1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2022 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 28 #include "ieee80211_i.h" 29 #include "driver-ops.h" 30 #include "rate.h" 31 #include "mesh.h" 32 #include "wme.h" 33 #include "led.h" 34 #include "wep.h" 35 36 /* privid for wiphys to determine whether they belong to us or not */ 37 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 38 39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 40 { 41 struct ieee80211_local *local; 42 43 local = wiphy_priv(wiphy); 44 return &local->hw; 45 } 46 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 47 48 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 49 enum nl80211_iftype type) 50 { 51 __le16 fc = hdr->frame_control; 52 53 if (ieee80211_is_data(fc)) { 54 if (len < 24) /* drop incorrect hdr len (data) */ 55 return NULL; 56 57 if (ieee80211_has_a4(fc)) 58 return NULL; 59 if (ieee80211_has_tods(fc)) 60 return hdr->addr1; 61 if (ieee80211_has_fromds(fc)) 62 return hdr->addr2; 63 64 return hdr->addr3; 65 } 66 67 if (ieee80211_is_s1g_beacon(fc)) { 68 struct ieee80211_ext *ext = (void *) hdr; 69 70 return ext->u.s1g_beacon.sa; 71 } 72 73 if (ieee80211_is_mgmt(fc)) { 74 if (len < 24) /* drop incorrect hdr len (mgmt) */ 75 return NULL; 76 return hdr->addr3; 77 } 78 79 if (ieee80211_is_ctl(fc)) { 80 if (ieee80211_is_pspoll(fc)) 81 return hdr->addr1; 82 83 if (ieee80211_is_back_req(fc)) { 84 switch (type) { 85 case NL80211_IFTYPE_STATION: 86 return hdr->addr2; 87 case NL80211_IFTYPE_AP: 88 case NL80211_IFTYPE_AP_VLAN: 89 return hdr->addr1; 90 default: 91 break; /* fall through to the return */ 92 } 93 } 94 } 95 96 return NULL; 97 } 98 EXPORT_SYMBOL(ieee80211_get_bssid); 99 100 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 101 { 102 struct sk_buff *skb; 103 struct ieee80211_hdr *hdr; 104 105 skb_queue_walk(&tx->skbs, skb) { 106 hdr = (struct ieee80211_hdr *) skb->data; 107 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 108 } 109 } 110 111 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 112 int rate, int erp, int short_preamble, 113 int shift) 114 { 115 int dur; 116 117 /* calculate duration (in microseconds, rounded up to next higher 118 * integer if it includes a fractional microsecond) to send frame of 119 * len bytes (does not include FCS) at the given rate. Duration will 120 * also include SIFS. 121 * 122 * rate is in 100 kbps, so divident is multiplied by 10 in the 123 * DIV_ROUND_UP() operations. 124 * 125 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and 126 * is assumed to be 0 otherwise. 127 */ 128 129 if (band == NL80211_BAND_5GHZ || erp) { 130 /* 131 * OFDM: 132 * 133 * N_DBPS = DATARATE x 4 134 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 135 * (16 = SIGNAL time, 6 = tail bits) 136 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 137 * 138 * T_SYM = 4 usec 139 * 802.11a - 18.5.2: aSIFSTime = 16 usec 140 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 141 * signal ext = 6 usec 142 */ 143 dur = 16; /* SIFS + signal ext */ 144 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 145 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 146 147 /* IEEE 802.11-2012 18.3.2.4: all values above are: 148 * * times 4 for 5 MHz 149 * * times 2 for 10 MHz 150 */ 151 dur *= 1 << shift; 152 153 /* rates should already consider the channel bandwidth, 154 * don't apply divisor again. 155 */ 156 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 157 4 * rate); /* T_SYM x N_SYM */ 158 } else { 159 /* 160 * 802.11b or 802.11g with 802.11b compatibility: 161 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 162 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 163 * 164 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 165 * aSIFSTime = 10 usec 166 * aPreambleLength = 144 usec or 72 usec with short preamble 167 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 168 */ 169 dur = 10; /* aSIFSTime = 10 usec */ 170 dur += short_preamble ? (72 + 24) : (144 + 48); 171 172 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 173 } 174 175 return dur; 176 } 177 178 /* Exported duration function for driver use */ 179 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 180 struct ieee80211_vif *vif, 181 enum nl80211_band band, 182 size_t frame_len, 183 struct ieee80211_rate *rate) 184 { 185 struct ieee80211_sub_if_data *sdata; 186 u16 dur; 187 int erp, shift = 0; 188 bool short_preamble = false; 189 190 erp = 0; 191 if (vif) { 192 sdata = vif_to_sdata(vif); 193 short_preamble = sdata->vif.bss_conf.use_short_preamble; 194 if (sdata->deflink.operating_11g_mode) 195 erp = rate->flags & IEEE80211_RATE_ERP_G; 196 shift = ieee80211_vif_get_shift(vif); 197 } 198 199 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 200 short_preamble, shift); 201 202 return cpu_to_le16(dur); 203 } 204 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 205 206 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 207 struct ieee80211_vif *vif, size_t frame_len, 208 const struct ieee80211_tx_info *frame_txctl) 209 { 210 struct ieee80211_local *local = hw_to_local(hw); 211 struct ieee80211_rate *rate; 212 struct ieee80211_sub_if_data *sdata; 213 bool short_preamble; 214 int erp, shift = 0, bitrate; 215 u16 dur; 216 struct ieee80211_supported_band *sband; 217 218 sband = local->hw.wiphy->bands[frame_txctl->band]; 219 220 short_preamble = false; 221 222 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 223 224 erp = 0; 225 if (vif) { 226 sdata = vif_to_sdata(vif); 227 short_preamble = sdata->vif.bss_conf.use_short_preamble; 228 if (sdata->deflink.operating_11g_mode) 229 erp = rate->flags & IEEE80211_RATE_ERP_G; 230 shift = ieee80211_vif_get_shift(vif); 231 } 232 233 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 234 235 /* CTS duration */ 236 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 237 erp, short_preamble, shift); 238 /* Data frame duration */ 239 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 240 erp, short_preamble, shift); 241 /* ACK duration */ 242 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 243 erp, short_preamble, shift); 244 245 return cpu_to_le16(dur); 246 } 247 EXPORT_SYMBOL(ieee80211_rts_duration); 248 249 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 250 struct ieee80211_vif *vif, 251 size_t frame_len, 252 const struct ieee80211_tx_info *frame_txctl) 253 { 254 struct ieee80211_local *local = hw_to_local(hw); 255 struct ieee80211_rate *rate; 256 struct ieee80211_sub_if_data *sdata; 257 bool short_preamble; 258 int erp, shift = 0, bitrate; 259 u16 dur; 260 struct ieee80211_supported_band *sband; 261 262 sband = local->hw.wiphy->bands[frame_txctl->band]; 263 264 short_preamble = false; 265 266 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 267 erp = 0; 268 if (vif) { 269 sdata = vif_to_sdata(vif); 270 short_preamble = sdata->vif.bss_conf.use_short_preamble; 271 if (sdata->deflink.operating_11g_mode) 272 erp = rate->flags & IEEE80211_RATE_ERP_G; 273 shift = ieee80211_vif_get_shift(vif); 274 } 275 276 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 277 278 /* Data frame duration */ 279 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 280 erp, short_preamble, shift); 281 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 282 /* ACK duration */ 283 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 284 erp, short_preamble, shift); 285 } 286 287 return cpu_to_le16(dur); 288 } 289 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 290 291 static void wake_tx_push_queue(struct ieee80211_local *local, 292 struct ieee80211_sub_if_data *sdata, 293 struct ieee80211_txq *queue) 294 { 295 int q = sdata->vif.hw_queue[queue->ac]; 296 struct ieee80211_tx_control control = { 297 .sta = queue->sta, 298 }; 299 struct sk_buff *skb; 300 unsigned long flags; 301 bool q_stopped; 302 303 while (1) { 304 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 305 q_stopped = local->queue_stop_reasons[q]; 306 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 307 308 if (q_stopped) 309 break; 310 311 skb = ieee80211_tx_dequeue(&local->hw, queue); 312 if (!skb) 313 break; 314 315 drv_tx(local, &control, skb); 316 } 317 } 318 319 /* wake_tx_queue handler for driver not implementing a custom one*/ 320 void ieee80211_handle_wake_tx_queue(struct ieee80211_hw *hw, 321 struct ieee80211_txq *txq) 322 { 323 struct ieee80211_local *local = hw_to_local(hw); 324 struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif); 325 struct ieee80211_txq *queue; 326 327 /* Use ieee80211_next_txq() for airtime fairness accounting */ 328 ieee80211_txq_schedule_start(hw, txq->ac); 329 while ((queue = ieee80211_next_txq(hw, txq->ac))) { 330 wake_tx_push_queue(local, sdata, queue); 331 ieee80211_return_txq(hw, queue, false); 332 } 333 ieee80211_txq_schedule_end(hw, txq->ac); 334 } 335 EXPORT_SYMBOL(ieee80211_handle_wake_tx_queue); 336 337 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 338 { 339 struct ieee80211_local *local = sdata->local; 340 struct ieee80211_vif *vif = &sdata->vif; 341 struct fq *fq = &local->fq; 342 struct ps_data *ps = NULL; 343 struct txq_info *txqi; 344 struct sta_info *sta; 345 int i; 346 347 local_bh_disable(); 348 spin_lock(&fq->lock); 349 350 sdata->vif.txqs_stopped[ac] = false; 351 352 if (!test_bit(SDATA_STATE_RUNNING, &sdata->state)) 353 goto out; 354 355 if (sdata->vif.type == NL80211_IFTYPE_AP) 356 ps = &sdata->bss->ps; 357 358 list_for_each_entry_rcu(sta, &local->sta_list, list) { 359 if (sdata != sta->sdata) 360 continue; 361 362 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 363 struct ieee80211_txq *txq = sta->sta.txq[i]; 364 365 if (!txq) 366 continue; 367 368 txqi = to_txq_info(txq); 369 370 if (ac != txq->ac) 371 continue; 372 373 if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, 374 &txqi->flags)) 375 continue; 376 377 spin_unlock(&fq->lock); 378 drv_wake_tx_queue(local, txqi); 379 spin_lock(&fq->lock); 380 } 381 } 382 383 if (!vif->txq) 384 goto out; 385 386 txqi = to_txq_info(vif->txq); 387 388 if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, &txqi->flags) || 389 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 390 goto out; 391 392 spin_unlock(&fq->lock); 393 394 drv_wake_tx_queue(local, txqi); 395 local_bh_enable(); 396 return; 397 out: 398 spin_unlock(&fq->lock); 399 local_bh_enable(); 400 } 401 402 static void 403 __releases(&local->queue_stop_reason_lock) 404 __acquires(&local->queue_stop_reason_lock) 405 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 406 { 407 struct ieee80211_sub_if_data *sdata; 408 int n_acs = IEEE80211_NUM_ACS; 409 int i; 410 411 rcu_read_lock(); 412 413 if (local->hw.queues < IEEE80211_NUM_ACS) 414 n_acs = 1; 415 416 for (i = 0; i < local->hw.queues; i++) { 417 if (local->queue_stop_reasons[i]) 418 continue; 419 420 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 421 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 422 int ac; 423 424 for (ac = 0; ac < n_acs; ac++) { 425 int ac_queue = sdata->vif.hw_queue[ac]; 426 427 if (ac_queue == i || 428 sdata->vif.cab_queue == i) 429 __ieee80211_wake_txqs(sdata, ac); 430 } 431 } 432 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 433 } 434 435 rcu_read_unlock(); 436 } 437 438 void ieee80211_wake_txqs(struct tasklet_struct *t) 439 { 440 struct ieee80211_local *local = from_tasklet(local, t, 441 wake_txqs_tasklet); 442 unsigned long flags; 443 444 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 445 _ieee80211_wake_txqs(local, &flags); 446 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 447 } 448 449 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue) 450 { 451 struct ieee80211_sub_if_data *sdata; 452 int n_acs = IEEE80211_NUM_ACS; 453 454 if (local->ops->wake_tx_queue) 455 return; 456 457 if (local->hw.queues < IEEE80211_NUM_ACS) 458 n_acs = 1; 459 460 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 461 int ac; 462 463 if (!sdata->dev) 464 continue; 465 466 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE && 467 local->queue_stop_reasons[sdata->vif.cab_queue] != 0) 468 continue; 469 470 for (ac = 0; ac < n_acs; ac++) { 471 int ac_queue = sdata->vif.hw_queue[ac]; 472 473 if (ac_queue == queue || 474 (sdata->vif.cab_queue == queue && 475 local->queue_stop_reasons[ac_queue] == 0 && 476 skb_queue_empty(&local->pending[ac_queue]))) 477 netif_wake_subqueue(sdata->dev, ac); 478 } 479 } 480 } 481 482 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 483 enum queue_stop_reason reason, 484 bool refcounted, 485 unsigned long *flags) 486 { 487 struct ieee80211_local *local = hw_to_local(hw); 488 489 trace_wake_queue(local, queue, reason); 490 491 if (WARN_ON(queue >= hw->queues)) 492 return; 493 494 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 495 return; 496 497 if (!refcounted) { 498 local->q_stop_reasons[queue][reason] = 0; 499 } else { 500 local->q_stop_reasons[queue][reason]--; 501 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 502 local->q_stop_reasons[queue][reason] = 0; 503 } 504 505 if (local->q_stop_reasons[queue][reason] == 0) 506 __clear_bit(reason, &local->queue_stop_reasons[queue]); 507 508 if (local->queue_stop_reasons[queue] != 0) 509 /* someone still has this queue stopped */ 510 return; 511 512 if (skb_queue_empty(&local->pending[queue])) { 513 rcu_read_lock(); 514 ieee80211_propagate_queue_wake(local, queue); 515 rcu_read_unlock(); 516 } else 517 tasklet_schedule(&local->tx_pending_tasklet); 518 519 /* 520 * Calling _ieee80211_wake_txqs here can be a problem because it may 521 * release queue_stop_reason_lock which has been taken by 522 * __ieee80211_wake_queue's caller. It is certainly not very nice to 523 * release someone's lock, but it is fine because all the callers of 524 * __ieee80211_wake_queue call it right before releasing the lock. 525 */ 526 if (local->ops->wake_tx_queue) { 527 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 528 tasklet_schedule(&local->wake_txqs_tasklet); 529 else 530 _ieee80211_wake_txqs(local, flags); 531 } 532 } 533 534 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 535 enum queue_stop_reason reason, 536 bool refcounted) 537 { 538 struct ieee80211_local *local = hw_to_local(hw); 539 unsigned long flags; 540 541 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 542 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 543 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 544 } 545 546 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 547 { 548 ieee80211_wake_queue_by_reason(hw, queue, 549 IEEE80211_QUEUE_STOP_REASON_DRIVER, 550 false); 551 } 552 EXPORT_SYMBOL(ieee80211_wake_queue); 553 554 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 555 enum queue_stop_reason reason, 556 bool refcounted) 557 { 558 struct ieee80211_local *local = hw_to_local(hw); 559 struct ieee80211_sub_if_data *sdata; 560 int n_acs = IEEE80211_NUM_ACS; 561 562 trace_stop_queue(local, queue, reason); 563 564 if (WARN_ON(queue >= hw->queues)) 565 return; 566 567 if (!refcounted) 568 local->q_stop_reasons[queue][reason] = 1; 569 else 570 local->q_stop_reasons[queue][reason]++; 571 572 if (__test_and_set_bit(reason, &local->queue_stop_reasons[queue])) 573 return; 574 575 if (local->hw.queues < IEEE80211_NUM_ACS) 576 n_acs = 1; 577 578 rcu_read_lock(); 579 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 580 int ac; 581 582 if (!sdata->dev) 583 continue; 584 585 for (ac = 0; ac < n_acs; ac++) { 586 if (sdata->vif.hw_queue[ac] == queue || 587 sdata->vif.cab_queue == queue) { 588 if (!local->ops->wake_tx_queue) { 589 netif_stop_subqueue(sdata->dev, ac); 590 continue; 591 } 592 spin_lock(&local->fq.lock); 593 sdata->vif.txqs_stopped[ac] = true; 594 spin_unlock(&local->fq.lock); 595 } 596 } 597 } 598 rcu_read_unlock(); 599 } 600 601 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 602 enum queue_stop_reason reason, 603 bool refcounted) 604 { 605 struct ieee80211_local *local = hw_to_local(hw); 606 unsigned long flags; 607 608 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 609 __ieee80211_stop_queue(hw, queue, reason, refcounted); 610 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 611 } 612 613 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 614 { 615 ieee80211_stop_queue_by_reason(hw, queue, 616 IEEE80211_QUEUE_STOP_REASON_DRIVER, 617 false); 618 } 619 EXPORT_SYMBOL(ieee80211_stop_queue); 620 621 void ieee80211_add_pending_skb(struct ieee80211_local *local, 622 struct sk_buff *skb) 623 { 624 struct ieee80211_hw *hw = &local->hw; 625 unsigned long flags; 626 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 627 int queue = info->hw_queue; 628 629 if (WARN_ON(!info->control.vif)) { 630 ieee80211_free_txskb(&local->hw, skb); 631 return; 632 } 633 634 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 635 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 636 false); 637 __skb_queue_tail(&local->pending[queue], skb); 638 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 639 false, &flags); 640 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 641 } 642 643 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 644 struct sk_buff_head *skbs) 645 { 646 struct ieee80211_hw *hw = &local->hw; 647 struct sk_buff *skb; 648 unsigned long flags; 649 int queue, i; 650 651 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 652 while ((skb = skb_dequeue(skbs))) { 653 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 654 655 if (WARN_ON(!info->control.vif)) { 656 ieee80211_free_txskb(&local->hw, skb); 657 continue; 658 } 659 660 queue = info->hw_queue; 661 662 __ieee80211_stop_queue(hw, queue, 663 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 664 false); 665 666 __skb_queue_tail(&local->pending[queue], skb); 667 } 668 669 for (i = 0; i < hw->queues; i++) 670 __ieee80211_wake_queue(hw, i, 671 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 672 false, &flags); 673 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 674 } 675 676 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 677 unsigned long queues, 678 enum queue_stop_reason reason, 679 bool refcounted) 680 { 681 struct ieee80211_local *local = hw_to_local(hw); 682 unsigned long flags; 683 int i; 684 685 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 686 687 for_each_set_bit(i, &queues, hw->queues) 688 __ieee80211_stop_queue(hw, i, reason, refcounted); 689 690 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 691 } 692 693 void ieee80211_stop_queues(struct ieee80211_hw *hw) 694 { 695 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 696 IEEE80211_QUEUE_STOP_REASON_DRIVER, 697 false); 698 } 699 EXPORT_SYMBOL(ieee80211_stop_queues); 700 701 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 702 { 703 struct ieee80211_local *local = hw_to_local(hw); 704 unsigned long flags; 705 int ret; 706 707 if (WARN_ON(queue >= hw->queues)) 708 return true; 709 710 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 711 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 712 &local->queue_stop_reasons[queue]); 713 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 714 return ret; 715 } 716 EXPORT_SYMBOL(ieee80211_queue_stopped); 717 718 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 719 unsigned long queues, 720 enum queue_stop_reason reason, 721 bool refcounted) 722 { 723 struct ieee80211_local *local = hw_to_local(hw); 724 unsigned long flags; 725 int i; 726 727 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 728 729 for_each_set_bit(i, &queues, hw->queues) 730 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 731 732 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 733 } 734 735 void ieee80211_wake_queues(struct ieee80211_hw *hw) 736 { 737 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 738 IEEE80211_QUEUE_STOP_REASON_DRIVER, 739 false); 740 } 741 EXPORT_SYMBOL(ieee80211_wake_queues); 742 743 static unsigned int 744 ieee80211_get_vif_queues(struct ieee80211_local *local, 745 struct ieee80211_sub_if_data *sdata) 746 { 747 unsigned int queues; 748 749 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 750 int ac; 751 752 queues = 0; 753 754 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 755 queues |= BIT(sdata->vif.hw_queue[ac]); 756 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 757 queues |= BIT(sdata->vif.cab_queue); 758 } else { 759 /* all queues */ 760 queues = BIT(local->hw.queues) - 1; 761 } 762 763 return queues; 764 } 765 766 void __ieee80211_flush_queues(struct ieee80211_local *local, 767 struct ieee80211_sub_if_data *sdata, 768 unsigned int queues, bool drop) 769 { 770 if (!local->ops->flush) 771 return; 772 773 /* 774 * If no queue was set, or if the HW doesn't support 775 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 776 */ 777 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 778 queues = ieee80211_get_vif_queues(local, sdata); 779 780 ieee80211_stop_queues_by_reason(&local->hw, queues, 781 IEEE80211_QUEUE_STOP_REASON_FLUSH, 782 false); 783 784 drv_flush(local, sdata, queues, drop); 785 786 ieee80211_wake_queues_by_reason(&local->hw, queues, 787 IEEE80211_QUEUE_STOP_REASON_FLUSH, 788 false); 789 } 790 791 void ieee80211_flush_queues(struct ieee80211_local *local, 792 struct ieee80211_sub_if_data *sdata, bool drop) 793 { 794 __ieee80211_flush_queues(local, sdata, 0, drop); 795 } 796 797 void ieee80211_stop_vif_queues(struct ieee80211_local *local, 798 struct ieee80211_sub_if_data *sdata, 799 enum queue_stop_reason reason) 800 { 801 ieee80211_stop_queues_by_reason(&local->hw, 802 ieee80211_get_vif_queues(local, sdata), 803 reason, true); 804 } 805 806 void ieee80211_wake_vif_queues(struct ieee80211_local *local, 807 struct ieee80211_sub_if_data *sdata, 808 enum queue_stop_reason reason) 809 { 810 ieee80211_wake_queues_by_reason(&local->hw, 811 ieee80211_get_vif_queues(local, sdata), 812 reason, true); 813 } 814 815 static void __iterate_interfaces(struct ieee80211_local *local, 816 u32 iter_flags, 817 void (*iterator)(void *data, u8 *mac, 818 struct ieee80211_vif *vif), 819 void *data) 820 { 821 struct ieee80211_sub_if_data *sdata; 822 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 823 824 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 825 switch (sdata->vif.type) { 826 case NL80211_IFTYPE_MONITOR: 827 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) 828 continue; 829 break; 830 case NL80211_IFTYPE_AP_VLAN: 831 continue; 832 default: 833 break; 834 } 835 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 836 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 837 continue; 838 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && 839 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 840 continue; 841 if (ieee80211_sdata_running(sdata) || !active_only) 842 iterator(data, sdata->vif.addr, 843 &sdata->vif); 844 } 845 846 sdata = rcu_dereference_check(local->monitor_sdata, 847 lockdep_is_held(&local->iflist_mtx) || 848 lockdep_is_held(&local->hw.wiphy->mtx)); 849 if (sdata && 850 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 851 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 852 iterator(data, sdata->vif.addr, &sdata->vif); 853 } 854 855 void ieee80211_iterate_interfaces( 856 struct ieee80211_hw *hw, u32 iter_flags, 857 void (*iterator)(void *data, u8 *mac, 858 struct ieee80211_vif *vif), 859 void *data) 860 { 861 struct ieee80211_local *local = hw_to_local(hw); 862 863 mutex_lock(&local->iflist_mtx); 864 __iterate_interfaces(local, iter_flags, iterator, data); 865 mutex_unlock(&local->iflist_mtx); 866 } 867 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 868 869 void ieee80211_iterate_active_interfaces_atomic( 870 struct ieee80211_hw *hw, u32 iter_flags, 871 void (*iterator)(void *data, u8 *mac, 872 struct ieee80211_vif *vif), 873 void *data) 874 { 875 struct ieee80211_local *local = hw_to_local(hw); 876 877 rcu_read_lock(); 878 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 879 iterator, data); 880 rcu_read_unlock(); 881 } 882 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 883 884 void ieee80211_iterate_active_interfaces_mtx( 885 struct ieee80211_hw *hw, u32 iter_flags, 886 void (*iterator)(void *data, u8 *mac, 887 struct ieee80211_vif *vif), 888 void *data) 889 { 890 struct ieee80211_local *local = hw_to_local(hw); 891 892 lockdep_assert_wiphy(hw->wiphy); 893 894 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 895 iterator, data); 896 } 897 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx); 898 899 static void __iterate_stations(struct ieee80211_local *local, 900 void (*iterator)(void *data, 901 struct ieee80211_sta *sta), 902 void *data) 903 { 904 struct sta_info *sta; 905 906 list_for_each_entry_rcu(sta, &local->sta_list, list) { 907 if (!sta->uploaded) 908 continue; 909 910 iterator(data, &sta->sta); 911 } 912 } 913 914 void ieee80211_iterate_stations(struct ieee80211_hw *hw, 915 void (*iterator)(void *data, 916 struct ieee80211_sta *sta), 917 void *data) 918 { 919 struct ieee80211_local *local = hw_to_local(hw); 920 921 mutex_lock(&local->sta_mtx); 922 __iterate_stations(local, iterator, data); 923 mutex_unlock(&local->sta_mtx); 924 } 925 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations); 926 927 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 928 void (*iterator)(void *data, 929 struct ieee80211_sta *sta), 930 void *data) 931 { 932 struct ieee80211_local *local = hw_to_local(hw); 933 934 rcu_read_lock(); 935 __iterate_stations(local, iterator, data); 936 rcu_read_unlock(); 937 } 938 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 939 940 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 941 { 942 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 943 944 if (!ieee80211_sdata_running(sdata) || 945 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 946 return NULL; 947 return &sdata->vif; 948 } 949 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 950 951 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 952 { 953 if (!vif) 954 return NULL; 955 956 return &vif_to_sdata(vif)->wdev; 957 } 958 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 959 960 /* 961 * Nothing should have been stuffed into the workqueue during 962 * the suspend->resume cycle. Since we can't check each caller 963 * of this function if we are already quiescing / suspended, 964 * check here and don't WARN since this can actually happen when 965 * the rx path (for example) is racing against __ieee80211_suspend 966 * and suspending / quiescing was set after the rx path checked 967 * them. 968 */ 969 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 970 { 971 if (local->quiescing || (local->suspended && !local->resuming)) { 972 pr_warn("queueing ieee80211 work while going to suspend\n"); 973 return false; 974 } 975 976 return true; 977 } 978 979 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 980 { 981 struct ieee80211_local *local = hw_to_local(hw); 982 983 if (!ieee80211_can_queue_work(local)) 984 return; 985 986 queue_work(local->workqueue, work); 987 } 988 EXPORT_SYMBOL(ieee80211_queue_work); 989 990 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 991 struct delayed_work *dwork, 992 unsigned long delay) 993 { 994 struct ieee80211_local *local = hw_to_local(hw); 995 996 if (!ieee80211_can_queue_work(local)) 997 return; 998 999 queue_delayed_work(local->workqueue, dwork, delay); 1000 } 1001 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 1002 1003 static void 1004 ieee80211_parse_extension_element(u32 *crc, 1005 const struct element *elem, 1006 struct ieee802_11_elems *elems, 1007 struct ieee80211_elems_parse_params *params) 1008 { 1009 const void *data = elem->data + 1; 1010 u8 len; 1011 1012 if (!elem->datalen) 1013 return; 1014 1015 len = elem->datalen - 1; 1016 1017 switch (elem->data[0]) { 1018 case WLAN_EID_EXT_HE_MU_EDCA: 1019 if (len >= sizeof(*elems->mu_edca_param_set)) { 1020 elems->mu_edca_param_set = data; 1021 if (crc) 1022 *crc = crc32_be(*crc, (void *)elem, 1023 elem->datalen + 2); 1024 } 1025 break; 1026 case WLAN_EID_EXT_HE_CAPABILITY: 1027 if (ieee80211_he_capa_size_ok(data, len)) { 1028 elems->he_cap = data; 1029 elems->he_cap_len = len; 1030 } 1031 break; 1032 case WLAN_EID_EXT_HE_OPERATION: 1033 if (len >= sizeof(*elems->he_operation) && 1034 len >= ieee80211_he_oper_size(data) - 1) { 1035 if (crc) 1036 *crc = crc32_be(*crc, (void *)elem, 1037 elem->datalen + 2); 1038 elems->he_operation = data; 1039 } 1040 break; 1041 case WLAN_EID_EXT_UORA: 1042 if (len >= 1) 1043 elems->uora_element = data; 1044 break; 1045 case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME: 1046 if (len == 3) 1047 elems->max_channel_switch_time = data; 1048 break; 1049 case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION: 1050 if (len >= sizeof(*elems->mbssid_config_ie)) 1051 elems->mbssid_config_ie = data; 1052 break; 1053 case WLAN_EID_EXT_HE_SPR: 1054 if (len >= sizeof(*elems->he_spr) && 1055 len >= ieee80211_he_spr_size(data)) 1056 elems->he_spr = data; 1057 break; 1058 case WLAN_EID_EXT_HE_6GHZ_CAPA: 1059 if (len >= sizeof(*elems->he_6ghz_capa)) 1060 elems->he_6ghz_capa = data; 1061 break; 1062 case WLAN_EID_EXT_EHT_CAPABILITY: 1063 if (ieee80211_eht_capa_size_ok(elems->he_cap, 1064 data, len, 1065 params->from_ap)) { 1066 elems->eht_cap = data; 1067 elems->eht_cap_len = len; 1068 } 1069 break; 1070 case WLAN_EID_EXT_EHT_OPERATION: 1071 if (ieee80211_eht_oper_size_ok(data, len)) 1072 elems->eht_operation = data; 1073 break; 1074 case WLAN_EID_EXT_EHT_MULTI_LINK: 1075 if (ieee80211_mle_size_ok(data, len)) { 1076 elems->multi_link = (void *)data; 1077 elems->multi_link_len = len; 1078 } 1079 break; 1080 } 1081 } 1082 1083 static u32 1084 _ieee802_11_parse_elems_full(struct ieee80211_elems_parse_params *params, 1085 struct ieee802_11_elems *elems, 1086 const struct element *check_inherit) 1087 { 1088 const struct element *elem; 1089 bool calc_crc = params->filter != 0; 1090 DECLARE_BITMAP(seen_elems, 256); 1091 u32 crc = params->crc; 1092 const u8 *ie; 1093 1094 bitmap_zero(seen_elems, 256); 1095 1096 for_each_element(elem, params->start, params->len) { 1097 bool elem_parse_failed; 1098 u8 id = elem->id; 1099 u8 elen = elem->datalen; 1100 const u8 *pos = elem->data; 1101 1102 if (check_inherit && 1103 !cfg80211_is_element_inherited(elem, 1104 check_inherit)) 1105 continue; 1106 1107 switch (id) { 1108 case WLAN_EID_SSID: 1109 case WLAN_EID_SUPP_RATES: 1110 case WLAN_EID_FH_PARAMS: 1111 case WLAN_EID_DS_PARAMS: 1112 case WLAN_EID_CF_PARAMS: 1113 case WLAN_EID_TIM: 1114 case WLAN_EID_IBSS_PARAMS: 1115 case WLAN_EID_CHALLENGE: 1116 case WLAN_EID_RSN: 1117 case WLAN_EID_ERP_INFO: 1118 case WLAN_EID_EXT_SUPP_RATES: 1119 case WLAN_EID_HT_CAPABILITY: 1120 case WLAN_EID_HT_OPERATION: 1121 case WLAN_EID_VHT_CAPABILITY: 1122 case WLAN_EID_VHT_OPERATION: 1123 case WLAN_EID_MESH_ID: 1124 case WLAN_EID_MESH_CONFIG: 1125 case WLAN_EID_PEER_MGMT: 1126 case WLAN_EID_PREQ: 1127 case WLAN_EID_PREP: 1128 case WLAN_EID_PERR: 1129 case WLAN_EID_RANN: 1130 case WLAN_EID_CHANNEL_SWITCH: 1131 case WLAN_EID_EXT_CHANSWITCH_ANN: 1132 case WLAN_EID_COUNTRY: 1133 case WLAN_EID_PWR_CONSTRAINT: 1134 case WLAN_EID_TIMEOUT_INTERVAL: 1135 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1136 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1137 case WLAN_EID_CHAN_SWITCH_PARAM: 1138 case WLAN_EID_EXT_CAPABILITY: 1139 case WLAN_EID_CHAN_SWITCH_TIMING: 1140 case WLAN_EID_LINK_ID: 1141 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1142 case WLAN_EID_RSNX: 1143 case WLAN_EID_S1G_BCN_COMPAT: 1144 case WLAN_EID_S1G_CAPABILITIES: 1145 case WLAN_EID_S1G_OPERATION: 1146 case WLAN_EID_AID_RESPONSE: 1147 case WLAN_EID_S1G_SHORT_BCN_INTERVAL: 1148 /* 1149 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible 1150 * that if the content gets bigger it might be needed more than once 1151 */ 1152 if (test_bit(id, seen_elems)) { 1153 elems->parse_error = true; 1154 continue; 1155 } 1156 break; 1157 } 1158 1159 if (calc_crc && id < 64 && (params->filter & (1ULL << id))) 1160 crc = crc32_be(crc, pos - 2, elen + 2); 1161 1162 elem_parse_failed = false; 1163 1164 switch (id) { 1165 case WLAN_EID_LINK_ID: 1166 if (elen + 2 < sizeof(struct ieee80211_tdls_lnkie)) { 1167 elem_parse_failed = true; 1168 break; 1169 } 1170 elems->lnk_id = (void *)(pos - 2); 1171 break; 1172 case WLAN_EID_CHAN_SWITCH_TIMING: 1173 if (elen < sizeof(struct ieee80211_ch_switch_timing)) { 1174 elem_parse_failed = true; 1175 break; 1176 } 1177 elems->ch_sw_timing = (void *)pos; 1178 break; 1179 case WLAN_EID_EXT_CAPABILITY: 1180 elems->ext_capab = pos; 1181 elems->ext_capab_len = elen; 1182 break; 1183 case WLAN_EID_SSID: 1184 elems->ssid = pos; 1185 elems->ssid_len = elen; 1186 break; 1187 case WLAN_EID_SUPP_RATES: 1188 elems->supp_rates = pos; 1189 elems->supp_rates_len = elen; 1190 break; 1191 case WLAN_EID_DS_PARAMS: 1192 if (elen >= 1) 1193 elems->ds_params = pos; 1194 else 1195 elem_parse_failed = true; 1196 break; 1197 case WLAN_EID_TIM: 1198 if (elen >= sizeof(struct ieee80211_tim_ie)) { 1199 elems->tim = (void *)pos; 1200 elems->tim_len = elen; 1201 } else 1202 elem_parse_failed = true; 1203 break; 1204 case WLAN_EID_VENDOR_SPECIFIC: 1205 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && 1206 pos[2] == 0xf2) { 1207 /* Microsoft OUI (00:50:F2) */ 1208 1209 if (calc_crc) 1210 crc = crc32_be(crc, pos - 2, elen + 2); 1211 1212 if (elen >= 5 && pos[3] == 2) { 1213 /* OUI Type 2 - WMM IE */ 1214 if (pos[4] == 0) { 1215 elems->wmm_info = pos; 1216 elems->wmm_info_len = elen; 1217 } else if (pos[4] == 1) { 1218 elems->wmm_param = pos; 1219 elems->wmm_param_len = elen; 1220 } 1221 } 1222 } 1223 break; 1224 case WLAN_EID_RSN: 1225 elems->rsn = pos; 1226 elems->rsn_len = elen; 1227 break; 1228 case WLAN_EID_ERP_INFO: 1229 if (elen >= 1) 1230 elems->erp_info = pos; 1231 else 1232 elem_parse_failed = true; 1233 break; 1234 case WLAN_EID_EXT_SUPP_RATES: 1235 elems->ext_supp_rates = pos; 1236 elems->ext_supp_rates_len = elen; 1237 break; 1238 case WLAN_EID_HT_CAPABILITY: 1239 if (elen >= sizeof(struct ieee80211_ht_cap)) 1240 elems->ht_cap_elem = (void *)pos; 1241 else 1242 elem_parse_failed = true; 1243 break; 1244 case WLAN_EID_HT_OPERATION: 1245 if (elen >= sizeof(struct ieee80211_ht_operation)) 1246 elems->ht_operation = (void *)pos; 1247 else 1248 elem_parse_failed = true; 1249 break; 1250 case WLAN_EID_VHT_CAPABILITY: 1251 if (elen >= sizeof(struct ieee80211_vht_cap)) 1252 elems->vht_cap_elem = (void *)pos; 1253 else 1254 elem_parse_failed = true; 1255 break; 1256 case WLAN_EID_VHT_OPERATION: 1257 if (elen >= sizeof(struct ieee80211_vht_operation)) { 1258 elems->vht_operation = (void *)pos; 1259 if (calc_crc) 1260 crc = crc32_be(crc, pos - 2, elen + 2); 1261 break; 1262 } 1263 elem_parse_failed = true; 1264 break; 1265 case WLAN_EID_OPMODE_NOTIF: 1266 if (elen > 0) { 1267 elems->opmode_notif = pos; 1268 if (calc_crc) 1269 crc = crc32_be(crc, pos - 2, elen + 2); 1270 break; 1271 } 1272 elem_parse_failed = true; 1273 break; 1274 case WLAN_EID_MESH_ID: 1275 elems->mesh_id = pos; 1276 elems->mesh_id_len = elen; 1277 break; 1278 case WLAN_EID_MESH_CONFIG: 1279 if (elen >= sizeof(struct ieee80211_meshconf_ie)) 1280 elems->mesh_config = (void *)pos; 1281 else 1282 elem_parse_failed = true; 1283 break; 1284 case WLAN_EID_PEER_MGMT: 1285 elems->peering = pos; 1286 elems->peering_len = elen; 1287 break; 1288 case WLAN_EID_MESH_AWAKE_WINDOW: 1289 if (elen >= 2) 1290 elems->awake_window = (void *)pos; 1291 break; 1292 case WLAN_EID_PREQ: 1293 elems->preq = pos; 1294 elems->preq_len = elen; 1295 break; 1296 case WLAN_EID_PREP: 1297 elems->prep = pos; 1298 elems->prep_len = elen; 1299 break; 1300 case WLAN_EID_PERR: 1301 elems->perr = pos; 1302 elems->perr_len = elen; 1303 break; 1304 case WLAN_EID_RANN: 1305 if (elen >= sizeof(struct ieee80211_rann_ie)) 1306 elems->rann = (void *)pos; 1307 else 1308 elem_parse_failed = true; 1309 break; 1310 case WLAN_EID_CHANNEL_SWITCH: 1311 if (elen != sizeof(struct ieee80211_channel_sw_ie)) { 1312 elem_parse_failed = true; 1313 break; 1314 } 1315 elems->ch_switch_ie = (void *)pos; 1316 break; 1317 case WLAN_EID_EXT_CHANSWITCH_ANN: 1318 if (elen != sizeof(struct ieee80211_ext_chansw_ie)) { 1319 elem_parse_failed = true; 1320 break; 1321 } 1322 elems->ext_chansw_ie = (void *)pos; 1323 break; 1324 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1325 if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) { 1326 elem_parse_failed = true; 1327 break; 1328 } 1329 elems->sec_chan_offs = (void *)pos; 1330 break; 1331 case WLAN_EID_CHAN_SWITCH_PARAM: 1332 if (elen < 1333 sizeof(*elems->mesh_chansw_params_ie)) { 1334 elem_parse_failed = true; 1335 break; 1336 } 1337 elems->mesh_chansw_params_ie = (void *)pos; 1338 break; 1339 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1340 if (!params->action || 1341 elen < sizeof(*elems->wide_bw_chansw_ie)) { 1342 elem_parse_failed = true; 1343 break; 1344 } 1345 elems->wide_bw_chansw_ie = (void *)pos; 1346 break; 1347 case WLAN_EID_CHANNEL_SWITCH_WRAPPER: 1348 if (params->action) { 1349 elem_parse_failed = true; 1350 break; 1351 } 1352 /* 1353 * This is a bit tricky, but as we only care about 1354 * the wide bandwidth channel switch element, so 1355 * just parse it out manually. 1356 */ 1357 ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH, 1358 pos, elen); 1359 if (ie) { 1360 if (ie[1] >= sizeof(*elems->wide_bw_chansw_ie)) 1361 elems->wide_bw_chansw_ie = 1362 (void *)(ie + 2); 1363 else 1364 elem_parse_failed = true; 1365 } 1366 break; 1367 case WLAN_EID_COUNTRY: 1368 elems->country_elem = pos; 1369 elems->country_elem_len = elen; 1370 break; 1371 case WLAN_EID_PWR_CONSTRAINT: 1372 if (elen != 1) { 1373 elem_parse_failed = true; 1374 break; 1375 } 1376 elems->pwr_constr_elem = pos; 1377 break; 1378 case WLAN_EID_CISCO_VENDOR_SPECIFIC: 1379 /* Lots of different options exist, but we only care 1380 * about the Dynamic Transmit Power Control element. 1381 * First check for the Cisco OUI, then for the DTPC 1382 * tag (0x00). 1383 */ 1384 if (elen < 4) { 1385 elem_parse_failed = true; 1386 break; 1387 } 1388 1389 if (pos[0] != 0x00 || pos[1] != 0x40 || 1390 pos[2] != 0x96 || pos[3] != 0x00) 1391 break; 1392 1393 if (elen != 6) { 1394 elem_parse_failed = true; 1395 break; 1396 } 1397 1398 if (calc_crc) 1399 crc = crc32_be(crc, pos - 2, elen + 2); 1400 1401 elems->cisco_dtpc_elem = pos; 1402 break; 1403 case WLAN_EID_ADDBA_EXT: 1404 if (elen < sizeof(struct ieee80211_addba_ext_ie)) { 1405 elem_parse_failed = true; 1406 break; 1407 } 1408 elems->addba_ext_ie = (void *)pos; 1409 break; 1410 case WLAN_EID_TIMEOUT_INTERVAL: 1411 if (elen >= sizeof(struct ieee80211_timeout_interval_ie)) 1412 elems->timeout_int = (void *)pos; 1413 else 1414 elem_parse_failed = true; 1415 break; 1416 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1417 if (elen >= sizeof(*elems->max_idle_period_ie)) 1418 elems->max_idle_period_ie = (void *)pos; 1419 break; 1420 case WLAN_EID_RSNX: 1421 elems->rsnx = pos; 1422 elems->rsnx_len = elen; 1423 break; 1424 case WLAN_EID_TX_POWER_ENVELOPE: 1425 if (elen < 1 || 1426 elen > sizeof(struct ieee80211_tx_pwr_env)) 1427 break; 1428 1429 if (elems->tx_pwr_env_num >= ARRAY_SIZE(elems->tx_pwr_env)) 1430 break; 1431 1432 elems->tx_pwr_env[elems->tx_pwr_env_num] = (void *)pos; 1433 elems->tx_pwr_env_len[elems->tx_pwr_env_num] = elen; 1434 elems->tx_pwr_env_num++; 1435 break; 1436 case WLAN_EID_EXTENSION: 1437 ieee80211_parse_extension_element(calc_crc ? 1438 &crc : NULL, 1439 elem, elems, params); 1440 break; 1441 case WLAN_EID_S1G_CAPABILITIES: 1442 if (elen >= sizeof(*elems->s1g_capab)) 1443 elems->s1g_capab = (void *)pos; 1444 else 1445 elem_parse_failed = true; 1446 break; 1447 case WLAN_EID_S1G_OPERATION: 1448 if (elen == sizeof(*elems->s1g_oper)) 1449 elems->s1g_oper = (void *)pos; 1450 else 1451 elem_parse_failed = true; 1452 break; 1453 case WLAN_EID_S1G_BCN_COMPAT: 1454 if (elen == sizeof(*elems->s1g_bcn_compat)) 1455 elems->s1g_bcn_compat = (void *)pos; 1456 else 1457 elem_parse_failed = true; 1458 break; 1459 case WLAN_EID_AID_RESPONSE: 1460 if (elen == sizeof(struct ieee80211_aid_response_ie)) 1461 elems->aid_resp = (void *)pos; 1462 else 1463 elem_parse_failed = true; 1464 break; 1465 default: 1466 break; 1467 } 1468 1469 if (elem_parse_failed) 1470 elems->parse_error = true; 1471 else 1472 __set_bit(id, seen_elems); 1473 } 1474 1475 if (!for_each_element_completed(elem, params->start, params->len)) 1476 elems->parse_error = true; 1477 1478 return crc; 1479 } 1480 1481 static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len, 1482 struct ieee802_11_elems *elems, 1483 struct cfg80211_bss *bss, 1484 u8 *nontransmitted_profile) 1485 { 1486 const struct element *elem, *sub; 1487 size_t profile_len = 0; 1488 bool found = false; 1489 1490 if (!bss || !bss->transmitted_bss) 1491 return profile_len; 1492 1493 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) { 1494 if (elem->datalen < 2) 1495 continue; 1496 1497 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 1498 u8 new_bssid[ETH_ALEN]; 1499 const u8 *index; 1500 1501 if (sub->id != 0 || sub->datalen < 4) { 1502 /* not a valid BSS profile */ 1503 continue; 1504 } 1505 1506 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 1507 sub->data[1] != 2) { 1508 /* The first element of the 1509 * Nontransmitted BSSID Profile is not 1510 * the Nontransmitted BSSID Capability 1511 * element. 1512 */ 1513 continue; 1514 } 1515 1516 memset(nontransmitted_profile, 0, len); 1517 profile_len = cfg80211_merge_profile(start, len, 1518 elem, 1519 sub, 1520 nontransmitted_profile, 1521 len); 1522 1523 /* found a Nontransmitted BSSID Profile */ 1524 index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, 1525 nontransmitted_profile, 1526 profile_len); 1527 if (!index || index[1] < 1 || index[2] == 0) { 1528 /* Invalid MBSSID Index element */ 1529 continue; 1530 } 1531 1532 cfg80211_gen_new_bssid(bss->transmitted_bss->bssid, 1533 elem->data[0], 1534 index[2], 1535 new_bssid); 1536 if (ether_addr_equal(new_bssid, bss->bssid)) { 1537 found = true; 1538 elems->bssid_index_len = index[1]; 1539 elems->bssid_index = (void *)&index[2]; 1540 break; 1541 } 1542 } 1543 } 1544 1545 return found ? profile_len : 0; 1546 } 1547 1548 static void ieee80211_defragment_element(struct ieee802_11_elems *elems, 1549 void **elem_ptr, size_t *len, 1550 size_t total_len, u8 frag_id) 1551 { 1552 u8 *data = *elem_ptr, *pos, *start; 1553 const struct element *elem; 1554 1555 /* 1556 * Since 'data' points to the data of the element, not the element 1557 * itself, allow 254 in case it was an extended element where the 1558 * extended ID isn't part of the data we see here and thus not part of 1559 * 'len' either. 1560 */ 1561 if (!data || (*len != 254 && *len != 255)) 1562 return; 1563 1564 start = elems->scratch_pos; 1565 1566 if (WARN_ON(*len > (elems->scratch + elems->scratch_len - 1567 elems->scratch_pos))) 1568 return; 1569 1570 memcpy(elems->scratch_pos, data, *len); 1571 elems->scratch_pos += *len; 1572 1573 pos = data + *len; 1574 total_len -= *len; 1575 for_each_element(elem, pos, total_len) { 1576 if (elem->id != frag_id) 1577 break; 1578 1579 if (WARN_ON(elem->datalen > 1580 (elems->scratch + elems->scratch_len - 1581 elems->scratch_pos))) 1582 return; 1583 1584 memcpy(elems->scratch_pos, elem->data, elem->datalen); 1585 elems->scratch_pos += elem->datalen; 1586 1587 *len += elem->datalen; 1588 } 1589 1590 *elem_ptr = start; 1591 } 1592 1593 static void ieee80211_mle_get_sta_prof(struct ieee802_11_elems *elems, 1594 u8 link_id) 1595 { 1596 const struct ieee80211_multi_link_elem *ml = elems->multi_link; 1597 size_t ml_len = elems->multi_link_len; 1598 const struct element *sub; 1599 1600 if (!ml || !ml_len) 1601 return; 1602 1603 if (le16_get_bits(ml->control, IEEE80211_ML_CONTROL_TYPE) != 1604 IEEE80211_ML_CONTROL_TYPE_BASIC) 1605 return; 1606 1607 for_each_mle_subelement(sub, (u8 *)ml, ml_len) { 1608 struct ieee80211_mle_per_sta_profile *prof = (void *)sub->data; 1609 u16 control; 1610 1611 if (sub->id != IEEE80211_MLE_SUBELEM_PER_STA_PROFILE) 1612 continue; 1613 1614 if (!ieee80211_mle_sta_prof_size_ok(sub->data, sub->datalen)) 1615 return; 1616 1617 control = le16_to_cpu(prof->control); 1618 1619 if (link_id != u16_get_bits(control, 1620 IEEE80211_MLE_STA_CONTROL_LINK_ID)) 1621 continue; 1622 1623 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE)) 1624 return; 1625 1626 elems->prof = prof; 1627 elems->sta_prof_len = sub->datalen; 1628 1629 /* the sub element can be fragmented */ 1630 ieee80211_defragment_element(elems, (void **)&elems->prof, 1631 &elems->sta_prof_len, 1632 ml_len - (sub->data - (u8 *)ml), 1633 IEEE80211_MLE_SUBELEM_FRAGMENT); 1634 return; 1635 } 1636 } 1637 1638 static void ieee80211_mle_parse_link(struct ieee802_11_elems *elems, 1639 struct ieee80211_elems_parse_params *params) 1640 { 1641 struct ieee80211_mle_per_sta_profile *prof; 1642 struct ieee80211_elems_parse_params sub = { 1643 .action = params->action, 1644 .from_ap = params->from_ap, 1645 .link_id = -1, 1646 }; 1647 const struct element *non_inherit = NULL; 1648 const u8 *end; 1649 1650 if (params->link_id == -1) 1651 return; 1652 1653 ieee80211_defragment_element(elems, (void **)&elems->multi_link, 1654 &elems->multi_link_len, 1655 elems->total_len - ((u8 *)elems->multi_link - 1656 elems->ie_start), 1657 WLAN_EID_FRAGMENT); 1658 1659 ieee80211_mle_get_sta_prof(elems, params->link_id); 1660 prof = elems->prof; 1661 1662 if (!prof) 1663 return; 1664 1665 /* check if we have the 4 bytes for the fixed part in assoc response */ 1666 if (elems->sta_prof_len < sizeof(*prof) + prof->sta_info_len - 1 + 4) { 1667 elems->prof = NULL; 1668 elems->sta_prof_len = 0; 1669 return; 1670 } 1671 1672 /* 1673 * Skip the capability information and the status code that are expected 1674 * as part of the station profile in association response frames. Note 1675 * the -1 is because the 'sta_info_len' is accounted to as part of the 1676 * per-STA profile, but not part of the 'u8 variable[]' portion. 1677 */ 1678 sub.start = prof->variable + prof->sta_info_len - 1 + 4; 1679 end = (const u8 *)prof + elems->sta_prof_len; 1680 sub.len = end - sub.start; 1681 1682 non_inherit = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 1683 sub.start, sub.len); 1684 _ieee802_11_parse_elems_full(&sub, elems, non_inherit); 1685 } 1686 1687 struct ieee802_11_elems * 1688 ieee802_11_parse_elems_full(struct ieee80211_elems_parse_params *params) 1689 { 1690 struct ieee802_11_elems *elems; 1691 const struct element *non_inherit = NULL; 1692 u8 *nontransmitted_profile; 1693 int nontransmitted_profile_len = 0; 1694 size_t scratch_len = params->scratch_len ?: 2 * params->len; 1695 1696 elems = kzalloc(sizeof(*elems) + scratch_len, GFP_ATOMIC); 1697 if (!elems) 1698 return NULL; 1699 elems->ie_start = params->start; 1700 elems->total_len = params->len; 1701 elems->scratch_len = scratch_len; 1702 elems->scratch_pos = elems->scratch; 1703 1704 nontransmitted_profile = kmalloc(params->len, GFP_ATOMIC); 1705 if (nontransmitted_profile) { 1706 nontransmitted_profile_len = 1707 ieee802_11_find_bssid_profile(params->start, params->len, 1708 elems, params->bss, 1709 nontransmitted_profile); 1710 non_inherit = 1711 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 1712 nontransmitted_profile, 1713 nontransmitted_profile_len); 1714 } 1715 1716 elems->crc = _ieee802_11_parse_elems_full(params, elems, non_inherit); 1717 1718 /* Override with nontransmitted profile, if found */ 1719 if (nontransmitted_profile_len) { 1720 struct ieee80211_elems_parse_params sub = { 1721 .start = nontransmitted_profile, 1722 .len = nontransmitted_profile_len, 1723 .action = params->action, 1724 .link_id = params->link_id, 1725 }; 1726 1727 _ieee802_11_parse_elems_full(&sub, elems, NULL); 1728 } 1729 1730 ieee80211_mle_parse_link(elems, params); 1731 1732 if (elems->tim && !elems->parse_error) { 1733 const struct ieee80211_tim_ie *tim_ie = elems->tim; 1734 1735 elems->dtim_period = tim_ie->dtim_period; 1736 elems->dtim_count = tim_ie->dtim_count; 1737 } 1738 1739 /* Override DTIM period and count if needed */ 1740 if (elems->bssid_index && 1741 elems->bssid_index_len >= 1742 offsetofend(struct ieee80211_bssid_index, dtim_period)) 1743 elems->dtim_period = elems->bssid_index->dtim_period; 1744 1745 if (elems->bssid_index && 1746 elems->bssid_index_len >= 1747 offsetofend(struct ieee80211_bssid_index, dtim_count)) 1748 elems->dtim_count = elems->bssid_index->dtim_count; 1749 1750 kfree(nontransmitted_profile); 1751 1752 return elems; 1753 } 1754 1755 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 1756 struct ieee80211_tx_queue_params 1757 *qparam, int ac) 1758 { 1759 struct ieee80211_chanctx_conf *chanctx_conf; 1760 const struct ieee80211_reg_rule *rrule; 1761 const struct ieee80211_wmm_ac *wmm_ac; 1762 u16 center_freq = 0; 1763 1764 if (sdata->vif.type != NL80211_IFTYPE_AP && 1765 sdata->vif.type != NL80211_IFTYPE_STATION) 1766 return; 1767 1768 rcu_read_lock(); 1769 chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); 1770 if (chanctx_conf) 1771 center_freq = chanctx_conf->def.chan->center_freq; 1772 1773 if (!center_freq) { 1774 rcu_read_unlock(); 1775 return; 1776 } 1777 1778 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 1779 1780 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 1781 rcu_read_unlock(); 1782 return; 1783 } 1784 1785 if (sdata->vif.type == NL80211_IFTYPE_AP) 1786 wmm_ac = &rrule->wmm_rule.ap[ac]; 1787 else 1788 wmm_ac = &rrule->wmm_rule.client[ac]; 1789 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 1790 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 1791 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 1792 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 1793 rcu_read_unlock(); 1794 } 1795 1796 void ieee80211_set_wmm_default(struct ieee80211_link_data *link, 1797 bool bss_notify, bool enable_qos) 1798 { 1799 struct ieee80211_sub_if_data *sdata = link->sdata; 1800 struct ieee80211_local *local = sdata->local; 1801 struct ieee80211_tx_queue_params qparam; 1802 struct ieee80211_chanctx_conf *chanctx_conf; 1803 int ac; 1804 bool use_11b; 1805 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 1806 int aCWmin, aCWmax; 1807 1808 if (!local->ops->conf_tx) 1809 return; 1810 1811 if (local->hw.queues < IEEE80211_NUM_ACS) 1812 return; 1813 1814 memset(&qparam, 0, sizeof(qparam)); 1815 1816 rcu_read_lock(); 1817 chanctx_conf = rcu_dereference(link->conf->chanctx_conf); 1818 use_11b = (chanctx_conf && 1819 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 1820 !link->operating_11g_mode; 1821 rcu_read_unlock(); 1822 1823 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 1824 1825 /* Set defaults according to 802.11-2007 Table 7-37 */ 1826 aCWmax = 1023; 1827 if (use_11b) 1828 aCWmin = 31; 1829 else 1830 aCWmin = 15; 1831 1832 /* Confiure old 802.11b/g medium access rules. */ 1833 qparam.cw_max = aCWmax; 1834 qparam.cw_min = aCWmin; 1835 qparam.txop = 0; 1836 qparam.aifs = 2; 1837 1838 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1839 /* Update if QoS is enabled. */ 1840 if (enable_qos) { 1841 switch (ac) { 1842 case IEEE80211_AC_BK: 1843 qparam.cw_max = aCWmax; 1844 qparam.cw_min = aCWmin; 1845 qparam.txop = 0; 1846 if (is_ocb) 1847 qparam.aifs = 9; 1848 else 1849 qparam.aifs = 7; 1850 break; 1851 /* never happens but let's not leave undefined */ 1852 default: 1853 case IEEE80211_AC_BE: 1854 qparam.cw_max = aCWmax; 1855 qparam.cw_min = aCWmin; 1856 qparam.txop = 0; 1857 if (is_ocb) 1858 qparam.aifs = 6; 1859 else 1860 qparam.aifs = 3; 1861 break; 1862 case IEEE80211_AC_VI: 1863 qparam.cw_max = aCWmin; 1864 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1865 if (is_ocb) 1866 qparam.txop = 0; 1867 else if (use_11b) 1868 qparam.txop = 6016/32; 1869 else 1870 qparam.txop = 3008/32; 1871 1872 if (is_ocb) 1873 qparam.aifs = 3; 1874 else 1875 qparam.aifs = 2; 1876 break; 1877 case IEEE80211_AC_VO: 1878 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1879 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1880 if (is_ocb) 1881 qparam.txop = 0; 1882 else if (use_11b) 1883 qparam.txop = 3264/32; 1884 else 1885 qparam.txop = 1504/32; 1886 qparam.aifs = 2; 1887 break; 1888 } 1889 } 1890 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1891 1892 qparam.uapsd = false; 1893 1894 link->tx_conf[ac] = qparam; 1895 drv_conf_tx(local, link, ac, &qparam); 1896 } 1897 1898 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1899 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1900 sdata->vif.type != NL80211_IFTYPE_NAN) { 1901 link->conf->qos = enable_qos; 1902 if (bss_notify) 1903 ieee80211_link_info_change_notify(sdata, link, 1904 BSS_CHANGED_QOS); 1905 } 1906 } 1907 1908 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1909 u16 transaction, u16 auth_alg, u16 status, 1910 const u8 *extra, size_t extra_len, const u8 *da, 1911 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1912 u32 tx_flags) 1913 { 1914 struct ieee80211_local *local = sdata->local; 1915 struct sk_buff *skb; 1916 struct ieee80211_mgmt *mgmt; 1917 bool multi_link = sdata->vif.valid_links; 1918 struct { 1919 u8 id; 1920 u8 len; 1921 u8 ext_id; 1922 struct ieee80211_multi_link_elem ml; 1923 struct ieee80211_mle_basic_common_info basic; 1924 } __packed mle = { 1925 .id = WLAN_EID_EXTENSION, 1926 .len = sizeof(mle) - 2, 1927 .ext_id = WLAN_EID_EXT_EHT_MULTI_LINK, 1928 .ml.control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_BASIC), 1929 .basic.len = sizeof(mle.basic), 1930 }; 1931 int err; 1932 1933 memcpy(mle.basic.mld_mac_addr, sdata->vif.addr, ETH_ALEN); 1934 1935 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1936 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1937 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN + 1938 multi_link * sizeof(mle)); 1939 if (!skb) 1940 return; 1941 1942 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1943 1944 mgmt = skb_put_zero(skb, 24 + 6); 1945 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1946 IEEE80211_STYPE_AUTH); 1947 memcpy(mgmt->da, da, ETH_ALEN); 1948 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1949 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1950 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1951 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1952 mgmt->u.auth.status_code = cpu_to_le16(status); 1953 if (extra) 1954 skb_put_data(skb, extra, extra_len); 1955 if (multi_link) 1956 skb_put_data(skb, &mle, sizeof(mle)); 1957 1958 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1959 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1960 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1961 if (WARN_ON(err)) { 1962 kfree_skb(skb); 1963 return; 1964 } 1965 } 1966 1967 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1968 tx_flags; 1969 ieee80211_tx_skb(sdata, skb); 1970 } 1971 1972 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1973 const u8 *da, const u8 *bssid, 1974 u16 stype, u16 reason, 1975 bool send_frame, u8 *frame_buf) 1976 { 1977 struct ieee80211_local *local = sdata->local; 1978 struct sk_buff *skb; 1979 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1980 1981 /* build frame */ 1982 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1983 mgmt->duration = 0; /* initialize only */ 1984 mgmt->seq_ctrl = 0; /* initialize only */ 1985 memcpy(mgmt->da, da, ETH_ALEN); 1986 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1987 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1988 /* u.deauth.reason_code == u.disassoc.reason_code */ 1989 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1990 1991 if (send_frame) { 1992 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1993 IEEE80211_DEAUTH_FRAME_LEN); 1994 if (!skb) 1995 return; 1996 1997 skb_reserve(skb, local->hw.extra_tx_headroom); 1998 1999 /* copy in frame */ 2000 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 2001 2002 if (sdata->vif.type != NL80211_IFTYPE_STATION || 2003 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 2004 IEEE80211_SKB_CB(skb)->flags |= 2005 IEEE80211_TX_INTFL_DONT_ENCRYPT; 2006 2007 ieee80211_tx_skb(sdata, skb); 2008 } 2009 } 2010 2011 static u8 *ieee80211_write_he_6ghz_cap(u8 *pos, __le16 cap, u8 *end) 2012 { 2013 if ((end - pos) < 5) 2014 return pos; 2015 2016 *pos++ = WLAN_EID_EXTENSION; 2017 *pos++ = 1 + sizeof(cap); 2018 *pos++ = WLAN_EID_EXT_HE_6GHZ_CAPA; 2019 memcpy(pos, &cap, sizeof(cap)); 2020 2021 return pos + 2; 2022 } 2023 2024 static int ieee80211_build_preq_ies_band(struct ieee80211_sub_if_data *sdata, 2025 u8 *buffer, size_t buffer_len, 2026 const u8 *ie, size_t ie_len, 2027 enum nl80211_band band, 2028 u32 rate_mask, 2029 struct cfg80211_chan_def *chandef, 2030 size_t *offset, u32 flags) 2031 { 2032 struct ieee80211_local *local = sdata->local; 2033 struct ieee80211_supported_band *sband; 2034 const struct ieee80211_sta_he_cap *he_cap; 2035 const struct ieee80211_sta_eht_cap *eht_cap; 2036 u8 *pos = buffer, *end = buffer + buffer_len; 2037 size_t noffset; 2038 int supp_rates_len, i; 2039 u8 rates[32]; 2040 int num_rates; 2041 int ext_rates_len; 2042 int shift; 2043 u32 rate_flags; 2044 bool have_80mhz = false; 2045 2046 *offset = 0; 2047 2048 sband = local->hw.wiphy->bands[band]; 2049 if (WARN_ON_ONCE(!sband)) 2050 return 0; 2051 2052 rate_flags = ieee80211_chandef_rate_flags(chandef); 2053 shift = ieee80211_chandef_get_shift(chandef); 2054 2055 num_rates = 0; 2056 for (i = 0; i < sband->n_bitrates; i++) { 2057 if ((BIT(i) & rate_mask) == 0) 2058 continue; /* skip rate */ 2059 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 2060 continue; 2061 2062 rates[num_rates++] = 2063 (u8) DIV_ROUND_UP(sband->bitrates[i].bitrate, 2064 (1 << shift) * 5); 2065 } 2066 2067 supp_rates_len = min_t(int, num_rates, 8); 2068 2069 if (end - pos < 2 + supp_rates_len) 2070 goto out_err; 2071 *pos++ = WLAN_EID_SUPP_RATES; 2072 *pos++ = supp_rates_len; 2073 memcpy(pos, rates, supp_rates_len); 2074 pos += supp_rates_len; 2075 2076 /* insert "request information" if in custom IEs */ 2077 if (ie && ie_len) { 2078 static const u8 before_extrates[] = { 2079 WLAN_EID_SSID, 2080 WLAN_EID_SUPP_RATES, 2081 WLAN_EID_REQUEST, 2082 }; 2083 noffset = ieee80211_ie_split(ie, ie_len, 2084 before_extrates, 2085 ARRAY_SIZE(before_extrates), 2086 *offset); 2087 if (end - pos < noffset - *offset) 2088 goto out_err; 2089 memcpy(pos, ie + *offset, noffset - *offset); 2090 pos += noffset - *offset; 2091 *offset = noffset; 2092 } 2093 2094 ext_rates_len = num_rates - supp_rates_len; 2095 if (ext_rates_len > 0) { 2096 if (end - pos < 2 + ext_rates_len) 2097 goto out_err; 2098 *pos++ = WLAN_EID_EXT_SUPP_RATES; 2099 *pos++ = ext_rates_len; 2100 memcpy(pos, rates + supp_rates_len, ext_rates_len); 2101 pos += ext_rates_len; 2102 } 2103 2104 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 2105 if (end - pos < 3) 2106 goto out_err; 2107 *pos++ = WLAN_EID_DS_PARAMS; 2108 *pos++ = 1; 2109 *pos++ = ieee80211_frequency_to_channel( 2110 chandef->chan->center_freq); 2111 } 2112 2113 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 2114 goto done; 2115 2116 /* insert custom IEs that go before HT */ 2117 if (ie && ie_len) { 2118 static const u8 before_ht[] = { 2119 /* 2120 * no need to list the ones split off already 2121 * (or generated here) 2122 */ 2123 WLAN_EID_DS_PARAMS, 2124 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 2125 }; 2126 noffset = ieee80211_ie_split(ie, ie_len, 2127 before_ht, ARRAY_SIZE(before_ht), 2128 *offset); 2129 if (end - pos < noffset - *offset) 2130 goto out_err; 2131 memcpy(pos, ie + *offset, noffset - *offset); 2132 pos += noffset - *offset; 2133 *offset = noffset; 2134 } 2135 2136 if (sband->ht_cap.ht_supported) { 2137 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap)) 2138 goto out_err; 2139 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 2140 sband->ht_cap.cap); 2141 } 2142 2143 /* insert custom IEs that go before VHT */ 2144 if (ie && ie_len) { 2145 static const u8 before_vht[] = { 2146 /* 2147 * no need to list the ones split off already 2148 * (or generated here) 2149 */ 2150 WLAN_EID_BSS_COEX_2040, 2151 WLAN_EID_EXT_CAPABILITY, 2152 WLAN_EID_SSID_LIST, 2153 WLAN_EID_CHANNEL_USAGE, 2154 WLAN_EID_INTERWORKING, 2155 WLAN_EID_MESH_ID, 2156 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 2157 }; 2158 noffset = ieee80211_ie_split(ie, ie_len, 2159 before_vht, ARRAY_SIZE(before_vht), 2160 *offset); 2161 if (end - pos < noffset - *offset) 2162 goto out_err; 2163 memcpy(pos, ie + *offset, noffset - *offset); 2164 pos += noffset - *offset; 2165 *offset = noffset; 2166 } 2167 2168 /* Check if any channel in this sband supports at least 80 MHz */ 2169 for (i = 0; i < sband->n_channels; i++) { 2170 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 2171 IEEE80211_CHAN_NO_80MHZ)) 2172 continue; 2173 2174 have_80mhz = true; 2175 break; 2176 } 2177 2178 if (sband->vht_cap.vht_supported && have_80mhz) { 2179 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap)) 2180 goto out_err; 2181 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 2182 sband->vht_cap.cap); 2183 } 2184 2185 /* insert custom IEs that go before HE */ 2186 if (ie && ie_len) { 2187 static const u8 before_he[] = { 2188 /* 2189 * no need to list the ones split off before VHT 2190 * or generated here 2191 */ 2192 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 2193 WLAN_EID_AP_CSN, 2194 /* TODO: add 11ah/11aj/11ak elements */ 2195 }; 2196 noffset = ieee80211_ie_split(ie, ie_len, 2197 before_he, ARRAY_SIZE(before_he), 2198 *offset); 2199 if (end - pos < noffset - *offset) 2200 goto out_err; 2201 memcpy(pos, ie + *offset, noffset - *offset); 2202 pos += noffset - *offset; 2203 *offset = noffset; 2204 } 2205 2206 he_cap = ieee80211_get_he_iftype_cap(sband, 2207 ieee80211_vif_type_p2p(&sdata->vif)); 2208 if (he_cap && 2209 cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 2210 IEEE80211_CHAN_NO_HE)) { 2211 pos = ieee80211_ie_build_he_cap(0, pos, he_cap, end); 2212 if (!pos) 2213 goto out_err; 2214 } 2215 2216 eht_cap = ieee80211_get_eht_iftype_cap(sband, 2217 ieee80211_vif_type_p2p(&sdata->vif)); 2218 2219 if (eht_cap && 2220 cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 2221 IEEE80211_CHAN_NO_HE | 2222 IEEE80211_CHAN_NO_EHT)) { 2223 pos = ieee80211_ie_build_eht_cap(pos, he_cap, eht_cap, end, 2224 sdata->vif.type == NL80211_IFTYPE_AP); 2225 if (!pos) 2226 goto out_err; 2227 } 2228 2229 if (cfg80211_any_usable_channels(local->hw.wiphy, 2230 BIT(NL80211_BAND_6GHZ), 2231 IEEE80211_CHAN_NO_HE)) { 2232 struct ieee80211_supported_band *sband6; 2233 2234 sband6 = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 2235 he_cap = ieee80211_get_he_iftype_cap(sband6, 2236 ieee80211_vif_type_p2p(&sdata->vif)); 2237 2238 if (he_cap) { 2239 enum nl80211_iftype iftype = 2240 ieee80211_vif_type_p2p(&sdata->vif); 2241 __le16 cap = ieee80211_get_he_6ghz_capa(sband, iftype); 2242 2243 pos = ieee80211_write_he_6ghz_cap(pos, cap, end); 2244 } 2245 } 2246 2247 /* 2248 * If adding more here, adjust code in main.c 2249 * that calculates local->scan_ies_len. 2250 */ 2251 2252 return pos - buffer; 2253 out_err: 2254 WARN_ONCE(1, "not enough space for preq IEs\n"); 2255 done: 2256 return pos - buffer; 2257 } 2258 2259 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 2260 size_t buffer_len, 2261 struct ieee80211_scan_ies *ie_desc, 2262 const u8 *ie, size_t ie_len, 2263 u8 bands_used, u32 *rate_masks, 2264 struct cfg80211_chan_def *chandef, 2265 u32 flags) 2266 { 2267 size_t pos = 0, old_pos = 0, custom_ie_offset = 0; 2268 int i; 2269 2270 memset(ie_desc, 0, sizeof(*ie_desc)); 2271 2272 for (i = 0; i < NUM_NL80211_BANDS; i++) { 2273 if (bands_used & BIT(i)) { 2274 pos += ieee80211_build_preq_ies_band(sdata, 2275 buffer + pos, 2276 buffer_len - pos, 2277 ie, ie_len, i, 2278 rate_masks[i], 2279 chandef, 2280 &custom_ie_offset, 2281 flags); 2282 ie_desc->ies[i] = buffer + old_pos; 2283 ie_desc->len[i] = pos - old_pos; 2284 old_pos = pos; 2285 } 2286 } 2287 2288 /* add any remaining custom IEs */ 2289 if (ie && ie_len) { 2290 if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset, 2291 "not enough space for preq custom IEs\n")) 2292 return pos; 2293 memcpy(buffer + pos, ie + custom_ie_offset, 2294 ie_len - custom_ie_offset); 2295 ie_desc->common_ies = buffer + pos; 2296 ie_desc->common_ie_len = ie_len - custom_ie_offset; 2297 pos += ie_len - custom_ie_offset; 2298 } 2299 2300 return pos; 2301 }; 2302 2303 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 2304 const u8 *src, const u8 *dst, 2305 u32 ratemask, 2306 struct ieee80211_channel *chan, 2307 const u8 *ssid, size_t ssid_len, 2308 const u8 *ie, size_t ie_len, 2309 u32 flags) 2310 { 2311 struct ieee80211_local *local = sdata->local; 2312 struct cfg80211_chan_def chandef; 2313 struct sk_buff *skb; 2314 struct ieee80211_mgmt *mgmt; 2315 int ies_len; 2316 u32 rate_masks[NUM_NL80211_BANDS] = {}; 2317 struct ieee80211_scan_ies dummy_ie_desc; 2318 2319 /* 2320 * Do not send DS Channel parameter for directed probe requests 2321 * in order to maximize the chance that we get a response. Some 2322 * badly-behaved APs don't respond when this parameter is included. 2323 */ 2324 chandef.width = sdata->vif.bss_conf.chandef.width; 2325 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 2326 chandef.chan = NULL; 2327 else 2328 chandef.chan = chan; 2329 2330 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 2331 local->scan_ies_len + ie_len); 2332 if (!skb) 2333 return NULL; 2334 2335 rate_masks[chan->band] = ratemask; 2336 ies_len = ieee80211_build_preq_ies(sdata, skb_tail_pointer(skb), 2337 skb_tailroom(skb), &dummy_ie_desc, 2338 ie, ie_len, BIT(chan->band), 2339 rate_masks, &chandef, flags); 2340 skb_put(skb, ies_len); 2341 2342 if (dst) { 2343 mgmt = (struct ieee80211_mgmt *) skb->data; 2344 memcpy(mgmt->da, dst, ETH_ALEN); 2345 memcpy(mgmt->bssid, dst, ETH_ALEN); 2346 } 2347 2348 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 2349 2350 return skb; 2351 } 2352 2353 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 2354 struct ieee802_11_elems *elems, 2355 enum nl80211_band band, u32 *basic_rates) 2356 { 2357 struct ieee80211_supported_band *sband; 2358 size_t num_rates; 2359 u32 supp_rates, rate_flags; 2360 int i, j, shift; 2361 2362 sband = sdata->local->hw.wiphy->bands[band]; 2363 if (WARN_ON(!sband)) 2364 return 1; 2365 2366 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 2367 shift = ieee80211_vif_get_shift(&sdata->vif); 2368 2369 num_rates = sband->n_bitrates; 2370 supp_rates = 0; 2371 for (i = 0; i < elems->supp_rates_len + 2372 elems->ext_supp_rates_len; i++) { 2373 u8 rate = 0; 2374 int own_rate; 2375 bool is_basic; 2376 if (i < elems->supp_rates_len) 2377 rate = elems->supp_rates[i]; 2378 else if (elems->ext_supp_rates) 2379 rate = elems->ext_supp_rates 2380 [i - elems->supp_rates_len]; 2381 own_rate = 5 * (rate & 0x7f); 2382 is_basic = !!(rate & 0x80); 2383 2384 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 2385 continue; 2386 2387 for (j = 0; j < num_rates; j++) { 2388 int brate; 2389 if ((rate_flags & sband->bitrates[j].flags) 2390 != rate_flags) 2391 continue; 2392 2393 brate = DIV_ROUND_UP(sband->bitrates[j].bitrate, 2394 1 << shift); 2395 2396 if (brate == own_rate) { 2397 supp_rates |= BIT(j); 2398 if (basic_rates && is_basic) 2399 *basic_rates |= BIT(j); 2400 } 2401 } 2402 } 2403 return supp_rates; 2404 } 2405 2406 void ieee80211_stop_device(struct ieee80211_local *local) 2407 { 2408 ieee80211_led_radio(local, false); 2409 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 2410 2411 cancel_work_sync(&local->reconfig_filter); 2412 2413 flush_workqueue(local->workqueue); 2414 drv_stop(local); 2415 } 2416 2417 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 2418 bool aborted) 2419 { 2420 /* It's possible that we don't handle the scan completion in 2421 * time during suspend, so if it's still marked as completed 2422 * here, queue the work and flush it to clean things up. 2423 * Instead of calling the worker function directly here, we 2424 * really queue it to avoid potential races with other flows 2425 * scheduling the same work. 2426 */ 2427 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 2428 /* If coming from reconfiguration failure, abort the scan so 2429 * we don't attempt to continue a partial HW scan - which is 2430 * possible otherwise if (e.g.) the 2.4 GHz portion was the 2431 * completed scan, and a 5 GHz portion is still pending. 2432 */ 2433 if (aborted) 2434 set_bit(SCAN_ABORTED, &local->scanning); 2435 ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0); 2436 flush_delayed_work(&local->scan_work); 2437 } 2438 } 2439 2440 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 2441 { 2442 struct ieee80211_sub_if_data *sdata; 2443 struct ieee80211_chanctx *ctx; 2444 2445 /* 2446 * We get here if during resume the device can't be restarted properly. 2447 * We might also get here if this happens during HW reset, which is a 2448 * slightly different situation and we need to drop all connections in 2449 * the latter case. 2450 * 2451 * Ask cfg80211 to turn off all interfaces, this will result in more 2452 * warnings but at least we'll then get into a clean stopped state. 2453 */ 2454 2455 local->resuming = false; 2456 local->suspended = false; 2457 local->in_reconfig = false; 2458 2459 ieee80211_flush_completed_scan(local, true); 2460 2461 /* scheduled scan clearly can't be running any more, but tell 2462 * cfg80211 and clear local state 2463 */ 2464 ieee80211_sched_scan_end(local); 2465 2466 list_for_each_entry(sdata, &local->interfaces, list) 2467 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 2468 2469 /* Mark channel contexts as not being in the driver any more to avoid 2470 * removing them from the driver during the shutdown process... 2471 */ 2472 mutex_lock(&local->chanctx_mtx); 2473 list_for_each_entry(ctx, &local->chanctx_list, list) 2474 ctx->driver_present = false; 2475 mutex_unlock(&local->chanctx_mtx); 2476 } 2477 2478 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 2479 struct ieee80211_sub_if_data *sdata, 2480 struct ieee80211_link_data *link) 2481 { 2482 struct ieee80211_chanctx_conf *conf; 2483 struct ieee80211_chanctx *ctx; 2484 2485 if (!local->use_chanctx) 2486 return; 2487 2488 mutex_lock(&local->chanctx_mtx); 2489 conf = rcu_dereference_protected(link->conf->chanctx_conf, 2490 lockdep_is_held(&local->chanctx_mtx)); 2491 if (conf) { 2492 ctx = container_of(conf, struct ieee80211_chanctx, conf); 2493 drv_assign_vif_chanctx(local, sdata, link->conf, ctx); 2494 } 2495 mutex_unlock(&local->chanctx_mtx); 2496 } 2497 2498 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 2499 { 2500 struct ieee80211_local *local = sdata->local; 2501 struct sta_info *sta; 2502 2503 /* add STAs back */ 2504 mutex_lock(&local->sta_mtx); 2505 list_for_each_entry(sta, &local->sta_list, list) { 2506 enum ieee80211_sta_state state; 2507 2508 if (!sta->uploaded || sta->sdata != sdata) 2509 continue; 2510 2511 for (state = IEEE80211_STA_NOTEXIST; 2512 state < sta->sta_state; state++) 2513 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2514 state + 1)); 2515 } 2516 mutex_unlock(&local->sta_mtx); 2517 } 2518 2519 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 2520 { 2521 struct cfg80211_nan_func *func, **funcs; 2522 int res, id, i = 0; 2523 2524 res = drv_start_nan(sdata->local, sdata, 2525 &sdata->u.nan.conf); 2526 if (WARN_ON(res)) 2527 return res; 2528 2529 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 2530 sizeof(*funcs), 2531 GFP_KERNEL); 2532 if (!funcs) 2533 return -ENOMEM; 2534 2535 /* Add all the functions: 2536 * This is a little bit ugly. We need to call a potentially sleeping 2537 * callback for each NAN function, so we can't hold the spinlock. 2538 */ 2539 spin_lock_bh(&sdata->u.nan.func_lock); 2540 2541 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 2542 funcs[i++] = func; 2543 2544 spin_unlock_bh(&sdata->u.nan.func_lock); 2545 2546 for (i = 0; funcs[i]; i++) { 2547 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 2548 if (WARN_ON(res)) 2549 ieee80211_nan_func_terminated(&sdata->vif, 2550 funcs[i]->instance_id, 2551 NL80211_NAN_FUNC_TERM_REASON_ERROR, 2552 GFP_KERNEL); 2553 } 2554 2555 kfree(funcs); 2556 2557 return 0; 2558 } 2559 2560 int ieee80211_reconfig(struct ieee80211_local *local) 2561 { 2562 struct ieee80211_hw *hw = &local->hw; 2563 struct ieee80211_sub_if_data *sdata; 2564 struct ieee80211_chanctx *ctx; 2565 struct sta_info *sta; 2566 int res, i; 2567 bool reconfig_due_to_wowlan = false; 2568 struct ieee80211_sub_if_data *sched_scan_sdata; 2569 struct cfg80211_sched_scan_request *sched_scan_req; 2570 bool sched_scan_stopped = false; 2571 bool suspended = local->suspended; 2572 bool in_reconfig = false; 2573 2574 /* nothing to do if HW shouldn't run */ 2575 if (!local->open_count) 2576 goto wake_up; 2577 2578 #ifdef CONFIG_PM 2579 if (suspended) 2580 local->resuming = true; 2581 2582 if (local->wowlan) { 2583 /* 2584 * In the wowlan case, both mac80211 and the device 2585 * are functional when the resume op is called, so 2586 * clear local->suspended so the device could operate 2587 * normally (e.g. pass rx frames). 2588 */ 2589 local->suspended = false; 2590 res = drv_resume(local); 2591 local->wowlan = false; 2592 if (res < 0) { 2593 local->resuming = false; 2594 return res; 2595 } 2596 if (res == 0) 2597 goto wake_up; 2598 WARN_ON(res > 1); 2599 /* 2600 * res is 1, which means the driver requested 2601 * to go through a regular reset on wakeup. 2602 * restore local->suspended in this case. 2603 */ 2604 reconfig_due_to_wowlan = true; 2605 local->suspended = true; 2606 } 2607 #endif 2608 2609 /* 2610 * In case of hw_restart during suspend (without wowlan), 2611 * cancel restart work, as we are reconfiguring the device 2612 * anyway. 2613 * Note that restart_work is scheduled on a frozen workqueue, 2614 * so we can't deadlock in this case. 2615 */ 2616 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 2617 cancel_work_sync(&local->restart_work); 2618 2619 local->started = false; 2620 2621 /* 2622 * Upon resume hardware can sometimes be goofy due to 2623 * various platform / driver / bus issues, so restarting 2624 * the device may at times not work immediately. Propagate 2625 * the error. 2626 */ 2627 res = drv_start(local); 2628 if (res) { 2629 if (suspended) 2630 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 2631 else 2632 WARN(1, "Hardware became unavailable during restart.\n"); 2633 ieee80211_handle_reconfig_failure(local); 2634 return res; 2635 } 2636 2637 /* setup fragmentation threshold */ 2638 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 2639 2640 /* setup RTS threshold */ 2641 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 2642 2643 /* reset coverage class */ 2644 drv_set_coverage_class(local, hw->wiphy->coverage_class); 2645 2646 ieee80211_led_radio(local, true); 2647 ieee80211_mod_tpt_led_trig(local, 2648 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 2649 2650 /* add interfaces */ 2651 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 2652 if (sdata) { 2653 /* in HW restart it exists already */ 2654 WARN_ON(local->resuming); 2655 res = drv_add_interface(local, sdata); 2656 if (WARN_ON(res)) { 2657 RCU_INIT_POINTER(local->monitor_sdata, NULL); 2658 synchronize_net(); 2659 kfree(sdata); 2660 } 2661 } 2662 2663 list_for_each_entry(sdata, &local->interfaces, list) { 2664 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2665 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2666 ieee80211_sdata_running(sdata)) { 2667 res = drv_add_interface(local, sdata); 2668 if (WARN_ON(res)) 2669 break; 2670 } 2671 } 2672 2673 /* If adding any of the interfaces failed above, roll back and 2674 * report failure. 2675 */ 2676 if (res) { 2677 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 2678 list) 2679 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2680 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2681 ieee80211_sdata_running(sdata)) 2682 drv_remove_interface(local, sdata); 2683 ieee80211_handle_reconfig_failure(local); 2684 return res; 2685 } 2686 2687 /* add channel contexts */ 2688 if (local->use_chanctx) { 2689 mutex_lock(&local->chanctx_mtx); 2690 list_for_each_entry(ctx, &local->chanctx_list, list) 2691 if (ctx->replace_state != 2692 IEEE80211_CHANCTX_REPLACES_OTHER) 2693 WARN_ON(drv_add_chanctx(local, ctx)); 2694 mutex_unlock(&local->chanctx_mtx); 2695 2696 sdata = wiphy_dereference(local->hw.wiphy, 2697 local->monitor_sdata); 2698 if (sdata && ieee80211_sdata_running(sdata)) 2699 ieee80211_assign_chanctx(local, sdata, &sdata->deflink); 2700 } 2701 2702 /* reconfigure hardware */ 2703 ieee80211_hw_config(local, ~0); 2704 2705 ieee80211_configure_filter(local); 2706 2707 /* Finally also reconfigure all the BSS information */ 2708 list_for_each_entry(sdata, &local->interfaces, list) { 2709 unsigned int link_id; 2710 u32 changed; 2711 2712 if (!ieee80211_sdata_running(sdata)) 2713 continue; 2714 2715 sdata_lock(sdata); 2716 for (link_id = 0; 2717 link_id < ARRAY_SIZE(sdata->vif.link_conf); 2718 link_id++) { 2719 struct ieee80211_link_data *link; 2720 2721 link = sdata_dereference(sdata->link[link_id], sdata); 2722 if (link) 2723 ieee80211_assign_chanctx(local, sdata, link); 2724 } 2725 2726 switch (sdata->vif.type) { 2727 case NL80211_IFTYPE_AP_VLAN: 2728 case NL80211_IFTYPE_MONITOR: 2729 break; 2730 case NL80211_IFTYPE_ADHOC: 2731 if (sdata->vif.cfg.ibss_joined) 2732 WARN_ON(drv_join_ibss(local, sdata)); 2733 fallthrough; 2734 default: 2735 ieee80211_reconfig_stations(sdata); 2736 fallthrough; 2737 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 2738 for (i = 0; i < IEEE80211_NUM_ACS; i++) 2739 drv_conf_tx(local, &sdata->deflink, i, 2740 &sdata->deflink.tx_conf[i]); 2741 break; 2742 } 2743 sdata_unlock(sdata); 2744 2745 /* common change flags for all interface types */ 2746 changed = BSS_CHANGED_ERP_CTS_PROT | 2747 BSS_CHANGED_ERP_PREAMBLE | 2748 BSS_CHANGED_ERP_SLOT | 2749 BSS_CHANGED_HT | 2750 BSS_CHANGED_BASIC_RATES | 2751 BSS_CHANGED_BEACON_INT | 2752 BSS_CHANGED_BSSID | 2753 BSS_CHANGED_CQM | 2754 BSS_CHANGED_QOS | 2755 BSS_CHANGED_IDLE | 2756 BSS_CHANGED_TXPOWER | 2757 BSS_CHANGED_MCAST_RATE; 2758 2759 if (sdata->vif.bss_conf.mu_mimo_owner) 2760 changed |= BSS_CHANGED_MU_GROUPS; 2761 2762 switch (sdata->vif.type) { 2763 case NL80211_IFTYPE_STATION: 2764 changed |= BSS_CHANGED_ASSOC | 2765 BSS_CHANGED_ARP_FILTER | 2766 BSS_CHANGED_PS; 2767 2768 /* Re-send beacon info report to the driver */ 2769 if (sdata->deflink.u.mgd.have_beacon) 2770 changed |= BSS_CHANGED_BEACON_INFO; 2771 2772 if (sdata->vif.bss_conf.max_idle_period || 2773 sdata->vif.bss_conf.protected_keep_alive) 2774 changed |= BSS_CHANGED_KEEP_ALIVE; 2775 2776 sdata_lock(sdata); 2777 ieee80211_bss_info_change_notify(sdata, changed); 2778 sdata_unlock(sdata); 2779 break; 2780 case NL80211_IFTYPE_OCB: 2781 changed |= BSS_CHANGED_OCB; 2782 ieee80211_bss_info_change_notify(sdata, changed); 2783 break; 2784 case NL80211_IFTYPE_ADHOC: 2785 changed |= BSS_CHANGED_IBSS; 2786 fallthrough; 2787 case NL80211_IFTYPE_AP: 2788 changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS; 2789 2790 if (sdata->vif.bss_conf.ftm_responder == 1 && 2791 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2792 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2793 changed |= BSS_CHANGED_FTM_RESPONDER; 2794 2795 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2796 changed |= BSS_CHANGED_AP_PROBE_RESP; 2797 2798 if (rcu_access_pointer(sdata->deflink.u.ap.beacon)) 2799 drv_start_ap(local, sdata, 2800 sdata->deflink.conf); 2801 } 2802 fallthrough; 2803 case NL80211_IFTYPE_MESH_POINT: 2804 if (sdata->vif.bss_conf.enable_beacon) { 2805 changed |= BSS_CHANGED_BEACON | 2806 BSS_CHANGED_BEACON_ENABLED; 2807 ieee80211_bss_info_change_notify(sdata, changed); 2808 } 2809 break; 2810 case NL80211_IFTYPE_NAN: 2811 res = ieee80211_reconfig_nan(sdata); 2812 if (res < 0) { 2813 ieee80211_handle_reconfig_failure(local); 2814 return res; 2815 } 2816 break; 2817 case NL80211_IFTYPE_AP_VLAN: 2818 case NL80211_IFTYPE_MONITOR: 2819 case NL80211_IFTYPE_P2P_DEVICE: 2820 /* nothing to do */ 2821 break; 2822 case NL80211_IFTYPE_UNSPECIFIED: 2823 case NUM_NL80211_IFTYPES: 2824 case NL80211_IFTYPE_P2P_CLIENT: 2825 case NL80211_IFTYPE_P2P_GO: 2826 case NL80211_IFTYPE_WDS: 2827 WARN_ON(1); 2828 break; 2829 } 2830 } 2831 2832 ieee80211_recalc_ps(local); 2833 2834 /* 2835 * The sta might be in psm against the ap (e.g. because 2836 * this was the state before a hw restart), so we 2837 * explicitly send a null packet in order to make sure 2838 * it'll sync against the ap (and get out of psm). 2839 */ 2840 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2841 list_for_each_entry(sdata, &local->interfaces, list) { 2842 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2843 continue; 2844 if (!sdata->u.mgd.associated) 2845 continue; 2846 2847 ieee80211_send_nullfunc(local, sdata, false); 2848 } 2849 } 2850 2851 /* APs are now beaconing, add back stations */ 2852 list_for_each_entry(sdata, &local->interfaces, list) { 2853 if (!ieee80211_sdata_running(sdata)) 2854 continue; 2855 2856 sdata_lock(sdata); 2857 switch (sdata->vif.type) { 2858 case NL80211_IFTYPE_AP_VLAN: 2859 case NL80211_IFTYPE_AP: 2860 ieee80211_reconfig_stations(sdata); 2861 break; 2862 default: 2863 break; 2864 } 2865 sdata_unlock(sdata); 2866 } 2867 2868 /* add back keys */ 2869 list_for_each_entry(sdata, &local->interfaces, list) 2870 ieee80211_reenable_keys(sdata); 2871 2872 /* Reconfigure sched scan if it was interrupted by FW restart */ 2873 mutex_lock(&local->mtx); 2874 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2875 lockdep_is_held(&local->mtx)); 2876 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2877 lockdep_is_held(&local->mtx)); 2878 if (sched_scan_sdata && sched_scan_req) 2879 /* 2880 * Sched scan stopped, but we don't want to report it. Instead, 2881 * we're trying to reschedule. However, if more than one scan 2882 * plan was set, we cannot reschedule since we don't know which 2883 * scan plan was currently running (and some scan plans may have 2884 * already finished). 2885 */ 2886 if (sched_scan_req->n_scan_plans > 1 || 2887 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2888 sched_scan_req)) { 2889 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2890 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2891 sched_scan_stopped = true; 2892 } 2893 mutex_unlock(&local->mtx); 2894 2895 if (sched_scan_stopped) 2896 cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0); 2897 2898 wake_up: 2899 2900 if (local->monitors == local->open_count && local->monitors > 0) 2901 ieee80211_add_virtual_monitor(local); 2902 2903 /* 2904 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2905 * sessions can be established after a resume. 2906 * 2907 * Also tear down aggregation sessions since reconfiguring 2908 * them in a hardware restart scenario is not easily done 2909 * right now, and the hardware will have lost information 2910 * about the sessions, but we and the AP still think they 2911 * are active. This is really a workaround though. 2912 */ 2913 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2914 mutex_lock(&local->sta_mtx); 2915 2916 list_for_each_entry(sta, &local->sta_list, list) { 2917 if (!local->resuming) 2918 ieee80211_sta_tear_down_BA_sessions( 2919 sta, AGG_STOP_LOCAL_REQUEST); 2920 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2921 } 2922 2923 mutex_unlock(&local->sta_mtx); 2924 } 2925 2926 /* 2927 * If this is for hw restart things are still running. 2928 * We may want to change that later, however. 2929 */ 2930 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2931 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2932 2933 if (local->in_reconfig) { 2934 in_reconfig = local->in_reconfig; 2935 local->in_reconfig = false; 2936 barrier(); 2937 2938 /* Restart deferred ROCs */ 2939 mutex_lock(&local->mtx); 2940 ieee80211_start_next_roc(local); 2941 mutex_unlock(&local->mtx); 2942 2943 /* Requeue all works */ 2944 list_for_each_entry(sdata, &local->interfaces, list) 2945 ieee80211_queue_work(&local->hw, &sdata->work); 2946 } 2947 2948 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2949 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2950 false); 2951 2952 if (in_reconfig) { 2953 list_for_each_entry(sdata, &local->interfaces, list) { 2954 if (!ieee80211_sdata_running(sdata)) 2955 continue; 2956 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2957 ieee80211_sta_restart(sdata); 2958 } 2959 } 2960 2961 if (!suspended) 2962 return 0; 2963 2964 #ifdef CONFIG_PM 2965 /* first set suspended false, then resuming */ 2966 local->suspended = false; 2967 mb(); 2968 local->resuming = false; 2969 2970 ieee80211_flush_completed_scan(local, false); 2971 2972 if (local->open_count && !reconfig_due_to_wowlan) 2973 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2974 2975 list_for_each_entry(sdata, &local->interfaces, list) { 2976 if (!ieee80211_sdata_running(sdata)) 2977 continue; 2978 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2979 ieee80211_sta_restart(sdata); 2980 } 2981 2982 mod_timer(&local->sta_cleanup, jiffies + 1); 2983 #else 2984 WARN_ON(1); 2985 #endif 2986 2987 return 0; 2988 } 2989 2990 static void ieee80211_reconfig_disconnect(struct ieee80211_vif *vif, u8 flag) 2991 { 2992 struct ieee80211_sub_if_data *sdata; 2993 struct ieee80211_local *local; 2994 struct ieee80211_key *key; 2995 2996 if (WARN_ON(!vif)) 2997 return; 2998 2999 sdata = vif_to_sdata(vif); 3000 local = sdata->local; 3001 3002 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_RESUME && 3003 !local->resuming)) 3004 return; 3005 3006 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_HW_RESTART && 3007 !local->in_reconfig)) 3008 return; 3009 3010 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 3011 return; 3012 3013 sdata->flags |= flag; 3014 3015 mutex_lock(&local->key_mtx); 3016 list_for_each_entry(key, &sdata->key_list, list) 3017 key->flags |= KEY_FLAG_TAINTED; 3018 mutex_unlock(&local->key_mtx); 3019 } 3020 3021 void ieee80211_hw_restart_disconnect(struct ieee80211_vif *vif) 3022 { 3023 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_HW_RESTART); 3024 } 3025 EXPORT_SYMBOL_GPL(ieee80211_hw_restart_disconnect); 3026 3027 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 3028 { 3029 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_RESUME); 3030 } 3031 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 3032 3033 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata, 3034 struct ieee80211_link_data *link) 3035 { 3036 struct ieee80211_local *local = sdata->local; 3037 struct ieee80211_chanctx_conf *chanctx_conf; 3038 struct ieee80211_chanctx *chanctx; 3039 3040 mutex_lock(&local->chanctx_mtx); 3041 3042 chanctx_conf = rcu_dereference_protected(link->conf->chanctx_conf, 3043 lockdep_is_held(&local->chanctx_mtx)); 3044 3045 /* 3046 * This function can be called from a work, thus it may be possible 3047 * that the chanctx_conf is removed (due to a disconnection, for 3048 * example). 3049 * So nothing should be done in such case. 3050 */ 3051 if (!chanctx_conf) 3052 goto unlock; 3053 3054 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 3055 ieee80211_recalc_smps_chanctx(local, chanctx); 3056 unlock: 3057 mutex_unlock(&local->chanctx_mtx); 3058 } 3059 3060 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata, 3061 int link_id) 3062 { 3063 struct ieee80211_local *local = sdata->local; 3064 struct ieee80211_chanctx_conf *chanctx_conf; 3065 struct ieee80211_chanctx *chanctx; 3066 int i; 3067 3068 mutex_lock(&local->chanctx_mtx); 3069 3070 for (i = 0; i < ARRAY_SIZE(sdata->vif.link_conf); i++) { 3071 struct ieee80211_bss_conf *bss_conf; 3072 3073 if (link_id >= 0 && link_id != i) 3074 continue; 3075 3076 rcu_read_lock(); 3077 bss_conf = rcu_dereference(sdata->vif.link_conf[i]); 3078 if (!bss_conf) { 3079 rcu_read_unlock(); 3080 continue; 3081 } 3082 3083 chanctx_conf = rcu_dereference_protected(bss_conf->chanctx_conf, 3084 lockdep_is_held(&local->chanctx_mtx)); 3085 /* 3086 * Since we hold the chanctx_mtx (checked above) 3087 * we can take the chanctx_conf pointer out of the 3088 * RCU critical section, it cannot go away without 3089 * the mutex. Just the way we reached it could - in 3090 * theory - go away, but we don't really care and 3091 * it really shouldn't happen anyway. 3092 */ 3093 rcu_read_unlock(); 3094 3095 if (!chanctx_conf) 3096 goto unlock; 3097 3098 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, 3099 conf); 3100 ieee80211_recalc_chanctx_min_def(local, chanctx); 3101 } 3102 unlock: 3103 mutex_unlock(&local->chanctx_mtx); 3104 } 3105 3106 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 3107 { 3108 size_t pos = offset; 3109 3110 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 3111 pos += 2 + ies[pos + 1]; 3112 3113 return pos; 3114 } 3115 3116 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 3117 u16 cap) 3118 { 3119 __le16 tmp; 3120 3121 *pos++ = WLAN_EID_HT_CAPABILITY; 3122 *pos++ = sizeof(struct ieee80211_ht_cap); 3123 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 3124 3125 /* capability flags */ 3126 tmp = cpu_to_le16(cap); 3127 memcpy(pos, &tmp, sizeof(u16)); 3128 pos += sizeof(u16); 3129 3130 /* AMPDU parameters */ 3131 *pos++ = ht_cap->ampdu_factor | 3132 (ht_cap->ampdu_density << 3133 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 3134 3135 /* MCS set */ 3136 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 3137 pos += sizeof(ht_cap->mcs); 3138 3139 /* extended capabilities */ 3140 pos += sizeof(__le16); 3141 3142 /* BF capabilities */ 3143 pos += sizeof(__le32); 3144 3145 /* antenna selection */ 3146 pos += sizeof(u8); 3147 3148 return pos; 3149 } 3150 3151 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 3152 u32 cap) 3153 { 3154 __le32 tmp; 3155 3156 *pos++ = WLAN_EID_VHT_CAPABILITY; 3157 *pos++ = sizeof(struct ieee80211_vht_cap); 3158 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 3159 3160 /* capability flags */ 3161 tmp = cpu_to_le32(cap); 3162 memcpy(pos, &tmp, sizeof(u32)); 3163 pos += sizeof(u32); 3164 3165 /* VHT MCS set */ 3166 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 3167 pos += sizeof(vht_cap->vht_mcs); 3168 3169 return pos; 3170 } 3171 3172 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 3173 { 3174 const struct ieee80211_sta_he_cap *he_cap; 3175 struct ieee80211_supported_band *sband; 3176 u8 n; 3177 3178 sband = ieee80211_get_sband(sdata); 3179 if (!sband) 3180 return 0; 3181 3182 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 3183 if (!he_cap) 3184 return 0; 3185 3186 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 3187 return 2 + 1 + 3188 sizeof(he_cap->he_cap_elem) + n + 3189 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 3190 he_cap->he_cap_elem.phy_cap_info); 3191 } 3192 3193 u8 *ieee80211_ie_build_he_cap(ieee80211_conn_flags_t disable_flags, u8 *pos, 3194 const struct ieee80211_sta_he_cap *he_cap, 3195 u8 *end) 3196 { 3197 struct ieee80211_he_cap_elem elem; 3198 u8 n; 3199 u8 ie_len; 3200 u8 *orig_pos = pos; 3201 3202 /* Make sure we have place for the IE */ 3203 /* 3204 * TODO: the 1 added is because this temporarily is under the EXTENSION 3205 * IE. Get rid of it when it moves. 3206 */ 3207 if (!he_cap) 3208 return orig_pos; 3209 3210 /* modify on stack first to calculate 'n' and 'ie_len' correctly */ 3211 elem = he_cap->he_cap_elem; 3212 3213 if (disable_flags & IEEE80211_CONN_DISABLE_40MHZ) 3214 elem.phy_cap_info[0] &= 3215 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | 3216 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G); 3217 3218 if (disable_flags & IEEE80211_CONN_DISABLE_160MHZ) 3219 elem.phy_cap_info[0] &= 3220 ~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 3221 3222 if (disable_flags & IEEE80211_CONN_DISABLE_80P80MHZ) 3223 elem.phy_cap_info[0] &= 3224 ~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 3225 3226 n = ieee80211_he_mcs_nss_size(&elem); 3227 ie_len = 2 + 1 + 3228 sizeof(he_cap->he_cap_elem) + n + 3229 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 3230 he_cap->he_cap_elem.phy_cap_info); 3231 3232 if ((end - pos) < ie_len) 3233 return orig_pos; 3234 3235 *pos++ = WLAN_EID_EXTENSION; 3236 pos++; /* We'll set the size later below */ 3237 *pos++ = WLAN_EID_EXT_HE_CAPABILITY; 3238 3239 /* Fixed data */ 3240 memcpy(pos, &elem, sizeof(elem)); 3241 pos += sizeof(elem); 3242 3243 memcpy(pos, &he_cap->he_mcs_nss_supp, n); 3244 pos += n; 3245 3246 /* Check if PPE Threshold should be present */ 3247 if ((he_cap->he_cap_elem.phy_cap_info[6] & 3248 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 3249 goto end; 3250 3251 /* 3252 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 3253 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 3254 */ 3255 n = hweight8(he_cap->ppe_thres[0] & 3256 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 3257 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 3258 IEEE80211_PPE_THRES_NSS_POS)); 3259 3260 /* 3261 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 3262 * total size. 3263 */ 3264 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 3265 n = DIV_ROUND_UP(n, 8); 3266 3267 /* Copy PPE Thresholds */ 3268 memcpy(pos, &he_cap->ppe_thres, n); 3269 pos += n; 3270 3271 end: 3272 orig_pos[1] = (pos - orig_pos) - 2; 3273 return pos; 3274 } 3275 3276 void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata, 3277 enum ieee80211_smps_mode smps_mode, 3278 struct sk_buff *skb) 3279 { 3280 struct ieee80211_supported_band *sband; 3281 const struct ieee80211_sband_iftype_data *iftd; 3282 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3283 u8 *pos; 3284 u16 cap; 3285 3286 if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy, 3287 BIT(NL80211_BAND_6GHZ), 3288 IEEE80211_CHAN_NO_HE)) 3289 return; 3290 3291 sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3292 3293 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 3294 if (!iftd) 3295 return; 3296 3297 /* Check for device HE 6 GHz capability before adding element */ 3298 if (!iftd->he_6ghz_capa.capa) 3299 return; 3300 3301 cap = le16_to_cpu(iftd->he_6ghz_capa.capa); 3302 cap &= ~IEEE80211_HE_6GHZ_CAP_SM_PS; 3303 3304 switch (smps_mode) { 3305 case IEEE80211_SMPS_AUTOMATIC: 3306 case IEEE80211_SMPS_NUM_MODES: 3307 WARN_ON(1); 3308 fallthrough; 3309 case IEEE80211_SMPS_OFF: 3310 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 3311 IEEE80211_HE_6GHZ_CAP_SM_PS); 3312 break; 3313 case IEEE80211_SMPS_STATIC: 3314 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 3315 IEEE80211_HE_6GHZ_CAP_SM_PS); 3316 break; 3317 case IEEE80211_SMPS_DYNAMIC: 3318 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 3319 IEEE80211_HE_6GHZ_CAP_SM_PS); 3320 break; 3321 } 3322 3323 pos = skb_put(skb, 2 + 1 + sizeof(cap)); 3324 ieee80211_write_he_6ghz_cap(pos, cpu_to_le16(cap), 3325 pos + 2 + 1 + sizeof(cap)); 3326 } 3327 3328 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 3329 const struct cfg80211_chan_def *chandef, 3330 u16 prot_mode, bool rifs_mode) 3331 { 3332 struct ieee80211_ht_operation *ht_oper; 3333 /* Build HT Information */ 3334 *pos++ = WLAN_EID_HT_OPERATION; 3335 *pos++ = sizeof(struct ieee80211_ht_operation); 3336 ht_oper = (struct ieee80211_ht_operation *)pos; 3337 ht_oper->primary_chan = ieee80211_frequency_to_channel( 3338 chandef->chan->center_freq); 3339 switch (chandef->width) { 3340 case NL80211_CHAN_WIDTH_160: 3341 case NL80211_CHAN_WIDTH_80P80: 3342 case NL80211_CHAN_WIDTH_80: 3343 case NL80211_CHAN_WIDTH_40: 3344 if (chandef->center_freq1 > chandef->chan->center_freq) 3345 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3346 else 3347 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3348 break; 3349 case NL80211_CHAN_WIDTH_320: 3350 /* HT information element should not be included on 6GHz */ 3351 WARN_ON(1); 3352 return pos; 3353 default: 3354 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 3355 break; 3356 } 3357 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 3358 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 3359 chandef->width != NL80211_CHAN_WIDTH_20) 3360 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 3361 3362 if (rifs_mode) 3363 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 3364 3365 ht_oper->operation_mode = cpu_to_le16(prot_mode); 3366 ht_oper->stbc_param = 0x0000; 3367 3368 /* It seems that Basic MCS set and Supported MCS set 3369 are identical for the first 10 bytes */ 3370 memset(&ht_oper->basic_set, 0, 16); 3371 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 3372 3373 return pos + sizeof(struct ieee80211_ht_operation); 3374 } 3375 3376 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 3377 const struct cfg80211_chan_def *chandef) 3378 { 3379 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 3380 *pos++ = 3; /* IE length */ 3381 /* New channel width */ 3382 switch (chandef->width) { 3383 case NL80211_CHAN_WIDTH_80: 3384 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 3385 break; 3386 case NL80211_CHAN_WIDTH_160: 3387 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 3388 break; 3389 case NL80211_CHAN_WIDTH_80P80: 3390 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 3391 break; 3392 case NL80211_CHAN_WIDTH_320: 3393 /* The behavior is not defined for 320 MHz channels */ 3394 WARN_ON(1); 3395 fallthrough; 3396 default: 3397 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 3398 } 3399 3400 /* new center frequency segment 0 */ 3401 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 3402 /* new center frequency segment 1 */ 3403 if (chandef->center_freq2) 3404 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 3405 else 3406 *pos++ = 0; 3407 } 3408 3409 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 3410 const struct cfg80211_chan_def *chandef) 3411 { 3412 struct ieee80211_vht_operation *vht_oper; 3413 3414 *pos++ = WLAN_EID_VHT_OPERATION; 3415 *pos++ = sizeof(struct ieee80211_vht_operation); 3416 vht_oper = (struct ieee80211_vht_operation *)pos; 3417 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 3418 chandef->center_freq1); 3419 if (chandef->center_freq2) 3420 vht_oper->center_freq_seg1_idx = 3421 ieee80211_frequency_to_channel(chandef->center_freq2); 3422 else 3423 vht_oper->center_freq_seg1_idx = 0x00; 3424 3425 switch (chandef->width) { 3426 case NL80211_CHAN_WIDTH_160: 3427 /* 3428 * Convert 160 MHz channel width to new style as interop 3429 * workaround. 3430 */ 3431 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3432 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 3433 if (chandef->chan->center_freq < chandef->center_freq1) 3434 vht_oper->center_freq_seg0_idx -= 8; 3435 else 3436 vht_oper->center_freq_seg0_idx += 8; 3437 break; 3438 case NL80211_CHAN_WIDTH_80P80: 3439 /* 3440 * Convert 80+80 MHz channel width to new style as interop 3441 * workaround. 3442 */ 3443 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3444 break; 3445 case NL80211_CHAN_WIDTH_80: 3446 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3447 break; 3448 case NL80211_CHAN_WIDTH_320: 3449 /* VHT information element should not be included on 6GHz */ 3450 WARN_ON(1); 3451 return pos; 3452 default: 3453 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 3454 break; 3455 } 3456 3457 /* don't require special VHT peer rates */ 3458 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 3459 3460 return pos + sizeof(struct ieee80211_vht_operation); 3461 } 3462 3463 u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef) 3464 { 3465 struct ieee80211_he_operation *he_oper; 3466 struct ieee80211_he_6ghz_oper *he_6ghz_op; 3467 u32 he_oper_params; 3468 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 3469 3470 if (chandef->chan->band == NL80211_BAND_6GHZ) 3471 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 3472 3473 *pos++ = WLAN_EID_EXTENSION; 3474 *pos++ = ie_len; 3475 *pos++ = WLAN_EID_EXT_HE_OPERATION; 3476 3477 he_oper_params = 0; 3478 he_oper_params |= u32_encode_bits(1023, /* disabled */ 3479 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 3480 he_oper_params |= u32_encode_bits(1, 3481 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 3482 he_oper_params |= u32_encode_bits(1, 3483 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 3484 if (chandef->chan->band == NL80211_BAND_6GHZ) 3485 he_oper_params |= u32_encode_bits(1, 3486 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 3487 3488 he_oper = (struct ieee80211_he_operation *)pos; 3489 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 3490 3491 /* don't require special HE peer rates */ 3492 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 3493 pos += sizeof(struct ieee80211_he_operation); 3494 3495 if (chandef->chan->band != NL80211_BAND_6GHZ) 3496 goto out; 3497 3498 /* TODO add VHT operational */ 3499 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 3500 he_6ghz_op->minrate = 6; /* 6 Mbps */ 3501 he_6ghz_op->primary = 3502 ieee80211_frequency_to_channel(chandef->chan->center_freq); 3503 he_6ghz_op->ccfs0 = 3504 ieee80211_frequency_to_channel(chandef->center_freq1); 3505 if (chandef->center_freq2) 3506 he_6ghz_op->ccfs1 = 3507 ieee80211_frequency_to_channel(chandef->center_freq2); 3508 else 3509 he_6ghz_op->ccfs1 = 0; 3510 3511 switch (chandef->width) { 3512 case NL80211_CHAN_WIDTH_320: 3513 /* 3514 * TODO: mesh operation is not defined over 6GHz 320 MHz 3515 * channels. 3516 */ 3517 WARN_ON(1); 3518 break; 3519 case NL80211_CHAN_WIDTH_160: 3520 /* Convert 160 MHz channel width to new style as interop 3521 * workaround. 3522 */ 3523 he_6ghz_op->control = 3524 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3525 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 3526 if (chandef->chan->center_freq < chandef->center_freq1) 3527 he_6ghz_op->ccfs0 -= 8; 3528 else 3529 he_6ghz_op->ccfs0 += 8; 3530 fallthrough; 3531 case NL80211_CHAN_WIDTH_80P80: 3532 he_6ghz_op->control = 3533 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3534 break; 3535 case NL80211_CHAN_WIDTH_80: 3536 he_6ghz_op->control = 3537 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 3538 break; 3539 case NL80211_CHAN_WIDTH_40: 3540 he_6ghz_op->control = 3541 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 3542 break; 3543 default: 3544 he_6ghz_op->control = 3545 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 3546 break; 3547 } 3548 3549 pos += sizeof(struct ieee80211_he_6ghz_oper); 3550 3551 out: 3552 return pos; 3553 } 3554 3555 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 3556 struct cfg80211_chan_def *chandef) 3557 { 3558 enum nl80211_channel_type channel_type; 3559 3560 if (!ht_oper) 3561 return false; 3562 3563 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 3564 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 3565 channel_type = NL80211_CHAN_HT20; 3566 break; 3567 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 3568 channel_type = NL80211_CHAN_HT40PLUS; 3569 break; 3570 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 3571 channel_type = NL80211_CHAN_HT40MINUS; 3572 break; 3573 default: 3574 return false; 3575 } 3576 3577 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 3578 return true; 3579 } 3580 3581 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 3582 const struct ieee80211_vht_operation *oper, 3583 const struct ieee80211_ht_operation *htop, 3584 struct cfg80211_chan_def *chandef) 3585 { 3586 struct cfg80211_chan_def new = *chandef; 3587 int cf0, cf1; 3588 int ccfs0, ccfs1, ccfs2; 3589 int ccf0, ccf1; 3590 u32 vht_cap; 3591 bool support_80_80 = false; 3592 bool support_160 = false; 3593 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 3594 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 3595 u8 supp_chwidth = u32_get_bits(vht_cap_info, 3596 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 3597 3598 if (!oper || !htop) 3599 return false; 3600 3601 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 3602 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 3603 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 3604 support_80_80 = ((vht_cap & 3605 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 3606 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 3607 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 3608 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 3609 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 3610 ccfs0 = oper->center_freq_seg0_idx; 3611 ccfs1 = oper->center_freq_seg1_idx; 3612 ccfs2 = (le16_to_cpu(htop->operation_mode) & 3613 IEEE80211_HT_OP_MODE_CCFS2_MASK) 3614 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 3615 3616 ccf0 = ccfs0; 3617 3618 /* if not supported, parse as though we didn't understand it */ 3619 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 3620 ext_nss_bw_supp = 0; 3621 3622 /* 3623 * Cf. IEEE 802.11 Table 9-250 3624 * 3625 * We really just consider that because it's inefficient to connect 3626 * at a higher bandwidth than we'll actually be able to use. 3627 */ 3628 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 3629 default: 3630 case 0x00: 3631 ccf1 = 0; 3632 support_160 = false; 3633 support_80_80 = false; 3634 break; 3635 case 0x01: 3636 support_80_80 = false; 3637 fallthrough; 3638 case 0x02: 3639 case 0x03: 3640 ccf1 = ccfs2; 3641 break; 3642 case 0x10: 3643 ccf1 = ccfs1; 3644 break; 3645 case 0x11: 3646 case 0x12: 3647 if (!ccfs1) 3648 ccf1 = ccfs2; 3649 else 3650 ccf1 = ccfs1; 3651 break; 3652 case 0x13: 3653 case 0x20: 3654 case 0x23: 3655 ccf1 = ccfs1; 3656 break; 3657 } 3658 3659 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3660 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3661 3662 switch (oper->chan_width) { 3663 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3664 /* just use HT information directly */ 3665 break; 3666 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3667 new.width = NL80211_CHAN_WIDTH_80; 3668 new.center_freq1 = cf0; 3669 /* If needed, adjust based on the newer interop workaround. */ 3670 if (ccf1) { 3671 unsigned int diff; 3672 3673 diff = abs(ccf1 - ccf0); 3674 if ((diff == 8) && support_160) { 3675 new.width = NL80211_CHAN_WIDTH_160; 3676 new.center_freq1 = cf1; 3677 } else if ((diff > 8) && support_80_80) { 3678 new.width = NL80211_CHAN_WIDTH_80P80; 3679 new.center_freq2 = cf1; 3680 } 3681 } 3682 break; 3683 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3684 /* deprecated encoding */ 3685 new.width = NL80211_CHAN_WIDTH_160; 3686 new.center_freq1 = cf0; 3687 break; 3688 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3689 /* deprecated encoding */ 3690 new.width = NL80211_CHAN_WIDTH_80P80; 3691 new.center_freq1 = cf0; 3692 new.center_freq2 = cf1; 3693 break; 3694 default: 3695 return false; 3696 } 3697 3698 if (!cfg80211_chandef_valid(&new)) 3699 return false; 3700 3701 *chandef = new; 3702 return true; 3703 } 3704 3705 void ieee80211_chandef_eht_oper(const struct ieee80211_eht_operation *eht_oper, 3706 bool support_160, bool support_320, 3707 struct cfg80211_chan_def *chandef) 3708 { 3709 struct ieee80211_eht_operation_info *info = (void *)eht_oper->optional; 3710 3711 chandef->center_freq1 = 3712 ieee80211_channel_to_frequency(info->ccfs0, 3713 chandef->chan->band); 3714 3715 switch (u8_get_bits(info->control, 3716 IEEE80211_EHT_OPER_CHAN_WIDTH)) { 3717 case IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ: 3718 chandef->width = NL80211_CHAN_WIDTH_20; 3719 break; 3720 case IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ: 3721 chandef->width = NL80211_CHAN_WIDTH_40; 3722 break; 3723 case IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ: 3724 chandef->width = NL80211_CHAN_WIDTH_80; 3725 break; 3726 case IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ: 3727 if (support_160) { 3728 chandef->width = NL80211_CHAN_WIDTH_160; 3729 chandef->center_freq1 = 3730 ieee80211_channel_to_frequency(info->ccfs1, 3731 chandef->chan->band); 3732 } else { 3733 chandef->width = NL80211_CHAN_WIDTH_80; 3734 } 3735 break; 3736 case IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ: 3737 if (support_320) { 3738 chandef->width = NL80211_CHAN_WIDTH_320; 3739 chandef->center_freq1 = 3740 ieee80211_channel_to_frequency(info->ccfs1, 3741 chandef->chan->band); 3742 } else if (support_160) { 3743 chandef->width = NL80211_CHAN_WIDTH_160; 3744 } else { 3745 chandef->width = NL80211_CHAN_WIDTH_80; 3746 3747 if (chandef->center_freq1 > chandef->chan->center_freq) 3748 chandef->center_freq1 -= 40; 3749 else 3750 chandef->center_freq1 += 40; 3751 } 3752 break; 3753 } 3754 } 3755 3756 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata, 3757 const struct ieee80211_he_operation *he_oper, 3758 const struct ieee80211_eht_operation *eht_oper, 3759 struct cfg80211_chan_def *chandef) 3760 { 3761 struct ieee80211_local *local = sdata->local; 3762 struct ieee80211_supported_band *sband; 3763 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3764 const struct ieee80211_sta_he_cap *he_cap; 3765 const struct ieee80211_sta_eht_cap *eht_cap; 3766 struct cfg80211_chan_def he_chandef = *chandef; 3767 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3768 struct ieee80211_bss_conf *bss_conf = &sdata->vif.bss_conf; 3769 bool support_80_80, support_160, support_320; 3770 u8 he_phy_cap, eht_phy_cap; 3771 u32 freq; 3772 3773 if (chandef->chan->band != NL80211_BAND_6GHZ) 3774 return true; 3775 3776 sband = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3777 3778 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 3779 if (!he_cap) { 3780 sdata_info(sdata, "Missing iftype sband data/HE cap"); 3781 return false; 3782 } 3783 3784 he_phy_cap = he_cap->he_cap_elem.phy_cap_info[0]; 3785 support_160 = 3786 he_phy_cap & 3787 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 3788 support_80_80 = 3789 he_phy_cap & 3790 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 3791 3792 if (!he_oper) { 3793 sdata_info(sdata, 3794 "HE is not advertised on (on %d MHz), expect issues\n", 3795 chandef->chan->center_freq); 3796 return false; 3797 } 3798 3799 eht_cap = ieee80211_get_eht_iftype_cap(sband, iftype); 3800 if (!eht_cap) { 3801 sdata_info(sdata, "Missing iftype sband data/EHT cap"); 3802 eht_oper = NULL; 3803 } 3804 3805 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3806 3807 if (!he_6ghz_oper) { 3808 sdata_info(sdata, 3809 "HE 6GHz operation missing (on %d MHz), expect issues\n", 3810 chandef->chan->center_freq); 3811 return false; 3812 } 3813 3814 /* 3815 * The EHT operation IE does not contain the primary channel so the 3816 * primary channel frequency should be taken from the 6 GHz operation 3817 * information. 3818 */ 3819 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3820 NL80211_BAND_6GHZ); 3821 he_chandef.chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq); 3822 3823 switch (u8_get_bits(he_6ghz_oper->control, 3824 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) { 3825 case IEEE80211_6GHZ_CTRL_REG_LPI_AP: 3826 bss_conf->power_type = IEEE80211_REG_LPI_AP; 3827 break; 3828 case IEEE80211_6GHZ_CTRL_REG_SP_AP: 3829 bss_conf->power_type = IEEE80211_REG_SP_AP; 3830 break; 3831 default: 3832 bss_conf->power_type = IEEE80211_REG_UNSET_AP; 3833 break; 3834 } 3835 3836 if (!eht_oper || 3837 !(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) { 3838 switch (u8_get_bits(he_6ghz_oper->control, 3839 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3840 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3841 he_chandef.width = NL80211_CHAN_WIDTH_20; 3842 break; 3843 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3844 he_chandef.width = NL80211_CHAN_WIDTH_40; 3845 break; 3846 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3847 he_chandef.width = NL80211_CHAN_WIDTH_80; 3848 break; 3849 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3850 he_chandef.width = NL80211_CHAN_WIDTH_80; 3851 if (!he_6ghz_oper->ccfs1) 3852 break; 3853 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) { 3854 if (support_160) 3855 he_chandef.width = NL80211_CHAN_WIDTH_160; 3856 } else { 3857 if (support_80_80) 3858 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3859 } 3860 break; 3861 } 3862 3863 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3864 he_chandef.center_freq1 = 3865 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3866 NL80211_BAND_6GHZ); 3867 } else { 3868 he_chandef.center_freq1 = 3869 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3870 NL80211_BAND_6GHZ); 3871 if (support_80_80 || support_160) 3872 he_chandef.center_freq2 = 3873 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3874 NL80211_BAND_6GHZ); 3875 } 3876 } else { 3877 eht_phy_cap = eht_cap->eht_cap_elem.phy_cap_info[0]; 3878 support_320 = 3879 eht_phy_cap & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ; 3880 3881 ieee80211_chandef_eht_oper(eht_oper, support_160, 3882 support_320, &he_chandef); 3883 } 3884 3885 if (!cfg80211_chandef_valid(&he_chandef)) { 3886 sdata_info(sdata, 3887 "HE 6GHz operation resulted in invalid chandef: %d MHz/%d/%d MHz/%d MHz\n", 3888 he_chandef.chan ? he_chandef.chan->center_freq : 0, 3889 he_chandef.width, 3890 he_chandef.center_freq1, 3891 he_chandef.center_freq2); 3892 return false; 3893 } 3894 3895 *chandef = he_chandef; 3896 3897 return true; 3898 } 3899 3900 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, 3901 struct cfg80211_chan_def *chandef) 3902 { 3903 u32 oper_freq; 3904 3905 if (!oper) 3906 return false; 3907 3908 switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { 3909 case IEEE80211_S1G_CHANWIDTH_1MHZ: 3910 chandef->width = NL80211_CHAN_WIDTH_1; 3911 break; 3912 case IEEE80211_S1G_CHANWIDTH_2MHZ: 3913 chandef->width = NL80211_CHAN_WIDTH_2; 3914 break; 3915 case IEEE80211_S1G_CHANWIDTH_4MHZ: 3916 chandef->width = NL80211_CHAN_WIDTH_4; 3917 break; 3918 case IEEE80211_S1G_CHANWIDTH_8MHZ: 3919 chandef->width = NL80211_CHAN_WIDTH_8; 3920 break; 3921 case IEEE80211_S1G_CHANWIDTH_16MHZ: 3922 chandef->width = NL80211_CHAN_WIDTH_16; 3923 break; 3924 default: 3925 return false; 3926 } 3927 3928 oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch, 3929 NL80211_BAND_S1GHZ); 3930 chandef->center_freq1 = KHZ_TO_MHZ(oper_freq); 3931 chandef->freq1_offset = oper_freq % 1000; 3932 3933 return true; 3934 } 3935 3936 int ieee80211_parse_bitrates(enum nl80211_chan_width width, 3937 const struct ieee80211_supported_band *sband, 3938 const u8 *srates, int srates_len, u32 *rates) 3939 { 3940 u32 rate_flags = ieee80211_chanwidth_rate_flags(width); 3941 int shift = ieee80211_chanwidth_get_shift(width); 3942 struct ieee80211_rate *br; 3943 int brate, rate, i, j, count = 0; 3944 3945 *rates = 0; 3946 3947 for (i = 0; i < srates_len; i++) { 3948 rate = srates[i] & 0x7f; 3949 3950 for (j = 0; j < sband->n_bitrates; j++) { 3951 br = &sband->bitrates[j]; 3952 if ((rate_flags & br->flags) != rate_flags) 3953 continue; 3954 3955 brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5); 3956 if (brate == rate) { 3957 *rates |= BIT(j); 3958 count++; 3959 break; 3960 } 3961 } 3962 } 3963 return count; 3964 } 3965 3966 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, 3967 struct sk_buff *skb, bool need_basic, 3968 enum nl80211_band band) 3969 { 3970 struct ieee80211_local *local = sdata->local; 3971 struct ieee80211_supported_band *sband; 3972 int rate, shift; 3973 u8 i, rates, *pos; 3974 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3975 u32 rate_flags; 3976 3977 shift = ieee80211_vif_get_shift(&sdata->vif); 3978 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3979 sband = local->hw.wiphy->bands[band]; 3980 rates = 0; 3981 for (i = 0; i < sband->n_bitrates; i++) { 3982 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3983 continue; 3984 rates++; 3985 } 3986 if (rates > 8) 3987 rates = 8; 3988 3989 if (skb_tailroom(skb) < rates + 2) 3990 return -ENOMEM; 3991 3992 pos = skb_put(skb, rates + 2); 3993 *pos++ = WLAN_EID_SUPP_RATES; 3994 *pos++ = rates; 3995 for (i = 0; i < rates; i++) { 3996 u8 basic = 0; 3997 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3998 continue; 3999 4000 if (need_basic && basic_rates & BIT(i)) 4001 basic = 0x80; 4002 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 4003 5 * (1 << shift)); 4004 *pos++ = basic | (u8) rate; 4005 } 4006 4007 return 0; 4008 } 4009 4010 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, 4011 struct sk_buff *skb, bool need_basic, 4012 enum nl80211_band band) 4013 { 4014 struct ieee80211_local *local = sdata->local; 4015 struct ieee80211_supported_band *sband; 4016 int rate, shift; 4017 u8 i, exrates, *pos; 4018 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 4019 u32 rate_flags; 4020 4021 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 4022 shift = ieee80211_vif_get_shift(&sdata->vif); 4023 4024 sband = local->hw.wiphy->bands[band]; 4025 exrates = 0; 4026 for (i = 0; i < sband->n_bitrates; i++) { 4027 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 4028 continue; 4029 exrates++; 4030 } 4031 4032 if (exrates > 8) 4033 exrates -= 8; 4034 else 4035 exrates = 0; 4036 4037 if (skb_tailroom(skb) < exrates + 2) 4038 return -ENOMEM; 4039 4040 if (exrates) { 4041 pos = skb_put(skb, exrates + 2); 4042 *pos++ = WLAN_EID_EXT_SUPP_RATES; 4043 *pos++ = exrates; 4044 for (i = 8; i < sband->n_bitrates; i++) { 4045 u8 basic = 0; 4046 if ((rate_flags & sband->bitrates[i].flags) 4047 != rate_flags) 4048 continue; 4049 if (need_basic && basic_rates & BIT(i)) 4050 basic = 0x80; 4051 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 4052 5 * (1 << shift)); 4053 *pos++ = basic | (u8) rate; 4054 } 4055 } 4056 return 0; 4057 } 4058 4059 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 4060 { 4061 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 4062 4063 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) 4064 return 0; 4065 4066 return -ewma_beacon_signal_read(&sdata->deflink.u.mgd.ave_beacon_signal); 4067 } 4068 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 4069 4070 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 4071 { 4072 if (!mcs) 4073 return 1; 4074 4075 /* TODO: consider rx_highest */ 4076 4077 if (mcs->rx_mask[3]) 4078 return 4; 4079 if (mcs->rx_mask[2]) 4080 return 3; 4081 if (mcs->rx_mask[1]) 4082 return 2; 4083 return 1; 4084 } 4085 4086 /** 4087 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 4088 * @local: mac80211 hw info struct 4089 * @status: RX status 4090 * @mpdu_len: total MPDU length (including FCS) 4091 * @mpdu_offset: offset into MPDU to calculate timestamp at 4092 * 4093 * This function calculates the RX timestamp at the given MPDU offset, taking 4094 * into account what the RX timestamp was. An offset of 0 will just normalize 4095 * the timestamp to TSF at beginning of MPDU reception. 4096 */ 4097 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 4098 struct ieee80211_rx_status *status, 4099 unsigned int mpdu_len, 4100 unsigned int mpdu_offset) 4101 { 4102 u64 ts = status->mactime; 4103 struct rate_info ri; 4104 u16 rate; 4105 u8 n_ltf; 4106 4107 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 4108 return 0; 4109 4110 memset(&ri, 0, sizeof(ri)); 4111 4112 ri.bw = status->bw; 4113 4114 /* Fill cfg80211 rate info */ 4115 switch (status->encoding) { 4116 case RX_ENC_HE: 4117 ri.flags |= RATE_INFO_FLAGS_HE_MCS; 4118 ri.mcs = status->rate_idx; 4119 ri.nss = status->nss; 4120 ri.he_ru_alloc = status->he_ru; 4121 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4122 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4123 4124 /* 4125 * See P802.11ax_D6.0, section 27.3.4 for 4126 * VHT PPDU format. 4127 */ 4128 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4129 mpdu_offset += 2; 4130 ts += 36; 4131 4132 /* 4133 * TODO: 4134 * For HE MU PPDU, add the HE-SIG-B. 4135 * For HE ER PPDU, add 8us for the HE-SIG-A. 4136 * For HE TB PPDU, add 4us for the HE-STF. 4137 * Add the HE-LTF durations - variable. 4138 */ 4139 } 4140 4141 break; 4142 case RX_ENC_HT: 4143 ri.mcs = status->rate_idx; 4144 ri.flags |= RATE_INFO_FLAGS_MCS; 4145 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4146 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4147 4148 /* 4149 * See P802.11REVmd_D3.0, section 19.3.2 for 4150 * HT PPDU format. 4151 */ 4152 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4153 mpdu_offset += 2; 4154 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 4155 ts += 24; 4156 else 4157 ts += 32; 4158 4159 /* 4160 * Add Data HT-LTFs per streams 4161 * TODO: add Extension HT-LTFs, 4us per LTF 4162 */ 4163 n_ltf = ((ri.mcs >> 3) & 3) + 1; 4164 n_ltf = n_ltf == 3 ? 4 : n_ltf; 4165 ts += n_ltf * 4; 4166 } 4167 4168 break; 4169 case RX_ENC_VHT: 4170 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 4171 ri.mcs = status->rate_idx; 4172 ri.nss = status->nss; 4173 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4174 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4175 4176 /* 4177 * See P802.11REVmd_D3.0, section 21.3.2 for 4178 * VHT PPDU format. 4179 */ 4180 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4181 mpdu_offset += 2; 4182 ts += 36; 4183 4184 /* 4185 * Add VHT-LTFs per streams 4186 */ 4187 n_ltf = (ri.nss != 1) && (ri.nss % 2) ? 4188 ri.nss + 1 : ri.nss; 4189 ts += 4 * n_ltf; 4190 } 4191 4192 break; 4193 default: 4194 WARN_ON(1); 4195 fallthrough; 4196 case RX_ENC_LEGACY: { 4197 struct ieee80211_supported_band *sband; 4198 int shift = 0; 4199 int bitrate; 4200 4201 switch (status->bw) { 4202 case RATE_INFO_BW_10: 4203 shift = 1; 4204 break; 4205 case RATE_INFO_BW_5: 4206 shift = 2; 4207 break; 4208 } 4209 4210 sband = local->hw.wiphy->bands[status->band]; 4211 bitrate = sband->bitrates[status->rate_idx].bitrate; 4212 ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift)); 4213 4214 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4215 if (status->band == NL80211_BAND_5GHZ) { 4216 ts += 20 << shift; 4217 mpdu_offset += 2; 4218 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 4219 ts += 96; 4220 } else { 4221 ts += 192; 4222 } 4223 } 4224 break; 4225 } 4226 } 4227 4228 rate = cfg80211_calculate_bitrate(&ri); 4229 if (WARN_ONCE(!rate, 4230 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 4231 (unsigned long long)status->flag, status->rate_idx, 4232 status->nss)) 4233 return 0; 4234 4235 /* rewind from end of MPDU */ 4236 if (status->flag & RX_FLAG_MACTIME_END) 4237 ts -= mpdu_len * 8 * 10 / rate; 4238 4239 ts += mpdu_offset * 8 * 10 / rate; 4240 4241 return ts; 4242 } 4243 4244 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) 4245 { 4246 struct ieee80211_sub_if_data *sdata; 4247 struct cfg80211_chan_def chandef; 4248 4249 /* for interface list, to avoid linking iflist_mtx and chanctx_mtx */ 4250 lockdep_assert_wiphy(local->hw.wiphy); 4251 4252 mutex_lock(&local->mtx); 4253 list_for_each_entry(sdata, &local->interfaces, list) { 4254 /* it might be waiting for the local->mtx, but then 4255 * by the time it gets it, sdata->wdev.cac_started 4256 * will no longer be true 4257 */ 4258 cancel_delayed_work(&sdata->deflink.dfs_cac_timer_work); 4259 4260 if (sdata->wdev.cac_started) { 4261 chandef = sdata->vif.bss_conf.chandef; 4262 ieee80211_link_release_channel(&sdata->deflink); 4263 cfg80211_cac_event(sdata->dev, 4264 &chandef, 4265 NL80211_RADAR_CAC_ABORTED, 4266 GFP_KERNEL); 4267 } 4268 } 4269 mutex_unlock(&local->mtx); 4270 } 4271 4272 void ieee80211_dfs_radar_detected_work(struct work_struct *work) 4273 { 4274 struct ieee80211_local *local = 4275 container_of(work, struct ieee80211_local, radar_detected_work); 4276 struct cfg80211_chan_def chandef = local->hw.conf.chandef; 4277 struct ieee80211_chanctx *ctx; 4278 int num_chanctx = 0; 4279 4280 mutex_lock(&local->chanctx_mtx); 4281 list_for_each_entry(ctx, &local->chanctx_list, list) { 4282 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 4283 continue; 4284 4285 num_chanctx++; 4286 chandef = ctx->conf.def; 4287 } 4288 mutex_unlock(&local->chanctx_mtx); 4289 4290 wiphy_lock(local->hw.wiphy); 4291 ieee80211_dfs_cac_cancel(local); 4292 wiphy_unlock(local->hw.wiphy); 4293 4294 if (num_chanctx > 1) 4295 /* XXX: multi-channel is not supported yet */ 4296 WARN_ON(1); 4297 else 4298 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 4299 } 4300 4301 void ieee80211_radar_detected(struct ieee80211_hw *hw) 4302 { 4303 struct ieee80211_local *local = hw_to_local(hw); 4304 4305 trace_api_radar_detected(local); 4306 4307 schedule_work(&local->radar_detected_work); 4308 } 4309 EXPORT_SYMBOL(ieee80211_radar_detected); 4310 4311 ieee80211_conn_flags_t ieee80211_chandef_downgrade(struct cfg80211_chan_def *c) 4312 { 4313 ieee80211_conn_flags_t ret; 4314 int tmp; 4315 4316 switch (c->width) { 4317 case NL80211_CHAN_WIDTH_20: 4318 c->width = NL80211_CHAN_WIDTH_20_NOHT; 4319 ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT; 4320 break; 4321 case NL80211_CHAN_WIDTH_40: 4322 c->width = NL80211_CHAN_WIDTH_20; 4323 c->center_freq1 = c->chan->center_freq; 4324 ret = IEEE80211_CONN_DISABLE_40MHZ | 4325 IEEE80211_CONN_DISABLE_VHT; 4326 break; 4327 case NL80211_CHAN_WIDTH_80: 4328 tmp = (30 + c->chan->center_freq - c->center_freq1)/20; 4329 /* n_P40 */ 4330 tmp /= 2; 4331 /* freq_P40 */ 4332 c->center_freq1 = c->center_freq1 - 20 + 40 * tmp; 4333 c->width = NL80211_CHAN_WIDTH_40; 4334 ret = IEEE80211_CONN_DISABLE_VHT; 4335 break; 4336 case NL80211_CHAN_WIDTH_80P80: 4337 c->center_freq2 = 0; 4338 c->width = NL80211_CHAN_WIDTH_80; 4339 ret = IEEE80211_CONN_DISABLE_80P80MHZ | 4340 IEEE80211_CONN_DISABLE_160MHZ; 4341 break; 4342 case NL80211_CHAN_WIDTH_160: 4343 /* n_P20 */ 4344 tmp = (70 + c->chan->center_freq - c->center_freq1)/20; 4345 /* n_P80 */ 4346 tmp /= 4; 4347 c->center_freq1 = c->center_freq1 - 40 + 80 * tmp; 4348 c->width = NL80211_CHAN_WIDTH_80; 4349 ret = IEEE80211_CONN_DISABLE_80P80MHZ | 4350 IEEE80211_CONN_DISABLE_160MHZ; 4351 break; 4352 case NL80211_CHAN_WIDTH_320: 4353 /* n_P20 */ 4354 tmp = (150 + c->chan->center_freq - c->center_freq1) / 20; 4355 /* n_P160 */ 4356 tmp /= 8; 4357 c->center_freq1 = c->center_freq1 - 80 + 160 * tmp; 4358 c->width = NL80211_CHAN_WIDTH_160; 4359 ret = IEEE80211_CONN_DISABLE_320MHZ; 4360 break; 4361 default: 4362 case NL80211_CHAN_WIDTH_20_NOHT: 4363 WARN_ON_ONCE(1); 4364 c->width = NL80211_CHAN_WIDTH_20_NOHT; 4365 ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT; 4366 break; 4367 case NL80211_CHAN_WIDTH_1: 4368 case NL80211_CHAN_WIDTH_2: 4369 case NL80211_CHAN_WIDTH_4: 4370 case NL80211_CHAN_WIDTH_8: 4371 case NL80211_CHAN_WIDTH_16: 4372 case NL80211_CHAN_WIDTH_5: 4373 case NL80211_CHAN_WIDTH_10: 4374 WARN_ON_ONCE(1); 4375 /* keep c->width */ 4376 ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT; 4377 break; 4378 } 4379 4380 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 4381 4382 return ret; 4383 } 4384 4385 /* 4386 * Returns true if smps_mode_new is strictly more restrictive than 4387 * smps_mode_old. 4388 */ 4389 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 4390 enum ieee80211_smps_mode smps_mode_new) 4391 { 4392 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 4393 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 4394 return false; 4395 4396 switch (smps_mode_old) { 4397 case IEEE80211_SMPS_STATIC: 4398 return false; 4399 case IEEE80211_SMPS_DYNAMIC: 4400 return smps_mode_new == IEEE80211_SMPS_STATIC; 4401 case IEEE80211_SMPS_OFF: 4402 return smps_mode_new != IEEE80211_SMPS_OFF; 4403 default: 4404 WARN_ON(1); 4405 } 4406 4407 return false; 4408 } 4409 4410 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 4411 struct cfg80211_csa_settings *csa_settings) 4412 { 4413 struct sk_buff *skb; 4414 struct ieee80211_mgmt *mgmt; 4415 struct ieee80211_local *local = sdata->local; 4416 int freq; 4417 int hdr_len = offsetofend(struct ieee80211_mgmt, 4418 u.action.u.chan_switch); 4419 u8 *pos; 4420 4421 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 4422 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 4423 return -EOPNOTSUPP; 4424 4425 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 4426 5 + /* channel switch announcement element */ 4427 3 + /* secondary channel offset element */ 4428 5 + /* wide bandwidth channel switch announcement */ 4429 8); /* mesh channel switch parameters element */ 4430 if (!skb) 4431 return -ENOMEM; 4432 4433 skb_reserve(skb, local->tx_headroom); 4434 mgmt = skb_put_zero(skb, hdr_len); 4435 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 4436 IEEE80211_STYPE_ACTION); 4437 4438 eth_broadcast_addr(mgmt->da); 4439 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 4440 if (ieee80211_vif_is_mesh(&sdata->vif)) { 4441 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 4442 } else { 4443 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 4444 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 4445 } 4446 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 4447 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 4448 pos = skb_put(skb, 5); 4449 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 4450 *pos++ = 3; /* IE length */ 4451 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 4452 freq = csa_settings->chandef.chan->center_freq; 4453 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 4454 *pos++ = csa_settings->count; /* count */ 4455 4456 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 4457 enum nl80211_channel_type ch_type; 4458 4459 skb_put(skb, 3); 4460 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 4461 *pos++ = 1; /* IE length */ 4462 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 4463 if (ch_type == NL80211_CHAN_HT40PLUS) 4464 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 4465 else 4466 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 4467 } 4468 4469 if (ieee80211_vif_is_mesh(&sdata->vif)) { 4470 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 4471 4472 skb_put(skb, 8); 4473 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 4474 *pos++ = 6; /* IE length */ 4475 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 4476 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 4477 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 4478 *pos++ |= csa_settings->block_tx ? 4479 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 4480 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 4481 pos += 2; 4482 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 4483 pos += 2; 4484 } 4485 4486 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 4487 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 4488 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 4489 skb_put(skb, 5); 4490 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 4491 } 4492 4493 ieee80211_tx_skb(sdata, skb); 4494 return 0; 4495 } 4496 4497 static bool 4498 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 4499 { 4500 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 4501 int skip; 4502 4503 if (end > 0) 4504 return false; 4505 4506 /* One shot NOA */ 4507 if (data->count[i] == 1) 4508 return false; 4509 4510 if (data->desc[i].interval == 0) 4511 return false; 4512 4513 /* End time is in the past, check for repetitions */ 4514 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 4515 if (data->count[i] < 255) { 4516 if (data->count[i] <= skip) { 4517 data->count[i] = 0; 4518 return false; 4519 } 4520 4521 data->count[i] -= skip; 4522 } 4523 4524 data->desc[i].start += skip * data->desc[i].interval; 4525 4526 return true; 4527 } 4528 4529 static bool 4530 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 4531 s32 *offset) 4532 { 4533 bool ret = false; 4534 int i; 4535 4536 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4537 s32 cur; 4538 4539 if (!data->count[i]) 4540 continue; 4541 4542 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 4543 ret = true; 4544 4545 cur = data->desc[i].start - tsf; 4546 if (cur > *offset) 4547 continue; 4548 4549 cur = data->desc[i].start + data->desc[i].duration - tsf; 4550 if (cur > *offset) 4551 *offset = cur; 4552 } 4553 4554 return ret; 4555 } 4556 4557 static u32 4558 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 4559 { 4560 s32 offset = 0; 4561 int tries = 0; 4562 /* 4563 * arbitrary limit, used to avoid infinite loops when combined NoA 4564 * descriptors cover the full time period. 4565 */ 4566 int max_tries = 5; 4567 4568 ieee80211_extend_absent_time(data, tsf, &offset); 4569 do { 4570 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 4571 break; 4572 4573 tries++; 4574 } while (tries < max_tries); 4575 4576 return offset; 4577 } 4578 4579 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 4580 { 4581 u32 next_offset = BIT(31) - 1; 4582 int i; 4583 4584 data->absent = 0; 4585 data->has_next_tsf = false; 4586 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4587 s32 start; 4588 4589 if (!data->count[i]) 4590 continue; 4591 4592 ieee80211_extend_noa_desc(data, tsf, i); 4593 start = data->desc[i].start - tsf; 4594 if (start <= 0) 4595 data->absent |= BIT(i); 4596 4597 if (next_offset > start) 4598 next_offset = start; 4599 4600 data->has_next_tsf = true; 4601 } 4602 4603 if (data->absent) 4604 next_offset = ieee80211_get_noa_absent_time(data, tsf); 4605 4606 data->next_tsf = tsf + next_offset; 4607 } 4608 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 4609 4610 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 4611 struct ieee80211_noa_data *data, u32 tsf) 4612 { 4613 int ret = 0; 4614 int i; 4615 4616 memset(data, 0, sizeof(*data)); 4617 4618 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4619 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 4620 4621 if (!desc->count || !desc->duration) 4622 continue; 4623 4624 data->count[i] = desc->count; 4625 data->desc[i].start = le32_to_cpu(desc->start_time); 4626 data->desc[i].duration = le32_to_cpu(desc->duration); 4627 data->desc[i].interval = le32_to_cpu(desc->interval); 4628 4629 if (data->count[i] > 1 && 4630 data->desc[i].interval < data->desc[i].duration) 4631 continue; 4632 4633 ieee80211_extend_noa_desc(data, tsf, i); 4634 ret++; 4635 } 4636 4637 if (ret) 4638 ieee80211_update_p2p_noa(data, tsf); 4639 4640 return ret; 4641 } 4642 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 4643 4644 void ieee80211_recalc_dtim(struct ieee80211_local *local, 4645 struct ieee80211_sub_if_data *sdata) 4646 { 4647 u64 tsf = drv_get_tsf(local, sdata); 4648 u64 dtim_count = 0; 4649 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 4650 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 4651 struct ps_data *ps; 4652 u8 bcns_from_dtim; 4653 4654 if (tsf == -1ULL || !beacon_int || !dtim_period) 4655 return; 4656 4657 if (sdata->vif.type == NL80211_IFTYPE_AP || 4658 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 4659 if (!sdata->bss) 4660 return; 4661 4662 ps = &sdata->bss->ps; 4663 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 4664 ps = &sdata->u.mesh.ps; 4665 } else { 4666 return; 4667 } 4668 4669 /* 4670 * actually finds last dtim_count, mac80211 will update in 4671 * __beacon_add_tim(). 4672 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 4673 */ 4674 do_div(tsf, beacon_int); 4675 bcns_from_dtim = do_div(tsf, dtim_period); 4676 /* just had a DTIM */ 4677 if (!bcns_from_dtim) 4678 dtim_count = 0; 4679 else 4680 dtim_count = dtim_period - bcns_from_dtim; 4681 4682 ps->dtim_count = dtim_count; 4683 } 4684 4685 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 4686 struct ieee80211_chanctx *ctx) 4687 { 4688 struct ieee80211_link_data *link; 4689 u8 radar_detect = 0; 4690 4691 lockdep_assert_held(&local->chanctx_mtx); 4692 4693 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 4694 return 0; 4695 4696 list_for_each_entry(link, &ctx->reserved_links, reserved_chanctx_list) 4697 if (link->reserved_radar_required) 4698 radar_detect |= BIT(link->reserved_chandef.width); 4699 4700 /* 4701 * An in-place reservation context should not have any assigned vifs 4702 * until it replaces the other context. 4703 */ 4704 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 4705 !list_empty(&ctx->assigned_links)); 4706 4707 list_for_each_entry(link, &ctx->assigned_links, assigned_chanctx_list) { 4708 if (!link->radar_required) 4709 continue; 4710 4711 radar_detect |= 4712 BIT(link->conf->chandef.width); 4713 } 4714 4715 return radar_detect; 4716 } 4717 4718 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 4719 const struct cfg80211_chan_def *chandef, 4720 enum ieee80211_chanctx_mode chanmode, 4721 u8 radar_detect) 4722 { 4723 struct ieee80211_local *local = sdata->local; 4724 struct ieee80211_sub_if_data *sdata_iter; 4725 enum nl80211_iftype iftype = sdata->wdev.iftype; 4726 struct ieee80211_chanctx *ctx; 4727 int total = 1; 4728 struct iface_combination_params params = { 4729 .radar_detect = radar_detect, 4730 }; 4731 4732 lockdep_assert_held(&local->chanctx_mtx); 4733 4734 if (WARN_ON(hweight32(radar_detect) > 1)) 4735 return -EINVAL; 4736 4737 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4738 !chandef->chan)) 4739 return -EINVAL; 4740 4741 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 4742 return -EINVAL; 4743 4744 if (sdata->vif.type == NL80211_IFTYPE_AP || 4745 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 4746 /* 4747 * always passing this is harmless, since it'll be the 4748 * same value that cfg80211 finds if it finds the same 4749 * interface ... and that's always allowed 4750 */ 4751 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 4752 } 4753 4754 /* Always allow software iftypes */ 4755 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 4756 if (radar_detect) 4757 return -EINVAL; 4758 return 0; 4759 } 4760 4761 if (chandef) 4762 params.num_different_channels = 1; 4763 4764 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 4765 params.iftype_num[iftype] = 1; 4766 4767 list_for_each_entry(ctx, &local->chanctx_list, list) { 4768 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4769 continue; 4770 params.radar_detect |= 4771 ieee80211_chanctx_radar_detect(local, ctx); 4772 if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) { 4773 params.num_different_channels++; 4774 continue; 4775 } 4776 if (chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4777 cfg80211_chandef_compatible(chandef, 4778 &ctx->conf.def)) 4779 continue; 4780 params.num_different_channels++; 4781 } 4782 4783 list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) { 4784 struct wireless_dev *wdev_iter; 4785 4786 wdev_iter = &sdata_iter->wdev; 4787 4788 if (sdata_iter == sdata || 4789 !ieee80211_sdata_running(sdata_iter) || 4790 cfg80211_iftype_allowed(local->hw.wiphy, 4791 wdev_iter->iftype, 0, 1)) 4792 continue; 4793 4794 params.iftype_num[wdev_iter->iftype]++; 4795 total++; 4796 } 4797 4798 if (total == 1 && !params.radar_detect) 4799 return 0; 4800 4801 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4802 } 4803 4804 static void 4805 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4806 void *data) 4807 { 4808 u32 *max_num_different_channels = data; 4809 4810 *max_num_different_channels = max(*max_num_different_channels, 4811 c->num_different_channels); 4812 } 4813 4814 int ieee80211_max_num_channels(struct ieee80211_local *local) 4815 { 4816 struct ieee80211_sub_if_data *sdata; 4817 struct ieee80211_chanctx *ctx; 4818 u32 max_num_different_channels = 1; 4819 int err; 4820 struct iface_combination_params params = {0}; 4821 4822 lockdep_assert_held(&local->chanctx_mtx); 4823 4824 list_for_each_entry(ctx, &local->chanctx_list, list) { 4825 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4826 continue; 4827 4828 params.num_different_channels++; 4829 4830 params.radar_detect |= 4831 ieee80211_chanctx_radar_detect(local, ctx); 4832 } 4833 4834 list_for_each_entry_rcu(sdata, &local->interfaces, list) 4835 params.iftype_num[sdata->wdev.iftype]++; 4836 4837 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4838 ieee80211_iter_max_chans, 4839 &max_num_different_channels); 4840 if (err < 0) 4841 return err; 4842 4843 return max_num_different_channels; 4844 } 4845 4846 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, 4847 struct ieee80211_sta_s1g_cap *caps, 4848 struct sk_buff *skb) 4849 { 4850 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 4851 struct ieee80211_s1g_cap s1g_capab; 4852 u8 *pos; 4853 int i; 4854 4855 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 4856 return; 4857 4858 if (!caps->s1g) 4859 return; 4860 4861 memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); 4862 memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); 4863 4864 /* override the capability info */ 4865 for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { 4866 u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; 4867 4868 s1g_capab.capab_info[i] &= ~mask; 4869 s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; 4870 } 4871 4872 /* then MCS and NSS set */ 4873 for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { 4874 u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; 4875 4876 s1g_capab.supp_mcs_nss[i] &= ~mask; 4877 s1g_capab.supp_mcs_nss[i] |= 4878 ifmgd->s1g_capa.supp_mcs_nss[i] & mask; 4879 } 4880 4881 pos = skb_put(skb, 2 + sizeof(s1g_capab)); 4882 *pos++ = WLAN_EID_S1G_CAPABILITIES; 4883 *pos++ = sizeof(s1g_capab); 4884 4885 memcpy(pos, &s1g_capab, sizeof(s1g_capab)); 4886 } 4887 4888 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, 4889 struct sk_buff *skb) 4890 { 4891 u8 *pos = skb_put(skb, 3); 4892 4893 *pos++ = WLAN_EID_AID_REQUEST; 4894 *pos++ = 1; 4895 *pos++ = 0; 4896 } 4897 4898 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 4899 { 4900 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 4901 *buf++ = 7; /* len */ 4902 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 4903 *buf++ = 0x50; 4904 *buf++ = 0xf2; 4905 *buf++ = 2; /* WME */ 4906 *buf++ = 0; /* WME info */ 4907 *buf++ = 1; /* WME ver */ 4908 *buf++ = qosinfo; /* U-APSD no in use */ 4909 4910 return buf; 4911 } 4912 4913 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 4914 unsigned long *frame_cnt, 4915 unsigned long *byte_cnt) 4916 { 4917 struct txq_info *txqi = to_txq_info(txq); 4918 u32 frag_cnt = 0, frag_bytes = 0; 4919 struct sk_buff *skb; 4920 4921 skb_queue_walk(&txqi->frags, skb) { 4922 frag_cnt++; 4923 frag_bytes += skb->len; 4924 } 4925 4926 if (frame_cnt) 4927 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 4928 4929 if (byte_cnt) 4930 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 4931 } 4932 EXPORT_SYMBOL(ieee80211_txq_get_depth); 4933 4934 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 4935 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 4936 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 4937 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 4938 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 4939 }; 4940 4941 u16 ieee80211_encode_usf(int listen_interval) 4942 { 4943 static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; 4944 u16 ui, usf = 0; 4945 4946 /* find greatest USF */ 4947 while (usf < IEEE80211_MAX_USF) { 4948 if (listen_interval % listen_int_usf[usf + 1]) 4949 break; 4950 usf += 1; 4951 } 4952 ui = listen_interval / listen_int_usf[usf]; 4953 4954 /* error if there is a remainder. Should've been checked by user */ 4955 WARN_ON_ONCE(ui > IEEE80211_MAX_UI); 4956 listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | 4957 FIELD_PREP(LISTEN_INT_UI, ui); 4958 4959 return (u16) listen_interval; 4960 } 4961 4962 u8 ieee80211_ie_len_eht_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 4963 { 4964 const struct ieee80211_sta_he_cap *he_cap; 4965 const struct ieee80211_sta_eht_cap *eht_cap; 4966 struct ieee80211_supported_band *sband; 4967 bool is_ap; 4968 u8 n; 4969 4970 sband = ieee80211_get_sband(sdata); 4971 if (!sband) 4972 return 0; 4973 4974 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 4975 eht_cap = ieee80211_get_eht_iftype_cap(sband, iftype); 4976 if (!he_cap || !eht_cap) 4977 return 0; 4978 4979 is_ap = iftype == NL80211_IFTYPE_AP || 4980 iftype == NL80211_IFTYPE_P2P_GO; 4981 4982 n = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4983 &eht_cap->eht_cap_elem, 4984 is_ap); 4985 return 2 + 1 + 4986 sizeof(he_cap->he_cap_elem) + n + 4987 ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4988 eht_cap->eht_cap_elem.phy_cap_info); 4989 return 0; 4990 } 4991 4992 u8 *ieee80211_ie_build_eht_cap(u8 *pos, 4993 const struct ieee80211_sta_he_cap *he_cap, 4994 const struct ieee80211_sta_eht_cap *eht_cap, 4995 u8 *end, 4996 bool for_ap) 4997 { 4998 u8 mcs_nss_len, ppet_len; 4999 u8 ie_len; 5000 u8 *orig_pos = pos; 5001 5002 /* Make sure we have place for the IE */ 5003 if (!he_cap || !eht_cap) 5004 return orig_pos; 5005 5006 mcs_nss_len = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 5007 &eht_cap->eht_cap_elem, 5008 for_ap); 5009 ppet_len = ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 5010 eht_cap->eht_cap_elem.phy_cap_info); 5011 5012 ie_len = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + mcs_nss_len + ppet_len; 5013 if ((end - pos) < ie_len) 5014 return orig_pos; 5015 5016 *pos++ = WLAN_EID_EXTENSION; 5017 *pos++ = ie_len - 2; 5018 *pos++ = WLAN_EID_EXT_EHT_CAPABILITY; 5019 5020 /* Fixed data */ 5021 memcpy(pos, &eht_cap->eht_cap_elem, sizeof(eht_cap->eht_cap_elem)); 5022 pos += sizeof(eht_cap->eht_cap_elem); 5023 5024 memcpy(pos, &eht_cap->eht_mcs_nss_supp, mcs_nss_len); 5025 pos += mcs_nss_len; 5026 5027 if (ppet_len) { 5028 memcpy(pos, &eht_cap->eht_ppe_thres, ppet_len); 5029 pos += ppet_len; 5030 } 5031 5032 return pos; 5033 } 5034 5035 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos) 5036 { 5037 unsigned int elem_len; 5038 5039 if (!len_pos) 5040 return; 5041 5042 elem_len = skb->data + skb->len - len_pos - 1; 5043 5044 while (elem_len > 255) { 5045 /* this one is 255 */ 5046 *len_pos = 255; 5047 /* remaining data gets smaller */ 5048 elem_len -= 255; 5049 /* make space for the fragment ID/len in SKB */ 5050 skb_put(skb, 2); 5051 /* shift back the remaining data to place fragment ID/len */ 5052 memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len); 5053 /* place the fragment ID */ 5054 len_pos += 255 + 1; 5055 *len_pos = WLAN_EID_FRAGMENT; 5056 /* and point to fragment length to update later */ 5057 len_pos++; 5058 } 5059 5060 *len_pos = elem_len; 5061 } 5062