1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright (C) 2015 Intel Deutschland GmbH 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * utilities for mac80211 14 */ 15 16 #include <net/mac80211.h> 17 #include <linux/netdevice.h> 18 #include <linux/export.h> 19 #include <linux/types.h> 20 #include <linux/slab.h> 21 #include <linux/skbuff.h> 22 #include <linux/etherdevice.h> 23 #include <linux/if_arp.h> 24 #include <linux/bitmap.h> 25 #include <linux/crc32.h> 26 #include <net/net_namespace.h> 27 #include <net/cfg80211.h> 28 #include <net/rtnetlink.h> 29 30 #include "ieee80211_i.h" 31 #include "driver-ops.h" 32 #include "rate.h" 33 #include "mesh.h" 34 #include "wme.h" 35 #include "led.h" 36 #include "wep.h" 37 38 /* privid for wiphys to determine whether they belong to us or not */ 39 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 40 41 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 42 { 43 struct ieee80211_local *local; 44 BUG_ON(!wiphy); 45 46 local = wiphy_priv(wiphy); 47 return &local->hw; 48 } 49 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 50 51 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 52 { 53 struct sk_buff *skb; 54 struct ieee80211_hdr *hdr; 55 56 skb_queue_walk(&tx->skbs, skb) { 57 hdr = (struct ieee80211_hdr *) skb->data; 58 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 59 } 60 } 61 62 int ieee80211_frame_duration(enum ieee80211_band band, size_t len, 63 int rate, int erp, int short_preamble, 64 int shift) 65 { 66 int dur; 67 68 /* calculate duration (in microseconds, rounded up to next higher 69 * integer if it includes a fractional microsecond) to send frame of 70 * len bytes (does not include FCS) at the given rate. Duration will 71 * also include SIFS. 72 * 73 * rate is in 100 kbps, so divident is multiplied by 10 in the 74 * DIV_ROUND_UP() operations. 75 * 76 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and 77 * is assumed to be 0 otherwise. 78 */ 79 80 if (band == IEEE80211_BAND_5GHZ || erp) { 81 /* 82 * OFDM: 83 * 84 * N_DBPS = DATARATE x 4 85 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 86 * (16 = SIGNAL time, 6 = tail bits) 87 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 88 * 89 * T_SYM = 4 usec 90 * 802.11a - 18.5.2: aSIFSTime = 16 usec 91 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 92 * signal ext = 6 usec 93 */ 94 dur = 16; /* SIFS + signal ext */ 95 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 96 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 97 98 /* IEEE 802.11-2012 18.3.2.4: all values above are: 99 * * times 4 for 5 MHz 100 * * times 2 for 10 MHz 101 */ 102 dur *= 1 << shift; 103 104 /* rates should already consider the channel bandwidth, 105 * don't apply divisor again. 106 */ 107 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 108 4 * rate); /* T_SYM x N_SYM */ 109 } else { 110 /* 111 * 802.11b or 802.11g with 802.11b compatibility: 112 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 113 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 114 * 115 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 116 * aSIFSTime = 10 usec 117 * aPreambleLength = 144 usec or 72 usec with short preamble 118 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 119 */ 120 dur = 10; /* aSIFSTime = 10 usec */ 121 dur += short_preamble ? (72 + 24) : (144 + 48); 122 123 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 124 } 125 126 return dur; 127 } 128 129 /* Exported duration function for driver use */ 130 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 131 struct ieee80211_vif *vif, 132 enum ieee80211_band band, 133 size_t frame_len, 134 struct ieee80211_rate *rate) 135 { 136 struct ieee80211_sub_if_data *sdata; 137 u16 dur; 138 int erp, shift = 0; 139 bool short_preamble = false; 140 141 erp = 0; 142 if (vif) { 143 sdata = vif_to_sdata(vif); 144 short_preamble = sdata->vif.bss_conf.use_short_preamble; 145 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 146 erp = rate->flags & IEEE80211_RATE_ERP_G; 147 shift = ieee80211_vif_get_shift(vif); 148 } 149 150 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 151 short_preamble, shift); 152 153 return cpu_to_le16(dur); 154 } 155 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 156 157 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 158 struct ieee80211_vif *vif, size_t frame_len, 159 const struct ieee80211_tx_info *frame_txctl) 160 { 161 struct ieee80211_local *local = hw_to_local(hw); 162 struct ieee80211_rate *rate; 163 struct ieee80211_sub_if_data *sdata; 164 bool short_preamble; 165 int erp, shift = 0, bitrate; 166 u16 dur; 167 struct ieee80211_supported_band *sband; 168 169 sband = local->hw.wiphy->bands[frame_txctl->band]; 170 171 short_preamble = false; 172 173 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 174 175 erp = 0; 176 if (vif) { 177 sdata = vif_to_sdata(vif); 178 short_preamble = sdata->vif.bss_conf.use_short_preamble; 179 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 180 erp = rate->flags & IEEE80211_RATE_ERP_G; 181 shift = ieee80211_vif_get_shift(vif); 182 } 183 184 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 185 186 /* CTS duration */ 187 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 188 erp, short_preamble, shift); 189 /* Data frame duration */ 190 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 191 erp, short_preamble, shift); 192 /* ACK duration */ 193 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 194 erp, short_preamble, shift); 195 196 return cpu_to_le16(dur); 197 } 198 EXPORT_SYMBOL(ieee80211_rts_duration); 199 200 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 201 struct ieee80211_vif *vif, 202 size_t frame_len, 203 const struct ieee80211_tx_info *frame_txctl) 204 { 205 struct ieee80211_local *local = hw_to_local(hw); 206 struct ieee80211_rate *rate; 207 struct ieee80211_sub_if_data *sdata; 208 bool short_preamble; 209 int erp, shift = 0, bitrate; 210 u16 dur; 211 struct ieee80211_supported_band *sband; 212 213 sband = local->hw.wiphy->bands[frame_txctl->band]; 214 215 short_preamble = false; 216 217 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 218 erp = 0; 219 if (vif) { 220 sdata = vif_to_sdata(vif); 221 short_preamble = sdata->vif.bss_conf.use_short_preamble; 222 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 223 erp = rate->flags & IEEE80211_RATE_ERP_G; 224 shift = ieee80211_vif_get_shift(vif); 225 } 226 227 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 228 229 /* Data frame duration */ 230 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 231 erp, short_preamble, shift); 232 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 233 /* ACK duration */ 234 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 235 erp, short_preamble, shift); 236 } 237 238 return cpu_to_le16(dur); 239 } 240 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 241 242 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue) 243 { 244 struct ieee80211_sub_if_data *sdata; 245 int n_acs = IEEE80211_NUM_ACS; 246 247 if (local->hw.queues < IEEE80211_NUM_ACS) 248 n_acs = 1; 249 250 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 251 int ac; 252 253 if (!sdata->dev) 254 continue; 255 256 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE && 257 local->queue_stop_reasons[sdata->vif.cab_queue] != 0) 258 continue; 259 260 for (ac = 0; ac < n_acs; ac++) { 261 int ac_queue = sdata->vif.hw_queue[ac]; 262 263 if (local->ops->wake_tx_queue && 264 (atomic_read(&sdata->txqs_len[ac]) > 265 local->hw.txq_ac_max_pending)) 266 continue; 267 268 if (ac_queue == queue || 269 (sdata->vif.cab_queue == queue && 270 local->queue_stop_reasons[ac_queue] == 0 && 271 skb_queue_empty(&local->pending[ac_queue]))) 272 netif_wake_subqueue(sdata->dev, ac); 273 } 274 } 275 } 276 277 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 278 enum queue_stop_reason reason, 279 bool refcounted) 280 { 281 struct ieee80211_local *local = hw_to_local(hw); 282 283 trace_wake_queue(local, queue, reason); 284 285 if (WARN_ON(queue >= hw->queues)) 286 return; 287 288 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 289 return; 290 291 if (!refcounted) { 292 local->q_stop_reasons[queue][reason] = 0; 293 } else { 294 local->q_stop_reasons[queue][reason]--; 295 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 296 local->q_stop_reasons[queue][reason] = 0; 297 } 298 299 if (local->q_stop_reasons[queue][reason] == 0) 300 __clear_bit(reason, &local->queue_stop_reasons[queue]); 301 302 if (local->queue_stop_reasons[queue] != 0) 303 /* someone still has this queue stopped */ 304 return; 305 306 if (skb_queue_empty(&local->pending[queue])) { 307 rcu_read_lock(); 308 ieee80211_propagate_queue_wake(local, queue); 309 rcu_read_unlock(); 310 } else 311 tasklet_schedule(&local->tx_pending_tasklet); 312 } 313 314 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 315 enum queue_stop_reason reason, 316 bool refcounted) 317 { 318 struct ieee80211_local *local = hw_to_local(hw); 319 unsigned long flags; 320 321 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 322 __ieee80211_wake_queue(hw, queue, reason, refcounted); 323 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 324 } 325 326 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 327 { 328 ieee80211_wake_queue_by_reason(hw, queue, 329 IEEE80211_QUEUE_STOP_REASON_DRIVER, 330 false); 331 } 332 EXPORT_SYMBOL(ieee80211_wake_queue); 333 334 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 335 enum queue_stop_reason reason, 336 bool refcounted) 337 { 338 struct ieee80211_local *local = hw_to_local(hw); 339 struct ieee80211_sub_if_data *sdata; 340 int n_acs = IEEE80211_NUM_ACS; 341 342 trace_stop_queue(local, queue, reason); 343 344 if (WARN_ON(queue >= hw->queues)) 345 return; 346 347 if (!refcounted) 348 local->q_stop_reasons[queue][reason] = 1; 349 else 350 local->q_stop_reasons[queue][reason]++; 351 352 if (__test_and_set_bit(reason, &local->queue_stop_reasons[queue])) 353 return; 354 355 if (local->hw.queues < IEEE80211_NUM_ACS) 356 n_acs = 1; 357 358 rcu_read_lock(); 359 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 360 int ac; 361 362 if (!sdata->dev) 363 continue; 364 365 for (ac = 0; ac < n_acs; ac++) { 366 if (sdata->vif.hw_queue[ac] == queue || 367 sdata->vif.cab_queue == queue) 368 netif_stop_subqueue(sdata->dev, ac); 369 } 370 } 371 rcu_read_unlock(); 372 } 373 374 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 375 enum queue_stop_reason reason, 376 bool refcounted) 377 { 378 struct ieee80211_local *local = hw_to_local(hw); 379 unsigned long flags; 380 381 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 382 __ieee80211_stop_queue(hw, queue, reason, refcounted); 383 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 384 } 385 386 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 387 { 388 ieee80211_stop_queue_by_reason(hw, queue, 389 IEEE80211_QUEUE_STOP_REASON_DRIVER, 390 false); 391 } 392 EXPORT_SYMBOL(ieee80211_stop_queue); 393 394 void ieee80211_add_pending_skb(struct ieee80211_local *local, 395 struct sk_buff *skb) 396 { 397 struct ieee80211_hw *hw = &local->hw; 398 unsigned long flags; 399 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 400 int queue = info->hw_queue; 401 402 if (WARN_ON(!info->control.vif)) { 403 ieee80211_free_txskb(&local->hw, skb); 404 return; 405 } 406 407 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 408 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 409 false); 410 __skb_queue_tail(&local->pending[queue], skb); 411 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 412 false); 413 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 414 } 415 416 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 417 struct sk_buff_head *skbs) 418 { 419 struct ieee80211_hw *hw = &local->hw; 420 struct sk_buff *skb; 421 unsigned long flags; 422 int queue, i; 423 424 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 425 while ((skb = skb_dequeue(skbs))) { 426 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 427 428 if (WARN_ON(!info->control.vif)) { 429 ieee80211_free_txskb(&local->hw, skb); 430 continue; 431 } 432 433 queue = info->hw_queue; 434 435 __ieee80211_stop_queue(hw, queue, 436 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 437 false); 438 439 __skb_queue_tail(&local->pending[queue], skb); 440 } 441 442 for (i = 0; i < hw->queues; i++) 443 __ieee80211_wake_queue(hw, i, 444 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 445 false); 446 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 447 } 448 449 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 450 unsigned long queues, 451 enum queue_stop_reason reason, 452 bool refcounted) 453 { 454 struct ieee80211_local *local = hw_to_local(hw); 455 unsigned long flags; 456 int i; 457 458 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 459 460 for_each_set_bit(i, &queues, hw->queues) 461 __ieee80211_stop_queue(hw, i, reason, refcounted); 462 463 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 464 } 465 466 void ieee80211_stop_queues(struct ieee80211_hw *hw) 467 { 468 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 469 IEEE80211_QUEUE_STOP_REASON_DRIVER, 470 false); 471 } 472 EXPORT_SYMBOL(ieee80211_stop_queues); 473 474 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 475 { 476 struct ieee80211_local *local = hw_to_local(hw); 477 unsigned long flags; 478 int ret; 479 480 if (WARN_ON(queue >= hw->queues)) 481 return true; 482 483 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 484 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 485 &local->queue_stop_reasons[queue]); 486 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 487 return ret; 488 } 489 EXPORT_SYMBOL(ieee80211_queue_stopped); 490 491 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 492 unsigned long queues, 493 enum queue_stop_reason reason, 494 bool refcounted) 495 { 496 struct ieee80211_local *local = hw_to_local(hw); 497 unsigned long flags; 498 int i; 499 500 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 501 502 for_each_set_bit(i, &queues, hw->queues) 503 __ieee80211_wake_queue(hw, i, reason, refcounted); 504 505 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 506 } 507 508 void ieee80211_wake_queues(struct ieee80211_hw *hw) 509 { 510 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 511 IEEE80211_QUEUE_STOP_REASON_DRIVER, 512 false); 513 } 514 EXPORT_SYMBOL(ieee80211_wake_queues); 515 516 static unsigned int 517 ieee80211_get_vif_queues(struct ieee80211_local *local, 518 struct ieee80211_sub_if_data *sdata) 519 { 520 unsigned int queues; 521 522 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 523 int ac; 524 525 queues = 0; 526 527 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 528 queues |= BIT(sdata->vif.hw_queue[ac]); 529 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 530 queues |= BIT(sdata->vif.cab_queue); 531 } else { 532 /* all queues */ 533 queues = BIT(local->hw.queues) - 1; 534 } 535 536 return queues; 537 } 538 539 void __ieee80211_flush_queues(struct ieee80211_local *local, 540 struct ieee80211_sub_if_data *sdata, 541 unsigned int queues, bool drop) 542 { 543 if (!local->ops->flush) 544 return; 545 546 /* 547 * If no queue was set, or if the HW doesn't support 548 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 549 */ 550 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 551 queues = ieee80211_get_vif_queues(local, sdata); 552 553 ieee80211_stop_queues_by_reason(&local->hw, queues, 554 IEEE80211_QUEUE_STOP_REASON_FLUSH, 555 false); 556 557 drv_flush(local, sdata, queues, drop); 558 559 ieee80211_wake_queues_by_reason(&local->hw, queues, 560 IEEE80211_QUEUE_STOP_REASON_FLUSH, 561 false); 562 } 563 564 void ieee80211_flush_queues(struct ieee80211_local *local, 565 struct ieee80211_sub_if_data *sdata, bool drop) 566 { 567 __ieee80211_flush_queues(local, sdata, 0, drop); 568 } 569 570 void ieee80211_stop_vif_queues(struct ieee80211_local *local, 571 struct ieee80211_sub_if_data *sdata, 572 enum queue_stop_reason reason) 573 { 574 ieee80211_stop_queues_by_reason(&local->hw, 575 ieee80211_get_vif_queues(local, sdata), 576 reason, true); 577 } 578 579 void ieee80211_wake_vif_queues(struct ieee80211_local *local, 580 struct ieee80211_sub_if_data *sdata, 581 enum queue_stop_reason reason) 582 { 583 ieee80211_wake_queues_by_reason(&local->hw, 584 ieee80211_get_vif_queues(local, sdata), 585 reason, true); 586 } 587 588 static void __iterate_interfaces(struct ieee80211_local *local, 589 u32 iter_flags, 590 void (*iterator)(void *data, u8 *mac, 591 struct ieee80211_vif *vif), 592 void *data) 593 { 594 struct ieee80211_sub_if_data *sdata; 595 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 596 597 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 598 switch (sdata->vif.type) { 599 case NL80211_IFTYPE_MONITOR: 600 if (!(sdata->u.mntr_flags & MONITOR_FLAG_ACTIVE)) 601 continue; 602 break; 603 case NL80211_IFTYPE_AP_VLAN: 604 continue; 605 default: 606 break; 607 } 608 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 609 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 610 continue; 611 if (ieee80211_sdata_running(sdata) || !active_only) 612 iterator(data, sdata->vif.addr, 613 &sdata->vif); 614 } 615 616 sdata = rcu_dereference_check(local->monitor_sdata, 617 lockdep_is_held(&local->iflist_mtx) || 618 lockdep_rtnl_is_held()); 619 if (sdata && 620 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 621 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 622 iterator(data, sdata->vif.addr, &sdata->vif); 623 } 624 625 void ieee80211_iterate_interfaces( 626 struct ieee80211_hw *hw, u32 iter_flags, 627 void (*iterator)(void *data, u8 *mac, 628 struct ieee80211_vif *vif), 629 void *data) 630 { 631 struct ieee80211_local *local = hw_to_local(hw); 632 633 mutex_lock(&local->iflist_mtx); 634 __iterate_interfaces(local, iter_flags, iterator, data); 635 mutex_unlock(&local->iflist_mtx); 636 } 637 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 638 639 void ieee80211_iterate_active_interfaces_atomic( 640 struct ieee80211_hw *hw, u32 iter_flags, 641 void (*iterator)(void *data, u8 *mac, 642 struct ieee80211_vif *vif), 643 void *data) 644 { 645 struct ieee80211_local *local = hw_to_local(hw); 646 647 rcu_read_lock(); 648 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 649 iterator, data); 650 rcu_read_unlock(); 651 } 652 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 653 654 void ieee80211_iterate_active_interfaces_rtnl( 655 struct ieee80211_hw *hw, u32 iter_flags, 656 void (*iterator)(void *data, u8 *mac, 657 struct ieee80211_vif *vif), 658 void *data) 659 { 660 struct ieee80211_local *local = hw_to_local(hw); 661 662 ASSERT_RTNL(); 663 664 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 665 iterator, data); 666 } 667 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_rtnl); 668 669 static void __iterate_stations(struct ieee80211_local *local, 670 void (*iterator)(void *data, 671 struct ieee80211_sta *sta), 672 void *data) 673 { 674 struct sta_info *sta; 675 676 list_for_each_entry_rcu(sta, &local->sta_list, list) { 677 if (!sta->uploaded) 678 continue; 679 680 iterator(data, &sta->sta); 681 } 682 } 683 684 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 685 void (*iterator)(void *data, 686 struct ieee80211_sta *sta), 687 void *data) 688 { 689 struct ieee80211_local *local = hw_to_local(hw); 690 691 rcu_read_lock(); 692 __iterate_stations(local, iterator, data); 693 rcu_read_unlock(); 694 } 695 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 696 697 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 698 { 699 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 700 701 if (!ieee80211_sdata_running(sdata) || 702 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 703 return NULL; 704 return &sdata->vif; 705 } 706 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 707 708 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 709 { 710 struct ieee80211_sub_if_data *sdata; 711 712 if (!vif) 713 return NULL; 714 715 sdata = vif_to_sdata(vif); 716 717 if (!ieee80211_sdata_running(sdata) || 718 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 719 return NULL; 720 721 return &sdata->wdev; 722 } 723 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 724 725 /* 726 * Nothing should have been stuffed into the workqueue during 727 * the suspend->resume cycle. Since we can't check each caller 728 * of this function if we are already quiescing / suspended, 729 * check here and don't WARN since this can actually happen when 730 * the rx path (for example) is racing against __ieee80211_suspend 731 * and suspending / quiescing was set after the rx path checked 732 * them. 733 */ 734 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 735 { 736 if (local->quiescing || (local->suspended && !local->resuming)) { 737 pr_warn("queueing ieee80211 work while going to suspend\n"); 738 return false; 739 } 740 741 return true; 742 } 743 744 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 745 { 746 struct ieee80211_local *local = hw_to_local(hw); 747 748 if (!ieee80211_can_queue_work(local)) 749 return; 750 751 queue_work(local->workqueue, work); 752 } 753 EXPORT_SYMBOL(ieee80211_queue_work); 754 755 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 756 struct delayed_work *dwork, 757 unsigned long delay) 758 { 759 struct ieee80211_local *local = hw_to_local(hw); 760 761 if (!ieee80211_can_queue_work(local)) 762 return; 763 764 queue_delayed_work(local->workqueue, dwork, delay); 765 } 766 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 767 768 u32 ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, 769 struct ieee802_11_elems *elems, 770 u64 filter, u32 crc) 771 { 772 size_t left = len; 773 const u8 *pos = start; 774 bool calc_crc = filter != 0; 775 DECLARE_BITMAP(seen_elems, 256); 776 const u8 *ie; 777 778 bitmap_zero(seen_elems, 256); 779 memset(elems, 0, sizeof(*elems)); 780 elems->ie_start = start; 781 elems->total_len = len; 782 783 while (left >= 2) { 784 u8 id, elen; 785 bool elem_parse_failed; 786 787 id = *pos++; 788 elen = *pos++; 789 left -= 2; 790 791 if (elen > left) { 792 elems->parse_error = true; 793 break; 794 } 795 796 switch (id) { 797 case WLAN_EID_SSID: 798 case WLAN_EID_SUPP_RATES: 799 case WLAN_EID_FH_PARAMS: 800 case WLAN_EID_DS_PARAMS: 801 case WLAN_EID_CF_PARAMS: 802 case WLAN_EID_TIM: 803 case WLAN_EID_IBSS_PARAMS: 804 case WLAN_EID_CHALLENGE: 805 case WLAN_EID_RSN: 806 case WLAN_EID_ERP_INFO: 807 case WLAN_EID_EXT_SUPP_RATES: 808 case WLAN_EID_HT_CAPABILITY: 809 case WLAN_EID_HT_OPERATION: 810 case WLAN_EID_VHT_CAPABILITY: 811 case WLAN_EID_VHT_OPERATION: 812 case WLAN_EID_MESH_ID: 813 case WLAN_EID_MESH_CONFIG: 814 case WLAN_EID_PEER_MGMT: 815 case WLAN_EID_PREQ: 816 case WLAN_EID_PREP: 817 case WLAN_EID_PERR: 818 case WLAN_EID_RANN: 819 case WLAN_EID_CHANNEL_SWITCH: 820 case WLAN_EID_EXT_CHANSWITCH_ANN: 821 case WLAN_EID_COUNTRY: 822 case WLAN_EID_PWR_CONSTRAINT: 823 case WLAN_EID_TIMEOUT_INTERVAL: 824 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 825 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 826 case WLAN_EID_CHAN_SWITCH_PARAM: 827 case WLAN_EID_EXT_CAPABILITY: 828 case WLAN_EID_CHAN_SWITCH_TIMING: 829 case WLAN_EID_LINK_ID: 830 /* 831 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible 832 * that if the content gets bigger it might be needed more than once 833 */ 834 if (test_bit(id, seen_elems)) { 835 elems->parse_error = true; 836 left -= elen; 837 pos += elen; 838 continue; 839 } 840 break; 841 } 842 843 if (calc_crc && id < 64 && (filter & (1ULL << id))) 844 crc = crc32_be(crc, pos - 2, elen + 2); 845 846 elem_parse_failed = false; 847 848 switch (id) { 849 case WLAN_EID_LINK_ID: 850 if (elen + 2 != sizeof(struct ieee80211_tdls_lnkie)) { 851 elem_parse_failed = true; 852 break; 853 } 854 elems->lnk_id = (void *)(pos - 2); 855 break; 856 case WLAN_EID_CHAN_SWITCH_TIMING: 857 if (elen != sizeof(struct ieee80211_ch_switch_timing)) { 858 elem_parse_failed = true; 859 break; 860 } 861 elems->ch_sw_timing = (void *)pos; 862 break; 863 case WLAN_EID_EXT_CAPABILITY: 864 elems->ext_capab = pos; 865 elems->ext_capab_len = elen; 866 break; 867 case WLAN_EID_SSID: 868 elems->ssid = pos; 869 elems->ssid_len = elen; 870 break; 871 case WLAN_EID_SUPP_RATES: 872 elems->supp_rates = pos; 873 elems->supp_rates_len = elen; 874 break; 875 case WLAN_EID_DS_PARAMS: 876 if (elen >= 1) 877 elems->ds_params = pos; 878 else 879 elem_parse_failed = true; 880 break; 881 case WLAN_EID_TIM: 882 if (elen >= sizeof(struct ieee80211_tim_ie)) { 883 elems->tim = (void *)pos; 884 elems->tim_len = elen; 885 } else 886 elem_parse_failed = true; 887 break; 888 case WLAN_EID_CHALLENGE: 889 elems->challenge = pos; 890 elems->challenge_len = elen; 891 break; 892 case WLAN_EID_VENDOR_SPECIFIC: 893 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && 894 pos[2] == 0xf2) { 895 /* Microsoft OUI (00:50:F2) */ 896 897 if (calc_crc) 898 crc = crc32_be(crc, pos - 2, elen + 2); 899 900 if (elen >= 5 && pos[3] == 2) { 901 /* OUI Type 2 - WMM IE */ 902 if (pos[4] == 0) { 903 elems->wmm_info = pos; 904 elems->wmm_info_len = elen; 905 } else if (pos[4] == 1) { 906 elems->wmm_param = pos; 907 elems->wmm_param_len = elen; 908 } 909 } 910 } 911 break; 912 case WLAN_EID_RSN: 913 elems->rsn = pos; 914 elems->rsn_len = elen; 915 break; 916 case WLAN_EID_ERP_INFO: 917 if (elen >= 1) 918 elems->erp_info = pos; 919 else 920 elem_parse_failed = true; 921 break; 922 case WLAN_EID_EXT_SUPP_RATES: 923 elems->ext_supp_rates = pos; 924 elems->ext_supp_rates_len = elen; 925 break; 926 case WLAN_EID_HT_CAPABILITY: 927 if (elen >= sizeof(struct ieee80211_ht_cap)) 928 elems->ht_cap_elem = (void *)pos; 929 else 930 elem_parse_failed = true; 931 break; 932 case WLAN_EID_HT_OPERATION: 933 if (elen >= sizeof(struct ieee80211_ht_operation)) 934 elems->ht_operation = (void *)pos; 935 else 936 elem_parse_failed = true; 937 break; 938 case WLAN_EID_VHT_CAPABILITY: 939 if (elen >= sizeof(struct ieee80211_vht_cap)) 940 elems->vht_cap_elem = (void *)pos; 941 else 942 elem_parse_failed = true; 943 break; 944 case WLAN_EID_VHT_OPERATION: 945 if (elen >= sizeof(struct ieee80211_vht_operation)) 946 elems->vht_operation = (void *)pos; 947 else 948 elem_parse_failed = true; 949 break; 950 case WLAN_EID_OPMODE_NOTIF: 951 if (elen > 0) 952 elems->opmode_notif = pos; 953 else 954 elem_parse_failed = true; 955 break; 956 case WLAN_EID_MESH_ID: 957 elems->mesh_id = pos; 958 elems->mesh_id_len = elen; 959 break; 960 case WLAN_EID_MESH_CONFIG: 961 if (elen >= sizeof(struct ieee80211_meshconf_ie)) 962 elems->mesh_config = (void *)pos; 963 else 964 elem_parse_failed = true; 965 break; 966 case WLAN_EID_PEER_MGMT: 967 elems->peering = pos; 968 elems->peering_len = elen; 969 break; 970 case WLAN_EID_MESH_AWAKE_WINDOW: 971 if (elen >= 2) 972 elems->awake_window = (void *)pos; 973 break; 974 case WLAN_EID_PREQ: 975 elems->preq = pos; 976 elems->preq_len = elen; 977 break; 978 case WLAN_EID_PREP: 979 elems->prep = pos; 980 elems->prep_len = elen; 981 break; 982 case WLAN_EID_PERR: 983 elems->perr = pos; 984 elems->perr_len = elen; 985 break; 986 case WLAN_EID_RANN: 987 if (elen >= sizeof(struct ieee80211_rann_ie)) 988 elems->rann = (void *)pos; 989 else 990 elem_parse_failed = true; 991 break; 992 case WLAN_EID_CHANNEL_SWITCH: 993 if (elen != sizeof(struct ieee80211_channel_sw_ie)) { 994 elem_parse_failed = true; 995 break; 996 } 997 elems->ch_switch_ie = (void *)pos; 998 break; 999 case WLAN_EID_EXT_CHANSWITCH_ANN: 1000 if (elen != sizeof(struct ieee80211_ext_chansw_ie)) { 1001 elem_parse_failed = true; 1002 break; 1003 } 1004 elems->ext_chansw_ie = (void *)pos; 1005 break; 1006 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1007 if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) { 1008 elem_parse_failed = true; 1009 break; 1010 } 1011 elems->sec_chan_offs = (void *)pos; 1012 break; 1013 case WLAN_EID_CHAN_SWITCH_PARAM: 1014 if (elen != 1015 sizeof(*elems->mesh_chansw_params_ie)) { 1016 elem_parse_failed = true; 1017 break; 1018 } 1019 elems->mesh_chansw_params_ie = (void *)pos; 1020 break; 1021 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1022 if (!action || 1023 elen != sizeof(*elems->wide_bw_chansw_ie)) { 1024 elem_parse_failed = true; 1025 break; 1026 } 1027 elems->wide_bw_chansw_ie = (void *)pos; 1028 break; 1029 case WLAN_EID_CHANNEL_SWITCH_WRAPPER: 1030 if (action) { 1031 elem_parse_failed = true; 1032 break; 1033 } 1034 /* 1035 * This is a bit tricky, but as we only care about 1036 * the wide bandwidth channel switch element, so 1037 * just parse it out manually. 1038 */ 1039 ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH, 1040 pos, elen); 1041 if (ie) { 1042 if (ie[1] == sizeof(*elems->wide_bw_chansw_ie)) 1043 elems->wide_bw_chansw_ie = 1044 (void *)(ie + 2); 1045 else 1046 elem_parse_failed = true; 1047 } 1048 break; 1049 case WLAN_EID_COUNTRY: 1050 elems->country_elem = pos; 1051 elems->country_elem_len = elen; 1052 break; 1053 case WLAN_EID_PWR_CONSTRAINT: 1054 if (elen != 1) { 1055 elem_parse_failed = true; 1056 break; 1057 } 1058 elems->pwr_constr_elem = pos; 1059 break; 1060 case WLAN_EID_CISCO_VENDOR_SPECIFIC: 1061 /* Lots of different options exist, but we only care 1062 * about the Dynamic Transmit Power Control element. 1063 * First check for the Cisco OUI, then for the DTPC 1064 * tag (0x00). 1065 */ 1066 if (elen < 4) { 1067 elem_parse_failed = true; 1068 break; 1069 } 1070 1071 if (pos[0] != 0x00 || pos[1] != 0x40 || 1072 pos[2] != 0x96 || pos[3] != 0x00) 1073 break; 1074 1075 if (elen != 6) { 1076 elem_parse_failed = true; 1077 break; 1078 } 1079 1080 if (calc_crc) 1081 crc = crc32_be(crc, pos - 2, elen + 2); 1082 1083 elems->cisco_dtpc_elem = pos; 1084 break; 1085 case WLAN_EID_TIMEOUT_INTERVAL: 1086 if (elen >= sizeof(struct ieee80211_timeout_interval_ie)) 1087 elems->timeout_int = (void *)pos; 1088 else 1089 elem_parse_failed = true; 1090 break; 1091 default: 1092 break; 1093 } 1094 1095 if (elem_parse_failed) 1096 elems->parse_error = true; 1097 else 1098 __set_bit(id, seen_elems); 1099 1100 left -= elen; 1101 pos += elen; 1102 } 1103 1104 if (left != 0) 1105 elems->parse_error = true; 1106 1107 return crc; 1108 } 1109 1110 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata, 1111 bool bss_notify, bool enable_qos) 1112 { 1113 struct ieee80211_local *local = sdata->local; 1114 struct ieee80211_tx_queue_params qparam; 1115 struct ieee80211_chanctx_conf *chanctx_conf; 1116 int ac; 1117 bool use_11b; 1118 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 1119 int aCWmin, aCWmax; 1120 1121 if (!local->ops->conf_tx) 1122 return; 1123 1124 if (local->hw.queues < IEEE80211_NUM_ACS) 1125 return; 1126 1127 memset(&qparam, 0, sizeof(qparam)); 1128 1129 rcu_read_lock(); 1130 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1131 use_11b = (chanctx_conf && 1132 chanctx_conf->def.chan->band == IEEE80211_BAND_2GHZ) && 1133 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE); 1134 rcu_read_unlock(); 1135 1136 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 1137 1138 /* Set defaults according to 802.11-2007 Table 7-37 */ 1139 aCWmax = 1023; 1140 if (use_11b) 1141 aCWmin = 31; 1142 else 1143 aCWmin = 15; 1144 1145 /* Confiure old 802.11b/g medium access rules. */ 1146 qparam.cw_max = aCWmax; 1147 qparam.cw_min = aCWmin; 1148 qparam.txop = 0; 1149 qparam.aifs = 2; 1150 1151 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1152 /* Update if QoS is enabled. */ 1153 if (enable_qos) { 1154 switch (ac) { 1155 case IEEE80211_AC_BK: 1156 qparam.cw_max = aCWmax; 1157 qparam.cw_min = aCWmin; 1158 qparam.txop = 0; 1159 if (is_ocb) 1160 qparam.aifs = 9; 1161 else 1162 qparam.aifs = 7; 1163 break; 1164 /* never happens but let's not leave undefined */ 1165 default: 1166 case IEEE80211_AC_BE: 1167 qparam.cw_max = aCWmax; 1168 qparam.cw_min = aCWmin; 1169 qparam.txop = 0; 1170 if (is_ocb) 1171 qparam.aifs = 6; 1172 else 1173 qparam.aifs = 3; 1174 break; 1175 case IEEE80211_AC_VI: 1176 qparam.cw_max = aCWmin; 1177 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1178 if (is_ocb) 1179 qparam.txop = 0; 1180 else if (use_11b) 1181 qparam.txop = 6016/32; 1182 else 1183 qparam.txop = 3008/32; 1184 1185 if (is_ocb) 1186 qparam.aifs = 3; 1187 else 1188 qparam.aifs = 2; 1189 break; 1190 case IEEE80211_AC_VO: 1191 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1192 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1193 if (is_ocb) 1194 qparam.txop = 0; 1195 else if (use_11b) 1196 qparam.txop = 3264/32; 1197 else 1198 qparam.txop = 1504/32; 1199 qparam.aifs = 2; 1200 break; 1201 } 1202 } 1203 1204 qparam.uapsd = false; 1205 1206 sdata->tx_conf[ac] = qparam; 1207 drv_conf_tx(local, sdata, ac, &qparam); 1208 } 1209 1210 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1211 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE) { 1212 sdata->vif.bss_conf.qos = enable_qos; 1213 if (bss_notify) 1214 ieee80211_bss_info_change_notify(sdata, 1215 BSS_CHANGED_QOS); 1216 } 1217 } 1218 1219 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1220 u16 transaction, u16 auth_alg, u16 status, 1221 const u8 *extra, size_t extra_len, const u8 *da, 1222 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1223 u32 tx_flags) 1224 { 1225 struct ieee80211_local *local = sdata->local; 1226 struct sk_buff *skb; 1227 struct ieee80211_mgmt *mgmt; 1228 int err; 1229 1230 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1231 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1232 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN); 1233 if (!skb) 1234 return; 1235 1236 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1237 1238 mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6); 1239 memset(mgmt, 0, 24 + 6); 1240 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1241 IEEE80211_STYPE_AUTH); 1242 memcpy(mgmt->da, da, ETH_ALEN); 1243 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1244 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1245 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1246 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1247 mgmt->u.auth.status_code = cpu_to_le16(status); 1248 if (extra) 1249 memcpy(skb_put(skb, extra_len), extra, extra_len); 1250 1251 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1252 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1253 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1254 WARN_ON(err); 1255 } 1256 1257 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1258 tx_flags; 1259 ieee80211_tx_skb(sdata, skb); 1260 } 1261 1262 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1263 const u8 *bssid, u16 stype, u16 reason, 1264 bool send_frame, u8 *frame_buf) 1265 { 1266 struct ieee80211_local *local = sdata->local; 1267 struct sk_buff *skb; 1268 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1269 1270 /* build frame */ 1271 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1272 mgmt->duration = 0; /* initialize only */ 1273 mgmt->seq_ctrl = 0; /* initialize only */ 1274 memcpy(mgmt->da, bssid, ETH_ALEN); 1275 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1276 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1277 /* u.deauth.reason_code == u.disassoc.reason_code */ 1278 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1279 1280 if (send_frame) { 1281 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1282 IEEE80211_DEAUTH_FRAME_LEN); 1283 if (!skb) 1284 return; 1285 1286 skb_reserve(skb, local->hw.extra_tx_headroom); 1287 1288 /* copy in frame */ 1289 memcpy(skb_put(skb, IEEE80211_DEAUTH_FRAME_LEN), 1290 mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1291 1292 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1293 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1294 IEEE80211_SKB_CB(skb)->flags |= 1295 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1296 1297 ieee80211_tx_skb(sdata, skb); 1298 } 1299 } 1300 1301 static int ieee80211_build_preq_ies_band(struct ieee80211_local *local, 1302 u8 *buffer, size_t buffer_len, 1303 const u8 *ie, size_t ie_len, 1304 enum ieee80211_band band, 1305 u32 rate_mask, 1306 struct cfg80211_chan_def *chandef, 1307 size_t *offset) 1308 { 1309 struct ieee80211_supported_band *sband; 1310 u8 *pos = buffer, *end = buffer + buffer_len; 1311 size_t noffset; 1312 int supp_rates_len, i; 1313 u8 rates[32]; 1314 int num_rates; 1315 int ext_rates_len; 1316 int shift; 1317 u32 rate_flags; 1318 bool have_80mhz = false; 1319 1320 *offset = 0; 1321 1322 sband = local->hw.wiphy->bands[band]; 1323 if (WARN_ON_ONCE(!sband)) 1324 return 0; 1325 1326 rate_flags = ieee80211_chandef_rate_flags(chandef); 1327 shift = ieee80211_chandef_get_shift(chandef); 1328 1329 num_rates = 0; 1330 for (i = 0; i < sband->n_bitrates; i++) { 1331 if ((BIT(i) & rate_mask) == 0) 1332 continue; /* skip rate */ 1333 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 1334 continue; 1335 1336 rates[num_rates++] = 1337 (u8) DIV_ROUND_UP(sband->bitrates[i].bitrate, 1338 (1 << shift) * 5); 1339 } 1340 1341 supp_rates_len = min_t(int, num_rates, 8); 1342 1343 if (end - pos < 2 + supp_rates_len) 1344 goto out_err; 1345 *pos++ = WLAN_EID_SUPP_RATES; 1346 *pos++ = supp_rates_len; 1347 memcpy(pos, rates, supp_rates_len); 1348 pos += supp_rates_len; 1349 1350 /* insert "request information" if in custom IEs */ 1351 if (ie && ie_len) { 1352 static const u8 before_extrates[] = { 1353 WLAN_EID_SSID, 1354 WLAN_EID_SUPP_RATES, 1355 WLAN_EID_REQUEST, 1356 }; 1357 noffset = ieee80211_ie_split(ie, ie_len, 1358 before_extrates, 1359 ARRAY_SIZE(before_extrates), 1360 *offset); 1361 if (end - pos < noffset - *offset) 1362 goto out_err; 1363 memcpy(pos, ie + *offset, noffset - *offset); 1364 pos += noffset - *offset; 1365 *offset = noffset; 1366 } 1367 1368 ext_rates_len = num_rates - supp_rates_len; 1369 if (ext_rates_len > 0) { 1370 if (end - pos < 2 + ext_rates_len) 1371 goto out_err; 1372 *pos++ = WLAN_EID_EXT_SUPP_RATES; 1373 *pos++ = ext_rates_len; 1374 memcpy(pos, rates + supp_rates_len, ext_rates_len); 1375 pos += ext_rates_len; 1376 } 1377 1378 if (chandef->chan && sband->band == IEEE80211_BAND_2GHZ) { 1379 if (end - pos < 3) 1380 goto out_err; 1381 *pos++ = WLAN_EID_DS_PARAMS; 1382 *pos++ = 1; 1383 *pos++ = ieee80211_frequency_to_channel( 1384 chandef->chan->center_freq); 1385 } 1386 1387 /* insert custom IEs that go before HT */ 1388 if (ie && ie_len) { 1389 static const u8 before_ht[] = { 1390 WLAN_EID_SSID, 1391 WLAN_EID_SUPP_RATES, 1392 WLAN_EID_REQUEST, 1393 WLAN_EID_EXT_SUPP_RATES, 1394 WLAN_EID_DS_PARAMS, 1395 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1396 }; 1397 noffset = ieee80211_ie_split(ie, ie_len, 1398 before_ht, ARRAY_SIZE(before_ht), 1399 *offset); 1400 if (end - pos < noffset - *offset) 1401 goto out_err; 1402 memcpy(pos, ie + *offset, noffset - *offset); 1403 pos += noffset - *offset; 1404 *offset = noffset; 1405 } 1406 1407 if (sband->ht_cap.ht_supported) { 1408 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap)) 1409 goto out_err; 1410 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 1411 sband->ht_cap.cap); 1412 } 1413 1414 /* 1415 * If adding more here, adjust code in main.c 1416 * that calculates local->scan_ies_len. 1417 */ 1418 1419 /* insert custom IEs that go before VHT */ 1420 if (ie && ie_len) { 1421 static const u8 before_vht[] = { 1422 WLAN_EID_SSID, 1423 WLAN_EID_SUPP_RATES, 1424 WLAN_EID_REQUEST, 1425 WLAN_EID_EXT_SUPP_RATES, 1426 WLAN_EID_DS_PARAMS, 1427 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1428 WLAN_EID_HT_CAPABILITY, 1429 WLAN_EID_BSS_COEX_2040, 1430 WLAN_EID_EXT_CAPABILITY, 1431 WLAN_EID_SSID_LIST, 1432 WLAN_EID_CHANNEL_USAGE, 1433 WLAN_EID_INTERWORKING, 1434 /* mesh ID can't happen here */ 1435 /* 60 GHz can't happen here right now */ 1436 }; 1437 noffset = ieee80211_ie_split(ie, ie_len, 1438 before_vht, ARRAY_SIZE(before_vht), 1439 *offset); 1440 if (end - pos < noffset - *offset) 1441 goto out_err; 1442 memcpy(pos, ie + *offset, noffset - *offset); 1443 pos += noffset - *offset; 1444 *offset = noffset; 1445 } 1446 1447 /* Check if any channel in this sband supports at least 80 MHz */ 1448 for (i = 0; i < sband->n_channels; i++) { 1449 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 1450 IEEE80211_CHAN_NO_80MHZ)) 1451 continue; 1452 1453 have_80mhz = true; 1454 break; 1455 } 1456 1457 if (sband->vht_cap.vht_supported && have_80mhz) { 1458 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap)) 1459 goto out_err; 1460 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 1461 sband->vht_cap.cap); 1462 } 1463 1464 return pos - buffer; 1465 out_err: 1466 WARN_ONCE(1, "not enough space for preq IEs\n"); 1467 return pos - buffer; 1468 } 1469 1470 int ieee80211_build_preq_ies(struct ieee80211_local *local, u8 *buffer, 1471 size_t buffer_len, 1472 struct ieee80211_scan_ies *ie_desc, 1473 const u8 *ie, size_t ie_len, 1474 u8 bands_used, u32 *rate_masks, 1475 struct cfg80211_chan_def *chandef) 1476 { 1477 size_t pos = 0, old_pos = 0, custom_ie_offset = 0; 1478 int i; 1479 1480 memset(ie_desc, 0, sizeof(*ie_desc)); 1481 1482 for (i = 0; i < IEEE80211_NUM_BANDS; i++) { 1483 if (bands_used & BIT(i)) { 1484 pos += ieee80211_build_preq_ies_band(local, 1485 buffer + pos, 1486 buffer_len - pos, 1487 ie, ie_len, i, 1488 rate_masks[i], 1489 chandef, 1490 &custom_ie_offset); 1491 ie_desc->ies[i] = buffer + old_pos; 1492 ie_desc->len[i] = pos - old_pos; 1493 old_pos = pos; 1494 } 1495 } 1496 1497 /* add any remaining custom IEs */ 1498 if (ie && ie_len) { 1499 if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset, 1500 "not enough space for preq custom IEs\n")) 1501 return pos; 1502 memcpy(buffer + pos, ie + custom_ie_offset, 1503 ie_len - custom_ie_offset); 1504 ie_desc->common_ies = buffer + pos; 1505 ie_desc->common_ie_len = ie_len - custom_ie_offset; 1506 pos += ie_len - custom_ie_offset; 1507 } 1508 1509 return pos; 1510 }; 1511 1512 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 1513 const u8 *src, const u8 *dst, 1514 u32 ratemask, 1515 struct ieee80211_channel *chan, 1516 const u8 *ssid, size_t ssid_len, 1517 const u8 *ie, size_t ie_len, 1518 bool directed) 1519 { 1520 struct ieee80211_local *local = sdata->local; 1521 struct cfg80211_chan_def chandef; 1522 struct sk_buff *skb; 1523 struct ieee80211_mgmt *mgmt; 1524 int ies_len; 1525 u32 rate_masks[IEEE80211_NUM_BANDS] = {}; 1526 struct ieee80211_scan_ies dummy_ie_desc; 1527 1528 /* 1529 * Do not send DS Channel parameter for directed probe requests 1530 * in order to maximize the chance that we get a response. Some 1531 * badly-behaved APs don't respond when this parameter is included. 1532 */ 1533 chandef.width = sdata->vif.bss_conf.chandef.width; 1534 if (directed) 1535 chandef.chan = NULL; 1536 else 1537 chandef.chan = chan; 1538 1539 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 1540 100 + ie_len); 1541 if (!skb) 1542 return NULL; 1543 1544 rate_masks[chan->band] = ratemask; 1545 ies_len = ieee80211_build_preq_ies(local, skb_tail_pointer(skb), 1546 skb_tailroom(skb), &dummy_ie_desc, 1547 ie, ie_len, BIT(chan->band), 1548 rate_masks, &chandef); 1549 skb_put(skb, ies_len); 1550 1551 if (dst) { 1552 mgmt = (struct ieee80211_mgmt *) skb->data; 1553 memcpy(mgmt->da, dst, ETH_ALEN); 1554 memcpy(mgmt->bssid, dst, ETH_ALEN); 1555 } 1556 1557 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 1558 1559 return skb; 1560 } 1561 1562 void ieee80211_send_probe_req(struct ieee80211_sub_if_data *sdata, 1563 const u8 *src, const u8 *dst, 1564 const u8 *ssid, size_t ssid_len, 1565 const u8 *ie, size_t ie_len, 1566 u32 ratemask, bool directed, u32 tx_flags, 1567 struct ieee80211_channel *channel, bool scan) 1568 { 1569 struct sk_buff *skb; 1570 1571 skb = ieee80211_build_probe_req(sdata, src, dst, ratemask, channel, 1572 ssid, ssid_len, 1573 ie, ie_len, directed); 1574 if (skb) { 1575 IEEE80211_SKB_CB(skb)->flags |= tx_flags; 1576 if (scan) 1577 ieee80211_tx_skb_tid_band(sdata, skb, 7, channel->band); 1578 else 1579 ieee80211_tx_skb(sdata, skb); 1580 } 1581 } 1582 1583 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 1584 struct ieee802_11_elems *elems, 1585 enum ieee80211_band band, u32 *basic_rates) 1586 { 1587 struct ieee80211_supported_band *sband; 1588 size_t num_rates; 1589 u32 supp_rates, rate_flags; 1590 int i, j, shift; 1591 sband = sdata->local->hw.wiphy->bands[band]; 1592 1593 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 1594 shift = ieee80211_vif_get_shift(&sdata->vif); 1595 1596 if (WARN_ON(!sband)) 1597 return 1; 1598 1599 num_rates = sband->n_bitrates; 1600 supp_rates = 0; 1601 for (i = 0; i < elems->supp_rates_len + 1602 elems->ext_supp_rates_len; i++) { 1603 u8 rate = 0; 1604 int own_rate; 1605 bool is_basic; 1606 if (i < elems->supp_rates_len) 1607 rate = elems->supp_rates[i]; 1608 else if (elems->ext_supp_rates) 1609 rate = elems->ext_supp_rates 1610 [i - elems->supp_rates_len]; 1611 own_rate = 5 * (rate & 0x7f); 1612 is_basic = !!(rate & 0x80); 1613 1614 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 1615 continue; 1616 1617 for (j = 0; j < num_rates; j++) { 1618 int brate; 1619 if ((rate_flags & sband->bitrates[j].flags) 1620 != rate_flags) 1621 continue; 1622 1623 brate = DIV_ROUND_UP(sband->bitrates[j].bitrate, 1624 1 << shift); 1625 1626 if (brate == own_rate) { 1627 supp_rates |= BIT(j); 1628 if (basic_rates && is_basic) 1629 *basic_rates |= BIT(j); 1630 } 1631 } 1632 } 1633 return supp_rates; 1634 } 1635 1636 void ieee80211_stop_device(struct ieee80211_local *local) 1637 { 1638 ieee80211_led_radio(local, false); 1639 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 1640 1641 cancel_work_sync(&local->reconfig_filter); 1642 1643 flush_workqueue(local->workqueue); 1644 drv_stop(local); 1645 } 1646 1647 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 1648 bool aborted) 1649 { 1650 /* It's possible that we don't handle the scan completion in 1651 * time during suspend, so if it's still marked as completed 1652 * here, queue the work and flush it to clean things up. 1653 * Instead of calling the worker function directly here, we 1654 * really queue it to avoid potential races with other flows 1655 * scheduling the same work. 1656 */ 1657 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 1658 /* If coming from reconfiguration failure, abort the scan so 1659 * we don't attempt to continue a partial HW scan - which is 1660 * possible otherwise if (e.g.) the 2.4 GHz portion was the 1661 * completed scan, and a 5 GHz portion is still pending. 1662 */ 1663 if (aborted) 1664 set_bit(SCAN_ABORTED, &local->scanning); 1665 ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0); 1666 flush_delayed_work(&local->scan_work); 1667 } 1668 } 1669 1670 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 1671 { 1672 struct ieee80211_sub_if_data *sdata; 1673 struct ieee80211_chanctx *ctx; 1674 1675 /* 1676 * We get here if during resume the device can't be restarted properly. 1677 * We might also get here if this happens during HW reset, which is a 1678 * slightly different situation and we need to drop all connections in 1679 * the latter case. 1680 * 1681 * Ask cfg80211 to turn off all interfaces, this will result in more 1682 * warnings but at least we'll then get into a clean stopped state. 1683 */ 1684 1685 local->resuming = false; 1686 local->suspended = false; 1687 local->in_reconfig = false; 1688 1689 ieee80211_flush_completed_scan(local, true); 1690 1691 /* scheduled scan clearly can't be running any more, but tell 1692 * cfg80211 and clear local state 1693 */ 1694 ieee80211_sched_scan_end(local); 1695 1696 list_for_each_entry(sdata, &local->interfaces, list) 1697 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 1698 1699 /* Mark channel contexts as not being in the driver any more to avoid 1700 * removing them from the driver during the shutdown process... 1701 */ 1702 mutex_lock(&local->chanctx_mtx); 1703 list_for_each_entry(ctx, &local->chanctx_list, list) 1704 ctx->driver_present = false; 1705 mutex_unlock(&local->chanctx_mtx); 1706 1707 cfg80211_shutdown_all_interfaces(local->hw.wiphy); 1708 } 1709 1710 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 1711 struct ieee80211_sub_if_data *sdata) 1712 { 1713 struct ieee80211_chanctx_conf *conf; 1714 struct ieee80211_chanctx *ctx; 1715 1716 if (!local->use_chanctx) 1717 return; 1718 1719 mutex_lock(&local->chanctx_mtx); 1720 conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 1721 lockdep_is_held(&local->chanctx_mtx)); 1722 if (conf) { 1723 ctx = container_of(conf, struct ieee80211_chanctx, conf); 1724 drv_assign_vif_chanctx(local, sdata, ctx); 1725 } 1726 mutex_unlock(&local->chanctx_mtx); 1727 } 1728 1729 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 1730 { 1731 struct ieee80211_local *local = sdata->local; 1732 struct sta_info *sta; 1733 1734 /* add STAs back */ 1735 mutex_lock(&local->sta_mtx); 1736 list_for_each_entry(sta, &local->sta_list, list) { 1737 enum ieee80211_sta_state state; 1738 1739 if (!sta->uploaded || sta->sdata != sdata) 1740 continue; 1741 1742 for (state = IEEE80211_STA_NOTEXIST; 1743 state < sta->sta_state; state++) 1744 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 1745 state + 1)); 1746 } 1747 mutex_unlock(&local->sta_mtx); 1748 } 1749 1750 int ieee80211_reconfig(struct ieee80211_local *local) 1751 { 1752 struct ieee80211_hw *hw = &local->hw; 1753 struct ieee80211_sub_if_data *sdata; 1754 struct ieee80211_chanctx *ctx; 1755 struct sta_info *sta; 1756 int res, i; 1757 bool reconfig_due_to_wowlan = false; 1758 struct ieee80211_sub_if_data *sched_scan_sdata; 1759 struct cfg80211_sched_scan_request *sched_scan_req; 1760 bool sched_scan_stopped = false; 1761 bool suspended = local->suspended; 1762 1763 /* nothing to do if HW shouldn't run */ 1764 if (!local->open_count) 1765 goto wake_up; 1766 1767 #ifdef CONFIG_PM 1768 if (suspended) 1769 local->resuming = true; 1770 1771 if (local->wowlan) { 1772 /* 1773 * In the wowlan case, both mac80211 and the device 1774 * are functional when the resume op is called, so 1775 * clear local->suspended so the device could operate 1776 * normally (e.g. pass rx frames). 1777 */ 1778 local->suspended = false; 1779 res = drv_resume(local); 1780 local->wowlan = false; 1781 if (res < 0) { 1782 local->resuming = false; 1783 return res; 1784 } 1785 if (res == 0) 1786 goto wake_up; 1787 WARN_ON(res > 1); 1788 /* 1789 * res is 1, which means the driver requested 1790 * to go through a regular reset on wakeup. 1791 * restore local->suspended in this case. 1792 */ 1793 reconfig_due_to_wowlan = true; 1794 local->suspended = true; 1795 } 1796 #endif 1797 1798 /* 1799 * In case of hw_restart during suspend (without wowlan), 1800 * cancel restart work, as we are reconfiguring the device 1801 * anyway. 1802 * Note that restart_work is scheduled on a frozen workqueue, 1803 * so we can't deadlock in this case. 1804 */ 1805 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 1806 cancel_work_sync(&local->restart_work); 1807 1808 local->started = false; 1809 1810 /* 1811 * Upon resume hardware can sometimes be goofy due to 1812 * various platform / driver / bus issues, so restarting 1813 * the device may at times not work immediately. Propagate 1814 * the error. 1815 */ 1816 res = drv_start(local); 1817 if (res) { 1818 if (suspended) 1819 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 1820 else 1821 WARN(1, "Hardware became unavailable during restart.\n"); 1822 ieee80211_handle_reconfig_failure(local); 1823 return res; 1824 } 1825 1826 /* setup fragmentation threshold */ 1827 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 1828 1829 /* setup RTS threshold */ 1830 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 1831 1832 /* reset coverage class */ 1833 drv_set_coverage_class(local, hw->wiphy->coverage_class); 1834 1835 ieee80211_led_radio(local, true); 1836 ieee80211_mod_tpt_led_trig(local, 1837 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 1838 1839 /* add interfaces */ 1840 sdata = rtnl_dereference(local->monitor_sdata); 1841 if (sdata) { 1842 /* in HW restart it exists already */ 1843 WARN_ON(local->resuming); 1844 res = drv_add_interface(local, sdata); 1845 if (WARN_ON(res)) { 1846 RCU_INIT_POINTER(local->monitor_sdata, NULL); 1847 synchronize_net(); 1848 kfree(sdata); 1849 } 1850 } 1851 1852 list_for_each_entry(sdata, &local->interfaces, list) { 1853 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1854 sdata->vif.type != NL80211_IFTYPE_MONITOR && 1855 ieee80211_sdata_running(sdata)) { 1856 res = drv_add_interface(local, sdata); 1857 if (WARN_ON(res)) 1858 break; 1859 } 1860 } 1861 1862 /* If adding any of the interfaces failed above, roll back and 1863 * report failure. 1864 */ 1865 if (res) { 1866 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 1867 list) 1868 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1869 sdata->vif.type != NL80211_IFTYPE_MONITOR && 1870 ieee80211_sdata_running(sdata)) 1871 drv_remove_interface(local, sdata); 1872 ieee80211_handle_reconfig_failure(local); 1873 return res; 1874 } 1875 1876 /* add channel contexts */ 1877 if (local->use_chanctx) { 1878 mutex_lock(&local->chanctx_mtx); 1879 list_for_each_entry(ctx, &local->chanctx_list, list) 1880 if (ctx->replace_state != 1881 IEEE80211_CHANCTX_REPLACES_OTHER) 1882 WARN_ON(drv_add_chanctx(local, ctx)); 1883 mutex_unlock(&local->chanctx_mtx); 1884 1885 sdata = rtnl_dereference(local->monitor_sdata); 1886 if (sdata && ieee80211_sdata_running(sdata)) 1887 ieee80211_assign_chanctx(local, sdata); 1888 } 1889 1890 /* reconfigure hardware */ 1891 ieee80211_hw_config(local, ~0); 1892 1893 ieee80211_configure_filter(local); 1894 1895 /* Finally also reconfigure all the BSS information */ 1896 list_for_each_entry(sdata, &local->interfaces, list) { 1897 u32 changed; 1898 1899 if (!ieee80211_sdata_running(sdata)) 1900 continue; 1901 1902 ieee80211_assign_chanctx(local, sdata); 1903 1904 switch (sdata->vif.type) { 1905 case NL80211_IFTYPE_AP_VLAN: 1906 case NL80211_IFTYPE_MONITOR: 1907 break; 1908 default: 1909 ieee80211_reconfig_stations(sdata); 1910 /* fall through */ 1911 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 1912 for (i = 0; i < IEEE80211_NUM_ACS; i++) 1913 drv_conf_tx(local, sdata, i, 1914 &sdata->tx_conf[i]); 1915 break; 1916 } 1917 1918 /* common change flags for all interface types */ 1919 changed = BSS_CHANGED_ERP_CTS_PROT | 1920 BSS_CHANGED_ERP_PREAMBLE | 1921 BSS_CHANGED_ERP_SLOT | 1922 BSS_CHANGED_HT | 1923 BSS_CHANGED_BASIC_RATES | 1924 BSS_CHANGED_BEACON_INT | 1925 BSS_CHANGED_BSSID | 1926 BSS_CHANGED_CQM | 1927 BSS_CHANGED_QOS | 1928 BSS_CHANGED_IDLE | 1929 BSS_CHANGED_TXPOWER; 1930 1931 switch (sdata->vif.type) { 1932 case NL80211_IFTYPE_STATION: 1933 changed |= BSS_CHANGED_ASSOC | 1934 BSS_CHANGED_ARP_FILTER | 1935 BSS_CHANGED_PS; 1936 1937 /* Re-send beacon info report to the driver */ 1938 if (sdata->u.mgd.have_beacon) 1939 changed |= BSS_CHANGED_BEACON_INFO; 1940 1941 sdata_lock(sdata); 1942 ieee80211_bss_info_change_notify(sdata, changed); 1943 sdata_unlock(sdata); 1944 break; 1945 case NL80211_IFTYPE_OCB: 1946 changed |= BSS_CHANGED_OCB; 1947 ieee80211_bss_info_change_notify(sdata, changed); 1948 break; 1949 case NL80211_IFTYPE_ADHOC: 1950 changed |= BSS_CHANGED_IBSS; 1951 /* fall through */ 1952 case NL80211_IFTYPE_AP: 1953 changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS; 1954 1955 if (sdata->vif.type == NL80211_IFTYPE_AP) { 1956 changed |= BSS_CHANGED_AP_PROBE_RESP; 1957 1958 if (rcu_access_pointer(sdata->u.ap.beacon)) 1959 drv_start_ap(local, sdata); 1960 } 1961 1962 /* fall through */ 1963 case NL80211_IFTYPE_MESH_POINT: 1964 if (sdata->vif.bss_conf.enable_beacon) { 1965 changed |= BSS_CHANGED_BEACON | 1966 BSS_CHANGED_BEACON_ENABLED; 1967 ieee80211_bss_info_change_notify(sdata, changed); 1968 } 1969 break; 1970 case NL80211_IFTYPE_WDS: 1971 case NL80211_IFTYPE_AP_VLAN: 1972 case NL80211_IFTYPE_MONITOR: 1973 case NL80211_IFTYPE_P2P_DEVICE: 1974 /* nothing to do */ 1975 break; 1976 case NL80211_IFTYPE_UNSPECIFIED: 1977 case NUM_NL80211_IFTYPES: 1978 case NL80211_IFTYPE_P2P_CLIENT: 1979 case NL80211_IFTYPE_P2P_GO: 1980 WARN_ON(1); 1981 break; 1982 } 1983 } 1984 1985 ieee80211_recalc_ps(local); 1986 1987 /* 1988 * The sta might be in psm against the ap (e.g. because 1989 * this was the state before a hw restart), so we 1990 * explicitly send a null packet in order to make sure 1991 * it'll sync against the ap (and get out of psm). 1992 */ 1993 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 1994 list_for_each_entry(sdata, &local->interfaces, list) { 1995 if (sdata->vif.type != NL80211_IFTYPE_STATION) 1996 continue; 1997 if (!sdata->u.mgd.associated) 1998 continue; 1999 2000 ieee80211_send_nullfunc(local, sdata, false); 2001 } 2002 } 2003 2004 /* APs are now beaconing, add back stations */ 2005 mutex_lock(&local->sta_mtx); 2006 list_for_each_entry(sta, &local->sta_list, list) { 2007 enum ieee80211_sta_state state; 2008 2009 if (!sta->uploaded) 2010 continue; 2011 2012 if (sta->sdata->vif.type != NL80211_IFTYPE_AP) 2013 continue; 2014 2015 for (state = IEEE80211_STA_NOTEXIST; 2016 state < sta->sta_state; state++) 2017 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2018 state + 1)); 2019 } 2020 mutex_unlock(&local->sta_mtx); 2021 2022 /* add back keys */ 2023 list_for_each_entry(sdata, &local->interfaces, list) 2024 ieee80211_reset_crypto_tx_tailroom(sdata); 2025 2026 list_for_each_entry(sdata, &local->interfaces, list) 2027 if (ieee80211_sdata_running(sdata)) 2028 ieee80211_enable_keys(sdata); 2029 2030 /* Reconfigure sched scan if it was interrupted by FW restart */ 2031 mutex_lock(&local->mtx); 2032 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2033 lockdep_is_held(&local->mtx)); 2034 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2035 lockdep_is_held(&local->mtx)); 2036 if (sched_scan_sdata && sched_scan_req) 2037 /* 2038 * Sched scan stopped, but we don't want to report it. Instead, 2039 * we're trying to reschedule. However, if more than one scan 2040 * plan was set, we cannot reschedule since we don't know which 2041 * scan plan was currently running (and some scan plans may have 2042 * already finished). 2043 */ 2044 if (sched_scan_req->n_scan_plans > 1 || 2045 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2046 sched_scan_req)) 2047 sched_scan_stopped = true; 2048 mutex_unlock(&local->mtx); 2049 2050 if (sched_scan_stopped) 2051 cfg80211_sched_scan_stopped_rtnl(local->hw.wiphy); 2052 2053 wake_up: 2054 local->in_reconfig = false; 2055 barrier(); 2056 2057 if (local->monitors == local->open_count && local->monitors > 0) 2058 ieee80211_add_virtual_monitor(local); 2059 2060 /* 2061 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2062 * sessions can be established after a resume. 2063 * 2064 * Also tear down aggregation sessions since reconfiguring 2065 * them in a hardware restart scenario is not easily done 2066 * right now, and the hardware will have lost information 2067 * about the sessions, but we and the AP still think they 2068 * are active. This is really a workaround though. 2069 */ 2070 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2071 mutex_lock(&local->sta_mtx); 2072 2073 list_for_each_entry(sta, &local->sta_list, list) { 2074 if (!local->resuming) 2075 ieee80211_sta_tear_down_BA_sessions( 2076 sta, AGG_STOP_LOCAL_REQUEST); 2077 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2078 } 2079 2080 mutex_unlock(&local->sta_mtx); 2081 } 2082 2083 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2084 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2085 false); 2086 2087 /* 2088 * If this is for hw restart things are still running. 2089 * We may want to change that later, however. 2090 */ 2091 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2092 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2093 2094 if (!suspended) 2095 return 0; 2096 2097 #ifdef CONFIG_PM 2098 /* first set suspended false, then resuming */ 2099 local->suspended = false; 2100 mb(); 2101 local->resuming = false; 2102 2103 ieee80211_flush_completed_scan(local, false); 2104 2105 if (local->open_count && !reconfig_due_to_wowlan) 2106 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2107 2108 list_for_each_entry(sdata, &local->interfaces, list) { 2109 if (!ieee80211_sdata_running(sdata)) 2110 continue; 2111 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2112 ieee80211_sta_restart(sdata); 2113 } 2114 2115 mod_timer(&local->sta_cleanup, jiffies + 1); 2116 #else 2117 WARN_ON(1); 2118 #endif 2119 2120 return 0; 2121 } 2122 2123 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 2124 { 2125 struct ieee80211_sub_if_data *sdata; 2126 struct ieee80211_local *local; 2127 struct ieee80211_key *key; 2128 2129 if (WARN_ON(!vif)) 2130 return; 2131 2132 sdata = vif_to_sdata(vif); 2133 local = sdata->local; 2134 2135 if (WARN_ON(!local->resuming)) 2136 return; 2137 2138 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2139 return; 2140 2141 sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME; 2142 2143 mutex_lock(&local->key_mtx); 2144 list_for_each_entry(key, &sdata->key_list, list) 2145 key->flags |= KEY_FLAG_TAINTED; 2146 mutex_unlock(&local->key_mtx); 2147 } 2148 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 2149 2150 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata) 2151 { 2152 struct ieee80211_local *local = sdata->local; 2153 struct ieee80211_chanctx_conf *chanctx_conf; 2154 struct ieee80211_chanctx *chanctx; 2155 2156 mutex_lock(&local->chanctx_mtx); 2157 2158 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2159 lockdep_is_held(&local->chanctx_mtx)); 2160 2161 /* 2162 * This function can be called from a work, thus it may be possible 2163 * that the chanctx_conf is removed (due to a disconnection, for 2164 * example). 2165 * So nothing should be done in such case. 2166 */ 2167 if (!chanctx_conf) 2168 goto unlock; 2169 2170 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2171 ieee80211_recalc_smps_chanctx(local, chanctx); 2172 unlock: 2173 mutex_unlock(&local->chanctx_mtx); 2174 } 2175 2176 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata) 2177 { 2178 struct ieee80211_local *local = sdata->local; 2179 struct ieee80211_chanctx_conf *chanctx_conf; 2180 struct ieee80211_chanctx *chanctx; 2181 2182 mutex_lock(&local->chanctx_mtx); 2183 2184 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2185 lockdep_is_held(&local->chanctx_mtx)); 2186 2187 if (WARN_ON_ONCE(!chanctx_conf)) 2188 goto unlock; 2189 2190 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2191 ieee80211_recalc_chanctx_min_def(local, chanctx); 2192 unlock: 2193 mutex_unlock(&local->chanctx_mtx); 2194 } 2195 2196 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 2197 { 2198 size_t pos = offset; 2199 2200 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 2201 pos += 2 + ies[pos + 1]; 2202 2203 return pos; 2204 } 2205 2206 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata, 2207 int rssi_min_thold, 2208 int rssi_max_thold) 2209 { 2210 trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold); 2211 2212 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 2213 return; 2214 2215 /* 2216 * Scale up threshold values before storing it, as the RSSI averaging 2217 * algorithm uses a scaled up value as well. Change this scaling 2218 * factor if the RSSI averaging algorithm changes. 2219 */ 2220 sdata->u.mgd.rssi_min_thold = rssi_min_thold*16; 2221 sdata->u.mgd.rssi_max_thold = rssi_max_thold*16; 2222 } 2223 2224 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif, 2225 int rssi_min_thold, 2226 int rssi_max_thold) 2227 { 2228 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2229 2230 WARN_ON(rssi_min_thold == rssi_max_thold || 2231 rssi_min_thold > rssi_max_thold); 2232 2233 _ieee80211_enable_rssi_reports(sdata, rssi_min_thold, 2234 rssi_max_thold); 2235 } 2236 EXPORT_SYMBOL(ieee80211_enable_rssi_reports); 2237 2238 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif) 2239 { 2240 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2241 2242 _ieee80211_enable_rssi_reports(sdata, 0, 0); 2243 } 2244 EXPORT_SYMBOL(ieee80211_disable_rssi_reports); 2245 2246 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2247 u16 cap) 2248 { 2249 __le16 tmp; 2250 2251 *pos++ = WLAN_EID_HT_CAPABILITY; 2252 *pos++ = sizeof(struct ieee80211_ht_cap); 2253 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 2254 2255 /* capability flags */ 2256 tmp = cpu_to_le16(cap); 2257 memcpy(pos, &tmp, sizeof(u16)); 2258 pos += sizeof(u16); 2259 2260 /* AMPDU parameters */ 2261 *pos++ = ht_cap->ampdu_factor | 2262 (ht_cap->ampdu_density << 2263 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 2264 2265 /* MCS set */ 2266 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 2267 pos += sizeof(ht_cap->mcs); 2268 2269 /* extended capabilities */ 2270 pos += sizeof(__le16); 2271 2272 /* BF capabilities */ 2273 pos += sizeof(__le32); 2274 2275 /* antenna selection */ 2276 pos += sizeof(u8); 2277 2278 return pos; 2279 } 2280 2281 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2282 u32 cap) 2283 { 2284 __le32 tmp; 2285 2286 *pos++ = WLAN_EID_VHT_CAPABILITY; 2287 *pos++ = sizeof(struct ieee80211_vht_cap); 2288 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 2289 2290 /* capability flags */ 2291 tmp = cpu_to_le32(cap); 2292 memcpy(pos, &tmp, sizeof(u32)); 2293 pos += sizeof(u32); 2294 2295 /* VHT MCS set */ 2296 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 2297 pos += sizeof(vht_cap->vht_mcs); 2298 2299 return pos; 2300 } 2301 2302 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2303 const struct cfg80211_chan_def *chandef, 2304 u16 prot_mode, bool rifs_mode) 2305 { 2306 struct ieee80211_ht_operation *ht_oper; 2307 /* Build HT Information */ 2308 *pos++ = WLAN_EID_HT_OPERATION; 2309 *pos++ = sizeof(struct ieee80211_ht_operation); 2310 ht_oper = (struct ieee80211_ht_operation *)pos; 2311 ht_oper->primary_chan = ieee80211_frequency_to_channel( 2312 chandef->chan->center_freq); 2313 switch (chandef->width) { 2314 case NL80211_CHAN_WIDTH_160: 2315 case NL80211_CHAN_WIDTH_80P80: 2316 case NL80211_CHAN_WIDTH_80: 2317 case NL80211_CHAN_WIDTH_40: 2318 if (chandef->center_freq1 > chandef->chan->center_freq) 2319 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 2320 else 2321 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 2322 break; 2323 default: 2324 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 2325 break; 2326 } 2327 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 2328 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 2329 chandef->width != NL80211_CHAN_WIDTH_20) 2330 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 2331 2332 if (rifs_mode) 2333 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 2334 2335 ht_oper->operation_mode = cpu_to_le16(prot_mode); 2336 ht_oper->stbc_param = 0x0000; 2337 2338 /* It seems that Basic MCS set and Supported MCS set 2339 are identical for the first 10 bytes */ 2340 memset(&ht_oper->basic_set, 0, 16); 2341 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 2342 2343 return pos + sizeof(struct ieee80211_ht_operation); 2344 } 2345 2346 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2347 const struct cfg80211_chan_def *chandef) 2348 { 2349 struct ieee80211_vht_operation *vht_oper; 2350 2351 *pos++ = WLAN_EID_VHT_OPERATION; 2352 *pos++ = sizeof(struct ieee80211_vht_operation); 2353 vht_oper = (struct ieee80211_vht_operation *)pos; 2354 vht_oper->center_freq_seg1_idx = ieee80211_frequency_to_channel( 2355 chandef->center_freq1); 2356 if (chandef->center_freq2) 2357 vht_oper->center_freq_seg2_idx = 2358 ieee80211_frequency_to_channel(chandef->center_freq2); 2359 else 2360 vht_oper->center_freq_seg2_idx = 0x00; 2361 2362 switch (chandef->width) { 2363 case NL80211_CHAN_WIDTH_160: 2364 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_160MHZ; 2365 break; 2366 case NL80211_CHAN_WIDTH_80P80: 2367 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 2368 break; 2369 case NL80211_CHAN_WIDTH_80: 2370 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2371 break; 2372 default: 2373 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 2374 break; 2375 } 2376 2377 /* don't require special VHT peer rates */ 2378 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 2379 2380 return pos + sizeof(struct ieee80211_vht_operation); 2381 } 2382 2383 void ieee80211_ht_oper_to_chandef(struct ieee80211_channel *control_chan, 2384 const struct ieee80211_ht_operation *ht_oper, 2385 struct cfg80211_chan_def *chandef) 2386 { 2387 enum nl80211_channel_type channel_type; 2388 2389 if (!ht_oper) { 2390 cfg80211_chandef_create(chandef, control_chan, 2391 NL80211_CHAN_NO_HT); 2392 return; 2393 } 2394 2395 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 2396 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 2397 channel_type = NL80211_CHAN_HT20; 2398 break; 2399 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 2400 channel_type = NL80211_CHAN_HT40PLUS; 2401 break; 2402 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 2403 channel_type = NL80211_CHAN_HT40MINUS; 2404 break; 2405 default: 2406 channel_type = NL80211_CHAN_NO_HT; 2407 } 2408 2409 cfg80211_chandef_create(chandef, control_chan, channel_type); 2410 } 2411 2412 void ieee80211_vht_oper_to_chandef(struct ieee80211_channel *control_chan, 2413 const struct ieee80211_vht_operation *oper, 2414 struct cfg80211_chan_def *chandef) 2415 { 2416 if (!oper) 2417 return; 2418 2419 chandef->chan = control_chan; 2420 2421 switch (oper->chan_width) { 2422 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2423 break; 2424 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2425 chandef->width = NL80211_CHAN_WIDTH_80; 2426 break; 2427 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2428 chandef->width = NL80211_CHAN_WIDTH_160; 2429 break; 2430 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2431 chandef->width = NL80211_CHAN_WIDTH_80P80; 2432 break; 2433 default: 2434 break; 2435 } 2436 2437 chandef->center_freq1 = 2438 ieee80211_channel_to_frequency(oper->center_freq_seg1_idx, 2439 control_chan->band); 2440 chandef->center_freq2 = 2441 ieee80211_channel_to_frequency(oper->center_freq_seg2_idx, 2442 control_chan->band); 2443 } 2444 2445 int ieee80211_parse_bitrates(struct cfg80211_chan_def *chandef, 2446 const struct ieee80211_supported_band *sband, 2447 const u8 *srates, int srates_len, u32 *rates) 2448 { 2449 u32 rate_flags = ieee80211_chandef_rate_flags(chandef); 2450 int shift = ieee80211_chandef_get_shift(chandef); 2451 struct ieee80211_rate *br; 2452 int brate, rate, i, j, count = 0; 2453 2454 *rates = 0; 2455 2456 for (i = 0; i < srates_len; i++) { 2457 rate = srates[i] & 0x7f; 2458 2459 for (j = 0; j < sband->n_bitrates; j++) { 2460 br = &sband->bitrates[j]; 2461 if ((rate_flags & br->flags) != rate_flags) 2462 continue; 2463 2464 brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5); 2465 if (brate == rate) { 2466 *rates |= BIT(j); 2467 count++; 2468 break; 2469 } 2470 } 2471 } 2472 return count; 2473 } 2474 2475 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, 2476 struct sk_buff *skb, bool need_basic, 2477 enum ieee80211_band band) 2478 { 2479 struct ieee80211_local *local = sdata->local; 2480 struct ieee80211_supported_band *sband; 2481 int rate, shift; 2482 u8 i, rates, *pos; 2483 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 2484 u32 rate_flags; 2485 2486 shift = ieee80211_vif_get_shift(&sdata->vif); 2487 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 2488 sband = local->hw.wiphy->bands[band]; 2489 rates = 0; 2490 for (i = 0; i < sband->n_bitrates; i++) { 2491 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 2492 continue; 2493 rates++; 2494 } 2495 if (rates > 8) 2496 rates = 8; 2497 2498 if (skb_tailroom(skb) < rates + 2) 2499 return -ENOMEM; 2500 2501 pos = skb_put(skb, rates + 2); 2502 *pos++ = WLAN_EID_SUPP_RATES; 2503 *pos++ = rates; 2504 for (i = 0; i < rates; i++) { 2505 u8 basic = 0; 2506 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 2507 continue; 2508 2509 if (need_basic && basic_rates & BIT(i)) 2510 basic = 0x80; 2511 rate = sband->bitrates[i].bitrate; 2512 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 2513 5 * (1 << shift)); 2514 *pos++ = basic | (u8) rate; 2515 } 2516 2517 return 0; 2518 } 2519 2520 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, 2521 struct sk_buff *skb, bool need_basic, 2522 enum ieee80211_band band) 2523 { 2524 struct ieee80211_local *local = sdata->local; 2525 struct ieee80211_supported_band *sband; 2526 int rate, shift; 2527 u8 i, exrates, *pos; 2528 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 2529 u32 rate_flags; 2530 2531 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 2532 shift = ieee80211_vif_get_shift(&sdata->vif); 2533 2534 sband = local->hw.wiphy->bands[band]; 2535 exrates = 0; 2536 for (i = 0; i < sband->n_bitrates; i++) { 2537 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 2538 continue; 2539 exrates++; 2540 } 2541 2542 if (exrates > 8) 2543 exrates -= 8; 2544 else 2545 exrates = 0; 2546 2547 if (skb_tailroom(skb) < exrates + 2) 2548 return -ENOMEM; 2549 2550 if (exrates) { 2551 pos = skb_put(skb, exrates + 2); 2552 *pos++ = WLAN_EID_EXT_SUPP_RATES; 2553 *pos++ = exrates; 2554 for (i = 8; i < sband->n_bitrates; i++) { 2555 u8 basic = 0; 2556 if ((rate_flags & sband->bitrates[i].flags) 2557 != rate_flags) 2558 continue; 2559 if (need_basic && basic_rates & BIT(i)) 2560 basic = 0x80; 2561 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 2562 5 * (1 << shift)); 2563 *pos++ = basic | (u8) rate; 2564 } 2565 } 2566 return 0; 2567 } 2568 2569 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 2570 { 2571 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2572 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 2573 2574 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) { 2575 /* non-managed type inferfaces */ 2576 return 0; 2577 } 2578 return -ewma_beacon_signal_read(&ifmgd->ave_beacon_signal); 2579 } 2580 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 2581 2582 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 2583 { 2584 if (!mcs) 2585 return 1; 2586 2587 /* TODO: consider rx_highest */ 2588 2589 if (mcs->rx_mask[3]) 2590 return 4; 2591 if (mcs->rx_mask[2]) 2592 return 3; 2593 if (mcs->rx_mask[1]) 2594 return 2; 2595 return 1; 2596 } 2597 2598 /** 2599 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 2600 * @local: mac80211 hw info struct 2601 * @status: RX status 2602 * @mpdu_len: total MPDU length (including FCS) 2603 * @mpdu_offset: offset into MPDU to calculate timestamp at 2604 * 2605 * This function calculates the RX timestamp at the given MPDU offset, taking 2606 * into account what the RX timestamp was. An offset of 0 will just normalize 2607 * the timestamp to TSF at beginning of MPDU reception. 2608 */ 2609 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 2610 struct ieee80211_rx_status *status, 2611 unsigned int mpdu_len, 2612 unsigned int mpdu_offset) 2613 { 2614 u64 ts = status->mactime; 2615 struct rate_info ri; 2616 u16 rate; 2617 2618 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 2619 return 0; 2620 2621 memset(&ri, 0, sizeof(ri)); 2622 2623 /* Fill cfg80211 rate info */ 2624 if (status->flag & RX_FLAG_HT) { 2625 ri.mcs = status->rate_idx; 2626 ri.flags |= RATE_INFO_FLAGS_MCS; 2627 if (status->flag & RX_FLAG_40MHZ) 2628 ri.bw = RATE_INFO_BW_40; 2629 else 2630 ri.bw = RATE_INFO_BW_20; 2631 if (status->flag & RX_FLAG_SHORT_GI) 2632 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 2633 } else if (status->flag & RX_FLAG_VHT) { 2634 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 2635 ri.mcs = status->rate_idx; 2636 ri.nss = status->vht_nss; 2637 if (status->flag & RX_FLAG_40MHZ) 2638 ri.bw = RATE_INFO_BW_40; 2639 else if (status->vht_flag & RX_VHT_FLAG_80MHZ) 2640 ri.bw = RATE_INFO_BW_80; 2641 else if (status->vht_flag & RX_VHT_FLAG_160MHZ) 2642 ri.bw = RATE_INFO_BW_160; 2643 else 2644 ri.bw = RATE_INFO_BW_20; 2645 if (status->flag & RX_FLAG_SHORT_GI) 2646 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 2647 } else { 2648 struct ieee80211_supported_band *sband; 2649 int shift = 0; 2650 int bitrate; 2651 2652 if (status->flag & RX_FLAG_10MHZ) { 2653 shift = 1; 2654 ri.bw = RATE_INFO_BW_10; 2655 } else if (status->flag & RX_FLAG_5MHZ) { 2656 shift = 2; 2657 ri.bw = RATE_INFO_BW_5; 2658 } else { 2659 ri.bw = RATE_INFO_BW_20; 2660 } 2661 2662 sband = local->hw.wiphy->bands[status->band]; 2663 bitrate = sband->bitrates[status->rate_idx].bitrate; 2664 ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift)); 2665 } 2666 2667 rate = cfg80211_calculate_bitrate(&ri); 2668 if (WARN_ONCE(!rate, 2669 "Invalid bitrate: flags=0x%x, idx=%d, vht_nss=%d\n", 2670 status->flag, status->rate_idx, status->vht_nss)) 2671 return 0; 2672 2673 /* rewind from end of MPDU */ 2674 if (status->flag & RX_FLAG_MACTIME_END) 2675 ts -= mpdu_len * 8 * 10 / rate; 2676 2677 ts += mpdu_offset * 8 * 10 / rate; 2678 2679 return ts; 2680 } 2681 2682 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) 2683 { 2684 struct ieee80211_sub_if_data *sdata; 2685 struct cfg80211_chan_def chandef; 2686 2687 mutex_lock(&local->mtx); 2688 mutex_lock(&local->iflist_mtx); 2689 list_for_each_entry(sdata, &local->interfaces, list) { 2690 /* it might be waiting for the local->mtx, but then 2691 * by the time it gets it, sdata->wdev.cac_started 2692 * will no longer be true 2693 */ 2694 cancel_delayed_work(&sdata->dfs_cac_timer_work); 2695 2696 if (sdata->wdev.cac_started) { 2697 chandef = sdata->vif.bss_conf.chandef; 2698 ieee80211_vif_release_channel(sdata); 2699 cfg80211_cac_event(sdata->dev, 2700 &chandef, 2701 NL80211_RADAR_CAC_ABORTED, 2702 GFP_KERNEL); 2703 } 2704 } 2705 mutex_unlock(&local->iflist_mtx); 2706 mutex_unlock(&local->mtx); 2707 } 2708 2709 void ieee80211_dfs_radar_detected_work(struct work_struct *work) 2710 { 2711 struct ieee80211_local *local = 2712 container_of(work, struct ieee80211_local, radar_detected_work); 2713 struct cfg80211_chan_def chandef = local->hw.conf.chandef; 2714 struct ieee80211_chanctx *ctx; 2715 int num_chanctx = 0; 2716 2717 mutex_lock(&local->chanctx_mtx); 2718 list_for_each_entry(ctx, &local->chanctx_list, list) { 2719 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 2720 continue; 2721 2722 num_chanctx++; 2723 chandef = ctx->conf.def; 2724 } 2725 mutex_unlock(&local->chanctx_mtx); 2726 2727 ieee80211_dfs_cac_cancel(local); 2728 2729 if (num_chanctx > 1) 2730 /* XXX: multi-channel is not supported yet */ 2731 WARN_ON(1); 2732 else 2733 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 2734 } 2735 2736 void ieee80211_radar_detected(struct ieee80211_hw *hw) 2737 { 2738 struct ieee80211_local *local = hw_to_local(hw); 2739 2740 trace_api_radar_detected(local); 2741 2742 ieee80211_queue_work(hw, &local->radar_detected_work); 2743 } 2744 EXPORT_SYMBOL(ieee80211_radar_detected); 2745 2746 u32 ieee80211_chandef_downgrade(struct cfg80211_chan_def *c) 2747 { 2748 u32 ret; 2749 int tmp; 2750 2751 switch (c->width) { 2752 case NL80211_CHAN_WIDTH_20: 2753 c->width = NL80211_CHAN_WIDTH_20_NOHT; 2754 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 2755 break; 2756 case NL80211_CHAN_WIDTH_40: 2757 c->width = NL80211_CHAN_WIDTH_20; 2758 c->center_freq1 = c->chan->center_freq; 2759 ret = IEEE80211_STA_DISABLE_40MHZ | 2760 IEEE80211_STA_DISABLE_VHT; 2761 break; 2762 case NL80211_CHAN_WIDTH_80: 2763 tmp = (30 + c->chan->center_freq - c->center_freq1)/20; 2764 /* n_P40 */ 2765 tmp /= 2; 2766 /* freq_P40 */ 2767 c->center_freq1 = c->center_freq1 - 20 + 40 * tmp; 2768 c->width = NL80211_CHAN_WIDTH_40; 2769 ret = IEEE80211_STA_DISABLE_VHT; 2770 break; 2771 case NL80211_CHAN_WIDTH_80P80: 2772 c->center_freq2 = 0; 2773 c->width = NL80211_CHAN_WIDTH_80; 2774 ret = IEEE80211_STA_DISABLE_80P80MHZ | 2775 IEEE80211_STA_DISABLE_160MHZ; 2776 break; 2777 case NL80211_CHAN_WIDTH_160: 2778 /* n_P20 */ 2779 tmp = (70 + c->chan->center_freq - c->center_freq1)/20; 2780 /* n_P80 */ 2781 tmp /= 4; 2782 c->center_freq1 = c->center_freq1 - 40 + 80 * tmp; 2783 c->width = NL80211_CHAN_WIDTH_80; 2784 ret = IEEE80211_STA_DISABLE_80P80MHZ | 2785 IEEE80211_STA_DISABLE_160MHZ; 2786 break; 2787 default: 2788 case NL80211_CHAN_WIDTH_20_NOHT: 2789 WARN_ON_ONCE(1); 2790 c->width = NL80211_CHAN_WIDTH_20_NOHT; 2791 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 2792 break; 2793 case NL80211_CHAN_WIDTH_5: 2794 case NL80211_CHAN_WIDTH_10: 2795 WARN_ON_ONCE(1); 2796 /* keep c->width */ 2797 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 2798 break; 2799 } 2800 2801 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 2802 2803 return ret; 2804 } 2805 2806 /* 2807 * Returns true if smps_mode_new is strictly more restrictive than 2808 * smps_mode_old. 2809 */ 2810 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 2811 enum ieee80211_smps_mode smps_mode_new) 2812 { 2813 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 2814 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 2815 return false; 2816 2817 switch (smps_mode_old) { 2818 case IEEE80211_SMPS_STATIC: 2819 return false; 2820 case IEEE80211_SMPS_DYNAMIC: 2821 return smps_mode_new == IEEE80211_SMPS_STATIC; 2822 case IEEE80211_SMPS_OFF: 2823 return smps_mode_new != IEEE80211_SMPS_OFF; 2824 default: 2825 WARN_ON(1); 2826 } 2827 2828 return false; 2829 } 2830 2831 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 2832 struct cfg80211_csa_settings *csa_settings) 2833 { 2834 struct sk_buff *skb; 2835 struct ieee80211_mgmt *mgmt; 2836 struct ieee80211_local *local = sdata->local; 2837 int freq; 2838 int hdr_len = offsetof(struct ieee80211_mgmt, u.action.u.chan_switch) + 2839 sizeof(mgmt->u.action.u.chan_switch); 2840 u8 *pos; 2841 2842 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 2843 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2844 return -EOPNOTSUPP; 2845 2846 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 2847 5 + /* channel switch announcement element */ 2848 3 + /* secondary channel offset element */ 2849 8); /* mesh channel switch parameters element */ 2850 if (!skb) 2851 return -ENOMEM; 2852 2853 skb_reserve(skb, local->tx_headroom); 2854 mgmt = (struct ieee80211_mgmt *)skb_put(skb, hdr_len); 2855 memset(mgmt, 0, hdr_len); 2856 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2857 IEEE80211_STYPE_ACTION); 2858 2859 eth_broadcast_addr(mgmt->da); 2860 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 2861 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2862 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 2863 } else { 2864 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 2865 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 2866 } 2867 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 2868 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 2869 pos = skb_put(skb, 5); 2870 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 2871 *pos++ = 3; /* IE length */ 2872 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 2873 freq = csa_settings->chandef.chan->center_freq; 2874 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 2875 *pos++ = csa_settings->count; /* count */ 2876 2877 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 2878 enum nl80211_channel_type ch_type; 2879 2880 skb_put(skb, 3); 2881 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 2882 *pos++ = 1; /* IE length */ 2883 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 2884 if (ch_type == NL80211_CHAN_HT40PLUS) 2885 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 2886 else 2887 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 2888 } 2889 2890 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2891 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2892 2893 skb_put(skb, 8); 2894 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 2895 *pos++ = 6; /* IE length */ 2896 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 2897 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 2898 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 2899 *pos++ |= csa_settings->block_tx ? 2900 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 2901 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 2902 pos += 2; 2903 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 2904 pos += 2; 2905 } 2906 2907 ieee80211_tx_skb(sdata, skb); 2908 return 0; 2909 } 2910 2911 bool ieee80211_cs_valid(const struct ieee80211_cipher_scheme *cs) 2912 { 2913 return !(cs == NULL || cs->cipher == 0 || 2914 cs->hdr_len < cs->pn_len + cs->pn_off || 2915 cs->hdr_len <= cs->key_idx_off || 2916 cs->key_idx_shift > 7 || 2917 cs->key_idx_mask == 0); 2918 } 2919 2920 bool ieee80211_cs_list_valid(const struct ieee80211_cipher_scheme *cs, int n) 2921 { 2922 int i; 2923 2924 /* Ensure we have enough iftype bitmap space for all iftype values */ 2925 WARN_ON((NUM_NL80211_IFTYPES / 8 + 1) > sizeof(cs[0].iftype)); 2926 2927 for (i = 0; i < n; i++) 2928 if (!ieee80211_cs_valid(&cs[i])) 2929 return false; 2930 2931 return true; 2932 } 2933 2934 const struct ieee80211_cipher_scheme * 2935 ieee80211_cs_get(struct ieee80211_local *local, u32 cipher, 2936 enum nl80211_iftype iftype) 2937 { 2938 const struct ieee80211_cipher_scheme *l = local->hw.cipher_schemes; 2939 int n = local->hw.n_cipher_schemes; 2940 int i; 2941 const struct ieee80211_cipher_scheme *cs = NULL; 2942 2943 for (i = 0; i < n; i++) { 2944 if (l[i].cipher == cipher) { 2945 cs = &l[i]; 2946 break; 2947 } 2948 } 2949 2950 if (!cs || !(cs->iftype & BIT(iftype))) 2951 return NULL; 2952 2953 return cs; 2954 } 2955 2956 int ieee80211_cs_headroom(struct ieee80211_local *local, 2957 struct cfg80211_crypto_settings *crypto, 2958 enum nl80211_iftype iftype) 2959 { 2960 const struct ieee80211_cipher_scheme *cs; 2961 int headroom = IEEE80211_ENCRYPT_HEADROOM; 2962 int i; 2963 2964 for (i = 0; i < crypto->n_ciphers_pairwise; i++) { 2965 cs = ieee80211_cs_get(local, crypto->ciphers_pairwise[i], 2966 iftype); 2967 2968 if (cs && headroom < cs->hdr_len) 2969 headroom = cs->hdr_len; 2970 } 2971 2972 cs = ieee80211_cs_get(local, crypto->cipher_group, iftype); 2973 if (cs && headroom < cs->hdr_len) 2974 headroom = cs->hdr_len; 2975 2976 return headroom; 2977 } 2978 2979 static bool 2980 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 2981 { 2982 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 2983 int skip; 2984 2985 if (end > 0) 2986 return false; 2987 2988 /* One shot NOA */ 2989 if (data->count[i] == 1) 2990 return false; 2991 2992 if (data->desc[i].interval == 0) 2993 return false; 2994 2995 /* End time is in the past, check for repetitions */ 2996 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 2997 if (data->count[i] < 255) { 2998 if (data->count[i] <= skip) { 2999 data->count[i] = 0; 3000 return false; 3001 } 3002 3003 data->count[i] -= skip; 3004 } 3005 3006 data->desc[i].start += skip * data->desc[i].interval; 3007 3008 return true; 3009 } 3010 3011 static bool 3012 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 3013 s32 *offset) 3014 { 3015 bool ret = false; 3016 int i; 3017 3018 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3019 s32 cur; 3020 3021 if (!data->count[i]) 3022 continue; 3023 3024 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 3025 ret = true; 3026 3027 cur = data->desc[i].start - tsf; 3028 if (cur > *offset) 3029 continue; 3030 3031 cur = data->desc[i].start + data->desc[i].duration - tsf; 3032 if (cur > *offset) 3033 *offset = cur; 3034 } 3035 3036 return ret; 3037 } 3038 3039 static u32 3040 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 3041 { 3042 s32 offset = 0; 3043 int tries = 0; 3044 /* 3045 * arbitrary limit, used to avoid infinite loops when combined NoA 3046 * descriptors cover the full time period. 3047 */ 3048 int max_tries = 5; 3049 3050 ieee80211_extend_absent_time(data, tsf, &offset); 3051 do { 3052 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 3053 break; 3054 3055 tries++; 3056 } while (tries < max_tries); 3057 3058 return offset; 3059 } 3060 3061 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 3062 { 3063 u32 next_offset = BIT(31) - 1; 3064 int i; 3065 3066 data->absent = 0; 3067 data->has_next_tsf = false; 3068 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3069 s32 start; 3070 3071 if (!data->count[i]) 3072 continue; 3073 3074 ieee80211_extend_noa_desc(data, tsf, i); 3075 start = data->desc[i].start - tsf; 3076 if (start <= 0) 3077 data->absent |= BIT(i); 3078 3079 if (next_offset > start) 3080 next_offset = start; 3081 3082 data->has_next_tsf = true; 3083 } 3084 3085 if (data->absent) 3086 next_offset = ieee80211_get_noa_absent_time(data, tsf); 3087 3088 data->next_tsf = tsf + next_offset; 3089 } 3090 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 3091 3092 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 3093 struct ieee80211_noa_data *data, u32 tsf) 3094 { 3095 int ret = 0; 3096 int i; 3097 3098 memset(data, 0, sizeof(*data)); 3099 3100 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3101 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 3102 3103 if (!desc->count || !desc->duration) 3104 continue; 3105 3106 data->count[i] = desc->count; 3107 data->desc[i].start = le32_to_cpu(desc->start_time); 3108 data->desc[i].duration = le32_to_cpu(desc->duration); 3109 data->desc[i].interval = le32_to_cpu(desc->interval); 3110 3111 if (data->count[i] > 1 && 3112 data->desc[i].interval < data->desc[i].duration) 3113 continue; 3114 3115 ieee80211_extend_noa_desc(data, tsf, i); 3116 ret++; 3117 } 3118 3119 if (ret) 3120 ieee80211_update_p2p_noa(data, tsf); 3121 3122 return ret; 3123 } 3124 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 3125 3126 void ieee80211_recalc_dtim(struct ieee80211_local *local, 3127 struct ieee80211_sub_if_data *sdata) 3128 { 3129 u64 tsf = drv_get_tsf(local, sdata); 3130 u64 dtim_count = 0; 3131 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 3132 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 3133 struct ps_data *ps; 3134 u8 bcns_from_dtim; 3135 3136 if (tsf == -1ULL || !beacon_int || !dtim_period) 3137 return; 3138 3139 if (sdata->vif.type == NL80211_IFTYPE_AP || 3140 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 3141 if (!sdata->bss) 3142 return; 3143 3144 ps = &sdata->bss->ps; 3145 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 3146 ps = &sdata->u.mesh.ps; 3147 } else { 3148 return; 3149 } 3150 3151 /* 3152 * actually finds last dtim_count, mac80211 will update in 3153 * __beacon_add_tim(). 3154 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 3155 */ 3156 do_div(tsf, beacon_int); 3157 bcns_from_dtim = do_div(tsf, dtim_period); 3158 /* just had a DTIM */ 3159 if (!bcns_from_dtim) 3160 dtim_count = 0; 3161 else 3162 dtim_count = dtim_period - bcns_from_dtim; 3163 3164 ps->dtim_count = dtim_count; 3165 } 3166 3167 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 3168 struct ieee80211_chanctx *ctx) 3169 { 3170 struct ieee80211_sub_if_data *sdata; 3171 u8 radar_detect = 0; 3172 3173 lockdep_assert_held(&local->chanctx_mtx); 3174 3175 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 3176 return 0; 3177 3178 list_for_each_entry(sdata, &ctx->reserved_vifs, reserved_chanctx_list) 3179 if (sdata->reserved_radar_required) 3180 radar_detect |= BIT(sdata->reserved_chandef.width); 3181 3182 /* 3183 * An in-place reservation context should not have any assigned vifs 3184 * until it replaces the other context. 3185 */ 3186 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 3187 !list_empty(&ctx->assigned_vifs)); 3188 3189 list_for_each_entry(sdata, &ctx->assigned_vifs, assigned_chanctx_list) 3190 if (sdata->radar_required) 3191 radar_detect |= BIT(sdata->vif.bss_conf.chandef.width); 3192 3193 return radar_detect; 3194 } 3195 3196 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 3197 const struct cfg80211_chan_def *chandef, 3198 enum ieee80211_chanctx_mode chanmode, 3199 u8 radar_detect) 3200 { 3201 struct ieee80211_local *local = sdata->local; 3202 struct ieee80211_sub_if_data *sdata_iter; 3203 enum nl80211_iftype iftype = sdata->wdev.iftype; 3204 int num[NUM_NL80211_IFTYPES]; 3205 struct ieee80211_chanctx *ctx; 3206 int num_different_channels = 0; 3207 int total = 1; 3208 3209 lockdep_assert_held(&local->chanctx_mtx); 3210 3211 if (WARN_ON(hweight32(radar_detect) > 1)) 3212 return -EINVAL; 3213 3214 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 3215 !chandef->chan)) 3216 return -EINVAL; 3217 3218 if (chandef) 3219 num_different_channels = 1; 3220 3221 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 3222 return -EINVAL; 3223 3224 /* Always allow software iftypes */ 3225 if (local->hw.wiphy->software_iftypes & BIT(iftype)) { 3226 if (radar_detect) 3227 return -EINVAL; 3228 return 0; 3229 } 3230 3231 memset(num, 0, sizeof(num)); 3232 3233 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 3234 num[iftype] = 1; 3235 3236 list_for_each_entry(ctx, &local->chanctx_list, list) { 3237 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 3238 continue; 3239 radar_detect |= ieee80211_chanctx_radar_detect(local, ctx); 3240 if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) { 3241 num_different_channels++; 3242 continue; 3243 } 3244 if (chandef && chanmode == IEEE80211_CHANCTX_SHARED && 3245 cfg80211_chandef_compatible(chandef, 3246 &ctx->conf.def)) 3247 continue; 3248 num_different_channels++; 3249 } 3250 3251 list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) { 3252 struct wireless_dev *wdev_iter; 3253 3254 wdev_iter = &sdata_iter->wdev; 3255 3256 if (sdata_iter == sdata || 3257 !ieee80211_sdata_running(sdata_iter) || 3258 local->hw.wiphy->software_iftypes & BIT(wdev_iter->iftype)) 3259 continue; 3260 3261 num[wdev_iter->iftype]++; 3262 total++; 3263 } 3264 3265 if (total == 1 && !radar_detect) 3266 return 0; 3267 3268 return cfg80211_check_combinations(local->hw.wiphy, 3269 num_different_channels, 3270 radar_detect, num); 3271 } 3272 3273 static void 3274 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 3275 void *data) 3276 { 3277 u32 *max_num_different_channels = data; 3278 3279 *max_num_different_channels = max(*max_num_different_channels, 3280 c->num_different_channels); 3281 } 3282 3283 int ieee80211_max_num_channels(struct ieee80211_local *local) 3284 { 3285 struct ieee80211_sub_if_data *sdata; 3286 int num[NUM_NL80211_IFTYPES] = {}; 3287 struct ieee80211_chanctx *ctx; 3288 int num_different_channels = 0; 3289 u8 radar_detect = 0; 3290 u32 max_num_different_channels = 1; 3291 int err; 3292 3293 lockdep_assert_held(&local->chanctx_mtx); 3294 3295 list_for_each_entry(ctx, &local->chanctx_list, list) { 3296 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 3297 continue; 3298 3299 num_different_channels++; 3300 3301 radar_detect |= ieee80211_chanctx_radar_detect(local, ctx); 3302 } 3303 3304 list_for_each_entry_rcu(sdata, &local->interfaces, list) 3305 num[sdata->wdev.iftype]++; 3306 3307 err = cfg80211_iter_combinations(local->hw.wiphy, 3308 num_different_channels, radar_detect, 3309 num, ieee80211_iter_max_chans, 3310 &max_num_different_channels); 3311 if (err < 0) 3312 return err; 3313 3314 return max_num_different_channels; 3315 } 3316 3317 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 3318 { 3319 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 3320 *buf++ = 7; /* len */ 3321 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 3322 *buf++ = 0x50; 3323 *buf++ = 0xf2; 3324 *buf++ = 2; /* WME */ 3325 *buf++ = 0; /* WME info */ 3326 *buf++ = 1; /* WME ver */ 3327 *buf++ = qosinfo; /* U-APSD no in use */ 3328 3329 return buf; 3330 } 3331 3332 void ieee80211_init_tx_queue(struct ieee80211_sub_if_data *sdata, 3333 struct sta_info *sta, 3334 struct txq_info *txqi, int tid) 3335 { 3336 skb_queue_head_init(&txqi->queue); 3337 txqi->txq.vif = &sdata->vif; 3338 3339 if (sta) { 3340 txqi->txq.sta = &sta->sta; 3341 sta->sta.txq[tid] = &txqi->txq; 3342 txqi->txq.tid = tid; 3343 txqi->txq.ac = ieee802_1d_to_ac[tid & 7]; 3344 } else { 3345 sdata->vif.txq = &txqi->txq; 3346 txqi->txq.tid = 0; 3347 txqi->txq.ac = IEEE80211_AC_BE; 3348 } 3349 } 3350