue_stop_reasons[queue]); 406 407 if (local->queue_stop_reasons[queue] != 0) 408 /* someone still has this queue stopped */ 409 return; 410 411 if (skb_queue_empty(&local->pending[queue])) { 412 rcu_read_lock(); 413 ieee80211_propagate_queue_wake(local, queue); 414 rcu_read_unlock(); 415 } else 416 tasklet_schedule(&local->tx_pending_tasklet); 417 418 /* 419 * Calling _ieee80211_wake_txqs here can be a problem because it may 420 * release queue_stop_reason_lock which has been taken by 421 * __ieee80211_wake_queue's caller. It is certainly not very nice to 422 * release someone's lock, but it is fine because all the callers of 423 * __ieee80211_wake_queue call it right before releasing the lock. 424 */ 425 if (local->ops->wake_tx_queue) { 426 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 427 tasklet_schedule(&local->wake_txqs_tasklet); 428 else 429 _ieee80211_wake_txqs(local, flags); 430 } 431 } 432 433 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 434 enum queue_stop_reason reason, 435 bool refcounted) 436 { 437 struct ieee80211_local *local = hw_to_local(hw); 438 unsigned long flags; 439 440 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 441 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 442 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 443 } 444 445 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 446 { 447 ieee80211_wake_queue_by_reason(hw, queue, 448 IEEE80211_QUEUE_STOP_REASON_DRIVER, 449 false); 450 } 451 EXPORT_SYMBOL(ieee80211_wake_queue); 452 453 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 454 enum queue_stop_reason reason, 455 bool refcounted) 456 { 457 struct ieee80211_local *local = hw_to_local(hw); 458 struct ieee80211_sub_if_data *sdata; 459 int n_acs = IEEE80211_NUM_ACS; 460 461 trace_stop_queue(local, queue, reason); 462 463 if (WARN_ON(queue >= hw->queues)) 464 return; 465 466 if (!refcounted) 467 local->q_stop_reasons[queue][reason] = 1; 468 else 469 local->q_stop_reasons[queue][reason]++; 470 471 if (__test_and_set_bit(reason, &local->queue_stop_reasons[queue])) 472 return; 473 474 if (local->hw.queues < IEEE80211_NUM_ACS) 475 n_acs = 1; 476 477 rcu_read_lock(); 478 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 479 int ac; 480 481 if (!sdata->dev) 482 continue; 483 484 for (ac = 0; ac < n_acs; ac++) { 485 if (sdata->vif.hw_queue[ac] == queue || 486 sdata->vif.cab_queue == queue) { 487 if (!local->ops->wake_tx_queue) { 488 netif_stop_subqueue(sdata->dev, ac); 489 continue; 490 } 491 spin_lock(&local->fq.lock); 492 sdata->vif.txqs_stopped[ac] = true; 493 spin_unlock(&local->fq.lock); 494 } 495 } 496 } 497 rcu_read_unlock(); 498 } 499 500 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 501 enum queue_stop_reason reason, 502 bool refcounted) 503 { 504 struct ieee80211_local *local = hw_to_local(hw); 505 unsigned long flags; 506 507 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 508 __ieee80211_stop_queue(hw, queue, reason, refcounted); 509 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 510 } 511 512 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 513 { 514 ieee80211_stop_queue_by_reason(hw, queue, 515 IEEE80211_QUEUE_STOP_REASON_DRIVER, 516 false); 517 } 518 EXPORT_SYMBOL(ieee80211_stop_queue); 519 520 void ieee80211_add_pending_skb(struct ieee80211_local *local, 521 struct sk_buff *skb) 522 { 523 struct ieee80211_hw *hw = &local->hw; 524 unsigned long flags; 525 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 526 int queue = info->hw_queue; 527 528 if (WARN_ON(!info->control.vif)) { 529 ieee80211_free_txskb(&local->hw, skb); 530 return; 531 } 532 533 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 534 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 535 false); 536 __skb_queue_tail(&local->pending[queue], skb); 537 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 538 false, &flags); 539 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 540 } 541 542 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 543 struct sk_buff_head *skbs) 544 { 545 struct ieee80211_hw *hw = &local->hw; 546 struct sk_buff *skb; 547 unsigned long flags; 548 int queue, i; 549 550 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 551 while ((skb = skb_dequeue(skbs))) { 552 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 553 554 if (WARN_ON(!info->control.vif)) { 555 ieee80211_free_txskb(&local->hw, skb); 556 continue; 557 } 558 559 queue = info->hw_queue; 560 561 __ieee80211_stop_queue(hw, queue, 562 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 563 false); 564 565 __skb_queue_tail(&local->pending[queue], skb); 566 } 567 568 for (i = 0; i < hw->queues; i++) 569 __ieee80211_wake_queue(hw, i, 570 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 571 false, &flags); 572 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 573 } 574 575 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 576 unsigned long queues, 577 enum queue_stop_reason reason, 578 bool refcounted) 579 { 580 struct ieee80211_local *local = hw_to_local(hw); 581 unsigned long flags; 582 int i; 583 584 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 585 586 for_each_set_bit(i, &queues, hw->queues) 587 __ieee80211_stop_queue(hw, i, reason, refcounted); 588 589 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 590 } 591 592 void ieee80211_stop_queues(struct ieee80211_hw *hw) 593 { 594 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 595 IEEE80211_QUEUE_STOP_REASON_DRIVER, 596 false); 597 } 598 EXPORT_SYMBOL(ieee80211_stop_queues); 599 600 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 601 { 602 struct ieee80211_local *local = hw_to_local(hw); 603 unsigned long flags; 604 int ret; 605 606 if (WARN_ON(queue >= hw->queues)) 607 return true; 608 609 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 610 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 611 &local->queue_stop_reasons[queue]); 612 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 613 return ret; 614 } 615 EXPORT_SYMBOL(ieee80211_queue_stopped); 616 617 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 618 unsigned long queues, 619 enum queue_stop_reason reason, 620 bool refcounted) 621 { 622 struct ieee80211_local *local = hw_to_local(hw); 623 unsigned long flags; 624 int i; 625 626 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 627 628 for_each_set_bit(i, &queues, hw->queues) 629 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 630 631 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 632 } 633 634 void ieee80211_wake_queues(struct ieee80211_hw *hw) 635 { 636 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 637 IEEE80211_QUEUE_STOP_REASON_DRIVER, 638 false); 639 } 640 EXPORT_SYMBOL(ieee80211_wake_queues); 641 642 static unsigned int 643 ieee80211_get_vif_queues(struct ieee80211_local *local, 644 struct ieee80211_sub_if_data *sdata) 645 { 646 unsigned int queues; 647 648 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 649 int ac; 650 651 queues = 0; 652 653 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 654 queues |= BIT(sdata->vif.hw_queue[ac]); 655 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 656 queues |= BIT(sdata->vif.cab_queue); 657 } else { 658 /* all queues */ 659 queues = BIT(local->hw.queues) - 1; 660 } 661 662 return queues; 663 } 664 665 void __ieee80211_flush_queues(struct ieee80211_local *local, 666 struct ieee80211_sub_if_data *sdata, 667 unsigned int queues, bool drop) 668 { 669 if (!local->ops->flush) 670 return; 671 672 /* 673 * If no queue was set, or if the HW doesn't support 674 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 675 */ 676 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 677 queues = ieee80211_get_vif_queues(local, sdata); 678 679 ieee80211_stop_queues_by_reason(&local->hw, queues, 680 IEEE80211_QUEUE_STOP_REASON_FLUSH, 681 false); 682 683 drv_flush(local, sdata, queues, drop); 684 685 ieee80211_wake_queues_by_reason(&local->hw, queues, 686 IEEE80211_QUEUE_STOP_REASON_FLUSH, 687 false); 688 } 689 690 void ieee80211_flush_queues(struct ieee80211_local *local, 691 struct ieee80211_sub_if_data *sdata, bool drop) 692 { 693 __ieee80211_flush_queues(local, sdata, 0, drop); 694 } 695 696 void ieee80211_stop_vif_queues(struct ieee80211_local *local, 697 struct ieee80211_sub_if_data *sdata, 698 enum queue_stop_reason reason) 699 { 700 ieee80211_stop_queues_by_reason(&local->hw, 701 ieee80211_get_vif_queues(local, sdata), 702 reason, true); 703 } 704 705 void ieee80211_wake_vif_queues(struct ieee80211_local *local, 706 struct ieee80211_sub_if_data *sdata, 707 enum queue_stop_reason reason) 708 { 709 ieee80211_wake_queues_by_reason(&local->hw, 710 ieee80211_get_vif_queues(local, sdata), 711 reason, true); 712 } 713 714 static void __iterate_interfaces(struct ieee80211_local *local, 715 u32 iter_flags, 716 void (*iterator)(void *data, u8 *mac, 717 struct ieee80211_vif *vif), 718 void *data) 719 { 720 struct ieee80211_sub_if_data *sdata; 721 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 722 723 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 724 switch (sdata->vif.type) { 725 case NL80211_IFTYPE_MONITOR: 726 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) 727 continue; 728 break; 729 case NL80211_IFTYPE_AP_VLAN: 730 continue; 731 default: 732 break; 733 } 734 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 735 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 736 continue; 737 if (ieee80211_sdata_running(sdata) || !active_only) 738 iterator(data, sdata->vif.addr, 739 &sdata->vif); 740 } 741 742 sdata = rcu_dereference_check(local->monitor_sdata, 743 lockdep_is_held(&local->iflist_mtx) || 744 lockdep_rtnl_is_held()); 745 if (sdata && 746 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 747 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 748 iterator(data, sdata->vif.addr, &sdata->vif); 749 } 750 751 void ieee80211_iterate_interfaces( 752 struct ieee80211_hw *hw, u32 iter_flags, 753 void (*iterator)(void *data, u8 *mac, 754 struct ieee80211_vif *vif), 755 void *data) 756 { 757 struct ieee80211_local *local = hw_to_local(hw); 758 759 mutex_lock(&local->iflist_mtx); 760 __iterate_interfaces(local, iter_flags, iterator, data); 761 mutex_unlock(&local->iflist_mtx); 762 } 763 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 764 765 void ieee80211_iterate_active_interfaces_atomic( 766 struct ieee80211_hw *hw, u32 iter_flags, 767 void (*iterator)(void *data, u8 *mac, 768 struct ieee80211_vif *vif), 769 void *data) 770 { 771 struct ieee80211_local *local = hw_to_local(hw); 772 773 rcu_read_lock(); 774 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 775 iterator, data); 776 rcu_read_unlock(); 777 } 778 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 779 780 void ieee80211_iterate_active_interfaces_rtnl( 781 struct ieee80211_hw *hw, u32 iter_flags, 782 void (*iterator)(void *data, u8 *mac, 783 struct ieee80211_vif *vif), 784 void *data) 785 { 786 struct ieee80211_local *local = hw_to_local(hw); 787 788 ASSERT_RTNL(); 789 790 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 791 iterator, data); 792 } 793 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_rtnl); 794 795 static void __iterate_stations(struct ieee80211_local *local, 796 void (*iterator)(void *data, 797 struct ieee80211_sta *sta), 798 void *data) 799 { 800 struct sta_info *sta; 801 802 list_for_each_entry_rcu(sta, &local->sta_list, list) { 803 if (!sta->uploaded) 804 continue; 805 806 iterator(data, &sta->sta); 807 } 808 } 809 810 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 811 void (*iterator)(void *data, 812 struct ieee80211_sta *sta), 813 void *data) 814 { 815 struct ieee80211_local *local = hw_to_local(hw); 816 817 rcu_read_lock(); 818 __iterate_stations(local, iterator, data); 819 rcu_read_unlock(); 820 } 821 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 822 823 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 824 { 825 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 826 827 if (!ieee80211_sdata_running(sdata) || 828 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 829 return NULL; 830 return &sdata->vif; 831 } 832 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 833 834 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 835 { 836 struct ieee80211_sub_if_data *sdata; 837 838 if (!vif) 839 return NULL; 840 841 sdata = vif_to_sdata(vif); 842 843 if (!ieee80211_sdata_running(sdata) || 844 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 845 return NULL; 846 847 return &sdata->wdev; 848 } 849 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 850 851 /* 852 * Nothing should have been stuffed into the workqueue during 853 * the suspend->resume cycle. Since we can't check each caller 854 * of this function if we are already quiescing / suspended, 855 * check here and don't WARN since this can actually happen when 856 * the rx path (for example) is racing against __ieee80211_suspend 857 * and suspending / quiescing was set after the rx path checked 858 * them. 859 */ 860 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 861 { 862 if (local->quiescing || (local->suspended && !local->resuming)) { 863 pr_warn("queueing ieee80211 work while going to suspend\n"); 864 return false; 865 } 866 867 return true; 868 } 869 870 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 871 { 872 struct ieee80211_local *local = hw_to_local(hw); 873 874 if (!ieee80211_can_queue_work(local)) 875 return; 876 877 queue_work(local->workqueue, work); 878 } 879 EXPORT_SYMBOL(ieee80211_queue_work); 880 881 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 882 struct delayed_work *dwork, 883 unsigned long delay) 884 { 885 struct ieee80211_local *local = hw_to_local(hw); 886 887 if (!ieee80211_can_queue_work(local)) 888 return; 889 890 queue_delayed_work(local->workqueue, dwork, delay); 891 } 892 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 893 894 static u32 895 _ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, 896 struct ieee802_11_elems *elems, 897 u64 filter, u32 crc, 898 const struct element *check_inherit) 899 { 900 const struct element *elem; 901 bool calc_crc = filter != 0; 902 DECLARE_BITMAP(seen_elems, 256); 903 const u8 *ie; 904 905 bitmap_zero(seen_elems, 256); 906 907 for_each_element(elem, start, len) { 908 bool elem_parse_failed; 909 u8 id = elem->id; 910 u8 elen = elem->datalen; 911 const u8 *pos = elem->data; 912 913 if (check_inherit && 914 !cfg80211_is_element_inherited(elem, 915 check_inherit)) 916 continue; 917 918 switch (id) { 919 case WLAN_EID_SSID: 920 case WLAN_EID_SUPP_RATES: 921 case WLAN_EID_FH_PARAMS: 922 case WLAN_EID_DS_PARAMS: 923 case WLAN_EID_CF_PARAMS: 924 case WLAN_EID_TIM: 925 case WLAN_EID_IBSS_PARAMS: 926 case WLAN_EID_CHALLENGE: 927 case WLAN_EID_RSN: 928 case WLAN_EID_ERP_INFO: 929 case WLAN_EID_EXT_SUPP_RATES: 930 case WLAN_EID_HT_CAPABILITY: 931 case WLAN_EID_HT_OPERATION: 932 case WLAN_EID_VHT_CAPABILITY: 933 case WLAN_EID_VHT_OPERATION: 934 case WLAN_EID_MESH_ID: 935 case WLAN_EID_MESH_CONFIG: 936 case WLAN_EID_PEER_MGMT: 937 case WLAN_EID_PREQ: 938 case WLAN_EID_PREP: 939 case WLAN_EID_PERR: 940 case WLAN_EID_RANN: 941 case WLAN_EID_CHANNEL_SWITCH: 942 case WLAN_EID_EXT_CHANSWITCH_ANN: 943 case WLAN_EID_COUNTRY: 944 case WLAN_EID_PWR_CONSTRAINT: 945 case WLAN_EID_TIMEOUT_INTERVAL: 946 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 947 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 948 case WLAN_EID_CHAN_SWITCH_PARAM: 949 case WLAN_EID_EXT_CAPABILITY: 950 case WLAN_EID_CHAN_SWITCH_TIMING: 951 case WLAN_EID_LINK_ID: 952 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 953 /* 954 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible 955 * that if the content gets bigger it might be needed more than once 956 */ 957 if (test_bit(id, seen_elems)) { 958 elems->parse_error = true; 959 continue; 960 } 961 break; 962 } 963 964 if (calc_crc && id < 64 && (filter & (1ULL << id))) 965 crc = crc32_be(crc, pos - 2, elen + 2); 966 967 elem_parse_failed = false; 968 969 switch (id) { 970 case WLAN_EID_LINK_ID: 971 if (elen + 2 != sizeof(struct ieee80211_tdls_lnkie)) { 972 elem_parse_failed = true; 973 break; 974 } 975 elems->lnk_id = (void *)(pos - 2); 976 break; 977 case WLAN_EID_CHAN_SWITCH_TIMING: 978 if (elen != sizeof(struct ieee80211_ch_switch_timing)) { 979 elem_parse_failed = true; 980 break; 981 } 982 elems->ch_sw_timing = (void *)pos; 983 break; 984 case WLAN_EID_EXT_CAPABILITY: 985 elems->ext_capab = pos; 986 elems->ext_capab_len = elen; 987 break; 988 case WLAN_EID_SSID: 989 elems->ssid = pos; 990 elems->ssid_len = elen; 991 break; 992 case WLAN_EID_SUPP_RATES: 993 elems->supp_rates = pos; 994 elems->supp_rates_len = elen; 995 break; 996 case WLAN_EID_DS_PARAMS: 997 if (elen >= 1) 998 elems->ds_params = pos; 999 else 1000 elem_parse_failed = true; 1001 break; 1002 case WLAN_EID_TIM: 1003 if (elen >= sizeof(struct ieee80211_tim_ie)) { 1004 elems->tim = (void *)pos; 1005 elems->tim_len = elen; 1006 } else 1007 elem_parse_failed = true; 1008 break; 1009 case WLAN_EID_CHALLENGE: 1010 elems->challenge = pos; 1011 elems->challenge_len = elen; 1012 break; 1013 case WLAN_EID_VENDOR_SPECIFIC: 1014 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && 1015 pos[2] == 0xf2) { 1016 /* Microsoft OUI (00:50:F2) */ 1017 1018 if (calc_crc) 1019 crc = crc32_be(crc, pos - 2, elen + 2); 1020 1021 if (elen >= 5 && pos[3] == 2) { 1022 /* OUI Type 2 - WMM IE */ 1023 if (pos[4] == 0) { 1024 elems->wmm_info = pos; 1025 elems->wmm_info_len = elen; 1026 } else if (pos[4] == 1) { 1027 elems->wmm_param = pos; 1028 elems->wmm_param_len = elen; 1029 } 1030 } 1031 } 1032 break; 1033 case WLAN_EID_RSN: 1034 elems->rsn = pos; 1035 elems->rsn_len = elen; 1036 break; 1037 case WLAN_EID_ERP_INFO: 1038 if (elen >= 1) 1039 elems->erp_info = pos; 1040 else 1041 elem_parse_failed = true; 1042 break; 1043 case WLAN_EID_EXT_SUPP_RATES: 1044 elems->ext_supp_rates = pos; 1045 elems->ext_supp_rates_len = elen; 1046 break; 1047 case WLAN_EID_HT_CAPABILITY: 1048 if (elen >= sizeof(struct ieee80211_ht_cap)) 1049 elems->ht_cap_elem = (void *)pos; 1050 else 1051 elem_parse_failed = true; 1052 break; 1053 case WLAN_EID_HT_OPERATION: 1054 if (elen >= sizeof(struct ieee80211_ht_operation)) 1055 elems->ht_operation = (void *)pos; 1056 else 1057 elem_parse_failed = true; 1058 break; 1059 case WLAN_EID_VHT_CAPABILITY: 1060 if (elen >= sizeof(struct ieee80211_vht_cap)) 1061 elems->vht_cap_elem = (void *)pos; 1062 else 1063 elem_parse_failed = true; 1064 break; 1065 case WLAN_EID_VHT_OPERATION: 1066 if (elen >= sizeof(struct ieee80211_vht_operation)) 1067 elems->vht_operation = (void *)pos; 1068 else 1069 elem_parse_failed = true; 1070 break; 1071 case WLAN_EID_OPMODE_NOTIF: 1072 if (elen > 0) 1073 elems->opmode_notif = pos; 1074 else 1075 elem_parse_failed = true; 1076 break; 1077 case WLAN_EID_MESH_ID: 1078 elems->mesh_id = pos; 1079 elems->mesh_id_len = elen; 1080 break; 1081 case WLAN_EID_MESH_CONFIG: 1082 if (elen >= sizeof(struct ieee80211_meshconf_ie)) 1083 elems->mesh_config = (void *)pos; 1084 else 1085 elem_parse_failed = true; 1086 break; 1087 case WLAN_EID_PEER_MGMT: 1088 elems->peering = pos; 1089 elems->peering_len = elen; 1090 break; 1091 case WLAN_EID_MESH_AWAKE_WINDOW: 1092 if (elen >= 2) 1093 elems->awake_window = (void *)pos; 1094 break; 1095 case WLAN_EID_PREQ: 1096 elems->preq = pos; 1097 elems->preq_len = elen; 1098 break; 1099 case WLAN_EID_PREP: 1100 elems->prep = pos; 1101 elems->prep_len = elen; 1102 break; 1103 case WLAN_EID_PERR: 1104 elems->perr = pos; 1105 elems->perr_len = elen; 1106 break; 1107 case WLAN_EID_RANN: 1108 if (elen >= sizeof(struct ieee80211_rann_ie)) 1109 elems->rann = (void *)pos; 1110 else 1111 elem_parse_failed = true; 1112 break; 1113 case WLAN_EID_CHANNEL_SWITCH: 1114 if (elen != sizeof(struct ieee80211_channel_sw_ie)) { 1115 elem_parse_failed = true; 1116 break; 1117 } 1118 elems->ch_switch_ie = (void *)pos; 1119 break; 1120 case WLAN_EID_EXT_CHANSWITCH_ANN: 1121 if (elen != sizeof(struct ieee80211_ext_chansw_ie)) { 1122 elem_parse_failed = true; 1123 break; 1124 } 1125 elems->ext_chansw_ie = (void *)pos; 1126 break; 1127 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1128 if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) { 1129 elem_parse_failed = true; 1130 break; 1131 } 1132 elems->sec_chan_offs = (void *)pos; 1133 break; 1134 case WLAN_EID_CHAN_SWITCH_PARAM: 1135 if (elen != 1136 sizeof(*elems->mesh_chansw_params_ie)) { 1137 elem_parse_failed = true; 1138 break; 1139 } 1140 elems->mesh_chansw_params_ie = (void *)pos; 1141 break; 1142 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1143 if (!action || 1144 elen != sizeof(*elems->wide_bw_chansw_ie)) { 1145 elem_parse_failed = true; 1146 break; 1147 } 1148 elems->wide_bw_chansw_ie = (void *)pos; 1149 break; 1150 case WLAN_EID_CHANNEL_SWITCH_WRAPPER: 1151 if (action) { 1152 elem_parse_failed = true; 1153 break; 1154 } 1155 /* 1156 * This is a bit tricky, but as we only care about 1157 * the wide bandwidth channel switch element, so 1158 * just parse it out manually. 1159 */ 1160 ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH, 1161 pos, elen); 1162 if (ie) { 1163 if (ie[1] == sizeof(*elems->wide_bw_chansw_ie)) 1164 elems->wide_bw_chansw_ie = 1165 (void *)(ie + 2); 1166 else 1167 elem_parse_failed = true; 1168 } 1169 break; 1170 case WLAN_EID_COUNTRY: 1171 elems->country_elem = pos; 1172 elems->country_elem_len = elen; 1173 break; 1174 case WLAN_EID_PWR_CONSTRAINT: 1175 if (elen != 1) { 1176 elem_parse_failed = true; 1177 break; 1178 } 1179 elems->pwr_constr_elem = pos; 1180 break; 1181 case WLAN_EID_CISCO_VENDOR_SPECIFIC: 1182 /* Lots of different options exist, but we only care 1183 * about the Dynamic Transmit Power Control element. 1184 * First check for the Cisco OUI, then for the DTPC 1185 * tag (0x00). 1186 */ 1187 if (elen < 4) { 1188 elem_parse_failed = true; 1189 break; 1190 } 1191 1192 if (pos[0] != 0x00 || pos[1] != 0x40 || 1193 pos[2] != 0x96 || pos[3] != 0x00) 1194 break; 1195 1196 if (elen != 6) { 1197 elem_parse_failed = true; 1198 break; 1199 } 1200 1201 if (calc_crc) 1202 crc = crc32_be(crc, pos - 2, elen + 2); 1203 1204 elems->cisco_dtpc_elem = pos; 1205 break; 1206 case WLAN_EID_ADDBA_EXT: 1207 if (elen != sizeof(struct ieee80211_addba_ext_ie)) { 1208 elem_parse_failed = true; 1209 break; 1210 } 1211 elems->addba_ext_ie = (void *)pos; 1212 break; 1213 case WLAN_EID_TIMEOUT_INTERVAL: 1214 if (elen >= sizeof(struct ieee80211_timeout_interval_ie)) 1215 elems->timeout_int = (void *)pos; 1216 else 1217 elem_parse_failed = true; 1218 break; 1219 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1220 if (elen >= sizeof(*elems->max_idle_period_ie)) 1221 elems->max_idle_period_ie = (void *)pos; 1222 break; 1223 case WLAN_EID_EXTENSION: 1224 if (pos[0] == WLAN_EID_EXT_HE_MU_EDCA && 1225 elen >= (sizeof(*elems->mu_edca_param_set) + 1)) { 1226 elems->mu_edca_param_set = (void *)&pos[1]; 1227 if (calc_crc) 1228 crc = crc32_be(crc, pos - 2, elen + 2); 1229 } else if (pos[0] == WLAN_EID_EXT_HE_CAPABILITY) { 1230 elems->he_cap = (void *)&pos[1]; 1231 elems->he_cap_len = elen - 1; 1232 } else if (pos[0] == WLAN_EID_EXT_HE_OPERATION && 1233 elen >= sizeof(*elems->he_operation) && 1234 elen >= ieee80211_he_oper_size(&pos[1])) { 1235 elems->he_operation = (void *)&pos[1]; 1236 } else if (pos[0] == WLAN_EID_EXT_UORA && elen >= 1) { 1237 elems->uora_element = (void *)&pos[1]; 1238 } else if (pos[0] == 1239 WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME && 1240 elen == 4) { 1241 elems->max_channel_switch_time = pos + 1; 1242 } else if (pos[0] == 1243 WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION && 1244 elen == 3) { 1245 elems->mbssid_config_ie = (void *)&pos[1]; 1246 } else if (pos[0] == WLAN_EID_EXT_HE_SPR && 1247 elen >= sizeof(*elems->he_spr) && 1248 elen >= ieee80211_he_spr_size(&pos[1])) { 1249 elems->he_spr = (void *)&pos[1]; 1250 } 1251 break; 1252 default: 1253 break; 1254 } 1255 1256 if (elem_parse_failed) 1257 elems->parse_error = true; 1258 else 1259 __set_bit(id, seen_elems); 1260 } 1261 1262 if (!for_each_element_completed(elem, start, len)) 1263 elems->parse_error = true; 1264 1265 return crc; 1266 } 1267 1268 static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len, 1269 struct ieee802_11_elems *elems, 1270 u8 *transmitter_bssid, 1271 u8 *bss_bssid, 1272 u8 *nontransmitted_profile) 1273 { 1274 const struct element *elem, *sub; 1275 size_t profile_len = 0; 1276 bool found = false; 1277 1278 if (!bss_bssid || !transmitter_bssid) 1279 return profile_len; 1280 1281 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) { 1282 if (elem->datalen < 2) 1283 continue; 1284 1285 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 1286 u8 new_bssid[ETH_ALEN]; 1287 const u8 *index; 1288 1289 if (sub->id != 0 || sub->datalen < 4) { 1290 /* not a valid BSS profile */ 1291 continue; 1292 } 1293 1294 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 1295 sub->data[1] != 2) { 1296 /* The first element of the 1297 * Nontransmitted BSSID Profile is not 1298 * the Nontransmitted BSSID Capability 1299 * element. 1300 */ 1301 continue; 1302 } 1303 1304 memset(nontransmitted_profile, 0, len); 1305 profile_len = cfg80211_merge_profile(start, len, 1306 elem, 1307 sub, 1308 nontransmitted_profile, 1309 len); 1310 1311 /* found a Nontransmitted BSSID Profile */ 1312 index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, 1313 nontransmitted_profile, 1314 profile_len); 1315 if (!index || index[1] < 1 || index[2] == 0) { 1316 /* Invalid MBSSID Index element */ 1317 continue; 1318 } 1319 1320 cfg80211_gen_new_bssid(transmitter_bssid, 1321 elem->data[0], 1322 index[2], 1323 new_bssid); 1324 if (ether_addr_equal(new_bssid, bss_bssid)) { 1325 found = true; 1326 elems->bssid_index_len = index[1]; 1327 elems->bssid_index = (void *)&index[2]; 1328 break; 1329 } 1330 } 1331 } 1332 1333 return found ? profile_len : 0; 1334 } 1335 1336 u32 ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, 1337 struct ieee802_11_elems *elems, 1338 u64 filter, u32 crc, u8 *transmitter_bssid, 1339 u8 *bss_bssid) 1340 { 1341 const struct element *non_inherit = NULL; 1342 u8 *nontransmitted_profile; 1343 int nontransmitted_profile_len = 0; 1344 1345 memset(elems, 0, sizeof(*elems)); 1346 elems->ie_start = start; 1347 elems->total_len = len; 1348 1349 nontransmitted_profile = kmalloc(len, GFP_ATOMIC); 1350 if (nontransmitted_profile) { 1351 nontransmitted_profile_len = 1352 ieee802_11_find_bssid_profile(start, len, elems, 1353 transmitter_bssid, 1354 bss_bssid, 1355 nontransmitted_profile); 1356 non_inherit = 1357 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 1358 nontransmitted_profile, 1359 nontransmitted_profile_len); 1360 } 1361 1362 crc = _ieee802_11_parse_elems_crc(start, len, action, elems, filter, 1363 crc, non_inherit); 1364 1365 /* Override with nontransmitted profile, if found */ 1366 if (nontransmitted_profile_len) 1367 _ieee802_11_parse_elems_crc(nontransmitted_profile, 1368 nontransmitted_profile_len, 1369 action, elems, 0, 0, NULL); 1370 1371 if (elems->tim && !elems->parse_error) { 1372 const struct ieee80211_tim_ie *tim_ie = elems->tim; 1373 1374 elems->dtim_period = tim_ie->dtim_period; 1375 elems->dtim_count = tim_ie->dtim_count; 1376 } 1377 1378 /* Override DTIM period and count if needed */ 1379 if (elems->bssid_index && 1380 elems->bssid_index_len >= 1381 offsetofend(struct ieee80211_bssid_index, dtim_period)) 1382 elems->dtim_period = elems->bssid_index->dtim_period; 1383 1384 if (elems->bssid_index && 1385 elems->bssid_index_len >= 1386 offsetofend(struct ieee80211_bssid_index, dtim_count)) 1387 elems->dtim_count = elems->bssid_index->dtim_count; 1388 1389 kfree(nontransmitted_profile); 1390 1391 return crc; 1392 } 1393 1394 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 1395 struct ieee80211_tx_queue_params 1396 *qparam, int ac) 1397 { 1398 struct ieee80211_chanctx_conf *chanctx_conf; 1399 const struct ieee80211_reg_rule *rrule; 1400 const struct ieee80211_wmm_ac *wmm_ac; 1401 u16 center_freq = 0; 1402 1403 if (sdata->vif.type != NL80211_IFTYPE_AP && 1404 sdata->vif.type != NL80211_IFTYPE_STATION) 1405 return; 1406 1407 rcu_read_lock(); 1408 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1409 if (chanctx_conf) 1410 center_freq = chanctx_conf->def.chan->center_freq; 1411 1412 if (!center_freq) { 1413 rcu_read_unlock(); 1414 return; 1415 } 1416 1417 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 1418 1419 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 1420 rcu_read_unlock(); 1421 return; 1422 } 1423 1424 if (sdata->vif.type == NL80211_IFTYPE_AP) 1425 wmm_ac = &rrule->wmm_rule.ap[ac]; 1426 else 1427 wmm_ac = &rrule->wmm_rule.client[ac]; 1428 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 1429 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 1430 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 1431 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 1432 rcu_read_unlock(); 1433 } 1434 1435 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata, 1436 bool bss_notify, bool enable_qos) 1437 { 1438 struct ieee80211_local *local = sdata->local; 1439 struct ieee80211_tx_queue_params qparam; 1440 struct ieee80211_chanctx_conf *chanctx_conf; 1441 int ac; 1442 bool use_11b; 1443 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 1444 int aCWmin, aCWmax; 1445 1446 if (!local->ops->conf_tx) 1447 return; 1448 1449 if (local->hw.queues < IEEE80211_NUM_ACS) 1450 return; 1451 1452 memset(&qparam, 0, sizeof(qparam)); 1453 1454 rcu_read_lock(); 1455 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1456 use_11b = (chanctx_conf && 1457 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 1458 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE); 1459 rcu_read_unlock(); 1460 1461 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 1462 1463 /* Set defaults according to 802.11-2007 Table 7-37 */ 1464 aCWmax = 1023; 1465 if (use_11b) 1466 aCWmin = 31; 1467 else 1468 aCWmin = 15; 1469 1470 /* Confiure old 802.11b/g medium access rules. */ 1471 qparam.cw_max = aCWmax; 1472 qparam.cw_min = aCWmin; 1473 qparam.txop = 0; 1474 qparam.aifs = 2; 1475 1476 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1477 /* Update if QoS is enabled. */ 1478 if (enable_qos) { 1479 switch (ac) { 1480 case IEEE80211_AC_BK: 1481 qparam.cw_max = aCWmax; 1482 qparam.cw_min = aCWmin; 1483 qparam.txop = 0; 1484 if (is_ocb) 1485 qparam.aifs = 9; 1486 else 1487 qparam.aifs = 7; 1488 break; 1489 /* never happens but let's not leave undefined */ 1490 default: 1491 case IEEE80211_AC_BE: 1492 qparam.cw_max = aCWmax; 1493 qparam.cw_min = aCWmin; 1494 qparam.txop = 0; 1495 if (is_ocb) 1496 qparam.aifs = 6; 1497 else 1498 qparam.aifs = 3; 1499 break; 1500 case IEEE80211_AC_VI: 1501 qparam.cw_max = aCWmin; 1502 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1503 if (is_ocb) 1504 qparam.txop = 0; 1505 else if (use_11b) 1506 qparam.txop = 6016/32; 1507 else 1508 qparam.txop = 3008/32; 1509 1510 if (is_ocb) 1511 qparam.aifs = 3; 1512 else 1513 qparam.aifs = 2; 1514 break; 1515 case IEEE80211_AC_VO: 1516 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1517 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1518 if (is_ocb) 1519 qparam.txop = 0; 1520 else if (use_11b) 1521 qparam.txop = 3264/32; 1522 else 1523 qparam.txop = 1504/32; 1524 qparam.aifs = 2; 1525 break; 1526 } 1527 } 1528 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1529 1530 qparam.uapsd = false; 1531 1532 sdata->tx_conf[ac] = qparam; 1533 drv_conf_tx(local, sdata, ac, &qparam); 1534 } 1535 1536 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1537 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1538 sdata->vif.type != NL80211_IFTYPE_NAN) { 1539 sdata->vif.bss_conf.qos = enable_qos; 1540 if (bss_notify) 1541 ieee80211_bss_info_change_notify(sdata, 1542 BSS_CHANGED_QOS); 1543 } 1544 } 1545 1546 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1547 u16 transaction, u16 auth_alg, u16 status, 1548 const u8 *extra, size_t extra_len, const u8 *da, 1549 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1550 u32 tx_flags) 1551 { 1552 struct ieee80211_local *local = sdata->local; 1553 struct sk_buff *skb; 1554 struct ieee80211_mgmt *mgmt; 1555 int err; 1556 1557 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1558 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1559 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN); 1560 if (!skb) 1561 return; 1562 1563 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1564 1565 mgmt = skb_put_zero(skb, 24 + 6); 1566 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1567 IEEE80211_STYPE_AUTH); 1568 memcpy(mgmt->da, da, ETH_ALEN); 1569 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1570 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1571 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1572 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1573 mgmt->u.auth.status_code = cpu_to_le16(status); 1574 if (extra) 1575 skb_put_data(skb, extra, extra_len); 1576 1577 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1578 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1579 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1580 WARN_ON(err); 1581 } 1582 1583 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1584 tx_flags; 1585 ieee80211_tx_skb(sdata, skb); 1586 } 1587 1588 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1589 const u8 *da, const u8 *bssid, 1590 u16 stype, u16 reason, 1591 bool send_frame, u8 *frame_buf) 1592 { 1593 struct ieee80211_local *local = sdata->local; 1594 struct sk_buff *skb; 1595 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1596 1597 /* build frame */ 1598 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1599 mgmt->duration = 0; /* initialize only */ 1600 mgmt->seq_ctrl = 0; /* initialize only */ 1601 memcpy(mgmt->da, da, ETH_ALEN); 1602 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1603 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1604 /* u.deauth.reason_code == u.disassoc.reason_code */ 1605 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1606 1607 if (send_frame) { 1608 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1609 IEEE80211_DEAUTH_FRAME_LEN); 1610 if (!skb) 1611 return; 1612 1613 skb_reserve(skb, local->hw.extra_tx_headroom); 1614 1615 /* copy in frame */ 1616 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1617 1618 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1619 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1620 IEEE80211_SKB_CB(skb)->flags |= 1621 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1622 1623 ieee80211_tx_skb(sdata, skb); 1624 } 1625 } 1626 1627 static int ieee80211_build_preq_ies_band(struct ieee80211_local *local, 1628 u8 *buffer, size_t buffer_len, 1629 const u8 *ie, size_t ie_len, 1630 enum nl80211_band band, 1631 u32 rate_mask, 1632 struct cfg80211_chan_def *chandef, 1633 size_t *offset, u32 flags) 1634 { 1635 struct ieee80211_supported_band *sband; 1636 const struct ieee80211_sta_he_cap *he_cap; 1637 u8 *pos = buffer, *end = buffer + buffer_len; 1638 size_t noffset; 1639 int supp_rates_len, i; 1640 u8 rates[32]; 1641 int num_rates; 1642 int ext_rates_len; 1643 int shift; 1644 u32 rate_flags; 1645 bool have_80mhz = false; 1646 1647 *offset = 0; 1648 1649 sband = local->hw.wiphy->bands[band]; 1650 if (WARN_ON_ONCE(!sband)) 1651 return 0; 1652 1653 rate_flags = ieee80211_chandef_rate_flags(chandef); 1654 shift = ieee80211_chandef_get_shift(chandef); 1655 1656 num_rates = 0; 1657 for (i = 0; i < sband->n_bitrates; i++) { 1658 if ((BIT(i) & rate_mask) == 0) 1659 continue; /* skip rate */ 1660 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 1661 continue; 1662 1663 rates[num_rates++] = 1664 (u8) DIV_ROUND_UP(sband->bitrates[i].bitrate, 1665 (1 << shift) * 5); 1666 } 1667 1668 supp_rates_len = min_t(int, num_rates, 8); 1669 1670 if (end - pos < 2 + supp_rates_len) 1671 goto out_err; 1672 *pos++ = WLAN_EID_SUPP_RATES; 1673 *pos++ = supp_rates_len; 1674 memcpy(pos, rates, supp_rates_len); 1675 pos += supp_rates_len; 1676 1677 /* insert "request information" if in custom IEs */ 1678 if (ie && ie_len) { 1679 static const u8 before_extrates[] = { 1680 WLAN_EID_SSID, 1681 WLAN_EID_SUPP_RATES, 1682 WLAN_EID_REQUEST, 1683 }; 1684 noffset = ieee80211_ie_split(ie, ie_len, 1685 before_extrates, 1686 ARRAY_SIZE(before_extrates), 1687 *offset); 1688 if (end - pos < noffset - *offset) 1689 goto out_err; 1690 memcpy(pos, ie + *offset, noffset - *offset); 1691 pos += noffset - *offset; 1692 *offset = noffset; 1693 } 1694 1695 ext_rates_len = num_rates - supp_rates_len; 1696 if (ext_rates_len > 0) { 1697 if (end - pos < 2 + ext_rates_len) 1698 goto out_err; 1699 *pos++ = WLAN_EID_EXT_SUPP_RATES; 1700 *pos++ = ext_rates_len; 1701 memcpy(pos, rates + supp_rates_len, ext_rates_len); 1702 pos += ext_rates_len; 1703 } 1704 1705 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 1706 if (end - pos < 3) 1707 goto out_err; 1708 *pos++ = WLAN_EID_DS_PARAMS; 1709 *pos++ = 1; 1710 *pos++ = ieee80211_frequency_to_channel( 1711 chandef->chan->center_freq); 1712 } 1713 1714 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 1715 goto done; 1716 1717 /* insert custom IEs that go before HT */ 1718 if (ie && ie_len) { 1719 static const u8 before_ht[] = { 1720 /* 1721 * no need to list the ones split off already 1722 * (or generated here) 1723 */ 1724 WLAN_EID_DS_PARAMS, 1725 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1726 }; 1727 noffset = ieee80211_ie_split(ie, ie_len, 1728 before_ht, ARRAY_SIZE(before_ht), 1729 *offset); 1730 if (end - pos < noffset - *offset) 1731 goto out_err; 1732 memcpy(pos, ie + *offset, noffset - *offset); 1733 pos += noffset - *offset; 1734 *offset = noffset; 1735 } 1736 1737 if (sband->ht_cap.ht_supported) { 1738 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap)) 1739 goto out_err; 1740 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 1741 sband->ht_cap.cap); 1742 } 1743 1744 /* insert custom IEs that go before VHT */ 1745 if (ie && ie_len) { 1746 static const u8 before_vht[] = { 1747 /* 1748 * no need to list the ones split off already 1749 * (or generated here) 1750 */ 1751 WLAN_EID_BSS_COEX_2040, 1752 WLAN_EID_EXT_CAPABILITY, 1753 WLAN_EID_SSID_LIST, 1754 WLAN_EID_CHANNEL_USAGE, 1755 WLAN_EID_INTERWORKING, 1756 WLAN_EID_MESH_ID, 1757 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 1758 }; 1759 noffset = ieee80211_ie_split(ie, ie_len, 1760 before_vht, ARRAY_SIZE(before_vht), 1761 *offset); 1762 if (end - pos < noffset - *offset) 1763 goto out_err; 1764 memcpy(pos, ie + *offset, noffset - *offset); 1765 pos += noffset - *offset; 1766 *offset = noffset; 1767 } 1768 1769 /* Check if any channel in this sband supports at least 80 MHz */ 1770 for (i = 0; i < sband->n_channels; i++) { 1771 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 1772 IEEE80211_CHAN_NO_80MHZ)) 1773 continue; 1774 1775 have_80mhz = true; 1776 break; 1777 } 1778 1779 if (sband->vht_cap.vht_supported && have_80mhz) { 1780 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap)) 1781 goto out_err; 1782 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 1783 sband->vht_cap.cap); 1784 } 1785 1786 /* insert custom IEs that go before HE */ 1787 if (ie && ie_len) { 1788 static const u8 before_he[] = { 1789 /* 1790 * no need to list the ones split off before VHT 1791 * or generated here 1792 */ 1793 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 1794 WLAN_EID_AP_CSN, 1795 /* TODO: add 11ah/11aj/11ak elements */ 1796 }; 1797 noffset = ieee80211_ie_split(ie, ie_len, 1798 before_he, ARRAY_SIZE(before_he), 1799 *offset); 1800 if (end - pos < noffset - *offset) 1801 goto out_err; 1802 memcpy(pos, ie + *offset, noffset - *offset); 1803 pos += noffset - *offset; 1804 *offset = noffset; 1805 } 1806 1807 he_cap = ieee80211_get_he_sta_cap(sband); 1808 if (he_cap) { 1809 pos = ieee80211_ie_build_he_cap(pos, he_cap, end); 1810 if (!pos) 1811 goto out_err; 1812 } 1813 1814 /* 1815 * If adding more here, adjust code in main.c 1816 * that calculates local->scan_ies_len. 1817 */ 1818 1819 return pos - buffer; 1820 out_err: 1821 WARN_ONCE(1, "not enough space for preq IEs\n"); 1822 done: 1823 return pos - buffer; 1824 } 1825 1826 int ieee80211_build_preq_ies(struct ieee80211_local *local, u8 *buffer, 1827 size_t buffer_len, 1828 struct ieee80211_scan_ies *ie_desc, 1829 const u8 *ie, size_t ie_len, 1830 u8 bands_used, u32 *rate_masks, 1831 struct cfg80211_chan_def *chandef, 1832 u32 flags) 1833 { 1834 size_t pos = 0, old_pos = 0, custom_ie_offset = 0; 1835 int i; 1836 1837 memset(ie_desc, 0, sizeof(*ie_desc)); 1838 1839 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1840 if (bands_used & BIT(i)) { 1841 pos += ieee80211_build_preq_ies_band(local, 1842 buffer + pos, 1843 buffer_len - pos, 1844 ie, ie_len, i, 1845 rate_masks[i], 1846 chandef, 1847 &custom_ie_offset, 1848 flags); 1849 ie_desc->ies[i] = buffer + old_pos; 1850 ie_desc->len[i] = pos - old_pos; 1851 old_pos = pos; 1852 } 1853 } 1854 1855 /* add any remaining custom IEs */ 1856 if (ie && ie_len) { 1857 if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset, 1858 "not enough space for preq custom IEs\n")) 1859 return pos; 1860 memcpy(buffer + pos, ie + custom_ie_offset, 1861 ie_len - custom_ie_offset); 1862 ie_desc->common_ies = buffer + pos; 1863 ie_desc->common_ie_len = ie_len - custom_ie_offset; 1864 pos += ie_len - custom_ie_offset; 1865 } 1866 1867 return pos; 1868 }; 1869 1870 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 1871 const u8 *src, const u8 *dst, 1872 u32 ratemask, 1873 struct ieee80211_channel *chan, 1874 const u8 *ssid, size_t ssid_len, 1875 const u8 *ie, size_t ie_len, 1876 u32 flags) 1877 { 1878 struct ieee80211_local *local = sdata->local; 1879 struct cfg80211_chan_def chandef; 1880 struct sk_buff *skb; 1881 struct ieee80211_mgmt *mgmt; 1882 int ies_len; 1883 u32 rate_masks[NUM_NL80211_BANDS] = {}; 1884 struct ieee80211_scan_ies dummy_ie_desc; 1885 1886 /* 1887 * Do not send DS Channel parameter for directed probe requests 1888 * in order to maximize the chance that we get a response. Some 1889 * badly-behaved APs don't respond when this parameter is included. 1890 */ 1891 chandef.width = sdata->vif.bss_conf.chandef.width; 1892 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 1893 chandef.chan = NULL; 1894 else 1895 chandef.chan = chan; 1896 1897 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 1898 100 + ie_len); 1899 if (!skb) 1900 return NULL; 1901 1902 rate_masks[chan->band] = ratemask; 1903 ies_len = ieee80211_build_preq_ies(local, skb_tail_pointer(skb), 1904 skb_tailroom(skb), &dummy_ie_desc, 1905 ie, ie_len, BIT(chan->band), 1906 rate_masks, &chandef, flags); 1907 skb_put(skb, ies_len); 1908 1909 if (dst) { 1910 mgmt = (struct ieee80211_mgmt *) skb->data; 1911 memcpy(mgmt->da, dst, ETH_ALEN); 1912 memcpy(mgmt->bssid, dst, ETH_ALEN); 1913 } 1914 1915 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 1916 1917 return skb; 1918 } 1919 1920 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 1921 struct ieee802_11_elems *elems, 1922 enum nl80211_band band, u32 *basic_rates) 1923 { 1924 struct ieee80211_supported_band *sband; 1925 size_t num_rates; 1926 u32 supp_rates, rate_flags; 1927 int i, j, shift; 1928 1929 sband = sdata->local->hw.wiphy->bands[band]; 1930 if (WARN_ON(!sband)) 1931 return 1; 1932 1933 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 1934 shift = ieee80211_vif_get_shift(&sdata->vif); 1935 1936 num_rates = sband->n_bitrates; 1937 supp_rates = 0; 1938 for (i = 0; i < elems->supp_rates_len + 1939 elems->ext_supp_rates_len; i++) { 1940 u8 rate = 0; 1941 int own_rate; 1942 bool is_basic; 1943 if (i < elems->supp_rates_len) 1944 rate = elems->supp_rates[i]; 1945 else if (elems->ext_supp_rates) 1946 rate = elems->ext_supp_rates 1947 [i - elems->supp_rates_len]; 1948 own_rate = 5 * (rate & 0x7f); 1949 is_basic = !!(rate & 0x80); 1950 1951 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 1952 continue; 1953 1954 for (j = 0; j < num_rates; j++) { 1955 int brate; 1956 if ((rate_flags & sband->bitrates[j].flags) 1957 != rate_flags) 1958 continue; 1959 1960 brate = DIV_ROUND_UP(sband->bitrates[j].bitrate, 1961 1 << shift); 1962 1963 if (brate == own_rate) { 1964 supp_rates |= BIT(j); 1965 if (basic_rates && is_basic) 1966 *basic_rates |= BIT(j); 1967 } 1968 } 1969 } 1970 return supp_rates; 1971 } 1972 1973 void ieee80211_stop_device(struct ieee80211_local *local) 1974 { 1975 ieee80211_led_radio(local, false); 1976 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 1977 1978 cancel_work_sync(&local->reconfig_filter); 1979 1980 flush_workqueue(local->workqueue); 1981 drv_stop(local); 1982 } 1983 1984 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 1985 bool aborted) 1986 { 1987 /* It's possible that we don't handle the scan completion in 1988 * time during suspend, so if it's still marked as completed 1989 * here, queue the work and flush it to clean things up. 1990 * Instead of calling the worker function directly here, we 1991 * really queue it to avoid potential races with other flows 1992 * scheduling the same work. 1993 */ 1994 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 1995 /* If coming from reconfiguration failure, abort the scan so 1996 * we don't attempt to continue a partial HW scan - which is 1997 * possible otherwise if (e.g.) the 2.4 GHz portion was the 1998 * completed scan, and a 5 GHz portion is still pending. 1999 */ 2000 if (aborted) 2001 set_bit(SCAN_ABORTED, &local->scanning); 2002 ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0); 2003 flush_delayed_work(&local->scan_work); 2004 } 2005 } 2006 2007 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 2008 { 2009 struct ieee80211_sub_if_data *sdata; 2010 struct ieee80211_chanctx *ctx; 2011 2012 /* 2013 * We get here if during resume the device can't be restarted properly. 2014 * We might also get here if this happens during HW reset, which is a 2015 * slightly different situation and we need to drop all connections in 2016 * the latter case. 2017 * 2018 * Ask cfg80211 to turn off all interfaces, this will result in more 2019 * warnings but at least we'll then get into a clean stopped state. 2020 */ 2021 2022 local->resuming = false; 2023 local->suspended = false; 2024 local->in_reconfig = false; 2025 2026 ieee80211_flush_completed_scan(local, true); 2027 2028 /* scheduled scan clearly can't be running any more, but tell 2029 * cfg80211 and clear local state 2030 */ 2031 ieee80211_sched_scan_end(local); 2032 2033 list_for_each_entry(sdata, &local->interfaces, list) 2034 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 2035 2036 /* Mark channel contexts as not being in the driver any more to avoid 2037 * removing them from the driver during the shutdown process... 2038 */ 2039 mutex_lock(&local->chanctx_mtx); 2040 list_for_each_entry(ctx, &local->chanctx_list, list) 2041 ctx->driver_present = false; 2042 mutex_unlock(&local->chanctx_mtx); 2043 2044 cfg80211_shutdown_all_interfaces(local->hw.wiphy); 2045 } 2046 2047 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 2048 struct ieee80211_sub_if_data *sdata) 2049 { 2050 struct ieee80211_chanctx_conf *conf; 2051 struct ieee80211_chanctx *ctx; 2052 2053 if (!local->use_chanctx) 2054 return; 2055 2056 mutex_lock(&local->chanctx_mtx); 2057 conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2058 lockdep_is_held(&local->chanctx_mtx)); 2059 if (conf) { 2060 ctx = container_of(conf, struct ieee80211_chanctx, conf); 2061 drv_assign_vif_chanctx(local, sdata, ctx); 2062 } 2063 mutex_unlock(&local->chanctx_mtx); 2064 } 2065 2066 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 2067 { 2068 struct ieee80211_local *local = sdata->local; 2069 struct sta_info *sta; 2070 2071 /* add STAs back */ 2072 mutex_lock(&local->sta_mtx); 2073 list_for_each_entry(sta, &local->sta_list, list) { 2074 enum ieee80211_sta_state state; 2075 2076 if (!sta->uploaded || sta->sdata != sdata) 2077 continue; 2078 2079 for (state = IEEE80211_STA_NOTEXIST; 2080 state < sta->sta_state; state++) 2081 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2082 state + 1)); 2083 } 2084 mutex_unlock(&local->sta_mtx); 2085 } 2086 2087 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 2088 { 2089 struct cfg80211_nan_func *func, **funcs; 2090 int res, id, i = 0; 2091 2092 res = drv_start_nan(sdata->local, sdata, 2093 &sdata->u.nan.conf); 2094 if (WARN_ON(res)) 2095 return res; 2096 2097 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 2098 sizeof(*funcs), 2099 GFP_KERNEL); 2100 if (!funcs) 2101 return -ENOMEM; 2102 2103 /* Add all the functions: 2104 * This is a little bit ugly. We need to call a potentially sleeping 2105 * callback for each NAN function, so we can't hold the spinlock. 2106 */ 2107 spin_lock_bh(&sdata->u.nan.func_lock); 2108 2109 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 2110 funcs[i++] = func; 2111 2112 spin_unlock_bh(&sdata->u.nan.func_lock); 2113 2114 for (i = 0; funcs[i]; i++) { 2115 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 2116 if (WARN_ON(res)) 2117 ieee80211_nan_func_terminated(&sdata->vif, 2118 funcs[i]->instance_id, 2119 NL80211_NAN_FUNC_TERM_REASON_ERROR, 2120 GFP_KERNEL); 2121 } 2122 2123 kfree(funcs); 2124 2125 return 0; 2126 } 2127 2128 int ieee80211_reconfig(struct ieee80211_local *local) 2129 { 2130 struct ieee80211_hw *hw = &local->hw; 2131 struct ieee80211_sub_if_data *sdata; 2132 struct ieee80211_chanctx *ctx; 2133 struct sta_info *sta; 2134 int res, i; 2135 bool reconfig_due_to_wowlan = false; 2136 struct ieee80211_sub_if_data *sched_scan_sdata; 2137 struct cfg80211_sched_scan_request *sched_scan_req; 2138 bool sched_scan_stopped = false; 2139 bool suspended = local->suspended; 2140 2141 /* nothing to do if HW shouldn't run */ 2142 if (!local->open_count) 2143 goto wake_up; 2144 2145 #ifdef CONFIG_PM 2146 if (suspended) 2147 local->resuming = true; 2148 2149 if (local->wowlan) { 2150 /* 2151 * In the wowlan case, both mac80211 and the device 2152 * are functional when the resume op is called, so 2153 * clear local->suspended so the device could operate 2154 * normally (e.g. pass rx frames). 2155 */ 2156 local->suspended = false; 2157 res = drv_resume(local); 2158 local->wowlan = false; 2159 if (res < 0) { 2160 local->resuming = false; 2161 return res; 2162 } 2163 if (res == 0) 2164 goto wake_up; 2165 WARN_ON(res > 1); 2166 /* 2167 * res is 1, which means the driver requested 2168 * to go through a regular reset on wakeup. 2169 * restore local->suspended in this case. 2170 */ 2171 reconfig_due_to_wowlan = true; 2172 local->suspended = true; 2173 } 2174 #endif 2175 2176 /* 2177 * In case of hw_restart during suspend (without wowlan), 2178 * cancel restart work, as we are reconfiguring the device 2179 * anyway. 2180 * Note that restart_work is scheduled on a frozen workqueue, 2181 * so we can't deadlock in this case. 2182 */ 2183 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 2184 cancel_work_sync(&local->restart_work); 2185 2186 local->started = false; 2187 2188 /* 2189 * Upon resume hardware can sometimes be goofy due to 2190 * various platform / driver / bus issues, so restarting 2191 * the device may at times not work immediately. Propagate 2192 * the error. 2193 */ 2194 res = drv_start(local); 2195 if (res) { 2196 if (suspended) 2197 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 2198 else 2199 WARN(1, "Hardware became unavailable during restart.\n"); 2200 ieee80211_handle_reconfig_failure(local); 2201 return res; 2202 } 2203 2204 /* setup fragmentation threshold */ 2205 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 2206 2207 /* setup RTS threshold */ 2208 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 2209 2210 /* reset coverage class */ 2211 drv_set_coverage_class(local, hw->wiphy->coverage_class); 2212 2213 ieee80211_led_radio(local, true); 2214 ieee80211_mod_tpt_led_trig(local, 2215 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 2216 2217 /* add interfaces */ 2218 sdata = rtnl_dereference(local->monitor_sdata); 2219 if (sdata) { 2220 /* in HW restart it exists already */ 2221 WARN_ON(local->resuming); 2222 res = drv_add_interface(local, sdata); 2223 if (WARN_ON(res)) { 2224 RCU_INIT_POINTER(local->monitor_sdata, NULL); 2225 synchronize_net(); 2226 kfree(sdata); 2227 } 2228 } 2229 2230 list_for_each_entry(sdata, &local->interfaces, list) { 2231 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2232 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2233 ieee80211_sdata_running(sdata)) { 2234 res = drv_add_interface(local, sdata); 2235 if (WARN_ON(res)) 2236 break; 2237 } 2238 } 2239 2240 /* If adding any of the interfaces failed above, roll back and 2241 * report failure. 2242 */ 2243 if (res) { 2244 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 2245 list) 2246 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2247 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2248 ieee80211_sdata_running(sdata)) 2249 drv_remove_interface(local, sdata); 2250 ieee80211_handle_reconfig_failure(local); 2251 return res; 2252 } 2253 2254 /* add channel contexts */ 2255 if (local->use_chanctx) { 2256 mutex_lock(&local->chanctx_mtx); 2257 list_for_each_entry(ctx, &local->chanctx_list, list) 2258 if (ctx->replace_state != 2259 IEEE80211_CHANCTX_REPLACES_OTHER) 2260 WARN_ON(drv_add_chanctx(local, ctx)); 2261 mutex_unlock(&local->chanctx_mtx); 2262 2263 sdata = rtnl_dereference(local->monitor_sdata); 2264 if (sdata && ieee80211_sdata_running(sdata)) 2265 ieee80211_assign_chanctx(local, sdata); 2266 } 2267 2268 /* reconfigure hardware */ 2269 ieee80211_hw_config(local, ~0); 2270 2271 ieee80211_configure_filter(local); 2272 2273 /* Finally also reconfigure all the BSS information */ 2274 list_for_each_entry(sdata, &local->interfaces, list) { 2275 u32 changed; 2276 2277 if (!ieee80211_sdata_running(sdata)) 2278 continue; 2279 2280 ieee80211_assign_chanctx(local, sdata); 2281 2282 switch (sdata->vif.type) { 2283 case NL80211_IFTYPE_AP_VLAN: 2284 case NL80211_IFTYPE_MONITOR: 2285 break; 2286 case NL80211_IFTYPE_ADHOC: 2287 if (sdata->vif.bss_conf.ibss_joined) 2288 WARN_ON(drv_join_ibss(local, sdata)); 2289 /* fall through */ 2290 default: 2291 ieee80211_reconfig_stations(sdata); 2292 /* fall through */ 2293 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 2294 for (i = 0; i < IEEE80211_NUM_ACS; i++) 2295 drv_conf_tx(local, sdata, i, 2296 &sdata->tx_conf[i]); 2297 break; 2298 } 2299 2300 /* common change flags for all interface types */ 2301 changed = BSS_CHANGED_ERP_CTS_PROT | 2302 BSS_CHANGED_ERP_PREAMBLE | 2303 BSS_CHANGED_ERP_SLOT | 2304 BSS_CHANGED_HT | 2305 BSS_CHANGED_BASIC_RATES | 2306 BSS_CHANGED_BEACON_INT | 2307 BSS_CHANGED_BSSID | 2308 BSS_CHANGED_CQM | 2309 BSS_CHANGED_QOS | 2310 BSS_CHANGED_IDLE | 2311 BSS_CHANGED_TXPOWER | 2312 BSS_CHANGED_MCAST_RATE; 2313 2314 if (sdata->vif.mu_mimo_owner) 2315 changed |= BSS_CHANGED_MU_GROUPS; 2316 2317 switch (sdata->vif.type) { 2318 case NL80211_IFTYPE_STATION: 2319 changed |= BSS_CHANGED_ASSOC | 2320 BSS_CHANGED_ARP_FILTER | 2321 BSS_CHANGED_PS; 2322 2323 /* Re-send beacon info report to the driver */ 2324 if (sdata->u.mgd.have_beacon) 2325 changed |= BSS_CHANGED_BEACON_INFO; 2326 2327 if (sdata->vif.bss_conf.max_idle_period || 2328 sdata->vif.bss_conf.protected_keep_alive) 2329 changed |= BSS_CHANGED_KEEP_ALIVE; 2330 2331 sdata_lock(sdata); 2332 ieee80211_bss_info_change_notify(sdata, changed); 2333 sdata_unlock(sdata); 2334 break; 2335 case NL80211_IFTYPE_OCB: 2336 changed |= BSS_CHANGED_OCB; 2337 ieee80211_bss_info_change_notify(sdata, changed); 2338 break; 2339 case NL80211_IFTYPE_ADHOC: 2340 changed |= BSS_CHANGED_IBSS; 2341 /* fall through */ 2342 case NL80211_IFTYPE_AP: 2343 changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS; 2344 2345 if (sdata->vif.bss_conf.ftm_responder == 1 && 2346 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2347 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2348 changed |= BSS_CHANGED_FTM_RESPONDER; 2349 2350 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2351 changed |= BSS_CHANGED_AP_PROBE_RESP; 2352 2353 if (rcu_access_pointer(sdata->u.ap.beacon)) 2354 drv_start_ap(local, sdata); 2355 } 2356 2357 /* fall through */ 2358 case NL80211_IFTYPE_MESH_POINT: 2359 if (sdata->vif.bss_conf.enable_beacon) { 2360 changed |= BSS_CHANGED_BEACON | 2361 BSS_CHANGED_BEACON_ENABLED; 2362 ieee80211_bss_info_change_notify(sdata, changed); 2363 } 2364 break; 2365 case NL80211_IFTYPE_NAN: 2366 res = ieee80211_reconfig_nan(sdata); 2367 if (res < 0) { 2368 ieee80211_handle_reconfig_failure(local); 2369 return res; 2370 } 2371 break; 2372 case NL80211_IFTYPE_WDS: 2373 case NL80211_IFTYPE_AP_VLAN: 2374 case NL80211_IFTYPE_MONITOR: 2375 case NL80211_IFTYPE_P2P_DEVICE: 2376 /* nothing to do */ 2377 break; 2378 case NL80211_IFTYPE_UNSPECIFIED: 2379 case NUM_NL80211_IFTYPES: 2380 case NL80211_IFTYPE_P2P_CLIENT: 2381 case NL80211_IFTYPE_P2P_GO: 2382 WARN_ON(1); 2383 break; 2384 } 2385 } 2386 2387 ieee80211_recalc_ps(local); 2388 2389 /* 2390 * The sta might be in psm against the ap (e.g. because 2391 * this was the state before a hw restart), so we 2392 * explicitly send a null packet in order to make sure 2393 * it'll sync against the ap (and get out of psm). 2394 */ 2395 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2396 list_for_each_entry(sdata, &local->interfaces, list) { 2397 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2398 continue; 2399 if (!sdata->u.mgd.associated) 2400 continue; 2401 2402 ieee80211_send_nullfunc(local, sdata, false); 2403 } 2404 } 2405 2406 /* APs are now beaconing, add back stations */ 2407 mutex_lock(&local->sta_mtx); 2408 list_for_each_entry(sta, &local->sta_list, list) { 2409 enum ieee80211_sta_state state; 2410 2411 if (!sta->uploaded) 2412 continue; 2413 2414 if (sta->sdata->vif.type != NL80211_IFTYPE_AP && 2415 sta->sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 2416 continue; 2417 2418 for (state = IEEE80211_STA_NOTEXIST; 2419 state < sta->sta_state; state++) 2420 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2421 state + 1)); 2422 } 2423 mutex_unlock(&local->sta_mtx); 2424 2425 /* add back keys */ 2426 list_for_each_entry(sdata, &local->interfaces, list) 2427 ieee80211_reenable_keys(sdata); 2428 2429 /* Reconfigure sched scan if it was interrupted by FW restart */ 2430 mutex_lock(&local->mtx); 2431 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2432 lockdep_is_held(&local->mtx)); 2433 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2434 lockdep_is_held(&local->mtx)); 2435 if (sched_scan_sdata && sched_scan_req) 2436 /* 2437 * Sched scan stopped, but we don't want to report it. Instead, 2438 * we're trying to reschedule. However, if more than one scan 2439 * plan was set, we cannot reschedule since we don't know which 2440 * scan plan was currently running (and some scan plans may have 2441 * already finished). 2442 */ 2443 if (sched_scan_req->n_scan_plans > 1 || 2444 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2445 sched_scan_req)) { 2446 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2447 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2448 sched_scan_stopped = true; 2449 } 2450 mutex_unlock(&local->mtx); 2451 2452 if (sched_scan_stopped) 2453 cfg80211_sched_scan_stopped_rtnl(local->hw.wiphy, 0); 2454 2455 wake_up: 2456 2457 if (local->monitors == local->open_count && local->monitors > 0) 2458 ieee80211_add_virtual_monitor(local); 2459 2460 /* 2461 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2462 * sessions can be established after a resume. 2463 * 2464 * Also tear down aggregation sessions since reconfiguring 2465 * them in a hardware restart scenario is not easily done 2466 * right now, and the hardware will have lost information 2467 * about the sessions, but we and the AP still think they 2468 * are active. This is really a workaround though. 2469 */ 2470 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2471 mutex_lock(&local->sta_mtx); 2472 2473 list_for_each_entry(sta, &local->sta_list, list) { 2474 if (!local->resuming) 2475 ieee80211_sta_tear_down_BA_sessions( 2476 sta, AGG_STOP_LOCAL_REQUEST); 2477 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2478 } 2479 2480 mutex_unlock(&local->sta_mtx); 2481 } 2482 2483 if (local->in_reconfig) { 2484 local->in_reconfig = false; 2485 barrier(); 2486 2487 /* Restart deferred ROCs */ 2488 mutex_lock(&local->mtx); 2489 ieee80211_start_next_roc(local); 2490 mutex_unlock(&local->mtx); 2491 2492 /* Requeue all works */ 2493 list_for_each_entry(sdata, &local->interfaces, list) 2494 ieee80211_queue_work(&local->hw, &sdata->work); 2495 } 2496 2497 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2498 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2499 false); 2500 2501 /* 2502 * If this is for hw restart things are still running. 2503 * We may want to change that later, however. 2504 */ 2505 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2506 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2507 2508 if (!suspended) 2509 return 0; 2510 2511 #ifdef CONFIG_PM 2512 /* first set suspended false, then resuming */ 2513 local->suspended = false; 2514 mb(); 2515 local->resuming = false; 2516 2517 ieee80211_flush_completed_scan(local, false); 2518 2519 if (local->open_count && !reconfig_due_to_wowlan) 2520 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2521 2522 list_for_each_entry(sdata, &local->interfaces, list) { 2523 if (!ieee80211_sdata_running(sdata)) 2524 continue; 2525 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2526 ieee80211_sta_restart(sdata); 2527 } 2528 2529 mod_timer(&local->sta_cleanup, jiffies + 1); 2530 #else 2531 WARN_ON(1); 2532 #endif 2533 2534 return 0; 2535 } 2536 2537 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 2538 { 2539 struct ieee80211_sub_if_data *sdata; 2540 struct ieee80211_local *local; 2541 struct ieee80211_key *key; 2542 2543 if (WARN_ON(!vif)) 2544 return; 2545 2546 sdata = vif_to_sdata(vif); 2547 local = sdata->local; 2548 2549 if (WARN_ON(!local->resuming)) 2550 return; 2551 2552 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2553 return; 2554 2555 sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME; 2556 2557 mutex_lock(&local->key_mtx); 2558 list_for_each_entry(key, &sdata->key_list, list) 2559 key->flags |= KEY_FLAG_TAINTED; 2560 mutex_unlock(&local->key_mtx); 2561 } 2562 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 2563 2564 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata) 2565 { 2566 struct ieee80211_local *local = sdata->local; 2567 struct ieee80211_chanctx_conf *chanctx_conf; 2568 struct ieee80211_chanctx *chanctx; 2569 2570 mutex_lock(&local->chanctx_mtx); 2571 2572 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2573 lockdep_is_held(&local->chanctx_mtx)); 2574 2575 /* 2576 * This function can be called from a work, thus it may be possible 2577 * that the chanctx_conf is removed (due to a disconnection, for 2578 * example). 2579 * So nothing should be done in such case. 2580 */ 2581 if (!chanctx_conf) 2582 goto unlock; 2583 2584 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2585 ieee80211_recalc_smps_chanctx(local, chanctx); 2586 unlock: 2587 mutex_unlock(&local->chanctx_mtx); 2588 } 2589 2590 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata) 2591 { 2592 struct ieee80211_local *local = sdata->local; 2593 struct ieee80211_chanctx_conf *chanctx_conf; 2594 struct ieee80211_chanctx *chanctx; 2595 2596 mutex_lock(&local->chanctx_mtx); 2597 2598 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2599 lockdep_is_held(&local->chanctx_mtx)); 2600 2601 if (WARN_ON_ONCE(!chanctx_conf)) 2602 goto unlock; 2603 2604 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2605 ieee80211_recalc_chanctx_min_def(local, chanctx); 2606 unlock: 2607 mutex_unlock(&local->chanctx_mtx); 2608 } 2609 2610 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 2611 { 2612 size_t pos = offset; 2613 2614 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 2615 pos += 2 + ies[pos + 1]; 2616 2617 return pos; 2618 } 2619 2620 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata, 2621 int rssi_min_thold, 2622 int rssi_max_thold) 2623 { 2624 trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold); 2625 2626 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 2627 return; 2628 2629 /* 2630 * Scale up threshold values before storing it, as the RSSI averaging 2631 * algorithm uses a scaled up value as well. Change this scaling 2632 * factor if the RSSI averaging algorithm changes. 2633 */ 2634 sdata->u.mgd.rssi_min_thold = rssi_min_thold*16; 2635 sdata->u.mgd.rssi_max_thold = rssi_max_thold*16; 2636 } 2637 2638 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif, 2639 int rssi_min_thold, 2640 int rssi_max_thold) 2641 { 2642 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2643 2644 WARN_ON(rssi_min_thold == rssi_max_thold || 2645 rssi_min_thold > rssi_max_thold); 2646 2647 _ieee80211_enable_rssi_reports(sdata, rssi_min_thold, 2648 rssi_max_thold); 2649 } 2650 EXPORT_SYMBOL(ieee80211_enable_rssi_reports); 2651 2652 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif) 2653 { 2654 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2655 2656 _ieee80211_enable_rssi_reports(sdata, 0, 0); 2657 } 2658 EXPORT_SYMBOL(ieee80211_disable_rssi_reports); 2659 2660 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2661 u16 cap) 2662 { 2663 __le16 tmp; 2664 2665 *pos++ = WLAN_EID_HT_CAPABILITY; 2666 *pos++ = sizeof(struct ieee80211_ht_cap); 2667 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 2668 2669 /* capability flags */ 2670 tmp = cpu_to_le16(cap); 2671 memcpy(pos, &tmp, sizeof(u16)); 2672 pos += sizeof(u16); 2673 2674 /* AMPDU parameters */ 2675 *pos++ = ht_cap->ampdu_factor | 2676 (ht_cap->ampdu_density << 2677 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 2678 2679 /* MCS set */ 2680 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 2681 pos += sizeof(ht_cap->mcs); 2682 2683 /* extended capabilities */ 2684 pos += sizeof(__le16); 2685 2686 /* BF capabilities */ 2687 pos += sizeof(__le32); 2688 2689 /* antenna selection */ 2690 pos += sizeof(u8); 2691 2692 return pos; 2693 } 2694 2695 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2696 u32 cap) 2697 { 2698 __le32 tmp; 2699 2700 *pos++ = WLAN_EID_VHT_CAPABILITY; 2701 *pos++ = sizeof(struct ieee80211_vht_cap); 2702 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 2703 2704 /* capability flags */ 2705 tmp = cpu_to_le32(cap); 2706 memcpy(pos, &tmp, sizeof(u32)); 2707 pos += sizeof(u32); 2708 2709 /* VHT MCS set */ 2710 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 2711 pos += sizeof(vht_cap->vht_mcs); 2712 2713 return pos; 2714 } 2715 2716 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 2717 { 2718 const struct ieee80211_sta_he_cap *he_cap; 2719 struct ieee80211_supported_band *sband; 2720 u8 n; 2721 2722 sband = ieee80211_get_sband(sdata); 2723 if (!sband) 2724 return 0; 2725 2726 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 2727 if (!he_cap) 2728 return 0; 2729 2730 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2731 return 2 + 1 + 2732 sizeof(he_cap->he_cap_elem) + n + 2733 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2734 he_cap->he_cap_elem.phy_cap_info); 2735 } 2736 2737 u8 *ieee80211_ie_build_he_cap(u8 *pos, 2738 const struct ieee80211_sta_he_cap *he_cap, 2739 u8 *end) 2740 { 2741 u8 n; 2742 u8 ie_len; 2743 u8 *orig_pos = pos; 2744 2745 /* Make sure we have place for the IE */ 2746 /* 2747 * TODO: the 1 added is because this temporarily is under the EXTENSION 2748 * IE. Get rid of it when it moves. 2749 */ 2750 if (!he_cap) 2751 return orig_pos; 2752 2753 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2754 ie_len = 2 + 1 + 2755 sizeof(he_cap->he_cap_elem) + n + 2756 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2757 he_cap->he_cap_elem.phy_cap_info); 2758 2759 if ((end - pos) < ie_len) 2760 return orig_pos; 2761 2762 *pos++ = WLAN_EID_EXTENSION; 2763 pos++; /* We'll set the size later below */ 2764 *pos++ = WLAN_EID_EXT_HE_CAPABILITY; 2765 2766 /* Fixed data */ 2767 memcpy(pos, &he_cap->he_cap_elem, sizeof(he_cap->he_cap_elem)); 2768 pos += sizeof(he_cap->he_cap_elem); 2769 2770 memcpy(pos, &he_cap->he_mcs_nss_supp, n); 2771 pos += n; 2772 2773 /* Check if PPE Threshold should be present */ 2774 if ((he_cap->he_cap_elem.phy_cap_info[6] & 2775 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 2776 goto end; 2777 2778 /* 2779 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 2780 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 2781 */ 2782 n = hweight8(he_cap->ppe_thres[0] & 2783 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 2784 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 2785 IEEE80211_PPE_THRES_NSS_POS)); 2786 2787 /* 2788 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 2789 * total size. 2790 */ 2791 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 2792 n = DIV_ROUND_UP(n, 8); 2793 2794 /* Copy PPE Thresholds */ 2795 memcpy(pos, &he_cap->ppe_thres, n); 2796 pos += n; 2797 2798 end: 2799 orig_pos[1] = (pos - orig_pos) - 2; 2800 return pos; 2801 } 2802 2803 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2804 const struct cfg80211_chan_def *chandef, 2805 u16 prot_mode, bool rifs_mode) 2806 { 2807 struct ieee80211_ht_operation *ht_oper; 2808 /* Build HT Information */ 2809 *pos++ = WLAN_EID_HT_OPERATION; 2810 *pos++ = sizeof(struct ieee80211_ht_operation); 2811 ht_oper = (struct ieee80211_ht_operation *)pos; 2812 ht_oper->primary_chan = ieee80211_frequency_to_channel( 2813 chandef->chan->center_freq); 2814 switch (chandef->width) { 2815 case NL80211_CHAN_WIDTH_160: 2816 case NL80211_CHAN_WIDTH_80P80: 2817 case NL80211_CHAN_WIDTH_80: 2818 case NL80211_CHAN_WIDTH_40: 2819 if (chandef->center_freq1 > chandef->chan->center_freq) 2820 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 2821 else 2822 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 2823 break; 2824 default: 2825 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 2826 break; 2827 } 2828 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 2829 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 2830 chandef->width != NL80211_CHAN_WIDTH_20) 2831 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 2832 2833 if (rifs_mode) 2834 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 2835 2836 ht_oper->operation_mode = cpu_to_le16(prot_mode); 2837 ht_oper->stbc_param = 0x0000; 2838 2839 /* It seems that Basic MCS set and Supported MCS set 2840 are identical for the first 10 bytes */ 2841 memset(&ht_oper->basic_set, 0, 16); 2842 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 2843 2844 return pos + sizeof(struct ieee80211_ht_operation); 2845 } 2846 2847 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 2848 const struct cfg80211_chan_def *chandef) 2849 { 2850 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 2851 *pos++ = 3; /* IE length */ 2852 /* New channel width */ 2853 switch (chandef->width) { 2854 case NL80211_CHAN_WIDTH_80: 2855 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 2856 break; 2857 case NL80211_CHAN_WIDTH_160: 2858 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 2859 break; 2860 case NL80211_CHAN_WIDTH_80P80: 2861 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 2862 break; 2863 default: 2864 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 2865 } 2866 2867 /* new center frequency segment 0 */ 2868 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 2869 /* new center frequency segment 1 */ 2870 if (chandef->center_freq2) 2871 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 2872 else 2873 *pos++ = 0; 2874 } 2875 2876 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2877 const struct cfg80211_chan_def *chandef) 2878 { 2879 struct ieee80211_vht_operation *vht_oper; 2880 2881 *pos++ = WLAN_EID_VHT_OPERATION; 2882 *pos++ = sizeof(struct ieee80211_vht_operation); 2883 vht_oper = (struct ieee80211_vht_operation *)pos; 2884 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 2885 chandef->center_freq1); 2886 if (chandef->center_freq2) 2887 vht_oper->center_freq_seg1_idx = 2888 ieee80211_frequency_to_channel(chandef->center_freq2); 2889 else 2890 vht_oper->center_freq_seg1_idx = 0x00; 2891 2892 switch (chandef->width) { 2893 case NL80211_CHAN_WIDTH_160: 2894 /* 2895 * Convert 160 MHz channel width to new style as interop 2896 * workaround. 2897 */ 2898 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2899 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 2900 if (chandef->chan->center_freq < chandef->center_freq1) 2901 vht_oper->center_freq_seg0_idx -= 8; 2902 else 2903 vht_oper->center_freq_seg0_idx += 8; 2904 break; 2905 case NL80211_CHAN_WIDTH_80P80: 2906 /* 2907 * Convert 80+80 MHz channel width to new style as interop 2908 * workaround. 2909 */ 2910 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2911 break; 2912 case NL80211_CHAN_WIDTH_80: 2913 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2914 break; 2915 default: 2916 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 2917 break; 2918 } 2919 2920 /* don't require special VHT peer rates */ 2921 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 2922 2923 return pos + sizeof(struct ieee80211_vht_operation); 2924 } 2925 2926 u8 *ieee80211_ie_build_he_oper(u8 *pos) 2927 { 2928 struct ieee80211_he_operation *he_oper; 2929 u32 he_oper_params; 2930 2931 *pos++ = WLAN_EID_EXTENSION; 2932 *pos++ = 1 + sizeof(struct ieee80211_he_operation); 2933 *pos++ = WLAN_EID_EXT_HE_OPERATION; 2934 2935 he_oper_params = 0; 2936 he_oper_params |= u32_encode_bits(1023, /* disabled */ 2937 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 2938 he_oper_params |= u32_encode_bits(1, 2939 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 2940 he_oper_params |= u32_encode_bits(1, 2941 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 2942 2943 he_oper = (struct ieee80211_he_operation *)pos; 2944 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 2945 2946 /* don't require special HE peer rates */ 2947 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 2948 2949 /* TODO add VHT operational and 6GHz operational subelement? */ 2950 2951 return pos + sizeof(struct ieee80211_vht_operation); 2952 } 2953 2954 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 2955 struct cfg80211_chan_def *chandef) 2956 { 2957 enum nl80211_channel_type channel_type; 2958 2959 if (!ht_oper) 2960 return false; 2961 2962 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 2963 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 2964 channel_type = NL80211_CHAN_HT20; 2965 break; 2966 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 2967 channel_type = NL80211_CHAN_HT40PLUS; 2968 break; 2969 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 2970 channel_type = NL80211_CHAN_HT40MINUS; 2971 break; 2972 default: 2973 channel_type = NL80211_CHAN_NO_HT; 2974 return false; 2975 } 2976 2977 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 2978 return true; 2979 } 2980 2981 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, 2982 const struct ieee80211_vht_operation *oper, 2983 const struct ieee80211_ht_operation *htop, 2984 struct cfg80211_chan_def *chandef) 2985 { 2986 struct cfg80211_chan_def new = *chandef; 2987 int cf0, cf1; 2988 int ccfs0, ccfs1, ccfs2; 2989 int ccf0, ccf1; 2990 2991 if (!oper || !htop) 2992 return false; 2993 2994 ccfs0 = oper->center_freq_seg0_idx; 2995 ccfs1 = oper->center_freq_seg1_idx; 2996 ccfs2 = (le16_to_cpu(htop->operation_mode) & 2997 IEEE80211_HT_OP_MODE_CCFS2_MASK) 2998 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 2999 3000 /* when parsing (and we know how to) CCFS1 and CCFS2 are equivalent */ 3001 ccf0 = ccfs0; 3002 ccf1 = ccfs1; 3003 if (!ccfs1 && ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 3004 ccf1 = ccfs2; 3005 3006 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3007 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3008 3009 switch (oper->chan_width) { 3010 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3011 /* just use HT information directly */ 3012 break; 3013 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3014 new.width = NL80211_CHAN_WIDTH_80; 3015 new.center_freq1 = cf0; 3016 /* If needed, adjust based on the newer interop workaround. */ 3017 if (ccf1) { 3018 unsigned int diff; 3019 3020 diff = abs(ccf1 - ccf0); 3021 if (diff == 8) { 3022 new.width = NL80211_CHAN_WIDTH_160; 3023 new.center_freq1 = cf1; 3024 } else if (diff > 8) { 3025 new.width = NL80211_CHAN_WIDTH_80P80; 3026 new.center_freq2 = cf1; 3027 } 3028 } 3029 break; 3030 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3031 /* deprecated encoding */ 3032 new.width = NL80211_CHAN_WIDTH_160; 3033 new.center_freq1 = cf0; 3034 break; 3035 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3036 /* deprecated encoding */ 3037 new.width = NL80211_CHAN_WIDTH_80P80; 3038 new.center_freq1 = cf0; 3039 new.center_freq2 = cf1; 3040 break; 3041 default: 3042 return false; 3043 } 3044 3045 if (!cfg80211_chandef_valid(&new)) 3046 return false; 3047 3048 *chandef = new; 3049 return true; 3050 } 3051 3052 int ieee80211_parse_bitrates(struct cfg80211_chan_def *chandef, 3053 const struct ieee80211_supported_band *sband, 3054 const u8 *srates, int srates_len, u32 *rates) 3055 { 3056 u32 rate_flags = ieee80211_chandef_rate_flags(chandef); 3057 int shift = ieee80211_chandef_get_shift(chandef); 3058 struct ieee80211_rate *br; 3059 int brate, rate, i, j, count = 0; 3060 3061 *rates = 0; 3062 3063 for (i = 0; i < srates_len; i++) { 3064 rate = srates[i] & 0x7f; 3065 3066 for (j = 0; j < sband->n_bitrates; j++) { 3067 br = &sband->bitrates[j]; 3068 if ((rate_flags & br->flags) != rate_flags) 3069 continue; 3070 3071 brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5); 3072 if (brate == rate) { 3073 *rates |= BIT(j); 3074 count++; 3075 break; 3076 } 3077 } 3078 } 3079 return count; 3080 } 3081 3082 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, 3083 struct sk_buff *skb, bool need_basic, 3084 enum nl80211_band band) 3085 { 3086 struct ieee80211_local *local = sdata->local; 3087 struct ieee80211_supported_band *sband; 3088 int rate, shift; 3089 u8 i, rates, *pos; 3090 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3091 u32 rate_flags; 3092 3093 shift = ieee80211_vif_get_shift(&sdata->vif); 3094 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3095 sband = local->hw.wiphy->bands[band]; 3096 rates = 0; 3097 for (i = 0; i < sband->n_bitrates; i++) { 3098 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3099 continue; 3100 rates++; 3101 } 3102 if (rates > 8) 3103 rates = 8; 3104 3105 if (skb_tailroom(skb) < rates + 2) 3106 return -ENOMEM; 3107 3108 pos = skb_put(skb, rates + 2); 3109 *pos++ = WLAN_EID_SUPP_RATES; 3110 *pos++ = rates; 3111 for (i = 0; i < rates; i++) { 3112 u8 basic = 0; 3113 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3114 continue; 3115 3116 if (need_basic && basic_rates & BIT(i)) 3117 basic = 0x80; 3118 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3119 5 * (1 << shift)); 3120 *pos++ = basic | (u8) rate; 3121 } 3122 3123 return 0; 3124 } 3125 3126 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, 3127 struct sk_buff *skb, bool need_basic, 3128 enum nl80211_band band) 3129 { 3130 struct ieee80211_local *local = sdata->local; 3131 struct ieee80211_supported_band *sband; 3132 int rate, shift; 3133 u8 i, exrates, *pos; 3134 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3135 u32 rate_flags; 3136 3137 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3138 shift = ieee80211_vif_get_shift(&sdata->vif); 3139 3140 sband = local->hw.wiphy->bands[band]; 3141 exrates = 0; 3142 for (i = 0; i < sband->n_bitrates; i++) { 3143 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3144 continue; 3145 exrates++; 3146 } 3147 3148 if (exrates > 8) 3149 exrates -= 8; 3150 else 3151 exrates = 0; 3152 3153 if (skb_tailroom(skb) < exrates + 2) 3154 return -ENOMEM; 3155 3156 if (exrates) { 3157 pos = skb_put(skb, exrates + 2); 3158 *pos++ = WLAN_EID_EXT_SUPP_RATES; 3159 *pos++ = exrates; 3160 for (i = 8; i < sband->n_bitrates; i++) { 3161 u8 basic = 0; 3162 if ((rate_flags & sband->bitrates[i].flags) 3163 != rate_flags) 3164 continue; 3165 if (need_basic && basic_rates & BIT(i)) 3166 basic = 0x80; 3167 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3168 5 * (1 << shift)); 3169 *pos++ = basic | (u8) rate; 3170 } 3171 } 3172 return 0; 3173 } 3174 3175 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 3176 { 3177 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 3178 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 3179 3180 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) { 3181 /* non-managed type inferfaces */ 3182 return 0; 3183 } 3184 return -ewma_beacon_signal_read(&ifmgd->ave_beacon_signal); 3185 } 3186 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 3187 3188 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 3189 { 3190 if (!mcs) 3191 return 1; 3192 3193 /* TODO: consider rx_highest */ 3194 3195 if (mcs->rx_mask[3]) 3196 return 4; 3197 if (mcs->rx_mask[2]) 3198 return 3; 3199 if (mcs->rx_mask[1]) 3200 return 2; 3201 return 1; 3202 } 3203 3204 /** 3205 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 3206 * @local: mac80211 hw info struct 3207 * @status: RX status 3208 * @mpdu_len: total MPDU length (including FCS) 3209 * @mpdu_offset: offset into MPDU to calculate timestamp at 3210 * 3211 * This function calculates the RX timestamp at the given MPDU offset, taking 3212 * into account what the RX timestamp was. An offset of 0 will just normalize 3213 * the timestamp to TSF at beginning of MPDU reception. 3214 */ 3215 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 3216 struct ieee80211_rx_status *status, 3217 unsigned int mpdu_len, 3218 unsigned int mpdu_offset) 3219 { 3220 u64 ts = status->mactime; 3221 struct rate_info ri; 3222 u16 rate; 3223 3224 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 3225 return 0; 3226 3227 memset(&ri, 0, sizeof(ri)); 3228 3229 ri.bw = status->bw; 3230 3231 /* Fill cfg80211 rate info */ 3232 switch (status->encoding) { 3233 case RX_ENC_HT: 3234 ri.mcs = status->rate_idx; 3235 ri.flags |= RATE_INFO_FLAGS_MCS; 3236 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3237 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3238 break; 3239 case RX_ENC_VHT: 3240 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 3241 ri.mcs = status->rate_idx; 3242 ri.nss = status->nss; 3243 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3244 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3245 break; 3246 default: 3247 WARN_ON(1); 3248 /* fall through */ 3249 case RX_ENC_LEGACY: { 3250 struct ieee80211_supported_band *sband; 3251 int shift = 0; 3252 int bitrate; 3253 3254 switch (status->bw) { 3255 case RATE_INFO_BW_10: 3256 shift = 1; 3257 break; 3258 case RATE_INFO_BW_5: 3259 shift = 2; 3260 break; 3261 } 3262 3263 sband = local->hw.wiphy->bands[status->band]; 3264 bitrate = sband->bitrates[status->rate_idx].bitrate; 3265 ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift)); 3266 3267 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3268 /* TODO: handle HT/VHT preambles */ 3269 if (status->band == NL80211_BAND_5GHZ) { 3270 ts += 20 << shift; 3271 mpdu_offset += 2; 3272 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 3273 ts += 96; 3274 } else { 3275 ts += 192; 3276 } 3277 } 3278 break; 3279 } 3280 } 3281 3282 rate = cfg80211_calculate_bitrate(&ri); 3283 if (WARN_ONCE(!rate, 3284 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 3285 (unsigned long long)status->flag, status->rate_idx, 3286 status->nss)) 3287 return 0; 3288 3289 /* rewind from end of MPDU */ 3290 if (status->flag & RX_FLAG_MACTIME_END) 3291 ts -= mpdu_len * 8 * 10 / rate; 3292 3293 ts += mpdu_offset * 8 * 10 / rate; 3294 3295 return ts; 3296 } 3297 3298 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) 3299 { 3300 struct ieee80211_sub_if_data *sdata; 3301 struct cfg80211_chan_def chandef; 3302 3303 /* for interface list, to avoid linking iflist_mtx and chanctx_mtx */ 3304 ASSERT_RTNL(); 3305 3306 mutex_lock(&local->mtx); 3307 list_for_each_entry(sdata, &local->interfaces, list) { 3308 /* it might be waiting for the local->mtx, but then 3309 * by the time it gets it, sdata->wdev.cac_started 3310 * will no longer be true 3311 */ 3312 cancel_delayed_work(&sdata->dfs_cac_timer_work); 3313 3314 if (sdata->wdev.cac_started) { 3315 chandef = sdata->vif.bss_conf.chandef; 3316 ieee80211_vif_release_channel(sdata); 3317 cfg80211_cac_event(sdata->dev, 3318 &chandef, 3319 NL80211_RADAR_CAC_ABORTED, 3320 GFP_KERNEL); 3321 } 3322 } 3323 mutex_unlock(&local->mtx); 3324 } 3325 3326 void ieee80211_dfs_radar_detected_work(struct work_struct *work) 3327 { 3328 struct ieee80211_local *local = 3329 container_of(work, struct ieee80211_local, radar_detected_work); 3330 struct cfg80211_chan_def chandef = local->hw.conf.chandef; 3331 struct ieee80211_chanctx *ctx; 3332 int num_chanctx = 0; 3333 3334 mutex_lock(&local->chanctx_mtx); 3335 list_for_each_entry(ctx, &local->chanctx_list, list) { 3336 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 3337 continue; 3338 3339 num_chanctx++; 3340 chandef = ctx->conf.def; 3341 } 3342 mutex_unlock(&local->chanctx_mtx); 3343 3344 rtnl_lock(); 3345 ieee80211_dfs_cac_cancel(local); 3346 rtnl_unlock(); 3347 3348 if (num_chanctx > 1) 3349 /* XXX: multi-channel is not supported yet */ 3350 WARN_ON(1); 3351 else 3352 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 3353 } 3354 3355 void ieee80211_radar_detected(struct ieee80211_hw *hw) 3356 { 3357 struct ieee80211_local *local = hw_to_local(hw); 3358 3359 trace_api_radar_detected(local); 3360 3361 schedule_work(&local->radar_detected_work); 3362 } 3363 EXPORT_SYMBOL(ieee80211_radar_detected); 3364 3365 u32 ieee80211_chandef_downgrade(struct cfg80211_chan_def *c) 3366 { 3367 u32 ret; 3368 int tmp; 3369 3370 switch (c->width) { 3371 case NL80211_CHAN_WIDTH_20: 3372 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3373 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3374 break; 3375 case NL80211_CHAN_WIDTH_40: 3376 c->width = NL80211_CHAN_WIDTH_20; 3377 c->center_freq1 = c->chan->center_freq; 3378 ret = IEEE80211_STA_DISABLE_40MHZ | 3379 IEEE80211_STA_DISABLE_VHT; 3380 break; 3381 case NL80211_CHAN_WIDTH_80: 3382 tmp = (30 + c->chan->center_freq - c->center_freq1)/20; 3383 /* n_P40 */ 3384 tmp /= 2; 3385 /* freq_P40 */ 3386 c->center_freq1 = c->center_freq1 - 20 + 40 * tmp; 3387 c->width = NL80211_CHAN_WIDTH_40; 3388 ret = IEEE80211_STA_DISABLE_VHT; 3389 break; 3390 case NL80211_CHAN_WIDTH_80P80: 3391 c->center_freq2 = 0; 3392 c->width = NL80211_CHAN_WIDTH_80; 3393 ret = IEEE80211_STA_DISABLE_80P80MHZ | 3394 IEEE80211_STA_DISABLE_160MHZ; 3395 break; 3396 case NL80211_CHAN_WIDTH_160: 3397 /* n_P20 */ 3398 tmp = (70 + c->chan->center_freq - c->center_freq1)/20; 3399 /* n_P80 */ 3400 tmp /= 4; 3401 c->center_freq1 = c->center_freq1 - 40 + 80 * tmp; 3402 c->width = NL80211_CHAN_WIDTH_80; 3403 ret = IEEE80211_STA_DISABLE_80P80MHZ | 3404 IEEE80211_STA_DISABLE_160MHZ; 3405 break; 3406 default: 3407 case NL80211_CHAN_WIDTH_20_NOHT: 3408 WARN_ON_ONCE(1); 3409 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3410 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3411 break; 3412 case NL80211_CHAN_WIDTH_5: 3413 case NL80211_CHAN_WIDTH_10: 3414 WARN_ON_ONCE(1); 3415 /* keep c->width */ 3416 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3417 break; 3418 } 3419 3420 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 3421 3422 return ret; 3423 } 3424 3425 /* 3426 * Returns true if smps_mode_new is strictly more restrictive than 3427 * smps_mode_old. 3428 */ 3429 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 3430 enum ieee80211_smps_mode smps_mode_new) 3431 { 3432 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 3433 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 3434 return false; 3435 3436 switch (smps_mode_old) { 3437 case IEEE80211_SMPS_STATIC: 3438 return false; 3439 case IEEE80211_SMPS_DYNAMIC: 3440 return smps_mode_new == IEEE80211_SMPS_STATIC; 3441 case IEEE80211_SMPS_OFF: 3442 return smps_mode_new != IEEE80211_SMPS_OFF; 3443 default: 3444 WARN_ON(1); 3445 } 3446 3447 return false; 3448 } 3449 3450 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 3451 struct cfg80211_csa_settings *csa_settings) 3452 { 3453 struct sk_buff *skb; 3454 struct ieee80211_mgmt *mgmt; 3455 struct ieee80211_local *local = sdata->local; 3456 int freq; 3457 int hdr_len = offsetofend(struct ieee80211_mgmt, 3458 u.action.u.chan_switch); 3459 u8 *pos; 3460 3461 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3462 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3463 return -EOPNOTSUPP; 3464 3465 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 3466 5 + /* channel switch announcement element */ 3467 3 + /* secondary channel offset element */ 3468 5 + /* wide bandwidth channel switch announcement */ 3469 8); /* mesh channel switch parameters element */ 3470 if (!skb) 3471 return -ENOMEM; 3472 3473 skb_reserve(skb, local->tx_headroom); 3474 mgmt = skb_put_zero(skb, hdr_len); 3475 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3476 IEEE80211_STYPE_ACTION); 3477 3478 eth_broadcast_addr(mgmt->da); 3479 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 3480 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3481 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 3482 } else { 3483 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 3484 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 3485 } 3486 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 3487 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 3488 pos = skb_put(skb, 5); 3489 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 3490 *pos++ = 3; /* IE length */ 3491 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 3492 freq = csa_settings->chandef.chan->center_freq; 3493 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 3494 *pos++ = csa_settings->count; /* count */ 3495 3496 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 3497 enum nl80211_channel_type ch_type; 3498 3499 skb_put(skb, 3); 3500 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 3501 *pos++ = 1; /* IE length */ 3502 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 3503 if (ch_type == NL80211_CHAN_HT40PLUS) 3504 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3505 else 3506 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3507 } 3508 3509 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3510 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 3511 3512 skb_put(skb, 8); 3513 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 3514 *pos++ = 6; /* IE length */ 3515 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 3516 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 3517 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 3518 *pos++ |= csa_settings->block_tx ? 3519 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 3520 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 3521 pos += 2; 3522 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 3523 pos += 2; 3524 } 3525 3526 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 3527 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 3528 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 3529 skb_put(skb, 5); 3530 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 3531 } 3532 3533 ieee80211_tx_skb(sdata, skb); 3534 return 0; 3535 } 3536 3537 bool ieee80211_cs_valid(const struct ieee80211_cipher_scheme *cs) 3538 { 3539 return !(cs == NULL || cs->cipher == 0 || 3540 cs->hdr_len < cs->pn_len + cs->pn_off || 3541 cs->hdr_len <= cs->key_idx_off || 3542 cs->key_idx_shift > 7 || 3543 cs->key_idx_mask == 0); 3544 } 3545 3546 bool ieee80211_cs_list_valid(const struct ieee80211_cipher_scheme *cs, int n) 3547 { 3548 int i; 3549 3550 /* Ensure we have enough iftype bitmap space for all iftype values */ 3551 WARN_ON((NUM_NL80211_IFTYPES / 8 + 1) > sizeof(cs[0].iftype)); 3552 3553 for (i = 0; i < n; i++) 3554 if (!ieee80211_cs_valid(&cs[i])) 3555 return false; 3556 3557 return true; 3558 } 3559 3560 const struct ieee80211_cipher_scheme * 3561 ieee80211_cs_get(struct ieee80211_local *local, u32 cipher, 3562 enum nl80211_iftype iftype) 3563 { 3564 const struct ieee80211_cipher_scheme *l = local->hw.cipher_schemes; 3565 int n = local->hw.n_cipher_schemes; 3566 int i; 3567 const struct ieee80211_cipher_scheme *cs = NULL; 3568 3569 for (i = 0; i < n; i++) { 3570 if (l[i].cipher == cipher) { 3571 cs = &l[i]; 3572 break; 3573 } 3574 } 3575 3576 if (!cs || !(cs->iftype & BIT(iftype))) 3577 return NULL; 3578 3579 return cs; 3580 } 3581 3582 int ieee80211_cs_headroom(struct ieee80211_local *local, 3583 struct cfg80211_crypto_settings *crypto, 3584 enum nl80211_iftype iftype) 3585 { 3586 const struct ieee80211_cipher_scheme *cs; 3587 int headroom = IEEE80211_ENCRYPT_HEADROOM; 3588 int i; 3589 3590 for (i = 0; i < crypto->n_ciphers_pairwise; i++) { 3591 cs = ieee80211_cs_get(local, crypto->ciphers_pairwise[i], 3592 iftype); 3593 3594 if (cs && headroom < cs->hdr_len) 3595 headroom = cs->hdr_len; 3596 } 3597 3598 cs = ieee80211_cs_get(local, crypto->cipher_group, iftype); 3599 if (cs && headroom < cs->hdr_len) 3600 headroom = cs->hdr_len; 3601 3602 return headroom; 3603 } 3604 3605 static bool 3606 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 3607 { 3608 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 3609 int skip; 3610 3611 if (end > 0) 3612 return false; 3613 3614 /* One shot NOA */ 3615 if (data->count[i] == 1) 3616 return false; 3617 3618 if (data->desc[i].interval == 0) 3619 return false; 3620 3621 /* End time is in the past, check for repetitions */ 3622 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 3623 if (data->count[i] < 255) { 3624 if (data->count[i] <= skip) { 3625 data->count[i] = 0; 3626 return false; 3627 } 3628 3629 data->count[i] -= skip; 3630 } 3631 3632 data->desc[i].start += skip * data->desc[i].interval; 3633 3634 return true; 3635 } 3636 3637 static bool 3638 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 3639 s32 *offset) 3640 { 3641 bool ret = false; 3642 int i; 3643 3644 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3645 s32 cur; 3646 3647 if (!data->count[i]) 3648 continue; 3649 3650 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 3651 ret = true; 3652 3653 cur = data->desc[i].start - tsf; 3654 if (cur > *offset) 3655 continue; 3656 3657 cur = data->desc[i].start + data->desc[i].duration - tsf; 3658 if (cur > *offset) 3659 *offset = cur; 3660 } 3661 3662 return ret; 3663 } 3664 3665 static u32 3666 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 3667 { 3668 s32 offset = 0; 3669 int tries = 0; 3670 /* 3671 * arbitrary limit, used to avoid infinite loops when combined NoA 3672 * descriptors cover the full time period. 3673 */ 3674 int max_tries = 5; 3675 3676 ieee80211_extend_absent_time(data, tsf, &offset); 3677 do { 3678 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 3679 break; 3680 3681 tries++; 3682 } while (tries < max_tries); 3683 3684 return offset; 3685 } 3686 3687 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 3688 { 3689 u32 next_offset = BIT(31) - 1; 3690 int i; 3691 3692 data->absent = 0; 3693 data->has_next_tsf = false; 3694 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3695 s32 start; 3696 3697 if (!data->count[i]) 3698 continue; 3699 3700 ieee80211_extend_noa_desc(data, tsf, i); 3701 start = data->desc[i].start - tsf; 3702 if (start <= 0) 3703 data->absent |= BIT(i); 3704 3705 if (next_offset > start) 3706 next_offset = start; 3707 3708 data->has_next_tsf = true; 3709 } 3710 3711 if (data->absent) 3712 next_offset = ieee80211_get_noa_absent_time(data, tsf); 3713 3714 data->next_tsf = tsf + next_offset; 3715 } 3716 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 3717 3718 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 3719 struct ieee80211_noa_data *data, u32 tsf) 3720 { 3721 int ret = 0; 3722 int i; 3723 3724 memset(data, 0, sizeof(*data)); 3725 3726 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3727 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 3728 3729 if (!desc->count || !desc->duration) 3730 continue; 3731 3732 data->count[i] = desc->count; 3733 data->desc[i].start = le32_to_cpu(desc->start_time); 3734 data->desc[i].duration = le32_to_cpu(desc->duration); 3735 data->desc[i].interval = le32_to_cpu(desc->interval); 3736 3737 if (data->count[i] > 1 && 3738 data->desc[i].interval < data->desc[i].duration) 3739 continue; 3740 3741 ieee80211_extend_noa_desc(data, tsf, i); 3742 ret++; 3743 } 3744 3745 if (ret) 3746 ieee80211_update_p2p_noa(data, tsf); 3747 3748 return ret; 3749 } 3750 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 3751 3752 void ieee80211_recalc_dtim(struct ieee80211_local *local, 3753 struct ieee80211_sub_if_data *sdata) 3754 { 3755 u64 tsf = drv_get_tsf(local, sdata); 3756 u64 dtim_count = 0; 3757 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 3758 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 3759 struct ps_data *ps; 3760 u8 bcns_from_dtim; 3761 3762 if (tsf == -1ULL || !beacon_int || !dtim_period) 3763 return; 3764 3765 if (sdata->vif.type == NL80211_IFTYPE_AP || 3766 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 3767 if (!sdata->bss) 3768 return; 3769 3770 ps = &sdata->bss->ps; 3771 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 3772 ps = &sdata->u.mesh.ps; 3773 } else { 3774 return; 3775 } 3776 3777 /* 3778 * actually finds last dtim_count, mac80211 will update in 3779 * __beacon_add_tim(). 3780 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 3781 */ 3782 do_div(tsf, beacon_int); 3783 bcns_from_dtim = do_div(tsf, dtim_period); 3784 /* just had a DTIM */ 3785 if (!bcns_from_dtim) 3786 dtim_count = 0; 3787 else 3788 dtim_count = dtim_period - bcns_from_dtim; 3789 3790 ps->dtim_count = dtim_count; 3791 } 3792 3793 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 3794 struct ieee80211_chanctx *ctx) 3795 { 3796 struct ieee80211_sub_if_data *sdata; 3797 u8 radar_detect = 0; 3798 3799 lockdep_assert_held(&local->chanctx_mtx); 3800 3801 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 3802 return 0; 3803 3804 list_for_each_entry(sdata, &ctx->reserved_vifs, reserved_chanctx_list) 3805 if (sdata->reserved_radar_required) 3806 radar_detect |= BIT(sdata->reserved_chandef.width); 3807 3808 /* 3809 * An in-place reservation context should not have any assigned vifs 3810 * until it replaces the other context. 3811 */ 3812 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 3813 !list_empty(&ctx->assigned_vifs)); 3814 3815 list_for_each_entry(sdata, &ctx->assigned_vifs, assigned_chanctx_list) 3816 if (sdata->radar_required) 3817 radar_detect |= BIT(sdata->vif.bss_conf.chandef.width); 3818 3819 return radar_detect; 3820 } 3821 3822 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 3823 const struct cfg80211_chan_def *chandef, 3824 enum ieee80211_chanctx_mode chanmode, 3825 u8 radar_detect) 3826 { 3827 struct ieee80211_local *local = sdata->local; 3828 struct ieee80211_sub_if_data *sdata_iter; 3829 enum nl80211_iftype iftype = sdata->wdev.iftype; 3830 struct ieee80211_chanctx *ctx; 3831 int total = 1; 3832 struct iface_combination_params params = { 3833 .radar_detect = radar_detect, 3834 }; 3835 3836 lockdep_assert_held(&local->chanctx_mtx); 3837 3838 if (WARN_ON(hweight32(radar_detect) > 1)) 3839 return -EINVAL; 3840 3841 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 3842 !chandef->chan)) 3843 return -EINVAL; 3844 3845 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 3846 return -EINVAL; 3847 3848 if (sdata->vif.type == NL80211_IFTYPE_AP || 3849 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 3850 /* 3851 * always passing this is harmless, since it'll be the 3852 * same value that cfg80211 finds if it finds the same 3853 * interface ... and that's always allowed 3854 */ 3855 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 3856 } 3857 3858 /* Always allow software iftypes */ 3859 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 3860 if (radar_detect) 3861 return -EINVAL; 3862 return 0; 3863 } 3864 3865 if (chandef) 3866 params.num_different_channels = 1; 3867 3868 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 3869 params.iftype_num[iftype] = 1; 3870 3871 list_for_each_entry(ctx, &local->chanctx_list, list) { 3872 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 3873 continue; 3874 params.radar_detect |= 3875 ieee80211_chanctx_radar_detect(local, ctx); 3876 if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) { 3877 params.num_different_channels++; 3878 continue; 3879 } 3880 if (chandef && chanmode == IEEE80211_CHANCTX_SHARED && 3881 cfg80211_chandef_compatible(chandef, 3882 &ctx->conf.def)) 3883 continue; 3884 params.num_different_channels++; 3885 } 3886 3887 list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) { 3888 struct wireless_dev *wdev_iter; 3889 3890 wdev_iter = &sdata_iter->wdev; 3891 3892 if (sdata_iter == sdata || 3893 !ieee80211_sdata_running(sdata_iter) || 3894 cfg80211_iftype_allowed(local->hw.wiphy, 3895 wdev_iter->iftype, 0, 1)) 3896 continue; 3897 3898 params.iftype_num[wdev_iter->iftype]++; 3899 total++; 3900 } 3901 3902 if (total == 1 && !params.radar_detect) 3903 return 0; 3904 3905 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 3906 } 3907 3908 static void 3909 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 3910 void *data) 3911 { 3912 u32 *max_num_different_channels = data; 3913 3914 *max_num_different_channels = max(*max_num_different_channels, 3915 c->num_different_channels); 3916 } 3917 3918 int ieee80211_max_num_channels(struct ieee80211_local *local) 3919 { 3920 struct ieee80211_sub_if_data *sdata; 3921 struct ieee80211_chanctx *ctx; 3922 u32 max_num_different_channels = 1; 3923 int err; 3924 struct iface_combination_params params = {0}; 3925 3926 lockdep_assert_held(&local->chanctx_mtx); 3927 3928 list_for_each_entry(ctx, &local->chanctx_list, list) { 3929 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 3930 continue; 3931 3932 params.num_different_channels++; 3933 3934 params.radar_detect |= 3935 ieee80211_chanctx_radar_detect(local, ctx); 3936 } 3937 3938 list_for_each_entry_rcu(sdata, &local->interfaces, list) 3939 params.iftype_num[sdata->wdev.iftype]++; 3940 3941 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 3942 ieee80211_iter_max_chans, 3943 &max_num_different_channels); 3944 if (err < 0) 3945 return err; 3946 3947 return max_num_different_channels; 3948 } 3949 3950 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 3951 { 3952 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 3953 *buf++ = 7; /* len */ 3954 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 3955 *buf++ = 0x50; 3956 *buf++ = 0xf2; 3957 *buf++ = 2; /* WME */ 3958 *buf++ = 0; /* WME info */ 3959 *buf++ = 1; /* WME ver */ 3960 *buf++ = qosinfo; /* U-APSD no in use */ 3961 3962 return buf; 3963 } 3964 3965 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 3966 unsigned long *frame_cnt, 3967 unsigned long *byte_cnt) 3968 { 3969 struct txq_info *txqi = to_txq_info(txq); 3970 u32 frag_cnt = 0, frag_bytes = 0; 3971 struct sk_buff *skb; 3972 3973 skb_queue_walk(&txqi->frags, skb) { 3974 frag_cnt++; 3975 frag_bytes += skb->len; 3976 } 3977 3978 if (frame_cnt) 3979 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 3980 3981 if (byte_cnt) 3982 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 3983 } 3984 EXPORT_SYMBOL(ieee80211_txq_get_depth); 3985 3986 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 3987 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 3988 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 3989 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 3990 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 3991 }; 3992