1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2022 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 28 #include "ieee80211_i.h" 29 #include "driver-ops.h" 30 #include "rate.h" 31 #include "mesh.h" 32 #include "wme.h" 33 #include "led.h" 34 #include "wep.h" 35 36 /* privid for wiphys to determine whether they belong to us or not */ 37 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 38 39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 40 { 41 struct ieee80211_local *local; 42 43 local = wiphy_priv(wiphy); 44 return &local->hw; 45 } 46 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 47 48 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 49 enum nl80211_iftype type) 50 { 51 __le16 fc = hdr->frame_control; 52 53 if (ieee80211_is_data(fc)) { 54 if (len < 24) /* drop incorrect hdr len (data) */ 55 return NULL; 56 57 if (ieee80211_has_a4(fc)) 58 return NULL; 59 if (ieee80211_has_tods(fc)) 60 return hdr->addr1; 61 if (ieee80211_has_fromds(fc)) 62 return hdr->addr2; 63 64 return hdr->addr3; 65 } 66 67 if (ieee80211_is_s1g_beacon(fc)) { 68 struct ieee80211_ext *ext = (void *) hdr; 69 70 return ext->u.s1g_beacon.sa; 71 } 72 73 if (ieee80211_is_mgmt(fc)) { 74 if (len < 24) /* drop incorrect hdr len (mgmt) */ 75 return NULL; 76 return hdr->addr3; 77 } 78 79 if (ieee80211_is_ctl(fc)) { 80 if (ieee80211_is_pspoll(fc)) 81 return hdr->addr1; 82 83 if (ieee80211_is_back_req(fc)) { 84 switch (type) { 85 case NL80211_IFTYPE_STATION: 86 return hdr->addr2; 87 case NL80211_IFTYPE_AP: 88 case NL80211_IFTYPE_AP_VLAN: 89 return hdr->addr1; 90 default: 91 break; /* fall through to the return */ 92 } 93 } 94 } 95 96 return NULL; 97 } 98 EXPORT_SYMBOL(ieee80211_get_bssid); 99 100 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 101 { 102 struct sk_buff *skb; 103 struct ieee80211_hdr *hdr; 104 105 skb_queue_walk(&tx->skbs, skb) { 106 hdr = (struct ieee80211_hdr *) skb->data; 107 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 108 } 109 } 110 111 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 112 int rate, int erp, int short_preamble, 113 int shift) 114 { 115 int dur; 116 117 /* calculate duration (in microseconds, rounded up to next higher 118 * integer if it includes a fractional microsecond) to send frame of 119 * len bytes (does not include FCS) at the given rate. Duration will 120 * also include SIFS. 121 * 122 * rate is in 100 kbps, so divident is multiplied by 10 in the 123 * DIV_ROUND_UP() operations. 124 * 125 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and 126 * is assumed to be 0 otherwise. 127 */ 128 129 if (band == NL80211_BAND_5GHZ || erp) { 130 /* 131 * OFDM: 132 * 133 * N_DBPS = DATARATE x 4 134 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 135 * (16 = SIGNAL time, 6 = tail bits) 136 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 137 * 138 * T_SYM = 4 usec 139 * 802.11a - 18.5.2: aSIFSTime = 16 usec 140 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 141 * signal ext = 6 usec 142 */ 143 dur = 16; /* SIFS + signal ext */ 144 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 145 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 146 147 /* IEEE 802.11-2012 18.3.2.4: all values above are: 148 * * times 4 for 5 MHz 149 * * times 2 for 10 MHz 150 */ 151 dur *= 1 << shift; 152 153 /* rates should already consider the channel bandwidth, 154 * don't apply divisor again. 155 */ 156 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 157 4 * rate); /* T_SYM x N_SYM */ 158 } else { 159 /* 160 * 802.11b or 802.11g with 802.11b compatibility: 161 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 162 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 163 * 164 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 165 * aSIFSTime = 10 usec 166 * aPreambleLength = 144 usec or 72 usec with short preamble 167 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 168 */ 169 dur = 10; /* aSIFSTime = 10 usec */ 170 dur += short_preamble ? (72 + 24) : (144 + 48); 171 172 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 173 } 174 175 return dur; 176 } 177 178 /* Exported duration function for driver use */ 179 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 180 struct ieee80211_vif *vif, 181 enum nl80211_band band, 182 size_t frame_len, 183 struct ieee80211_rate *rate) 184 { 185 struct ieee80211_sub_if_data *sdata; 186 u16 dur; 187 int erp, shift = 0; 188 bool short_preamble = false; 189 190 erp = 0; 191 if (vif) { 192 sdata = vif_to_sdata(vif); 193 short_preamble = sdata->vif.bss_conf.use_short_preamble; 194 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 195 erp = rate->flags & IEEE80211_RATE_ERP_G; 196 shift = ieee80211_vif_get_shift(vif); 197 } 198 199 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 200 short_preamble, shift); 201 202 return cpu_to_le16(dur); 203 } 204 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 205 206 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 207 struct ieee80211_vif *vif, size_t frame_len, 208 const struct ieee80211_tx_info *frame_txctl) 209 { 210 struct ieee80211_local *local = hw_to_local(hw); 211 struct ieee80211_rate *rate; 212 struct ieee80211_sub_if_data *sdata; 213 bool short_preamble; 214 int erp, shift = 0, bitrate; 215 u16 dur; 216 struct ieee80211_supported_band *sband; 217 218 sband = local->hw.wiphy->bands[frame_txctl->band]; 219 220 short_preamble = false; 221 222 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 223 224 erp = 0; 225 if (vif) { 226 sdata = vif_to_sdata(vif); 227 short_preamble = sdata->vif.bss_conf.use_short_preamble; 228 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 229 erp = rate->flags & IEEE80211_RATE_ERP_G; 230 shift = ieee80211_vif_get_shift(vif); 231 } 232 233 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 234 235 /* CTS duration */ 236 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 237 erp, short_preamble, shift); 238 /* Data frame duration */ 239 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 240 erp, short_preamble, shift); 241 /* ACK duration */ 242 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 243 erp, short_preamble, shift); 244 245 return cpu_to_le16(dur); 246 } 247 EXPORT_SYMBOL(ieee80211_rts_duration); 248 249 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 250 struct ieee80211_vif *vif, 251 size_t frame_len, 252 const struct ieee80211_tx_info *frame_txctl) 253 { 254 struct ieee80211_local *local = hw_to_local(hw); 255 struct ieee80211_rate *rate; 256 struct ieee80211_sub_if_data *sdata; 257 bool short_preamble; 258 int erp, shift = 0, bitrate; 259 u16 dur; 260 struct ieee80211_supported_band *sband; 261 262 sband = local->hw.wiphy->bands[frame_txctl->band]; 263 264 short_preamble = false; 265 266 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 267 erp = 0; 268 if (vif) { 269 sdata = vif_to_sdata(vif); 270 short_preamble = sdata->vif.bss_conf.use_short_preamble; 271 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 272 erp = rate->flags & IEEE80211_RATE_ERP_G; 273 shift = ieee80211_vif_get_shift(vif); 274 } 275 276 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 277 278 /* Data frame duration */ 279 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 280 erp, short_preamble, shift); 281 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 282 /* ACK duration */ 283 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 284 erp, short_preamble, shift); 285 } 286 287 return cpu_to_le16(dur); 288 } 289 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 290 291 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 292 { 293 struct ieee80211_local *local = sdata->local; 294 struct ieee80211_vif *vif = &sdata->vif; 295 struct fq *fq = &local->fq; 296 struct ps_data *ps = NULL; 297 struct txq_info *txqi; 298 struct sta_info *sta; 299 int i; 300 301 local_bh_disable(); 302 spin_lock(&fq->lock); 303 304 if (!test_bit(SDATA_STATE_RUNNING, &sdata->state)) 305 goto out; 306 307 if (sdata->vif.type == NL80211_IFTYPE_AP) 308 ps = &sdata->bss->ps; 309 310 sdata->vif.txqs_stopped[ac] = false; 311 312 list_for_each_entry_rcu(sta, &local->sta_list, list) { 313 if (sdata != sta->sdata) 314 continue; 315 316 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 317 struct ieee80211_txq *txq = sta->sta.txq[i]; 318 319 if (!txq) 320 continue; 321 322 txqi = to_txq_info(txq); 323 324 if (ac != txq->ac) 325 continue; 326 327 if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, 328 &txqi->flags)) 329 continue; 330 331 spin_unlock(&fq->lock); 332 drv_wake_tx_queue(local, txqi); 333 spin_lock(&fq->lock); 334 } 335 } 336 337 if (!vif->txq) 338 goto out; 339 340 txqi = to_txq_info(vif->txq); 341 342 if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, &txqi->flags) || 343 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 344 goto out; 345 346 spin_unlock(&fq->lock); 347 348 drv_wake_tx_queue(local, txqi); 349 local_bh_enable(); 350 return; 351 out: 352 spin_unlock(&fq->lock); 353 local_bh_enable(); 354 } 355 356 static void 357 __releases(&local->queue_stop_reason_lock) 358 __acquires(&local->queue_stop_reason_lock) 359 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 360 { 361 struct ieee80211_sub_if_data *sdata; 362 int n_acs = IEEE80211_NUM_ACS; 363 int i; 364 365 rcu_read_lock(); 366 367 if (local->hw.queues < IEEE80211_NUM_ACS) 368 n_acs = 1; 369 370 for (i = 0; i < local->hw.queues; i++) { 371 if (local->queue_stop_reasons[i]) 372 continue; 373 374 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 375 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 376 int ac; 377 378 for (ac = 0; ac < n_acs; ac++) { 379 int ac_queue = sdata->vif.hw_queue[ac]; 380 381 if (ac_queue == i || 382 sdata->vif.cab_queue == i) 383 __ieee80211_wake_txqs(sdata, ac); 384 } 385 } 386 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 387 } 388 389 rcu_read_unlock(); 390 } 391 392 void ieee80211_wake_txqs(struct tasklet_struct *t) 393 { 394 struct ieee80211_local *local = from_tasklet(local, t, 395 wake_txqs_tasklet); 396 unsigned long flags; 397 398 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 399 _ieee80211_wake_txqs(local, &flags); 400 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 401 } 402 403 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue) 404 { 405 struct ieee80211_sub_if_data *sdata; 406 int n_acs = IEEE80211_NUM_ACS; 407 408 if (local->ops->wake_tx_queue) 409 return; 410 411 if (local->hw.queues < IEEE80211_NUM_ACS) 412 n_acs = 1; 413 414 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 415 int ac; 416 417 if (!sdata->dev) 418 continue; 419 420 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE && 421 local->queue_stop_reasons[sdata->vif.cab_queue] != 0) 422 continue; 423 424 for (ac = 0; ac < n_acs; ac++) { 425 int ac_queue = sdata->vif.hw_queue[ac]; 426 427 if (ac_queue == queue || 428 (sdata->vif.cab_queue == queue && 429 local->queue_stop_reasons[ac_queue] == 0 && 430 skb_queue_empty(&local->pending[ac_queue]))) 431 netif_wake_subqueue(sdata->dev, ac); 432 } 433 } 434 } 435 436 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 437 enum queue_stop_reason reason, 438 bool refcounted, 439 unsigned long *flags) 440 { 441 struct ieee80211_local *local = hw_to_local(hw); 442 443 trace_wake_queue(local, queue, reason); 444 445 if (WARN_ON(queue >= hw->queues)) 446 return; 447 448 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 449 return; 450 451 if (!refcounted) { 452 local->q_stop_reasons[queue][reason] = 0; 453 } else { 454 local->q_stop_reasons[queue][reason]--; 455 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 456 local->q_stop_reasons[queue][reason] = 0; 457 } 458 459 if (local->q_stop_reasons[queue][reason] == 0) 460 __clear_bit(reason, &local->queue_stop_reasons[queue]); 461 462 if (local->queue_stop_reasons[queue] != 0) 463 /* someone still has this queue stopped */ 464 return; 465 466 if (skb_queue_empty(&local->pending[queue])) { 467 rcu_read_lock(); 468 ieee80211_propagate_queue_wake(local, queue); 469 rcu_read_unlock(); 470 } else 471 tasklet_schedule(&local->tx_pending_tasklet); 472 473 /* 474 * Calling _ieee80211_wake_txqs here can be a problem because it may 475 * release queue_stop_reason_lock which has been taken by 476 * __ieee80211_wake_queue's caller. It is certainly not very nice to 477 * release someone's lock, but it is fine because all the callers of 478 * __ieee80211_wake_queue call it right before releasing the lock. 479 */ 480 if (local->ops->wake_tx_queue) { 481 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 482 tasklet_schedule(&local->wake_txqs_tasklet); 483 else 484 _ieee80211_wake_txqs(local, flags); 485 } 486 } 487 488 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 489 enum queue_stop_reason reason, 490 bool refcounted) 491 { 492 struct ieee80211_local *local = hw_to_local(hw); 493 unsigned long flags; 494 495 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 496 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 497 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 498 } 499 500 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 501 { 502 ieee80211_wake_queue_by_reason(hw, queue, 503 IEEE80211_QUEUE_STOP_REASON_DRIVER, 504 false); 505 } 506 EXPORT_SYMBOL(ieee80211_wake_queue); 507 508 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 509 enum queue_stop_reason reason, 510 bool refcounted) 511 { 512 struct ieee80211_local *local = hw_to_local(hw); 513 struct ieee80211_sub_if_data *sdata; 514 int n_acs = IEEE80211_NUM_ACS; 515 516 trace_stop_queue(local, queue, reason); 517 518 if (WARN_ON(queue >= hw->queues)) 519 return; 520 521 if (!refcounted) 522 local->q_stop_reasons[queue][reason] = 1; 523 else 524 local->q_stop_reasons[queue][reason]++; 525 526 if (__test_and_set_bit(reason, &local->queue_stop_reasons[queue])) 527 return; 528 529 if (local->hw.queues < IEEE80211_NUM_ACS) 530 n_acs = 1; 531 532 rcu_read_lock(); 533 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 534 int ac; 535 536 if (!sdata->dev) 537 continue; 538 539 for (ac = 0; ac < n_acs; ac++) { 540 if (sdata->vif.hw_queue[ac] == queue || 541 sdata->vif.cab_queue == queue) { 542 if (!local->ops->wake_tx_queue) { 543 netif_stop_subqueue(sdata->dev, ac); 544 continue; 545 } 546 spin_lock(&local->fq.lock); 547 sdata->vif.txqs_stopped[ac] = true; 548 spin_unlock(&local->fq.lock); 549 } 550 } 551 } 552 rcu_read_unlock(); 553 } 554 555 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 556 enum queue_stop_reason reason, 557 bool refcounted) 558 { 559 struct ieee80211_local *local = hw_to_local(hw); 560 unsigned long flags; 561 562 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 563 __ieee80211_stop_queue(hw, queue, reason, refcounted); 564 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 565 } 566 567 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 568 { 569 ieee80211_stop_queue_by_reason(hw, queue, 570 IEEE80211_QUEUE_STOP_REASON_DRIVER, 571 false); 572 } 573 EXPORT_SYMBOL(ieee80211_stop_queue); 574 575 void ieee80211_add_pending_skb(struct ieee80211_local *local, 576 struct sk_buff *skb) 577 { 578 struct ieee80211_hw *hw = &local->hw; 579 unsigned long flags; 580 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 581 int queue = info->hw_queue; 582 583 if (WARN_ON(!info->control.vif)) { 584 ieee80211_free_txskb(&local->hw, skb); 585 return; 586 } 587 588 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 589 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 590 false); 591 __skb_queue_tail(&local->pending[queue], skb); 592 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 593 false, &flags); 594 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 595 } 596 597 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 598 struct sk_buff_head *skbs) 599 { 600 struct ieee80211_hw *hw = &local->hw; 601 struct sk_buff *skb; 602 unsigned long flags; 603 int queue, i; 604 605 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 606 while ((skb = skb_dequeue(skbs))) { 607 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 608 609 if (WARN_ON(!info->control.vif)) { 610 ieee80211_free_txskb(&local->hw, skb); 611 continue; 612 } 613 614 queue = info->hw_queue; 615 616 __ieee80211_stop_queue(hw, queue, 617 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 618 false); 619 620 __skb_queue_tail(&local->pending[queue], skb); 621 } 622 623 for (i = 0; i < hw->queues; i++) 624 __ieee80211_wake_queue(hw, i, 625 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 626 false, &flags); 627 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 628 } 629 630 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 631 unsigned long queues, 632 enum queue_stop_reason reason, 633 bool refcounted) 634 { 635 struct ieee80211_local *local = hw_to_local(hw); 636 unsigned long flags; 637 int i; 638 639 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 640 641 for_each_set_bit(i, &queues, hw->queues) 642 __ieee80211_stop_queue(hw, i, reason, refcounted); 643 644 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 645 } 646 647 void ieee80211_stop_queues(struct ieee80211_hw *hw) 648 { 649 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 650 IEEE80211_QUEUE_STOP_REASON_DRIVER, 651 false); 652 } 653 EXPORT_SYMBOL(ieee80211_stop_queues); 654 655 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 656 { 657 struct ieee80211_local *local = hw_to_local(hw); 658 unsigned long flags; 659 int ret; 660 661 if (WARN_ON(queue >= hw->queues)) 662 return true; 663 664 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 665 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 666 &local->queue_stop_reasons[queue]); 667 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 668 return ret; 669 } 670 EXPORT_SYMBOL(ieee80211_queue_stopped); 671 672 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 673 unsigned long queues, 674 enum queue_stop_reason reason, 675 bool refcounted) 676 { 677 struct ieee80211_local *local = hw_to_local(hw); 678 unsigned long flags; 679 int i; 680 681 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 682 683 for_each_set_bit(i, &queues, hw->queues) 684 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 685 686 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 687 } 688 689 void ieee80211_wake_queues(struct ieee80211_hw *hw) 690 { 691 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 692 IEEE80211_QUEUE_STOP_REASON_DRIVER, 693 false); 694 } 695 EXPORT_SYMBOL(ieee80211_wake_queues); 696 697 static unsigned int 698 ieee80211_get_vif_queues(struct ieee80211_local *local, 699 struct ieee80211_sub_if_data *sdata) 700 { 701 unsigned int queues; 702 703 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 704 int ac; 705 706 queues = 0; 707 708 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 709 queues |= BIT(sdata->vif.hw_queue[ac]); 710 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 711 queues |= BIT(sdata->vif.cab_queue); 712 } else { 713 /* all queues */ 714 queues = BIT(local->hw.queues) - 1; 715 } 716 717 return queues; 718 } 719 720 void __ieee80211_flush_queues(struct ieee80211_local *local, 721 struct ieee80211_sub_if_data *sdata, 722 unsigned int queues, bool drop) 723 { 724 if (!local->ops->flush) 725 return; 726 727 /* 728 * If no queue was set, or if the HW doesn't support 729 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 730 */ 731 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 732 queues = ieee80211_get_vif_queues(local, sdata); 733 734 ieee80211_stop_queues_by_reason(&local->hw, queues, 735 IEEE80211_QUEUE_STOP_REASON_FLUSH, 736 false); 737 738 drv_flush(local, sdata, queues, drop); 739 740 ieee80211_wake_queues_by_reason(&local->hw, queues, 741 IEEE80211_QUEUE_STOP_REASON_FLUSH, 742 false); 743 } 744 745 void ieee80211_flush_queues(struct ieee80211_local *local, 746 struct ieee80211_sub_if_data *sdata, bool drop) 747 { 748 __ieee80211_flush_queues(local, sdata, 0, drop); 749 } 750 751 void ieee80211_stop_vif_queues(struct ieee80211_local *local, 752 struct ieee80211_sub_if_data *sdata, 753 enum queue_stop_reason reason) 754 { 755 ieee80211_stop_queues_by_reason(&local->hw, 756 ieee80211_get_vif_queues(local, sdata), 757 reason, true); 758 } 759 760 void ieee80211_wake_vif_queues(struct ieee80211_local *local, 761 struct ieee80211_sub_if_data *sdata, 762 enum queue_stop_reason reason) 763 { 764 ieee80211_wake_queues_by_reason(&local->hw, 765 ieee80211_get_vif_queues(local, sdata), 766 reason, true); 767 } 768 769 static void __iterate_interfaces(struct ieee80211_local *local, 770 u32 iter_flags, 771 void (*iterator)(void *data, u8 *mac, 772 struct ieee80211_vif *vif), 773 void *data) 774 { 775 struct ieee80211_sub_if_data *sdata; 776 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 777 778 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 779 switch (sdata->vif.type) { 780 case NL80211_IFTYPE_MONITOR: 781 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) 782 continue; 783 break; 784 case NL80211_IFTYPE_AP_VLAN: 785 continue; 786 default: 787 break; 788 } 789 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 790 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 791 continue; 792 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && 793 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 794 continue; 795 if (ieee80211_sdata_running(sdata) || !active_only) 796 iterator(data, sdata->vif.addr, 797 &sdata->vif); 798 } 799 800 sdata = rcu_dereference_check(local->monitor_sdata, 801 lockdep_is_held(&local->iflist_mtx) || 802 lockdep_is_held(&local->hw.wiphy->mtx)); 803 if (sdata && 804 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 805 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 806 iterator(data, sdata->vif.addr, &sdata->vif); 807 } 808 809 void ieee80211_iterate_interfaces( 810 struct ieee80211_hw *hw, u32 iter_flags, 811 void (*iterator)(void *data, u8 *mac, 812 struct ieee80211_vif *vif), 813 void *data) 814 { 815 struct ieee80211_local *local = hw_to_local(hw); 816 817 mutex_lock(&local->iflist_mtx); 818 __iterate_interfaces(local, iter_flags, iterator, data); 819 mutex_unlock(&local->iflist_mtx); 820 } 821 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 822 823 void ieee80211_iterate_active_interfaces_atomic( 824 struct ieee80211_hw *hw, u32 iter_flags, 825 void (*iterator)(void *data, u8 *mac, 826 struct ieee80211_vif *vif), 827 void *data) 828 { 829 struct ieee80211_local *local = hw_to_local(hw); 830 831 rcu_read_lock(); 832 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 833 iterator, data); 834 rcu_read_unlock(); 835 } 836 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 837 838 void ieee80211_iterate_active_interfaces_mtx( 839 struct ieee80211_hw *hw, u32 iter_flags, 840 void (*iterator)(void *data, u8 *mac, 841 struct ieee80211_vif *vif), 842 void *data) 843 { 844 struct ieee80211_local *local = hw_to_local(hw); 845 846 lockdep_assert_wiphy(hw->wiphy); 847 848 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 849 iterator, data); 850 } 851 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx); 852 853 static void __iterate_stations(struct ieee80211_local *local, 854 void (*iterator)(void *data, 855 struct ieee80211_sta *sta), 856 void *data) 857 { 858 struct sta_info *sta; 859 860 list_for_each_entry_rcu(sta, &local->sta_list, list) { 861 if (!sta->uploaded) 862 continue; 863 864 iterator(data, &sta->sta); 865 } 866 } 867 868 void ieee80211_iterate_stations(struct ieee80211_hw *hw, 869 void (*iterator)(void *data, 870 struct ieee80211_sta *sta), 871 void *data) 872 { 873 struct ieee80211_local *local = hw_to_local(hw); 874 875 mutex_lock(&local->sta_mtx); 876 __iterate_stations(local, iterator, data); 877 mutex_unlock(&local->sta_mtx); 878 } 879 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations); 880 881 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 882 void (*iterator)(void *data, 883 struct ieee80211_sta *sta), 884 void *data) 885 { 886 struct ieee80211_local *local = hw_to_local(hw); 887 888 rcu_read_lock(); 889 __iterate_stations(local, iterator, data); 890 rcu_read_unlock(); 891 } 892 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 893 894 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 895 { 896 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 897 898 if (!ieee80211_sdata_running(sdata) || 899 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 900 return NULL; 901 return &sdata->vif; 902 } 903 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 904 905 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 906 { 907 if (!vif) 908 return NULL; 909 910 return &vif_to_sdata(vif)->wdev; 911 } 912 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 913 914 /* 915 * Nothing should have been stuffed into the workqueue during 916 * the suspend->resume cycle. Since we can't check each caller 917 * of this function if we are already quiescing / suspended, 918 * check here and don't WARN since this can actually happen when 919 * the rx path (for example) is racing against __ieee80211_suspend 920 * and suspending / quiescing was set after the rx path checked 921 * them. 922 */ 923 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 924 { 925 if (local->quiescing || (local->suspended && !local->resuming)) { 926 pr_warn("queueing ieee80211 work while going to suspend\n"); 927 return false; 928 } 929 930 return true; 931 } 932 933 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 934 { 935 struct ieee80211_local *local = hw_to_local(hw); 936 937 if (!ieee80211_can_queue_work(local)) 938 return; 939 940 queue_work(local->workqueue, work); 941 } 942 EXPORT_SYMBOL(ieee80211_queue_work); 943 944 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 945 struct delayed_work *dwork, 946 unsigned long delay) 947 { 948 struct ieee80211_local *local = hw_to_local(hw); 949 950 if (!ieee80211_can_queue_work(local)) 951 return; 952 953 queue_delayed_work(local->workqueue, dwork, delay); 954 } 955 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 956 957 static void ieee80211_parse_extension_element(u32 *crc, 958 const struct element *elem, 959 struct ieee802_11_elems *elems) 960 { 961 const void *data = elem->data + 1; 962 u8 len; 963 964 if (!elem->datalen) 965 return; 966 967 len = elem->datalen - 1; 968 969 switch (elem->data[0]) { 970 case WLAN_EID_EXT_HE_MU_EDCA: 971 if (len >= sizeof(*elems->mu_edca_param_set)) { 972 elems->mu_edca_param_set = data; 973 if (crc) 974 *crc = crc32_be(*crc, (void *)elem, 975 elem->datalen + 2); 976 } 977 break; 978 case WLAN_EID_EXT_HE_CAPABILITY: 979 if (ieee80211_he_capa_size_ok(data, len)) { 980 elems->he_cap = data; 981 elems->he_cap_len = len; 982 } 983 break; 984 case WLAN_EID_EXT_HE_OPERATION: 985 if (len >= sizeof(*elems->he_operation) && 986 len >= ieee80211_he_oper_size(data) - 1) { 987 if (crc) 988 *crc = crc32_be(*crc, (void *)elem, 989 elem->datalen + 2); 990 elems->he_operation = data; 991 } 992 break; 993 case WLAN_EID_EXT_UORA: 994 if (len >= 1) 995 elems->uora_element = data; 996 break; 997 case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME: 998 if (len == 3) 999 elems->max_channel_switch_time = data; 1000 break; 1001 case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION: 1002 if (len >= sizeof(*elems->mbssid_config_ie)) 1003 elems->mbssid_config_ie = data; 1004 break; 1005 case WLAN_EID_EXT_HE_SPR: 1006 if (len >= sizeof(*elems->he_spr) && 1007 len >= ieee80211_he_spr_size(data)) 1008 elems->he_spr = data; 1009 break; 1010 case WLAN_EID_EXT_HE_6GHZ_CAPA: 1011 if (len >= sizeof(*elems->he_6ghz_capa)) 1012 elems->he_6ghz_capa = data; 1013 break; 1014 case WLAN_EID_EXT_EHT_CAPABILITY: 1015 if (ieee80211_eht_capa_size_ok(elems->he_cap, 1016 data, len)) { 1017 elems->eht_cap = data; 1018 elems->eht_cap_len = len; 1019 } 1020 break; 1021 case WLAN_EID_EXT_EHT_OPERATION: 1022 if (ieee80211_eht_oper_size_ok(data, len)) 1023 elems->eht_operation = data; 1024 break; 1025 } 1026 } 1027 1028 static u32 1029 _ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, 1030 struct ieee802_11_elems *elems, 1031 u64 filter, u32 crc, 1032 const struct element *check_inherit) 1033 { 1034 const struct element *elem; 1035 bool calc_crc = filter != 0; 1036 DECLARE_BITMAP(seen_elems, 256); 1037 const u8 *ie; 1038 1039 bitmap_zero(seen_elems, 256); 1040 1041 for_each_element(elem, start, len) { 1042 bool elem_parse_failed; 1043 u8 id = elem->id; 1044 u8 elen = elem->datalen; 1045 const u8 *pos = elem->data; 1046 1047 if (check_inherit && 1048 !cfg80211_is_element_inherited(elem, 1049 check_inherit)) 1050 continue; 1051 1052 switch (id) { 1053 case WLAN_EID_SSID: 1054 case WLAN_EID_SUPP_RATES: 1055 case WLAN_EID_FH_PARAMS: 1056 case WLAN_EID_DS_PARAMS: 1057 case WLAN_EID_CF_PARAMS: 1058 case WLAN_EID_TIM: 1059 case WLAN_EID_IBSS_PARAMS: 1060 case WLAN_EID_CHALLENGE: 1061 case WLAN_EID_RSN: 1062 case WLAN_EID_ERP_INFO: 1063 case WLAN_EID_EXT_SUPP_RATES: 1064 case WLAN_EID_HT_CAPABILITY: 1065 case WLAN_EID_HT_OPERATION: 1066 case WLAN_EID_VHT_CAPABILITY: 1067 case WLAN_EID_VHT_OPERATION: 1068 case WLAN_EID_MESH_ID: 1069 case WLAN_EID_MESH_CONFIG: 1070 case WLAN_EID_PEER_MGMT: 1071 case WLAN_EID_PREQ: 1072 case WLAN_EID_PREP: 1073 case WLAN_EID_PERR: 1074 case WLAN_EID_RANN: 1075 case WLAN_EID_CHANNEL_SWITCH: 1076 case WLAN_EID_EXT_CHANSWITCH_ANN: 1077 case WLAN_EID_COUNTRY: 1078 case WLAN_EID_PWR_CONSTRAINT: 1079 case WLAN_EID_TIMEOUT_INTERVAL: 1080 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1081 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1082 case WLAN_EID_CHAN_SWITCH_PARAM: 1083 case WLAN_EID_EXT_CAPABILITY: 1084 case WLAN_EID_CHAN_SWITCH_TIMING: 1085 case WLAN_EID_LINK_ID: 1086 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1087 case WLAN_EID_RSNX: 1088 case WLAN_EID_S1G_BCN_COMPAT: 1089 case WLAN_EID_S1G_CAPABILITIES: 1090 case WLAN_EID_S1G_OPERATION: 1091 case WLAN_EID_AID_RESPONSE: 1092 case WLAN_EID_S1G_SHORT_BCN_INTERVAL: 1093 /* 1094 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible 1095 * that if the content gets bigger it might be needed more than once 1096 */ 1097 if (test_bit(id, seen_elems)) { 1098 elems->parse_error = true; 1099 continue; 1100 } 1101 break; 1102 } 1103 1104 if (calc_crc && id < 64 && (filter & (1ULL << id))) 1105 crc = crc32_be(crc, pos - 2, elen + 2); 1106 1107 elem_parse_failed = false; 1108 1109 switch (id) { 1110 case WLAN_EID_LINK_ID: 1111 if (elen + 2 < sizeof(struct ieee80211_tdls_lnkie)) { 1112 elem_parse_failed = true; 1113 break; 1114 } 1115 elems->lnk_id = (void *)(pos - 2); 1116 break; 1117 case WLAN_EID_CHAN_SWITCH_TIMING: 1118 if (elen < sizeof(struct ieee80211_ch_switch_timing)) { 1119 elem_parse_failed = true; 1120 break; 1121 } 1122 elems->ch_sw_timing = (void *)pos; 1123 break; 1124 case WLAN_EID_EXT_CAPABILITY: 1125 elems->ext_capab = pos; 1126 elems->ext_capab_len = elen; 1127 break; 1128 case WLAN_EID_SSID: 1129 elems->ssid = pos; 1130 elems->ssid_len = elen; 1131 break; 1132 case WLAN_EID_SUPP_RATES: 1133 elems->supp_rates = pos; 1134 elems->supp_rates_len = elen; 1135 break; 1136 case WLAN_EID_DS_PARAMS: 1137 if (elen >= 1) 1138 elems->ds_params = pos; 1139 else 1140 elem_parse_failed = true; 1141 break; 1142 case WLAN_EID_TIM: 1143 if (elen >= sizeof(struct ieee80211_tim_ie)) { 1144 elems->tim = (void *)pos; 1145 elems->tim_len = elen; 1146 } else 1147 elem_parse_failed = true; 1148 break; 1149 case WLAN_EID_VENDOR_SPECIFIC: 1150 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && 1151 pos[2] == 0xf2) { 1152 /* Microsoft OUI (00:50:F2) */ 1153 1154 if (calc_crc) 1155 crc = crc32_be(crc, pos - 2, elen + 2); 1156 1157 if (elen >= 5 && pos[3] == 2) { 1158 /* OUI Type 2 - WMM IE */ 1159 if (pos[4] == 0) { 1160 elems->wmm_info = pos; 1161 elems->wmm_info_len = elen; 1162 } else if (pos[4] == 1) { 1163 elems->wmm_param = pos; 1164 elems->wmm_param_len = elen; 1165 } 1166 } 1167 } 1168 break; 1169 case WLAN_EID_RSN: 1170 elems->rsn = pos; 1171 elems->rsn_len = elen; 1172 break; 1173 case WLAN_EID_ERP_INFO: 1174 if (elen >= 1) 1175 elems->erp_info = pos; 1176 else 1177 elem_parse_failed = true; 1178 break; 1179 case WLAN_EID_EXT_SUPP_RATES: 1180 elems->ext_supp_rates = pos; 1181 elems->ext_supp_rates_len = elen; 1182 break; 1183 case WLAN_EID_HT_CAPABILITY: 1184 if (elen >= sizeof(struct ieee80211_ht_cap)) 1185 elems->ht_cap_elem = (void *)pos; 1186 else 1187 elem_parse_failed = true; 1188 break; 1189 case WLAN_EID_HT_OPERATION: 1190 if (elen >= sizeof(struct ieee80211_ht_operation)) 1191 elems->ht_operation = (void *)pos; 1192 else 1193 elem_parse_failed = true; 1194 break; 1195 case WLAN_EID_VHT_CAPABILITY: 1196 if (elen >= sizeof(struct ieee80211_vht_cap)) 1197 elems->vht_cap_elem = (void *)pos; 1198 else 1199 elem_parse_failed = true; 1200 break; 1201 case WLAN_EID_VHT_OPERATION: 1202 if (elen >= sizeof(struct ieee80211_vht_operation)) { 1203 elems->vht_operation = (void *)pos; 1204 if (calc_crc) 1205 crc = crc32_be(crc, pos - 2, elen + 2); 1206 break; 1207 } 1208 elem_parse_failed = true; 1209 break; 1210 case WLAN_EID_OPMODE_NOTIF: 1211 if (elen > 0) { 1212 elems->opmode_notif = pos; 1213 if (calc_crc) 1214 crc = crc32_be(crc, pos - 2, elen + 2); 1215 break; 1216 } 1217 elem_parse_failed = true; 1218 break; 1219 case WLAN_EID_MESH_ID: 1220 elems->mesh_id = pos; 1221 elems->mesh_id_len = elen; 1222 break; 1223 case WLAN_EID_MESH_CONFIG: 1224 if (elen >= sizeof(struct ieee80211_meshconf_ie)) 1225 elems->mesh_config = (void *)pos; 1226 else 1227 elem_parse_failed = true; 1228 break; 1229 case WLAN_EID_PEER_MGMT: 1230 elems->peering = pos; 1231 elems->peering_len = elen; 1232 break; 1233 case WLAN_EID_MESH_AWAKE_WINDOW: 1234 if (elen >= 2) 1235 elems->awake_window = (void *)pos; 1236 break; 1237 case WLAN_EID_PREQ: 1238 elems->preq = pos; 1239 elems->preq_len = elen; 1240 break; 1241 case WLAN_EID_PREP: 1242 elems->prep = pos; 1243 elems->prep_len = elen; 1244 break; 1245 case WLAN_EID_PERR: 1246 elems->perr = pos; 1247 elems->perr_len = elen; 1248 break; 1249 case WLAN_EID_RANN: 1250 if (elen >= sizeof(struct ieee80211_rann_ie)) 1251 elems->rann = (void *)pos; 1252 else 1253 elem_parse_failed = true; 1254 break; 1255 case WLAN_EID_CHANNEL_SWITCH: 1256 if (elen != sizeof(struct ieee80211_channel_sw_ie)) { 1257 elem_parse_failed = true; 1258 break; 1259 } 1260 elems->ch_switch_ie = (void *)pos; 1261 break; 1262 case WLAN_EID_EXT_CHANSWITCH_ANN: 1263 if (elen != sizeof(struct ieee80211_ext_chansw_ie)) { 1264 elem_parse_failed = true; 1265 break; 1266 } 1267 elems->ext_chansw_ie = (void *)pos; 1268 break; 1269 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1270 if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) { 1271 elem_parse_failed = true; 1272 break; 1273 } 1274 elems->sec_chan_offs = (void *)pos; 1275 break; 1276 case WLAN_EID_CHAN_SWITCH_PARAM: 1277 if (elen < 1278 sizeof(*elems->mesh_chansw_params_ie)) { 1279 elem_parse_failed = true; 1280 break; 1281 } 1282 elems->mesh_chansw_params_ie = (void *)pos; 1283 break; 1284 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1285 if (!action || 1286 elen < sizeof(*elems->wide_bw_chansw_ie)) { 1287 elem_parse_failed = true; 1288 break; 1289 } 1290 elems->wide_bw_chansw_ie = (void *)pos; 1291 break; 1292 case WLAN_EID_CHANNEL_SWITCH_WRAPPER: 1293 if (action) { 1294 elem_parse_failed = true; 1295 break; 1296 } 1297 /* 1298 * This is a bit tricky, but as we only care about 1299 * the wide bandwidth channel switch element, so 1300 * just parse it out manually. 1301 */ 1302 ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH, 1303 pos, elen); 1304 if (ie) { 1305 if (ie[1] >= sizeof(*elems->wide_bw_chansw_ie)) 1306 elems->wide_bw_chansw_ie = 1307 (void *)(ie + 2); 1308 else 1309 elem_parse_failed = true; 1310 } 1311 break; 1312 case WLAN_EID_COUNTRY: 1313 elems->country_elem = pos; 1314 elems->country_elem_len = elen; 1315 break; 1316 case WLAN_EID_PWR_CONSTRAINT: 1317 if (elen != 1) { 1318 elem_parse_failed = true; 1319 break; 1320 } 1321 elems->pwr_constr_elem = pos; 1322 break; 1323 case WLAN_EID_CISCO_VENDOR_SPECIFIC: 1324 /* Lots of different options exist, but we only care 1325 * about the Dynamic Transmit Power Control element. 1326 * First check for the Cisco OUI, then for the DTPC 1327 * tag (0x00). 1328 */ 1329 if (elen < 4) { 1330 elem_parse_failed = true; 1331 break; 1332 } 1333 1334 if (pos[0] != 0x00 || pos[1] != 0x40 || 1335 pos[2] != 0x96 || pos[3] != 0x00) 1336 break; 1337 1338 if (elen != 6) { 1339 elem_parse_failed = true; 1340 break; 1341 } 1342 1343 if (calc_crc) 1344 crc = crc32_be(crc, pos - 2, elen + 2); 1345 1346 elems->cisco_dtpc_elem = pos; 1347 break; 1348 case WLAN_EID_ADDBA_EXT: 1349 if (elen < sizeof(struct ieee80211_addba_ext_ie)) { 1350 elem_parse_failed = true; 1351 break; 1352 } 1353 elems->addba_ext_ie = (void *)pos; 1354 break; 1355 case WLAN_EID_TIMEOUT_INTERVAL: 1356 if (elen >= sizeof(struct ieee80211_timeout_interval_ie)) 1357 elems->timeout_int = (void *)pos; 1358 else 1359 elem_parse_failed = true; 1360 break; 1361 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1362 if (elen >= sizeof(*elems->max_idle_period_ie)) 1363 elems->max_idle_period_ie = (void *)pos; 1364 break; 1365 case WLAN_EID_RSNX: 1366 elems->rsnx = pos; 1367 elems->rsnx_len = elen; 1368 break; 1369 case WLAN_EID_TX_POWER_ENVELOPE: 1370 if (elen < 1 || 1371 elen > sizeof(struct ieee80211_tx_pwr_env)) 1372 break; 1373 1374 if (elems->tx_pwr_env_num >= ARRAY_SIZE(elems->tx_pwr_env)) 1375 break; 1376 1377 elems->tx_pwr_env[elems->tx_pwr_env_num] = (void *)pos; 1378 elems->tx_pwr_env_len[elems->tx_pwr_env_num] = elen; 1379 elems->tx_pwr_env_num++; 1380 break; 1381 case WLAN_EID_EXTENSION: 1382 ieee80211_parse_extension_element(calc_crc ? 1383 &crc : NULL, 1384 elem, elems); 1385 break; 1386 case WLAN_EID_S1G_CAPABILITIES: 1387 if (elen >= sizeof(*elems->s1g_capab)) 1388 elems->s1g_capab = (void *)pos; 1389 else 1390 elem_parse_failed = true; 1391 break; 1392 case WLAN_EID_S1G_OPERATION: 1393 if (elen == sizeof(*elems->s1g_oper)) 1394 elems->s1g_oper = (void *)pos; 1395 else 1396 elem_parse_failed = true; 1397 break; 1398 case WLAN_EID_S1G_BCN_COMPAT: 1399 if (elen == sizeof(*elems->s1g_bcn_compat)) 1400 elems->s1g_bcn_compat = (void *)pos; 1401 else 1402 elem_parse_failed = true; 1403 break; 1404 case WLAN_EID_AID_RESPONSE: 1405 if (elen == sizeof(struct ieee80211_aid_response_ie)) 1406 elems->aid_resp = (void *)pos; 1407 else 1408 elem_parse_failed = true; 1409 break; 1410 default: 1411 break; 1412 } 1413 1414 if (elem_parse_failed) 1415 elems->parse_error = true; 1416 else 1417 __set_bit(id, seen_elems); 1418 } 1419 1420 if (!for_each_element_completed(elem, start, len)) 1421 elems->parse_error = true; 1422 1423 return crc; 1424 } 1425 1426 static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len, 1427 struct ieee802_11_elems *elems, 1428 const u8 *transmitter_bssid, 1429 const u8 *bss_bssid, 1430 u8 *nontransmitted_profile) 1431 { 1432 const struct element *elem, *sub; 1433 size_t profile_len = 0; 1434 bool found = false; 1435 1436 if (!bss_bssid || !transmitter_bssid) 1437 return profile_len; 1438 1439 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) { 1440 if (elem->datalen < 2) 1441 continue; 1442 1443 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 1444 u8 new_bssid[ETH_ALEN]; 1445 const u8 *index; 1446 1447 if (sub->id != 0 || sub->datalen < 4) { 1448 /* not a valid BSS profile */ 1449 continue; 1450 } 1451 1452 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 1453 sub->data[1] != 2) { 1454 /* The first element of the 1455 * Nontransmitted BSSID Profile is not 1456 * the Nontransmitted BSSID Capability 1457 * element. 1458 */ 1459 continue; 1460 } 1461 1462 memset(nontransmitted_profile, 0, len); 1463 profile_len = cfg80211_merge_profile(start, len, 1464 elem, 1465 sub, 1466 nontransmitted_profile, 1467 len); 1468 1469 /* found a Nontransmitted BSSID Profile */ 1470 index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, 1471 nontransmitted_profile, 1472 profile_len); 1473 if (!index || index[1] < 1 || index[2] == 0) { 1474 /* Invalid MBSSID Index element */ 1475 continue; 1476 } 1477 1478 cfg80211_gen_new_bssid(transmitter_bssid, 1479 elem->data[0], 1480 index[2], 1481 new_bssid); 1482 if (ether_addr_equal(new_bssid, bss_bssid)) { 1483 found = true; 1484 elems->bssid_index_len = index[1]; 1485 elems->bssid_index = (void *)&index[2]; 1486 break; 1487 } 1488 } 1489 } 1490 1491 return found ? profile_len : 0; 1492 } 1493 1494 struct ieee802_11_elems *ieee802_11_parse_elems_crc(const u8 *start, size_t len, 1495 bool action, u64 filter, 1496 u32 crc, 1497 const u8 *transmitter_bssid, 1498 const u8 *bss_bssid) 1499 { 1500 struct ieee802_11_elems *elems; 1501 const struct element *non_inherit = NULL; 1502 u8 *nontransmitted_profile; 1503 int nontransmitted_profile_len = 0; 1504 1505 elems = kzalloc(sizeof(*elems), GFP_ATOMIC); 1506 if (!elems) 1507 return NULL; 1508 elems->ie_start = start; 1509 elems->total_len = len; 1510 1511 nontransmitted_profile = kmalloc(len, GFP_ATOMIC); 1512 if (nontransmitted_profile) { 1513 nontransmitted_profile_len = 1514 ieee802_11_find_bssid_profile(start, len, elems, 1515 transmitter_bssid, 1516 bss_bssid, 1517 nontransmitted_profile); 1518 non_inherit = 1519 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 1520 nontransmitted_profile, 1521 nontransmitted_profile_len); 1522 } 1523 1524 crc = _ieee802_11_parse_elems_crc(start, len, action, elems, filter, 1525 crc, non_inherit); 1526 1527 /* Override with nontransmitted profile, if found */ 1528 if (nontransmitted_profile_len) 1529 _ieee802_11_parse_elems_crc(nontransmitted_profile, 1530 nontransmitted_profile_len, 1531 action, elems, 0, 0, NULL); 1532 1533 if (elems->tim && !elems->parse_error) { 1534 const struct ieee80211_tim_ie *tim_ie = elems->tim; 1535 1536 elems->dtim_period = tim_ie->dtim_period; 1537 elems->dtim_count = tim_ie->dtim_count; 1538 } 1539 1540 /* Override DTIM period and count if needed */ 1541 if (elems->bssid_index && 1542 elems->bssid_index_len >= 1543 offsetofend(struct ieee80211_bssid_index, dtim_period)) 1544 elems->dtim_period = elems->bssid_index->dtim_period; 1545 1546 if (elems->bssid_index && 1547 elems->bssid_index_len >= 1548 offsetofend(struct ieee80211_bssid_index, dtim_count)) 1549 elems->dtim_count = elems->bssid_index->dtim_count; 1550 1551 kfree(nontransmitted_profile); 1552 1553 elems->crc = crc; 1554 1555 return elems; 1556 } 1557 1558 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 1559 struct ieee80211_tx_queue_params 1560 *qparam, int ac) 1561 { 1562 struct ieee80211_chanctx_conf *chanctx_conf; 1563 const struct ieee80211_reg_rule *rrule; 1564 const struct ieee80211_wmm_ac *wmm_ac; 1565 u16 center_freq = 0; 1566 1567 if (sdata->vif.type != NL80211_IFTYPE_AP && 1568 sdata->vif.type != NL80211_IFTYPE_STATION) 1569 return; 1570 1571 rcu_read_lock(); 1572 chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); 1573 if (chanctx_conf) 1574 center_freq = chanctx_conf->def.chan->center_freq; 1575 1576 if (!center_freq) { 1577 rcu_read_unlock(); 1578 return; 1579 } 1580 1581 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 1582 1583 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 1584 rcu_read_unlock(); 1585 return; 1586 } 1587 1588 if (sdata->vif.type == NL80211_IFTYPE_AP) 1589 wmm_ac = &rrule->wmm_rule.ap[ac]; 1590 else 1591 wmm_ac = &rrule->wmm_rule.client[ac]; 1592 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 1593 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 1594 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 1595 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 1596 rcu_read_unlock(); 1597 } 1598 1599 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata, 1600 bool bss_notify, bool enable_qos) 1601 { 1602 struct ieee80211_local *local = sdata->local; 1603 struct ieee80211_tx_queue_params qparam; 1604 struct ieee80211_chanctx_conf *chanctx_conf; 1605 int ac; 1606 bool use_11b; 1607 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 1608 int aCWmin, aCWmax; 1609 1610 if (!local->ops->conf_tx) 1611 return; 1612 1613 if (local->hw.queues < IEEE80211_NUM_ACS) 1614 return; 1615 1616 memset(&qparam, 0, sizeof(qparam)); 1617 1618 rcu_read_lock(); 1619 chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); 1620 use_11b = (chanctx_conf && 1621 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 1622 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE); 1623 rcu_read_unlock(); 1624 1625 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 1626 1627 /* Set defaults according to 802.11-2007 Table 7-37 */ 1628 aCWmax = 1023; 1629 if (use_11b) 1630 aCWmin = 31; 1631 else 1632 aCWmin = 15; 1633 1634 /* Confiure old 802.11b/g medium access rules. */ 1635 qparam.cw_max = aCWmax; 1636 qparam.cw_min = aCWmin; 1637 qparam.txop = 0; 1638 qparam.aifs = 2; 1639 1640 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1641 /* Update if QoS is enabled. */ 1642 if (enable_qos) { 1643 switch (ac) { 1644 case IEEE80211_AC_BK: 1645 qparam.cw_max = aCWmax; 1646 qparam.cw_min = aCWmin; 1647 qparam.txop = 0; 1648 if (is_ocb) 1649 qparam.aifs = 9; 1650 else 1651 qparam.aifs = 7; 1652 break; 1653 /* never happens but let's not leave undefined */ 1654 default: 1655 case IEEE80211_AC_BE: 1656 qparam.cw_max = aCWmax; 1657 qparam.cw_min = aCWmin; 1658 qparam.txop = 0; 1659 if (is_ocb) 1660 qparam.aifs = 6; 1661 else 1662 qparam.aifs = 3; 1663 break; 1664 case IEEE80211_AC_VI: 1665 qparam.cw_max = aCWmin; 1666 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1667 if (is_ocb) 1668 qparam.txop = 0; 1669 else if (use_11b) 1670 qparam.txop = 6016/32; 1671 else 1672 qparam.txop = 3008/32; 1673 1674 if (is_ocb) 1675 qparam.aifs = 3; 1676 else 1677 qparam.aifs = 2; 1678 break; 1679 case IEEE80211_AC_VO: 1680 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1681 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1682 if (is_ocb) 1683 qparam.txop = 0; 1684 else if (use_11b) 1685 qparam.txop = 3264/32; 1686 else 1687 qparam.txop = 1504/32; 1688 qparam.aifs = 2; 1689 break; 1690 } 1691 } 1692 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1693 1694 qparam.uapsd = false; 1695 1696 sdata->tx_conf[ac] = qparam; 1697 drv_conf_tx(local, sdata, ac, &qparam); 1698 } 1699 1700 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1701 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1702 sdata->vif.type != NL80211_IFTYPE_NAN) { 1703 sdata->vif.bss_conf.qos = enable_qos; 1704 if (bss_notify) 1705 ieee80211_link_info_change_notify(sdata, 0, 1706 BSS_CHANGED_QOS); 1707 } 1708 } 1709 1710 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1711 u16 transaction, u16 auth_alg, u16 status, 1712 const u8 *extra, size_t extra_len, const u8 *da, 1713 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1714 u32 tx_flags) 1715 { 1716 struct ieee80211_local *local = sdata->local; 1717 struct sk_buff *skb; 1718 struct ieee80211_mgmt *mgmt; 1719 int err; 1720 1721 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1722 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1723 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN); 1724 if (!skb) 1725 return; 1726 1727 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1728 1729 mgmt = skb_put_zero(skb, 24 + 6); 1730 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1731 IEEE80211_STYPE_AUTH); 1732 memcpy(mgmt->da, da, ETH_ALEN); 1733 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1734 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1735 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1736 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1737 mgmt->u.auth.status_code = cpu_to_le16(status); 1738 if (extra) 1739 skb_put_data(skb, extra, extra_len); 1740 1741 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1742 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1743 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1744 if (WARN_ON(err)) { 1745 kfree_skb(skb); 1746 return; 1747 } 1748 } 1749 1750 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1751 tx_flags; 1752 ieee80211_tx_skb(sdata, skb); 1753 } 1754 1755 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1756 const u8 *da, const u8 *bssid, 1757 u16 stype, u16 reason, 1758 bool send_frame, u8 *frame_buf) 1759 { 1760 struct ieee80211_local *local = sdata->local; 1761 struct sk_buff *skb; 1762 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1763 1764 /* build frame */ 1765 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1766 mgmt->duration = 0; /* initialize only */ 1767 mgmt->seq_ctrl = 0; /* initialize only */ 1768 memcpy(mgmt->da, da, ETH_ALEN); 1769 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1770 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1771 /* u.deauth.reason_code == u.disassoc.reason_code */ 1772 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1773 1774 if (send_frame) { 1775 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1776 IEEE80211_DEAUTH_FRAME_LEN); 1777 if (!skb) 1778 return; 1779 1780 skb_reserve(skb, local->hw.extra_tx_headroom); 1781 1782 /* copy in frame */ 1783 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1784 1785 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1786 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1787 IEEE80211_SKB_CB(skb)->flags |= 1788 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1789 1790 ieee80211_tx_skb(sdata, skb); 1791 } 1792 } 1793 1794 static u8 *ieee80211_write_he_6ghz_cap(u8 *pos, __le16 cap, u8 *end) 1795 { 1796 if ((end - pos) < 5) 1797 return pos; 1798 1799 *pos++ = WLAN_EID_EXTENSION; 1800 *pos++ = 1 + sizeof(cap); 1801 *pos++ = WLAN_EID_EXT_HE_6GHZ_CAPA; 1802 memcpy(pos, &cap, sizeof(cap)); 1803 1804 return pos + 2; 1805 } 1806 1807 static int ieee80211_build_preq_ies_band(struct ieee80211_sub_if_data *sdata, 1808 u8 *buffer, size_t buffer_len, 1809 const u8 *ie, size_t ie_len, 1810 enum nl80211_band band, 1811 u32 rate_mask, 1812 struct cfg80211_chan_def *chandef, 1813 size_t *offset, u32 flags) 1814 { 1815 struct ieee80211_local *local = sdata->local; 1816 struct ieee80211_supported_band *sband; 1817 const struct ieee80211_sta_he_cap *he_cap; 1818 const struct ieee80211_sta_eht_cap *eht_cap; 1819 u8 *pos = buffer, *end = buffer + buffer_len; 1820 size_t noffset; 1821 int supp_rates_len, i; 1822 u8 rates[32]; 1823 int num_rates; 1824 int ext_rates_len; 1825 int shift; 1826 u32 rate_flags; 1827 bool have_80mhz = false; 1828 1829 *offset = 0; 1830 1831 sband = local->hw.wiphy->bands[band]; 1832 if (WARN_ON_ONCE(!sband)) 1833 return 0; 1834 1835 rate_flags = ieee80211_chandef_rate_flags(chandef); 1836 shift = ieee80211_chandef_get_shift(chandef); 1837 1838 num_rates = 0; 1839 for (i = 0; i < sband->n_bitrates; i++) { 1840 if ((BIT(i) & rate_mask) == 0) 1841 continue; /* skip rate */ 1842 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 1843 continue; 1844 1845 rates[num_rates++] = 1846 (u8) DIV_ROUND_UP(sband->bitrates[i].bitrate, 1847 (1 << shift) * 5); 1848 } 1849 1850 supp_rates_len = min_t(int, num_rates, 8); 1851 1852 if (end - pos < 2 + supp_rates_len) 1853 goto out_err; 1854 *pos++ = WLAN_EID_SUPP_RATES; 1855 *pos++ = supp_rates_len; 1856 memcpy(pos, rates, supp_rates_len); 1857 pos += supp_rates_len; 1858 1859 /* insert "request information" if in custom IEs */ 1860 if (ie && ie_len) { 1861 static const u8 before_extrates[] = { 1862 WLAN_EID_SSID, 1863 WLAN_EID_SUPP_RATES, 1864 WLAN_EID_REQUEST, 1865 }; 1866 noffset = ieee80211_ie_split(ie, ie_len, 1867 before_extrates, 1868 ARRAY_SIZE(before_extrates), 1869 *offset); 1870 if (end - pos < noffset - *offset) 1871 goto out_err; 1872 memcpy(pos, ie + *offset, noffset - *offset); 1873 pos += noffset - *offset; 1874 *offset = noffset; 1875 } 1876 1877 ext_rates_len = num_rates - supp_rates_len; 1878 if (ext_rates_len > 0) { 1879 if (end - pos < 2 + ext_rates_len) 1880 goto out_err; 1881 *pos++ = WLAN_EID_EXT_SUPP_RATES; 1882 *pos++ = ext_rates_len; 1883 memcpy(pos, rates + supp_rates_len, ext_rates_len); 1884 pos += ext_rates_len; 1885 } 1886 1887 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 1888 if (end - pos < 3) 1889 goto out_err; 1890 *pos++ = WLAN_EID_DS_PARAMS; 1891 *pos++ = 1; 1892 *pos++ = ieee80211_frequency_to_channel( 1893 chandef->chan->center_freq); 1894 } 1895 1896 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 1897 goto done; 1898 1899 /* insert custom IEs that go before HT */ 1900 if (ie && ie_len) { 1901 static const u8 before_ht[] = { 1902 /* 1903 * no need to list the ones split off already 1904 * (or generated here) 1905 */ 1906 WLAN_EID_DS_PARAMS, 1907 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1908 }; 1909 noffset = ieee80211_ie_split(ie, ie_len, 1910 before_ht, ARRAY_SIZE(before_ht), 1911 *offset); 1912 if (end - pos < noffset - *offset) 1913 goto out_err; 1914 memcpy(pos, ie + *offset, noffset - *offset); 1915 pos += noffset - *offset; 1916 *offset = noffset; 1917 } 1918 1919 if (sband->ht_cap.ht_supported) { 1920 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap)) 1921 goto out_err; 1922 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 1923 sband->ht_cap.cap); 1924 } 1925 1926 /* insert custom IEs that go before VHT */ 1927 if (ie && ie_len) { 1928 static const u8 before_vht[] = { 1929 /* 1930 * no need to list the ones split off already 1931 * (or generated here) 1932 */ 1933 WLAN_EID_BSS_COEX_2040, 1934 WLAN_EID_EXT_CAPABILITY, 1935 WLAN_EID_SSID_LIST, 1936 WLAN_EID_CHANNEL_USAGE, 1937 WLAN_EID_INTERWORKING, 1938 WLAN_EID_MESH_ID, 1939 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 1940 }; 1941 noffset = ieee80211_ie_split(ie, ie_len, 1942 before_vht, ARRAY_SIZE(before_vht), 1943 *offset); 1944 if (end - pos < noffset - *offset) 1945 goto out_err; 1946 memcpy(pos, ie + *offset, noffset - *offset); 1947 pos += noffset - *offset; 1948 *offset = noffset; 1949 } 1950 1951 /* Check if any channel in this sband supports at least 80 MHz */ 1952 for (i = 0; i < sband->n_channels; i++) { 1953 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 1954 IEEE80211_CHAN_NO_80MHZ)) 1955 continue; 1956 1957 have_80mhz = true; 1958 break; 1959 } 1960 1961 if (sband->vht_cap.vht_supported && have_80mhz) { 1962 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap)) 1963 goto out_err; 1964 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 1965 sband->vht_cap.cap); 1966 } 1967 1968 /* insert custom IEs that go before HE */ 1969 if (ie && ie_len) { 1970 static const u8 before_he[] = { 1971 /* 1972 * no need to list the ones split off before VHT 1973 * or generated here 1974 */ 1975 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 1976 WLAN_EID_AP_CSN, 1977 /* TODO: add 11ah/11aj/11ak elements */ 1978 }; 1979 noffset = ieee80211_ie_split(ie, ie_len, 1980 before_he, ARRAY_SIZE(before_he), 1981 *offset); 1982 if (end - pos < noffset - *offset) 1983 goto out_err; 1984 memcpy(pos, ie + *offset, noffset - *offset); 1985 pos += noffset - *offset; 1986 *offset = noffset; 1987 } 1988 1989 he_cap = ieee80211_get_he_iftype_cap(sband, 1990 ieee80211_vif_type_p2p(&sdata->vif)); 1991 if (he_cap && 1992 cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 1993 IEEE80211_CHAN_NO_HE)) { 1994 pos = ieee80211_ie_build_he_cap(0, pos, he_cap, end); 1995 if (!pos) 1996 goto out_err; 1997 } 1998 1999 eht_cap = ieee80211_get_eht_iftype_cap(sband, 2000 ieee80211_vif_type_p2p(&sdata->vif)); 2001 2002 if (eht_cap && 2003 cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 2004 IEEE80211_CHAN_NO_HE | 2005 IEEE80211_CHAN_NO_EHT)) { 2006 pos = ieee80211_ie_build_eht_cap(pos, he_cap, eht_cap, end); 2007 if (!pos) 2008 goto out_err; 2009 } 2010 2011 if (cfg80211_any_usable_channels(local->hw.wiphy, 2012 BIT(NL80211_BAND_6GHZ), 2013 IEEE80211_CHAN_NO_HE)) { 2014 struct ieee80211_supported_band *sband6; 2015 2016 sband6 = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 2017 he_cap = ieee80211_get_he_iftype_cap(sband6, 2018 ieee80211_vif_type_p2p(&sdata->vif)); 2019 2020 if (he_cap) { 2021 enum nl80211_iftype iftype = 2022 ieee80211_vif_type_p2p(&sdata->vif); 2023 __le16 cap = ieee80211_get_he_6ghz_capa(sband, iftype); 2024 2025 pos = ieee80211_write_he_6ghz_cap(pos, cap, end); 2026 } 2027 } 2028 2029 /* 2030 * If adding more here, adjust code in main.c 2031 * that calculates local->scan_ies_len. 2032 */ 2033 2034 return pos - buffer; 2035 out_err: 2036 WARN_ONCE(1, "not enough space for preq IEs\n"); 2037 done: 2038 return pos - buffer; 2039 } 2040 2041 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 2042 size_t buffer_len, 2043 struct ieee80211_scan_ies *ie_desc, 2044 const u8 *ie, size_t ie_len, 2045 u8 bands_used, u32 *rate_masks, 2046 struct cfg80211_chan_def *chandef, 2047 u32 flags) 2048 { 2049 size_t pos = 0, old_pos = 0, custom_ie_offset = 0; 2050 int i; 2051 2052 memset(ie_desc, 0, sizeof(*ie_desc)); 2053 2054 for (i = 0; i < NUM_NL80211_BANDS; i++) { 2055 if (bands_used & BIT(i)) { 2056 pos += ieee80211_build_preq_ies_band(sdata, 2057 buffer + pos, 2058 buffer_len - pos, 2059 ie, ie_len, i, 2060 rate_masks[i], 2061 chandef, 2062 &custom_ie_offset, 2063 flags); 2064 ie_desc->ies[i] = buffer + old_pos; 2065 ie_desc->len[i] = pos - old_pos; 2066 old_pos = pos; 2067 } 2068 } 2069 2070 /* add any remaining custom IEs */ 2071 if (ie && ie_len) { 2072 if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset, 2073 "not enough space for preq custom IEs\n")) 2074 return pos; 2075 memcpy(buffer + pos, ie + custom_ie_offset, 2076 ie_len - custom_ie_offset); 2077 ie_desc->common_ies = buffer + pos; 2078 ie_desc->common_ie_len = ie_len - custom_ie_offset; 2079 pos += ie_len - custom_ie_offset; 2080 } 2081 2082 return pos; 2083 }; 2084 2085 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 2086 const u8 *src, const u8 *dst, 2087 u32 ratemask, 2088 struct ieee80211_channel *chan, 2089 const u8 *ssid, size_t ssid_len, 2090 const u8 *ie, size_t ie_len, 2091 u32 flags) 2092 { 2093 struct ieee80211_local *local = sdata->local; 2094 struct cfg80211_chan_def chandef; 2095 struct sk_buff *skb; 2096 struct ieee80211_mgmt *mgmt; 2097 int ies_len; 2098 u32 rate_masks[NUM_NL80211_BANDS] = {}; 2099 struct ieee80211_scan_ies dummy_ie_desc; 2100 2101 /* 2102 * Do not send DS Channel parameter for directed probe requests 2103 * in order to maximize the chance that we get a response. Some 2104 * badly-behaved APs don't respond when this parameter is included. 2105 */ 2106 chandef.width = sdata->vif.bss_conf.chandef.width; 2107 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 2108 chandef.chan = NULL; 2109 else 2110 chandef.chan = chan; 2111 2112 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 2113 local->scan_ies_len + ie_len); 2114 if (!skb) 2115 return NULL; 2116 2117 rate_masks[chan->band] = ratemask; 2118 ies_len = ieee80211_build_preq_ies(sdata, skb_tail_pointer(skb), 2119 skb_tailroom(skb), &dummy_ie_desc, 2120 ie, ie_len, BIT(chan->band), 2121 rate_masks, &chandef, flags); 2122 skb_put(skb, ies_len); 2123 2124 if (dst) { 2125 mgmt = (struct ieee80211_mgmt *) skb->data; 2126 memcpy(mgmt->da, dst, ETH_ALEN); 2127 memcpy(mgmt->bssid, dst, ETH_ALEN); 2128 } 2129 2130 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 2131 2132 return skb; 2133 } 2134 2135 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 2136 struct ieee802_11_elems *elems, 2137 enum nl80211_band band, u32 *basic_rates) 2138 { 2139 struct ieee80211_supported_band *sband; 2140 size_t num_rates; 2141 u32 supp_rates, rate_flags; 2142 int i, j, shift; 2143 2144 sband = sdata->local->hw.wiphy->bands[band]; 2145 if (WARN_ON(!sband)) 2146 return 1; 2147 2148 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 2149 shift = ieee80211_vif_get_shift(&sdata->vif); 2150 2151 num_rates = sband->n_bitrates; 2152 supp_rates = 0; 2153 for (i = 0; i < elems->supp_rates_len + 2154 elems->ext_supp_rates_len; i++) { 2155 u8 rate = 0; 2156 int own_rate; 2157 bool is_basic; 2158 if (i < elems->supp_rates_len) 2159 rate = elems->supp_rates[i]; 2160 else if (elems->ext_supp_rates) 2161 rate = elems->ext_supp_rates 2162 [i - elems->supp_rates_len]; 2163 own_rate = 5 * (rate & 0x7f); 2164 is_basic = !!(rate & 0x80); 2165 2166 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 2167 continue; 2168 2169 for (j = 0; j < num_rates; j++) { 2170 int brate; 2171 if ((rate_flags & sband->bitrates[j].flags) 2172 != rate_flags) 2173 continue; 2174 2175 brate = DIV_ROUND_UP(sband->bitrates[j].bitrate, 2176 1 << shift); 2177 2178 if (brate == own_rate) { 2179 supp_rates |= BIT(j); 2180 if (basic_rates && is_basic) 2181 *basic_rates |= BIT(j); 2182 } 2183 } 2184 } 2185 return supp_rates; 2186 } 2187 2188 void ieee80211_stop_device(struct ieee80211_local *local) 2189 { 2190 ieee80211_led_radio(local, false); 2191 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 2192 2193 cancel_work_sync(&local->reconfig_filter); 2194 2195 flush_workqueue(local->workqueue); 2196 drv_stop(local); 2197 } 2198 2199 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 2200 bool aborted) 2201 { 2202 /* It's possible that we don't handle the scan completion in 2203 * time during suspend, so if it's still marked as completed 2204 * here, queue the work and flush it to clean things up. 2205 * Instead of calling the worker function directly here, we 2206 * really queue it to avoid potential races with other flows 2207 * scheduling the same work. 2208 */ 2209 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 2210 /* If coming from reconfiguration failure, abort the scan so 2211 * we don't attempt to continue a partial HW scan - which is 2212 * possible otherwise if (e.g.) the 2.4 GHz portion was the 2213 * completed scan, and a 5 GHz portion is still pending. 2214 */ 2215 if (aborted) 2216 set_bit(SCAN_ABORTED, &local->scanning); 2217 ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0); 2218 flush_delayed_work(&local->scan_work); 2219 } 2220 } 2221 2222 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 2223 { 2224 struct ieee80211_sub_if_data *sdata; 2225 struct ieee80211_chanctx *ctx; 2226 2227 /* 2228 * We get here if during resume the device can't be restarted properly. 2229 * We might also get here if this happens during HW reset, which is a 2230 * slightly different situation and we need to drop all connections in 2231 * the latter case. 2232 * 2233 * Ask cfg80211 to turn off all interfaces, this will result in more 2234 * warnings but at least we'll then get into a clean stopped state. 2235 */ 2236 2237 local->resuming = false; 2238 local->suspended = false; 2239 local->in_reconfig = false; 2240 2241 ieee80211_flush_completed_scan(local, true); 2242 2243 /* scheduled scan clearly can't be running any more, but tell 2244 * cfg80211 and clear local state 2245 */ 2246 ieee80211_sched_scan_end(local); 2247 2248 list_for_each_entry(sdata, &local->interfaces, list) 2249 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 2250 2251 /* Mark channel contexts as not being in the driver any more to avoid 2252 * removing them from the driver during the shutdown process... 2253 */ 2254 mutex_lock(&local->chanctx_mtx); 2255 list_for_each_entry(ctx, &local->chanctx_list, list) 2256 ctx->driver_present = false; 2257 mutex_unlock(&local->chanctx_mtx); 2258 } 2259 2260 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 2261 struct ieee80211_sub_if_data *sdata, 2262 unsigned int link_id) 2263 { 2264 struct ieee80211_chanctx_conf *conf; 2265 struct ieee80211_chanctx *ctx; 2266 2267 if (!local->use_chanctx) 2268 return; 2269 2270 mutex_lock(&local->chanctx_mtx); 2271 conf = rcu_dereference_protected(sdata->vif.link_conf[link_id]->chanctx_conf, 2272 lockdep_is_held(&local->chanctx_mtx)); 2273 if (conf) { 2274 ctx = container_of(conf, struct ieee80211_chanctx, conf); 2275 drv_assign_vif_chanctx(local, sdata, link_id, ctx); 2276 } 2277 mutex_unlock(&local->chanctx_mtx); 2278 } 2279 2280 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 2281 { 2282 struct ieee80211_local *local = sdata->local; 2283 struct sta_info *sta; 2284 2285 /* add STAs back */ 2286 mutex_lock(&local->sta_mtx); 2287 list_for_each_entry(sta, &local->sta_list, list) { 2288 enum ieee80211_sta_state state; 2289 2290 if (!sta->uploaded || sta->sdata != sdata) 2291 continue; 2292 2293 for (state = IEEE80211_STA_NOTEXIST; 2294 state < sta->sta_state; state++) 2295 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2296 state + 1)); 2297 } 2298 mutex_unlock(&local->sta_mtx); 2299 } 2300 2301 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 2302 { 2303 struct cfg80211_nan_func *func, **funcs; 2304 int res, id, i = 0; 2305 2306 res = drv_start_nan(sdata->local, sdata, 2307 &sdata->u.nan.conf); 2308 if (WARN_ON(res)) 2309 return res; 2310 2311 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 2312 sizeof(*funcs), 2313 GFP_KERNEL); 2314 if (!funcs) 2315 return -ENOMEM; 2316 2317 /* Add all the functions: 2318 * This is a little bit ugly. We need to call a potentially sleeping 2319 * callback for each NAN function, so we can't hold the spinlock. 2320 */ 2321 spin_lock_bh(&sdata->u.nan.func_lock); 2322 2323 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 2324 funcs[i++] = func; 2325 2326 spin_unlock_bh(&sdata->u.nan.func_lock); 2327 2328 for (i = 0; funcs[i]; i++) { 2329 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 2330 if (WARN_ON(res)) 2331 ieee80211_nan_func_terminated(&sdata->vif, 2332 funcs[i]->instance_id, 2333 NL80211_NAN_FUNC_TERM_REASON_ERROR, 2334 GFP_KERNEL); 2335 } 2336 2337 kfree(funcs); 2338 2339 return 0; 2340 } 2341 2342 int ieee80211_reconfig(struct ieee80211_local *local) 2343 { 2344 struct ieee80211_hw *hw = &local->hw; 2345 struct ieee80211_sub_if_data *sdata; 2346 struct ieee80211_chanctx *ctx; 2347 struct sta_info *sta; 2348 int res, i; 2349 bool reconfig_due_to_wowlan = false; 2350 struct ieee80211_sub_if_data *sched_scan_sdata; 2351 struct cfg80211_sched_scan_request *sched_scan_req; 2352 bool sched_scan_stopped = false; 2353 bool suspended = local->suspended; 2354 bool in_reconfig = false; 2355 2356 /* nothing to do if HW shouldn't run */ 2357 if (!local->open_count) 2358 goto wake_up; 2359 2360 #ifdef CONFIG_PM 2361 if (suspended) 2362 local->resuming = true; 2363 2364 if (local->wowlan) { 2365 /* 2366 * In the wowlan case, both mac80211 and the device 2367 * are functional when the resume op is called, so 2368 * clear local->suspended so the device could operate 2369 * normally (e.g. pass rx frames). 2370 */ 2371 local->suspended = false; 2372 res = drv_resume(local); 2373 local->wowlan = false; 2374 if (res < 0) { 2375 local->resuming = false; 2376 return res; 2377 } 2378 if (res == 0) 2379 goto wake_up; 2380 WARN_ON(res > 1); 2381 /* 2382 * res is 1, which means the driver requested 2383 * to go through a regular reset on wakeup. 2384 * restore local->suspended in this case. 2385 */ 2386 reconfig_due_to_wowlan = true; 2387 local->suspended = true; 2388 } 2389 #endif 2390 2391 /* 2392 * In case of hw_restart during suspend (without wowlan), 2393 * cancel restart work, as we are reconfiguring the device 2394 * anyway. 2395 * Note that restart_work is scheduled on a frozen workqueue, 2396 * so we can't deadlock in this case. 2397 */ 2398 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 2399 cancel_work_sync(&local->restart_work); 2400 2401 local->started = false; 2402 2403 /* 2404 * Upon resume hardware can sometimes be goofy due to 2405 * various platform / driver / bus issues, so restarting 2406 * the device may at times not work immediately. Propagate 2407 * the error. 2408 */ 2409 res = drv_start(local); 2410 if (res) { 2411 if (suspended) 2412 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 2413 else 2414 WARN(1, "Hardware became unavailable during restart.\n"); 2415 ieee80211_handle_reconfig_failure(local); 2416 return res; 2417 } 2418 2419 /* setup fragmentation threshold */ 2420 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 2421 2422 /* setup RTS threshold */ 2423 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 2424 2425 /* reset coverage class */ 2426 drv_set_coverage_class(local, hw->wiphy->coverage_class); 2427 2428 ieee80211_led_radio(local, true); 2429 ieee80211_mod_tpt_led_trig(local, 2430 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 2431 2432 /* add interfaces */ 2433 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 2434 if (sdata) { 2435 /* in HW restart it exists already */ 2436 WARN_ON(local->resuming); 2437 res = drv_add_interface(local, sdata); 2438 if (WARN_ON(res)) { 2439 RCU_INIT_POINTER(local->monitor_sdata, NULL); 2440 synchronize_net(); 2441 kfree(sdata); 2442 } 2443 } 2444 2445 list_for_each_entry(sdata, &local->interfaces, list) { 2446 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2447 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2448 ieee80211_sdata_running(sdata)) { 2449 res = drv_add_interface(local, sdata); 2450 if (WARN_ON(res)) 2451 break; 2452 } 2453 } 2454 2455 /* If adding any of the interfaces failed above, roll back and 2456 * report failure. 2457 */ 2458 if (res) { 2459 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 2460 list) 2461 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2462 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2463 ieee80211_sdata_running(sdata)) 2464 drv_remove_interface(local, sdata); 2465 ieee80211_handle_reconfig_failure(local); 2466 return res; 2467 } 2468 2469 /* add channel contexts */ 2470 if (local->use_chanctx) { 2471 mutex_lock(&local->chanctx_mtx); 2472 list_for_each_entry(ctx, &local->chanctx_list, list) 2473 if (ctx->replace_state != 2474 IEEE80211_CHANCTX_REPLACES_OTHER) 2475 WARN_ON(drv_add_chanctx(local, ctx)); 2476 mutex_unlock(&local->chanctx_mtx); 2477 2478 sdata = wiphy_dereference(local->hw.wiphy, 2479 local->monitor_sdata); 2480 if (sdata && ieee80211_sdata_running(sdata)) 2481 ieee80211_assign_chanctx(local, sdata, 0); 2482 } 2483 2484 /* reconfigure hardware */ 2485 ieee80211_hw_config(local, ~0); 2486 2487 ieee80211_configure_filter(local); 2488 2489 /* Finally also reconfigure all the BSS information */ 2490 list_for_each_entry(sdata, &local->interfaces, list) { 2491 unsigned int link; 2492 u32 changed; 2493 2494 if (!ieee80211_sdata_running(sdata)) 2495 continue; 2496 2497 for (link = 0; link < ARRAY_SIZE(sdata->vif.link_conf); link++) { 2498 if (sdata->vif.link_conf[link]) 2499 ieee80211_assign_chanctx(local, sdata, link); 2500 } 2501 2502 switch (sdata->vif.type) { 2503 case NL80211_IFTYPE_AP_VLAN: 2504 case NL80211_IFTYPE_MONITOR: 2505 break; 2506 case NL80211_IFTYPE_ADHOC: 2507 if (sdata->vif.cfg.ibss_joined) 2508 WARN_ON(drv_join_ibss(local, sdata)); 2509 fallthrough; 2510 default: 2511 ieee80211_reconfig_stations(sdata); 2512 fallthrough; 2513 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 2514 for (i = 0; i < IEEE80211_NUM_ACS; i++) 2515 drv_conf_tx(local, sdata, i, 2516 &sdata->tx_conf[i]); 2517 break; 2518 } 2519 2520 /* common change flags for all interface types */ 2521 changed = BSS_CHANGED_ERP_CTS_PROT | 2522 BSS_CHANGED_ERP_PREAMBLE | 2523 BSS_CHANGED_ERP_SLOT | 2524 BSS_CHANGED_HT | 2525 BSS_CHANGED_BASIC_RATES | 2526 BSS_CHANGED_BEACON_INT | 2527 BSS_CHANGED_BSSID | 2528 BSS_CHANGED_CQM | 2529 BSS_CHANGED_QOS | 2530 BSS_CHANGED_IDLE | 2531 BSS_CHANGED_TXPOWER | 2532 BSS_CHANGED_MCAST_RATE; 2533 2534 if (sdata->vif.bss_conf.mu_mimo_owner) 2535 changed |= BSS_CHANGED_MU_GROUPS; 2536 2537 switch (sdata->vif.type) { 2538 case NL80211_IFTYPE_STATION: 2539 changed |= BSS_CHANGED_ASSOC | 2540 BSS_CHANGED_ARP_FILTER | 2541 BSS_CHANGED_PS; 2542 2543 /* Re-send beacon info report to the driver */ 2544 if (sdata->deflink.u.mgd.have_beacon) 2545 changed |= BSS_CHANGED_BEACON_INFO; 2546 2547 if (sdata->vif.bss_conf.max_idle_period || 2548 sdata->vif.bss_conf.protected_keep_alive) 2549 changed |= BSS_CHANGED_KEEP_ALIVE; 2550 2551 sdata_lock(sdata); 2552 ieee80211_bss_info_change_notify(sdata, changed); 2553 sdata_unlock(sdata); 2554 break; 2555 case NL80211_IFTYPE_OCB: 2556 changed |= BSS_CHANGED_OCB; 2557 ieee80211_bss_info_change_notify(sdata, changed); 2558 break; 2559 case NL80211_IFTYPE_ADHOC: 2560 changed |= BSS_CHANGED_IBSS; 2561 fallthrough; 2562 case NL80211_IFTYPE_AP: 2563 changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS; 2564 2565 if (sdata->vif.bss_conf.ftm_responder == 1 && 2566 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2567 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2568 changed |= BSS_CHANGED_FTM_RESPONDER; 2569 2570 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2571 changed |= BSS_CHANGED_AP_PROBE_RESP; 2572 2573 if (rcu_access_pointer(sdata->deflink.u.ap.beacon)) 2574 drv_start_ap(local, sdata, 0); 2575 } 2576 fallthrough; 2577 case NL80211_IFTYPE_MESH_POINT: 2578 if (sdata->vif.bss_conf.enable_beacon) { 2579 changed |= BSS_CHANGED_BEACON | 2580 BSS_CHANGED_BEACON_ENABLED; 2581 ieee80211_bss_info_change_notify(sdata, changed); 2582 } 2583 break; 2584 case NL80211_IFTYPE_NAN: 2585 res = ieee80211_reconfig_nan(sdata); 2586 if (res < 0) { 2587 ieee80211_handle_reconfig_failure(local); 2588 return res; 2589 } 2590 break; 2591 case NL80211_IFTYPE_AP_VLAN: 2592 case NL80211_IFTYPE_MONITOR: 2593 case NL80211_IFTYPE_P2P_DEVICE: 2594 /* nothing to do */ 2595 break; 2596 case NL80211_IFTYPE_UNSPECIFIED: 2597 case NUM_NL80211_IFTYPES: 2598 case NL80211_IFTYPE_P2P_CLIENT: 2599 case NL80211_IFTYPE_P2P_GO: 2600 case NL80211_IFTYPE_WDS: 2601 WARN_ON(1); 2602 break; 2603 } 2604 } 2605 2606 ieee80211_recalc_ps(local); 2607 2608 /* 2609 * The sta might be in psm against the ap (e.g. because 2610 * this was the state before a hw restart), so we 2611 * explicitly send a null packet in order to make sure 2612 * it'll sync against the ap (and get out of psm). 2613 */ 2614 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2615 list_for_each_entry(sdata, &local->interfaces, list) { 2616 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2617 continue; 2618 if (!sdata->u.mgd.associated) 2619 continue; 2620 2621 ieee80211_send_nullfunc(local, sdata, false); 2622 } 2623 } 2624 2625 /* APs are now beaconing, add back stations */ 2626 mutex_lock(&local->sta_mtx); 2627 list_for_each_entry(sta, &local->sta_list, list) { 2628 enum ieee80211_sta_state state; 2629 2630 if (!sta->uploaded) 2631 continue; 2632 2633 if (sta->sdata->vif.type != NL80211_IFTYPE_AP && 2634 sta->sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 2635 continue; 2636 2637 for (state = IEEE80211_STA_NOTEXIST; 2638 state < sta->sta_state; state++) 2639 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2640 state + 1)); 2641 } 2642 mutex_unlock(&local->sta_mtx); 2643 2644 /* add back keys */ 2645 list_for_each_entry(sdata, &local->interfaces, list) 2646 ieee80211_reenable_keys(sdata); 2647 2648 /* Reconfigure sched scan if it was interrupted by FW restart */ 2649 mutex_lock(&local->mtx); 2650 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2651 lockdep_is_held(&local->mtx)); 2652 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2653 lockdep_is_held(&local->mtx)); 2654 if (sched_scan_sdata && sched_scan_req) 2655 /* 2656 * Sched scan stopped, but we don't want to report it. Instead, 2657 * we're trying to reschedule. However, if more than one scan 2658 * plan was set, we cannot reschedule since we don't know which 2659 * scan plan was currently running (and some scan plans may have 2660 * already finished). 2661 */ 2662 if (sched_scan_req->n_scan_plans > 1 || 2663 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2664 sched_scan_req)) { 2665 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2666 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2667 sched_scan_stopped = true; 2668 } 2669 mutex_unlock(&local->mtx); 2670 2671 if (sched_scan_stopped) 2672 cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0); 2673 2674 wake_up: 2675 2676 if (local->monitors == local->open_count && local->monitors > 0) 2677 ieee80211_add_virtual_monitor(local); 2678 2679 /* 2680 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2681 * sessions can be established after a resume. 2682 * 2683 * Also tear down aggregation sessions since reconfiguring 2684 * them in a hardware restart scenario is not easily done 2685 * right now, and the hardware will have lost information 2686 * about the sessions, but we and the AP still think they 2687 * are active. This is really a workaround though. 2688 */ 2689 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2690 mutex_lock(&local->sta_mtx); 2691 2692 list_for_each_entry(sta, &local->sta_list, list) { 2693 if (!local->resuming) 2694 ieee80211_sta_tear_down_BA_sessions( 2695 sta, AGG_STOP_LOCAL_REQUEST); 2696 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2697 } 2698 2699 mutex_unlock(&local->sta_mtx); 2700 } 2701 2702 /* 2703 * If this is for hw restart things are still running. 2704 * We may want to change that later, however. 2705 */ 2706 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2707 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2708 2709 if (local->in_reconfig) { 2710 in_reconfig = local->in_reconfig; 2711 local->in_reconfig = false; 2712 barrier(); 2713 2714 /* Restart deferred ROCs */ 2715 mutex_lock(&local->mtx); 2716 ieee80211_start_next_roc(local); 2717 mutex_unlock(&local->mtx); 2718 2719 /* Requeue all works */ 2720 list_for_each_entry(sdata, &local->interfaces, list) 2721 ieee80211_queue_work(&local->hw, &sdata->work); 2722 } 2723 2724 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2725 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2726 false); 2727 2728 if (in_reconfig) { 2729 list_for_each_entry(sdata, &local->interfaces, list) { 2730 if (!ieee80211_sdata_running(sdata)) 2731 continue; 2732 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2733 ieee80211_sta_restart(sdata); 2734 } 2735 } 2736 2737 if (!suspended) 2738 return 0; 2739 2740 #ifdef CONFIG_PM 2741 /* first set suspended false, then resuming */ 2742 local->suspended = false; 2743 mb(); 2744 local->resuming = false; 2745 2746 ieee80211_flush_completed_scan(local, false); 2747 2748 if (local->open_count && !reconfig_due_to_wowlan) 2749 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2750 2751 list_for_each_entry(sdata, &local->interfaces, list) { 2752 if (!ieee80211_sdata_running(sdata)) 2753 continue; 2754 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2755 ieee80211_sta_restart(sdata); 2756 } 2757 2758 mod_timer(&local->sta_cleanup, jiffies + 1); 2759 #else 2760 WARN_ON(1); 2761 #endif 2762 2763 return 0; 2764 } 2765 2766 static void ieee80211_reconfig_disconnect(struct ieee80211_vif *vif, u8 flag) 2767 { 2768 struct ieee80211_sub_if_data *sdata; 2769 struct ieee80211_local *local; 2770 struct ieee80211_key *key; 2771 2772 if (WARN_ON(!vif)) 2773 return; 2774 2775 sdata = vif_to_sdata(vif); 2776 local = sdata->local; 2777 2778 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_RESUME && 2779 !local->resuming)) 2780 return; 2781 2782 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_HW_RESTART && 2783 !local->in_reconfig)) 2784 return; 2785 2786 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2787 return; 2788 2789 sdata->flags |= flag; 2790 2791 mutex_lock(&local->key_mtx); 2792 list_for_each_entry(key, &sdata->key_list, list) 2793 key->flags |= KEY_FLAG_TAINTED; 2794 mutex_unlock(&local->key_mtx); 2795 } 2796 2797 void ieee80211_hw_restart_disconnect(struct ieee80211_vif *vif) 2798 { 2799 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_HW_RESTART); 2800 } 2801 EXPORT_SYMBOL_GPL(ieee80211_hw_restart_disconnect); 2802 2803 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 2804 { 2805 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_RESUME); 2806 } 2807 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 2808 2809 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata, 2810 unsigned int link_id) 2811 { 2812 struct ieee80211_local *local = sdata->local; 2813 struct ieee80211_chanctx_conf *chanctx_conf; 2814 struct ieee80211_chanctx *chanctx; 2815 2816 mutex_lock(&local->chanctx_mtx); 2817 2818 chanctx_conf = rcu_dereference_protected(sdata->vif.link_conf[link_id]->chanctx_conf, 2819 lockdep_is_held(&local->chanctx_mtx)); 2820 2821 /* 2822 * This function can be called from a work, thus it may be possible 2823 * that the chanctx_conf is removed (due to a disconnection, for 2824 * example). 2825 * So nothing should be done in such case. 2826 */ 2827 if (!chanctx_conf) 2828 goto unlock; 2829 2830 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2831 ieee80211_recalc_smps_chanctx(local, chanctx); 2832 unlock: 2833 mutex_unlock(&local->chanctx_mtx); 2834 } 2835 2836 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata) 2837 { 2838 struct ieee80211_local *local = sdata->local; 2839 struct ieee80211_chanctx_conf *chanctx_conf; 2840 struct ieee80211_chanctx *chanctx; 2841 2842 mutex_lock(&local->chanctx_mtx); 2843 2844 chanctx_conf = rcu_dereference_protected(sdata->vif.bss_conf.chanctx_conf, 2845 lockdep_is_held(&local->chanctx_mtx)); 2846 2847 if (WARN_ON_ONCE(!chanctx_conf)) 2848 goto unlock; 2849 2850 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2851 ieee80211_recalc_chanctx_min_def(local, chanctx); 2852 unlock: 2853 mutex_unlock(&local->chanctx_mtx); 2854 } 2855 2856 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 2857 { 2858 size_t pos = offset; 2859 2860 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 2861 pos += 2 + ies[pos + 1]; 2862 2863 return pos; 2864 } 2865 2866 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2867 u16 cap) 2868 { 2869 __le16 tmp; 2870 2871 *pos++ = WLAN_EID_HT_CAPABILITY; 2872 *pos++ = sizeof(struct ieee80211_ht_cap); 2873 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 2874 2875 /* capability flags */ 2876 tmp = cpu_to_le16(cap); 2877 memcpy(pos, &tmp, sizeof(u16)); 2878 pos += sizeof(u16); 2879 2880 /* AMPDU parameters */ 2881 *pos++ = ht_cap->ampdu_factor | 2882 (ht_cap->ampdu_density << 2883 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 2884 2885 /* MCS set */ 2886 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 2887 pos += sizeof(ht_cap->mcs); 2888 2889 /* extended capabilities */ 2890 pos += sizeof(__le16); 2891 2892 /* BF capabilities */ 2893 pos += sizeof(__le32); 2894 2895 /* antenna selection */ 2896 pos += sizeof(u8); 2897 2898 return pos; 2899 } 2900 2901 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2902 u32 cap) 2903 { 2904 __le32 tmp; 2905 2906 *pos++ = WLAN_EID_VHT_CAPABILITY; 2907 *pos++ = sizeof(struct ieee80211_vht_cap); 2908 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 2909 2910 /* capability flags */ 2911 tmp = cpu_to_le32(cap); 2912 memcpy(pos, &tmp, sizeof(u32)); 2913 pos += sizeof(u32); 2914 2915 /* VHT MCS set */ 2916 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 2917 pos += sizeof(vht_cap->vht_mcs); 2918 2919 return pos; 2920 } 2921 2922 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 2923 { 2924 const struct ieee80211_sta_he_cap *he_cap; 2925 struct ieee80211_supported_band *sband; 2926 u8 n; 2927 2928 sband = ieee80211_get_sband(sdata); 2929 if (!sband) 2930 return 0; 2931 2932 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 2933 if (!he_cap) 2934 return 0; 2935 2936 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2937 return 2 + 1 + 2938 sizeof(he_cap->he_cap_elem) + n + 2939 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2940 he_cap->he_cap_elem.phy_cap_info); 2941 } 2942 2943 u8 *ieee80211_ie_build_he_cap(u32 disable_flags, u8 *pos, 2944 const struct ieee80211_sta_he_cap *he_cap, 2945 u8 *end) 2946 { 2947 struct ieee80211_he_cap_elem elem; 2948 u8 n; 2949 u8 ie_len; 2950 u8 *orig_pos = pos; 2951 2952 /* Make sure we have place for the IE */ 2953 /* 2954 * TODO: the 1 added is because this temporarily is under the EXTENSION 2955 * IE. Get rid of it when it moves. 2956 */ 2957 if (!he_cap) 2958 return orig_pos; 2959 2960 /* modify on stack first to calculate 'n' and 'ie_len' correctly */ 2961 elem = he_cap->he_cap_elem; 2962 2963 if (disable_flags & IEEE80211_STA_DISABLE_40MHZ) 2964 elem.phy_cap_info[0] &= 2965 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | 2966 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G); 2967 2968 if (disable_flags & IEEE80211_STA_DISABLE_160MHZ) 2969 elem.phy_cap_info[0] &= 2970 ~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 2971 2972 if (disable_flags & IEEE80211_STA_DISABLE_80P80MHZ) 2973 elem.phy_cap_info[0] &= 2974 ~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 2975 2976 n = ieee80211_he_mcs_nss_size(&elem); 2977 ie_len = 2 + 1 + 2978 sizeof(he_cap->he_cap_elem) + n + 2979 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2980 he_cap->he_cap_elem.phy_cap_info); 2981 2982 if ((end - pos) < ie_len) 2983 return orig_pos; 2984 2985 *pos++ = WLAN_EID_EXTENSION; 2986 pos++; /* We'll set the size later below */ 2987 *pos++ = WLAN_EID_EXT_HE_CAPABILITY; 2988 2989 /* Fixed data */ 2990 memcpy(pos, &elem, sizeof(elem)); 2991 pos += sizeof(elem); 2992 2993 memcpy(pos, &he_cap->he_mcs_nss_supp, n); 2994 pos += n; 2995 2996 /* Check if PPE Threshold should be present */ 2997 if ((he_cap->he_cap_elem.phy_cap_info[6] & 2998 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 2999 goto end; 3000 3001 /* 3002 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 3003 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 3004 */ 3005 n = hweight8(he_cap->ppe_thres[0] & 3006 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 3007 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 3008 IEEE80211_PPE_THRES_NSS_POS)); 3009 3010 /* 3011 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 3012 * total size. 3013 */ 3014 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 3015 n = DIV_ROUND_UP(n, 8); 3016 3017 /* Copy PPE Thresholds */ 3018 memcpy(pos, &he_cap->ppe_thres, n); 3019 pos += n; 3020 3021 end: 3022 orig_pos[1] = (pos - orig_pos) - 2; 3023 return pos; 3024 } 3025 3026 void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata, 3027 struct sk_buff *skb) 3028 { 3029 struct ieee80211_supported_band *sband; 3030 const struct ieee80211_sband_iftype_data *iftd; 3031 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3032 u8 *pos; 3033 u16 cap; 3034 3035 if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy, 3036 BIT(NL80211_BAND_6GHZ), 3037 IEEE80211_CHAN_NO_HE)) 3038 return; 3039 3040 sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3041 3042 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 3043 if (!iftd) 3044 return; 3045 3046 /* Check for device HE 6 GHz capability before adding element */ 3047 if (!iftd->he_6ghz_capa.capa) 3048 return; 3049 3050 cap = le16_to_cpu(iftd->he_6ghz_capa.capa); 3051 cap &= ~IEEE80211_HE_6GHZ_CAP_SM_PS; 3052 3053 switch (sdata->deflink.smps_mode) { 3054 case IEEE80211_SMPS_AUTOMATIC: 3055 case IEEE80211_SMPS_NUM_MODES: 3056 WARN_ON(1); 3057 fallthrough; 3058 case IEEE80211_SMPS_OFF: 3059 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 3060 IEEE80211_HE_6GHZ_CAP_SM_PS); 3061 break; 3062 case IEEE80211_SMPS_STATIC: 3063 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 3064 IEEE80211_HE_6GHZ_CAP_SM_PS); 3065 break; 3066 case IEEE80211_SMPS_DYNAMIC: 3067 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 3068 IEEE80211_HE_6GHZ_CAP_SM_PS); 3069 break; 3070 } 3071 3072 pos = skb_put(skb, 2 + 1 + sizeof(cap)); 3073 ieee80211_write_he_6ghz_cap(pos, cpu_to_le16(cap), 3074 pos + 2 + 1 + sizeof(cap)); 3075 } 3076 3077 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 3078 const struct cfg80211_chan_def *chandef, 3079 u16 prot_mode, bool rifs_mode) 3080 { 3081 struct ieee80211_ht_operation *ht_oper; 3082 /* Build HT Information */ 3083 *pos++ = WLAN_EID_HT_OPERATION; 3084 *pos++ = sizeof(struct ieee80211_ht_operation); 3085 ht_oper = (struct ieee80211_ht_operation *)pos; 3086 ht_oper->primary_chan = ieee80211_frequency_to_channel( 3087 chandef->chan->center_freq); 3088 switch (chandef->width) { 3089 case NL80211_CHAN_WIDTH_160: 3090 case NL80211_CHAN_WIDTH_80P80: 3091 case NL80211_CHAN_WIDTH_80: 3092 case NL80211_CHAN_WIDTH_40: 3093 if (chandef->center_freq1 > chandef->chan->center_freq) 3094 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3095 else 3096 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3097 break; 3098 case NL80211_CHAN_WIDTH_320: 3099 /* HT information element should not be included on 6GHz */ 3100 WARN_ON(1); 3101 return pos; 3102 default: 3103 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 3104 break; 3105 } 3106 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 3107 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 3108 chandef->width != NL80211_CHAN_WIDTH_20) 3109 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 3110 3111 if (rifs_mode) 3112 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 3113 3114 ht_oper->operation_mode = cpu_to_le16(prot_mode); 3115 ht_oper->stbc_param = 0x0000; 3116 3117 /* It seems that Basic MCS set and Supported MCS set 3118 are identical for the first 10 bytes */ 3119 memset(&ht_oper->basic_set, 0, 16); 3120 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 3121 3122 return pos + sizeof(struct ieee80211_ht_operation); 3123 } 3124 3125 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 3126 const struct cfg80211_chan_def *chandef) 3127 { 3128 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 3129 *pos++ = 3; /* IE length */ 3130 /* New channel width */ 3131 switch (chandef->width) { 3132 case NL80211_CHAN_WIDTH_80: 3133 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 3134 break; 3135 case NL80211_CHAN_WIDTH_160: 3136 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 3137 break; 3138 case NL80211_CHAN_WIDTH_80P80: 3139 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 3140 break; 3141 case NL80211_CHAN_WIDTH_320: 3142 /* The behavior is not defined for 320 MHz channels */ 3143 WARN_ON(1); 3144 fallthrough; 3145 default: 3146 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 3147 } 3148 3149 /* new center frequency segment 0 */ 3150 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 3151 /* new center frequency segment 1 */ 3152 if (chandef->center_freq2) 3153 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 3154 else 3155 *pos++ = 0; 3156 } 3157 3158 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 3159 const struct cfg80211_chan_def *chandef) 3160 { 3161 struct ieee80211_vht_operation *vht_oper; 3162 3163 *pos++ = WLAN_EID_VHT_OPERATION; 3164 *pos++ = sizeof(struct ieee80211_vht_operation); 3165 vht_oper = (struct ieee80211_vht_operation *)pos; 3166 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 3167 chandef->center_freq1); 3168 if (chandef->center_freq2) 3169 vht_oper->center_freq_seg1_idx = 3170 ieee80211_frequency_to_channel(chandef->center_freq2); 3171 else 3172 vht_oper->center_freq_seg1_idx = 0x00; 3173 3174 switch (chandef->width) { 3175 case NL80211_CHAN_WIDTH_160: 3176 /* 3177 * Convert 160 MHz channel width to new style as interop 3178 * workaround. 3179 */ 3180 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3181 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 3182 if (chandef->chan->center_freq < chandef->center_freq1) 3183 vht_oper->center_freq_seg0_idx -= 8; 3184 else 3185 vht_oper->center_freq_seg0_idx += 8; 3186 break; 3187 case NL80211_CHAN_WIDTH_80P80: 3188 /* 3189 * Convert 80+80 MHz channel width to new style as interop 3190 * workaround. 3191 */ 3192 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3193 break; 3194 case NL80211_CHAN_WIDTH_80: 3195 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3196 break; 3197 case NL80211_CHAN_WIDTH_320: 3198 /* VHT information element should not be included on 6GHz */ 3199 WARN_ON(1); 3200 return pos; 3201 default: 3202 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 3203 break; 3204 } 3205 3206 /* don't require special VHT peer rates */ 3207 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 3208 3209 return pos + sizeof(struct ieee80211_vht_operation); 3210 } 3211 3212 u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef) 3213 { 3214 struct ieee80211_he_operation *he_oper; 3215 struct ieee80211_he_6ghz_oper *he_6ghz_op; 3216 u32 he_oper_params; 3217 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 3218 3219 if (chandef->chan->band == NL80211_BAND_6GHZ) 3220 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 3221 3222 *pos++ = WLAN_EID_EXTENSION; 3223 *pos++ = ie_len; 3224 *pos++ = WLAN_EID_EXT_HE_OPERATION; 3225 3226 he_oper_params = 0; 3227 he_oper_params |= u32_encode_bits(1023, /* disabled */ 3228 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 3229 he_oper_params |= u32_encode_bits(1, 3230 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 3231 he_oper_params |= u32_encode_bits(1, 3232 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 3233 if (chandef->chan->band == NL80211_BAND_6GHZ) 3234 he_oper_params |= u32_encode_bits(1, 3235 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 3236 3237 he_oper = (struct ieee80211_he_operation *)pos; 3238 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 3239 3240 /* don't require special HE peer rates */ 3241 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 3242 pos += sizeof(struct ieee80211_he_operation); 3243 3244 if (chandef->chan->band != NL80211_BAND_6GHZ) 3245 goto out; 3246 3247 /* TODO add VHT operational */ 3248 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 3249 he_6ghz_op->minrate = 6; /* 6 Mbps */ 3250 he_6ghz_op->primary = 3251 ieee80211_frequency_to_channel(chandef->chan->center_freq); 3252 he_6ghz_op->ccfs0 = 3253 ieee80211_frequency_to_channel(chandef->center_freq1); 3254 if (chandef->center_freq2) 3255 he_6ghz_op->ccfs1 = 3256 ieee80211_frequency_to_channel(chandef->center_freq2); 3257 else 3258 he_6ghz_op->ccfs1 = 0; 3259 3260 switch (chandef->width) { 3261 case NL80211_CHAN_WIDTH_320: 3262 /* 3263 * TODO: mesh operation is not defined over 6GHz 320 MHz 3264 * channels. 3265 */ 3266 WARN_ON(1); 3267 break; 3268 case NL80211_CHAN_WIDTH_160: 3269 /* Convert 160 MHz channel width to new style as interop 3270 * workaround. 3271 */ 3272 he_6ghz_op->control = 3273 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3274 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 3275 if (chandef->chan->center_freq < chandef->center_freq1) 3276 he_6ghz_op->ccfs0 -= 8; 3277 else 3278 he_6ghz_op->ccfs0 += 8; 3279 fallthrough; 3280 case NL80211_CHAN_WIDTH_80P80: 3281 he_6ghz_op->control = 3282 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3283 break; 3284 case NL80211_CHAN_WIDTH_80: 3285 he_6ghz_op->control = 3286 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 3287 break; 3288 case NL80211_CHAN_WIDTH_40: 3289 he_6ghz_op->control = 3290 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 3291 break; 3292 default: 3293 he_6ghz_op->control = 3294 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 3295 break; 3296 } 3297 3298 pos += sizeof(struct ieee80211_he_6ghz_oper); 3299 3300 out: 3301 return pos; 3302 } 3303 3304 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 3305 struct cfg80211_chan_def *chandef) 3306 { 3307 enum nl80211_channel_type channel_type; 3308 3309 if (!ht_oper) 3310 return false; 3311 3312 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 3313 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 3314 channel_type = NL80211_CHAN_HT20; 3315 break; 3316 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 3317 channel_type = NL80211_CHAN_HT40PLUS; 3318 break; 3319 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 3320 channel_type = NL80211_CHAN_HT40MINUS; 3321 break; 3322 default: 3323 return false; 3324 } 3325 3326 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 3327 return true; 3328 } 3329 3330 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 3331 const struct ieee80211_vht_operation *oper, 3332 const struct ieee80211_ht_operation *htop, 3333 struct cfg80211_chan_def *chandef) 3334 { 3335 struct cfg80211_chan_def new = *chandef; 3336 int cf0, cf1; 3337 int ccfs0, ccfs1, ccfs2; 3338 int ccf0, ccf1; 3339 u32 vht_cap; 3340 bool support_80_80 = false; 3341 bool support_160 = false; 3342 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 3343 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 3344 u8 supp_chwidth = u32_get_bits(vht_cap_info, 3345 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 3346 3347 if (!oper || !htop) 3348 return false; 3349 3350 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 3351 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 3352 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 3353 support_80_80 = ((vht_cap & 3354 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 3355 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 3356 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 3357 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 3358 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 3359 ccfs0 = oper->center_freq_seg0_idx; 3360 ccfs1 = oper->center_freq_seg1_idx; 3361 ccfs2 = (le16_to_cpu(htop->operation_mode) & 3362 IEEE80211_HT_OP_MODE_CCFS2_MASK) 3363 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 3364 3365 ccf0 = ccfs0; 3366 3367 /* if not supported, parse as though we didn't understand it */ 3368 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 3369 ext_nss_bw_supp = 0; 3370 3371 /* 3372 * Cf. IEEE 802.11 Table 9-250 3373 * 3374 * We really just consider that because it's inefficient to connect 3375 * at a higher bandwidth than we'll actually be able to use. 3376 */ 3377 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 3378 default: 3379 case 0x00: 3380 ccf1 = 0; 3381 support_160 = false; 3382 support_80_80 = false; 3383 break; 3384 case 0x01: 3385 support_80_80 = false; 3386 fallthrough; 3387 case 0x02: 3388 case 0x03: 3389 ccf1 = ccfs2; 3390 break; 3391 case 0x10: 3392 ccf1 = ccfs1; 3393 break; 3394 case 0x11: 3395 case 0x12: 3396 if (!ccfs1) 3397 ccf1 = ccfs2; 3398 else 3399 ccf1 = ccfs1; 3400 break; 3401 case 0x13: 3402 case 0x20: 3403 case 0x23: 3404 ccf1 = ccfs1; 3405 break; 3406 } 3407 3408 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3409 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3410 3411 switch (oper->chan_width) { 3412 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3413 /* just use HT information directly */ 3414 break; 3415 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3416 new.width = NL80211_CHAN_WIDTH_80; 3417 new.center_freq1 = cf0; 3418 /* If needed, adjust based on the newer interop workaround. */ 3419 if (ccf1) { 3420 unsigned int diff; 3421 3422 diff = abs(ccf1 - ccf0); 3423 if ((diff == 8) && support_160) { 3424 new.width = NL80211_CHAN_WIDTH_160; 3425 new.center_freq1 = cf1; 3426 } else if ((diff > 8) && support_80_80) { 3427 new.width = NL80211_CHAN_WIDTH_80P80; 3428 new.center_freq2 = cf1; 3429 } 3430 } 3431 break; 3432 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3433 /* deprecated encoding */ 3434 new.width = NL80211_CHAN_WIDTH_160; 3435 new.center_freq1 = cf0; 3436 break; 3437 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3438 /* deprecated encoding */ 3439 new.width = NL80211_CHAN_WIDTH_80P80; 3440 new.center_freq1 = cf0; 3441 new.center_freq2 = cf1; 3442 break; 3443 default: 3444 return false; 3445 } 3446 3447 if (!cfg80211_chandef_valid(&new)) 3448 return false; 3449 3450 *chandef = new; 3451 return true; 3452 } 3453 3454 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata, 3455 const struct ieee80211_he_operation *he_oper, 3456 const struct ieee80211_eht_operation *eht_oper, 3457 struct cfg80211_chan_def *chandef) 3458 { 3459 struct ieee80211_local *local = sdata->local; 3460 struct ieee80211_supported_band *sband; 3461 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3462 const struct ieee80211_sta_he_cap *he_cap; 3463 const struct ieee80211_sta_eht_cap *eht_cap; 3464 struct cfg80211_chan_def he_chandef = *chandef; 3465 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3466 struct ieee80211_bss_conf *bss_conf = &sdata->vif.bss_conf; 3467 bool support_80_80, support_160, support_320; 3468 u8 he_phy_cap, eht_phy_cap; 3469 u32 freq; 3470 3471 if (chandef->chan->band != NL80211_BAND_6GHZ) 3472 return true; 3473 3474 sband = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3475 3476 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 3477 if (!he_cap) { 3478 sdata_info(sdata, "Missing iftype sband data/HE cap"); 3479 return false; 3480 } 3481 3482 he_phy_cap = he_cap->he_cap_elem.phy_cap_info[0]; 3483 support_160 = 3484 he_phy_cap & 3485 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 3486 support_80_80 = 3487 he_phy_cap & 3488 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 3489 3490 if (!he_oper) { 3491 sdata_info(sdata, 3492 "HE is not advertised on (on %d MHz), expect issues\n", 3493 chandef->chan->center_freq); 3494 return false; 3495 } 3496 3497 eht_cap = ieee80211_get_eht_iftype_cap(sband, iftype); 3498 if (!eht_cap) { 3499 sdata_info(sdata, "Missing iftype sband data/EHT cap"); 3500 eht_oper = NULL; 3501 } 3502 3503 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3504 3505 if (!he_6ghz_oper) { 3506 sdata_info(sdata, 3507 "HE 6GHz operation missing (on %d MHz), expect issues\n", 3508 chandef->chan->center_freq); 3509 return false; 3510 } 3511 3512 /* 3513 * The EHT operation IE does not contain the primary channel so the 3514 * primary channel frequency should be taken from the 6 GHz operation 3515 * information. 3516 */ 3517 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3518 NL80211_BAND_6GHZ); 3519 he_chandef.chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq); 3520 3521 switch (u8_get_bits(he_6ghz_oper->control, 3522 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) { 3523 case IEEE80211_6GHZ_CTRL_REG_LPI_AP: 3524 bss_conf->power_type = IEEE80211_REG_LPI_AP; 3525 break; 3526 case IEEE80211_6GHZ_CTRL_REG_SP_AP: 3527 bss_conf->power_type = IEEE80211_REG_SP_AP; 3528 break; 3529 default: 3530 bss_conf->power_type = IEEE80211_REG_UNSET_AP; 3531 break; 3532 } 3533 3534 if (!eht_oper) { 3535 switch (u8_get_bits(he_6ghz_oper->control, 3536 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3537 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3538 he_chandef.width = NL80211_CHAN_WIDTH_20; 3539 break; 3540 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3541 he_chandef.width = NL80211_CHAN_WIDTH_40; 3542 break; 3543 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3544 he_chandef.width = NL80211_CHAN_WIDTH_80; 3545 break; 3546 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3547 he_chandef.width = NL80211_CHAN_WIDTH_80; 3548 if (!he_6ghz_oper->ccfs1) 3549 break; 3550 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) { 3551 if (support_160) 3552 he_chandef.width = NL80211_CHAN_WIDTH_160; 3553 } else { 3554 if (support_80_80) 3555 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3556 } 3557 break; 3558 } 3559 3560 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3561 he_chandef.center_freq1 = 3562 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3563 NL80211_BAND_6GHZ); 3564 } else { 3565 he_chandef.center_freq1 = 3566 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3567 NL80211_BAND_6GHZ); 3568 if (support_80_80 || support_160) 3569 he_chandef.center_freq2 = 3570 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3571 NL80211_BAND_6GHZ); 3572 } 3573 } else { 3574 eht_phy_cap = eht_cap->eht_cap_elem.phy_cap_info[0]; 3575 support_320 = 3576 eht_phy_cap & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ; 3577 3578 switch (u8_get_bits(eht_oper->chan_width, 3579 IEEE80211_EHT_OPER_CHAN_WIDTH)) { 3580 case IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ: 3581 he_chandef.width = NL80211_CHAN_WIDTH_20; 3582 break; 3583 case IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ: 3584 he_chandef.width = NL80211_CHAN_WIDTH_40; 3585 break; 3586 case IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ: 3587 he_chandef.width = NL80211_CHAN_WIDTH_80; 3588 break; 3589 case IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ: 3590 if (support_160) 3591 he_chandef.width = NL80211_CHAN_WIDTH_160; 3592 else 3593 he_chandef.width = NL80211_CHAN_WIDTH_80; 3594 break; 3595 case IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ: 3596 if (support_320) 3597 he_chandef.width = NL80211_CHAN_WIDTH_320; 3598 else if (support_160) 3599 he_chandef.width = NL80211_CHAN_WIDTH_160; 3600 else 3601 he_chandef.width = NL80211_CHAN_WIDTH_80; 3602 break; 3603 } 3604 3605 he_chandef.center_freq1 = 3606 ieee80211_channel_to_frequency(eht_oper->ccfs, 3607 NL80211_BAND_6GHZ); 3608 } 3609 3610 if (!cfg80211_chandef_valid(&he_chandef)) { 3611 sdata_info(sdata, 3612 "HE 6GHz operation resulted in invalid chandef: %d MHz/%d/%d MHz/%d MHz\n", 3613 he_chandef.chan ? he_chandef.chan->center_freq : 0, 3614 he_chandef.width, 3615 he_chandef.center_freq1, 3616 he_chandef.center_freq2); 3617 return false; 3618 } 3619 3620 *chandef = he_chandef; 3621 3622 return true; 3623 } 3624 3625 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, 3626 struct cfg80211_chan_def *chandef) 3627 { 3628 u32 oper_freq; 3629 3630 if (!oper) 3631 return false; 3632 3633 switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { 3634 case IEEE80211_S1G_CHANWIDTH_1MHZ: 3635 chandef->width = NL80211_CHAN_WIDTH_1; 3636 break; 3637 case IEEE80211_S1G_CHANWIDTH_2MHZ: 3638 chandef->width = NL80211_CHAN_WIDTH_2; 3639 break; 3640 case IEEE80211_S1G_CHANWIDTH_4MHZ: 3641 chandef->width = NL80211_CHAN_WIDTH_4; 3642 break; 3643 case IEEE80211_S1G_CHANWIDTH_8MHZ: 3644 chandef->width = NL80211_CHAN_WIDTH_8; 3645 break; 3646 case IEEE80211_S1G_CHANWIDTH_16MHZ: 3647 chandef->width = NL80211_CHAN_WIDTH_16; 3648 break; 3649 default: 3650 return false; 3651 } 3652 3653 oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch, 3654 NL80211_BAND_S1GHZ); 3655 chandef->center_freq1 = KHZ_TO_MHZ(oper_freq); 3656 chandef->freq1_offset = oper_freq % 1000; 3657 3658 return true; 3659 } 3660 3661 int ieee80211_parse_bitrates(struct cfg80211_chan_def *chandef, 3662 const struct ieee80211_supported_band *sband, 3663 const u8 *srates, int srates_len, u32 *rates) 3664 { 3665 u32 rate_flags = ieee80211_chandef_rate_flags(chandef); 3666 int shift = ieee80211_chandef_get_shift(chandef); 3667 struct ieee80211_rate *br; 3668 int brate, rate, i, j, count = 0; 3669 3670 *rates = 0; 3671 3672 for (i = 0; i < srates_len; i++) { 3673 rate = srates[i] & 0x7f; 3674 3675 for (j = 0; j < sband->n_bitrates; j++) { 3676 br = &sband->bitrates[j]; 3677 if ((rate_flags & br->flags) != rate_flags) 3678 continue; 3679 3680 brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5); 3681 if (brate == rate) { 3682 *rates |= BIT(j); 3683 count++; 3684 break; 3685 } 3686 } 3687 } 3688 return count; 3689 } 3690 3691 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, 3692 struct sk_buff *skb, bool need_basic, 3693 enum nl80211_band band) 3694 { 3695 struct ieee80211_local *local = sdata->local; 3696 struct ieee80211_supported_band *sband; 3697 int rate, shift; 3698 u8 i, rates, *pos; 3699 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3700 u32 rate_flags; 3701 3702 shift = ieee80211_vif_get_shift(&sdata->vif); 3703 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3704 sband = local->hw.wiphy->bands[band]; 3705 rates = 0; 3706 for (i = 0; i < sband->n_bitrates; i++) { 3707 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3708 continue; 3709 rates++; 3710 } 3711 if (rates > 8) 3712 rates = 8; 3713 3714 if (skb_tailroom(skb) < rates + 2) 3715 return -ENOMEM; 3716 3717 pos = skb_put(skb, rates + 2); 3718 *pos++ = WLAN_EID_SUPP_RATES; 3719 *pos++ = rates; 3720 for (i = 0; i < rates; i++) { 3721 u8 basic = 0; 3722 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3723 continue; 3724 3725 if (need_basic && basic_rates & BIT(i)) 3726 basic = 0x80; 3727 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3728 5 * (1 << shift)); 3729 *pos++ = basic | (u8) rate; 3730 } 3731 3732 return 0; 3733 } 3734 3735 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, 3736 struct sk_buff *skb, bool need_basic, 3737 enum nl80211_band band) 3738 { 3739 struct ieee80211_local *local = sdata->local; 3740 struct ieee80211_supported_band *sband; 3741 int rate, shift; 3742 u8 i, exrates, *pos; 3743 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3744 u32 rate_flags; 3745 3746 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3747 shift = ieee80211_vif_get_shift(&sdata->vif); 3748 3749 sband = local->hw.wiphy->bands[band]; 3750 exrates = 0; 3751 for (i = 0; i < sband->n_bitrates; i++) { 3752 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3753 continue; 3754 exrates++; 3755 } 3756 3757 if (exrates > 8) 3758 exrates -= 8; 3759 else 3760 exrates = 0; 3761 3762 if (skb_tailroom(skb) < exrates + 2) 3763 return -ENOMEM; 3764 3765 if (exrates) { 3766 pos = skb_put(skb, exrates + 2); 3767 *pos++ = WLAN_EID_EXT_SUPP_RATES; 3768 *pos++ = exrates; 3769 for (i = 8; i < sband->n_bitrates; i++) { 3770 u8 basic = 0; 3771 if ((rate_flags & sband->bitrates[i].flags) 3772 != rate_flags) 3773 continue; 3774 if (need_basic && basic_rates & BIT(i)) 3775 basic = 0x80; 3776 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3777 5 * (1 << shift)); 3778 *pos++ = basic | (u8) rate; 3779 } 3780 } 3781 return 0; 3782 } 3783 3784 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 3785 { 3786 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 3787 3788 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) 3789 return 0; 3790 3791 return -ewma_beacon_signal_read(&sdata->deflink.u.mgd.ave_beacon_signal); 3792 } 3793 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 3794 3795 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 3796 { 3797 if (!mcs) 3798 return 1; 3799 3800 /* TODO: consider rx_highest */ 3801 3802 if (mcs->rx_mask[3]) 3803 return 4; 3804 if (mcs->rx_mask[2]) 3805 return 3; 3806 if (mcs->rx_mask[1]) 3807 return 2; 3808 return 1; 3809 } 3810 3811 /** 3812 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 3813 * @local: mac80211 hw info struct 3814 * @status: RX status 3815 * @mpdu_len: total MPDU length (including FCS) 3816 * @mpdu_offset: offset into MPDU to calculate timestamp at 3817 * 3818 * This function calculates the RX timestamp at the given MPDU offset, taking 3819 * into account what the RX timestamp was. An offset of 0 will just normalize 3820 * the timestamp to TSF at beginning of MPDU reception. 3821 */ 3822 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 3823 struct ieee80211_rx_status *status, 3824 unsigned int mpdu_len, 3825 unsigned int mpdu_offset) 3826 { 3827 u64 ts = status->mactime; 3828 struct rate_info ri; 3829 u16 rate; 3830 u8 n_ltf; 3831 3832 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 3833 return 0; 3834 3835 memset(&ri, 0, sizeof(ri)); 3836 3837 ri.bw = status->bw; 3838 3839 /* Fill cfg80211 rate info */ 3840 switch (status->encoding) { 3841 case RX_ENC_HE: 3842 ri.flags |= RATE_INFO_FLAGS_HE_MCS; 3843 ri.mcs = status->rate_idx; 3844 ri.nss = status->nss; 3845 ri.he_ru_alloc = status->he_ru; 3846 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3847 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3848 3849 /* 3850 * See P802.11ax_D6.0, section 27.3.4 for 3851 * VHT PPDU format. 3852 */ 3853 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3854 mpdu_offset += 2; 3855 ts += 36; 3856 3857 /* 3858 * TODO: 3859 * For HE MU PPDU, add the HE-SIG-B. 3860 * For HE ER PPDU, add 8us for the HE-SIG-A. 3861 * For HE TB PPDU, add 4us for the HE-STF. 3862 * Add the HE-LTF durations - variable. 3863 */ 3864 } 3865 3866 break; 3867 case RX_ENC_HT: 3868 ri.mcs = status->rate_idx; 3869 ri.flags |= RATE_INFO_FLAGS_MCS; 3870 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3871 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3872 3873 /* 3874 * See P802.11REVmd_D3.0, section 19.3.2 for 3875 * HT PPDU format. 3876 */ 3877 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3878 mpdu_offset += 2; 3879 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 3880 ts += 24; 3881 else 3882 ts += 32; 3883 3884 /* 3885 * Add Data HT-LTFs per streams 3886 * TODO: add Extension HT-LTFs, 4us per LTF 3887 */ 3888 n_ltf = ((ri.mcs >> 3) & 3) + 1; 3889 n_ltf = n_ltf == 3 ? 4 : n_ltf; 3890 ts += n_ltf * 4; 3891 } 3892 3893 break; 3894 case RX_ENC_VHT: 3895 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 3896 ri.mcs = status->rate_idx; 3897 ri.nss = status->nss; 3898 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3899 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3900 3901 /* 3902 * See P802.11REVmd_D3.0, section 21.3.2 for 3903 * VHT PPDU format. 3904 */ 3905 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3906 mpdu_offset += 2; 3907 ts += 36; 3908 3909 /* 3910 * Add VHT-LTFs per streams 3911 */ 3912 n_ltf = (ri.nss != 1) && (ri.nss % 2) ? 3913 ri.nss + 1 : ri.nss; 3914 ts += 4 * n_ltf; 3915 } 3916 3917 break; 3918 default: 3919 WARN_ON(1); 3920 fallthrough; 3921 case RX_ENC_LEGACY: { 3922 struct ieee80211_supported_band *sband; 3923 int shift = 0; 3924 int bitrate; 3925 3926 switch (status->bw) { 3927 case RATE_INFO_BW_10: 3928 shift = 1; 3929 break; 3930 case RATE_INFO_BW_5: 3931 shift = 2; 3932 break; 3933 } 3934 3935 sband = local->hw.wiphy->bands[status->band]; 3936 bitrate = sband->bitrates[status->rate_idx].bitrate; 3937 ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift)); 3938 3939 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3940 if (status->band == NL80211_BAND_5GHZ) { 3941 ts += 20 << shift; 3942 mpdu_offset += 2; 3943 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 3944 ts += 96; 3945 } else { 3946 ts += 192; 3947 } 3948 } 3949 break; 3950 } 3951 } 3952 3953 rate = cfg80211_calculate_bitrate(&ri); 3954 if (WARN_ONCE(!rate, 3955 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 3956 (unsigned long long)status->flag, status->rate_idx, 3957 status->nss)) 3958 return 0; 3959 3960 /* rewind from end of MPDU */ 3961 if (status->flag & RX_FLAG_MACTIME_END) 3962 ts -= mpdu_len * 8 * 10 / rate; 3963 3964 ts += mpdu_offset * 8 * 10 / rate; 3965 3966 return ts; 3967 } 3968 3969 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) 3970 { 3971 struct ieee80211_sub_if_data *sdata; 3972 struct cfg80211_chan_def chandef; 3973 3974 /* for interface list, to avoid linking iflist_mtx and chanctx_mtx */ 3975 lockdep_assert_wiphy(local->hw.wiphy); 3976 3977 mutex_lock(&local->mtx); 3978 list_for_each_entry(sdata, &local->interfaces, list) { 3979 /* it might be waiting for the local->mtx, but then 3980 * by the time it gets it, sdata->wdev.cac_started 3981 * will no longer be true 3982 */ 3983 cancel_delayed_work(&sdata->deflink.dfs_cac_timer_work); 3984 3985 if (sdata->wdev.cac_started) { 3986 chandef = sdata->vif.bss_conf.chandef; 3987 ieee80211_link_release_channel(sdata->link[0]); 3988 cfg80211_cac_event(sdata->dev, 3989 &chandef, 3990 NL80211_RADAR_CAC_ABORTED, 3991 GFP_KERNEL); 3992 } 3993 } 3994 mutex_unlock(&local->mtx); 3995 } 3996 3997 void ieee80211_dfs_radar_detected_work(struct work_struct *work) 3998 { 3999 struct ieee80211_local *local = 4000 container_of(work, struct ieee80211_local, radar_detected_work); 4001 struct cfg80211_chan_def chandef = local->hw.conf.chandef; 4002 struct ieee80211_chanctx *ctx; 4003 int num_chanctx = 0; 4004 4005 mutex_lock(&local->chanctx_mtx); 4006 list_for_each_entry(ctx, &local->chanctx_list, list) { 4007 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 4008 continue; 4009 4010 num_chanctx++; 4011 chandef = ctx->conf.def; 4012 } 4013 mutex_unlock(&local->chanctx_mtx); 4014 4015 wiphy_lock(local->hw.wiphy); 4016 ieee80211_dfs_cac_cancel(local); 4017 wiphy_unlock(local->hw.wiphy); 4018 4019 if (num_chanctx > 1) 4020 /* XXX: multi-channel is not supported yet */ 4021 WARN_ON(1); 4022 else 4023 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 4024 } 4025 4026 void ieee80211_radar_detected(struct ieee80211_hw *hw) 4027 { 4028 struct ieee80211_local *local = hw_to_local(hw); 4029 4030 trace_api_radar_detected(local); 4031 4032 schedule_work(&local->radar_detected_work); 4033 } 4034 EXPORT_SYMBOL(ieee80211_radar_detected); 4035 4036 u32 ieee80211_chandef_downgrade(struct cfg80211_chan_def *c) 4037 { 4038 u32 ret; 4039 int tmp; 4040 4041 switch (c->width) { 4042 case NL80211_CHAN_WIDTH_20: 4043 c->width = NL80211_CHAN_WIDTH_20_NOHT; 4044 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 4045 break; 4046 case NL80211_CHAN_WIDTH_40: 4047 c->width = NL80211_CHAN_WIDTH_20; 4048 c->center_freq1 = c->chan->center_freq; 4049 ret = IEEE80211_STA_DISABLE_40MHZ | 4050 IEEE80211_STA_DISABLE_VHT; 4051 break; 4052 case NL80211_CHAN_WIDTH_80: 4053 tmp = (30 + c->chan->center_freq - c->center_freq1)/20; 4054 /* n_P40 */ 4055 tmp /= 2; 4056 /* freq_P40 */ 4057 c->center_freq1 = c->center_freq1 - 20 + 40 * tmp; 4058 c->width = NL80211_CHAN_WIDTH_40; 4059 ret = IEEE80211_STA_DISABLE_VHT; 4060 break; 4061 case NL80211_CHAN_WIDTH_80P80: 4062 c->center_freq2 = 0; 4063 c->width = NL80211_CHAN_WIDTH_80; 4064 ret = IEEE80211_STA_DISABLE_80P80MHZ | 4065 IEEE80211_STA_DISABLE_160MHZ; 4066 break; 4067 case NL80211_CHAN_WIDTH_160: 4068 /* n_P20 */ 4069 tmp = (70 + c->chan->center_freq - c->center_freq1)/20; 4070 /* n_P80 */ 4071 tmp /= 4; 4072 c->center_freq1 = c->center_freq1 - 40 + 80 * tmp; 4073 c->width = NL80211_CHAN_WIDTH_80; 4074 ret = IEEE80211_STA_DISABLE_80P80MHZ | 4075 IEEE80211_STA_DISABLE_160MHZ; 4076 break; 4077 case NL80211_CHAN_WIDTH_320: 4078 /* n_P20 */ 4079 tmp = (150 + c->chan->center_freq - c->center_freq1) / 20; 4080 /* n_P160 */ 4081 tmp /= 8; 4082 c->center_freq1 = c->center_freq1 - 80 + 160 * tmp; 4083 c->width = NL80211_CHAN_WIDTH_160; 4084 ret = IEEE80211_STA_DISABLE_320MHZ; 4085 break; 4086 default: 4087 case NL80211_CHAN_WIDTH_20_NOHT: 4088 WARN_ON_ONCE(1); 4089 c->width = NL80211_CHAN_WIDTH_20_NOHT; 4090 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 4091 break; 4092 case NL80211_CHAN_WIDTH_1: 4093 case NL80211_CHAN_WIDTH_2: 4094 case NL80211_CHAN_WIDTH_4: 4095 case NL80211_CHAN_WIDTH_8: 4096 case NL80211_CHAN_WIDTH_16: 4097 case NL80211_CHAN_WIDTH_5: 4098 case NL80211_CHAN_WIDTH_10: 4099 WARN_ON_ONCE(1); 4100 /* keep c->width */ 4101 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 4102 break; 4103 } 4104 4105 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 4106 4107 return ret; 4108 } 4109 4110 /* 4111 * Returns true if smps_mode_new is strictly more restrictive than 4112 * smps_mode_old. 4113 */ 4114 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 4115 enum ieee80211_smps_mode smps_mode_new) 4116 { 4117 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 4118 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 4119 return false; 4120 4121 switch (smps_mode_old) { 4122 case IEEE80211_SMPS_STATIC: 4123 return false; 4124 case IEEE80211_SMPS_DYNAMIC: 4125 return smps_mode_new == IEEE80211_SMPS_STATIC; 4126 case IEEE80211_SMPS_OFF: 4127 return smps_mode_new != IEEE80211_SMPS_OFF; 4128 default: 4129 WARN_ON(1); 4130 } 4131 4132 return false; 4133 } 4134 4135 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 4136 struct cfg80211_csa_settings *csa_settings) 4137 { 4138 struct sk_buff *skb; 4139 struct ieee80211_mgmt *mgmt; 4140 struct ieee80211_local *local = sdata->local; 4141 int freq; 4142 int hdr_len = offsetofend(struct ieee80211_mgmt, 4143 u.action.u.chan_switch); 4144 u8 *pos; 4145 4146 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 4147 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 4148 return -EOPNOTSUPP; 4149 4150 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 4151 5 + /* channel switch announcement element */ 4152 3 + /* secondary channel offset element */ 4153 5 + /* wide bandwidth channel switch announcement */ 4154 8); /* mesh channel switch parameters element */ 4155 if (!skb) 4156 return -ENOMEM; 4157 4158 skb_reserve(skb, local->tx_headroom); 4159 mgmt = skb_put_zero(skb, hdr_len); 4160 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 4161 IEEE80211_STYPE_ACTION); 4162 4163 eth_broadcast_addr(mgmt->da); 4164 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 4165 if (ieee80211_vif_is_mesh(&sdata->vif)) { 4166 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 4167 } else { 4168 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 4169 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 4170 } 4171 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 4172 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 4173 pos = skb_put(skb, 5); 4174 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 4175 *pos++ = 3; /* IE length */ 4176 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 4177 freq = csa_settings->chandef.chan->center_freq; 4178 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 4179 *pos++ = csa_settings->count; /* count */ 4180 4181 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 4182 enum nl80211_channel_type ch_type; 4183 4184 skb_put(skb, 3); 4185 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 4186 *pos++ = 1; /* IE length */ 4187 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 4188 if (ch_type == NL80211_CHAN_HT40PLUS) 4189 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 4190 else 4191 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 4192 } 4193 4194 if (ieee80211_vif_is_mesh(&sdata->vif)) { 4195 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 4196 4197 skb_put(skb, 8); 4198 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 4199 *pos++ = 6; /* IE length */ 4200 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 4201 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 4202 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 4203 *pos++ |= csa_settings->block_tx ? 4204 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 4205 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 4206 pos += 2; 4207 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 4208 pos += 2; 4209 } 4210 4211 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 4212 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 4213 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 4214 skb_put(skb, 5); 4215 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 4216 } 4217 4218 ieee80211_tx_skb(sdata, skb); 4219 return 0; 4220 } 4221 4222 static bool 4223 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 4224 { 4225 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 4226 int skip; 4227 4228 if (end > 0) 4229 return false; 4230 4231 /* One shot NOA */ 4232 if (data->count[i] == 1) 4233 return false; 4234 4235 if (data->desc[i].interval == 0) 4236 return false; 4237 4238 /* End time is in the past, check for repetitions */ 4239 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 4240 if (data->count[i] < 255) { 4241 if (data->count[i] <= skip) { 4242 data->count[i] = 0; 4243 return false; 4244 } 4245 4246 data->count[i] -= skip; 4247 } 4248 4249 data->desc[i].start += skip * data->desc[i].interval; 4250 4251 return true; 4252 } 4253 4254 static bool 4255 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 4256 s32 *offset) 4257 { 4258 bool ret = false; 4259 int i; 4260 4261 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4262 s32 cur; 4263 4264 if (!data->count[i]) 4265 continue; 4266 4267 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 4268 ret = true; 4269 4270 cur = data->desc[i].start - tsf; 4271 if (cur > *offset) 4272 continue; 4273 4274 cur = data->desc[i].start + data->desc[i].duration - tsf; 4275 if (cur > *offset) 4276 *offset = cur; 4277 } 4278 4279 return ret; 4280 } 4281 4282 static u32 4283 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 4284 { 4285 s32 offset = 0; 4286 int tries = 0; 4287 /* 4288 * arbitrary limit, used to avoid infinite loops when combined NoA 4289 * descriptors cover the full time period. 4290 */ 4291 int max_tries = 5; 4292 4293 ieee80211_extend_absent_time(data, tsf, &offset); 4294 do { 4295 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 4296 break; 4297 4298 tries++; 4299 } while (tries < max_tries); 4300 4301 return offset; 4302 } 4303 4304 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 4305 { 4306 u32 next_offset = BIT(31) - 1; 4307 int i; 4308 4309 data->absent = 0; 4310 data->has_next_tsf = false; 4311 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4312 s32 start; 4313 4314 if (!data->count[i]) 4315 continue; 4316 4317 ieee80211_extend_noa_desc(data, tsf, i); 4318 start = data->desc[i].start - tsf; 4319 if (start <= 0) 4320 data->absent |= BIT(i); 4321 4322 if (next_offset > start) 4323 next_offset = start; 4324 4325 data->has_next_tsf = true; 4326 } 4327 4328 if (data->absent) 4329 next_offset = ieee80211_get_noa_absent_time(data, tsf); 4330 4331 data->next_tsf = tsf + next_offset; 4332 } 4333 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 4334 4335 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 4336 struct ieee80211_noa_data *data, u32 tsf) 4337 { 4338 int ret = 0; 4339 int i; 4340 4341 memset(data, 0, sizeof(*data)); 4342 4343 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4344 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 4345 4346 if (!desc->count || !desc->duration) 4347 continue; 4348 4349 data->count[i] = desc->count; 4350 data->desc[i].start = le32_to_cpu(desc->start_time); 4351 data->desc[i].duration = le32_to_cpu(desc->duration); 4352 data->desc[i].interval = le32_to_cpu(desc->interval); 4353 4354 if (data->count[i] > 1 && 4355 data->desc[i].interval < data->desc[i].duration) 4356 continue; 4357 4358 ieee80211_extend_noa_desc(data, tsf, i); 4359 ret++; 4360 } 4361 4362 if (ret) 4363 ieee80211_update_p2p_noa(data, tsf); 4364 4365 return ret; 4366 } 4367 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 4368 4369 void ieee80211_recalc_dtim(struct ieee80211_local *local, 4370 struct ieee80211_sub_if_data *sdata) 4371 { 4372 u64 tsf = drv_get_tsf(local, sdata); 4373 u64 dtim_count = 0; 4374 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 4375 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 4376 struct ps_data *ps; 4377 u8 bcns_from_dtim; 4378 4379 if (tsf == -1ULL || !beacon_int || !dtim_period) 4380 return; 4381 4382 if (sdata->vif.type == NL80211_IFTYPE_AP || 4383 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 4384 if (!sdata->bss) 4385 return; 4386 4387 ps = &sdata->bss->ps; 4388 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 4389 ps = &sdata->u.mesh.ps; 4390 } else { 4391 return; 4392 } 4393 4394 /* 4395 * actually finds last dtim_count, mac80211 will update in 4396 * __beacon_add_tim(). 4397 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 4398 */ 4399 do_div(tsf, beacon_int); 4400 bcns_from_dtim = do_div(tsf, dtim_period); 4401 /* just had a DTIM */ 4402 if (!bcns_from_dtim) 4403 dtim_count = 0; 4404 else 4405 dtim_count = dtim_period - bcns_from_dtim; 4406 4407 ps->dtim_count = dtim_count; 4408 } 4409 4410 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 4411 struct ieee80211_chanctx *ctx) 4412 { 4413 struct ieee80211_link_data *link; 4414 u8 radar_detect = 0; 4415 4416 lockdep_assert_held(&local->chanctx_mtx); 4417 4418 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 4419 return 0; 4420 4421 list_for_each_entry(link, &ctx->reserved_links, reserved_chanctx_list) 4422 if (link->reserved_radar_required) 4423 radar_detect |= BIT(link->reserved_chandef.width); 4424 4425 /* 4426 * An in-place reservation context should not have any assigned vifs 4427 * until it replaces the other context. 4428 */ 4429 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 4430 !list_empty(&ctx->assigned_links)); 4431 4432 list_for_each_entry(link, &ctx->assigned_links, assigned_chanctx_list) { 4433 struct ieee80211_sub_if_data *sdata = link->sdata; 4434 4435 if (!link->radar_required) 4436 continue; 4437 4438 radar_detect |= 4439 BIT(sdata->vif.link_conf[link->link_id]->chandef.width); 4440 } 4441 4442 return radar_detect; 4443 } 4444 4445 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 4446 const struct cfg80211_chan_def *chandef, 4447 enum ieee80211_chanctx_mode chanmode, 4448 u8 radar_detect) 4449 { 4450 struct ieee80211_local *local = sdata->local; 4451 struct ieee80211_sub_if_data *sdata_iter; 4452 enum nl80211_iftype iftype = sdata->wdev.iftype; 4453 struct ieee80211_chanctx *ctx; 4454 int total = 1; 4455 struct iface_combination_params params = { 4456 .radar_detect = radar_detect, 4457 }; 4458 4459 lockdep_assert_held(&local->chanctx_mtx); 4460 4461 if (WARN_ON(hweight32(radar_detect) > 1)) 4462 return -EINVAL; 4463 4464 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4465 !chandef->chan)) 4466 return -EINVAL; 4467 4468 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 4469 return -EINVAL; 4470 4471 if (sdata->vif.type == NL80211_IFTYPE_AP || 4472 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 4473 /* 4474 * always passing this is harmless, since it'll be the 4475 * same value that cfg80211 finds if it finds the same 4476 * interface ... and that's always allowed 4477 */ 4478 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 4479 } 4480 4481 /* Always allow software iftypes */ 4482 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 4483 if (radar_detect) 4484 return -EINVAL; 4485 return 0; 4486 } 4487 4488 if (chandef) 4489 params.num_different_channels = 1; 4490 4491 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 4492 params.iftype_num[iftype] = 1; 4493 4494 list_for_each_entry(ctx, &local->chanctx_list, list) { 4495 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4496 continue; 4497 params.radar_detect |= 4498 ieee80211_chanctx_radar_detect(local, ctx); 4499 if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) { 4500 params.num_different_channels++; 4501 continue; 4502 } 4503 if (chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4504 cfg80211_chandef_compatible(chandef, 4505 &ctx->conf.def)) 4506 continue; 4507 params.num_different_channels++; 4508 } 4509 4510 list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) { 4511 struct wireless_dev *wdev_iter; 4512 4513 wdev_iter = &sdata_iter->wdev; 4514 4515 if (sdata_iter == sdata || 4516 !ieee80211_sdata_running(sdata_iter) || 4517 cfg80211_iftype_allowed(local->hw.wiphy, 4518 wdev_iter->iftype, 0, 1)) 4519 continue; 4520 4521 params.iftype_num[wdev_iter->iftype]++; 4522 total++; 4523 } 4524 4525 if (total == 1 && !params.radar_detect) 4526 return 0; 4527 4528 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4529 } 4530 4531 static void 4532 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4533 void *data) 4534 { 4535 u32 *max_num_different_channels = data; 4536 4537 *max_num_different_channels = max(*max_num_different_channels, 4538 c->num_different_channels); 4539 } 4540 4541 int ieee80211_max_num_channels(struct ieee80211_local *local) 4542 { 4543 struct ieee80211_sub_if_data *sdata; 4544 struct ieee80211_chanctx *ctx; 4545 u32 max_num_different_channels = 1; 4546 int err; 4547 struct iface_combination_params params = {0}; 4548 4549 lockdep_assert_held(&local->chanctx_mtx); 4550 4551 list_for_each_entry(ctx, &local->chanctx_list, list) { 4552 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4553 continue; 4554 4555 params.num_different_channels++; 4556 4557 params.radar_detect |= 4558 ieee80211_chanctx_radar_detect(local, ctx); 4559 } 4560 4561 list_for_each_entry_rcu(sdata, &local->interfaces, list) 4562 params.iftype_num[sdata->wdev.iftype]++; 4563 4564 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4565 ieee80211_iter_max_chans, 4566 &max_num_different_channels); 4567 if (err < 0) 4568 return err; 4569 4570 return max_num_different_channels; 4571 } 4572 4573 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, 4574 struct ieee80211_sta_s1g_cap *caps, 4575 struct sk_buff *skb) 4576 { 4577 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 4578 struct ieee80211_s1g_cap s1g_capab; 4579 u8 *pos; 4580 int i; 4581 4582 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 4583 return; 4584 4585 if (!caps->s1g) 4586 return; 4587 4588 memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); 4589 memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); 4590 4591 /* override the capability info */ 4592 for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { 4593 u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; 4594 4595 s1g_capab.capab_info[i] &= ~mask; 4596 s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; 4597 } 4598 4599 /* then MCS and NSS set */ 4600 for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { 4601 u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; 4602 4603 s1g_capab.supp_mcs_nss[i] &= ~mask; 4604 s1g_capab.supp_mcs_nss[i] |= 4605 ifmgd->s1g_capa.supp_mcs_nss[i] & mask; 4606 } 4607 4608 pos = skb_put(skb, 2 + sizeof(s1g_capab)); 4609 *pos++ = WLAN_EID_S1G_CAPABILITIES; 4610 *pos++ = sizeof(s1g_capab); 4611 4612 memcpy(pos, &s1g_capab, sizeof(s1g_capab)); 4613 } 4614 4615 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, 4616 struct sk_buff *skb) 4617 { 4618 u8 *pos = skb_put(skb, 3); 4619 4620 *pos++ = WLAN_EID_AID_REQUEST; 4621 *pos++ = 1; 4622 *pos++ = 0; 4623 } 4624 4625 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 4626 { 4627 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 4628 *buf++ = 7; /* len */ 4629 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 4630 *buf++ = 0x50; 4631 *buf++ = 0xf2; 4632 *buf++ = 2; /* WME */ 4633 *buf++ = 0; /* WME info */ 4634 *buf++ = 1; /* WME ver */ 4635 *buf++ = qosinfo; /* U-APSD no in use */ 4636 4637 return buf; 4638 } 4639 4640 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 4641 unsigned long *frame_cnt, 4642 unsigned long *byte_cnt) 4643 { 4644 struct txq_info *txqi = to_txq_info(txq); 4645 u32 frag_cnt = 0, frag_bytes = 0; 4646 struct sk_buff *skb; 4647 4648 skb_queue_walk(&txqi->frags, skb) { 4649 frag_cnt++; 4650 frag_bytes += skb->len; 4651 } 4652 4653 if (frame_cnt) 4654 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 4655 4656 if (byte_cnt) 4657 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 4658 } 4659 EXPORT_SYMBOL(ieee80211_txq_get_depth); 4660 4661 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 4662 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 4663 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 4664 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 4665 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 4666 }; 4667 4668 u16 ieee80211_encode_usf(int listen_interval) 4669 { 4670 static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; 4671 u16 ui, usf = 0; 4672 4673 /* find greatest USF */ 4674 while (usf < IEEE80211_MAX_USF) { 4675 if (listen_interval % listen_int_usf[usf + 1]) 4676 break; 4677 usf += 1; 4678 } 4679 ui = listen_interval / listen_int_usf[usf]; 4680 4681 /* error if there is a remainder. Should've been checked by user */ 4682 WARN_ON_ONCE(ui > IEEE80211_MAX_UI); 4683 listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | 4684 FIELD_PREP(LISTEN_INT_UI, ui); 4685 4686 return (u16) listen_interval; 4687 } 4688 4689 u8 ieee80211_ie_len_eht_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 4690 { 4691 const struct ieee80211_sta_he_cap *he_cap; 4692 const struct ieee80211_sta_eht_cap *eht_cap; 4693 struct ieee80211_supported_band *sband; 4694 u8 n; 4695 4696 sband = ieee80211_get_sband(sdata); 4697 if (!sband) 4698 return 0; 4699 4700 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 4701 eht_cap = ieee80211_get_eht_iftype_cap(sband, iftype); 4702 if (!he_cap || !eht_cap) 4703 return 0; 4704 4705 n = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4706 &eht_cap->eht_cap_elem); 4707 return 2 + 1 + 4708 sizeof(he_cap->he_cap_elem) + n + 4709 ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4710 eht_cap->eht_cap_elem.phy_cap_info); 4711 return 0; 4712 } 4713 4714 u8 *ieee80211_ie_build_eht_cap(u8 *pos, 4715 const struct ieee80211_sta_he_cap *he_cap, 4716 const struct ieee80211_sta_eht_cap *eht_cap, 4717 u8 *end) 4718 { 4719 u8 mcs_nss_len, ppet_len; 4720 u8 ie_len; 4721 u8 *orig_pos = pos; 4722 4723 /* Make sure we have place for the IE */ 4724 if (!he_cap || !eht_cap) 4725 return orig_pos; 4726 4727 mcs_nss_len = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4728 &eht_cap->eht_cap_elem); 4729 ppet_len = ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4730 eht_cap->eht_cap_elem.phy_cap_info); 4731 4732 ie_len = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + mcs_nss_len + ppet_len; 4733 if ((end - pos) < ie_len) 4734 return orig_pos; 4735 4736 *pos++ = WLAN_EID_EXTENSION; 4737 *pos++ = ie_len - 2; 4738 *pos++ = WLAN_EID_EXT_EHT_CAPABILITY; 4739 4740 /* Fixed data */ 4741 memcpy(pos, &eht_cap->eht_cap_elem, sizeof(eht_cap->eht_cap_elem)); 4742 pos += sizeof(eht_cap->eht_cap_elem); 4743 4744 memcpy(pos, &eht_cap->eht_mcs_nss_supp, mcs_nss_len); 4745 pos += mcs_nss_len; 4746 4747 if (ppet_len) { 4748 memcpy(pos, &eht_cap->eht_ppe_thres, ppet_len); 4749 pos += ppet_len; 4750 } 4751 4752 return pos; 4753 } 4754