1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2023 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 28 #include "ieee80211_i.h" 29 #include "driver-ops.h" 30 #include "rate.h" 31 #include "mesh.h" 32 #include "wme.h" 33 #include "led.h" 34 #include "wep.h" 35 36 /* privid for wiphys to determine whether they belong to us or not */ 37 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 38 39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 40 { 41 struct ieee80211_local *local; 42 43 local = wiphy_priv(wiphy); 44 return &local->hw; 45 } 46 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 47 48 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 49 enum nl80211_iftype type) 50 { 51 __le16 fc = hdr->frame_control; 52 53 if (ieee80211_is_data(fc)) { 54 if (len < 24) /* drop incorrect hdr len (data) */ 55 return NULL; 56 57 if (ieee80211_has_a4(fc)) 58 return NULL; 59 if (ieee80211_has_tods(fc)) 60 return hdr->addr1; 61 if (ieee80211_has_fromds(fc)) 62 return hdr->addr2; 63 64 return hdr->addr3; 65 } 66 67 if (ieee80211_is_s1g_beacon(fc)) { 68 struct ieee80211_ext *ext = (void *) hdr; 69 70 return ext->u.s1g_beacon.sa; 71 } 72 73 if (ieee80211_is_mgmt(fc)) { 74 if (len < 24) /* drop incorrect hdr len (mgmt) */ 75 return NULL; 76 return hdr->addr3; 77 } 78 79 if (ieee80211_is_ctl(fc)) { 80 if (ieee80211_is_pspoll(fc)) 81 return hdr->addr1; 82 83 if (ieee80211_is_back_req(fc)) { 84 switch (type) { 85 case NL80211_IFTYPE_STATION: 86 return hdr->addr2; 87 case NL80211_IFTYPE_AP: 88 case NL80211_IFTYPE_AP_VLAN: 89 return hdr->addr1; 90 default: 91 break; /* fall through to the return */ 92 } 93 } 94 } 95 96 return NULL; 97 } 98 EXPORT_SYMBOL(ieee80211_get_bssid); 99 100 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 101 { 102 struct sk_buff *skb; 103 struct ieee80211_hdr *hdr; 104 105 skb_queue_walk(&tx->skbs, skb) { 106 hdr = (struct ieee80211_hdr *) skb->data; 107 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 108 } 109 } 110 111 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 112 int rate, int erp, int short_preamble, 113 int shift) 114 { 115 int dur; 116 117 /* calculate duration (in microseconds, rounded up to next higher 118 * integer if it includes a fractional microsecond) to send frame of 119 * len bytes (does not include FCS) at the given rate. Duration will 120 * also include SIFS. 121 * 122 * rate is in 100 kbps, so divident is multiplied by 10 in the 123 * DIV_ROUND_UP() operations. 124 * 125 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and 126 * is assumed to be 0 otherwise. 127 */ 128 129 if (band == NL80211_BAND_5GHZ || erp) { 130 /* 131 * OFDM: 132 * 133 * N_DBPS = DATARATE x 4 134 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 135 * (16 = SIGNAL time, 6 = tail bits) 136 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 137 * 138 * T_SYM = 4 usec 139 * 802.11a - 18.5.2: aSIFSTime = 16 usec 140 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 141 * signal ext = 6 usec 142 */ 143 dur = 16; /* SIFS + signal ext */ 144 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 145 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 146 147 /* IEEE 802.11-2012 18.3.2.4: all values above are: 148 * * times 4 for 5 MHz 149 * * times 2 for 10 MHz 150 */ 151 dur *= 1 << shift; 152 153 /* rates should already consider the channel bandwidth, 154 * don't apply divisor again. 155 */ 156 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 157 4 * rate); /* T_SYM x N_SYM */ 158 } else { 159 /* 160 * 802.11b or 802.11g with 802.11b compatibility: 161 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 162 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 163 * 164 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 165 * aSIFSTime = 10 usec 166 * aPreambleLength = 144 usec or 72 usec with short preamble 167 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 168 */ 169 dur = 10; /* aSIFSTime = 10 usec */ 170 dur += short_preamble ? (72 + 24) : (144 + 48); 171 172 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 173 } 174 175 return dur; 176 } 177 178 /* Exported duration function for driver use */ 179 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 180 struct ieee80211_vif *vif, 181 enum nl80211_band band, 182 size_t frame_len, 183 struct ieee80211_rate *rate) 184 { 185 struct ieee80211_sub_if_data *sdata; 186 u16 dur; 187 int erp, shift = 0; 188 bool short_preamble = false; 189 190 erp = 0; 191 if (vif) { 192 sdata = vif_to_sdata(vif); 193 short_preamble = sdata->vif.bss_conf.use_short_preamble; 194 if (sdata->deflink.operating_11g_mode) 195 erp = rate->flags & IEEE80211_RATE_ERP_G; 196 shift = ieee80211_vif_get_shift(vif); 197 } 198 199 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 200 short_preamble, shift); 201 202 return cpu_to_le16(dur); 203 } 204 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 205 206 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 207 struct ieee80211_vif *vif, size_t frame_len, 208 const struct ieee80211_tx_info *frame_txctl) 209 { 210 struct ieee80211_local *local = hw_to_local(hw); 211 struct ieee80211_rate *rate; 212 struct ieee80211_sub_if_data *sdata; 213 bool short_preamble; 214 int erp, shift = 0, bitrate; 215 u16 dur; 216 struct ieee80211_supported_band *sband; 217 218 sband = local->hw.wiphy->bands[frame_txctl->band]; 219 220 short_preamble = false; 221 222 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 223 224 erp = 0; 225 if (vif) { 226 sdata = vif_to_sdata(vif); 227 short_preamble = sdata->vif.bss_conf.use_short_preamble; 228 if (sdata->deflink.operating_11g_mode) 229 erp = rate->flags & IEEE80211_RATE_ERP_G; 230 shift = ieee80211_vif_get_shift(vif); 231 } 232 233 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 234 235 /* CTS duration */ 236 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 237 erp, short_preamble, shift); 238 /* Data frame duration */ 239 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 240 erp, short_preamble, shift); 241 /* ACK duration */ 242 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 243 erp, short_preamble, shift); 244 245 return cpu_to_le16(dur); 246 } 247 EXPORT_SYMBOL(ieee80211_rts_duration); 248 249 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 250 struct ieee80211_vif *vif, 251 size_t frame_len, 252 const struct ieee80211_tx_info *frame_txctl) 253 { 254 struct ieee80211_local *local = hw_to_local(hw); 255 struct ieee80211_rate *rate; 256 struct ieee80211_sub_if_data *sdata; 257 bool short_preamble; 258 int erp, shift = 0, bitrate; 259 u16 dur; 260 struct ieee80211_supported_band *sband; 261 262 sband = local->hw.wiphy->bands[frame_txctl->band]; 263 264 short_preamble = false; 265 266 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 267 erp = 0; 268 if (vif) { 269 sdata = vif_to_sdata(vif); 270 short_preamble = sdata->vif.bss_conf.use_short_preamble; 271 if (sdata->deflink.operating_11g_mode) 272 erp = rate->flags & IEEE80211_RATE_ERP_G; 273 shift = ieee80211_vif_get_shift(vif); 274 } 275 276 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 277 278 /* Data frame duration */ 279 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 280 erp, short_preamble, shift); 281 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 282 /* ACK duration */ 283 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 284 erp, short_preamble, shift); 285 } 286 287 return cpu_to_le16(dur); 288 } 289 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 290 291 static void wake_tx_push_queue(struct ieee80211_local *local, 292 struct ieee80211_sub_if_data *sdata, 293 struct ieee80211_txq *queue) 294 { 295 struct ieee80211_tx_control control = { 296 .sta = queue->sta, 297 }; 298 struct sk_buff *skb; 299 300 while (1) { 301 skb = ieee80211_tx_dequeue(&local->hw, queue); 302 if (!skb) 303 break; 304 305 drv_tx(local, &control, skb); 306 } 307 } 308 309 /* wake_tx_queue handler for driver not implementing a custom one*/ 310 void ieee80211_handle_wake_tx_queue(struct ieee80211_hw *hw, 311 struct ieee80211_txq *txq) 312 { 313 struct ieee80211_local *local = hw_to_local(hw); 314 struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif); 315 struct ieee80211_txq *queue; 316 317 spin_lock(&local->handle_wake_tx_queue_lock); 318 319 /* Use ieee80211_next_txq() for airtime fairness accounting */ 320 ieee80211_txq_schedule_start(hw, txq->ac); 321 while ((queue = ieee80211_next_txq(hw, txq->ac))) { 322 wake_tx_push_queue(local, sdata, queue); 323 ieee80211_return_txq(hw, queue, false); 324 } 325 ieee80211_txq_schedule_end(hw, txq->ac); 326 spin_unlock(&local->handle_wake_tx_queue_lock); 327 } 328 EXPORT_SYMBOL(ieee80211_handle_wake_tx_queue); 329 330 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 331 { 332 struct ieee80211_local *local = sdata->local; 333 struct ieee80211_vif *vif = &sdata->vif; 334 struct fq *fq = &local->fq; 335 struct ps_data *ps = NULL; 336 struct txq_info *txqi; 337 struct sta_info *sta; 338 int i; 339 340 local_bh_disable(); 341 spin_lock(&fq->lock); 342 343 if (!test_bit(SDATA_STATE_RUNNING, &sdata->state)) 344 goto out; 345 346 if (sdata->vif.type == NL80211_IFTYPE_AP) 347 ps = &sdata->bss->ps; 348 349 list_for_each_entry_rcu(sta, &local->sta_list, list) { 350 if (sdata != sta->sdata) 351 continue; 352 353 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 354 struct ieee80211_txq *txq = sta->sta.txq[i]; 355 356 if (!txq) 357 continue; 358 359 txqi = to_txq_info(txq); 360 361 if (ac != txq->ac) 362 continue; 363 364 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, 365 &txqi->flags)) 366 continue; 367 368 spin_unlock(&fq->lock); 369 drv_wake_tx_queue(local, txqi); 370 spin_lock(&fq->lock); 371 } 372 } 373 374 if (!vif->txq) 375 goto out; 376 377 txqi = to_txq_info(vif->txq); 378 379 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, &txqi->flags) || 380 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 381 goto out; 382 383 spin_unlock(&fq->lock); 384 385 drv_wake_tx_queue(local, txqi); 386 local_bh_enable(); 387 return; 388 out: 389 spin_unlock(&fq->lock); 390 local_bh_enable(); 391 } 392 393 static void 394 __releases(&local->queue_stop_reason_lock) 395 __acquires(&local->queue_stop_reason_lock) 396 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 397 { 398 struct ieee80211_sub_if_data *sdata; 399 int n_acs = IEEE80211_NUM_ACS; 400 int i; 401 402 rcu_read_lock(); 403 404 if (local->hw.queues < IEEE80211_NUM_ACS) 405 n_acs = 1; 406 407 for (i = 0; i < local->hw.queues; i++) { 408 if (local->queue_stop_reasons[i]) 409 continue; 410 411 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 412 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 413 int ac; 414 415 for (ac = 0; ac < n_acs; ac++) { 416 int ac_queue = sdata->vif.hw_queue[ac]; 417 418 if (ac_queue == i || 419 sdata->vif.cab_queue == i) 420 __ieee80211_wake_txqs(sdata, ac); 421 } 422 } 423 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 424 } 425 426 rcu_read_unlock(); 427 } 428 429 void ieee80211_wake_txqs(struct tasklet_struct *t) 430 { 431 struct ieee80211_local *local = from_tasklet(local, t, 432 wake_txqs_tasklet); 433 unsigned long flags; 434 435 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 436 _ieee80211_wake_txqs(local, &flags); 437 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 438 } 439 440 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 441 enum queue_stop_reason reason, 442 bool refcounted, 443 unsigned long *flags) 444 { 445 struct ieee80211_local *local = hw_to_local(hw); 446 447 trace_wake_queue(local, queue, reason); 448 449 if (WARN_ON(queue >= hw->queues)) 450 return; 451 452 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 453 return; 454 455 if (!refcounted) { 456 local->q_stop_reasons[queue][reason] = 0; 457 } else { 458 local->q_stop_reasons[queue][reason]--; 459 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 460 local->q_stop_reasons[queue][reason] = 0; 461 } 462 463 if (local->q_stop_reasons[queue][reason] == 0) 464 __clear_bit(reason, &local->queue_stop_reasons[queue]); 465 466 if (local->queue_stop_reasons[queue] != 0) 467 /* someone still has this queue stopped */ 468 return; 469 470 if (!skb_queue_empty(&local->pending[queue])) 471 tasklet_schedule(&local->tx_pending_tasklet); 472 473 /* 474 * Calling _ieee80211_wake_txqs here can be a problem because it may 475 * release queue_stop_reason_lock which has been taken by 476 * __ieee80211_wake_queue's caller. It is certainly not very nice to 477 * release someone's lock, but it is fine because all the callers of 478 * __ieee80211_wake_queue call it right before releasing the lock. 479 */ 480 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 481 tasklet_schedule(&local->wake_txqs_tasklet); 482 else 483 _ieee80211_wake_txqs(local, flags); 484 } 485 486 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 487 enum queue_stop_reason reason, 488 bool refcounted) 489 { 490 struct ieee80211_local *local = hw_to_local(hw); 491 unsigned long flags; 492 493 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 494 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 495 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 496 } 497 498 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 499 { 500 ieee80211_wake_queue_by_reason(hw, queue, 501 IEEE80211_QUEUE_STOP_REASON_DRIVER, 502 false); 503 } 504 EXPORT_SYMBOL(ieee80211_wake_queue); 505 506 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 507 enum queue_stop_reason reason, 508 bool refcounted) 509 { 510 struct ieee80211_local *local = hw_to_local(hw); 511 512 trace_stop_queue(local, queue, reason); 513 514 if (WARN_ON(queue >= hw->queues)) 515 return; 516 517 if (!refcounted) 518 local->q_stop_reasons[queue][reason] = 1; 519 else 520 local->q_stop_reasons[queue][reason]++; 521 522 set_bit(reason, &local->queue_stop_reasons[queue]); 523 } 524 525 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 526 enum queue_stop_reason reason, 527 bool refcounted) 528 { 529 struct ieee80211_local *local = hw_to_local(hw); 530 unsigned long flags; 531 532 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 533 __ieee80211_stop_queue(hw, queue, reason, refcounted); 534 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 535 } 536 537 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 538 { 539 ieee80211_stop_queue_by_reason(hw, queue, 540 IEEE80211_QUEUE_STOP_REASON_DRIVER, 541 false); 542 } 543 EXPORT_SYMBOL(ieee80211_stop_queue); 544 545 void ieee80211_add_pending_skb(struct ieee80211_local *local, 546 struct sk_buff *skb) 547 { 548 struct ieee80211_hw *hw = &local->hw; 549 unsigned long flags; 550 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 551 int queue = info->hw_queue; 552 553 if (WARN_ON(!info->control.vif)) { 554 ieee80211_free_txskb(&local->hw, skb); 555 return; 556 } 557 558 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 559 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 560 false); 561 __skb_queue_tail(&local->pending[queue], skb); 562 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 563 false, &flags); 564 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 565 } 566 567 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 568 struct sk_buff_head *skbs) 569 { 570 struct ieee80211_hw *hw = &local->hw; 571 struct sk_buff *skb; 572 unsigned long flags; 573 int queue, i; 574 575 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 576 while ((skb = skb_dequeue(skbs))) { 577 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 578 579 if (WARN_ON(!info->control.vif)) { 580 ieee80211_free_txskb(&local->hw, skb); 581 continue; 582 } 583 584 queue = info->hw_queue; 585 586 __ieee80211_stop_queue(hw, queue, 587 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 588 false); 589 590 __skb_queue_tail(&local->pending[queue], skb); 591 } 592 593 for (i = 0; i < hw->queues; i++) 594 __ieee80211_wake_queue(hw, i, 595 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 596 false, &flags); 597 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 598 } 599 600 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 601 unsigned long queues, 602 enum queue_stop_reason reason, 603 bool refcounted) 604 { 605 struct ieee80211_local *local = hw_to_local(hw); 606 unsigned long flags; 607 int i; 608 609 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 610 611 for_each_set_bit(i, &queues, hw->queues) 612 __ieee80211_stop_queue(hw, i, reason, refcounted); 613 614 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 615 } 616 617 void ieee80211_stop_queues(struct ieee80211_hw *hw) 618 { 619 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 620 IEEE80211_QUEUE_STOP_REASON_DRIVER, 621 false); 622 } 623 EXPORT_SYMBOL(ieee80211_stop_queues); 624 625 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 626 { 627 struct ieee80211_local *local = hw_to_local(hw); 628 unsigned long flags; 629 int ret; 630 631 if (WARN_ON(queue >= hw->queues)) 632 return true; 633 634 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 635 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 636 &local->queue_stop_reasons[queue]); 637 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 638 return ret; 639 } 640 EXPORT_SYMBOL(ieee80211_queue_stopped); 641 642 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 643 unsigned long queues, 644 enum queue_stop_reason reason, 645 bool refcounted) 646 { 647 struct ieee80211_local *local = hw_to_local(hw); 648 unsigned long flags; 649 int i; 650 651 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 652 653 for_each_set_bit(i, &queues, hw->queues) 654 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 655 656 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 657 } 658 659 void ieee80211_wake_queues(struct ieee80211_hw *hw) 660 { 661 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 662 IEEE80211_QUEUE_STOP_REASON_DRIVER, 663 false); 664 } 665 EXPORT_SYMBOL(ieee80211_wake_queues); 666 667 static unsigned int 668 ieee80211_get_vif_queues(struct ieee80211_local *local, 669 struct ieee80211_sub_if_data *sdata) 670 { 671 unsigned int queues; 672 673 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 674 int ac; 675 676 queues = 0; 677 678 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 679 queues |= BIT(sdata->vif.hw_queue[ac]); 680 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 681 queues |= BIT(sdata->vif.cab_queue); 682 } else { 683 /* all queues */ 684 queues = BIT(local->hw.queues) - 1; 685 } 686 687 return queues; 688 } 689 690 void __ieee80211_flush_queues(struct ieee80211_local *local, 691 struct ieee80211_sub_if_data *sdata, 692 unsigned int queues, bool drop) 693 { 694 if (!local->ops->flush) 695 return; 696 697 /* 698 * If no queue was set, or if the HW doesn't support 699 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 700 */ 701 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 702 queues = ieee80211_get_vif_queues(local, sdata); 703 704 ieee80211_stop_queues_by_reason(&local->hw, queues, 705 IEEE80211_QUEUE_STOP_REASON_FLUSH, 706 false); 707 708 drv_flush(local, sdata, queues, drop); 709 710 ieee80211_wake_queues_by_reason(&local->hw, queues, 711 IEEE80211_QUEUE_STOP_REASON_FLUSH, 712 false); 713 } 714 715 void ieee80211_flush_queues(struct ieee80211_local *local, 716 struct ieee80211_sub_if_data *sdata, bool drop) 717 { 718 __ieee80211_flush_queues(local, sdata, 0, drop); 719 } 720 721 void ieee80211_stop_vif_queues(struct ieee80211_local *local, 722 struct ieee80211_sub_if_data *sdata, 723 enum queue_stop_reason reason) 724 { 725 ieee80211_stop_queues_by_reason(&local->hw, 726 ieee80211_get_vif_queues(local, sdata), 727 reason, true); 728 } 729 730 void ieee80211_wake_vif_queues(struct ieee80211_local *local, 731 struct ieee80211_sub_if_data *sdata, 732 enum queue_stop_reason reason) 733 { 734 ieee80211_wake_queues_by_reason(&local->hw, 735 ieee80211_get_vif_queues(local, sdata), 736 reason, true); 737 } 738 739 static void __iterate_interfaces(struct ieee80211_local *local, 740 u32 iter_flags, 741 void (*iterator)(void *data, u8 *mac, 742 struct ieee80211_vif *vif), 743 void *data) 744 { 745 struct ieee80211_sub_if_data *sdata; 746 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 747 748 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 749 switch (sdata->vif.type) { 750 case NL80211_IFTYPE_MONITOR: 751 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) 752 continue; 753 break; 754 case NL80211_IFTYPE_AP_VLAN: 755 continue; 756 default: 757 break; 758 } 759 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 760 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 761 continue; 762 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && 763 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 764 continue; 765 if (ieee80211_sdata_running(sdata) || !active_only) 766 iterator(data, sdata->vif.addr, 767 &sdata->vif); 768 } 769 770 sdata = rcu_dereference_check(local->monitor_sdata, 771 lockdep_is_held(&local->iflist_mtx) || 772 lockdep_is_held(&local->hw.wiphy->mtx)); 773 if (sdata && 774 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 775 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 776 iterator(data, sdata->vif.addr, &sdata->vif); 777 } 778 779 void ieee80211_iterate_interfaces( 780 struct ieee80211_hw *hw, u32 iter_flags, 781 void (*iterator)(void *data, u8 *mac, 782 struct ieee80211_vif *vif), 783 void *data) 784 { 785 struct ieee80211_local *local = hw_to_local(hw); 786 787 mutex_lock(&local->iflist_mtx); 788 __iterate_interfaces(local, iter_flags, iterator, data); 789 mutex_unlock(&local->iflist_mtx); 790 } 791 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 792 793 void ieee80211_iterate_active_interfaces_atomic( 794 struct ieee80211_hw *hw, u32 iter_flags, 795 void (*iterator)(void *data, u8 *mac, 796 struct ieee80211_vif *vif), 797 void *data) 798 { 799 struct ieee80211_local *local = hw_to_local(hw); 800 801 rcu_read_lock(); 802 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 803 iterator, data); 804 rcu_read_unlock(); 805 } 806 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 807 808 void ieee80211_iterate_active_interfaces_mtx( 809 struct ieee80211_hw *hw, u32 iter_flags, 810 void (*iterator)(void *data, u8 *mac, 811 struct ieee80211_vif *vif), 812 void *data) 813 { 814 struct ieee80211_local *local = hw_to_local(hw); 815 816 lockdep_assert_wiphy(hw->wiphy); 817 818 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 819 iterator, data); 820 } 821 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx); 822 823 static void __iterate_stations(struct ieee80211_local *local, 824 void (*iterator)(void *data, 825 struct ieee80211_sta *sta), 826 void *data) 827 { 828 struct sta_info *sta; 829 830 list_for_each_entry_rcu(sta, &local->sta_list, list) { 831 if (!sta->uploaded) 832 continue; 833 834 iterator(data, &sta->sta); 835 } 836 } 837 838 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 839 void (*iterator)(void *data, 840 struct ieee80211_sta *sta), 841 void *data) 842 { 843 struct ieee80211_local *local = hw_to_local(hw); 844 845 rcu_read_lock(); 846 __iterate_stations(local, iterator, data); 847 rcu_read_unlock(); 848 } 849 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 850 851 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 852 { 853 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 854 855 if (!ieee80211_sdata_running(sdata) || 856 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 857 return NULL; 858 return &sdata->vif; 859 } 860 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 861 862 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 863 { 864 if (!vif) 865 return NULL; 866 867 return &vif_to_sdata(vif)->wdev; 868 } 869 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 870 871 /* 872 * Nothing should have been stuffed into the workqueue during 873 * the suspend->resume cycle. Since we can't check each caller 874 * of this function if we are already quiescing / suspended, 875 * check here and don't WARN since this can actually happen when 876 * the rx path (for example) is racing against __ieee80211_suspend 877 * and suspending / quiescing was set after the rx path checked 878 * them. 879 */ 880 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 881 { 882 if (local->quiescing || (local->suspended && !local->resuming)) { 883 pr_warn("queueing ieee80211 work while going to suspend\n"); 884 return false; 885 } 886 887 return true; 888 } 889 890 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 891 { 892 struct ieee80211_local *local = hw_to_local(hw); 893 894 if (!ieee80211_can_queue_work(local)) 895 return; 896 897 queue_work(local->workqueue, work); 898 } 899 EXPORT_SYMBOL(ieee80211_queue_work); 900 901 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 902 struct delayed_work *dwork, 903 unsigned long delay) 904 { 905 struct ieee80211_local *local = hw_to_local(hw); 906 907 if (!ieee80211_can_queue_work(local)) 908 return; 909 910 queue_delayed_work(local->workqueue, dwork, delay); 911 } 912 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 913 914 static void 915 ieee80211_parse_extension_element(u32 *crc, 916 const struct element *elem, 917 struct ieee802_11_elems *elems, 918 struct ieee80211_elems_parse_params *params) 919 { 920 const void *data = elem->data + 1; 921 bool calc_crc = false; 922 u8 len; 923 924 if (!elem->datalen) 925 return; 926 927 len = elem->datalen - 1; 928 929 switch (elem->data[0]) { 930 case WLAN_EID_EXT_HE_MU_EDCA: 931 calc_crc = true; 932 if (len >= sizeof(*elems->mu_edca_param_set)) 933 elems->mu_edca_param_set = data; 934 break; 935 case WLAN_EID_EXT_HE_CAPABILITY: 936 if (ieee80211_he_capa_size_ok(data, len)) { 937 elems->he_cap = data; 938 elems->he_cap_len = len; 939 } 940 break; 941 case WLAN_EID_EXT_HE_OPERATION: 942 calc_crc = true; 943 if (len >= sizeof(*elems->he_operation) && 944 len >= ieee80211_he_oper_size(data) - 1) 945 elems->he_operation = data; 946 break; 947 case WLAN_EID_EXT_UORA: 948 if (len >= 1) 949 elems->uora_element = data; 950 break; 951 case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME: 952 if (len == 3) 953 elems->max_channel_switch_time = data; 954 break; 955 case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION: 956 if (len >= sizeof(*elems->mbssid_config_ie)) 957 elems->mbssid_config_ie = data; 958 break; 959 case WLAN_EID_EXT_HE_SPR: 960 if (len >= sizeof(*elems->he_spr) && 961 len >= ieee80211_he_spr_size(data)) 962 elems->he_spr = data; 963 break; 964 case WLAN_EID_EXT_HE_6GHZ_CAPA: 965 if (len >= sizeof(*elems->he_6ghz_capa)) 966 elems->he_6ghz_capa = data; 967 break; 968 case WLAN_EID_EXT_EHT_CAPABILITY: 969 if (ieee80211_eht_capa_size_ok(elems->he_cap, 970 data, len, 971 params->from_ap)) { 972 elems->eht_cap = data; 973 elems->eht_cap_len = len; 974 } 975 break; 976 case WLAN_EID_EXT_EHT_OPERATION: 977 if (ieee80211_eht_oper_size_ok(data, len)) 978 elems->eht_operation = data; 979 calc_crc = true; 980 break; 981 case WLAN_EID_EXT_EHT_MULTI_LINK: 982 calc_crc = true; 983 984 if (ieee80211_mle_size_ok(data, len)) { 985 const struct ieee80211_multi_link_elem *mle = 986 (void *)data; 987 988 switch (le16_get_bits(mle->control, 989 IEEE80211_ML_CONTROL_TYPE)) { 990 case IEEE80211_ML_CONTROL_TYPE_BASIC: 991 elems->ml_basic_elem = (void *)elem; 992 elems->ml_basic = data; 993 elems->ml_basic_len = len; 994 break; 995 case IEEE80211_ML_CONTROL_TYPE_RECONF: 996 elems->ml_reconf_elem = (void *)elem; 997 elems->ml_reconf = data; 998 elems->ml_reconf_len = len; 999 break; 1000 default: 1001 break; 1002 } 1003 } 1004 break; 1005 } 1006 1007 if (crc && calc_crc) 1008 *crc = crc32_be(*crc, (void *)elem, elem->datalen + 2); 1009 } 1010 1011 static u32 1012 _ieee802_11_parse_elems_full(struct ieee80211_elems_parse_params *params, 1013 struct ieee802_11_elems *elems, 1014 const struct element *check_inherit) 1015 { 1016 const struct element *elem; 1017 bool calc_crc = params->filter != 0; 1018 DECLARE_BITMAP(seen_elems, 256); 1019 u32 crc = params->crc; 1020 const u8 *ie; 1021 1022 bitmap_zero(seen_elems, 256); 1023 1024 for_each_element(elem, params->start, params->len) { 1025 bool elem_parse_failed; 1026 u8 id = elem->id; 1027 u8 elen = elem->datalen; 1028 const u8 *pos = elem->data; 1029 1030 if (check_inherit && 1031 !cfg80211_is_element_inherited(elem, 1032 check_inherit)) 1033 continue; 1034 1035 switch (id) { 1036 case WLAN_EID_SSID: 1037 case WLAN_EID_SUPP_RATES: 1038 case WLAN_EID_FH_PARAMS: 1039 case WLAN_EID_DS_PARAMS: 1040 case WLAN_EID_CF_PARAMS: 1041 case WLAN_EID_TIM: 1042 case WLAN_EID_IBSS_PARAMS: 1043 case WLAN_EID_CHALLENGE: 1044 case WLAN_EID_RSN: 1045 case WLAN_EID_ERP_INFO: 1046 case WLAN_EID_EXT_SUPP_RATES: 1047 case WLAN_EID_HT_CAPABILITY: 1048 case WLAN_EID_HT_OPERATION: 1049 case WLAN_EID_VHT_CAPABILITY: 1050 case WLAN_EID_VHT_OPERATION: 1051 case WLAN_EID_MESH_ID: 1052 case WLAN_EID_MESH_CONFIG: 1053 case WLAN_EID_PEER_MGMT: 1054 case WLAN_EID_PREQ: 1055 case WLAN_EID_PREP: 1056 case WLAN_EID_PERR: 1057 case WLAN_EID_RANN: 1058 case WLAN_EID_CHANNEL_SWITCH: 1059 case WLAN_EID_EXT_CHANSWITCH_ANN: 1060 case WLAN_EID_COUNTRY: 1061 case WLAN_EID_PWR_CONSTRAINT: 1062 case WLAN_EID_TIMEOUT_INTERVAL: 1063 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1064 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1065 case WLAN_EID_CHAN_SWITCH_PARAM: 1066 case WLAN_EID_EXT_CAPABILITY: 1067 case WLAN_EID_CHAN_SWITCH_TIMING: 1068 case WLAN_EID_LINK_ID: 1069 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1070 case WLAN_EID_RSNX: 1071 case WLAN_EID_S1G_BCN_COMPAT: 1072 case WLAN_EID_S1G_CAPABILITIES: 1073 case WLAN_EID_S1G_OPERATION: 1074 case WLAN_EID_AID_RESPONSE: 1075 case WLAN_EID_S1G_SHORT_BCN_INTERVAL: 1076 /* 1077 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible 1078 * that if the content gets bigger it might be needed more than once 1079 */ 1080 if (test_bit(id, seen_elems)) { 1081 elems->parse_error = true; 1082 continue; 1083 } 1084 break; 1085 } 1086 1087 if (calc_crc && id < 64 && (params->filter & (1ULL << id))) 1088 crc = crc32_be(crc, pos - 2, elen + 2); 1089 1090 elem_parse_failed = false; 1091 1092 switch (id) { 1093 case WLAN_EID_LINK_ID: 1094 if (elen + 2 < sizeof(struct ieee80211_tdls_lnkie)) { 1095 elem_parse_failed = true; 1096 break; 1097 } 1098 elems->lnk_id = (void *)(pos - 2); 1099 break; 1100 case WLAN_EID_CHAN_SWITCH_TIMING: 1101 if (elen < sizeof(struct ieee80211_ch_switch_timing)) { 1102 elem_parse_failed = true; 1103 break; 1104 } 1105 elems->ch_sw_timing = (void *)pos; 1106 break; 1107 case WLAN_EID_EXT_CAPABILITY: 1108 elems->ext_capab = pos; 1109 elems->ext_capab_len = elen; 1110 break; 1111 case WLAN_EID_SSID: 1112 elems->ssid = pos; 1113 elems->ssid_len = elen; 1114 break; 1115 case WLAN_EID_SUPP_RATES: 1116 elems->supp_rates = pos; 1117 elems->supp_rates_len = elen; 1118 break; 1119 case WLAN_EID_DS_PARAMS: 1120 if (elen >= 1) 1121 elems->ds_params = pos; 1122 else 1123 elem_parse_failed = true; 1124 break; 1125 case WLAN_EID_TIM: 1126 if (elen >= sizeof(struct ieee80211_tim_ie)) { 1127 elems->tim = (void *)pos; 1128 elems->tim_len = elen; 1129 } else 1130 elem_parse_failed = true; 1131 break; 1132 case WLAN_EID_VENDOR_SPECIFIC: 1133 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && 1134 pos[2] == 0xf2) { 1135 /* Microsoft OUI (00:50:F2) */ 1136 1137 if (calc_crc) 1138 crc = crc32_be(crc, pos - 2, elen + 2); 1139 1140 if (elen >= 5 && pos[3] == 2) { 1141 /* OUI Type 2 - WMM IE */ 1142 if (pos[4] == 0) { 1143 elems->wmm_info = pos; 1144 elems->wmm_info_len = elen; 1145 } else if (pos[4] == 1) { 1146 elems->wmm_param = pos; 1147 elems->wmm_param_len = elen; 1148 } 1149 } 1150 } 1151 break; 1152 case WLAN_EID_RSN: 1153 elems->rsn = pos; 1154 elems->rsn_len = elen; 1155 break; 1156 case WLAN_EID_ERP_INFO: 1157 if (elen >= 1) 1158 elems->erp_info = pos; 1159 else 1160 elem_parse_failed = true; 1161 break; 1162 case WLAN_EID_EXT_SUPP_RATES: 1163 elems->ext_supp_rates = pos; 1164 elems->ext_supp_rates_len = elen; 1165 break; 1166 case WLAN_EID_HT_CAPABILITY: 1167 if (elen >= sizeof(struct ieee80211_ht_cap)) 1168 elems->ht_cap_elem = (void *)pos; 1169 else 1170 elem_parse_failed = true; 1171 break; 1172 case WLAN_EID_HT_OPERATION: 1173 if (elen >= sizeof(struct ieee80211_ht_operation)) 1174 elems->ht_operation = (void *)pos; 1175 else 1176 elem_parse_failed = true; 1177 break; 1178 case WLAN_EID_VHT_CAPABILITY: 1179 if (elen >= sizeof(struct ieee80211_vht_cap)) 1180 elems->vht_cap_elem = (void *)pos; 1181 else 1182 elem_parse_failed = true; 1183 break; 1184 case WLAN_EID_VHT_OPERATION: 1185 if (elen >= sizeof(struct ieee80211_vht_operation)) { 1186 elems->vht_operation = (void *)pos; 1187 if (calc_crc) 1188 crc = crc32_be(crc, pos - 2, elen + 2); 1189 break; 1190 } 1191 elem_parse_failed = true; 1192 break; 1193 case WLAN_EID_OPMODE_NOTIF: 1194 if (elen > 0) { 1195 elems->opmode_notif = pos; 1196 if (calc_crc) 1197 crc = crc32_be(crc, pos - 2, elen + 2); 1198 break; 1199 } 1200 elem_parse_failed = true; 1201 break; 1202 case WLAN_EID_MESH_ID: 1203 elems->mesh_id = pos; 1204 elems->mesh_id_len = elen; 1205 break; 1206 case WLAN_EID_MESH_CONFIG: 1207 if (elen >= sizeof(struct ieee80211_meshconf_ie)) 1208 elems->mesh_config = (void *)pos; 1209 else 1210 elem_parse_failed = true; 1211 break; 1212 case WLAN_EID_PEER_MGMT: 1213 elems->peering = pos; 1214 elems->peering_len = elen; 1215 break; 1216 case WLAN_EID_MESH_AWAKE_WINDOW: 1217 if (elen >= 2) 1218 elems->awake_window = (void *)pos; 1219 break; 1220 case WLAN_EID_PREQ: 1221 elems->preq = pos; 1222 elems->preq_len = elen; 1223 break; 1224 case WLAN_EID_PREP: 1225 elems->prep = pos; 1226 elems->prep_len = elen; 1227 break; 1228 case WLAN_EID_PERR: 1229 elems->perr = pos; 1230 elems->perr_len = elen; 1231 break; 1232 case WLAN_EID_RANN: 1233 if (elen >= sizeof(struct ieee80211_rann_ie)) 1234 elems->rann = (void *)pos; 1235 else 1236 elem_parse_failed = true; 1237 break; 1238 case WLAN_EID_CHANNEL_SWITCH: 1239 if (elen != sizeof(struct ieee80211_channel_sw_ie)) { 1240 elem_parse_failed = true; 1241 break; 1242 } 1243 elems->ch_switch_ie = (void *)pos; 1244 break; 1245 case WLAN_EID_EXT_CHANSWITCH_ANN: 1246 if (elen != sizeof(struct ieee80211_ext_chansw_ie)) { 1247 elem_parse_failed = true; 1248 break; 1249 } 1250 elems->ext_chansw_ie = (void *)pos; 1251 break; 1252 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1253 if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) { 1254 elem_parse_failed = true; 1255 break; 1256 } 1257 elems->sec_chan_offs = (void *)pos; 1258 break; 1259 case WLAN_EID_CHAN_SWITCH_PARAM: 1260 if (elen < 1261 sizeof(*elems->mesh_chansw_params_ie)) { 1262 elem_parse_failed = true; 1263 break; 1264 } 1265 elems->mesh_chansw_params_ie = (void *)pos; 1266 break; 1267 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1268 if (!params->action || 1269 elen < sizeof(*elems->wide_bw_chansw_ie)) { 1270 elem_parse_failed = true; 1271 break; 1272 } 1273 elems->wide_bw_chansw_ie = (void *)pos; 1274 break; 1275 case WLAN_EID_CHANNEL_SWITCH_WRAPPER: 1276 if (params->action) { 1277 elem_parse_failed = true; 1278 break; 1279 } 1280 /* 1281 * This is a bit tricky, but as we only care about 1282 * the wide bandwidth channel switch element, so 1283 * just parse it out manually. 1284 */ 1285 ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH, 1286 pos, elen); 1287 if (ie) { 1288 if (ie[1] >= sizeof(*elems->wide_bw_chansw_ie)) 1289 elems->wide_bw_chansw_ie = 1290 (void *)(ie + 2); 1291 else 1292 elem_parse_failed = true; 1293 } 1294 break; 1295 case WLAN_EID_COUNTRY: 1296 elems->country_elem = pos; 1297 elems->country_elem_len = elen; 1298 break; 1299 case WLAN_EID_PWR_CONSTRAINT: 1300 if (elen != 1) { 1301 elem_parse_failed = true; 1302 break; 1303 } 1304 elems->pwr_constr_elem = pos; 1305 break; 1306 case WLAN_EID_CISCO_VENDOR_SPECIFIC: 1307 /* Lots of different options exist, but we only care 1308 * about the Dynamic Transmit Power Control element. 1309 * First check for the Cisco OUI, then for the DTPC 1310 * tag (0x00). 1311 */ 1312 if (elen < 4) { 1313 elem_parse_failed = true; 1314 break; 1315 } 1316 1317 if (pos[0] != 0x00 || pos[1] != 0x40 || 1318 pos[2] != 0x96 || pos[3] != 0x00) 1319 break; 1320 1321 if (elen != 6) { 1322 elem_parse_failed = true; 1323 break; 1324 } 1325 1326 if (calc_crc) 1327 crc = crc32_be(crc, pos - 2, elen + 2); 1328 1329 elems->cisco_dtpc_elem = pos; 1330 break; 1331 case WLAN_EID_ADDBA_EXT: 1332 if (elen < sizeof(struct ieee80211_addba_ext_ie)) { 1333 elem_parse_failed = true; 1334 break; 1335 } 1336 elems->addba_ext_ie = (void *)pos; 1337 break; 1338 case WLAN_EID_TIMEOUT_INTERVAL: 1339 if (elen >= sizeof(struct ieee80211_timeout_interval_ie)) 1340 elems->timeout_int = (void *)pos; 1341 else 1342 elem_parse_failed = true; 1343 break; 1344 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1345 if (elen >= sizeof(*elems->max_idle_period_ie)) 1346 elems->max_idle_period_ie = (void *)pos; 1347 break; 1348 case WLAN_EID_RSNX: 1349 elems->rsnx = pos; 1350 elems->rsnx_len = elen; 1351 break; 1352 case WLAN_EID_TX_POWER_ENVELOPE: 1353 if (elen < 1 || 1354 elen > sizeof(struct ieee80211_tx_pwr_env)) 1355 break; 1356 1357 if (elems->tx_pwr_env_num >= ARRAY_SIZE(elems->tx_pwr_env)) 1358 break; 1359 1360 elems->tx_pwr_env[elems->tx_pwr_env_num] = (void *)pos; 1361 elems->tx_pwr_env_len[elems->tx_pwr_env_num] = elen; 1362 elems->tx_pwr_env_num++; 1363 break; 1364 case WLAN_EID_EXTENSION: 1365 ieee80211_parse_extension_element(calc_crc ? 1366 &crc : NULL, 1367 elem, elems, params); 1368 break; 1369 case WLAN_EID_S1G_CAPABILITIES: 1370 if (elen >= sizeof(*elems->s1g_capab)) 1371 elems->s1g_capab = (void *)pos; 1372 else 1373 elem_parse_failed = true; 1374 break; 1375 case WLAN_EID_S1G_OPERATION: 1376 if (elen == sizeof(*elems->s1g_oper)) 1377 elems->s1g_oper = (void *)pos; 1378 else 1379 elem_parse_failed = true; 1380 break; 1381 case WLAN_EID_S1G_BCN_COMPAT: 1382 if (elen == sizeof(*elems->s1g_bcn_compat)) 1383 elems->s1g_bcn_compat = (void *)pos; 1384 else 1385 elem_parse_failed = true; 1386 break; 1387 case WLAN_EID_AID_RESPONSE: 1388 if (elen == sizeof(struct ieee80211_aid_response_ie)) 1389 elems->aid_resp = (void *)pos; 1390 else 1391 elem_parse_failed = true; 1392 break; 1393 default: 1394 break; 1395 } 1396 1397 if (elem_parse_failed) 1398 elems->parse_error = true; 1399 else 1400 __set_bit(id, seen_elems); 1401 } 1402 1403 if (!for_each_element_completed(elem, params->start, params->len)) 1404 elems->parse_error = true; 1405 1406 return crc; 1407 } 1408 1409 static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len, 1410 struct ieee802_11_elems *elems, 1411 struct cfg80211_bss *bss, 1412 u8 *nontransmitted_profile) 1413 { 1414 const struct element *elem, *sub; 1415 size_t profile_len = 0; 1416 bool found = false; 1417 1418 if (!bss || !bss->transmitted_bss) 1419 return profile_len; 1420 1421 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) { 1422 if (elem->datalen < 2) 1423 continue; 1424 if (elem->data[0] < 1 || elem->data[0] > 8) 1425 continue; 1426 1427 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 1428 u8 new_bssid[ETH_ALEN]; 1429 const u8 *index; 1430 1431 if (sub->id != 0 || sub->datalen < 4) { 1432 /* not a valid BSS profile */ 1433 continue; 1434 } 1435 1436 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 1437 sub->data[1] != 2) { 1438 /* The first element of the 1439 * Nontransmitted BSSID Profile is not 1440 * the Nontransmitted BSSID Capability 1441 * element. 1442 */ 1443 continue; 1444 } 1445 1446 memset(nontransmitted_profile, 0, len); 1447 profile_len = cfg80211_merge_profile(start, len, 1448 elem, 1449 sub, 1450 nontransmitted_profile, 1451 len); 1452 1453 /* found a Nontransmitted BSSID Profile */ 1454 index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, 1455 nontransmitted_profile, 1456 profile_len); 1457 if (!index || index[1] < 1 || index[2] == 0) { 1458 /* Invalid MBSSID Index element */ 1459 continue; 1460 } 1461 1462 cfg80211_gen_new_bssid(bss->transmitted_bss->bssid, 1463 elem->data[0], 1464 index[2], 1465 new_bssid); 1466 if (ether_addr_equal(new_bssid, bss->bssid)) { 1467 found = true; 1468 elems->bssid_index_len = index[1]; 1469 elems->bssid_index = (void *)&index[2]; 1470 break; 1471 } 1472 } 1473 } 1474 1475 return found ? profile_len : 0; 1476 } 1477 1478 static void ieee80211_mle_get_sta_prof(struct ieee802_11_elems *elems, 1479 u8 link_id) 1480 { 1481 const struct ieee80211_multi_link_elem *ml = elems->ml_basic; 1482 ssize_t ml_len = elems->ml_basic_len; 1483 const struct element *sub; 1484 1485 if (!ml || !ml_len) 1486 return; 1487 1488 if (le16_get_bits(ml->control, IEEE80211_ML_CONTROL_TYPE) != 1489 IEEE80211_ML_CONTROL_TYPE_BASIC) 1490 return; 1491 1492 for_each_mle_subelement(sub, (u8 *)ml, ml_len) { 1493 struct ieee80211_mle_per_sta_profile *prof = (void *)sub->data; 1494 ssize_t sta_prof_len; 1495 u16 control; 1496 1497 if (sub->id != IEEE80211_MLE_SUBELEM_PER_STA_PROFILE) 1498 continue; 1499 1500 if (!ieee80211_mle_basic_sta_prof_size_ok(sub->data, 1501 sub->datalen)) 1502 return; 1503 1504 control = le16_to_cpu(prof->control); 1505 1506 if (link_id != u16_get_bits(control, 1507 IEEE80211_MLE_STA_CONTROL_LINK_ID)) 1508 continue; 1509 1510 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE)) 1511 return; 1512 1513 /* the sub element can be fragmented */ 1514 sta_prof_len = 1515 cfg80211_defragment_element(sub, 1516 (u8 *)ml, ml_len, 1517 elems->scratch_pos, 1518 elems->scratch + 1519 elems->scratch_len - 1520 elems->scratch_pos, 1521 IEEE80211_MLE_SUBELEM_FRAGMENT); 1522 1523 if (sta_prof_len < 0) 1524 return; 1525 1526 elems->prof = (void *)elems->scratch_pos; 1527 elems->sta_prof_len = sta_prof_len; 1528 elems->scratch_pos += sta_prof_len; 1529 1530 return; 1531 } 1532 } 1533 1534 static void ieee80211_mle_parse_link(struct ieee802_11_elems *elems, 1535 struct ieee80211_elems_parse_params *params) 1536 { 1537 struct ieee80211_mle_per_sta_profile *prof; 1538 struct ieee80211_elems_parse_params sub = { 1539 .action = params->action, 1540 .from_ap = params->from_ap, 1541 .link_id = -1, 1542 }; 1543 ssize_t ml_len = elems->ml_basic_len; 1544 const struct element *non_inherit = NULL; 1545 const u8 *end; 1546 1547 if (params->link_id == -1) 1548 return; 1549 1550 ml_len = cfg80211_defragment_element(elems->ml_basic_elem, 1551 elems->ie_start, 1552 elems->total_len, 1553 elems->scratch_pos, 1554 elems->scratch + 1555 elems->scratch_len - 1556 elems->scratch_pos, 1557 WLAN_EID_FRAGMENT); 1558 1559 if (ml_len < 0) 1560 return; 1561 1562 elems->ml_basic = (const void *)elems->scratch_pos; 1563 elems->ml_basic_len = ml_len; 1564 1565 ieee80211_mle_get_sta_prof(elems, params->link_id); 1566 prof = elems->prof; 1567 1568 if (!prof) 1569 return; 1570 1571 /* check if we have the 4 bytes for the fixed part in assoc response */ 1572 if (elems->sta_prof_len < sizeof(*prof) + prof->sta_info_len - 1 + 4) { 1573 elems->prof = NULL; 1574 elems->sta_prof_len = 0; 1575 return; 1576 } 1577 1578 /* 1579 * Skip the capability information and the status code that are expected 1580 * as part of the station profile in association response frames. Note 1581 * the -1 is because the 'sta_info_len' is accounted to as part of the 1582 * per-STA profile, but not part of the 'u8 variable[]' portion. 1583 */ 1584 sub.start = prof->variable + prof->sta_info_len - 1 + 4; 1585 end = (const u8 *)prof + elems->sta_prof_len; 1586 sub.len = end - sub.start; 1587 1588 non_inherit = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 1589 sub.start, sub.len); 1590 _ieee802_11_parse_elems_full(&sub, elems, non_inherit); 1591 } 1592 1593 struct ieee802_11_elems * 1594 ieee802_11_parse_elems_full(struct ieee80211_elems_parse_params *params) 1595 { 1596 struct ieee802_11_elems *elems; 1597 const struct element *non_inherit = NULL; 1598 u8 *nontransmitted_profile; 1599 int nontransmitted_profile_len = 0; 1600 size_t scratch_len = 3 * params->len; 1601 1602 elems = kzalloc(sizeof(*elems) + scratch_len, GFP_ATOMIC); 1603 if (!elems) 1604 return NULL; 1605 elems->ie_start = params->start; 1606 elems->total_len = params->len; 1607 elems->scratch_len = scratch_len; 1608 elems->scratch_pos = elems->scratch; 1609 1610 nontransmitted_profile = elems->scratch_pos; 1611 nontransmitted_profile_len = 1612 ieee802_11_find_bssid_profile(params->start, params->len, 1613 elems, params->bss, 1614 nontransmitted_profile); 1615 elems->scratch_pos += nontransmitted_profile_len; 1616 elems->scratch_len -= nontransmitted_profile_len; 1617 non_inherit = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 1618 nontransmitted_profile, 1619 nontransmitted_profile_len); 1620 1621 elems->crc = _ieee802_11_parse_elems_full(params, elems, non_inherit); 1622 1623 /* Override with nontransmitted profile, if found */ 1624 if (nontransmitted_profile_len) { 1625 struct ieee80211_elems_parse_params sub = { 1626 .start = nontransmitted_profile, 1627 .len = nontransmitted_profile_len, 1628 .action = params->action, 1629 .link_id = params->link_id, 1630 }; 1631 1632 _ieee802_11_parse_elems_full(&sub, elems, NULL); 1633 } 1634 1635 ieee80211_mle_parse_link(elems, params); 1636 1637 if (elems->tim && !elems->parse_error) { 1638 const struct ieee80211_tim_ie *tim_ie = elems->tim; 1639 1640 elems->dtim_period = tim_ie->dtim_period; 1641 elems->dtim_count = tim_ie->dtim_count; 1642 } 1643 1644 /* Override DTIM period and count if needed */ 1645 if (elems->bssid_index && 1646 elems->bssid_index_len >= 1647 offsetofend(struct ieee80211_bssid_index, dtim_period)) 1648 elems->dtim_period = elems->bssid_index->dtim_period; 1649 1650 if (elems->bssid_index && 1651 elems->bssid_index_len >= 1652 offsetofend(struct ieee80211_bssid_index, dtim_count)) 1653 elems->dtim_count = elems->bssid_index->dtim_count; 1654 1655 return elems; 1656 } 1657 1658 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 1659 struct ieee80211_tx_queue_params 1660 *qparam, int ac) 1661 { 1662 struct ieee80211_chanctx_conf *chanctx_conf; 1663 const struct ieee80211_reg_rule *rrule; 1664 const struct ieee80211_wmm_ac *wmm_ac; 1665 u16 center_freq = 0; 1666 1667 if (sdata->vif.type != NL80211_IFTYPE_AP && 1668 sdata->vif.type != NL80211_IFTYPE_STATION) 1669 return; 1670 1671 rcu_read_lock(); 1672 chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); 1673 if (chanctx_conf) 1674 center_freq = chanctx_conf->def.chan->center_freq; 1675 1676 if (!center_freq) { 1677 rcu_read_unlock(); 1678 return; 1679 } 1680 1681 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 1682 1683 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 1684 rcu_read_unlock(); 1685 return; 1686 } 1687 1688 if (sdata->vif.type == NL80211_IFTYPE_AP) 1689 wmm_ac = &rrule->wmm_rule.ap[ac]; 1690 else 1691 wmm_ac = &rrule->wmm_rule.client[ac]; 1692 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 1693 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 1694 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 1695 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 1696 rcu_read_unlock(); 1697 } 1698 1699 void ieee80211_set_wmm_default(struct ieee80211_link_data *link, 1700 bool bss_notify, bool enable_qos) 1701 { 1702 struct ieee80211_sub_if_data *sdata = link->sdata; 1703 struct ieee80211_local *local = sdata->local; 1704 struct ieee80211_tx_queue_params qparam; 1705 struct ieee80211_chanctx_conf *chanctx_conf; 1706 int ac; 1707 bool use_11b; 1708 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 1709 int aCWmin, aCWmax; 1710 1711 if (!local->ops->conf_tx) 1712 return; 1713 1714 if (local->hw.queues < IEEE80211_NUM_ACS) 1715 return; 1716 1717 memset(&qparam, 0, sizeof(qparam)); 1718 1719 rcu_read_lock(); 1720 chanctx_conf = rcu_dereference(link->conf->chanctx_conf); 1721 use_11b = (chanctx_conf && 1722 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 1723 !link->operating_11g_mode; 1724 rcu_read_unlock(); 1725 1726 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 1727 1728 /* Set defaults according to 802.11-2007 Table 7-37 */ 1729 aCWmax = 1023; 1730 if (use_11b) 1731 aCWmin = 31; 1732 else 1733 aCWmin = 15; 1734 1735 /* Confiure old 802.11b/g medium access rules. */ 1736 qparam.cw_max = aCWmax; 1737 qparam.cw_min = aCWmin; 1738 qparam.txop = 0; 1739 qparam.aifs = 2; 1740 1741 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1742 /* Update if QoS is enabled. */ 1743 if (enable_qos) { 1744 switch (ac) { 1745 case IEEE80211_AC_BK: 1746 qparam.cw_max = aCWmax; 1747 qparam.cw_min = aCWmin; 1748 qparam.txop = 0; 1749 if (is_ocb) 1750 qparam.aifs = 9; 1751 else 1752 qparam.aifs = 7; 1753 break; 1754 /* never happens but let's not leave undefined */ 1755 default: 1756 case IEEE80211_AC_BE: 1757 qparam.cw_max = aCWmax; 1758 qparam.cw_min = aCWmin; 1759 qparam.txop = 0; 1760 if (is_ocb) 1761 qparam.aifs = 6; 1762 else 1763 qparam.aifs = 3; 1764 break; 1765 case IEEE80211_AC_VI: 1766 qparam.cw_max = aCWmin; 1767 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1768 if (is_ocb) 1769 qparam.txop = 0; 1770 else if (use_11b) 1771 qparam.txop = 6016/32; 1772 else 1773 qparam.txop = 3008/32; 1774 1775 if (is_ocb) 1776 qparam.aifs = 3; 1777 else 1778 qparam.aifs = 2; 1779 break; 1780 case IEEE80211_AC_VO: 1781 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1782 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1783 if (is_ocb) 1784 qparam.txop = 0; 1785 else if (use_11b) 1786 qparam.txop = 3264/32; 1787 else 1788 qparam.txop = 1504/32; 1789 qparam.aifs = 2; 1790 break; 1791 } 1792 } 1793 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1794 1795 qparam.uapsd = false; 1796 1797 link->tx_conf[ac] = qparam; 1798 drv_conf_tx(local, link, ac, &qparam); 1799 } 1800 1801 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1802 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1803 sdata->vif.type != NL80211_IFTYPE_NAN) { 1804 link->conf->qos = enable_qos; 1805 if (bss_notify) 1806 ieee80211_link_info_change_notify(sdata, link, 1807 BSS_CHANGED_QOS); 1808 } 1809 } 1810 1811 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1812 u16 transaction, u16 auth_alg, u16 status, 1813 const u8 *extra, size_t extra_len, const u8 *da, 1814 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1815 u32 tx_flags) 1816 { 1817 struct ieee80211_local *local = sdata->local; 1818 struct sk_buff *skb; 1819 struct ieee80211_mgmt *mgmt; 1820 bool multi_link = ieee80211_vif_is_mld(&sdata->vif); 1821 struct { 1822 u8 id; 1823 u8 len; 1824 u8 ext_id; 1825 struct ieee80211_multi_link_elem ml; 1826 struct ieee80211_mle_basic_common_info basic; 1827 } __packed mle = { 1828 .id = WLAN_EID_EXTENSION, 1829 .len = sizeof(mle) - 2, 1830 .ext_id = WLAN_EID_EXT_EHT_MULTI_LINK, 1831 .ml.control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_BASIC), 1832 .basic.len = sizeof(mle.basic), 1833 }; 1834 int err; 1835 1836 memcpy(mle.basic.mld_mac_addr, sdata->vif.addr, ETH_ALEN); 1837 1838 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1839 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1840 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN + 1841 multi_link * sizeof(mle)); 1842 if (!skb) 1843 return; 1844 1845 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1846 1847 mgmt = skb_put_zero(skb, 24 + 6); 1848 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1849 IEEE80211_STYPE_AUTH); 1850 memcpy(mgmt->da, da, ETH_ALEN); 1851 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1852 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1853 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1854 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1855 mgmt->u.auth.status_code = cpu_to_le16(status); 1856 if (extra) 1857 skb_put_data(skb, extra, extra_len); 1858 if (multi_link) 1859 skb_put_data(skb, &mle, sizeof(mle)); 1860 1861 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1862 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1863 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1864 if (WARN_ON(err)) { 1865 kfree_skb(skb); 1866 return; 1867 } 1868 } 1869 1870 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1871 tx_flags; 1872 ieee80211_tx_skb(sdata, skb); 1873 } 1874 1875 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1876 const u8 *da, const u8 *bssid, 1877 u16 stype, u16 reason, 1878 bool send_frame, u8 *frame_buf) 1879 { 1880 struct ieee80211_local *local = sdata->local; 1881 struct sk_buff *skb; 1882 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1883 1884 /* build frame */ 1885 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1886 mgmt->duration = 0; /* initialize only */ 1887 mgmt->seq_ctrl = 0; /* initialize only */ 1888 memcpy(mgmt->da, da, ETH_ALEN); 1889 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1890 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1891 /* u.deauth.reason_code == u.disassoc.reason_code */ 1892 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1893 1894 if (send_frame) { 1895 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1896 IEEE80211_DEAUTH_FRAME_LEN); 1897 if (!skb) 1898 return; 1899 1900 skb_reserve(skb, local->hw.extra_tx_headroom); 1901 1902 /* copy in frame */ 1903 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1904 1905 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1906 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1907 IEEE80211_SKB_CB(skb)->flags |= 1908 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1909 1910 ieee80211_tx_skb(sdata, skb); 1911 } 1912 } 1913 1914 u8 *ieee80211_write_he_6ghz_cap(u8 *pos, __le16 cap, u8 *end) 1915 { 1916 if ((end - pos) < 5) 1917 return pos; 1918 1919 *pos++ = WLAN_EID_EXTENSION; 1920 *pos++ = 1 + sizeof(cap); 1921 *pos++ = WLAN_EID_EXT_HE_6GHZ_CAPA; 1922 memcpy(pos, &cap, sizeof(cap)); 1923 1924 return pos + 2; 1925 } 1926 1927 static int ieee80211_build_preq_ies_band(struct ieee80211_sub_if_data *sdata, 1928 u8 *buffer, size_t buffer_len, 1929 const u8 *ie, size_t ie_len, 1930 enum nl80211_band band, 1931 u32 rate_mask, 1932 struct cfg80211_chan_def *chandef, 1933 size_t *offset, u32 flags) 1934 { 1935 struct ieee80211_local *local = sdata->local; 1936 struct ieee80211_supported_band *sband; 1937 const struct ieee80211_sta_he_cap *he_cap; 1938 const struct ieee80211_sta_eht_cap *eht_cap; 1939 u8 *pos = buffer, *end = buffer + buffer_len; 1940 size_t noffset; 1941 int supp_rates_len, i; 1942 u8 rates[32]; 1943 int num_rates; 1944 int ext_rates_len; 1945 int shift; 1946 u32 rate_flags; 1947 bool have_80mhz = false; 1948 1949 *offset = 0; 1950 1951 sband = local->hw.wiphy->bands[band]; 1952 if (WARN_ON_ONCE(!sband)) 1953 return 0; 1954 1955 rate_flags = ieee80211_chandef_rate_flags(chandef); 1956 shift = ieee80211_chandef_get_shift(chandef); 1957 1958 /* For direct scan add S1G IE and consider its override bits */ 1959 if (band == NL80211_BAND_S1GHZ) { 1960 if (end - pos < 2 + sizeof(struct ieee80211_s1g_cap)) 1961 goto out_err; 1962 pos = ieee80211_ie_build_s1g_cap(pos, &sband->s1g_cap); 1963 goto done; 1964 } 1965 1966 num_rates = 0; 1967 for (i = 0; i < sband->n_bitrates; i++) { 1968 if ((BIT(i) & rate_mask) == 0) 1969 continue; /* skip rate */ 1970 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 1971 continue; 1972 1973 rates[num_rates++] = 1974 (u8) DIV_ROUND_UP(sband->bitrates[i].bitrate, 1975 (1 << shift) * 5); 1976 } 1977 1978 supp_rates_len = min_t(int, num_rates, 8); 1979 1980 if (end - pos < 2 + supp_rates_len) 1981 goto out_err; 1982 *pos++ = WLAN_EID_SUPP_RATES; 1983 *pos++ = supp_rates_len; 1984 memcpy(pos, rates, supp_rates_len); 1985 pos += supp_rates_len; 1986 1987 /* insert "request information" if in custom IEs */ 1988 if (ie && ie_len) { 1989 static const u8 before_extrates[] = { 1990 WLAN_EID_SSID, 1991 WLAN_EID_SUPP_RATES, 1992 WLAN_EID_REQUEST, 1993 }; 1994 noffset = ieee80211_ie_split(ie, ie_len, 1995 before_extrates, 1996 ARRAY_SIZE(before_extrates), 1997 *offset); 1998 if (end - pos < noffset - *offset) 1999 goto out_err; 2000 memcpy(pos, ie + *offset, noffset - *offset); 2001 pos += noffset - *offset; 2002 *offset = noffset; 2003 } 2004 2005 ext_rates_len = num_rates - supp_rates_len; 2006 if (ext_rates_len > 0) { 2007 if (end - pos < 2 + ext_rates_len) 2008 goto out_err; 2009 *pos++ = WLAN_EID_EXT_SUPP_RATES; 2010 *pos++ = ext_rates_len; 2011 memcpy(pos, rates + supp_rates_len, ext_rates_len); 2012 pos += ext_rates_len; 2013 } 2014 2015 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 2016 if (end - pos < 3) 2017 goto out_err; 2018 *pos++ = WLAN_EID_DS_PARAMS; 2019 *pos++ = 1; 2020 *pos++ = ieee80211_frequency_to_channel( 2021 chandef->chan->center_freq); 2022 } 2023 2024 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 2025 goto done; 2026 2027 /* insert custom IEs that go before HT */ 2028 if (ie && ie_len) { 2029 static const u8 before_ht[] = { 2030 /* 2031 * no need to list the ones split off already 2032 * (or generated here) 2033 */ 2034 WLAN_EID_DS_PARAMS, 2035 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 2036 }; 2037 noffset = ieee80211_ie_split(ie, ie_len, 2038 before_ht, ARRAY_SIZE(before_ht), 2039 *offset); 2040 if (end - pos < noffset - *offset) 2041 goto out_err; 2042 memcpy(pos, ie + *offset, noffset - *offset); 2043 pos += noffset - *offset; 2044 *offset = noffset; 2045 } 2046 2047 if (sband->ht_cap.ht_supported) { 2048 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap)) 2049 goto out_err; 2050 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 2051 sband->ht_cap.cap); 2052 } 2053 2054 /* insert custom IEs that go before VHT */ 2055 if (ie && ie_len) { 2056 static const u8 before_vht[] = { 2057 /* 2058 * no need to list the ones split off already 2059 * (or generated here) 2060 */ 2061 WLAN_EID_BSS_COEX_2040, 2062 WLAN_EID_EXT_CAPABILITY, 2063 WLAN_EID_SSID_LIST, 2064 WLAN_EID_CHANNEL_USAGE, 2065 WLAN_EID_INTERWORKING, 2066 WLAN_EID_MESH_ID, 2067 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 2068 }; 2069 noffset = ieee80211_ie_split(ie, ie_len, 2070 before_vht, ARRAY_SIZE(before_vht), 2071 *offset); 2072 if (end - pos < noffset - *offset) 2073 goto out_err; 2074 memcpy(pos, ie + *offset, noffset - *offset); 2075 pos += noffset - *offset; 2076 *offset = noffset; 2077 } 2078 2079 /* Check if any channel in this sband supports at least 80 MHz */ 2080 for (i = 0; i < sband->n_channels; i++) { 2081 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 2082 IEEE80211_CHAN_NO_80MHZ)) 2083 continue; 2084 2085 have_80mhz = true; 2086 break; 2087 } 2088 2089 if (sband->vht_cap.vht_supported && have_80mhz) { 2090 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap)) 2091 goto out_err; 2092 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 2093 sband->vht_cap.cap); 2094 } 2095 2096 /* insert custom IEs that go before HE */ 2097 if (ie && ie_len) { 2098 static const u8 before_he[] = { 2099 /* 2100 * no need to list the ones split off before VHT 2101 * or generated here 2102 */ 2103 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 2104 WLAN_EID_AP_CSN, 2105 /* TODO: add 11ah/11aj/11ak elements */ 2106 }; 2107 noffset = ieee80211_ie_split(ie, ie_len, 2108 before_he, ARRAY_SIZE(before_he), 2109 *offset); 2110 if (end - pos < noffset - *offset) 2111 goto out_err; 2112 memcpy(pos, ie + *offset, noffset - *offset); 2113 pos += noffset - *offset; 2114 *offset = noffset; 2115 } 2116 2117 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 2118 if (he_cap && 2119 cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 2120 IEEE80211_CHAN_NO_HE)) { 2121 pos = ieee80211_ie_build_he_cap(0, pos, he_cap, end); 2122 if (!pos) 2123 goto out_err; 2124 } 2125 2126 eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); 2127 2128 if (eht_cap && 2129 cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 2130 IEEE80211_CHAN_NO_HE | 2131 IEEE80211_CHAN_NO_EHT)) { 2132 pos = ieee80211_ie_build_eht_cap(pos, he_cap, eht_cap, end, 2133 sdata->vif.type == NL80211_IFTYPE_AP); 2134 if (!pos) 2135 goto out_err; 2136 } 2137 2138 if (cfg80211_any_usable_channels(local->hw.wiphy, 2139 BIT(NL80211_BAND_6GHZ), 2140 IEEE80211_CHAN_NO_HE)) { 2141 struct ieee80211_supported_band *sband6; 2142 2143 sband6 = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 2144 he_cap = ieee80211_get_he_iftype_cap_vif(sband6, &sdata->vif); 2145 2146 if (he_cap) { 2147 enum nl80211_iftype iftype = 2148 ieee80211_vif_type_p2p(&sdata->vif); 2149 __le16 cap = ieee80211_get_he_6ghz_capa(sband6, iftype); 2150 2151 pos = ieee80211_write_he_6ghz_cap(pos, cap, end); 2152 } 2153 } 2154 2155 /* 2156 * If adding more here, adjust code in main.c 2157 * that calculates local->scan_ies_len. 2158 */ 2159 2160 return pos - buffer; 2161 out_err: 2162 WARN_ONCE(1, "not enough space for preq IEs\n"); 2163 done: 2164 return pos - buffer; 2165 } 2166 2167 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 2168 size_t buffer_len, 2169 struct ieee80211_scan_ies *ie_desc, 2170 const u8 *ie, size_t ie_len, 2171 u8 bands_used, u32 *rate_masks, 2172 struct cfg80211_chan_def *chandef, 2173 u32 flags) 2174 { 2175 size_t pos = 0, old_pos = 0, custom_ie_offset = 0; 2176 int i; 2177 2178 memset(ie_desc, 0, sizeof(*ie_desc)); 2179 2180 for (i = 0; i < NUM_NL80211_BANDS; i++) { 2181 if (bands_used & BIT(i)) { 2182 pos += ieee80211_build_preq_ies_band(sdata, 2183 buffer + pos, 2184 buffer_len - pos, 2185 ie, ie_len, i, 2186 rate_masks[i], 2187 chandef, 2188 &custom_ie_offset, 2189 flags); 2190 ie_desc->ies[i] = buffer + old_pos; 2191 ie_desc->len[i] = pos - old_pos; 2192 old_pos = pos; 2193 } 2194 } 2195 2196 /* add any remaining custom IEs */ 2197 if (ie && ie_len) { 2198 if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset, 2199 "not enough space for preq custom IEs\n")) 2200 return pos; 2201 memcpy(buffer + pos, ie + custom_ie_offset, 2202 ie_len - custom_ie_offset); 2203 ie_desc->common_ies = buffer + pos; 2204 ie_desc->common_ie_len = ie_len - custom_ie_offset; 2205 pos += ie_len - custom_ie_offset; 2206 } 2207 2208 return pos; 2209 }; 2210 2211 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 2212 const u8 *src, const u8 *dst, 2213 u32 ratemask, 2214 struct ieee80211_channel *chan, 2215 const u8 *ssid, size_t ssid_len, 2216 const u8 *ie, size_t ie_len, 2217 u32 flags) 2218 { 2219 struct ieee80211_local *local = sdata->local; 2220 struct cfg80211_chan_def chandef; 2221 struct sk_buff *skb; 2222 struct ieee80211_mgmt *mgmt; 2223 int ies_len; 2224 u32 rate_masks[NUM_NL80211_BANDS] = {}; 2225 struct ieee80211_scan_ies dummy_ie_desc; 2226 2227 /* 2228 * Do not send DS Channel parameter for directed probe requests 2229 * in order to maximize the chance that we get a response. Some 2230 * badly-behaved APs don't respond when this parameter is included. 2231 */ 2232 chandef.width = sdata->vif.bss_conf.chandef.width; 2233 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 2234 chandef.chan = NULL; 2235 else 2236 chandef.chan = chan; 2237 2238 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 2239 local->scan_ies_len + ie_len); 2240 if (!skb) 2241 return NULL; 2242 2243 rate_masks[chan->band] = ratemask; 2244 ies_len = ieee80211_build_preq_ies(sdata, skb_tail_pointer(skb), 2245 skb_tailroom(skb), &dummy_ie_desc, 2246 ie, ie_len, BIT(chan->band), 2247 rate_masks, &chandef, flags); 2248 skb_put(skb, ies_len); 2249 2250 if (dst) { 2251 mgmt = (struct ieee80211_mgmt *) skb->data; 2252 memcpy(mgmt->da, dst, ETH_ALEN); 2253 memcpy(mgmt->bssid, dst, ETH_ALEN); 2254 } 2255 2256 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 2257 2258 return skb; 2259 } 2260 2261 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 2262 struct ieee802_11_elems *elems, 2263 enum nl80211_band band, u32 *basic_rates) 2264 { 2265 struct ieee80211_supported_band *sband; 2266 size_t num_rates; 2267 u32 supp_rates, rate_flags; 2268 int i, j, shift; 2269 2270 sband = sdata->local->hw.wiphy->bands[band]; 2271 if (WARN_ON(!sband)) 2272 return 1; 2273 2274 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 2275 shift = ieee80211_vif_get_shift(&sdata->vif); 2276 2277 num_rates = sband->n_bitrates; 2278 supp_rates = 0; 2279 for (i = 0; i < elems->supp_rates_len + 2280 elems->ext_supp_rates_len; i++) { 2281 u8 rate = 0; 2282 int own_rate; 2283 bool is_basic; 2284 if (i < elems->supp_rates_len) 2285 rate = elems->supp_rates[i]; 2286 else if (elems->ext_supp_rates) 2287 rate = elems->ext_supp_rates 2288 [i - elems->supp_rates_len]; 2289 own_rate = 5 * (rate & 0x7f); 2290 is_basic = !!(rate & 0x80); 2291 2292 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 2293 continue; 2294 2295 for (j = 0; j < num_rates; j++) { 2296 int brate; 2297 if ((rate_flags & sband->bitrates[j].flags) 2298 != rate_flags) 2299 continue; 2300 2301 brate = DIV_ROUND_UP(sband->bitrates[j].bitrate, 2302 1 << shift); 2303 2304 if (brate == own_rate) { 2305 supp_rates |= BIT(j); 2306 if (basic_rates && is_basic) 2307 *basic_rates |= BIT(j); 2308 } 2309 } 2310 } 2311 return supp_rates; 2312 } 2313 2314 void ieee80211_stop_device(struct ieee80211_local *local) 2315 { 2316 ieee80211_led_radio(local, false); 2317 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 2318 2319 cancel_work_sync(&local->reconfig_filter); 2320 2321 flush_workqueue(local->workqueue); 2322 drv_stop(local); 2323 } 2324 2325 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 2326 bool aborted) 2327 { 2328 /* It's possible that we don't handle the scan completion in 2329 * time during suspend, so if it's still marked as completed 2330 * here, queue the work and flush it to clean things up. 2331 * Instead of calling the worker function directly here, we 2332 * really queue it to avoid potential races with other flows 2333 * scheduling the same work. 2334 */ 2335 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 2336 /* If coming from reconfiguration failure, abort the scan so 2337 * we don't attempt to continue a partial HW scan - which is 2338 * possible otherwise if (e.g.) the 2.4 GHz portion was the 2339 * completed scan, and a 5 GHz portion is still pending. 2340 */ 2341 if (aborted) 2342 set_bit(SCAN_ABORTED, &local->scanning); 2343 wiphy_delayed_work_queue(local->hw.wiphy, &local->scan_work, 0); 2344 wiphy_delayed_work_flush(local->hw.wiphy, &local->scan_work); 2345 } 2346 } 2347 2348 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 2349 { 2350 struct ieee80211_sub_if_data *sdata; 2351 struct ieee80211_chanctx *ctx; 2352 2353 /* 2354 * We get here if during resume the device can't be restarted properly. 2355 * We might also get here if this happens during HW reset, which is a 2356 * slightly different situation and we need to drop all connections in 2357 * the latter case. 2358 * 2359 * Ask cfg80211 to turn off all interfaces, this will result in more 2360 * warnings but at least we'll then get into a clean stopped state. 2361 */ 2362 2363 local->resuming = false; 2364 local->suspended = false; 2365 local->in_reconfig = false; 2366 local->reconfig_failure = true; 2367 2368 ieee80211_flush_completed_scan(local, true); 2369 2370 /* scheduled scan clearly can't be running any more, but tell 2371 * cfg80211 and clear local state 2372 */ 2373 ieee80211_sched_scan_end(local); 2374 2375 list_for_each_entry(sdata, &local->interfaces, list) 2376 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 2377 2378 /* Mark channel contexts as not being in the driver any more to avoid 2379 * removing them from the driver during the shutdown process... 2380 */ 2381 mutex_lock(&local->chanctx_mtx); 2382 list_for_each_entry(ctx, &local->chanctx_list, list) 2383 ctx->driver_present = false; 2384 mutex_unlock(&local->chanctx_mtx); 2385 } 2386 2387 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 2388 struct ieee80211_sub_if_data *sdata, 2389 struct ieee80211_link_data *link) 2390 { 2391 struct ieee80211_chanctx_conf *conf; 2392 struct ieee80211_chanctx *ctx; 2393 2394 if (!local->use_chanctx) 2395 return; 2396 2397 mutex_lock(&local->chanctx_mtx); 2398 conf = rcu_dereference_protected(link->conf->chanctx_conf, 2399 lockdep_is_held(&local->chanctx_mtx)); 2400 if (conf) { 2401 ctx = container_of(conf, struct ieee80211_chanctx, conf); 2402 drv_assign_vif_chanctx(local, sdata, link->conf, ctx); 2403 } 2404 mutex_unlock(&local->chanctx_mtx); 2405 } 2406 2407 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 2408 { 2409 struct ieee80211_local *local = sdata->local; 2410 struct sta_info *sta; 2411 2412 /* add STAs back */ 2413 mutex_lock(&local->sta_mtx); 2414 list_for_each_entry(sta, &local->sta_list, list) { 2415 enum ieee80211_sta_state state; 2416 2417 if (!sta->uploaded || sta->sdata != sdata) 2418 continue; 2419 2420 for (state = IEEE80211_STA_NOTEXIST; 2421 state < sta->sta_state; state++) 2422 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2423 state + 1)); 2424 } 2425 mutex_unlock(&local->sta_mtx); 2426 } 2427 2428 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 2429 { 2430 struct cfg80211_nan_func *func, **funcs; 2431 int res, id, i = 0; 2432 2433 res = drv_start_nan(sdata->local, sdata, 2434 &sdata->u.nan.conf); 2435 if (WARN_ON(res)) 2436 return res; 2437 2438 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 2439 sizeof(*funcs), 2440 GFP_KERNEL); 2441 if (!funcs) 2442 return -ENOMEM; 2443 2444 /* Add all the functions: 2445 * This is a little bit ugly. We need to call a potentially sleeping 2446 * callback for each NAN function, so we can't hold the spinlock. 2447 */ 2448 spin_lock_bh(&sdata->u.nan.func_lock); 2449 2450 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 2451 funcs[i++] = func; 2452 2453 spin_unlock_bh(&sdata->u.nan.func_lock); 2454 2455 for (i = 0; funcs[i]; i++) { 2456 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 2457 if (WARN_ON(res)) 2458 ieee80211_nan_func_terminated(&sdata->vif, 2459 funcs[i]->instance_id, 2460 NL80211_NAN_FUNC_TERM_REASON_ERROR, 2461 GFP_KERNEL); 2462 } 2463 2464 kfree(funcs); 2465 2466 return 0; 2467 } 2468 2469 static void ieee80211_reconfig_ap_links(struct ieee80211_local *local, 2470 struct ieee80211_sub_if_data *sdata, 2471 u64 changed) 2472 { 2473 int link_id; 2474 2475 for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { 2476 struct ieee80211_link_data *link; 2477 2478 if (!(sdata->vif.active_links & BIT(link_id))) 2479 continue; 2480 2481 link = sdata_dereference(sdata->link[link_id], sdata); 2482 if (!link) 2483 continue; 2484 2485 if (rcu_access_pointer(link->u.ap.beacon)) 2486 drv_start_ap(local, sdata, link->conf); 2487 2488 if (!link->conf->enable_beacon) 2489 continue; 2490 2491 changed |= BSS_CHANGED_BEACON | 2492 BSS_CHANGED_BEACON_ENABLED; 2493 2494 ieee80211_link_info_change_notify(sdata, link, changed); 2495 } 2496 } 2497 2498 int ieee80211_reconfig(struct ieee80211_local *local) 2499 { 2500 struct ieee80211_hw *hw = &local->hw; 2501 struct ieee80211_sub_if_data *sdata; 2502 struct ieee80211_chanctx *ctx; 2503 struct sta_info *sta; 2504 int res, i; 2505 bool reconfig_due_to_wowlan = false; 2506 struct ieee80211_sub_if_data *sched_scan_sdata; 2507 struct cfg80211_sched_scan_request *sched_scan_req; 2508 bool sched_scan_stopped = false; 2509 bool suspended = local->suspended; 2510 bool in_reconfig = false; 2511 2512 /* nothing to do if HW shouldn't run */ 2513 if (!local->open_count) 2514 goto wake_up; 2515 2516 #ifdef CONFIG_PM 2517 if (suspended) 2518 local->resuming = true; 2519 2520 if (local->wowlan) { 2521 /* 2522 * In the wowlan case, both mac80211 and the device 2523 * are functional when the resume op is called, so 2524 * clear local->suspended so the device could operate 2525 * normally (e.g. pass rx frames). 2526 */ 2527 local->suspended = false; 2528 res = drv_resume(local); 2529 local->wowlan = false; 2530 if (res < 0) { 2531 local->resuming = false; 2532 return res; 2533 } 2534 if (res == 0) 2535 goto wake_up; 2536 WARN_ON(res > 1); 2537 /* 2538 * res is 1, which means the driver requested 2539 * to go through a regular reset on wakeup. 2540 * restore local->suspended in this case. 2541 */ 2542 reconfig_due_to_wowlan = true; 2543 local->suspended = true; 2544 } 2545 #endif 2546 2547 /* 2548 * In case of hw_restart during suspend (without wowlan), 2549 * cancel restart work, as we are reconfiguring the device 2550 * anyway. 2551 * Note that restart_work is scheduled on a frozen workqueue, 2552 * so we can't deadlock in this case. 2553 */ 2554 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 2555 cancel_work_sync(&local->restart_work); 2556 2557 local->started = false; 2558 2559 /* 2560 * Upon resume hardware can sometimes be goofy due to 2561 * various platform / driver / bus issues, so restarting 2562 * the device may at times not work immediately. Propagate 2563 * the error. 2564 */ 2565 res = drv_start(local); 2566 if (res) { 2567 if (suspended) 2568 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 2569 else 2570 WARN(1, "Hardware became unavailable during restart.\n"); 2571 ieee80211_handle_reconfig_failure(local); 2572 return res; 2573 } 2574 2575 /* setup fragmentation threshold */ 2576 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 2577 2578 /* setup RTS threshold */ 2579 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 2580 2581 /* reset coverage class */ 2582 drv_set_coverage_class(local, hw->wiphy->coverage_class); 2583 2584 ieee80211_led_radio(local, true); 2585 ieee80211_mod_tpt_led_trig(local, 2586 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 2587 2588 /* add interfaces */ 2589 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 2590 if (sdata) { 2591 /* in HW restart it exists already */ 2592 WARN_ON(local->resuming); 2593 res = drv_add_interface(local, sdata); 2594 if (WARN_ON(res)) { 2595 RCU_INIT_POINTER(local->monitor_sdata, NULL); 2596 synchronize_net(); 2597 kfree(sdata); 2598 } 2599 } 2600 2601 list_for_each_entry(sdata, &local->interfaces, list) { 2602 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2603 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2604 ieee80211_sdata_running(sdata)) { 2605 res = drv_add_interface(local, sdata); 2606 if (WARN_ON(res)) 2607 break; 2608 } 2609 } 2610 2611 /* If adding any of the interfaces failed above, roll back and 2612 * report failure. 2613 */ 2614 if (res) { 2615 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 2616 list) 2617 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2618 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2619 ieee80211_sdata_running(sdata)) 2620 drv_remove_interface(local, sdata); 2621 ieee80211_handle_reconfig_failure(local); 2622 return res; 2623 } 2624 2625 /* add channel contexts */ 2626 if (local->use_chanctx) { 2627 mutex_lock(&local->chanctx_mtx); 2628 list_for_each_entry(ctx, &local->chanctx_list, list) 2629 if (ctx->replace_state != 2630 IEEE80211_CHANCTX_REPLACES_OTHER) 2631 WARN_ON(drv_add_chanctx(local, ctx)); 2632 mutex_unlock(&local->chanctx_mtx); 2633 2634 sdata = wiphy_dereference(local->hw.wiphy, 2635 local->monitor_sdata); 2636 if (sdata && ieee80211_sdata_running(sdata)) 2637 ieee80211_assign_chanctx(local, sdata, &sdata->deflink); 2638 } 2639 2640 /* reconfigure hardware */ 2641 ieee80211_hw_config(local, ~0); 2642 2643 ieee80211_configure_filter(local); 2644 2645 /* Finally also reconfigure all the BSS information */ 2646 list_for_each_entry(sdata, &local->interfaces, list) { 2647 /* common change flags for all interface types - link only */ 2648 u64 changed = BSS_CHANGED_ERP_CTS_PROT | 2649 BSS_CHANGED_ERP_PREAMBLE | 2650 BSS_CHANGED_ERP_SLOT | 2651 BSS_CHANGED_HT | 2652 BSS_CHANGED_BASIC_RATES | 2653 BSS_CHANGED_BEACON_INT | 2654 BSS_CHANGED_BSSID | 2655 BSS_CHANGED_CQM | 2656 BSS_CHANGED_QOS | 2657 BSS_CHANGED_TXPOWER | 2658 BSS_CHANGED_MCAST_RATE; 2659 struct ieee80211_link_data *link = NULL; 2660 unsigned int link_id; 2661 u32 active_links = 0; 2662 2663 if (!ieee80211_sdata_running(sdata)) 2664 continue; 2665 2666 sdata_lock(sdata); 2667 if (ieee80211_vif_is_mld(&sdata->vif)) { 2668 struct ieee80211_bss_conf *old[IEEE80211_MLD_MAX_NUM_LINKS] = { 2669 [0] = &sdata->vif.bss_conf, 2670 }; 2671 2672 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 2673 /* start with a single active link */ 2674 active_links = sdata->vif.active_links; 2675 link_id = ffs(active_links) - 1; 2676 sdata->vif.active_links = BIT(link_id); 2677 } 2678 2679 drv_change_vif_links(local, sdata, 0, 2680 sdata->vif.active_links, 2681 old); 2682 } 2683 2684 for (link_id = 0; 2685 link_id < ARRAY_SIZE(sdata->vif.link_conf); 2686 link_id++) { 2687 if (ieee80211_vif_is_mld(&sdata->vif) && 2688 !(sdata->vif.active_links & BIT(link_id))) 2689 continue; 2690 2691 link = sdata_dereference(sdata->link[link_id], sdata); 2692 if (!link) 2693 continue; 2694 2695 ieee80211_assign_chanctx(local, sdata, link); 2696 } 2697 2698 switch (sdata->vif.type) { 2699 case NL80211_IFTYPE_AP_VLAN: 2700 case NL80211_IFTYPE_MONITOR: 2701 break; 2702 case NL80211_IFTYPE_ADHOC: 2703 if (sdata->vif.cfg.ibss_joined) 2704 WARN_ON(drv_join_ibss(local, sdata)); 2705 fallthrough; 2706 default: 2707 ieee80211_reconfig_stations(sdata); 2708 fallthrough; 2709 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 2710 for (i = 0; i < IEEE80211_NUM_ACS; i++) 2711 drv_conf_tx(local, &sdata->deflink, i, 2712 &sdata->deflink.tx_conf[i]); 2713 break; 2714 } 2715 2716 if (sdata->vif.bss_conf.mu_mimo_owner) 2717 changed |= BSS_CHANGED_MU_GROUPS; 2718 2719 if (!ieee80211_vif_is_mld(&sdata->vif)) 2720 changed |= BSS_CHANGED_IDLE; 2721 2722 switch (sdata->vif.type) { 2723 case NL80211_IFTYPE_STATION: 2724 if (!ieee80211_vif_is_mld(&sdata->vif)) { 2725 changed |= BSS_CHANGED_ASSOC | 2726 BSS_CHANGED_ARP_FILTER | 2727 BSS_CHANGED_PS; 2728 2729 /* Re-send beacon info report to the driver */ 2730 if (sdata->deflink.u.mgd.have_beacon) 2731 changed |= BSS_CHANGED_BEACON_INFO; 2732 2733 if (sdata->vif.bss_conf.max_idle_period || 2734 sdata->vif.bss_conf.protected_keep_alive) 2735 changed |= BSS_CHANGED_KEEP_ALIVE; 2736 2737 if (sdata->vif.bss_conf.eht_puncturing) 2738 changed |= BSS_CHANGED_EHT_PUNCTURING; 2739 2740 ieee80211_bss_info_change_notify(sdata, 2741 changed); 2742 } else if (!WARN_ON(!link)) { 2743 ieee80211_link_info_change_notify(sdata, link, 2744 changed); 2745 changed = BSS_CHANGED_ASSOC | 2746 BSS_CHANGED_IDLE | 2747 BSS_CHANGED_PS | 2748 BSS_CHANGED_ARP_FILTER; 2749 ieee80211_vif_cfg_change_notify(sdata, changed); 2750 } 2751 break; 2752 case NL80211_IFTYPE_OCB: 2753 changed |= BSS_CHANGED_OCB; 2754 ieee80211_bss_info_change_notify(sdata, changed); 2755 break; 2756 case NL80211_IFTYPE_ADHOC: 2757 changed |= BSS_CHANGED_IBSS; 2758 fallthrough; 2759 case NL80211_IFTYPE_AP: 2760 changed |= BSS_CHANGED_P2P_PS; 2761 2762 if (ieee80211_vif_is_mld(&sdata->vif)) 2763 ieee80211_vif_cfg_change_notify(sdata, 2764 BSS_CHANGED_SSID); 2765 else 2766 changed |= BSS_CHANGED_SSID; 2767 2768 if (sdata->vif.bss_conf.ftm_responder == 1 && 2769 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2770 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2771 changed |= BSS_CHANGED_FTM_RESPONDER; 2772 2773 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2774 changed |= BSS_CHANGED_AP_PROBE_RESP; 2775 2776 if (ieee80211_vif_is_mld(&sdata->vif)) { 2777 ieee80211_reconfig_ap_links(local, 2778 sdata, 2779 changed); 2780 break; 2781 } 2782 2783 if (rcu_access_pointer(sdata->deflink.u.ap.beacon)) 2784 drv_start_ap(local, sdata, 2785 sdata->deflink.conf); 2786 } 2787 fallthrough; 2788 case NL80211_IFTYPE_MESH_POINT: 2789 if (sdata->vif.bss_conf.enable_beacon) { 2790 changed |= BSS_CHANGED_BEACON | 2791 BSS_CHANGED_BEACON_ENABLED; 2792 ieee80211_bss_info_change_notify(sdata, changed); 2793 } 2794 break; 2795 case NL80211_IFTYPE_NAN: 2796 res = ieee80211_reconfig_nan(sdata); 2797 if (res < 0) { 2798 sdata_unlock(sdata); 2799 ieee80211_handle_reconfig_failure(local); 2800 return res; 2801 } 2802 break; 2803 case NL80211_IFTYPE_AP_VLAN: 2804 case NL80211_IFTYPE_MONITOR: 2805 case NL80211_IFTYPE_P2P_DEVICE: 2806 /* nothing to do */ 2807 break; 2808 case NL80211_IFTYPE_UNSPECIFIED: 2809 case NUM_NL80211_IFTYPES: 2810 case NL80211_IFTYPE_P2P_CLIENT: 2811 case NL80211_IFTYPE_P2P_GO: 2812 case NL80211_IFTYPE_WDS: 2813 WARN_ON(1); 2814 break; 2815 } 2816 sdata_unlock(sdata); 2817 2818 if (active_links) 2819 ieee80211_set_active_links(&sdata->vif, active_links); 2820 } 2821 2822 ieee80211_recalc_ps(local); 2823 2824 /* 2825 * The sta might be in psm against the ap (e.g. because 2826 * this was the state before a hw restart), so we 2827 * explicitly send a null packet in order to make sure 2828 * it'll sync against the ap (and get out of psm). 2829 */ 2830 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2831 list_for_each_entry(sdata, &local->interfaces, list) { 2832 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2833 continue; 2834 if (!sdata->u.mgd.associated) 2835 continue; 2836 2837 ieee80211_send_nullfunc(local, sdata, false); 2838 } 2839 } 2840 2841 /* APs are now beaconing, add back stations */ 2842 list_for_each_entry(sdata, &local->interfaces, list) { 2843 if (!ieee80211_sdata_running(sdata)) 2844 continue; 2845 2846 sdata_lock(sdata); 2847 switch (sdata->vif.type) { 2848 case NL80211_IFTYPE_AP_VLAN: 2849 case NL80211_IFTYPE_AP: 2850 ieee80211_reconfig_stations(sdata); 2851 break; 2852 default: 2853 break; 2854 } 2855 sdata_unlock(sdata); 2856 } 2857 2858 /* add back keys */ 2859 list_for_each_entry(sdata, &local->interfaces, list) 2860 ieee80211_reenable_keys(sdata); 2861 2862 /* Reconfigure sched scan if it was interrupted by FW restart */ 2863 mutex_lock(&local->mtx); 2864 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2865 lockdep_is_held(&local->mtx)); 2866 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2867 lockdep_is_held(&local->mtx)); 2868 if (sched_scan_sdata && sched_scan_req) 2869 /* 2870 * Sched scan stopped, but we don't want to report it. Instead, 2871 * we're trying to reschedule. However, if more than one scan 2872 * plan was set, we cannot reschedule since we don't know which 2873 * scan plan was currently running (and some scan plans may have 2874 * already finished). 2875 */ 2876 if (sched_scan_req->n_scan_plans > 1 || 2877 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2878 sched_scan_req)) { 2879 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2880 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2881 sched_scan_stopped = true; 2882 } 2883 mutex_unlock(&local->mtx); 2884 2885 if (sched_scan_stopped) 2886 cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0); 2887 2888 wake_up: 2889 2890 if (local->monitors == local->open_count && local->monitors > 0) 2891 ieee80211_add_virtual_monitor(local); 2892 2893 /* 2894 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2895 * sessions can be established after a resume. 2896 * 2897 * Also tear down aggregation sessions since reconfiguring 2898 * them in a hardware restart scenario is not easily done 2899 * right now, and the hardware will have lost information 2900 * about the sessions, but we and the AP still think they 2901 * are active. This is really a workaround though. 2902 */ 2903 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2904 mutex_lock(&local->sta_mtx); 2905 2906 list_for_each_entry(sta, &local->sta_list, list) { 2907 if (!local->resuming) 2908 ieee80211_sta_tear_down_BA_sessions( 2909 sta, AGG_STOP_LOCAL_REQUEST); 2910 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2911 } 2912 2913 mutex_unlock(&local->sta_mtx); 2914 } 2915 2916 /* 2917 * If this is for hw restart things are still running. 2918 * We may want to change that later, however. 2919 */ 2920 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2921 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2922 2923 if (local->in_reconfig) { 2924 in_reconfig = local->in_reconfig; 2925 local->in_reconfig = false; 2926 barrier(); 2927 2928 /* Restart deferred ROCs */ 2929 mutex_lock(&local->mtx); 2930 ieee80211_start_next_roc(local); 2931 mutex_unlock(&local->mtx); 2932 2933 /* Requeue all works */ 2934 list_for_each_entry(sdata, &local->interfaces, list) 2935 wiphy_work_queue(local->hw.wiphy, &sdata->work); 2936 } 2937 2938 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2939 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2940 false); 2941 2942 if (in_reconfig) { 2943 list_for_each_entry(sdata, &local->interfaces, list) { 2944 if (!ieee80211_sdata_running(sdata)) 2945 continue; 2946 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2947 ieee80211_sta_restart(sdata); 2948 } 2949 } 2950 2951 if (!suspended) 2952 return 0; 2953 2954 #ifdef CONFIG_PM 2955 /* first set suspended false, then resuming */ 2956 local->suspended = false; 2957 mb(); 2958 local->resuming = false; 2959 2960 ieee80211_flush_completed_scan(local, false); 2961 2962 if (local->open_count && !reconfig_due_to_wowlan) 2963 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2964 2965 list_for_each_entry(sdata, &local->interfaces, list) { 2966 if (!ieee80211_sdata_running(sdata)) 2967 continue; 2968 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2969 ieee80211_sta_restart(sdata); 2970 } 2971 2972 mod_timer(&local->sta_cleanup, jiffies + 1); 2973 #else 2974 WARN_ON(1); 2975 #endif 2976 2977 return 0; 2978 } 2979 2980 static void ieee80211_reconfig_disconnect(struct ieee80211_vif *vif, u8 flag) 2981 { 2982 struct ieee80211_sub_if_data *sdata; 2983 struct ieee80211_local *local; 2984 struct ieee80211_key *key; 2985 2986 if (WARN_ON(!vif)) 2987 return; 2988 2989 sdata = vif_to_sdata(vif); 2990 local = sdata->local; 2991 2992 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_RESUME && 2993 !local->resuming)) 2994 return; 2995 2996 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_HW_RESTART && 2997 !local->in_reconfig)) 2998 return; 2999 3000 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 3001 return; 3002 3003 sdata->flags |= flag; 3004 3005 mutex_lock(&local->key_mtx); 3006 list_for_each_entry(key, &sdata->key_list, list) 3007 key->flags |= KEY_FLAG_TAINTED; 3008 mutex_unlock(&local->key_mtx); 3009 } 3010 3011 void ieee80211_hw_restart_disconnect(struct ieee80211_vif *vif) 3012 { 3013 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_HW_RESTART); 3014 } 3015 EXPORT_SYMBOL_GPL(ieee80211_hw_restart_disconnect); 3016 3017 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 3018 { 3019 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_RESUME); 3020 } 3021 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 3022 3023 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata, 3024 struct ieee80211_link_data *link) 3025 { 3026 struct ieee80211_local *local = sdata->local; 3027 struct ieee80211_chanctx_conf *chanctx_conf; 3028 struct ieee80211_chanctx *chanctx; 3029 3030 mutex_lock(&local->chanctx_mtx); 3031 3032 chanctx_conf = rcu_dereference_protected(link->conf->chanctx_conf, 3033 lockdep_is_held(&local->chanctx_mtx)); 3034 3035 /* 3036 * This function can be called from a work, thus it may be possible 3037 * that the chanctx_conf is removed (due to a disconnection, for 3038 * example). 3039 * So nothing should be done in such case. 3040 */ 3041 if (!chanctx_conf) 3042 goto unlock; 3043 3044 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 3045 ieee80211_recalc_smps_chanctx(local, chanctx); 3046 unlock: 3047 mutex_unlock(&local->chanctx_mtx); 3048 } 3049 3050 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata, 3051 int link_id) 3052 { 3053 struct ieee80211_local *local = sdata->local; 3054 struct ieee80211_chanctx_conf *chanctx_conf; 3055 struct ieee80211_chanctx *chanctx; 3056 int i; 3057 3058 mutex_lock(&local->chanctx_mtx); 3059 3060 for (i = 0; i < ARRAY_SIZE(sdata->vif.link_conf); i++) { 3061 struct ieee80211_bss_conf *bss_conf; 3062 3063 if (link_id >= 0 && link_id != i) 3064 continue; 3065 3066 rcu_read_lock(); 3067 bss_conf = rcu_dereference(sdata->vif.link_conf[i]); 3068 if (!bss_conf) { 3069 rcu_read_unlock(); 3070 continue; 3071 } 3072 3073 chanctx_conf = rcu_dereference_protected(bss_conf->chanctx_conf, 3074 lockdep_is_held(&local->chanctx_mtx)); 3075 /* 3076 * Since we hold the chanctx_mtx (checked above) 3077 * we can take the chanctx_conf pointer out of the 3078 * RCU critical section, it cannot go away without 3079 * the mutex. Just the way we reached it could - in 3080 * theory - go away, but we don't really care and 3081 * it really shouldn't happen anyway. 3082 */ 3083 rcu_read_unlock(); 3084 3085 if (!chanctx_conf) 3086 goto unlock; 3087 3088 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, 3089 conf); 3090 ieee80211_recalc_chanctx_min_def(local, chanctx, NULL); 3091 } 3092 unlock: 3093 mutex_unlock(&local->chanctx_mtx); 3094 } 3095 3096 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 3097 { 3098 size_t pos = offset; 3099 3100 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 3101 pos += 2 + ies[pos + 1]; 3102 3103 return pos; 3104 } 3105 3106 u8 *ieee80211_ie_build_s1g_cap(u8 *pos, struct ieee80211_sta_s1g_cap *s1g_cap) 3107 { 3108 *pos++ = WLAN_EID_S1G_CAPABILITIES; 3109 *pos++ = sizeof(struct ieee80211_s1g_cap); 3110 memset(pos, 0, sizeof(struct ieee80211_s1g_cap)); 3111 3112 memcpy(pos, &s1g_cap->cap, sizeof(s1g_cap->cap)); 3113 pos += sizeof(s1g_cap->cap); 3114 3115 memcpy(pos, &s1g_cap->nss_mcs, sizeof(s1g_cap->nss_mcs)); 3116 pos += sizeof(s1g_cap->nss_mcs); 3117 3118 return pos; 3119 } 3120 3121 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 3122 u16 cap) 3123 { 3124 __le16 tmp; 3125 3126 *pos++ = WLAN_EID_HT_CAPABILITY; 3127 *pos++ = sizeof(struct ieee80211_ht_cap); 3128 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 3129 3130 /* capability flags */ 3131 tmp = cpu_to_le16(cap); 3132 memcpy(pos, &tmp, sizeof(u16)); 3133 pos += sizeof(u16); 3134 3135 /* AMPDU parameters */ 3136 *pos++ = ht_cap->ampdu_factor | 3137 (ht_cap->ampdu_density << 3138 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 3139 3140 /* MCS set */ 3141 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 3142 pos += sizeof(ht_cap->mcs); 3143 3144 /* extended capabilities */ 3145 pos += sizeof(__le16); 3146 3147 /* BF capabilities */ 3148 pos += sizeof(__le32); 3149 3150 /* antenna selection */ 3151 pos += sizeof(u8); 3152 3153 return pos; 3154 } 3155 3156 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 3157 u32 cap) 3158 { 3159 __le32 tmp; 3160 3161 *pos++ = WLAN_EID_VHT_CAPABILITY; 3162 *pos++ = sizeof(struct ieee80211_vht_cap); 3163 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 3164 3165 /* capability flags */ 3166 tmp = cpu_to_le32(cap); 3167 memcpy(pos, &tmp, sizeof(u32)); 3168 pos += sizeof(u32); 3169 3170 /* VHT MCS set */ 3171 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 3172 pos += sizeof(vht_cap->vht_mcs); 3173 3174 return pos; 3175 } 3176 3177 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 3178 { 3179 const struct ieee80211_sta_he_cap *he_cap; 3180 struct ieee80211_supported_band *sband; 3181 u8 n; 3182 3183 sband = ieee80211_get_sband(sdata); 3184 if (!sband) 3185 return 0; 3186 3187 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 3188 if (!he_cap) 3189 return 0; 3190 3191 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 3192 return 2 + 1 + 3193 sizeof(he_cap->he_cap_elem) + n + 3194 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 3195 he_cap->he_cap_elem.phy_cap_info); 3196 } 3197 3198 u8 *ieee80211_ie_build_he_cap(ieee80211_conn_flags_t disable_flags, u8 *pos, 3199 const struct ieee80211_sta_he_cap *he_cap, 3200 u8 *end) 3201 { 3202 struct ieee80211_he_cap_elem elem; 3203 u8 n; 3204 u8 ie_len; 3205 u8 *orig_pos = pos; 3206 3207 /* Make sure we have place for the IE */ 3208 /* 3209 * TODO: the 1 added is because this temporarily is under the EXTENSION 3210 * IE. Get rid of it when it moves. 3211 */ 3212 if (!he_cap) 3213 return orig_pos; 3214 3215 /* modify on stack first to calculate 'n' and 'ie_len' correctly */ 3216 elem = he_cap->he_cap_elem; 3217 3218 if (disable_flags & IEEE80211_CONN_DISABLE_40MHZ) 3219 elem.phy_cap_info[0] &= 3220 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | 3221 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G); 3222 3223 if (disable_flags & IEEE80211_CONN_DISABLE_160MHZ) 3224 elem.phy_cap_info[0] &= 3225 ~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 3226 3227 if (disable_flags & IEEE80211_CONN_DISABLE_80P80MHZ) 3228 elem.phy_cap_info[0] &= 3229 ~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 3230 3231 n = ieee80211_he_mcs_nss_size(&elem); 3232 ie_len = 2 + 1 + 3233 sizeof(he_cap->he_cap_elem) + n + 3234 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 3235 he_cap->he_cap_elem.phy_cap_info); 3236 3237 if ((end - pos) < ie_len) 3238 return orig_pos; 3239 3240 *pos++ = WLAN_EID_EXTENSION; 3241 pos++; /* We'll set the size later below */ 3242 *pos++ = WLAN_EID_EXT_HE_CAPABILITY; 3243 3244 /* Fixed data */ 3245 memcpy(pos, &elem, sizeof(elem)); 3246 pos += sizeof(elem); 3247 3248 memcpy(pos, &he_cap->he_mcs_nss_supp, n); 3249 pos += n; 3250 3251 /* Check if PPE Threshold should be present */ 3252 if ((he_cap->he_cap_elem.phy_cap_info[6] & 3253 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 3254 goto end; 3255 3256 /* 3257 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 3258 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 3259 */ 3260 n = hweight8(he_cap->ppe_thres[0] & 3261 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 3262 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 3263 IEEE80211_PPE_THRES_NSS_POS)); 3264 3265 /* 3266 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 3267 * total size. 3268 */ 3269 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 3270 n = DIV_ROUND_UP(n, 8); 3271 3272 /* Copy PPE Thresholds */ 3273 memcpy(pos, &he_cap->ppe_thres, n); 3274 pos += n; 3275 3276 end: 3277 orig_pos[1] = (pos - orig_pos) - 2; 3278 return pos; 3279 } 3280 3281 void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata, 3282 enum ieee80211_smps_mode smps_mode, 3283 struct sk_buff *skb) 3284 { 3285 struct ieee80211_supported_band *sband; 3286 const struct ieee80211_sband_iftype_data *iftd; 3287 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3288 u8 *pos; 3289 u16 cap; 3290 3291 if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy, 3292 BIT(NL80211_BAND_6GHZ), 3293 IEEE80211_CHAN_NO_HE)) 3294 return; 3295 3296 sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3297 3298 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 3299 if (!iftd) 3300 return; 3301 3302 /* Check for device HE 6 GHz capability before adding element */ 3303 if (!iftd->he_6ghz_capa.capa) 3304 return; 3305 3306 cap = le16_to_cpu(iftd->he_6ghz_capa.capa); 3307 cap &= ~IEEE80211_HE_6GHZ_CAP_SM_PS; 3308 3309 switch (smps_mode) { 3310 case IEEE80211_SMPS_AUTOMATIC: 3311 case IEEE80211_SMPS_NUM_MODES: 3312 WARN_ON(1); 3313 fallthrough; 3314 case IEEE80211_SMPS_OFF: 3315 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 3316 IEEE80211_HE_6GHZ_CAP_SM_PS); 3317 break; 3318 case IEEE80211_SMPS_STATIC: 3319 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 3320 IEEE80211_HE_6GHZ_CAP_SM_PS); 3321 break; 3322 case IEEE80211_SMPS_DYNAMIC: 3323 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 3324 IEEE80211_HE_6GHZ_CAP_SM_PS); 3325 break; 3326 } 3327 3328 pos = skb_put(skb, 2 + 1 + sizeof(cap)); 3329 ieee80211_write_he_6ghz_cap(pos, cpu_to_le16(cap), 3330 pos + 2 + 1 + sizeof(cap)); 3331 } 3332 3333 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 3334 const struct cfg80211_chan_def *chandef, 3335 u16 prot_mode, bool rifs_mode) 3336 { 3337 struct ieee80211_ht_operation *ht_oper; 3338 /* Build HT Information */ 3339 *pos++ = WLAN_EID_HT_OPERATION; 3340 *pos++ = sizeof(struct ieee80211_ht_operation); 3341 ht_oper = (struct ieee80211_ht_operation *)pos; 3342 ht_oper->primary_chan = ieee80211_frequency_to_channel( 3343 chandef->chan->center_freq); 3344 switch (chandef->width) { 3345 case NL80211_CHAN_WIDTH_160: 3346 case NL80211_CHAN_WIDTH_80P80: 3347 case NL80211_CHAN_WIDTH_80: 3348 case NL80211_CHAN_WIDTH_40: 3349 if (chandef->center_freq1 > chandef->chan->center_freq) 3350 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3351 else 3352 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3353 break; 3354 case NL80211_CHAN_WIDTH_320: 3355 /* HT information element should not be included on 6GHz */ 3356 WARN_ON(1); 3357 return pos; 3358 default: 3359 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 3360 break; 3361 } 3362 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 3363 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 3364 chandef->width != NL80211_CHAN_WIDTH_20) 3365 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 3366 3367 if (rifs_mode) 3368 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 3369 3370 ht_oper->operation_mode = cpu_to_le16(prot_mode); 3371 ht_oper->stbc_param = 0x0000; 3372 3373 /* It seems that Basic MCS set and Supported MCS set 3374 are identical for the first 10 bytes */ 3375 memset(&ht_oper->basic_set, 0, 16); 3376 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 3377 3378 return pos + sizeof(struct ieee80211_ht_operation); 3379 } 3380 3381 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 3382 const struct cfg80211_chan_def *chandef) 3383 { 3384 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 3385 *pos++ = 3; /* IE length */ 3386 /* New channel width */ 3387 switch (chandef->width) { 3388 case NL80211_CHAN_WIDTH_80: 3389 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 3390 break; 3391 case NL80211_CHAN_WIDTH_160: 3392 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 3393 break; 3394 case NL80211_CHAN_WIDTH_80P80: 3395 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 3396 break; 3397 case NL80211_CHAN_WIDTH_320: 3398 /* The behavior is not defined for 320 MHz channels */ 3399 WARN_ON(1); 3400 fallthrough; 3401 default: 3402 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 3403 } 3404 3405 /* new center frequency segment 0 */ 3406 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 3407 /* new center frequency segment 1 */ 3408 if (chandef->center_freq2) 3409 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 3410 else 3411 *pos++ = 0; 3412 } 3413 3414 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 3415 const struct cfg80211_chan_def *chandef) 3416 { 3417 struct ieee80211_vht_operation *vht_oper; 3418 3419 *pos++ = WLAN_EID_VHT_OPERATION; 3420 *pos++ = sizeof(struct ieee80211_vht_operation); 3421 vht_oper = (struct ieee80211_vht_operation *)pos; 3422 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 3423 chandef->center_freq1); 3424 if (chandef->center_freq2) 3425 vht_oper->center_freq_seg1_idx = 3426 ieee80211_frequency_to_channel(chandef->center_freq2); 3427 else 3428 vht_oper->center_freq_seg1_idx = 0x00; 3429 3430 switch (chandef->width) { 3431 case NL80211_CHAN_WIDTH_160: 3432 /* 3433 * Convert 160 MHz channel width to new style as interop 3434 * workaround. 3435 */ 3436 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3437 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 3438 if (chandef->chan->center_freq < chandef->center_freq1) 3439 vht_oper->center_freq_seg0_idx -= 8; 3440 else 3441 vht_oper->center_freq_seg0_idx += 8; 3442 break; 3443 case NL80211_CHAN_WIDTH_80P80: 3444 /* 3445 * Convert 80+80 MHz channel width to new style as interop 3446 * workaround. 3447 */ 3448 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3449 break; 3450 case NL80211_CHAN_WIDTH_80: 3451 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3452 break; 3453 case NL80211_CHAN_WIDTH_320: 3454 /* VHT information element should not be included on 6GHz */ 3455 WARN_ON(1); 3456 return pos; 3457 default: 3458 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 3459 break; 3460 } 3461 3462 /* don't require special VHT peer rates */ 3463 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 3464 3465 return pos + sizeof(struct ieee80211_vht_operation); 3466 } 3467 3468 u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef) 3469 { 3470 struct ieee80211_he_operation *he_oper; 3471 struct ieee80211_he_6ghz_oper *he_6ghz_op; 3472 u32 he_oper_params; 3473 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 3474 3475 if (chandef->chan->band == NL80211_BAND_6GHZ) 3476 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 3477 3478 *pos++ = WLAN_EID_EXTENSION; 3479 *pos++ = ie_len; 3480 *pos++ = WLAN_EID_EXT_HE_OPERATION; 3481 3482 he_oper_params = 0; 3483 he_oper_params |= u32_encode_bits(1023, /* disabled */ 3484 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 3485 he_oper_params |= u32_encode_bits(1, 3486 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 3487 he_oper_params |= u32_encode_bits(1, 3488 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 3489 if (chandef->chan->band == NL80211_BAND_6GHZ) 3490 he_oper_params |= u32_encode_bits(1, 3491 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 3492 3493 he_oper = (struct ieee80211_he_operation *)pos; 3494 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 3495 3496 /* don't require special HE peer rates */ 3497 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 3498 pos += sizeof(struct ieee80211_he_operation); 3499 3500 if (chandef->chan->band != NL80211_BAND_6GHZ) 3501 goto out; 3502 3503 /* TODO add VHT operational */ 3504 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 3505 he_6ghz_op->minrate = 6; /* 6 Mbps */ 3506 he_6ghz_op->primary = 3507 ieee80211_frequency_to_channel(chandef->chan->center_freq); 3508 he_6ghz_op->ccfs0 = 3509 ieee80211_frequency_to_channel(chandef->center_freq1); 3510 if (chandef->center_freq2) 3511 he_6ghz_op->ccfs1 = 3512 ieee80211_frequency_to_channel(chandef->center_freq2); 3513 else 3514 he_6ghz_op->ccfs1 = 0; 3515 3516 switch (chandef->width) { 3517 case NL80211_CHAN_WIDTH_320: 3518 /* 3519 * TODO: mesh operation is not defined over 6GHz 320 MHz 3520 * channels. 3521 */ 3522 WARN_ON(1); 3523 break; 3524 case NL80211_CHAN_WIDTH_160: 3525 /* Convert 160 MHz channel width to new style as interop 3526 * workaround. 3527 */ 3528 he_6ghz_op->control = 3529 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3530 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 3531 if (chandef->chan->center_freq < chandef->center_freq1) 3532 he_6ghz_op->ccfs0 -= 8; 3533 else 3534 he_6ghz_op->ccfs0 += 8; 3535 fallthrough; 3536 case NL80211_CHAN_WIDTH_80P80: 3537 he_6ghz_op->control = 3538 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3539 break; 3540 case NL80211_CHAN_WIDTH_80: 3541 he_6ghz_op->control = 3542 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 3543 break; 3544 case NL80211_CHAN_WIDTH_40: 3545 he_6ghz_op->control = 3546 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 3547 break; 3548 default: 3549 he_6ghz_op->control = 3550 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 3551 break; 3552 } 3553 3554 pos += sizeof(struct ieee80211_he_6ghz_oper); 3555 3556 out: 3557 return pos; 3558 } 3559 3560 u8 *ieee80211_ie_build_eht_oper(u8 *pos, struct cfg80211_chan_def *chandef, 3561 const struct ieee80211_sta_eht_cap *eht_cap) 3562 3563 { 3564 const struct ieee80211_eht_mcs_nss_supp_20mhz_only *eht_mcs_nss = 3565 &eht_cap->eht_mcs_nss_supp.only_20mhz; 3566 struct ieee80211_eht_operation *eht_oper; 3567 struct ieee80211_eht_operation_info *eht_oper_info; 3568 u8 eht_oper_len = offsetof(struct ieee80211_eht_operation, optional); 3569 u8 eht_oper_info_len = 3570 offsetof(struct ieee80211_eht_operation_info, optional); 3571 u8 chan_width = 0; 3572 3573 *pos++ = WLAN_EID_EXTENSION; 3574 *pos++ = 1 + eht_oper_len + eht_oper_info_len; 3575 *pos++ = WLAN_EID_EXT_EHT_OPERATION; 3576 3577 eht_oper = (struct ieee80211_eht_operation *)pos; 3578 3579 memcpy(&eht_oper->basic_mcs_nss, eht_mcs_nss, sizeof(*eht_mcs_nss)); 3580 eht_oper->params |= IEEE80211_EHT_OPER_INFO_PRESENT; 3581 pos += eht_oper_len; 3582 3583 eht_oper_info = 3584 (struct ieee80211_eht_operation_info *)eht_oper->optional; 3585 3586 eht_oper_info->ccfs0 = 3587 ieee80211_frequency_to_channel(chandef->center_freq1); 3588 if (chandef->center_freq2) 3589 eht_oper_info->ccfs1 = 3590 ieee80211_frequency_to_channel(chandef->center_freq2); 3591 else 3592 eht_oper_info->ccfs1 = 0; 3593 3594 switch (chandef->width) { 3595 case NL80211_CHAN_WIDTH_320: 3596 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ; 3597 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 3598 if (chandef->chan->center_freq < chandef->center_freq1) 3599 eht_oper_info->ccfs0 -= 16; 3600 else 3601 eht_oper_info->ccfs0 += 16; 3602 break; 3603 case NL80211_CHAN_WIDTH_160: 3604 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 3605 if (chandef->chan->center_freq < chandef->center_freq1) 3606 eht_oper_info->ccfs0 -= 8; 3607 else 3608 eht_oper_info->ccfs0 += 8; 3609 fallthrough; 3610 case NL80211_CHAN_WIDTH_80P80: 3611 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ; 3612 break; 3613 case NL80211_CHAN_WIDTH_80: 3614 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ; 3615 break; 3616 case NL80211_CHAN_WIDTH_40: 3617 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ; 3618 break; 3619 default: 3620 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ; 3621 break; 3622 } 3623 eht_oper_info->control = chan_width; 3624 pos += eht_oper_info_len; 3625 3626 /* TODO: eht_oper_info->optional */ 3627 3628 return pos; 3629 } 3630 3631 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 3632 struct cfg80211_chan_def *chandef) 3633 { 3634 enum nl80211_channel_type channel_type; 3635 3636 if (!ht_oper) 3637 return false; 3638 3639 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 3640 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 3641 channel_type = NL80211_CHAN_HT20; 3642 break; 3643 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 3644 channel_type = NL80211_CHAN_HT40PLUS; 3645 break; 3646 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 3647 channel_type = NL80211_CHAN_HT40MINUS; 3648 break; 3649 default: 3650 return false; 3651 } 3652 3653 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 3654 return true; 3655 } 3656 3657 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 3658 const struct ieee80211_vht_operation *oper, 3659 const struct ieee80211_ht_operation *htop, 3660 struct cfg80211_chan_def *chandef) 3661 { 3662 struct cfg80211_chan_def new = *chandef; 3663 int cf0, cf1; 3664 int ccfs0, ccfs1, ccfs2; 3665 int ccf0, ccf1; 3666 u32 vht_cap; 3667 bool support_80_80 = false; 3668 bool support_160 = false; 3669 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 3670 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 3671 u8 supp_chwidth = u32_get_bits(vht_cap_info, 3672 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 3673 3674 if (!oper || !htop) 3675 return false; 3676 3677 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 3678 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 3679 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 3680 support_80_80 = ((vht_cap & 3681 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 3682 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 3683 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 3684 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 3685 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 3686 ccfs0 = oper->center_freq_seg0_idx; 3687 ccfs1 = oper->center_freq_seg1_idx; 3688 ccfs2 = (le16_to_cpu(htop->operation_mode) & 3689 IEEE80211_HT_OP_MODE_CCFS2_MASK) 3690 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 3691 3692 ccf0 = ccfs0; 3693 3694 /* if not supported, parse as though we didn't understand it */ 3695 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 3696 ext_nss_bw_supp = 0; 3697 3698 /* 3699 * Cf. IEEE 802.11 Table 9-250 3700 * 3701 * We really just consider that because it's inefficient to connect 3702 * at a higher bandwidth than we'll actually be able to use. 3703 */ 3704 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 3705 default: 3706 case 0x00: 3707 ccf1 = 0; 3708 support_160 = false; 3709 support_80_80 = false; 3710 break; 3711 case 0x01: 3712 support_80_80 = false; 3713 fallthrough; 3714 case 0x02: 3715 case 0x03: 3716 ccf1 = ccfs2; 3717 break; 3718 case 0x10: 3719 ccf1 = ccfs1; 3720 break; 3721 case 0x11: 3722 case 0x12: 3723 if (!ccfs1) 3724 ccf1 = ccfs2; 3725 else 3726 ccf1 = ccfs1; 3727 break; 3728 case 0x13: 3729 case 0x20: 3730 case 0x23: 3731 ccf1 = ccfs1; 3732 break; 3733 } 3734 3735 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3736 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3737 3738 switch (oper->chan_width) { 3739 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3740 /* just use HT information directly */ 3741 break; 3742 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3743 new.width = NL80211_CHAN_WIDTH_80; 3744 new.center_freq1 = cf0; 3745 /* If needed, adjust based on the newer interop workaround. */ 3746 if (ccf1) { 3747 unsigned int diff; 3748 3749 diff = abs(ccf1 - ccf0); 3750 if ((diff == 8) && support_160) { 3751 new.width = NL80211_CHAN_WIDTH_160; 3752 new.center_freq1 = cf1; 3753 } else if ((diff > 8) && support_80_80) { 3754 new.width = NL80211_CHAN_WIDTH_80P80; 3755 new.center_freq2 = cf1; 3756 } 3757 } 3758 break; 3759 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3760 /* deprecated encoding */ 3761 new.width = NL80211_CHAN_WIDTH_160; 3762 new.center_freq1 = cf0; 3763 break; 3764 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3765 /* deprecated encoding */ 3766 new.width = NL80211_CHAN_WIDTH_80P80; 3767 new.center_freq1 = cf0; 3768 new.center_freq2 = cf1; 3769 break; 3770 default: 3771 return false; 3772 } 3773 3774 if (!cfg80211_chandef_valid(&new)) 3775 return false; 3776 3777 *chandef = new; 3778 return true; 3779 } 3780 3781 void ieee80211_chandef_eht_oper(const struct ieee80211_eht_operation *eht_oper, 3782 bool support_160, bool support_320, 3783 struct cfg80211_chan_def *chandef) 3784 { 3785 struct ieee80211_eht_operation_info *info = (void *)eht_oper->optional; 3786 3787 chandef->center_freq1 = 3788 ieee80211_channel_to_frequency(info->ccfs0, 3789 chandef->chan->band); 3790 3791 switch (u8_get_bits(info->control, 3792 IEEE80211_EHT_OPER_CHAN_WIDTH)) { 3793 case IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ: 3794 chandef->width = NL80211_CHAN_WIDTH_20; 3795 break; 3796 case IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ: 3797 chandef->width = NL80211_CHAN_WIDTH_40; 3798 break; 3799 case IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ: 3800 chandef->width = NL80211_CHAN_WIDTH_80; 3801 break; 3802 case IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ: 3803 if (support_160) { 3804 chandef->width = NL80211_CHAN_WIDTH_160; 3805 chandef->center_freq1 = 3806 ieee80211_channel_to_frequency(info->ccfs1, 3807 chandef->chan->band); 3808 } else { 3809 chandef->width = NL80211_CHAN_WIDTH_80; 3810 } 3811 break; 3812 case IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ: 3813 if (support_320) { 3814 chandef->width = NL80211_CHAN_WIDTH_320; 3815 chandef->center_freq1 = 3816 ieee80211_channel_to_frequency(info->ccfs1, 3817 chandef->chan->band); 3818 } else if (support_160) { 3819 chandef->width = NL80211_CHAN_WIDTH_160; 3820 } else { 3821 chandef->width = NL80211_CHAN_WIDTH_80; 3822 3823 if (chandef->center_freq1 > chandef->chan->center_freq) 3824 chandef->center_freq1 -= 40; 3825 else 3826 chandef->center_freq1 += 40; 3827 } 3828 break; 3829 } 3830 } 3831 3832 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata, 3833 const struct ieee80211_he_operation *he_oper, 3834 const struct ieee80211_eht_operation *eht_oper, 3835 struct cfg80211_chan_def *chandef) 3836 { 3837 struct ieee80211_local *local = sdata->local; 3838 struct ieee80211_supported_band *sband; 3839 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3840 const struct ieee80211_sta_he_cap *he_cap; 3841 const struct ieee80211_sta_eht_cap *eht_cap; 3842 struct cfg80211_chan_def he_chandef = *chandef; 3843 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3844 struct ieee80211_bss_conf *bss_conf = &sdata->vif.bss_conf; 3845 bool support_80_80, support_160, support_320; 3846 u8 he_phy_cap, eht_phy_cap; 3847 u32 freq; 3848 3849 if (chandef->chan->band != NL80211_BAND_6GHZ) 3850 return true; 3851 3852 sband = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3853 3854 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 3855 if (!he_cap) { 3856 sdata_info(sdata, "Missing iftype sband data/HE cap"); 3857 return false; 3858 } 3859 3860 he_phy_cap = he_cap->he_cap_elem.phy_cap_info[0]; 3861 support_160 = 3862 he_phy_cap & 3863 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 3864 support_80_80 = 3865 he_phy_cap & 3866 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 3867 3868 if (!he_oper) { 3869 sdata_info(sdata, 3870 "HE is not advertised on (on %d MHz), expect issues\n", 3871 chandef->chan->center_freq); 3872 return false; 3873 } 3874 3875 eht_cap = ieee80211_get_eht_iftype_cap(sband, iftype); 3876 if (!eht_cap) 3877 eht_oper = NULL; 3878 3879 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3880 3881 if (!he_6ghz_oper) { 3882 sdata_info(sdata, 3883 "HE 6GHz operation missing (on %d MHz), expect issues\n", 3884 chandef->chan->center_freq); 3885 return false; 3886 } 3887 3888 /* 3889 * The EHT operation IE does not contain the primary channel so the 3890 * primary channel frequency should be taken from the 6 GHz operation 3891 * information. 3892 */ 3893 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3894 NL80211_BAND_6GHZ); 3895 he_chandef.chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq); 3896 3897 switch (u8_get_bits(he_6ghz_oper->control, 3898 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) { 3899 case IEEE80211_6GHZ_CTRL_REG_LPI_AP: 3900 bss_conf->power_type = IEEE80211_REG_LPI_AP; 3901 break; 3902 case IEEE80211_6GHZ_CTRL_REG_SP_AP: 3903 bss_conf->power_type = IEEE80211_REG_SP_AP; 3904 break; 3905 default: 3906 bss_conf->power_type = IEEE80211_REG_UNSET_AP; 3907 break; 3908 } 3909 3910 if (!eht_oper || 3911 !(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) { 3912 switch (u8_get_bits(he_6ghz_oper->control, 3913 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3914 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3915 he_chandef.width = NL80211_CHAN_WIDTH_20; 3916 break; 3917 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3918 he_chandef.width = NL80211_CHAN_WIDTH_40; 3919 break; 3920 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3921 he_chandef.width = NL80211_CHAN_WIDTH_80; 3922 break; 3923 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3924 he_chandef.width = NL80211_CHAN_WIDTH_80; 3925 if (!he_6ghz_oper->ccfs1) 3926 break; 3927 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) { 3928 if (support_160) 3929 he_chandef.width = NL80211_CHAN_WIDTH_160; 3930 } else { 3931 if (support_80_80) 3932 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3933 } 3934 break; 3935 } 3936 3937 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3938 he_chandef.center_freq1 = 3939 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3940 NL80211_BAND_6GHZ); 3941 } else { 3942 he_chandef.center_freq1 = 3943 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3944 NL80211_BAND_6GHZ); 3945 if (support_80_80 || support_160) 3946 he_chandef.center_freq2 = 3947 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3948 NL80211_BAND_6GHZ); 3949 } 3950 } else { 3951 eht_phy_cap = eht_cap->eht_cap_elem.phy_cap_info[0]; 3952 support_320 = 3953 eht_phy_cap & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ; 3954 3955 ieee80211_chandef_eht_oper(eht_oper, support_160, 3956 support_320, &he_chandef); 3957 } 3958 3959 if (!cfg80211_chandef_valid(&he_chandef)) { 3960 sdata_info(sdata, 3961 "HE 6GHz operation resulted in invalid chandef: %d MHz/%d/%d MHz/%d MHz\n", 3962 he_chandef.chan ? he_chandef.chan->center_freq : 0, 3963 he_chandef.width, 3964 he_chandef.center_freq1, 3965 he_chandef.center_freq2); 3966 return false; 3967 } 3968 3969 *chandef = he_chandef; 3970 3971 return true; 3972 } 3973 3974 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, 3975 struct cfg80211_chan_def *chandef) 3976 { 3977 u32 oper_freq; 3978 3979 if (!oper) 3980 return false; 3981 3982 switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { 3983 case IEEE80211_S1G_CHANWIDTH_1MHZ: 3984 chandef->width = NL80211_CHAN_WIDTH_1; 3985 break; 3986 case IEEE80211_S1G_CHANWIDTH_2MHZ: 3987 chandef->width = NL80211_CHAN_WIDTH_2; 3988 break; 3989 case IEEE80211_S1G_CHANWIDTH_4MHZ: 3990 chandef->width = NL80211_CHAN_WIDTH_4; 3991 break; 3992 case IEEE80211_S1G_CHANWIDTH_8MHZ: 3993 chandef->width = NL80211_CHAN_WIDTH_8; 3994 break; 3995 case IEEE80211_S1G_CHANWIDTH_16MHZ: 3996 chandef->width = NL80211_CHAN_WIDTH_16; 3997 break; 3998 default: 3999 return false; 4000 } 4001 4002 oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch, 4003 NL80211_BAND_S1GHZ); 4004 chandef->center_freq1 = KHZ_TO_MHZ(oper_freq); 4005 chandef->freq1_offset = oper_freq % 1000; 4006 4007 return true; 4008 } 4009 4010 int ieee80211_parse_bitrates(enum nl80211_chan_width width, 4011 const struct ieee80211_supported_band *sband, 4012 const u8 *srates, int srates_len, u32 *rates) 4013 { 4014 u32 rate_flags = ieee80211_chanwidth_rate_flags(width); 4015 int shift = ieee80211_chanwidth_get_shift(width); 4016 struct ieee80211_rate *br; 4017 int brate, rate, i, j, count = 0; 4018 4019 *rates = 0; 4020 4021 for (i = 0; i < srates_len; i++) { 4022 rate = srates[i] & 0x7f; 4023 4024 for (j = 0; j < sband->n_bitrates; j++) { 4025 br = &sband->bitrates[j]; 4026 if ((rate_flags & br->flags) != rate_flags) 4027 continue; 4028 4029 brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5); 4030 if (brate == rate) { 4031 *rates |= BIT(j); 4032 count++; 4033 break; 4034 } 4035 } 4036 } 4037 return count; 4038 } 4039 4040 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, 4041 struct sk_buff *skb, bool need_basic, 4042 enum nl80211_band band) 4043 { 4044 struct ieee80211_local *local = sdata->local; 4045 struct ieee80211_supported_band *sband; 4046 int rate, shift; 4047 u8 i, rates, *pos; 4048 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 4049 u32 rate_flags; 4050 4051 shift = ieee80211_vif_get_shift(&sdata->vif); 4052 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 4053 sband = local->hw.wiphy->bands[band]; 4054 rates = 0; 4055 for (i = 0; i < sband->n_bitrates; i++) { 4056 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 4057 continue; 4058 rates++; 4059 } 4060 if (rates > 8) 4061 rates = 8; 4062 4063 if (skb_tailroom(skb) < rates + 2) 4064 return -ENOMEM; 4065 4066 pos = skb_put(skb, rates + 2); 4067 *pos++ = WLAN_EID_SUPP_RATES; 4068 *pos++ = rates; 4069 for (i = 0; i < rates; i++) { 4070 u8 basic = 0; 4071 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 4072 continue; 4073 4074 if (need_basic && basic_rates & BIT(i)) 4075 basic = 0x80; 4076 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 4077 5 * (1 << shift)); 4078 *pos++ = basic | (u8) rate; 4079 } 4080 4081 return 0; 4082 } 4083 4084 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, 4085 struct sk_buff *skb, bool need_basic, 4086 enum nl80211_band band) 4087 { 4088 struct ieee80211_local *local = sdata->local; 4089 struct ieee80211_supported_band *sband; 4090 int rate, shift; 4091 u8 i, exrates, *pos; 4092 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 4093 u32 rate_flags; 4094 4095 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 4096 shift = ieee80211_vif_get_shift(&sdata->vif); 4097 4098 sband = local->hw.wiphy->bands[band]; 4099 exrates = 0; 4100 for (i = 0; i < sband->n_bitrates; i++) { 4101 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 4102 continue; 4103 exrates++; 4104 } 4105 4106 if (exrates > 8) 4107 exrates -= 8; 4108 else 4109 exrates = 0; 4110 4111 if (skb_tailroom(skb) < exrates + 2) 4112 return -ENOMEM; 4113 4114 if (exrates) { 4115 pos = skb_put(skb, exrates + 2); 4116 *pos++ = WLAN_EID_EXT_SUPP_RATES; 4117 *pos++ = exrates; 4118 for (i = 8; i < sband->n_bitrates; i++) { 4119 u8 basic = 0; 4120 if ((rate_flags & sband->bitrates[i].flags) 4121 != rate_flags) 4122 continue; 4123 if (need_basic && basic_rates & BIT(i)) 4124 basic = 0x80; 4125 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 4126 5 * (1 << shift)); 4127 *pos++ = basic | (u8) rate; 4128 } 4129 } 4130 return 0; 4131 } 4132 4133 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 4134 { 4135 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 4136 4137 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) 4138 return 0; 4139 4140 return -ewma_beacon_signal_read(&sdata->deflink.u.mgd.ave_beacon_signal); 4141 } 4142 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 4143 4144 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 4145 { 4146 if (!mcs) 4147 return 1; 4148 4149 /* TODO: consider rx_highest */ 4150 4151 if (mcs->rx_mask[3]) 4152 return 4; 4153 if (mcs->rx_mask[2]) 4154 return 3; 4155 if (mcs->rx_mask[1]) 4156 return 2; 4157 return 1; 4158 } 4159 4160 /** 4161 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 4162 * @local: mac80211 hw info struct 4163 * @status: RX status 4164 * @mpdu_len: total MPDU length (including FCS) 4165 * @mpdu_offset: offset into MPDU to calculate timestamp at 4166 * 4167 * This function calculates the RX timestamp at the given MPDU offset, taking 4168 * into account what the RX timestamp was. An offset of 0 will just normalize 4169 * the timestamp to TSF at beginning of MPDU reception. 4170 */ 4171 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 4172 struct ieee80211_rx_status *status, 4173 unsigned int mpdu_len, 4174 unsigned int mpdu_offset) 4175 { 4176 u64 ts = status->mactime; 4177 struct rate_info ri; 4178 u16 rate; 4179 u8 n_ltf; 4180 4181 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 4182 return 0; 4183 4184 memset(&ri, 0, sizeof(ri)); 4185 4186 ri.bw = status->bw; 4187 4188 /* Fill cfg80211 rate info */ 4189 switch (status->encoding) { 4190 case RX_ENC_EHT: 4191 ri.flags |= RATE_INFO_FLAGS_EHT_MCS; 4192 ri.mcs = status->rate_idx; 4193 ri.nss = status->nss; 4194 ri.eht_ru_alloc = status->eht.ru; 4195 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4196 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4197 /* TODO/FIXME: is this right? handle other PPDUs */ 4198 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4199 mpdu_offset += 2; 4200 ts += 36; 4201 } 4202 break; 4203 case RX_ENC_HE: 4204 ri.flags |= RATE_INFO_FLAGS_HE_MCS; 4205 ri.mcs = status->rate_idx; 4206 ri.nss = status->nss; 4207 ri.he_ru_alloc = status->he_ru; 4208 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4209 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4210 4211 /* 4212 * See P802.11ax_D6.0, section 27.3.4 for 4213 * VHT PPDU format. 4214 */ 4215 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4216 mpdu_offset += 2; 4217 ts += 36; 4218 4219 /* 4220 * TODO: 4221 * For HE MU PPDU, add the HE-SIG-B. 4222 * For HE ER PPDU, add 8us for the HE-SIG-A. 4223 * For HE TB PPDU, add 4us for the HE-STF. 4224 * Add the HE-LTF durations - variable. 4225 */ 4226 } 4227 4228 break; 4229 case RX_ENC_HT: 4230 ri.mcs = status->rate_idx; 4231 ri.flags |= RATE_INFO_FLAGS_MCS; 4232 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4233 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4234 4235 /* 4236 * See P802.11REVmd_D3.0, section 19.3.2 for 4237 * HT PPDU format. 4238 */ 4239 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4240 mpdu_offset += 2; 4241 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 4242 ts += 24; 4243 else 4244 ts += 32; 4245 4246 /* 4247 * Add Data HT-LTFs per streams 4248 * TODO: add Extension HT-LTFs, 4us per LTF 4249 */ 4250 n_ltf = ((ri.mcs >> 3) & 3) + 1; 4251 n_ltf = n_ltf == 3 ? 4 : n_ltf; 4252 ts += n_ltf * 4; 4253 } 4254 4255 break; 4256 case RX_ENC_VHT: 4257 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 4258 ri.mcs = status->rate_idx; 4259 ri.nss = status->nss; 4260 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4261 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4262 4263 /* 4264 * See P802.11REVmd_D3.0, section 21.3.2 for 4265 * VHT PPDU format. 4266 */ 4267 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4268 mpdu_offset += 2; 4269 ts += 36; 4270 4271 /* 4272 * Add VHT-LTFs per streams 4273 */ 4274 n_ltf = (ri.nss != 1) && (ri.nss % 2) ? 4275 ri.nss + 1 : ri.nss; 4276 ts += 4 * n_ltf; 4277 } 4278 4279 break; 4280 default: 4281 WARN_ON(1); 4282 fallthrough; 4283 case RX_ENC_LEGACY: { 4284 struct ieee80211_supported_band *sband; 4285 int shift = 0; 4286 int bitrate; 4287 4288 switch (status->bw) { 4289 case RATE_INFO_BW_10: 4290 shift = 1; 4291 break; 4292 case RATE_INFO_BW_5: 4293 shift = 2; 4294 break; 4295 } 4296 4297 sband = local->hw.wiphy->bands[status->band]; 4298 bitrate = sband->bitrates[status->rate_idx].bitrate; 4299 ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift)); 4300 4301 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4302 if (status->band == NL80211_BAND_5GHZ) { 4303 ts += 20 << shift; 4304 mpdu_offset += 2; 4305 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 4306 ts += 96; 4307 } else { 4308 ts += 192; 4309 } 4310 } 4311 break; 4312 } 4313 } 4314 4315 rate = cfg80211_calculate_bitrate(&ri); 4316 if (WARN_ONCE(!rate, 4317 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 4318 (unsigned long long)status->flag, status->rate_idx, 4319 status->nss)) 4320 return 0; 4321 4322 /* rewind from end of MPDU */ 4323 if (status->flag & RX_FLAG_MACTIME_END) 4324 ts -= mpdu_len * 8 * 10 / rate; 4325 4326 ts += mpdu_offset * 8 * 10 / rate; 4327 4328 return ts; 4329 } 4330 4331 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) 4332 { 4333 struct ieee80211_sub_if_data *sdata; 4334 struct cfg80211_chan_def chandef; 4335 4336 /* for interface list, to avoid linking iflist_mtx and chanctx_mtx */ 4337 lockdep_assert_wiphy(local->hw.wiphy); 4338 4339 mutex_lock(&local->mtx); 4340 list_for_each_entry(sdata, &local->interfaces, list) { 4341 /* it might be waiting for the local->mtx, but then 4342 * by the time it gets it, sdata->wdev.cac_started 4343 * will no longer be true 4344 */ 4345 cancel_delayed_work(&sdata->deflink.dfs_cac_timer_work); 4346 4347 if (sdata->wdev.cac_started) { 4348 chandef = sdata->vif.bss_conf.chandef; 4349 ieee80211_link_release_channel(&sdata->deflink); 4350 cfg80211_cac_event(sdata->dev, 4351 &chandef, 4352 NL80211_RADAR_CAC_ABORTED, 4353 GFP_KERNEL); 4354 } 4355 } 4356 mutex_unlock(&local->mtx); 4357 } 4358 4359 void ieee80211_dfs_radar_detected_work(struct wiphy *wiphy, 4360 struct wiphy_work *work) 4361 { 4362 struct ieee80211_local *local = 4363 container_of(work, struct ieee80211_local, radar_detected_work); 4364 struct cfg80211_chan_def chandef = local->hw.conf.chandef; 4365 struct ieee80211_chanctx *ctx; 4366 int num_chanctx = 0; 4367 4368 mutex_lock(&local->chanctx_mtx); 4369 list_for_each_entry(ctx, &local->chanctx_list, list) { 4370 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 4371 continue; 4372 4373 num_chanctx++; 4374 chandef = ctx->conf.def; 4375 } 4376 mutex_unlock(&local->chanctx_mtx); 4377 4378 ieee80211_dfs_cac_cancel(local); 4379 4380 if (num_chanctx > 1) 4381 /* XXX: multi-channel is not supported yet */ 4382 WARN_ON(1); 4383 else 4384 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 4385 } 4386 4387 void ieee80211_radar_detected(struct ieee80211_hw *hw) 4388 { 4389 struct ieee80211_local *local = hw_to_local(hw); 4390 4391 trace_api_radar_detected(local); 4392 4393 wiphy_work_queue(hw->wiphy, &local->radar_detected_work); 4394 } 4395 EXPORT_SYMBOL(ieee80211_radar_detected); 4396 4397 ieee80211_conn_flags_t ieee80211_chandef_downgrade(struct cfg80211_chan_def *c) 4398 { 4399 ieee80211_conn_flags_t ret; 4400 int tmp; 4401 4402 switch (c->width) { 4403 case NL80211_CHAN_WIDTH_20: 4404 c->width = NL80211_CHAN_WIDTH_20_NOHT; 4405 ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT; 4406 break; 4407 case NL80211_CHAN_WIDTH_40: 4408 c->width = NL80211_CHAN_WIDTH_20; 4409 c->center_freq1 = c->chan->center_freq; 4410 ret = IEEE80211_CONN_DISABLE_40MHZ | 4411 IEEE80211_CONN_DISABLE_VHT; 4412 break; 4413 case NL80211_CHAN_WIDTH_80: 4414 tmp = (30 + c->chan->center_freq - c->center_freq1)/20; 4415 /* n_P40 */ 4416 tmp /= 2; 4417 /* freq_P40 */ 4418 c->center_freq1 = c->center_freq1 - 20 + 40 * tmp; 4419 c->width = NL80211_CHAN_WIDTH_40; 4420 ret = IEEE80211_CONN_DISABLE_VHT; 4421 break; 4422 case NL80211_CHAN_WIDTH_80P80: 4423 c->center_freq2 = 0; 4424 c->width = NL80211_CHAN_WIDTH_80; 4425 ret = IEEE80211_CONN_DISABLE_80P80MHZ | 4426 IEEE80211_CONN_DISABLE_160MHZ; 4427 break; 4428 case NL80211_CHAN_WIDTH_160: 4429 /* n_P20 */ 4430 tmp = (70 + c->chan->center_freq - c->center_freq1)/20; 4431 /* n_P80 */ 4432 tmp /= 4; 4433 c->center_freq1 = c->center_freq1 - 40 + 80 * tmp; 4434 c->width = NL80211_CHAN_WIDTH_80; 4435 ret = IEEE80211_CONN_DISABLE_80P80MHZ | 4436 IEEE80211_CONN_DISABLE_160MHZ; 4437 break; 4438 case NL80211_CHAN_WIDTH_320: 4439 /* n_P20 */ 4440 tmp = (150 + c->chan->center_freq - c->center_freq1) / 20; 4441 /* n_P160 */ 4442 tmp /= 8; 4443 c->center_freq1 = c->center_freq1 - 80 + 160 * tmp; 4444 c->width = NL80211_CHAN_WIDTH_160; 4445 ret = IEEE80211_CONN_DISABLE_320MHZ; 4446 break; 4447 default: 4448 case NL80211_CHAN_WIDTH_20_NOHT: 4449 WARN_ON_ONCE(1); 4450 c->width = NL80211_CHAN_WIDTH_20_NOHT; 4451 ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT; 4452 break; 4453 case NL80211_CHAN_WIDTH_1: 4454 case NL80211_CHAN_WIDTH_2: 4455 case NL80211_CHAN_WIDTH_4: 4456 case NL80211_CHAN_WIDTH_8: 4457 case NL80211_CHAN_WIDTH_16: 4458 case NL80211_CHAN_WIDTH_5: 4459 case NL80211_CHAN_WIDTH_10: 4460 WARN_ON_ONCE(1); 4461 /* keep c->width */ 4462 ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT; 4463 break; 4464 } 4465 4466 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 4467 4468 return ret; 4469 } 4470 4471 /* 4472 * Returns true if smps_mode_new is strictly more restrictive than 4473 * smps_mode_old. 4474 */ 4475 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 4476 enum ieee80211_smps_mode smps_mode_new) 4477 { 4478 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 4479 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 4480 return false; 4481 4482 switch (smps_mode_old) { 4483 case IEEE80211_SMPS_STATIC: 4484 return false; 4485 case IEEE80211_SMPS_DYNAMIC: 4486 return smps_mode_new == IEEE80211_SMPS_STATIC; 4487 case IEEE80211_SMPS_OFF: 4488 return smps_mode_new != IEEE80211_SMPS_OFF; 4489 default: 4490 WARN_ON(1); 4491 } 4492 4493 return false; 4494 } 4495 4496 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 4497 struct cfg80211_csa_settings *csa_settings) 4498 { 4499 struct sk_buff *skb; 4500 struct ieee80211_mgmt *mgmt; 4501 struct ieee80211_local *local = sdata->local; 4502 int freq; 4503 int hdr_len = offsetofend(struct ieee80211_mgmt, 4504 u.action.u.chan_switch); 4505 u8 *pos; 4506 4507 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 4508 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 4509 return -EOPNOTSUPP; 4510 4511 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 4512 5 + /* channel switch announcement element */ 4513 3 + /* secondary channel offset element */ 4514 5 + /* wide bandwidth channel switch announcement */ 4515 8); /* mesh channel switch parameters element */ 4516 if (!skb) 4517 return -ENOMEM; 4518 4519 skb_reserve(skb, local->tx_headroom); 4520 mgmt = skb_put_zero(skb, hdr_len); 4521 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 4522 IEEE80211_STYPE_ACTION); 4523 4524 eth_broadcast_addr(mgmt->da); 4525 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 4526 if (ieee80211_vif_is_mesh(&sdata->vif)) { 4527 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 4528 } else { 4529 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 4530 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 4531 } 4532 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 4533 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 4534 pos = skb_put(skb, 5); 4535 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 4536 *pos++ = 3; /* IE length */ 4537 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 4538 freq = csa_settings->chandef.chan->center_freq; 4539 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 4540 *pos++ = csa_settings->count; /* count */ 4541 4542 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 4543 enum nl80211_channel_type ch_type; 4544 4545 skb_put(skb, 3); 4546 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 4547 *pos++ = 1; /* IE length */ 4548 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 4549 if (ch_type == NL80211_CHAN_HT40PLUS) 4550 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 4551 else 4552 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 4553 } 4554 4555 if (ieee80211_vif_is_mesh(&sdata->vif)) { 4556 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 4557 4558 skb_put(skb, 8); 4559 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 4560 *pos++ = 6; /* IE length */ 4561 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 4562 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 4563 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 4564 *pos++ |= csa_settings->block_tx ? 4565 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 4566 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 4567 pos += 2; 4568 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 4569 pos += 2; 4570 } 4571 4572 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 4573 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 4574 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 4575 skb_put(skb, 5); 4576 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 4577 } 4578 4579 ieee80211_tx_skb(sdata, skb); 4580 return 0; 4581 } 4582 4583 static bool 4584 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 4585 { 4586 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 4587 int skip; 4588 4589 if (end > 0) 4590 return false; 4591 4592 /* One shot NOA */ 4593 if (data->count[i] == 1) 4594 return false; 4595 4596 if (data->desc[i].interval == 0) 4597 return false; 4598 4599 /* End time is in the past, check for repetitions */ 4600 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 4601 if (data->count[i] < 255) { 4602 if (data->count[i] <= skip) { 4603 data->count[i] = 0; 4604 return false; 4605 } 4606 4607 data->count[i] -= skip; 4608 } 4609 4610 data->desc[i].start += skip * data->desc[i].interval; 4611 4612 return true; 4613 } 4614 4615 static bool 4616 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 4617 s32 *offset) 4618 { 4619 bool ret = false; 4620 int i; 4621 4622 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4623 s32 cur; 4624 4625 if (!data->count[i]) 4626 continue; 4627 4628 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 4629 ret = true; 4630 4631 cur = data->desc[i].start - tsf; 4632 if (cur > *offset) 4633 continue; 4634 4635 cur = data->desc[i].start + data->desc[i].duration - tsf; 4636 if (cur > *offset) 4637 *offset = cur; 4638 } 4639 4640 return ret; 4641 } 4642 4643 static u32 4644 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 4645 { 4646 s32 offset = 0; 4647 int tries = 0; 4648 /* 4649 * arbitrary limit, used to avoid infinite loops when combined NoA 4650 * descriptors cover the full time period. 4651 */ 4652 int max_tries = 5; 4653 4654 ieee80211_extend_absent_time(data, tsf, &offset); 4655 do { 4656 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 4657 break; 4658 4659 tries++; 4660 } while (tries < max_tries); 4661 4662 return offset; 4663 } 4664 4665 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 4666 { 4667 u32 next_offset = BIT(31) - 1; 4668 int i; 4669 4670 data->absent = 0; 4671 data->has_next_tsf = false; 4672 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4673 s32 start; 4674 4675 if (!data->count[i]) 4676 continue; 4677 4678 ieee80211_extend_noa_desc(data, tsf, i); 4679 start = data->desc[i].start - tsf; 4680 if (start <= 0) 4681 data->absent |= BIT(i); 4682 4683 if (next_offset > start) 4684 next_offset = start; 4685 4686 data->has_next_tsf = true; 4687 } 4688 4689 if (data->absent) 4690 next_offset = ieee80211_get_noa_absent_time(data, tsf); 4691 4692 data->next_tsf = tsf + next_offset; 4693 } 4694 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 4695 4696 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 4697 struct ieee80211_noa_data *data, u32 tsf) 4698 { 4699 int ret = 0; 4700 int i; 4701 4702 memset(data, 0, sizeof(*data)); 4703 4704 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4705 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 4706 4707 if (!desc->count || !desc->duration) 4708 continue; 4709 4710 data->count[i] = desc->count; 4711 data->desc[i].start = le32_to_cpu(desc->start_time); 4712 data->desc[i].duration = le32_to_cpu(desc->duration); 4713 data->desc[i].interval = le32_to_cpu(desc->interval); 4714 4715 if (data->count[i] > 1 && 4716 data->desc[i].interval < data->desc[i].duration) 4717 continue; 4718 4719 ieee80211_extend_noa_desc(data, tsf, i); 4720 ret++; 4721 } 4722 4723 if (ret) 4724 ieee80211_update_p2p_noa(data, tsf); 4725 4726 return ret; 4727 } 4728 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 4729 4730 void ieee80211_recalc_dtim(struct ieee80211_local *local, 4731 struct ieee80211_sub_if_data *sdata) 4732 { 4733 u64 tsf = drv_get_tsf(local, sdata); 4734 u64 dtim_count = 0; 4735 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 4736 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 4737 struct ps_data *ps; 4738 u8 bcns_from_dtim; 4739 4740 if (tsf == -1ULL || !beacon_int || !dtim_period) 4741 return; 4742 4743 if (sdata->vif.type == NL80211_IFTYPE_AP || 4744 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 4745 if (!sdata->bss) 4746 return; 4747 4748 ps = &sdata->bss->ps; 4749 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 4750 ps = &sdata->u.mesh.ps; 4751 } else { 4752 return; 4753 } 4754 4755 /* 4756 * actually finds last dtim_count, mac80211 will update in 4757 * __beacon_add_tim(). 4758 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 4759 */ 4760 do_div(tsf, beacon_int); 4761 bcns_from_dtim = do_div(tsf, dtim_period); 4762 /* just had a DTIM */ 4763 if (!bcns_from_dtim) 4764 dtim_count = 0; 4765 else 4766 dtim_count = dtim_period - bcns_from_dtim; 4767 4768 ps->dtim_count = dtim_count; 4769 } 4770 4771 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 4772 struct ieee80211_chanctx *ctx) 4773 { 4774 struct ieee80211_link_data *link; 4775 u8 radar_detect = 0; 4776 4777 lockdep_assert_held(&local->chanctx_mtx); 4778 4779 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 4780 return 0; 4781 4782 list_for_each_entry(link, &ctx->reserved_links, reserved_chanctx_list) 4783 if (link->reserved_radar_required) 4784 radar_detect |= BIT(link->reserved_chandef.width); 4785 4786 /* 4787 * An in-place reservation context should not have any assigned vifs 4788 * until it replaces the other context. 4789 */ 4790 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 4791 !list_empty(&ctx->assigned_links)); 4792 4793 list_for_each_entry(link, &ctx->assigned_links, assigned_chanctx_list) { 4794 if (!link->radar_required) 4795 continue; 4796 4797 radar_detect |= 4798 BIT(link->conf->chandef.width); 4799 } 4800 4801 return radar_detect; 4802 } 4803 4804 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 4805 const struct cfg80211_chan_def *chandef, 4806 enum ieee80211_chanctx_mode chanmode, 4807 u8 radar_detect) 4808 { 4809 struct ieee80211_local *local = sdata->local; 4810 struct ieee80211_sub_if_data *sdata_iter; 4811 enum nl80211_iftype iftype = sdata->wdev.iftype; 4812 struct ieee80211_chanctx *ctx; 4813 int total = 1; 4814 struct iface_combination_params params = { 4815 .radar_detect = radar_detect, 4816 }; 4817 4818 lockdep_assert_held(&local->chanctx_mtx); 4819 4820 if (WARN_ON(hweight32(radar_detect) > 1)) 4821 return -EINVAL; 4822 4823 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4824 !chandef->chan)) 4825 return -EINVAL; 4826 4827 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 4828 return -EINVAL; 4829 4830 if (sdata->vif.type == NL80211_IFTYPE_AP || 4831 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 4832 /* 4833 * always passing this is harmless, since it'll be the 4834 * same value that cfg80211 finds if it finds the same 4835 * interface ... and that's always allowed 4836 */ 4837 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 4838 } 4839 4840 /* Always allow software iftypes */ 4841 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 4842 if (radar_detect) 4843 return -EINVAL; 4844 return 0; 4845 } 4846 4847 if (chandef) 4848 params.num_different_channels = 1; 4849 4850 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 4851 params.iftype_num[iftype] = 1; 4852 4853 list_for_each_entry(ctx, &local->chanctx_list, list) { 4854 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4855 continue; 4856 params.radar_detect |= 4857 ieee80211_chanctx_radar_detect(local, ctx); 4858 if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) { 4859 params.num_different_channels++; 4860 continue; 4861 } 4862 if (chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4863 cfg80211_chandef_compatible(chandef, 4864 &ctx->conf.def)) 4865 continue; 4866 params.num_different_channels++; 4867 } 4868 4869 list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) { 4870 struct wireless_dev *wdev_iter; 4871 4872 wdev_iter = &sdata_iter->wdev; 4873 4874 if (sdata_iter == sdata || 4875 !ieee80211_sdata_running(sdata_iter) || 4876 cfg80211_iftype_allowed(local->hw.wiphy, 4877 wdev_iter->iftype, 0, 1)) 4878 continue; 4879 4880 params.iftype_num[wdev_iter->iftype]++; 4881 total++; 4882 } 4883 4884 if (total == 1 && !params.radar_detect) 4885 return 0; 4886 4887 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4888 } 4889 4890 static void 4891 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4892 void *data) 4893 { 4894 u32 *max_num_different_channels = data; 4895 4896 *max_num_different_channels = max(*max_num_different_channels, 4897 c->num_different_channels); 4898 } 4899 4900 int ieee80211_max_num_channels(struct ieee80211_local *local) 4901 { 4902 struct ieee80211_sub_if_data *sdata; 4903 struct ieee80211_chanctx *ctx; 4904 u32 max_num_different_channels = 1; 4905 int err; 4906 struct iface_combination_params params = {0}; 4907 4908 lockdep_assert_held(&local->chanctx_mtx); 4909 4910 list_for_each_entry(ctx, &local->chanctx_list, list) { 4911 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4912 continue; 4913 4914 params.num_different_channels++; 4915 4916 params.radar_detect |= 4917 ieee80211_chanctx_radar_detect(local, ctx); 4918 } 4919 4920 list_for_each_entry_rcu(sdata, &local->interfaces, list) 4921 params.iftype_num[sdata->wdev.iftype]++; 4922 4923 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4924 ieee80211_iter_max_chans, 4925 &max_num_different_channels); 4926 if (err < 0) 4927 return err; 4928 4929 return max_num_different_channels; 4930 } 4931 4932 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, 4933 struct ieee80211_sta_s1g_cap *caps, 4934 struct sk_buff *skb) 4935 { 4936 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 4937 struct ieee80211_s1g_cap s1g_capab; 4938 u8 *pos; 4939 int i; 4940 4941 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 4942 return; 4943 4944 if (!caps->s1g) 4945 return; 4946 4947 memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); 4948 memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); 4949 4950 /* override the capability info */ 4951 for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { 4952 u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; 4953 4954 s1g_capab.capab_info[i] &= ~mask; 4955 s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; 4956 } 4957 4958 /* then MCS and NSS set */ 4959 for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { 4960 u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; 4961 4962 s1g_capab.supp_mcs_nss[i] &= ~mask; 4963 s1g_capab.supp_mcs_nss[i] |= 4964 ifmgd->s1g_capa.supp_mcs_nss[i] & mask; 4965 } 4966 4967 pos = skb_put(skb, 2 + sizeof(s1g_capab)); 4968 *pos++ = WLAN_EID_S1G_CAPABILITIES; 4969 *pos++ = sizeof(s1g_capab); 4970 4971 memcpy(pos, &s1g_capab, sizeof(s1g_capab)); 4972 } 4973 4974 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, 4975 struct sk_buff *skb) 4976 { 4977 u8 *pos = skb_put(skb, 3); 4978 4979 *pos++ = WLAN_EID_AID_REQUEST; 4980 *pos++ = 1; 4981 *pos++ = 0; 4982 } 4983 4984 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 4985 { 4986 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 4987 *buf++ = 7; /* len */ 4988 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 4989 *buf++ = 0x50; 4990 *buf++ = 0xf2; 4991 *buf++ = 2; /* WME */ 4992 *buf++ = 0; /* WME info */ 4993 *buf++ = 1; /* WME ver */ 4994 *buf++ = qosinfo; /* U-APSD no in use */ 4995 4996 return buf; 4997 } 4998 4999 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 5000 unsigned long *frame_cnt, 5001 unsigned long *byte_cnt) 5002 { 5003 struct txq_info *txqi = to_txq_info(txq); 5004 u32 frag_cnt = 0, frag_bytes = 0; 5005 struct sk_buff *skb; 5006 5007 skb_queue_walk(&txqi->frags, skb) { 5008 frag_cnt++; 5009 frag_bytes += skb->len; 5010 } 5011 5012 if (frame_cnt) 5013 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 5014 5015 if (byte_cnt) 5016 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 5017 } 5018 EXPORT_SYMBOL(ieee80211_txq_get_depth); 5019 5020 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 5021 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 5022 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 5023 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 5024 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 5025 }; 5026 5027 u16 ieee80211_encode_usf(int listen_interval) 5028 { 5029 static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; 5030 u16 ui, usf = 0; 5031 5032 /* find greatest USF */ 5033 while (usf < IEEE80211_MAX_USF) { 5034 if (listen_interval % listen_int_usf[usf + 1]) 5035 break; 5036 usf += 1; 5037 } 5038 ui = listen_interval / listen_int_usf[usf]; 5039 5040 /* error if there is a remainder. Should've been checked by user */ 5041 WARN_ON_ONCE(ui > IEEE80211_MAX_UI); 5042 listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | 5043 FIELD_PREP(LISTEN_INT_UI, ui); 5044 5045 return (u16) listen_interval; 5046 } 5047 5048 u8 ieee80211_ie_len_eht_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 5049 { 5050 const struct ieee80211_sta_he_cap *he_cap; 5051 const struct ieee80211_sta_eht_cap *eht_cap; 5052 struct ieee80211_supported_band *sband; 5053 bool is_ap; 5054 u8 n; 5055 5056 sband = ieee80211_get_sband(sdata); 5057 if (!sband) 5058 return 0; 5059 5060 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 5061 eht_cap = ieee80211_get_eht_iftype_cap(sband, iftype); 5062 if (!he_cap || !eht_cap) 5063 return 0; 5064 5065 is_ap = iftype == NL80211_IFTYPE_AP || 5066 iftype == NL80211_IFTYPE_P2P_GO; 5067 5068 n = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 5069 &eht_cap->eht_cap_elem, 5070 is_ap); 5071 return 2 + 1 + 5072 sizeof(eht_cap->eht_cap_elem) + n + 5073 ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 5074 eht_cap->eht_cap_elem.phy_cap_info); 5075 return 0; 5076 } 5077 5078 u8 *ieee80211_ie_build_eht_cap(u8 *pos, 5079 const struct ieee80211_sta_he_cap *he_cap, 5080 const struct ieee80211_sta_eht_cap *eht_cap, 5081 u8 *end, 5082 bool for_ap) 5083 { 5084 u8 mcs_nss_len, ppet_len; 5085 u8 ie_len; 5086 u8 *orig_pos = pos; 5087 5088 /* Make sure we have place for the IE */ 5089 if (!he_cap || !eht_cap) 5090 return orig_pos; 5091 5092 mcs_nss_len = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 5093 &eht_cap->eht_cap_elem, 5094 for_ap); 5095 ppet_len = ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 5096 eht_cap->eht_cap_elem.phy_cap_info); 5097 5098 ie_len = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + mcs_nss_len + ppet_len; 5099 if ((end - pos) < ie_len) 5100 return orig_pos; 5101 5102 *pos++ = WLAN_EID_EXTENSION; 5103 *pos++ = ie_len - 2; 5104 *pos++ = WLAN_EID_EXT_EHT_CAPABILITY; 5105 5106 /* Fixed data */ 5107 memcpy(pos, &eht_cap->eht_cap_elem, sizeof(eht_cap->eht_cap_elem)); 5108 pos += sizeof(eht_cap->eht_cap_elem); 5109 5110 memcpy(pos, &eht_cap->eht_mcs_nss_supp, mcs_nss_len); 5111 pos += mcs_nss_len; 5112 5113 if (ppet_len) { 5114 memcpy(pos, &eht_cap->eht_ppe_thres, ppet_len); 5115 pos += ppet_len; 5116 } 5117 5118 return pos; 5119 } 5120 5121 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id) 5122 { 5123 unsigned int elem_len; 5124 5125 if (!len_pos) 5126 return; 5127 5128 elem_len = skb->data + skb->len - len_pos - 1; 5129 5130 while (elem_len > 255) { 5131 /* this one is 255 */ 5132 *len_pos = 255; 5133 /* remaining data gets smaller */ 5134 elem_len -= 255; 5135 /* make space for the fragment ID/len in SKB */ 5136 skb_put(skb, 2); 5137 /* shift back the remaining data to place fragment ID/len */ 5138 memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len); 5139 /* place the fragment ID */ 5140 len_pos += 255 + 1; 5141 *len_pos = frag_id; 5142 /* and point to fragment length to update later */ 5143 len_pos++; 5144 } 5145 5146 *len_pos = elem_len; 5147 } 5148