xref: /openbmc/linux/net/mac80211/util.c (revision 9d749629)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * utilities for mac80211
12  */
13 
14 #include <net/mac80211.h>
15 #include <linux/netdevice.h>
16 #include <linux/export.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/skbuff.h>
20 #include <linux/etherdevice.h>
21 #include <linux/if_arp.h>
22 #include <linux/bitmap.h>
23 #include <linux/crc32.h>
24 #include <net/net_namespace.h>
25 #include <net/cfg80211.h>
26 #include <net/rtnetlink.h>
27 
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
30 #include "rate.h"
31 #include "mesh.h"
32 #include "wme.h"
33 #include "led.h"
34 #include "wep.h"
35 
36 /* privid for wiphys to determine whether they belong to us or not */
37 void *mac80211_wiphy_privid = &mac80211_wiphy_privid;
38 
39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy)
40 {
41 	struct ieee80211_local *local;
42 	BUG_ON(!wiphy);
43 
44 	local = wiphy_priv(wiphy);
45 	return &local->hw;
46 }
47 EXPORT_SYMBOL(wiphy_to_ieee80211_hw);
48 
49 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
50 			enum nl80211_iftype type)
51 {
52 	__le16 fc = hdr->frame_control;
53 
54 	 /* drop ACK/CTS frames and incorrect hdr len (ctrl) */
55 	if (len < 16)
56 		return NULL;
57 
58 	if (ieee80211_is_data(fc)) {
59 		if (len < 24) /* drop incorrect hdr len (data) */
60 			return NULL;
61 
62 		if (ieee80211_has_a4(fc))
63 			return NULL;
64 		if (ieee80211_has_tods(fc))
65 			return hdr->addr1;
66 		if (ieee80211_has_fromds(fc))
67 			return hdr->addr2;
68 
69 		return hdr->addr3;
70 	}
71 
72 	if (ieee80211_is_mgmt(fc)) {
73 		if (len < 24) /* drop incorrect hdr len (mgmt) */
74 			return NULL;
75 		return hdr->addr3;
76 	}
77 
78 	if (ieee80211_is_ctl(fc)) {
79 		if(ieee80211_is_pspoll(fc))
80 			return hdr->addr1;
81 
82 		if (ieee80211_is_back_req(fc)) {
83 			switch (type) {
84 			case NL80211_IFTYPE_STATION:
85 				return hdr->addr2;
86 			case NL80211_IFTYPE_AP:
87 			case NL80211_IFTYPE_AP_VLAN:
88 				return hdr->addr1;
89 			default:
90 				break; /* fall through to the return */
91 			}
92 		}
93 	}
94 
95 	return NULL;
96 }
97 
98 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx)
99 {
100 	struct sk_buff *skb;
101 	struct ieee80211_hdr *hdr;
102 
103 	skb_queue_walk(&tx->skbs, skb) {
104 		hdr = (struct ieee80211_hdr *) skb->data;
105 		hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
106 	}
107 }
108 
109 int ieee80211_frame_duration(enum ieee80211_band band, size_t len,
110 			     int rate, int erp, int short_preamble)
111 {
112 	int dur;
113 
114 	/* calculate duration (in microseconds, rounded up to next higher
115 	 * integer if it includes a fractional microsecond) to send frame of
116 	 * len bytes (does not include FCS) at the given rate. Duration will
117 	 * also include SIFS.
118 	 *
119 	 * rate is in 100 kbps, so divident is multiplied by 10 in the
120 	 * DIV_ROUND_UP() operations.
121 	 */
122 
123 	if (band == IEEE80211_BAND_5GHZ || erp) {
124 		/*
125 		 * OFDM:
126 		 *
127 		 * N_DBPS = DATARATE x 4
128 		 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
129 		 *	(16 = SIGNAL time, 6 = tail bits)
130 		 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
131 		 *
132 		 * T_SYM = 4 usec
133 		 * 802.11a - 17.5.2: aSIFSTime = 16 usec
134 		 * 802.11g - 19.8.4: aSIFSTime = 10 usec +
135 		 *	signal ext = 6 usec
136 		 */
137 		dur = 16; /* SIFS + signal ext */
138 		dur += 16; /* 17.3.2.3: T_PREAMBLE = 16 usec */
139 		dur += 4; /* 17.3.2.3: T_SIGNAL = 4 usec */
140 		dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
141 					4 * rate); /* T_SYM x N_SYM */
142 	} else {
143 		/*
144 		 * 802.11b or 802.11g with 802.11b compatibility:
145 		 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
146 		 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
147 		 *
148 		 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4
149 		 * aSIFSTime = 10 usec
150 		 * aPreambleLength = 144 usec or 72 usec with short preamble
151 		 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble
152 		 */
153 		dur = 10; /* aSIFSTime = 10 usec */
154 		dur += short_preamble ? (72 + 24) : (144 + 48);
155 
156 		dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
157 	}
158 
159 	return dur;
160 }
161 
162 /* Exported duration function for driver use */
163 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
164 					struct ieee80211_vif *vif,
165 					enum ieee80211_band band,
166 					size_t frame_len,
167 					struct ieee80211_rate *rate)
168 {
169 	struct ieee80211_sub_if_data *sdata;
170 	u16 dur;
171 	int erp;
172 	bool short_preamble = false;
173 
174 	erp = 0;
175 	if (vif) {
176 		sdata = vif_to_sdata(vif);
177 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
178 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
179 			erp = rate->flags & IEEE80211_RATE_ERP_G;
180 	}
181 
182 	dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp,
183 				       short_preamble);
184 
185 	return cpu_to_le16(dur);
186 }
187 EXPORT_SYMBOL(ieee80211_generic_frame_duration);
188 
189 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
190 			      struct ieee80211_vif *vif, size_t frame_len,
191 			      const struct ieee80211_tx_info *frame_txctl)
192 {
193 	struct ieee80211_local *local = hw_to_local(hw);
194 	struct ieee80211_rate *rate;
195 	struct ieee80211_sub_if_data *sdata;
196 	bool short_preamble;
197 	int erp;
198 	u16 dur;
199 	struct ieee80211_supported_band *sband;
200 
201 	sband = local->hw.wiphy->bands[frame_txctl->band];
202 
203 	short_preamble = false;
204 
205 	rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
206 
207 	erp = 0;
208 	if (vif) {
209 		sdata = vif_to_sdata(vif);
210 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
211 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
212 			erp = rate->flags & IEEE80211_RATE_ERP_G;
213 	}
214 
215 	/* CTS duration */
216 	dur = ieee80211_frame_duration(sband->band, 10, rate->bitrate,
217 				       erp, short_preamble);
218 	/* Data frame duration */
219 	dur += ieee80211_frame_duration(sband->band, frame_len, rate->bitrate,
220 					erp, short_preamble);
221 	/* ACK duration */
222 	dur += ieee80211_frame_duration(sband->band, 10, rate->bitrate,
223 					erp, short_preamble);
224 
225 	return cpu_to_le16(dur);
226 }
227 EXPORT_SYMBOL(ieee80211_rts_duration);
228 
229 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
230 				    struct ieee80211_vif *vif,
231 				    size_t frame_len,
232 				    const struct ieee80211_tx_info *frame_txctl)
233 {
234 	struct ieee80211_local *local = hw_to_local(hw);
235 	struct ieee80211_rate *rate;
236 	struct ieee80211_sub_if_data *sdata;
237 	bool short_preamble;
238 	int erp;
239 	u16 dur;
240 	struct ieee80211_supported_band *sband;
241 
242 	sband = local->hw.wiphy->bands[frame_txctl->band];
243 
244 	short_preamble = false;
245 
246 	rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
247 	erp = 0;
248 	if (vif) {
249 		sdata = vif_to_sdata(vif);
250 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
251 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
252 			erp = rate->flags & IEEE80211_RATE_ERP_G;
253 	}
254 
255 	/* Data frame duration */
256 	dur = ieee80211_frame_duration(sband->band, frame_len, rate->bitrate,
257 				       erp, short_preamble);
258 	if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) {
259 		/* ACK duration */
260 		dur += ieee80211_frame_duration(sband->band, 10, rate->bitrate,
261 						erp, short_preamble);
262 	}
263 
264 	return cpu_to_le16(dur);
265 }
266 EXPORT_SYMBOL(ieee80211_ctstoself_duration);
267 
268 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue)
269 {
270 	struct ieee80211_sub_if_data *sdata;
271 	int n_acs = IEEE80211_NUM_ACS;
272 
273 	if (local->hw.queues < IEEE80211_NUM_ACS)
274 		n_acs = 1;
275 
276 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
277 		int ac;
278 
279 		if (!sdata->dev)
280 			continue;
281 
282 		if (test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))
283 			continue;
284 
285 		if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE &&
286 		    local->queue_stop_reasons[sdata->vif.cab_queue] != 0)
287 			continue;
288 
289 		for (ac = 0; ac < n_acs; ac++) {
290 			int ac_queue = sdata->vif.hw_queue[ac];
291 
292 			if (ac_queue == queue ||
293 			    (sdata->vif.cab_queue == queue &&
294 			     local->queue_stop_reasons[ac_queue] == 0 &&
295 			     skb_queue_empty(&local->pending[ac_queue])))
296 				netif_wake_subqueue(sdata->dev, ac);
297 		}
298 	}
299 }
300 
301 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue,
302 				   enum queue_stop_reason reason)
303 {
304 	struct ieee80211_local *local = hw_to_local(hw);
305 
306 	trace_wake_queue(local, queue, reason);
307 
308 	if (WARN_ON(queue >= hw->queues))
309 		return;
310 
311 	if (!test_bit(reason, &local->queue_stop_reasons[queue]))
312 		return;
313 
314 	__clear_bit(reason, &local->queue_stop_reasons[queue]);
315 
316 	if (local->queue_stop_reasons[queue] != 0)
317 		/* someone still has this queue stopped */
318 		return;
319 
320 	if (skb_queue_empty(&local->pending[queue])) {
321 		rcu_read_lock();
322 		ieee80211_propagate_queue_wake(local, queue);
323 		rcu_read_unlock();
324 	} else
325 		tasklet_schedule(&local->tx_pending_tasklet);
326 }
327 
328 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue,
329 				    enum queue_stop_reason reason)
330 {
331 	struct ieee80211_local *local = hw_to_local(hw);
332 	unsigned long flags;
333 
334 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
335 	__ieee80211_wake_queue(hw, queue, reason);
336 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
337 }
338 
339 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
340 {
341 	ieee80211_wake_queue_by_reason(hw, queue,
342 				       IEEE80211_QUEUE_STOP_REASON_DRIVER);
343 }
344 EXPORT_SYMBOL(ieee80211_wake_queue);
345 
346 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue,
347 				   enum queue_stop_reason reason)
348 {
349 	struct ieee80211_local *local = hw_to_local(hw);
350 	struct ieee80211_sub_if_data *sdata;
351 	int n_acs = IEEE80211_NUM_ACS;
352 
353 	trace_stop_queue(local, queue, reason);
354 
355 	if (WARN_ON(queue >= hw->queues))
356 		return;
357 
358 	if (test_bit(reason, &local->queue_stop_reasons[queue]))
359 		return;
360 
361 	__set_bit(reason, &local->queue_stop_reasons[queue]);
362 
363 	if (local->hw.queues < IEEE80211_NUM_ACS)
364 		n_acs = 1;
365 
366 	rcu_read_lock();
367 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
368 		int ac;
369 
370 		if (!sdata->dev)
371 			continue;
372 
373 		for (ac = 0; ac < n_acs; ac++) {
374 			if (sdata->vif.hw_queue[ac] == queue ||
375 			    sdata->vif.cab_queue == queue)
376 				netif_stop_subqueue(sdata->dev, ac);
377 		}
378 	}
379 	rcu_read_unlock();
380 }
381 
382 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue,
383 				    enum queue_stop_reason reason)
384 {
385 	struct ieee80211_local *local = hw_to_local(hw);
386 	unsigned long flags;
387 
388 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
389 	__ieee80211_stop_queue(hw, queue, reason);
390 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
391 }
392 
393 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
394 {
395 	ieee80211_stop_queue_by_reason(hw, queue,
396 				       IEEE80211_QUEUE_STOP_REASON_DRIVER);
397 }
398 EXPORT_SYMBOL(ieee80211_stop_queue);
399 
400 void ieee80211_add_pending_skb(struct ieee80211_local *local,
401 			       struct sk_buff *skb)
402 {
403 	struct ieee80211_hw *hw = &local->hw;
404 	unsigned long flags;
405 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
406 	int queue = info->hw_queue;
407 
408 	if (WARN_ON(!info->control.vif)) {
409 		ieee80211_free_txskb(&local->hw, skb);
410 		return;
411 	}
412 
413 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
414 	__ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
415 	__skb_queue_tail(&local->pending[queue], skb);
416 	__ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
417 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
418 }
419 
420 void ieee80211_add_pending_skbs_fn(struct ieee80211_local *local,
421 				   struct sk_buff_head *skbs,
422 				   void (*fn)(void *data), void *data)
423 {
424 	struct ieee80211_hw *hw = &local->hw;
425 	struct sk_buff *skb;
426 	unsigned long flags;
427 	int queue, i;
428 
429 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
430 	while ((skb = skb_dequeue(skbs))) {
431 		struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
432 
433 		if (WARN_ON(!info->control.vif)) {
434 			ieee80211_free_txskb(&local->hw, skb);
435 			continue;
436 		}
437 
438 		queue = info->hw_queue;
439 
440 		__ieee80211_stop_queue(hw, queue,
441 				IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
442 
443 		__skb_queue_tail(&local->pending[queue], skb);
444 	}
445 
446 	if (fn)
447 		fn(data);
448 
449 	for (i = 0; i < hw->queues; i++)
450 		__ieee80211_wake_queue(hw, i,
451 			IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
452 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
453 }
454 
455 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw,
456 				    enum queue_stop_reason reason)
457 {
458 	struct ieee80211_local *local = hw_to_local(hw);
459 	unsigned long flags;
460 	int i;
461 
462 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
463 
464 	for (i = 0; i < hw->queues; i++)
465 		__ieee80211_stop_queue(hw, i, reason);
466 
467 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
468 }
469 
470 void ieee80211_stop_queues(struct ieee80211_hw *hw)
471 {
472 	ieee80211_stop_queues_by_reason(hw,
473 					IEEE80211_QUEUE_STOP_REASON_DRIVER);
474 }
475 EXPORT_SYMBOL(ieee80211_stop_queues);
476 
477 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue)
478 {
479 	struct ieee80211_local *local = hw_to_local(hw);
480 	unsigned long flags;
481 	int ret;
482 
483 	if (WARN_ON(queue >= hw->queues))
484 		return true;
485 
486 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
487 	ret = !!local->queue_stop_reasons[queue];
488 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
489 	return ret;
490 }
491 EXPORT_SYMBOL(ieee80211_queue_stopped);
492 
493 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw,
494 				     enum queue_stop_reason reason)
495 {
496 	struct ieee80211_local *local = hw_to_local(hw);
497 	unsigned long flags;
498 	int i;
499 
500 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
501 
502 	for (i = 0; i < hw->queues; i++)
503 		__ieee80211_wake_queue(hw, i, reason);
504 
505 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
506 }
507 
508 void ieee80211_wake_queues(struct ieee80211_hw *hw)
509 {
510 	ieee80211_wake_queues_by_reason(hw, IEEE80211_QUEUE_STOP_REASON_DRIVER);
511 }
512 EXPORT_SYMBOL(ieee80211_wake_queues);
513 
514 void ieee80211_iterate_active_interfaces(
515 	struct ieee80211_hw *hw, u32 iter_flags,
516 	void (*iterator)(void *data, u8 *mac,
517 			 struct ieee80211_vif *vif),
518 	void *data)
519 {
520 	struct ieee80211_local *local = hw_to_local(hw);
521 	struct ieee80211_sub_if_data *sdata;
522 
523 	mutex_lock(&local->iflist_mtx);
524 
525 	list_for_each_entry(sdata, &local->interfaces, list) {
526 		switch (sdata->vif.type) {
527 		case NL80211_IFTYPE_MONITOR:
528 		case NL80211_IFTYPE_AP_VLAN:
529 			continue;
530 		default:
531 			break;
532 		}
533 		if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
534 		    !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
535 			continue;
536 		if (ieee80211_sdata_running(sdata))
537 			iterator(data, sdata->vif.addr,
538 				 &sdata->vif);
539 	}
540 
541 	sdata = rcu_dereference_protected(local->monitor_sdata,
542 					  lockdep_is_held(&local->iflist_mtx));
543 	if (sdata &&
544 	    (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL ||
545 	     sdata->flags & IEEE80211_SDATA_IN_DRIVER))
546 		iterator(data, sdata->vif.addr, &sdata->vif);
547 
548 	mutex_unlock(&local->iflist_mtx);
549 }
550 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces);
551 
552 void ieee80211_iterate_active_interfaces_atomic(
553 	struct ieee80211_hw *hw, u32 iter_flags,
554 	void (*iterator)(void *data, u8 *mac,
555 			 struct ieee80211_vif *vif),
556 	void *data)
557 {
558 	struct ieee80211_local *local = hw_to_local(hw);
559 	struct ieee80211_sub_if_data *sdata;
560 
561 	rcu_read_lock();
562 
563 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
564 		switch (sdata->vif.type) {
565 		case NL80211_IFTYPE_MONITOR:
566 		case NL80211_IFTYPE_AP_VLAN:
567 			continue;
568 		default:
569 			break;
570 		}
571 		if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
572 		    !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
573 			continue;
574 		if (ieee80211_sdata_running(sdata))
575 			iterator(data, sdata->vif.addr,
576 				 &sdata->vif);
577 	}
578 
579 	sdata = rcu_dereference(local->monitor_sdata);
580 	if (sdata &&
581 	    (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL ||
582 	     sdata->flags & IEEE80211_SDATA_IN_DRIVER))
583 		iterator(data, sdata->vif.addr, &sdata->vif);
584 
585 	rcu_read_unlock();
586 }
587 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic);
588 
589 /*
590  * Nothing should have been stuffed into the workqueue during
591  * the suspend->resume cycle. If this WARN is seen then there
592  * is a bug with either the driver suspend or something in
593  * mac80211 stuffing into the workqueue which we haven't yet
594  * cleared during mac80211's suspend cycle.
595  */
596 static bool ieee80211_can_queue_work(struct ieee80211_local *local)
597 {
598 	if (WARN(local->suspended && !local->resuming,
599 		 "queueing ieee80211 work while going to suspend\n"))
600 		return false;
601 
602 	return true;
603 }
604 
605 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work)
606 {
607 	struct ieee80211_local *local = hw_to_local(hw);
608 
609 	if (!ieee80211_can_queue_work(local))
610 		return;
611 
612 	queue_work(local->workqueue, work);
613 }
614 EXPORT_SYMBOL(ieee80211_queue_work);
615 
616 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
617 				  struct delayed_work *dwork,
618 				  unsigned long delay)
619 {
620 	struct ieee80211_local *local = hw_to_local(hw);
621 
622 	if (!ieee80211_can_queue_work(local))
623 		return;
624 
625 	queue_delayed_work(local->workqueue, dwork, delay);
626 }
627 EXPORT_SYMBOL(ieee80211_queue_delayed_work);
628 
629 u32 ieee802_11_parse_elems_crc(u8 *start, size_t len,
630 			       struct ieee802_11_elems *elems,
631 			       u64 filter, u32 crc)
632 {
633 	size_t left = len;
634 	u8 *pos = start;
635 	bool calc_crc = filter != 0;
636 	DECLARE_BITMAP(seen_elems, 256);
637 
638 	bitmap_zero(seen_elems, 256);
639 	memset(elems, 0, sizeof(*elems));
640 	elems->ie_start = start;
641 	elems->total_len = len;
642 
643 	while (left >= 2) {
644 		u8 id, elen;
645 		bool elem_parse_failed;
646 
647 		id = *pos++;
648 		elen = *pos++;
649 		left -= 2;
650 
651 		if (elen > left) {
652 			elems->parse_error = true;
653 			break;
654 		}
655 
656 		switch (id) {
657 		case WLAN_EID_SSID:
658 		case WLAN_EID_SUPP_RATES:
659 		case WLAN_EID_FH_PARAMS:
660 		case WLAN_EID_DS_PARAMS:
661 		case WLAN_EID_CF_PARAMS:
662 		case WLAN_EID_TIM:
663 		case WLAN_EID_IBSS_PARAMS:
664 		case WLAN_EID_CHALLENGE:
665 		case WLAN_EID_RSN:
666 		case WLAN_EID_ERP_INFO:
667 		case WLAN_EID_EXT_SUPP_RATES:
668 		case WLAN_EID_HT_CAPABILITY:
669 		case WLAN_EID_HT_OPERATION:
670 		case WLAN_EID_VHT_CAPABILITY:
671 		case WLAN_EID_VHT_OPERATION:
672 		case WLAN_EID_MESH_ID:
673 		case WLAN_EID_MESH_CONFIG:
674 		case WLAN_EID_PEER_MGMT:
675 		case WLAN_EID_PREQ:
676 		case WLAN_EID_PREP:
677 		case WLAN_EID_PERR:
678 		case WLAN_EID_RANN:
679 		case WLAN_EID_CHANNEL_SWITCH:
680 		case WLAN_EID_EXT_CHANSWITCH_ANN:
681 		case WLAN_EID_COUNTRY:
682 		case WLAN_EID_PWR_CONSTRAINT:
683 		case WLAN_EID_TIMEOUT_INTERVAL:
684 			if (test_bit(id, seen_elems)) {
685 				elems->parse_error = true;
686 				left -= elen;
687 				pos += elen;
688 				continue;
689 			}
690 			break;
691 		}
692 
693 		if (calc_crc && id < 64 && (filter & (1ULL << id)))
694 			crc = crc32_be(crc, pos - 2, elen + 2);
695 
696 		elem_parse_failed = false;
697 
698 		switch (id) {
699 		case WLAN_EID_SSID:
700 			elems->ssid = pos;
701 			elems->ssid_len = elen;
702 			break;
703 		case WLAN_EID_SUPP_RATES:
704 			elems->supp_rates = pos;
705 			elems->supp_rates_len = elen;
706 			break;
707 		case WLAN_EID_FH_PARAMS:
708 			elems->fh_params = pos;
709 			elems->fh_params_len = elen;
710 			break;
711 		case WLAN_EID_DS_PARAMS:
712 			elems->ds_params = pos;
713 			elems->ds_params_len = elen;
714 			break;
715 		case WLAN_EID_CF_PARAMS:
716 			elems->cf_params = pos;
717 			elems->cf_params_len = elen;
718 			break;
719 		case WLAN_EID_TIM:
720 			if (elen >= sizeof(struct ieee80211_tim_ie)) {
721 				elems->tim = (void *)pos;
722 				elems->tim_len = elen;
723 			} else
724 				elem_parse_failed = true;
725 			break;
726 		case WLAN_EID_IBSS_PARAMS:
727 			elems->ibss_params = pos;
728 			elems->ibss_params_len = elen;
729 			break;
730 		case WLAN_EID_CHALLENGE:
731 			elems->challenge = pos;
732 			elems->challenge_len = elen;
733 			break;
734 		case WLAN_EID_VENDOR_SPECIFIC:
735 			if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
736 			    pos[2] == 0xf2) {
737 				/* Microsoft OUI (00:50:F2) */
738 
739 				if (calc_crc)
740 					crc = crc32_be(crc, pos - 2, elen + 2);
741 
742 				if (elen >= 5 && pos[3] == 2) {
743 					/* OUI Type 2 - WMM IE */
744 					if (pos[4] == 0) {
745 						elems->wmm_info = pos;
746 						elems->wmm_info_len = elen;
747 					} else if (pos[4] == 1) {
748 						elems->wmm_param = pos;
749 						elems->wmm_param_len = elen;
750 					}
751 				}
752 			}
753 			break;
754 		case WLAN_EID_RSN:
755 			elems->rsn = pos;
756 			elems->rsn_len = elen;
757 			break;
758 		case WLAN_EID_ERP_INFO:
759 			elems->erp_info = pos;
760 			elems->erp_info_len = elen;
761 			break;
762 		case WLAN_EID_EXT_SUPP_RATES:
763 			elems->ext_supp_rates = pos;
764 			elems->ext_supp_rates_len = elen;
765 			break;
766 		case WLAN_EID_HT_CAPABILITY:
767 			if (elen >= sizeof(struct ieee80211_ht_cap))
768 				elems->ht_cap_elem = (void *)pos;
769 			else
770 				elem_parse_failed = true;
771 			break;
772 		case WLAN_EID_HT_OPERATION:
773 			if (elen >= sizeof(struct ieee80211_ht_operation))
774 				elems->ht_operation = (void *)pos;
775 			else
776 				elem_parse_failed = true;
777 			break;
778 		case WLAN_EID_VHT_CAPABILITY:
779 			if (elen >= sizeof(struct ieee80211_vht_cap))
780 				elems->vht_cap_elem = (void *)pos;
781 			else
782 				elem_parse_failed = true;
783 			break;
784 		case WLAN_EID_VHT_OPERATION:
785 			if (elen >= sizeof(struct ieee80211_vht_operation))
786 				elems->vht_operation = (void *)pos;
787 			else
788 				elem_parse_failed = true;
789 			break;
790 		case WLAN_EID_OPMODE_NOTIF:
791 			if (elen > 0)
792 				elems->opmode_notif = pos;
793 			else
794 				elem_parse_failed = true;
795 			break;
796 		case WLAN_EID_MESH_ID:
797 			elems->mesh_id = pos;
798 			elems->mesh_id_len = elen;
799 			break;
800 		case WLAN_EID_MESH_CONFIG:
801 			if (elen >= sizeof(struct ieee80211_meshconf_ie))
802 				elems->mesh_config = (void *)pos;
803 			else
804 				elem_parse_failed = true;
805 			break;
806 		case WLAN_EID_PEER_MGMT:
807 			elems->peering = pos;
808 			elems->peering_len = elen;
809 			break;
810 		case WLAN_EID_MESH_AWAKE_WINDOW:
811 			if (elen >= 2)
812 				elems->awake_window = (void *)pos;
813 			break;
814 		case WLAN_EID_PREQ:
815 			elems->preq = pos;
816 			elems->preq_len = elen;
817 			break;
818 		case WLAN_EID_PREP:
819 			elems->prep = pos;
820 			elems->prep_len = elen;
821 			break;
822 		case WLAN_EID_PERR:
823 			elems->perr = pos;
824 			elems->perr_len = elen;
825 			break;
826 		case WLAN_EID_RANN:
827 			if (elen >= sizeof(struct ieee80211_rann_ie))
828 				elems->rann = (void *)pos;
829 			else
830 				elem_parse_failed = true;
831 			break;
832 		case WLAN_EID_CHANNEL_SWITCH:
833 			if (elen != sizeof(struct ieee80211_channel_sw_ie)) {
834 				elem_parse_failed = true;
835 				break;
836 			}
837 			elems->ch_switch_ie = (void *)pos;
838 			break;
839 		case WLAN_EID_QUIET:
840 			if (!elems->quiet_elem) {
841 				elems->quiet_elem = pos;
842 				elems->quiet_elem_len = elen;
843 			}
844 			elems->num_of_quiet_elem++;
845 			break;
846 		case WLAN_EID_COUNTRY:
847 			elems->country_elem = pos;
848 			elems->country_elem_len = elen;
849 			break;
850 		case WLAN_EID_PWR_CONSTRAINT:
851 			if (elen != 1) {
852 				elem_parse_failed = true;
853 				break;
854 			}
855 			elems->pwr_constr_elem = pos;
856 			break;
857 		case WLAN_EID_TIMEOUT_INTERVAL:
858 			elems->timeout_int = pos;
859 			elems->timeout_int_len = elen;
860 			break;
861 		default:
862 			break;
863 		}
864 
865 		if (elem_parse_failed)
866 			elems->parse_error = true;
867 		else
868 			__set_bit(id, seen_elems);
869 
870 		left -= elen;
871 		pos += elen;
872 	}
873 
874 	if (left != 0)
875 		elems->parse_error = true;
876 
877 	return crc;
878 }
879 
880 void ieee802_11_parse_elems(u8 *start, size_t len,
881 			    struct ieee802_11_elems *elems)
882 {
883 	ieee802_11_parse_elems_crc(start, len, elems, 0, 0);
884 }
885 
886 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata,
887 			       bool bss_notify)
888 {
889 	struct ieee80211_local *local = sdata->local;
890 	struct ieee80211_tx_queue_params qparam;
891 	struct ieee80211_chanctx_conf *chanctx_conf;
892 	int ac;
893 	bool use_11b, enable_qos;
894 	int aCWmin, aCWmax;
895 
896 	if (!local->ops->conf_tx)
897 		return;
898 
899 	if (local->hw.queues < IEEE80211_NUM_ACS)
900 		return;
901 
902 	memset(&qparam, 0, sizeof(qparam));
903 
904 	rcu_read_lock();
905 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
906 	use_11b = (chanctx_conf &&
907 		   chanctx_conf->def.chan->band == IEEE80211_BAND_2GHZ) &&
908 		 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE);
909 	rcu_read_unlock();
910 
911 	/*
912 	 * By default disable QoS in STA mode for old access points, which do
913 	 * not support 802.11e. New APs will provide proper queue parameters,
914 	 * that we will configure later.
915 	 */
916 	enable_qos = (sdata->vif.type != NL80211_IFTYPE_STATION);
917 
918 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
919 		/* Set defaults according to 802.11-2007 Table 7-37 */
920 		aCWmax = 1023;
921 		if (use_11b)
922 			aCWmin = 31;
923 		else
924 			aCWmin = 15;
925 
926 		if (enable_qos) {
927 			switch (ac) {
928 			case IEEE80211_AC_BK:
929 				qparam.cw_max = aCWmax;
930 				qparam.cw_min = aCWmin;
931 				qparam.txop = 0;
932 				qparam.aifs = 7;
933 				break;
934 			/* never happens but let's not leave undefined */
935 			default:
936 			case IEEE80211_AC_BE:
937 				qparam.cw_max = aCWmax;
938 				qparam.cw_min = aCWmin;
939 				qparam.txop = 0;
940 				qparam.aifs = 3;
941 				break;
942 			case IEEE80211_AC_VI:
943 				qparam.cw_max = aCWmin;
944 				qparam.cw_min = (aCWmin + 1) / 2 - 1;
945 				if (use_11b)
946 					qparam.txop = 6016/32;
947 				else
948 					qparam.txop = 3008/32;
949 				qparam.aifs = 2;
950 				break;
951 			case IEEE80211_AC_VO:
952 				qparam.cw_max = (aCWmin + 1) / 2 - 1;
953 				qparam.cw_min = (aCWmin + 1) / 4 - 1;
954 				if (use_11b)
955 					qparam.txop = 3264/32;
956 				else
957 					qparam.txop = 1504/32;
958 				qparam.aifs = 2;
959 				break;
960 			}
961 		} else {
962 			/* Confiure old 802.11b/g medium access rules. */
963 			qparam.cw_max = aCWmax;
964 			qparam.cw_min = aCWmin;
965 			qparam.txop = 0;
966 			qparam.aifs = 2;
967 		}
968 
969 		qparam.uapsd = false;
970 
971 		sdata->tx_conf[ac] = qparam;
972 		drv_conf_tx(local, sdata, ac, &qparam);
973 	}
974 
975 	if (sdata->vif.type != NL80211_IFTYPE_MONITOR &&
976 	    sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE) {
977 		sdata->vif.bss_conf.qos = enable_qos;
978 		if (bss_notify)
979 			ieee80211_bss_info_change_notify(sdata,
980 							 BSS_CHANGED_QOS);
981 	}
982 }
983 
984 void ieee80211_sta_def_wmm_params(struct ieee80211_sub_if_data *sdata,
985 				  const size_t supp_rates_len,
986 				  const u8 *supp_rates)
987 {
988 	struct ieee80211_chanctx_conf *chanctx_conf;
989 	int i, have_higher_than_11mbit = 0;
990 
991 	/* cf. IEEE 802.11 9.2.12 */
992 	for (i = 0; i < supp_rates_len; i++)
993 		if ((supp_rates[i] & 0x7f) * 5 > 110)
994 			have_higher_than_11mbit = 1;
995 
996 	rcu_read_lock();
997 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
998 
999 	if (chanctx_conf &&
1000 	    chanctx_conf->def.chan->band == IEEE80211_BAND_2GHZ &&
1001 	    have_higher_than_11mbit)
1002 		sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
1003 	else
1004 		sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
1005 	rcu_read_unlock();
1006 
1007 	ieee80211_set_wmm_default(sdata, true);
1008 }
1009 
1010 u32 ieee80211_mandatory_rates(struct ieee80211_local *local,
1011 			      enum ieee80211_band band)
1012 {
1013 	struct ieee80211_supported_band *sband;
1014 	struct ieee80211_rate *bitrates;
1015 	u32 mandatory_rates;
1016 	enum ieee80211_rate_flags mandatory_flag;
1017 	int i;
1018 
1019 	sband = local->hw.wiphy->bands[band];
1020 	if (WARN_ON(!sband))
1021 		return 1;
1022 
1023 	if (band == IEEE80211_BAND_2GHZ)
1024 		mandatory_flag = IEEE80211_RATE_MANDATORY_B;
1025 	else
1026 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
1027 
1028 	bitrates = sband->bitrates;
1029 	mandatory_rates = 0;
1030 	for (i = 0; i < sband->n_bitrates; i++)
1031 		if (bitrates[i].flags & mandatory_flag)
1032 			mandatory_rates |= BIT(i);
1033 	return mandatory_rates;
1034 }
1035 
1036 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata,
1037 			 u16 transaction, u16 auth_alg, u16 status,
1038 			 const u8 *extra, size_t extra_len, const u8 *da,
1039 			 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx,
1040 			 u32 tx_flags)
1041 {
1042 	struct ieee80211_local *local = sdata->local;
1043 	struct sk_buff *skb;
1044 	struct ieee80211_mgmt *mgmt;
1045 	int err;
1046 
1047 	skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1048 			    sizeof(*mgmt) + 6 + extra_len);
1049 	if (!skb)
1050 		return;
1051 
1052 	skb_reserve(skb, local->hw.extra_tx_headroom);
1053 
1054 	mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
1055 	memset(mgmt, 0, 24 + 6);
1056 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1057 					  IEEE80211_STYPE_AUTH);
1058 	memcpy(mgmt->da, da, ETH_ALEN);
1059 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1060 	memcpy(mgmt->bssid, bssid, ETH_ALEN);
1061 	mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg);
1062 	mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
1063 	mgmt->u.auth.status_code = cpu_to_le16(status);
1064 	if (extra)
1065 		memcpy(skb_put(skb, extra_len), extra, extra_len);
1066 
1067 	if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) {
1068 		mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1069 		err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx);
1070 		WARN_ON(err);
1071 	}
1072 
1073 	IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT |
1074 					tx_flags;
1075 	ieee80211_tx_skb(sdata, skb);
1076 }
1077 
1078 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata,
1079 				    const u8 *bssid, u16 stype, u16 reason,
1080 				    bool send_frame, u8 *frame_buf)
1081 {
1082 	struct ieee80211_local *local = sdata->local;
1083 	struct sk_buff *skb;
1084 	struct ieee80211_mgmt *mgmt = (void *)frame_buf;
1085 
1086 	/* build frame */
1087 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype);
1088 	mgmt->duration = 0; /* initialize only */
1089 	mgmt->seq_ctrl = 0; /* initialize only */
1090 	memcpy(mgmt->da, bssid, ETH_ALEN);
1091 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1092 	memcpy(mgmt->bssid, bssid, ETH_ALEN);
1093 	/* u.deauth.reason_code == u.disassoc.reason_code */
1094 	mgmt->u.deauth.reason_code = cpu_to_le16(reason);
1095 
1096 	if (send_frame) {
1097 		skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1098 				    IEEE80211_DEAUTH_FRAME_LEN);
1099 		if (!skb)
1100 			return;
1101 
1102 		skb_reserve(skb, local->hw.extra_tx_headroom);
1103 
1104 		/* copy in frame */
1105 		memcpy(skb_put(skb, IEEE80211_DEAUTH_FRAME_LEN),
1106 		       mgmt, IEEE80211_DEAUTH_FRAME_LEN);
1107 
1108 		if (sdata->vif.type != NL80211_IFTYPE_STATION ||
1109 		    !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED))
1110 			IEEE80211_SKB_CB(skb)->flags |=
1111 				IEEE80211_TX_INTFL_DONT_ENCRYPT;
1112 
1113 		ieee80211_tx_skb(sdata, skb);
1114 	}
1115 }
1116 
1117 int ieee80211_build_preq_ies(struct ieee80211_local *local, u8 *buffer,
1118 			     size_t buffer_len, const u8 *ie, size_t ie_len,
1119 			     enum ieee80211_band band, u32 rate_mask,
1120 			     u8 channel)
1121 {
1122 	struct ieee80211_supported_band *sband;
1123 	u8 *pos = buffer, *end = buffer + buffer_len;
1124 	size_t offset = 0, noffset;
1125 	int supp_rates_len, i;
1126 	u8 rates[32];
1127 	int num_rates;
1128 	int ext_rates_len;
1129 
1130 	sband = local->hw.wiphy->bands[band];
1131 	if (WARN_ON_ONCE(!sband))
1132 		return 0;
1133 
1134 	num_rates = 0;
1135 	for (i = 0; i < sband->n_bitrates; i++) {
1136 		if ((BIT(i) & rate_mask) == 0)
1137 			continue; /* skip rate */
1138 		rates[num_rates++] = (u8) (sband->bitrates[i].bitrate / 5);
1139 	}
1140 
1141 	supp_rates_len = min_t(int, num_rates, 8);
1142 
1143 	if (end - pos < 2 + supp_rates_len)
1144 		goto out_err;
1145 	*pos++ = WLAN_EID_SUPP_RATES;
1146 	*pos++ = supp_rates_len;
1147 	memcpy(pos, rates, supp_rates_len);
1148 	pos += supp_rates_len;
1149 
1150 	/* insert "request information" if in custom IEs */
1151 	if (ie && ie_len) {
1152 		static const u8 before_extrates[] = {
1153 			WLAN_EID_SSID,
1154 			WLAN_EID_SUPP_RATES,
1155 			WLAN_EID_REQUEST,
1156 		};
1157 		noffset = ieee80211_ie_split(ie, ie_len,
1158 					     before_extrates,
1159 					     ARRAY_SIZE(before_extrates),
1160 					     offset);
1161 		if (end - pos < noffset - offset)
1162 			goto out_err;
1163 		memcpy(pos, ie + offset, noffset - offset);
1164 		pos += noffset - offset;
1165 		offset = noffset;
1166 	}
1167 
1168 	ext_rates_len = num_rates - supp_rates_len;
1169 	if (ext_rates_len > 0) {
1170 		if (end - pos < 2 + ext_rates_len)
1171 			goto out_err;
1172 		*pos++ = WLAN_EID_EXT_SUPP_RATES;
1173 		*pos++ = ext_rates_len;
1174 		memcpy(pos, rates + supp_rates_len, ext_rates_len);
1175 		pos += ext_rates_len;
1176 	}
1177 
1178 	if (channel && sband->band == IEEE80211_BAND_2GHZ) {
1179 		if (end - pos < 3)
1180 			goto out_err;
1181 		*pos++ = WLAN_EID_DS_PARAMS;
1182 		*pos++ = 1;
1183 		*pos++ = channel;
1184 	}
1185 
1186 	/* insert custom IEs that go before HT */
1187 	if (ie && ie_len) {
1188 		static const u8 before_ht[] = {
1189 			WLAN_EID_SSID,
1190 			WLAN_EID_SUPP_RATES,
1191 			WLAN_EID_REQUEST,
1192 			WLAN_EID_EXT_SUPP_RATES,
1193 			WLAN_EID_DS_PARAMS,
1194 			WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
1195 		};
1196 		noffset = ieee80211_ie_split(ie, ie_len,
1197 					     before_ht, ARRAY_SIZE(before_ht),
1198 					     offset);
1199 		if (end - pos < noffset - offset)
1200 			goto out_err;
1201 		memcpy(pos, ie + offset, noffset - offset);
1202 		pos += noffset - offset;
1203 		offset = noffset;
1204 	}
1205 
1206 	if (sband->ht_cap.ht_supported) {
1207 		if (end - pos < 2 + sizeof(struct ieee80211_ht_cap))
1208 			goto out_err;
1209 		pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap,
1210 						sband->ht_cap.cap);
1211 	}
1212 
1213 	/*
1214 	 * If adding more here, adjust code in main.c
1215 	 * that calculates local->scan_ies_len.
1216 	 */
1217 
1218 	/* add any remaining custom IEs */
1219 	if (ie && ie_len) {
1220 		noffset = ie_len;
1221 		if (end - pos < noffset - offset)
1222 			goto out_err;
1223 		memcpy(pos, ie + offset, noffset - offset);
1224 		pos += noffset - offset;
1225 	}
1226 
1227 	if (sband->vht_cap.vht_supported) {
1228 		if (end - pos < 2 + sizeof(struct ieee80211_vht_cap))
1229 			goto out_err;
1230 		pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap,
1231 						 sband->vht_cap.cap);
1232 	}
1233 
1234 	return pos - buffer;
1235  out_err:
1236 	WARN_ONCE(1, "not enough space for preq IEs\n");
1237 	return pos - buffer;
1238 }
1239 
1240 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata,
1241 					  u8 *dst, u32 ratemask,
1242 					  struct ieee80211_channel *chan,
1243 					  const u8 *ssid, size_t ssid_len,
1244 					  const u8 *ie, size_t ie_len,
1245 					  bool directed)
1246 {
1247 	struct ieee80211_local *local = sdata->local;
1248 	struct sk_buff *skb;
1249 	struct ieee80211_mgmt *mgmt;
1250 	u8 chan_no;
1251 	int ies_len;
1252 
1253 	/*
1254 	 * Do not send DS Channel parameter for directed probe requests
1255 	 * in order to maximize the chance that we get a response.  Some
1256 	 * badly-behaved APs don't respond when this parameter is included.
1257 	 */
1258 	if (directed)
1259 		chan_no = 0;
1260 	else
1261 		chan_no = ieee80211_frequency_to_channel(chan->center_freq);
1262 
1263 	skb = ieee80211_probereq_get(&local->hw, &sdata->vif,
1264 				     ssid, ssid_len, 100 + ie_len);
1265 	if (!skb)
1266 		return NULL;
1267 
1268 	ies_len = ieee80211_build_preq_ies(local, skb_tail_pointer(skb),
1269 					   skb_tailroom(skb),
1270 					   ie, ie_len, chan->band,
1271 					   ratemask, chan_no);
1272 	skb_put(skb, ies_len);
1273 
1274 	if (dst) {
1275 		mgmt = (struct ieee80211_mgmt *) skb->data;
1276 		memcpy(mgmt->da, dst, ETH_ALEN);
1277 		memcpy(mgmt->bssid, dst, ETH_ALEN);
1278 	}
1279 
1280 	IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1281 
1282 	return skb;
1283 }
1284 
1285 void ieee80211_send_probe_req(struct ieee80211_sub_if_data *sdata, u8 *dst,
1286 			      const u8 *ssid, size_t ssid_len,
1287 			      const u8 *ie, size_t ie_len,
1288 			      u32 ratemask, bool directed, u32 tx_flags,
1289 			      struct ieee80211_channel *channel, bool scan)
1290 {
1291 	struct sk_buff *skb;
1292 
1293 	skb = ieee80211_build_probe_req(sdata, dst, ratemask, channel,
1294 					ssid, ssid_len,
1295 					ie, ie_len, directed);
1296 	if (skb) {
1297 		IEEE80211_SKB_CB(skb)->flags |= tx_flags;
1298 		if (scan)
1299 			ieee80211_tx_skb_tid_band(sdata, skb, 7, channel->band);
1300 		else
1301 			ieee80211_tx_skb(sdata, skb);
1302 	}
1303 }
1304 
1305 u32 ieee80211_sta_get_rates(struct ieee80211_local *local,
1306 			    struct ieee802_11_elems *elems,
1307 			    enum ieee80211_band band, u32 *basic_rates)
1308 {
1309 	struct ieee80211_supported_band *sband;
1310 	struct ieee80211_rate *bitrates;
1311 	size_t num_rates;
1312 	u32 supp_rates;
1313 	int i, j;
1314 	sband = local->hw.wiphy->bands[band];
1315 
1316 	if (WARN_ON(!sband))
1317 		return 1;
1318 
1319 	bitrates = sband->bitrates;
1320 	num_rates = sband->n_bitrates;
1321 	supp_rates = 0;
1322 	for (i = 0; i < elems->supp_rates_len +
1323 		     elems->ext_supp_rates_len; i++) {
1324 		u8 rate = 0;
1325 		int own_rate;
1326 		bool is_basic;
1327 		if (i < elems->supp_rates_len)
1328 			rate = elems->supp_rates[i];
1329 		else if (elems->ext_supp_rates)
1330 			rate = elems->ext_supp_rates
1331 				[i - elems->supp_rates_len];
1332 		own_rate = 5 * (rate & 0x7f);
1333 		is_basic = !!(rate & 0x80);
1334 
1335 		if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY)
1336 			continue;
1337 
1338 		for (j = 0; j < num_rates; j++) {
1339 			if (bitrates[j].bitrate == own_rate) {
1340 				supp_rates |= BIT(j);
1341 				if (basic_rates && is_basic)
1342 					*basic_rates |= BIT(j);
1343 			}
1344 		}
1345 	}
1346 	return supp_rates;
1347 }
1348 
1349 void ieee80211_stop_device(struct ieee80211_local *local)
1350 {
1351 	ieee80211_led_radio(local, false);
1352 	ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO);
1353 
1354 	cancel_work_sync(&local->reconfig_filter);
1355 
1356 	flush_workqueue(local->workqueue);
1357 	drv_stop(local);
1358 }
1359 
1360 int ieee80211_reconfig(struct ieee80211_local *local)
1361 {
1362 	struct ieee80211_hw *hw = &local->hw;
1363 	struct ieee80211_sub_if_data *sdata;
1364 	struct ieee80211_chanctx *ctx;
1365 	struct sta_info *sta;
1366 	int res, i;
1367 	bool reconfig_due_to_wowlan = false;
1368 
1369 #ifdef CONFIG_PM
1370 	if (local->suspended)
1371 		local->resuming = true;
1372 
1373 	if (local->wowlan) {
1374 		local->wowlan = false;
1375 		res = drv_resume(local);
1376 		if (res < 0) {
1377 			local->resuming = false;
1378 			return res;
1379 		}
1380 		if (res == 0)
1381 			goto wake_up;
1382 		WARN_ON(res > 1);
1383 		/*
1384 		 * res is 1, which means the driver requested
1385 		 * to go through a regular reset on wakeup.
1386 		 */
1387 		reconfig_due_to_wowlan = true;
1388 	}
1389 #endif
1390 	/* everything else happens only if HW was up & running */
1391 	if (!local->open_count)
1392 		goto wake_up;
1393 
1394 	/*
1395 	 * Upon resume hardware can sometimes be goofy due to
1396 	 * various platform / driver / bus issues, so restarting
1397 	 * the device may at times not work immediately. Propagate
1398 	 * the error.
1399 	 */
1400 	res = drv_start(local);
1401 	if (res) {
1402 		WARN(local->suspended, "Hardware became unavailable "
1403 		     "upon resume. This could be a software issue "
1404 		     "prior to suspend or a hardware issue.\n");
1405 		return res;
1406 	}
1407 
1408 	/* setup fragmentation threshold */
1409 	drv_set_frag_threshold(local, hw->wiphy->frag_threshold);
1410 
1411 	/* setup RTS threshold */
1412 	drv_set_rts_threshold(local, hw->wiphy->rts_threshold);
1413 
1414 	/* reset coverage class */
1415 	drv_set_coverage_class(local, hw->wiphy->coverage_class);
1416 
1417 	ieee80211_led_radio(local, true);
1418 	ieee80211_mod_tpt_led_trig(local,
1419 				   IEEE80211_TPT_LEDTRIG_FL_RADIO, 0);
1420 
1421 	/* add interfaces */
1422 	sdata = rtnl_dereference(local->monitor_sdata);
1423 	if (sdata) {
1424 		res = drv_add_interface(local, sdata);
1425 		if (WARN_ON(res)) {
1426 			rcu_assign_pointer(local->monitor_sdata, NULL);
1427 			synchronize_net();
1428 			kfree(sdata);
1429 		}
1430 	}
1431 
1432 	list_for_each_entry(sdata, &local->interfaces, list) {
1433 		if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
1434 		    sdata->vif.type != NL80211_IFTYPE_MONITOR &&
1435 		    ieee80211_sdata_running(sdata))
1436 			res = drv_add_interface(local, sdata);
1437 	}
1438 
1439 	/* add channel contexts */
1440 	if (local->use_chanctx) {
1441 		mutex_lock(&local->chanctx_mtx);
1442 		list_for_each_entry(ctx, &local->chanctx_list, list)
1443 			WARN_ON(drv_add_chanctx(local, ctx));
1444 		mutex_unlock(&local->chanctx_mtx);
1445 	}
1446 
1447 	list_for_each_entry(sdata, &local->interfaces, list) {
1448 		struct ieee80211_chanctx_conf *ctx_conf;
1449 
1450 		if (!ieee80211_sdata_running(sdata))
1451 			continue;
1452 
1453 		mutex_lock(&local->chanctx_mtx);
1454 		ctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
1455 				lockdep_is_held(&local->chanctx_mtx));
1456 		if (ctx_conf) {
1457 			ctx = container_of(ctx_conf, struct ieee80211_chanctx,
1458 					   conf);
1459 			drv_assign_vif_chanctx(local, sdata, ctx);
1460 		}
1461 		mutex_unlock(&local->chanctx_mtx);
1462 	}
1463 
1464 	sdata = rtnl_dereference(local->monitor_sdata);
1465 	if (sdata && local->use_chanctx && ieee80211_sdata_running(sdata)) {
1466 		struct ieee80211_chanctx_conf *ctx_conf;
1467 
1468 		mutex_lock(&local->chanctx_mtx);
1469 		ctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
1470 				lockdep_is_held(&local->chanctx_mtx));
1471 		if (ctx_conf) {
1472 			ctx = container_of(ctx_conf, struct ieee80211_chanctx,
1473 					   conf);
1474 			drv_assign_vif_chanctx(local, sdata, ctx);
1475 		}
1476 		mutex_unlock(&local->chanctx_mtx);
1477 	}
1478 
1479 	/* add STAs back */
1480 	mutex_lock(&local->sta_mtx);
1481 	list_for_each_entry(sta, &local->sta_list, list) {
1482 		enum ieee80211_sta_state state;
1483 
1484 		if (!sta->uploaded)
1485 			continue;
1486 
1487 		/* AP-mode stations will be added later */
1488 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP)
1489 			continue;
1490 
1491 		for (state = IEEE80211_STA_NOTEXIST;
1492 		     state < sta->sta_state; state++)
1493 			WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
1494 					      state + 1));
1495 	}
1496 	mutex_unlock(&local->sta_mtx);
1497 
1498 	/* reconfigure tx conf */
1499 	if (hw->queues >= IEEE80211_NUM_ACS) {
1500 		list_for_each_entry(sdata, &local->interfaces, list) {
1501 			if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
1502 			    sdata->vif.type == NL80211_IFTYPE_MONITOR ||
1503 			    !ieee80211_sdata_running(sdata))
1504 				continue;
1505 
1506 			for (i = 0; i < IEEE80211_NUM_ACS; i++)
1507 				drv_conf_tx(local, sdata, i,
1508 					    &sdata->tx_conf[i]);
1509 		}
1510 	}
1511 
1512 	/* reconfigure hardware */
1513 	ieee80211_hw_config(local, ~0);
1514 
1515 	ieee80211_configure_filter(local);
1516 
1517 	/* Finally also reconfigure all the BSS information */
1518 	list_for_each_entry(sdata, &local->interfaces, list) {
1519 		u32 changed;
1520 
1521 		if (!ieee80211_sdata_running(sdata))
1522 			continue;
1523 
1524 		/* common change flags for all interface types */
1525 		changed = BSS_CHANGED_ERP_CTS_PROT |
1526 			  BSS_CHANGED_ERP_PREAMBLE |
1527 			  BSS_CHANGED_ERP_SLOT |
1528 			  BSS_CHANGED_HT |
1529 			  BSS_CHANGED_BASIC_RATES |
1530 			  BSS_CHANGED_BEACON_INT |
1531 			  BSS_CHANGED_BSSID |
1532 			  BSS_CHANGED_CQM |
1533 			  BSS_CHANGED_QOS |
1534 			  BSS_CHANGED_IDLE |
1535 			  BSS_CHANGED_TXPOWER;
1536 
1537 #ifdef CONFIG_PM
1538 		if (local->resuming && !reconfig_due_to_wowlan)
1539 			sdata->vif.bss_conf = sdata->suspend_bss_conf;
1540 #endif
1541 
1542 		switch (sdata->vif.type) {
1543 		case NL80211_IFTYPE_STATION:
1544 			changed |= BSS_CHANGED_ASSOC |
1545 				   BSS_CHANGED_ARP_FILTER |
1546 				   BSS_CHANGED_PS;
1547 
1548 			if (sdata->u.mgd.dtim_period)
1549 				changed |= BSS_CHANGED_DTIM_PERIOD;
1550 
1551 			mutex_lock(&sdata->u.mgd.mtx);
1552 			ieee80211_bss_info_change_notify(sdata, changed);
1553 			mutex_unlock(&sdata->u.mgd.mtx);
1554 			break;
1555 		case NL80211_IFTYPE_ADHOC:
1556 			changed |= BSS_CHANGED_IBSS;
1557 			/* fall through */
1558 		case NL80211_IFTYPE_AP:
1559 			changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS;
1560 
1561 			if (sdata->vif.type == NL80211_IFTYPE_AP) {
1562 				changed |= BSS_CHANGED_AP_PROBE_RESP;
1563 
1564 				if (rcu_access_pointer(sdata->u.ap.beacon))
1565 					drv_start_ap(local, sdata);
1566 			}
1567 
1568 			/* fall through */
1569 		case NL80211_IFTYPE_MESH_POINT:
1570 			if (sdata->vif.bss_conf.enable_beacon) {
1571 				changed |= BSS_CHANGED_BEACON |
1572 					   BSS_CHANGED_BEACON_ENABLED;
1573 				ieee80211_bss_info_change_notify(sdata, changed);
1574 			}
1575 			break;
1576 		case NL80211_IFTYPE_WDS:
1577 			break;
1578 		case NL80211_IFTYPE_AP_VLAN:
1579 		case NL80211_IFTYPE_MONITOR:
1580 			/* ignore virtual */
1581 			break;
1582 		case NL80211_IFTYPE_P2P_DEVICE:
1583 			changed = BSS_CHANGED_IDLE;
1584 			break;
1585 		case NL80211_IFTYPE_UNSPECIFIED:
1586 		case NUM_NL80211_IFTYPES:
1587 		case NL80211_IFTYPE_P2P_CLIENT:
1588 		case NL80211_IFTYPE_P2P_GO:
1589 			WARN_ON(1);
1590 			break;
1591 		}
1592 	}
1593 
1594 	ieee80211_recalc_ps(local, -1);
1595 
1596 	/*
1597 	 * The sta might be in psm against the ap (e.g. because
1598 	 * this was the state before a hw restart), so we
1599 	 * explicitly send a null packet in order to make sure
1600 	 * it'll sync against the ap (and get out of psm).
1601 	 */
1602 	if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) {
1603 		list_for_each_entry(sdata, &local->interfaces, list) {
1604 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
1605 				continue;
1606 			if (!sdata->u.mgd.associated)
1607 				continue;
1608 
1609 			ieee80211_send_nullfunc(local, sdata, 0);
1610 		}
1611 	}
1612 
1613 	/* APs are now beaconing, add back stations */
1614 	mutex_lock(&local->sta_mtx);
1615 	list_for_each_entry(sta, &local->sta_list, list) {
1616 		enum ieee80211_sta_state state;
1617 
1618 		if (!sta->uploaded)
1619 			continue;
1620 
1621 		if (sta->sdata->vif.type != NL80211_IFTYPE_AP)
1622 			continue;
1623 
1624 		for (state = IEEE80211_STA_NOTEXIST;
1625 		     state < sta->sta_state; state++)
1626 			WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
1627 					      state + 1));
1628 	}
1629 	mutex_unlock(&local->sta_mtx);
1630 
1631 	/* add back keys */
1632 	list_for_each_entry(sdata, &local->interfaces, list)
1633 		if (ieee80211_sdata_running(sdata))
1634 			ieee80211_enable_keys(sdata);
1635 
1636  wake_up:
1637 	local->in_reconfig = false;
1638 	barrier();
1639 
1640 	/*
1641 	 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation
1642 	 * sessions can be established after a resume.
1643 	 *
1644 	 * Also tear down aggregation sessions since reconfiguring
1645 	 * them in a hardware restart scenario is not easily done
1646 	 * right now, and the hardware will have lost information
1647 	 * about the sessions, but we and the AP still think they
1648 	 * are active. This is really a workaround though.
1649 	 */
1650 	if (hw->flags & IEEE80211_HW_AMPDU_AGGREGATION) {
1651 		mutex_lock(&local->sta_mtx);
1652 
1653 		list_for_each_entry(sta, &local->sta_list, list) {
1654 			ieee80211_sta_tear_down_BA_sessions(
1655 					sta, AGG_STOP_LOCAL_REQUEST);
1656 			clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
1657 		}
1658 
1659 		mutex_unlock(&local->sta_mtx);
1660 	}
1661 
1662 	ieee80211_wake_queues_by_reason(hw,
1663 			IEEE80211_QUEUE_STOP_REASON_SUSPEND);
1664 
1665 	/*
1666 	 * If this is for hw restart things are still running.
1667 	 * We may want to change that later, however.
1668 	 */
1669 	if (!local->suspended || reconfig_due_to_wowlan)
1670 		drv_restart_complete(local);
1671 
1672 	if (!local->suspended)
1673 		return 0;
1674 
1675 #ifdef CONFIG_PM
1676 	/* first set suspended false, then resuming */
1677 	local->suspended = false;
1678 	mb();
1679 	local->resuming = false;
1680 
1681 	list_for_each_entry(sdata, &local->interfaces, list) {
1682 		switch(sdata->vif.type) {
1683 		case NL80211_IFTYPE_STATION:
1684 			ieee80211_sta_restart(sdata);
1685 			break;
1686 		case NL80211_IFTYPE_ADHOC:
1687 			ieee80211_ibss_restart(sdata);
1688 			break;
1689 		case NL80211_IFTYPE_MESH_POINT:
1690 			ieee80211_mesh_restart(sdata);
1691 			break;
1692 		default:
1693 			break;
1694 		}
1695 	}
1696 
1697 	mod_timer(&local->sta_cleanup, jiffies + 1);
1698 
1699 	mutex_lock(&local->sta_mtx);
1700 	list_for_each_entry(sta, &local->sta_list, list)
1701 		mesh_plink_restart(sta);
1702 	mutex_unlock(&local->sta_mtx);
1703 #else
1704 	WARN_ON(1);
1705 #endif
1706 	return 0;
1707 }
1708 
1709 void ieee80211_resume_disconnect(struct ieee80211_vif *vif)
1710 {
1711 	struct ieee80211_sub_if_data *sdata;
1712 	struct ieee80211_local *local;
1713 	struct ieee80211_key *key;
1714 
1715 	if (WARN_ON(!vif))
1716 		return;
1717 
1718 	sdata = vif_to_sdata(vif);
1719 	local = sdata->local;
1720 
1721 	if (WARN_ON(!local->resuming))
1722 		return;
1723 
1724 	if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1725 		return;
1726 
1727 	sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME;
1728 
1729 	mutex_lock(&local->key_mtx);
1730 	list_for_each_entry(key, &sdata->key_list, list)
1731 		key->flags |= KEY_FLAG_TAINTED;
1732 	mutex_unlock(&local->key_mtx);
1733 }
1734 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect);
1735 
1736 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata)
1737 {
1738 	struct ieee80211_local *local = sdata->local;
1739 	struct ieee80211_chanctx_conf *chanctx_conf;
1740 	struct ieee80211_chanctx *chanctx;
1741 
1742 	mutex_lock(&local->chanctx_mtx);
1743 
1744 	chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
1745 					lockdep_is_held(&local->chanctx_mtx));
1746 
1747 	if (WARN_ON_ONCE(!chanctx_conf))
1748 		goto unlock;
1749 
1750 	chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf);
1751 	ieee80211_recalc_smps_chanctx(local, chanctx);
1752  unlock:
1753 	mutex_unlock(&local->chanctx_mtx);
1754 }
1755 
1756 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1757 {
1758 	int i;
1759 
1760 	for (i = 0; i < n_ids; i++)
1761 		if (ids[i] == id)
1762 			return true;
1763 	return false;
1764 }
1765 
1766 /**
1767  * ieee80211_ie_split - split an IE buffer according to ordering
1768  *
1769  * @ies: the IE buffer
1770  * @ielen: the length of the IE buffer
1771  * @ids: an array with element IDs that are allowed before
1772  *	the split
1773  * @n_ids: the size of the element ID array
1774  * @offset: offset where to start splitting in the buffer
1775  *
1776  * This function splits an IE buffer by updating the @offset
1777  * variable to point to the location where the buffer should be
1778  * split.
1779  *
1780  * It assumes that the given IE buffer is well-formed, this
1781  * has to be guaranteed by the caller!
1782  *
1783  * It also assumes that the IEs in the buffer are ordered
1784  * correctly, if not the result of using this function will not
1785  * be ordered correctly either, i.e. it does no reordering.
1786  *
1787  * The function returns the offset where the next part of the
1788  * buffer starts, which may be @ielen if the entire (remainder)
1789  * of the buffer should be used.
1790  */
1791 size_t ieee80211_ie_split(const u8 *ies, size_t ielen,
1792 			  const u8 *ids, int n_ids, size_t offset)
1793 {
1794 	size_t pos = offset;
1795 
1796 	while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos]))
1797 		pos += 2 + ies[pos + 1];
1798 
1799 	return pos;
1800 }
1801 
1802 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset)
1803 {
1804 	size_t pos = offset;
1805 
1806 	while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC)
1807 		pos += 2 + ies[pos + 1];
1808 
1809 	return pos;
1810 }
1811 
1812 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata,
1813 					    int rssi_min_thold,
1814 					    int rssi_max_thold)
1815 {
1816 	trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold);
1817 
1818 	if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
1819 		return;
1820 
1821 	/*
1822 	 * Scale up threshold values before storing it, as the RSSI averaging
1823 	 * algorithm uses a scaled up value as well. Change this scaling
1824 	 * factor if the RSSI averaging algorithm changes.
1825 	 */
1826 	sdata->u.mgd.rssi_min_thold = rssi_min_thold*16;
1827 	sdata->u.mgd.rssi_max_thold = rssi_max_thold*16;
1828 }
1829 
1830 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif,
1831 				    int rssi_min_thold,
1832 				    int rssi_max_thold)
1833 {
1834 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1835 
1836 	WARN_ON(rssi_min_thold == rssi_max_thold ||
1837 		rssi_min_thold > rssi_max_thold);
1838 
1839 	_ieee80211_enable_rssi_reports(sdata, rssi_min_thold,
1840 				       rssi_max_thold);
1841 }
1842 EXPORT_SYMBOL(ieee80211_enable_rssi_reports);
1843 
1844 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif)
1845 {
1846 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1847 
1848 	_ieee80211_enable_rssi_reports(sdata, 0, 0);
1849 }
1850 EXPORT_SYMBOL(ieee80211_disable_rssi_reports);
1851 
1852 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
1853 			      u16 cap)
1854 {
1855 	__le16 tmp;
1856 
1857 	*pos++ = WLAN_EID_HT_CAPABILITY;
1858 	*pos++ = sizeof(struct ieee80211_ht_cap);
1859 	memset(pos, 0, sizeof(struct ieee80211_ht_cap));
1860 
1861 	/* capability flags */
1862 	tmp = cpu_to_le16(cap);
1863 	memcpy(pos, &tmp, sizeof(u16));
1864 	pos += sizeof(u16);
1865 
1866 	/* AMPDU parameters */
1867 	*pos++ = ht_cap->ampdu_factor |
1868 		 (ht_cap->ampdu_density <<
1869 			IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT);
1870 
1871 	/* MCS set */
1872 	memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs));
1873 	pos += sizeof(ht_cap->mcs);
1874 
1875 	/* extended capabilities */
1876 	pos += sizeof(__le16);
1877 
1878 	/* BF capabilities */
1879 	pos += sizeof(__le32);
1880 
1881 	/* antenna selection */
1882 	pos += sizeof(u8);
1883 
1884 	return pos;
1885 }
1886 
1887 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
1888 			       u32 cap)
1889 {
1890 	__le32 tmp;
1891 
1892 	*pos++ = WLAN_EID_VHT_CAPABILITY;
1893 	*pos++ = sizeof(struct ieee80211_vht_cap);
1894 	memset(pos, 0, sizeof(struct ieee80211_vht_cap));
1895 
1896 	/* capability flags */
1897 	tmp = cpu_to_le32(cap);
1898 	memcpy(pos, &tmp, sizeof(u32));
1899 	pos += sizeof(u32);
1900 
1901 	/* VHT MCS set */
1902 	memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs));
1903 	pos += sizeof(vht_cap->vht_mcs);
1904 
1905 	return pos;
1906 }
1907 
1908 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
1909 			       const struct cfg80211_chan_def *chandef,
1910 			       u16 prot_mode)
1911 {
1912 	struct ieee80211_ht_operation *ht_oper;
1913 	/* Build HT Information */
1914 	*pos++ = WLAN_EID_HT_OPERATION;
1915 	*pos++ = sizeof(struct ieee80211_ht_operation);
1916 	ht_oper = (struct ieee80211_ht_operation *)pos;
1917 	ht_oper->primary_chan = ieee80211_frequency_to_channel(
1918 					chandef->chan->center_freq);
1919 	switch (chandef->width) {
1920 	case NL80211_CHAN_WIDTH_160:
1921 	case NL80211_CHAN_WIDTH_80P80:
1922 	case NL80211_CHAN_WIDTH_80:
1923 	case NL80211_CHAN_WIDTH_40:
1924 		if (chandef->center_freq1 > chandef->chan->center_freq)
1925 			ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
1926 		else
1927 			ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
1928 		break;
1929 	default:
1930 		ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE;
1931 		break;
1932 	}
1933 	if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 &&
1934 	    chandef->width != NL80211_CHAN_WIDTH_20_NOHT &&
1935 	    chandef->width != NL80211_CHAN_WIDTH_20)
1936 		ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY;
1937 
1938 	ht_oper->operation_mode = cpu_to_le16(prot_mode);
1939 	ht_oper->stbc_param = 0x0000;
1940 
1941 	/* It seems that Basic MCS set and Supported MCS set
1942 	   are identical for the first 10 bytes */
1943 	memset(&ht_oper->basic_set, 0, 16);
1944 	memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10);
1945 
1946 	return pos + sizeof(struct ieee80211_ht_operation);
1947 }
1948 
1949 void ieee80211_ht_oper_to_chandef(struct ieee80211_channel *control_chan,
1950 				  const struct ieee80211_ht_operation *ht_oper,
1951 				  struct cfg80211_chan_def *chandef)
1952 {
1953 	enum nl80211_channel_type channel_type;
1954 
1955 	if (!ht_oper) {
1956 		cfg80211_chandef_create(chandef, control_chan,
1957 					NL80211_CHAN_NO_HT);
1958 		return;
1959 	}
1960 
1961 	switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) {
1962 	case IEEE80211_HT_PARAM_CHA_SEC_NONE:
1963 		channel_type = NL80211_CHAN_HT20;
1964 		break;
1965 	case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
1966 		channel_type = NL80211_CHAN_HT40PLUS;
1967 		break;
1968 	case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
1969 		channel_type = NL80211_CHAN_HT40MINUS;
1970 		break;
1971 	default:
1972 		channel_type = NL80211_CHAN_NO_HT;
1973 	}
1974 
1975 	cfg80211_chandef_create(chandef, control_chan, channel_type);
1976 }
1977 
1978 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata,
1979 			    struct sk_buff *skb, bool need_basic,
1980 			    enum ieee80211_band band)
1981 {
1982 	struct ieee80211_local *local = sdata->local;
1983 	struct ieee80211_supported_band *sband;
1984 	int rate;
1985 	u8 i, rates, *pos;
1986 	u32 basic_rates = sdata->vif.bss_conf.basic_rates;
1987 
1988 	sband = local->hw.wiphy->bands[band];
1989 	rates = sband->n_bitrates;
1990 	if (rates > 8)
1991 		rates = 8;
1992 
1993 	if (skb_tailroom(skb) < rates + 2)
1994 		return -ENOMEM;
1995 
1996 	pos = skb_put(skb, rates + 2);
1997 	*pos++ = WLAN_EID_SUPP_RATES;
1998 	*pos++ = rates;
1999 	for (i = 0; i < rates; i++) {
2000 		u8 basic = 0;
2001 		if (need_basic && basic_rates & BIT(i))
2002 			basic = 0x80;
2003 		rate = sband->bitrates[i].bitrate;
2004 		*pos++ = basic | (u8) (rate / 5);
2005 	}
2006 
2007 	return 0;
2008 }
2009 
2010 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata,
2011 				struct sk_buff *skb, bool need_basic,
2012 				enum ieee80211_band band)
2013 {
2014 	struct ieee80211_local *local = sdata->local;
2015 	struct ieee80211_supported_band *sband;
2016 	int rate;
2017 	u8 i, exrates, *pos;
2018 	u32 basic_rates = sdata->vif.bss_conf.basic_rates;
2019 
2020 	sband = local->hw.wiphy->bands[band];
2021 	exrates = sband->n_bitrates;
2022 	if (exrates > 8)
2023 		exrates -= 8;
2024 	else
2025 		exrates = 0;
2026 
2027 	if (skb_tailroom(skb) < exrates + 2)
2028 		return -ENOMEM;
2029 
2030 	if (exrates) {
2031 		pos = skb_put(skb, exrates + 2);
2032 		*pos++ = WLAN_EID_EXT_SUPP_RATES;
2033 		*pos++ = exrates;
2034 		for (i = 8; i < sband->n_bitrates; i++) {
2035 			u8 basic = 0;
2036 			if (need_basic && basic_rates & BIT(i))
2037 				basic = 0x80;
2038 			rate = sband->bitrates[i].bitrate;
2039 			*pos++ = basic | (u8) (rate / 5);
2040 		}
2041 	}
2042 	return 0;
2043 }
2044 
2045 int ieee80211_ave_rssi(struct ieee80211_vif *vif)
2046 {
2047 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
2048 	struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
2049 
2050 	if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) {
2051 		/* non-managed type inferfaces */
2052 		return 0;
2053 	}
2054 	return ifmgd->ave_beacon_signal;
2055 }
2056 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi);
2057 
2058 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs)
2059 {
2060 	if (!mcs)
2061 		return 1;
2062 
2063 	/* TODO: consider rx_highest */
2064 
2065 	if (mcs->rx_mask[3])
2066 		return 4;
2067 	if (mcs->rx_mask[2])
2068 		return 3;
2069 	if (mcs->rx_mask[1])
2070 		return 2;
2071 	return 1;
2072 }
2073 
2074 /**
2075  * ieee80211_calculate_rx_timestamp - calculate timestamp in frame
2076  * @local: mac80211 hw info struct
2077  * @status: RX status
2078  * @mpdu_len: total MPDU length (including FCS)
2079  * @mpdu_offset: offset into MPDU to calculate timestamp at
2080  *
2081  * This function calculates the RX timestamp at the given MPDU offset, taking
2082  * into account what the RX timestamp was. An offset of 0 will just normalize
2083  * the timestamp to TSF at beginning of MPDU reception.
2084  */
2085 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local,
2086 				     struct ieee80211_rx_status *status,
2087 				     unsigned int mpdu_len,
2088 				     unsigned int mpdu_offset)
2089 {
2090 	u64 ts = status->mactime;
2091 	struct rate_info ri;
2092 	u16 rate;
2093 
2094 	if (WARN_ON(!ieee80211_have_rx_timestamp(status)))
2095 		return 0;
2096 
2097 	memset(&ri, 0, sizeof(ri));
2098 
2099 	/* Fill cfg80211 rate info */
2100 	if (status->flag & RX_FLAG_HT) {
2101 		ri.mcs = status->rate_idx;
2102 		ri.flags |= RATE_INFO_FLAGS_MCS;
2103 		if (status->flag & RX_FLAG_40MHZ)
2104 			ri.flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH;
2105 		if (status->flag & RX_FLAG_SHORT_GI)
2106 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
2107 	} else if (status->flag & RX_FLAG_VHT) {
2108 		ri.flags |= RATE_INFO_FLAGS_VHT_MCS;
2109 		ri.mcs = status->rate_idx;
2110 		ri.nss = status->vht_nss;
2111 		if (status->flag & RX_FLAG_40MHZ)
2112 			ri.flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH;
2113 		if (status->flag & RX_FLAG_80MHZ)
2114 			ri.flags |= RATE_INFO_FLAGS_80_MHZ_WIDTH;
2115 		if (status->flag & RX_FLAG_80P80MHZ)
2116 			ri.flags |= RATE_INFO_FLAGS_80P80_MHZ_WIDTH;
2117 		if (status->flag & RX_FLAG_160MHZ)
2118 			ri.flags |= RATE_INFO_FLAGS_160_MHZ_WIDTH;
2119 		if (status->flag & RX_FLAG_SHORT_GI)
2120 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
2121 	} else {
2122 		struct ieee80211_supported_band *sband;
2123 
2124 		sband = local->hw.wiphy->bands[status->band];
2125 		ri.legacy = sband->bitrates[status->rate_idx].bitrate;
2126 	}
2127 
2128 	rate = cfg80211_calculate_bitrate(&ri);
2129 
2130 	/* rewind from end of MPDU */
2131 	if (status->flag & RX_FLAG_MACTIME_END)
2132 		ts -= mpdu_len * 8 * 10 / rate;
2133 
2134 	ts += mpdu_offset * 8 * 10 / rate;
2135 
2136 	return ts;
2137 }
2138 
2139 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local)
2140 {
2141 	struct ieee80211_sub_if_data *sdata;
2142 
2143 	mutex_lock(&local->iflist_mtx);
2144 	list_for_each_entry(sdata, &local->interfaces, list) {
2145 		cancel_delayed_work_sync(&sdata->dfs_cac_timer_work);
2146 
2147 		if (sdata->wdev.cac_started) {
2148 			ieee80211_vif_release_channel(sdata);
2149 			cfg80211_cac_event(sdata->dev,
2150 					   NL80211_RADAR_CAC_ABORTED,
2151 					   GFP_KERNEL);
2152 		}
2153 	}
2154 	mutex_unlock(&local->iflist_mtx);
2155 }
2156 
2157 void ieee80211_dfs_radar_detected_work(struct work_struct *work)
2158 {
2159 	struct ieee80211_local *local =
2160 		container_of(work, struct ieee80211_local, radar_detected_work);
2161 	struct cfg80211_chan_def chandef;
2162 
2163 	ieee80211_dfs_cac_cancel(local);
2164 
2165 	if (local->use_chanctx)
2166 		/* currently not handled */
2167 		WARN_ON(1);
2168 	else {
2169 		cfg80211_chandef_create(&chandef, local->hw.conf.channel,
2170 					local->hw.conf.channel_type);
2171 		cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL);
2172 	}
2173 }
2174 
2175 void ieee80211_radar_detected(struct ieee80211_hw *hw)
2176 {
2177 	struct ieee80211_local *local = hw_to_local(hw);
2178 
2179 	trace_api_radar_detected(local);
2180 
2181 	ieee80211_queue_work(hw, &local->radar_detected_work);
2182 }
2183 EXPORT_SYMBOL(ieee80211_radar_detected);
2184