1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2020 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 28 #include "ieee80211_i.h" 29 #include "driver-ops.h" 30 #include "rate.h" 31 #include "mesh.h" 32 #include "wme.h" 33 #include "led.h" 34 #include "wep.h" 35 36 /* privid for wiphys to determine whether they belong to us or not */ 37 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 38 39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 40 { 41 struct ieee80211_local *local; 42 43 local = wiphy_priv(wiphy); 44 return &local->hw; 45 } 46 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 47 48 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 49 enum nl80211_iftype type) 50 { 51 __le16 fc = hdr->frame_control; 52 53 if (ieee80211_is_data(fc)) { 54 if (len < 24) /* drop incorrect hdr len (data) */ 55 return NULL; 56 57 if (ieee80211_has_a4(fc)) 58 return NULL; 59 if (ieee80211_has_tods(fc)) 60 return hdr->addr1; 61 if (ieee80211_has_fromds(fc)) 62 return hdr->addr2; 63 64 return hdr->addr3; 65 } 66 67 if (ieee80211_is_s1g_beacon(fc)) { 68 struct ieee80211_ext *ext = (void *) hdr; 69 70 return ext->u.s1g_beacon.sa; 71 } 72 73 if (ieee80211_is_mgmt(fc)) { 74 if (len < 24) /* drop incorrect hdr len (mgmt) */ 75 return NULL; 76 return hdr->addr3; 77 } 78 79 if (ieee80211_is_ctl(fc)) { 80 if (ieee80211_is_pspoll(fc)) 81 return hdr->addr1; 82 83 if (ieee80211_is_back_req(fc)) { 84 switch (type) { 85 case NL80211_IFTYPE_STATION: 86 return hdr->addr2; 87 case NL80211_IFTYPE_AP: 88 case NL80211_IFTYPE_AP_VLAN: 89 return hdr->addr1; 90 default: 91 break; /* fall through to the return */ 92 } 93 } 94 } 95 96 return NULL; 97 } 98 EXPORT_SYMBOL(ieee80211_get_bssid); 99 100 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 101 { 102 struct sk_buff *skb; 103 struct ieee80211_hdr *hdr; 104 105 skb_queue_walk(&tx->skbs, skb) { 106 hdr = (struct ieee80211_hdr *) skb->data; 107 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 108 } 109 } 110 111 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 112 int rate, int erp, int short_preamble, 113 int shift) 114 { 115 int dur; 116 117 /* calculate duration (in microseconds, rounded up to next higher 118 * integer if it includes a fractional microsecond) to send frame of 119 * len bytes (does not include FCS) at the given rate. Duration will 120 * also include SIFS. 121 * 122 * rate is in 100 kbps, so divident is multiplied by 10 in the 123 * DIV_ROUND_UP() operations. 124 * 125 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and 126 * is assumed to be 0 otherwise. 127 */ 128 129 if (band == NL80211_BAND_5GHZ || erp) { 130 /* 131 * OFDM: 132 * 133 * N_DBPS = DATARATE x 4 134 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 135 * (16 = SIGNAL time, 6 = tail bits) 136 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 137 * 138 * T_SYM = 4 usec 139 * 802.11a - 18.5.2: aSIFSTime = 16 usec 140 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 141 * signal ext = 6 usec 142 */ 143 dur = 16; /* SIFS + signal ext */ 144 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 145 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 146 147 /* IEEE 802.11-2012 18.3.2.4: all values above are: 148 * * times 4 for 5 MHz 149 * * times 2 for 10 MHz 150 */ 151 dur *= 1 << shift; 152 153 /* rates should already consider the channel bandwidth, 154 * don't apply divisor again. 155 */ 156 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 157 4 * rate); /* T_SYM x N_SYM */ 158 } else { 159 /* 160 * 802.11b or 802.11g with 802.11b compatibility: 161 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 162 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 163 * 164 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 165 * aSIFSTime = 10 usec 166 * aPreambleLength = 144 usec or 72 usec with short preamble 167 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 168 */ 169 dur = 10; /* aSIFSTime = 10 usec */ 170 dur += short_preamble ? (72 + 24) : (144 + 48); 171 172 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 173 } 174 175 return dur; 176 } 177 178 /* Exported duration function for driver use */ 179 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 180 struct ieee80211_vif *vif, 181 enum nl80211_band band, 182 size_t frame_len, 183 struct ieee80211_rate *rate) 184 { 185 struct ieee80211_sub_if_data *sdata; 186 u16 dur; 187 int erp, shift = 0; 188 bool short_preamble = false; 189 190 erp = 0; 191 if (vif) { 192 sdata = vif_to_sdata(vif); 193 short_preamble = sdata->vif.bss_conf.use_short_preamble; 194 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 195 erp = rate->flags & IEEE80211_RATE_ERP_G; 196 shift = ieee80211_vif_get_shift(vif); 197 } 198 199 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 200 short_preamble, shift); 201 202 return cpu_to_le16(dur); 203 } 204 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 205 206 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 207 struct ieee80211_vif *vif, size_t frame_len, 208 const struct ieee80211_tx_info *frame_txctl) 209 { 210 struct ieee80211_local *local = hw_to_local(hw); 211 struct ieee80211_rate *rate; 212 struct ieee80211_sub_if_data *sdata; 213 bool short_preamble; 214 int erp, shift = 0, bitrate; 215 u16 dur; 216 struct ieee80211_supported_band *sband; 217 218 sband = local->hw.wiphy->bands[frame_txctl->band]; 219 220 short_preamble = false; 221 222 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 223 224 erp = 0; 225 if (vif) { 226 sdata = vif_to_sdata(vif); 227 short_preamble = sdata->vif.bss_conf.use_short_preamble; 228 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 229 erp = rate->flags & IEEE80211_RATE_ERP_G; 230 shift = ieee80211_vif_get_shift(vif); 231 } 232 233 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 234 235 /* CTS duration */ 236 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 237 erp, short_preamble, shift); 238 /* Data frame duration */ 239 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 240 erp, short_preamble, shift); 241 /* ACK duration */ 242 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 243 erp, short_preamble, shift); 244 245 return cpu_to_le16(dur); 246 } 247 EXPORT_SYMBOL(ieee80211_rts_duration); 248 249 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 250 struct ieee80211_vif *vif, 251 size_t frame_len, 252 const struct ieee80211_tx_info *frame_txctl) 253 { 254 struct ieee80211_local *local = hw_to_local(hw); 255 struct ieee80211_rate *rate; 256 struct ieee80211_sub_if_data *sdata; 257 bool short_preamble; 258 int erp, shift = 0, bitrate; 259 u16 dur; 260 struct ieee80211_supported_band *sband; 261 262 sband = local->hw.wiphy->bands[frame_txctl->band]; 263 264 short_preamble = false; 265 266 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 267 erp = 0; 268 if (vif) { 269 sdata = vif_to_sdata(vif); 270 short_preamble = sdata->vif.bss_conf.use_short_preamble; 271 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 272 erp = rate->flags & IEEE80211_RATE_ERP_G; 273 shift = ieee80211_vif_get_shift(vif); 274 } 275 276 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 277 278 /* Data frame duration */ 279 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 280 erp, short_preamble, shift); 281 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 282 /* ACK duration */ 283 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 284 erp, short_preamble, shift); 285 } 286 287 return cpu_to_le16(dur); 288 } 289 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 290 291 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 292 { 293 struct ieee80211_local *local = sdata->local; 294 struct ieee80211_vif *vif = &sdata->vif; 295 struct fq *fq = &local->fq; 296 struct ps_data *ps = NULL; 297 struct txq_info *txqi; 298 struct sta_info *sta; 299 int i; 300 301 local_bh_disable(); 302 spin_lock(&fq->lock); 303 304 if (sdata->vif.type == NL80211_IFTYPE_AP) 305 ps = &sdata->bss->ps; 306 307 sdata->vif.txqs_stopped[ac] = false; 308 309 list_for_each_entry_rcu(sta, &local->sta_list, list) { 310 if (sdata != sta->sdata) 311 continue; 312 313 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 314 struct ieee80211_txq *txq = sta->sta.txq[i]; 315 316 if (!txq) 317 continue; 318 319 txqi = to_txq_info(txq); 320 321 if (ac != txq->ac) 322 continue; 323 324 if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, 325 &txqi->flags)) 326 continue; 327 328 spin_unlock(&fq->lock); 329 drv_wake_tx_queue(local, txqi); 330 spin_lock(&fq->lock); 331 } 332 } 333 334 if (!vif->txq) 335 goto out; 336 337 txqi = to_txq_info(vif->txq); 338 339 if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, &txqi->flags) || 340 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 341 goto out; 342 343 spin_unlock(&fq->lock); 344 345 drv_wake_tx_queue(local, txqi); 346 local_bh_enable(); 347 return; 348 out: 349 spin_unlock(&fq->lock); 350 local_bh_enable(); 351 } 352 353 static void 354 __releases(&local->queue_stop_reason_lock) 355 __acquires(&local->queue_stop_reason_lock) 356 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 357 { 358 struct ieee80211_sub_if_data *sdata; 359 int n_acs = IEEE80211_NUM_ACS; 360 int i; 361 362 rcu_read_lock(); 363 364 if (local->hw.queues < IEEE80211_NUM_ACS) 365 n_acs = 1; 366 367 for (i = 0; i < local->hw.queues; i++) { 368 if (local->queue_stop_reasons[i]) 369 continue; 370 371 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 372 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 373 int ac; 374 375 for (ac = 0; ac < n_acs; ac++) { 376 int ac_queue = sdata->vif.hw_queue[ac]; 377 378 if (ac_queue == i || 379 sdata->vif.cab_queue == i) 380 __ieee80211_wake_txqs(sdata, ac); 381 } 382 } 383 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 384 } 385 386 rcu_read_unlock(); 387 } 388 389 void ieee80211_wake_txqs(struct tasklet_struct *t) 390 { 391 struct ieee80211_local *local = from_tasklet(local, t, 392 wake_txqs_tasklet); 393 unsigned long flags; 394 395 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 396 _ieee80211_wake_txqs(local, &flags); 397 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 398 } 399 400 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue) 401 { 402 struct ieee80211_sub_if_data *sdata; 403 int n_acs = IEEE80211_NUM_ACS; 404 405 if (local->ops->wake_tx_queue) 406 return; 407 408 if (local->hw.queues < IEEE80211_NUM_ACS) 409 n_acs = 1; 410 411 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 412 int ac; 413 414 if (!sdata->dev) 415 continue; 416 417 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE && 418 local->queue_stop_reasons[sdata->vif.cab_queue] != 0) 419 continue; 420 421 for (ac = 0; ac < n_acs; ac++) { 422 int ac_queue = sdata->vif.hw_queue[ac]; 423 424 if (ac_queue == queue || 425 (sdata->vif.cab_queue == queue && 426 local->queue_stop_reasons[ac_queue] == 0 && 427 skb_queue_empty(&local->pending[ac_queue]))) 428 netif_wake_subqueue(sdata->dev, ac); 429 } 430 } 431 } 432 433 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 434 enum queue_stop_reason reason, 435 bool refcounted, 436 unsigned long *flags) 437 { 438 struct ieee80211_local *local = hw_to_local(hw); 439 440 trace_wake_queue(local, queue, reason); 441 442 if (WARN_ON(queue >= hw->queues)) 443 return; 444 445 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 446 return; 447 448 if (!refcounted) { 449 local->q_stop_reasons[queue][reason] = 0; 450 } else { 451 local->q_stop_reasons[queue][reason]--; 452 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 453 local->q_stop_reasons[queue][reason] = 0; 454 } 455 456 if (local->q_stop_reasons[queue][reason] == 0) 457 __clear_bit(reason, &local->queue_stop_reasons[queue]); 458 459 if (local->queue_stop_reasons[queue] != 0) 460 /* someone still has this queue stopped */ 461 return; 462 463 if (skb_queue_empty(&local->pending[queue])) { 464 rcu_read_lock(); 465 ieee80211_propagate_queue_wake(local, queue); 466 rcu_read_unlock(); 467 } else 468 tasklet_schedule(&local->tx_pending_tasklet); 469 470 /* 471 * Calling _ieee80211_wake_txqs here can be a problem because it may 472 * release queue_stop_reason_lock which has been taken by 473 * __ieee80211_wake_queue's caller. It is certainly not very nice to 474 * release someone's lock, but it is fine because all the callers of 475 * __ieee80211_wake_queue call it right before releasing the lock. 476 */ 477 if (local->ops->wake_tx_queue) { 478 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 479 tasklet_schedule(&local->wake_txqs_tasklet); 480 else 481 _ieee80211_wake_txqs(local, flags); 482 } 483 } 484 485 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 486 enum queue_stop_reason reason, 487 bool refcounted) 488 { 489 struct ieee80211_local *local = hw_to_local(hw); 490 unsigned long flags; 491 492 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 493 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 494 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 495 } 496 497 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 498 { 499 ieee80211_wake_queue_by_reason(hw, queue, 500 IEEE80211_QUEUE_STOP_REASON_DRIVER, 501 false); 502 } 503 EXPORT_SYMBOL(ieee80211_wake_queue); 504 505 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 506 enum queue_stop_reason reason, 507 bool refcounted) 508 { 509 struct ieee80211_local *local = hw_to_local(hw); 510 struct ieee80211_sub_if_data *sdata; 511 int n_acs = IEEE80211_NUM_ACS; 512 513 trace_stop_queue(local, queue, reason); 514 515 if (WARN_ON(queue >= hw->queues)) 516 return; 517 518 if (!refcounted) 519 local->q_stop_reasons[queue][reason] = 1; 520 else 521 local->q_stop_reasons[queue][reason]++; 522 523 if (__test_and_set_bit(reason, &local->queue_stop_reasons[queue])) 524 return; 525 526 if (local->hw.queues < IEEE80211_NUM_ACS) 527 n_acs = 1; 528 529 rcu_read_lock(); 530 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 531 int ac; 532 533 if (!sdata->dev) 534 continue; 535 536 for (ac = 0; ac < n_acs; ac++) { 537 if (sdata->vif.hw_queue[ac] == queue || 538 sdata->vif.cab_queue == queue) { 539 if (!local->ops->wake_tx_queue) { 540 netif_stop_subqueue(sdata->dev, ac); 541 continue; 542 } 543 spin_lock(&local->fq.lock); 544 sdata->vif.txqs_stopped[ac] = true; 545 spin_unlock(&local->fq.lock); 546 } 547 } 548 } 549 rcu_read_unlock(); 550 } 551 552 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 553 enum queue_stop_reason reason, 554 bool refcounted) 555 { 556 struct ieee80211_local *local = hw_to_local(hw); 557 unsigned long flags; 558 559 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 560 __ieee80211_stop_queue(hw, queue, reason, refcounted); 561 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 562 } 563 564 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 565 { 566 ieee80211_stop_queue_by_reason(hw, queue, 567 IEEE80211_QUEUE_STOP_REASON_DRIVER, 568 false); 569 } 570 EXPORT_SYMBOL(ieee80211_stop_queue); 571 572 void ieee80211_add_pending_skb(struct ieee80211_local *local, 573 struct sk_buff *skb) 574 { 575 struct ieee80211_hw *hw = &local->hw; 576 unsigned long flags; 577 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 578 int queue = info->hw_queue; 579 580 if (WARN_ON(!info->control.vif)) { 581 ieee80211_free_txskb(&local->hw, skb); 582 return; 583 } 584 585 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 586 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 587 false); 588 __skb_queue_tail(&local->pending[queue], skb); 589 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 590 false, &flags); 591 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 592 } 593 594 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 595 struct sk_buff_head *skbs) 596 { 597 struct ieee80211_hw *hw = &local->hw; 598 struct sk_buff *skb; 599 unsigned long flags; 600 int queue, i; 601 602 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 603 while ((skb = skb_dequeue(skbs))) { 604 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 605 606 if (WARN_ON(!info->control.vif)) { 607 ieee80211_free_txskb(&local->hw, skb); 608 continue; 609 } 610 611 queue = info->hw_queue; 612 613 __ieee80211_stop_queue(hw, queue, 614 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 615 false); 616 617 __skb_queue_tail(&local->pending[queue], skb); 618 } 619 620 for (i = 0; i < hw->queues; i++) 621 __ieee80211_wake_queue(hw, i, 622 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 623 false, &flags); 624 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 625 } 626 627 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 628 unsigned long queues, 629 enum queue_stop_reason reason, 630 bool refcounted) 631 { 632 struct ieee80211_local *local = hw_to_local(hw); 633 unsigned long flags; 634 int i; 635 636 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 637 638 for_each_set_bit(i, &queues, hw->queues) 639 __ieee80211_stop_queue(hw, i, reason, refcounted); 640 641 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 642 } 643 644 void ieee80211_stop_queues(struct ieee80211_hw *hw) 645 { 646 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 647 IEEE80211_QUEUE_STOP_REASON_DRIVER, 648 false); 649 } 650 EXPORT_SYMBOL(ieee80211_stop_queues); 651 652 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 653 { 654 struct ieee80211_local *local = hw_to_local(hw); 655 unsigned long flags; 656 int ret; 657 658 if (WARN_ON(queue >= hw->queues)) 659 return true; 660 661 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 662 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 663 &local->queue_stop_reasons[queue]); 664 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 665 return ret; 666 } 667 EXPORT_SYMBOL(ieee80211_queue_stopped); 668 669 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 670 unsigned long queues, 671 enum queue_stop_reason reason, 672 bool refcounted) 673 { 674 struct ieee80211_local *local = hw_to_local(hw); 675 unsigned long flags; 676 int i; 677 678 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 679 680 for_each_set_bit(i, &queues, hw->queues) 681 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 682 683 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 684 } 685 686 void ieee80211_wake_queues(struct ieee80211_hw *hw) 687 { 688 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 689 IEEE80211_QUEUE_STOP_REASON_DRIVER, 690 false); 691 } 692 EXPORT_SYMBOL(ieee80211_wake_queues); 693 694 static unsigned int 695 ieee80211_get_vif_queues(struct ieee80211_local *local, 696 struct ieee80211_sub_if_data *sdata) 697 { 698 unsigned int queues; 699 700 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 701 int ac; 702 703 queues = 0; 704 705 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 706 queues |= BIT(sdata->vif.hw_queue[ac]); 707 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 708 queues |= BIT(sdata->vif.cab_queue); 709 } else { 710 /* all queues */ 711 queues = BIT(local->hw.queues) - 1; 712 } 713 714 return queues; 715 } 716 717 void __ieee80211_flush_queues(struct ieee80211_local *local, 718 struct ieee80211_sub_if_data *sdata, 719 unsigned int queues, bool drop) 720 { 721 if (!local->ops->flush) 722 return; 723 724 /* 725 * If no queue was set, or if the HW doesn't support 726 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 727 */ 728 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 729 queues = ieee80211_get_vif_queues(local, sdata); 730 731 ieee80211_stop_queues_by_reason(&local->hw, queues, 732 IEEE80211_QUEUE_STOP_REASON_FLUSH, 733 false); 734 735 drv_flush(local, sdata, queues, drop); 736 737 ieee80211_wake_queues_by_reason(&local->hw, queues, 738 IEEE80211_QUEUE_STOP_REASON_FLUSH, 739 false); 740 } 741 742 void ieee80211_flush_queues(struct ieee80211_local *local, 743 struct ieee80211_sub_if_data *sdata, bool drop) 744 { 745 __ieee80211_flush_queues(local, sdata, 0, drop); 746 } 747 748 void ieee80211_stop_vif_queues(struct ieee80211_local *local, 749 struct ieee80211_sub_if_data *sdata, 750 enum queue_stop_reason reason) 751 { 752 ieee80211_stop_queues_by_reason(&local->hw, 753 ieee80211_get_vif_queues(local, sdata), 754 reason, true); 755 } 756 757 void ieee80211_wake_vif_queues(struct ieee80211_local *local, 758 struct ieee80211_sub_if_data *sdata, 759 enum queue_stop_reason reason) 760 { 761 ieee80211_wake_queues_by_reason(&local->hw, 762 ieee80211_get_vif_queues(local, sdata), 763 reason, true); 764 } 765 766 static void __iterate_interfaces(struct ieee80211_local *local, 767 u32 iter_flags, 768 void (*iterator)(void *data, u8 *mac, 769 struct ieee80211_vif *vif), 770 void *data) 771 { 772 struct ieee80211_sub_if_data *sdata; 773 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 774 775 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 776 switch (sdata->vif.type) { 777 case NL80211_IFTYPE_MONITOR: 778 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) 779 continue; 780 break; 781 case NL80211_IFTYPE_AP_VLAN: 782 continue; 783 default: 784 break; 785 } 786 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 787 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 788 continue; 789 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && 790 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 791 continue; 792 if (ieee80211_sdata_running(sdata) || !active_only) 793 iterator(data, sdata->vif.addr, 794 &sdata->vif); 795 } 796 797 sdata = rcu_dereference_check(local->monitor_sdata, 798 lockdep_is_held(&local->iflist_mtx) || 799 lockdep_rtnl_is_held()); 800 if (sdata && 801 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 802 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 803 iterator(data, sdata->vif.addr, &sdata->vif); 804 } 805 806 void ieee80211_iterate_interfaces( 807 struct ieee80211_hw *hw, u32 iter_flags, 808 void (*iterator)(void *data, u8 *mac, 809 struct ieee80211_vif *vif), 810 void *data) 811 { 812 struct ieee80211_local *local = hw_to_local(hw); 813 814 mutex_lock(&local->iflist_mtx); 815 __iterate_interfaces(local, iter_flags, iterator, data); 816 mutex_unlock(&local->iflist_mtx); 817 } 818 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 819 820 void ieee80211_iterate_active_interfaces_atomic( 821 struct ieee80211_hw *hw, u32 iter_flags, 822 void (*iterator)(void *data, u8 *mac, 823 struct ieee80211_vif *vif), 824 void *data) 825 { 826 struct ieee80211_local *local = hw_to_local(hw); 827 828 rcu_read_lock(); 829 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 830 iterator, data); 831 rcu_read_unlock(); 832 } 833 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 834 835 void ieee80211_iterate_active_interfaces_mtx( 836 struct ieee80211_hw *hw, u32 iter_flags, 837 void (*iterator)(void *data, u8 *mac, 838 struct ieee80211_vif *vif), 839 void *data) 840 { 841 struct ieee80211_local *local = hw_to_local(hw); 842 843 lockdep_assert_wiphy(hw->wiphy); 844 845 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 846 iterator, data); 847 } 848 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx); 849 850 static void __iterate_stations(struct ieee80211_local *local, 851 void (*iterator)(void *data, 852 struct ieee80211_sta *sta), 853 void *data) 854 { 855 struct sta_info *sta; 856 857 list_for_each_entry_rcu(sta, &local->sta_list, list) { 858 if (!sta->uploaded) 859 continue; 860 861 iterator(data, &sta->sta); 862 } 863 } 864 865 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 866 void (*iterator)(void *data, 867 struct ieee80211_sta *sta), 868 void *data) 869 { 870 struct ieee80211_local *local = hw_to_local(hw); 871 872 rcu_read_lock(); 873 __iterate_stations(local, iterator, data); 874 rcu_read_unlock(); 875 } 876 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 877 878 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 879 { 880 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 881 882 if (!ieee80211_sdata_running(sdata) || 883 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 884 return NULL; 885 return &sdata->vif; 886 } 887 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 888 889 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 890 { 891 if (!vif) 892 return NULL; 893 894 return &vif_to_sdata(vif)->wdev; 895 } 896 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 897 898 /* 899 * Nothing should have been stuffed into the workqueue during 900 * the suspend->resume cycle. Since we can't check each caller 901 * of this function if we are already quiescing / suspended, 902 * check here and don't WARN since this can actually happen when 903 * the rx path (for example) is racing against __ieee80211_suspend 904 * and suspending / quiescing was set after the rx path checked 905 * them. 906 */ 907 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 908 { 909 if (local->quiescing || (local->suspended && !local->resuming)) { 910 pr_warn("queueing ieee80211 work while going to suspend\n"); 911 return false; 912 } 913 914 return true; 915 } 916 917 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 918 { 919 struct ieee80211_local *local = hw_to_local(hw); 920 921 if (!ieee80211_can_queue_work(local)) 922 return; 923 924 queue_work(local->workqueue, work); 925 } 926 EXPORT_SYMBOL(ieee80211_queue_work); 927 928 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 929 struct delayed_work *dwork, 930 unsigned long delay) 931 { 932 struct ieee80211_local *local = hw_to_local(hw); 933 934 if (!ieee80211_can_queue_work(local)) 935 return; 936 937 queue_delayed_work(local->workqueue, dwork, delay); 938 } 939 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 940 941 static void ieee80211_parse_extension_element(u32 *crc, 942 const struct element *elem, 943 struct ieee802_11_elems *elems) 944 { 945 const void *data = elem->data + 1; 946 u8 len = elem->datalen - 1; 947 948 switch (elem->data[0]) { 949 case WLAN_EID_EXT_HE_MU_EDCA: 950 if (len >= sizeof(*elems->mu_edca_param_set)) { 951 elems->mu_edca_param_set = data; 952 if (crc) 953 *crc = crc32_be(*crc, (void *)elem, 954 elem->datalen + 2); 955 } 956 break; 957 case WLAN_EID_EXT_HE_CAPABILITY: 958 elems->he_cap = data; 959 elems->he_cap_len = len; 960 break; 961 case WLAN_EID_EXT_HE_OPERATION: 962 if (len >= sizeof(*elems->he_operation) && 963 len >= ieee80211_he_oper_size(data) - 1) { 964 if (crc) 965 *crc = crc32_be(*crc, (void *)elem, 966 elem->datalen + 2); 967 elems->he_operation = data; 968 } 969 break; 970 case WLAN_EID_EXT_UORA: 971 if (len >= 1) 972 elems->uora_element = data; 973 break; 974 case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME: 975 if (len == 3) 976 elems->max_channel_switch_time = data; 977 break; 978 case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION: 979 if (len >= sizeof(*elems->mbssid_config_ie)) 980 elems->mbssid_config_ie = data; 981 break; 982 case WLAN_EID_EXT_HE_SPR: 983 if (len >= sizeof(*elems->he_spr) && 984 len >= ieee80211_he_spr_size(data)) 985 elems->he_spr = data; 986 break; 987 case WLAN_EID_EXT_HE_6GHZ_CAPA: 988 if (len >= sizeof(*elems->he_6ghz_capa)) 989 elems->he_6ghz_capa = data; 990 break; 991 } 992 } 993 994 static u32 995 _ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, 996 struct ieee802_11_elems *elems, 997 u64 filter, u32 crc, 998 const struct element *check_inherit) 999 { 1000 const struct element *elem; 1001 bool calc_crc = filter != 0; 1002 DECLARE_BITMAP(seen_elems, 256); 1003 const u8 *ie; 1004 1005 bitmap_zero(seen_elems, 256); 1006 1007 for_each_element(elem, start, len) { 1008 bool elem_parse_failed; 1009 u8 id = elem->id; 1010 u8 elen = elem->datalen; 1011 const u8 *pos = elem->data; 1012 1013 if (check_inherit && 1014 !cfg80211_is_element_inherited(elem, 1015 check_inherit)) 1016 continue; 1017 1018 switch (id) { 1019 case WLAN_EID_SSID: 1020 case WLAN_EID_SUPP_RATES: 1021 case WLAN_EID_FH_PARAMS: 1022 case WLAN_EID_DS_PARAMS: 1023 case WLAN_EID_CF_PARAMS: 1024 case WLAN_EID_TIM: 1025 case WLAN_EID_IBSS_PARAMS: 1026 case WLAN_EID_CHALLENGE: 1027 case WLAN_EID_RSN: 1028 case WLAN_EID_ERP_INFO: 1029 case WLAN_EID_EXT_SUPP_RATES: 1030 case WLAN_EID_HT_CAPABILITY: 1031 case WLAN_EID_HT_OPERATION: 1032 case WLAN_EID_VHT_CAPABILITY: 1033 case WLAN_EID_VHT_OPERATION: 1034 case WLAN_EID_MESH_ID: 1035 case WLAN_EID_MESH_CONFIG: 1036 case WLAN_EID_PEER_MGMT: 1037 case WLAN_EID_PREQ: 1038 case WLAN_EID_PREP: 1039 case WLAN_EID_PERR: 1040 case WLAN_EID_RANN: 1041 case WLAN_EID_CHANNEL_SWITCH: 1042 case WLAN_EID_EXT_CHANSWITCH_ANN: 1043 case WLAN_EID_COUNTRY: 1044 case WLAN_EID_PWR_CONSTRAINT: 1045 case WLAN_EID_TIMEOUT_INTERVAL: 1046 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1047 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1048 case WLAN_EID_CHAN_SWITCH_PARAM: 1049 case WLAN_EID_EXT_CAPABILITY: 1050 case WLAN_EID_CHAN_SWITCH_TIMING: 1051 case WLAN_EID_LINK_ID: 1052 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1053 case WLAN_EID_RSNX: 1054 case WLAN_EID_S1G_BCN_COMPAT: 1055 case WLAN_EID_S1G_CAPABILITIES: 1056 case WLAN_EID_S1G_OPERATION: 1057 case WLAN_EID_AID_RESPONSE: 1058 case WLAN_EID_S1G_SHORT_BCN_INTERVAL: 1059 /* 1060 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible 1061 * that if the content gets bigger it might be needed more than once 1062 */ 1063 if (test_bit(id, seen_elems)) { 1064 elems->parse_error = true; 1065 continue; 1066 } 1067 break; 1068 } 1069 1070 if (calc_crc && id < 64 && (filter & (1ULL << id))) 1071 crc = crc32_be(crc, pos - 2, elen + 2); 1072 1073 elem_parse_failed = false; 1074 1075 switch (id) { 1076 case WLAN_EID_LINK_ID: 1077 if (elen + 2 < sizeof(struct ieee80211_tdls_lnkie)) { 1078 elem_parse_failed = true; 1079 break; 1080 } 1081 elems->lnk_id = (void *)(pos - 2); 1082 break; 1083 case WLAN_EID_CHAN_SWITCH_TIMING: 1084 if (elen < sizeof(struct ieee80211_ch_switch_timing)) { 1085 elem_parse_failed = true; 1086 break; 1087 } 1088 elems->ch_sw_timing = (void *)pos; 1089 break; 1090 case WLAN_EID_EXT_CAPABILITY: 1091 elems->ext_capab = pos; 1092 elems->ext_capab_len = elen; 1093 break; 1094 case WLAN_EID_SSID: 1095 elems->ssid = pos; 1096 elems->ssid_len = elen; 1097 break; 1098 case WLAN_EID_SUPP_RATES: 1099 elems->supp_rates = pos; 1100 elems->supp_rates_len = elen; 1101 break; 1102 case WLAN_EID_DS_PARAMS: 1103 if (elen >= 1) 1104 elems->ds_params = pos; 1105 else 1106 elem_parse_failed = true; 1107 break; 1108 case WLAN_EID_TIM: 1109 if (elen >= sizeof(struct ieee80211_tim_ie)) { 1110 elems->tim = (void *)pos; 1111 elems->tim_len = elen; 1112 } else 1113 elem_parse_failed = true; 1114 break; 1115 case WLAN_EID_CHALLENGE: 1116 elems->challenge = pos; 1117 elems->challenge_len = elen; 1118 break; 1119 case WLAN_EID_VENDOR_SPECIFIC: 1120 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && 1121 pos[2] == 0xf2) { 1122 /* Microsoft OUI (00:50:F2) */ 1123 1124 if (calc_crc) 1125 crc = crc32_be(crc, pos - 2, elen + 2); 1126 1127 if (elen >= 5 && pos[3] == 2) { 1128 /* OUI Type 2 - WMM IE */ 1129 if (pos[4] == 0) { 1130 elems->wmm_info = pos; 1131 elems->wmm_info_len = elen; 1132 } else if (pos[4] == 1) { 1133 elems->wmm_param = pos; 1134 elems->wmm_param_len = elen; 1135 } 1136 } 1137 } 1138 break; 1139 case WLAN_EID_RSN: 1140 elems->rsn = pos; 1141 elems->rsn_len = elen; 1142 break; 1143 case WLAN_EID_ERP_INFO: 1144 if (elen >= 1) 1145 elems->erp_info = pos; 1146 else 1147 elem_parse_failed = true; 1148 break; 1149 case WLAN_EID_EXT_SUPP_RATES: 1150 elems->ext_supp_rates = pos; 1151 elems->ext_supp_rates_len = elen; 1152 break; 1153 case WLAN_EID_HT_CAPABILITY: 1154 if (elen >= sizeof(struct ieee80211_ht_cap)) 1155 elems->ht_cap_elem = (void *)pos; 1156 else 1157 elem_parse_failed = true; 1158 break; 1159 case WLAN_EID_HT_OPERATION: 1160 if (elen >= sizeof(struct ieee80211_ht_operation)) 1161 elems->ht_operation = (void *)pos; 1162 else 1163 elem_parse_failed = true; 1164 break; 1165 case WLAN_EID_VHT_CAPABILITY: 1166 if (elen >= sizeof(struct ieee80211_vht_cap)) 1167 elems->vht_cap_elem = (void *)pos; 1168 else 1169 elem_parse_failed = true; 1170 break; 1171 case WLAN_EID_VHT_OPERATION: 1172 if (elen >= sizeof(struct ieee80211_vht_operation)) { 1173 elems->vht_operation = (void *)pos; 1174 if (calc_crc) 1175 crc = crc32_be(crc, pos - 2, elen + 2); 1176 break; 1177 } 1178 elem_parse_failed = true; 1179 break; 1180 case WLAN_EID_OPMODE_NOTIF: 1181 if (elen > 0) { 1182 elems->opmode_notif = pos; 1183 if (calc_crc) 1184 crc = crc32_be(crc, pos - 2, elen + 2); 1185 break; 1186 } 1187 elem_parse_failed = true; 1188 break; 1189 case WLAN_EID_MESH_ID: 1190 elems->mesh_id = pos; 1191 elems->mesh_id_len = elen; 1192 break; 1193 case WLAN_EID_MESH_CONFIG: 1194 if (elen >= sizeof(struct ieee80211_meshconf_ie)) 1195 elems->mesh_config = (void *)pos; 1196 else 1197 elem_parse_failed = true; 1198 break; 1199 case WLAN_EID_PEER_MGMT: 1200 elems->peering = pos; 1201 elems->peering_len = elen; 1202 break; 1203 case WLAN_EID_MESH_AWAKE_WINDOW: 1204 if (elen >= 2) 1205 elems->awake_window = (void *)pos; 1206 break; 1207 case WLAN_EID_PREQ: 1208 elems->preq = pos; 1209 elems->preq_len = elen; 1210 break; 1211 case WLAN_EID_PREP: 1212 elems->prep = pos; 1213 elems->prep_len = elen; 1214 break; 1215 case WLAN_EID_PERR: 1216 elems->perr = pos; 1217 elems->perr_len = elen; 1218 break; 1219 case WLAN_EID_RANN: 1220 if (elen >= sizeof(struct ieee80211_rann_ie)) 1221 elems->rann = (void *)pos; 1222 else 1223 elem_parse_failed = true; 1224 break; 1225 case WLAN_EID_CHANNEL_SWITCH: 1226 if (elen != sizeof(struct ieee80211_channel_sw_ie)) { 1227 elem_parse_failed = true; 1228 break; 1229 } 1230 elems->ch_switch_ie = (void *)pos; 1231 break; 1232 case WLAN_EID_EXT_CHANSWITCH_ANN: 1233 if (elen != sizeof(struct ieee80211_ext_chansw_ie)) { 1234 elem_parse_failed = true; 1235 break; 1236 } 1237 elems->ext_chansw_ie = (void *)pos; 1238 break; 1239 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1240 if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) { 1241 elem_parse_failed = true; 1242 break; 1243 } 1244 elems->sec_chan_offs = (void *)pos; 1245 break; 1246 case WLAN_EID_CHAN_SWITCH_PARAM: 1247 if (elen < 1248 sizeof(*elems->mesh_chansw_params_ie)) { 1249 elem_parse_failed = true; 1250 break; 1251 } 1252 elems->mesh_chansw_params_ie = (void *)pos; 1253 break; 1254 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1255 if (!action || 1256 elen < sizeof(*elems->wide_bw_chansw_ie)) { 1257 elem_parse_failed = true; 1258 break; 1259 } 1260 elems->wide_bw_chansw_ie = (void *)pos; 1261 break; 1262 case WLAN_EID_CHANNEL_SWITCH_WRAPPER: 1263 if (action) { 1264 elem_parse_failed = true; 1265 break; 1266 } 1267 /* 1268 * This is a bit tricky, but as we only care about 1269 * the wide bandwidth channel switch element, so 1270 * just parse it out manually. 1271 */ 1272 ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH, 1273 pos, elen); 1274 if (ie) { 1275 if (ie[1] >= sizeof(*elems->wide_bw_chansw_ie)) 1276 elems->wide_bw_chansw_ie = 1277 (void *)(ie + 2); 1278 else 1279 elem_parse_failed = true; 1280 } 1281 break; 1282 case WLAN_EID_COUNTRY: 1283 elems->country_elem = pos; 1284 elems->country_elem_len = elen; 1285 break; 1286 case WLAN_EID_PWR_CONSTRAINT: 1287 if (elen != 1) { 1288 elem_parse_failed = true; 1289 break; 1290 } 1291 elems->pwr_constr_elem = pos; 1292 break; 1293 case WLAN_EID_CISCO_VENDOR_SPECIFIC: 1294 /* Lots of different options exist, but we only care 1295 * about the Dynamic Transmit Power Control element. 1296 * First check for the Cisco OUI, then for the DTPC 1297 * tag (0x00). 1298 */ 1299 if (elen < 4) { 1300 elem_parse_failed = true; 1301 break; 1302 } 1303 1304 if (pos[0] != 0x00 || pos[1] != 0x40 || 1305 pos[2] != 0x96 || pos[3] != 0x00) 1306 break; 1307 1308 if (elen != 6) { 1309 elem_parse_failed = true; 1310 break; 1311 } 1312 1313 if (calc_crc) 1314 crc = crc32_be(crc, pos - 2, elen + 2); 1315 1316 elems->cisco_dtpc_elem = pos; 1317 break; 1318 case WLAN_EID_ADDBA_EXT: 1319 if (elen < sizeof(struct ieee80211_addba_ext_ie)) { 1320 elem_parse_failed = true; 1321 break; 1322 } 1323 elems->addba_ext_ie = (void *)pos; 1324 break; 1325 case WLAN_EID_TIMEOUT_INTERVAL: 1326 if (elen >= sizeof(struct ieee80211_timeout_interval_ie)) 1327 elems->timeout_int = (void *)pos; 1328 else 1329 elem_parse_failed = true; 1330 break; 1331 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1332 if (elen >= sizeof(*elems->max_idle_period_ie)) 1333 elems->max_idle_period_ie = (void *)pos; 1334 break; 1335 case WLAN_EID_RSNX: 1336 elems->rsnx = pos; 1337 elems->rsnx_len = elen; 1338 break; 1339 case WLAN_EID_EXTENSION: 1340 ieee80211_parse_extension_element(calc_crc ? 1341 &crc : NULL, 1342 elem, elems); 1343 break; 1344 case WLAN_EID_S1G_CAPABILITIES: 1345 if (elen >= sizeof(*elems->s1g_capab)) 1346 elems->s1g_capab = (void *)pos; 1347 else 1348 elem_parse_failed = true; 1349 break; 1350 case WLAN_EID_S1G_OPERATION: 1351 if (elen == sizeof(*elems->s1g_oper)) 1352 elems->s1g_oper = (void *)pos; 1353 else 1354 elem_parse_failed = true; 1355 break; 1356 case WLAN_EID_S1G_BCN_COMPAT: 1357 if (elen == sizeof(*elems->s1g_bcn_compat)) 1358 elems->s1g_bcn_compat = (void *)pos; 1359 else 1360 elem_parse_failed = true; 1361 break; 1362 case WLAN_EID_AID_RESPONSE: 1363 if (elen == sizeof(struct ieee80211_aid_response_ie)) 1364 elems->aid_resp = (void *)pos; 1365 else 1366 elem_parse_failed = true; 1367 break; 1368 default: 1369 break; 1370 } 1371 1372 if (elem_parse_failed) 1373 elems->parse_error = true; 1374 else 1375 __set_bit(id, seen_elems); 1376 } 1377 1378 if (!for_each_element_completed(elem, start, len)) 1379 elems->parse_error = true; 1380 1381 return crc; 1382 } 1383 1384 static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len, 1385 struct ieee802_11_elems *elems, 1386 u8 *transmitter_bssid, 1387 u8 *bss_bssid, 1388 u8 *nontransmitted_profile) 1389 { 1390 const struct element *elem, *sub; 1391 size_t profile_len = 0; 1392 bool found = false; 1393 1394 if (!bss_bssid || !transmitter_bssid) 1395 return profile_len; 1396 1397 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) { 1398 if (elem->datalen < 2) 1399 continue; 1400 1401 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 1402 u8 new_bssid[ETH_ALEN]; 1403 const u8 *index; 1404 1405 if (sub->id != 0 || sub->datalen < 4) { 1406 /* not a valid BSS profile */ 1407 continue; 1408 } 1409 1410 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 1411 sub->data[1] != 2) { 1412 /* The first element of the 1413 * Nontransmitted BSSID Profile is not 1414 * the Nontransmitted BSSID Capability 1415 * element. 1416 */ 1417 continue; 1418 } 1419 1420 memset(nontransmitted_profile, 0, len); 1421 profile_len = cfg80211_merge_profile(start, len, 1422 elem, 1423 sub, 1424 nontransmitted_profile, 1425 len); 1426 1427 /* found a Nontransmitted BSSID Profile */ 1428 index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, 1429 nontransmitted_profile, 1430 profile_len); 1431 if (!index || index[1] < 1 || index[2] == 0) { 1432 /* Invalid MBSSID Index element */ 1433 continue; 1434 } 1435 1436 cfg80211_gen_new_bssid(transmitter_bssid, 1437 elem->data[0], 1438 index[2], 1439 new_bssid); 1440 if (ether_addr_equal(new_bssid, bss_bssid)) { 1441 found = true; 1442 elems->bssid_index_len = index[1]; 1443 elems->bssid_index = (void *)&index[2]; 1444 break; 1445 } 1446 } 1447 } 1448 1449 return found ? profile_len : 0; 1450 } 1451 1452 u32 ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, 1453 struct ieee802_11_elems *elems, 1454 u64 filter, u32 crc, u8 *transmitter_bssid, 1455 u8 *bss_bssid) 1456 { 1457 const struct element *non_inherit = NULL; 1458 u8 *nontransmitted_profile; 1459 int nontransmitted_profile_len = 0; 1460 1461 memset(elems, 0, sizeof(*elems)); 1462 elems->ie_start = start; 1463 elems->total_len = len; 1464 1465 nontransmitted_profile = kmalloc(len, GFP_ATOMIC); 1466 if (nontransmitted_profile) { 1467 nontransmitted_profile_len = 1468 ieee802_11_find_bssid_profile(start, len, elems, 1469 transmitter_bssid, 1470 bss_bssid, 1471 nontransmitted_profile); 1472 non_inherit = 1473 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 1474 nontransmitted_profile, 1475 nontransmitted_profile_len); 1476 } 1477 1478 crc = _ieee802_11_parse_elems_crc(start, len, action, elems, filter, 1479 crc, non_inherit); 1480 1481 /* Override with nontransmitted profile, if found */ 1482 if (nontransmitted_profile_len) 1483 _ieee802_11_parse_elems_crc(nontransmitted_profile, 1484 nontransmitted_profile_len, 1485 action, elems, 0, 0, NULL); 1486 1487 if (elems->tim && !elems->parse_error) { 1488 const struct ieee80211_tim_ie *tim_ie = elems->tim; 1489 1490 elems->dtim_period = tim_ie->dtim_period; 1491 elems->dtim_count = tim_ie->dtim_count; 1492 } 1493 1494 /* Override DTIM period and count if needed */ 1495 if (elems->bssid_index && 1496 elems->bssid_index_len >= 1497 offsetofend(struct ieee80211_bssid_index, dtim_period)) 1498 elems->dtim_period = elems->bssid_index->dtim_period; 1499 1500 if (elems->bssid_index && 1501 elems->bssid_index_len >= 1502 offsetofend(struct ieee80211_bssid_index, dtim_count)) 1503 elems->dtim_count = elems->bssid_index->dtim_count; 1504 1505 kfree(nontransmitted_profile); 1506 1507 return crc; 1508 } 1509 1510 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 1511 struct ieee80211_tx_queue_params 1512 *qparam, int ac) 1513 { 1514 struct ieee80211_chanctx_conf *chanctx_conf; 1515 const struct ieee80211_reg_rule *rrule; 1516 const struct ieee80211_wmm_ac *wmm_ac; 1517 u16 center_freq = 0; 1518 1519 if (sdata->vif.type != NL80211_IFTYPE_AP && 1520 sdata->vif.type != NL80211_IFTYPE_STATION) 1521 return; 1522 1523 rcu_read_lock(); 1524 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1525 if (chanctx_conf) 1526 center_freq = chanctx_conf->def.chan->center_freq; 1527 1528 if (!center_freq) { 1529 rcu_read_unlock(); 1530 return; 1531 } 1532 1533 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 1534 1535 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 1536 rcu_read_unlock(); 1537 return; 1538 } 1539 1540 if (sdata->vif.type == NL80211_IFTYPE_AP) 1541 wmm_ac = &rrule->wmm_rule.ap[ac]; 1542 else 1543 wmm_ac = &rrule->wmm_rule.client[ac]; 1544 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 1545 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 1546 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 1547 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 1548 rcu_read_unlock(); 1549 } 1550 1551 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata, 1552 bool bss_notify, bool enable_qos) 1553 { 1554 struct ieee80211_local *local = sdata->local; 1555 struct ieee80211_tx_queue_params qparam; 1556 struct ieee80211_chanctx_conf *chanctx_conf; 1557 int ac; 1558 bool use_11b; 1559 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 1560 int aCWmin, aCWmax; 1561 1562 if (!local->ops->conf_tx) 1563 return; 1564 1565 if (local->hw.queues < IEEE80211_NUM_ACS) 1566 return; 1567 1568 memset(&qparam, 0, sizeof(qparam)); 1569 1570 rcu_read_lock(); 1571 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1572 use_11b = (chanctx_conf && 1573 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 1574 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE); 1575 rcu_read_unlock(); 1576 1577 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 1578 1579 /* Set defaults according to 802.11-2007 Table 7-37 */ 1580 aCWmax = 1023; 1581 if (use_11b) 1582 aCWmin = 31; 1583 else 1584 aCWmin = 15; 1585 1586 /* Confiure old 802.11b/g medium access rules. */ 1587 qparam.cw_max = aCWmax; 1588 qparam.cw_min = aCWmin; 1589 qparam.txop = 0; 1590 qparam.aifs = 2; 1591 1592 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1593 /* Update if QoS is enabled. */ 1594 if (enable_qos) { 1595 switch (ac) { 1596 case IEEE80211_AC_BK: 1597 qparam.cw_max = aCWmax; 1598 qparam.cw_min = aCWmin; 1599 qparam.txop = 0; 1600 if (is_ocb) 1601 qparam.aifs = 9; 1602 else 1603 qparam.aifs = 7; 1604 break; 1605 /* never happens but let's not leave undefined */ 1606 default: 1607 case IEEE80211_AC_BE: 1608 qparam.cw_max = aCWmax; 1609 qparam.cw_min = aCWmin; 1610 qparam.txop = 0; 1611 if (is_ocb) 1612 qparam.aifs = 6; 1613 else 1614 qparam.aifs = 3; 1615 break; 1616 case IEEE80211_AC_VI: 1617 qparam.cw_max = aCWmin; 1618 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1619 if (is_ocb) 1620 qparam.txop = 0; 1621 else if (use_11b) 1622 qparam.txop = 6016/32; 1623 else 1624 qparam.txop = 3008/32; 1625 1626 if (is_ocb) 1627 qparam.aifs = 3; 1628 else 1629 qparam.aifs = 2; 1630 break; 1631 case IEEE80211_AC_VO: 1632 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1633 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1634 if (is_ocb) 1635 qparam.txop = 0; 1636 else if (use_11b) 1637 qparam.txop = 3264/32; 1638 else 1639 qparam.txop = 1504/32; 1640 qparam.aifs = 2; 1641 break; 1642 } 1643 } 1644 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1645 1646 qparam.uapsd = false; 1647 1648 sdata->tx_conf[ac] = qparam; 1649 drv_conf_tx(local, sdata, ac, &qparam); 1650 } 1651 1652 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1653 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1654 sdata->vif.type != NL80211_IFTYPE_NAN) { 1655 sdata->vif.bss_conf.qos = enable_qos; 1656 if (bss_notify) 1657 ieee80211_bss_info_change_notify(sdata, 1658 BSS_CHANGED_QOS); 1659 } 1660 } 1661 1662 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1663 u16 transaction, u16 auth_alg, u16 status, 1664 const u8 *extra, size_t extra_len, const u8 *da, 1665 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1666 u32 tx_flags) 1667 { 1668 struct ieee80211_local *local = sdata->local; 1669 struct sk_buff *skb; 1670 struct ieee80211_mgmt *mgmt; 1671 int err; 1672 1673 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1674 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1675 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN); 1676 if (!skb) 1677 return; 1678 1679 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1680 1681 mgmt = skb_put_zero(skb, 24 + 6); 1682 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1683 IEEE80211_STYPE_AUTH); 1684 memcpy(mgmt->da, da, ETH_ALEN); 1685 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1686 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1687 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1688 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1689 mgmt->u.auth.status_code = cpu_to_le16(status); 1690 if (extra) 1691 skb_put_data(skb, extra, extra_len); 1692 1693 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1694 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1695 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1696 WARN_ON(err); 1697 } 1698 1699 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1700 tx_flags; 1701 ieee80211_tx_skb(sdata, skb); 1702 } 1703 1704 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1705 const u8 *da, const u8 *bssid, 1706 u16 stype, u16 reason, 1707 bool send_frame, u8 *frame_buf) 1708 { 1709 struct ieee80211_local *local = sdata->local; 1710 struct sk_buff *skb; 1711 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1712 1713 /* build frame */ 1714 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1715 mgmt->duration = 0; /* initialize only */ 1716 mgmt->seq_ctrl = 0; /* initialize only */ 1717 memcpy(mgmt->da, da, ETH_ALEN); 1718 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1719 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1720 /* u.deauth.reason_code == u.disassoc.reason_code */ 1721 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1722 1723 if (send_frame) { 1724 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1725 IEEE80211_DEAUTH_FRAME_LEN); 1726 if (!skb) 1727 return; 1728 1729 skb_reserve(skb, local->hw.extra_tx_headroom); 1730 1731 /* copy in frame */ 1732 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1733 1734 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1735 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1736 IEEE80211_SKB_CB(skb)->flags |= 1737 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1738 1739 ieee80211_tx_skb(sdata, skb); 1740 } 1741 } 1742 1743 static u8 *ieee80211_write_he_6ghz_cap(u8 *pos, __le16 cap, u8 *end) 1744 { 1745 if ((end - pos) < 5) 1746 return pos; 1747 1748 *pos++ = WLAN_EID_EXTENSION; 1749 *pos++ = 1 + sizeof(cap); 1750 *pos++ = WLAN_EID_EXT_HE_6GHZ_CAPA; 1751 memcpy(pos, &cap, sizeof(cap)); 1752 1753 return pos + 2; 1754 } 1755 1756 static int ieee80211_build_preq_ies_band(struct ieee80211_sub_if_data *sdata, 1757 u8 *buffer, size_t buffer_len, 1758 const u8 *ie, size_t ie_len, 1759 enum nl80211_band band, 1760 u32 rate_mask, 1761 struct cfg80211_chan_def *chandef, 1762 size_t *offset, u32 flags) 1763 { 1764 struct ieee80211_local *local = sdata->local; 1765 struct ieee80211_supported_band *sband; 1766 const struct ieee80211_sta_he_cap *he_cap; 1767 u8 *pos = buffer, *end = buffer + buffer_len; 1768 size_t noffset; 1769 int supp_rates_len, i; 1770 u8 rates[32]; 1771 int num_rates; 1772 int ext_rates_len; 1773 int shift; 1774 u32 rate_flags; 1775 bool have_80mhz = false; 1776 1777 *offset = 0; 1778 1779 sband = local->hw.wiphy->bands[band]; 1780 if (WARN_ON_ONCE(!sband)) 1781 return 0; 1782 1783 rate_flags = ieee80211_chandef_rate_flags(chandef); 1784 shift = ieee80211_chandef_get_shift(chandef); 1785 1786 num_rates = 0; 1787 for (i = 0; i < sband->n_bitrates; i++) { 1788 if ((BIT(i) & rate_mask) == 0) 1789 continue; /* skip rate */ 1790 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 1791 continue; 1792 1793 rates[num_rates++] = 1794 (u8) DIV_ROUND_UP(sband->bitrates[i].bitrate, 1795 (1 << shift) * 5); 1796 } 1797 1798 supp_rates_len = min_t(int, num_rates, 8); 1799 1800 if (end - pos < 2 + supp_rates_len) 1801 goto out_err; 1802 *pos++ = WLAN_EID_SUPP_RATES; 1803 *pos++ = supp_rates_len; 1804 memcpy(pos, rates, supp_rates_len); 1805 pos += supp_rates_len; 1806 1807 /* insert "request information" if in custom IEs */ 1808 if (ie && ie_len) { 1809 static const u8 before_extrates[] = { 1810 WLAN_EID_SSID, 1811 WLAN_EID_SUPP_RATES, 1812 WLAN_EID_REQUEST, 1813 }; 1814 noffset = ieee80211_ie_split(ie, ie_len, 1815 before_extrates, 1816 ARRAY_SIZE(before_extrates), 1817 *offset); 1818 if (end - pos < noffset - *offset) 1819 goto out_err; 1820 memcpy(pos, ie + *offset, noffset - *offset); 1821 pos += noffset - *offset; 1822 *offset = noffset; 1823 } 1824 1825 ext_rates_len = num_rates - supp_rates_len; 1826 if (ext_rates_len > 0) { 1827 if (end - pos < 2 + ext_rates_len) 1828 goto out_err; 1829 *pos++ = WLAN_EID_EXT_SUPP_RATES; 1830 *pos++ = ext_rates_len; 1831 memcpy(pos, rates + supp_rates_len, ext_rates_len); 1832 pos += ext_rates_len; 1833 } 1834 1835 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 1836 if (end - pos < 3) 1837 goto out_err; 1838 *pos++ = WLAN_EID_DS_PARAMS; 1839 *pos++ = 1; 1840 *pos++ = ieee80211_frequency_to_channel( 1841 chandef->chan->center_freq); 1842 } 1843 1844 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 1845 goto done; 1846 1847 /* insert custom IEs that go before HT */ 1848 if (ie && ie_len) { 1849 static const u8 before_ht[] = { 1850 /* 1851 * no need to list the ones split off already 1852 * (or generated here) 1853 */ 1854 WLAN_EID_DS_PARAMS, 1855 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1856 }; 1857 noffset = ieee80211_ie_split(ie, ie_len, 1858 before_ht, ARRAY_SIZE(before_ht), 1859 *offset); 1860 if (end - pos < noffset - *offset) 1861 goto out_err; 1862 memcpy(pos, ie + *offset, noffset - *offset); 1863 pos += noffset - *offset; 1864 *offset = noffset; 1865 } 1866 1867 if (sband->ht_cap.ht_supported) { 1868 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap)) 1869 goto out_err; 1870 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 1871 sband->ht_cap.cap); 1872 } 1873 1874 /* insert custom IEs that go before VHT */ 1875 if (ie && ie_len) { 1876 static const u8 before_vht[] = { 1877 /* 1878 * no need to list the ones split off already 1879 * (or generated here) 1880 */ 1881 WLAN_EID_BSS_COEX_2040, 1882 WLAN_EID_EXT_CAPABILITY, 1883 WLAN_EID_SSID_LIST, 1884 WLAN_EID_CHANNEL_USAGE, 1885 WLAN_EID_INTERWORKING, 1886 WLAN_EID_MESH_ID, 1887 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 1888 }; 1889 noffset = ieee80211_ie_split(ie, ie_len, 1890 before_vht, ARRAY_SIZE(before_vht), 1891 *offset); 1892 if (end - pos < noffset - *offset) 1893 goto out_err; 1894 memcpy(pos, ie + *offset, noffset - *offset); 1895 pos += noffset - *offset; 1896 *offset = noffset; 1897 } 1898 1899 /* Check if any channel in this sband supports at least 80 MHz */ 1900 for (i = 0; i < sband->n_channels; i++) { 1901 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 1902 IEEE80211_CHAN_NO_80MHZ)) 1903 continue; 1904 1905 have_80mhz = true; 1906 break; 1907 } 1908 1909 if (sband->vht_cap.vht_supported && have_80mhz) { 1910 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap)) 1911 goto out_err; 1912 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 1913 sband->vht_cap.cap); 1914 } 1915 1916 /* insert custom IEs that go before HE */ 1917 if (ie && ie_len) { 1918 static const u8 before_he[] = { 1919 /* 1920 * no need to list the ones split off before VHT 1921 * or generated here 1922 */ 1923 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 1924 WLAN_EID_AP_CSN, 1925 /* TODO: add 11ah/11aj/11ak elements */ 1926 }; 1927 noffset = ieee80211_ie_split(ie, ie_len, 1928 before_he, ARRAY_SIZE(before_he), 1929 *offset); 1930 if (end - pos < noffset - *offset) 1931 goto out_err; 1932 memcpy(pos, ie + *offset, noffset - *offset); 1933 pos += noffset - *offset; 1934 *offset = noffset; 1935 } 1936 1937 he_cap = ieee80211_get_he_sta_cap(sband); 1938 if (he_cap) { 1939 pos = ieee80211_ie_build_he_cap(pos, he_cap, end); 1940 if (!pos) 1941 goto out_err; 1942 1943 if (sband->band == NL80211_BAND_6GHZ) { 1944 enum nl80211_iftype iftype = 1945 ieee80211_vif_type_p2p(&sdata->vif); 1946 __le16 cap = ieee80211_get_he_6ghz_capa(sband, iftype); 1947 1948 pos = ieee80211_write_he_6ghz_cap(pos, cap, end); 1949 } 1950 } 1951 1952 /* 1953 * If adding more here, adjust code in main.c 1954 * that calculates local->scan_ies_len. 1955 */ 1956 1957 return pos - buffer; 1958 out_err: 1959 WARN_ONCE(1, "not enough space for preq IEs\n"); 1960 done: 1961 return pos - buffer; 1962 } 1963 1964 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 1965 size_t buffer_len, 1966 struct ieee80211_scan_ies *ie_desc, 1967 const u8 *ie, size_t ie_len, 1968 u8 bands_used, u32 *rate_masks, 1969 struct cfg80211_chan_def *chandef, 1970 u32 flags) 1971 { 1972 size_t pos = 0, old_pos = 0, custom_ie_offset = 0; 1973 int i; 1974 1975 memset(ie_desc, 0, sizeof(*ie_desc)); 1976 1977 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1978 if (bands_used & BIT(i)) { 1979 pos += ieee80211_build_preq_ies_band(sdata, 1980 buffer + pos, 1981 buffer_len - pos, 1982 ie, ie_len, i, 1983 rate_masks[i], 1984 chandef, 1985 &custom_ie_offset, 1986 flags); 1987 ie_desc->ies[i] = buffer + old_pos; 1988 ie_desc->len[i] = pos - old_pos; 1989 old_pos = pos; 1990 } 1991 } 1992 1993 /* add any remaining custom IEs */ 1994 if (ie && ie_len) { 1995 if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset, 1996 "not enough space for preq custom IEs\n")) 1997 return pos; 1998 memcpy(buffer + pos, ie + custom_ie_offset, 1999 ie_len - custom_ie_offset); 2000 ie_desc->common_ies = buffer + pos; 2001 ie_desc->common_ie_len = ie_len - custom_ie_offset; 2002 pos += ie_len - custom_ie_offset; 2003 } 2004 2005 return pos; 2006 }; 2007 2008 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 2009 const u8 *src, const u8 *dst, 2010 u32 ratemask, 2011 struct ieee80211_channel *chan, 2012 const u8 *ssid, size_t ssid_len, 2013 const u8 *ie, size_t ie_len, 2014 u32 flags) 2015 { 2016 struct ieee80211_local *local = sdata->local; 2017 struct cfg80211_chan_def chandef; 2018 struct sk_buff *skb; 2019 struct ieee80211_mgmt *mgmt; 2020 int ies_len; 2021 u32 rate_masks[NUM_NL80211_BANDS] = {}; 2022 struct ieee80211_scan_ies dummy_ie_desc; 2023 2024 /* 2025 * Do not send DS Channel parameter for directed probe requests 2026 * in order to maximize the chance that we get a response. Some 2027 * badly-behaved APs don't respond when this parameter is included. 2028 */ 2029 chandef.width = sdata->vif.bss_conf.chandef.width; 2030 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 2031 chandef.chan = NULL; 2032 else 2033 chandef.chan = chan; 2034 2035 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 2036 100 + ie_len); 2037 if (!skb) 2038 return NULL; 2039 2040 rate_masks[chan->band] = ratemask; 2041 ies_len = ieee80211_build_preq_ies(sdata, skb_tail_pointer(skb), 2042 skb_tailroom(skb), &dummy_ie_desc, 2043 ie, ie_len, BIT(chan->band), 2044 rate_masks, &chandef, flags); 2045 skb_put(skb, ies_len); 2046 2047 if (dst) { 2048 mgmt = (struct ieee80211_mgmt *) skb->data; 2049 memcpy(mgmt->da, dst, ETH_ALEN); 2050 memcpy(mgmt->bssid, dst, ETH_ALEN); 2051 } 2052 2053 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 2054 2055 return skb; 2056 } 2057 2058 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 2059 struct ieee802_11_elems *elems, 2060 enum nl80211_band band, u32 *basic_rates) 2061 { 2062 struct ieee80211_supported_band *sband; 2063 size_t num_rates; 2064 u32 supp_rates, rate_flags; 2065 int i, j, shift; 2066 2067 sband = sdata->local->hw.wiphy->bands[band]; 2068 if (WARN_ON(!sband)) 2069 return 1; 2070 2071 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 2072 shift = ieee80211_vif_get_shift(&sdata->vif); 2073 2074 num_rates = sband->n_bitrates; 2075 supp_rates = 0; 2076 for (i = 0; i < elems->supp_rates_len + 2077 elems->ext_supp_rates_len; i++) { 2078 u8 rate = 0; 2079 int own_rate; 2080 bool is_basic; 2081 if (i < elems->supp_rates_len) 2082 rate = elems->supp_rates[i]; 2083 else if (elems->ext_supp_rates) 2084 rate = elems->ext_supp_rates 2085 [i - elems->supp_rates_len]; 2086 own_rate = 5 * (rate & 0x7f); 2087 is_basic = !!(rate & 0x80); 2088 2089 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 2090 continue; 2091 2092 for (j = 0; j < num_rates; j++) { 2093 int brate; 2094 if ((rate_flags & sband->bitrates[j].flags) 2095 != rate_flags) 2096 continue; 2097 2098 brate = DIV_ROUND_UP(sband->bitrates[j].bitrate, 2099 1 << shift); 2100 2101 if (brate == own_rate) { 2102 supp_rates |= BIT(j); 2103 if (basic_rates && is_basic) 2104 *basic_rates |= BIT(j); 2105 } 2106 } 2107 } 2108 return supp_rates; 2109 } 2110 2111 void ieee80211_stop_device(struct ieee80211_local *local) 2112 { 2113 ieee80211_led_radio(local, false); 2114 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 2115 2116 cancel_work_sync(&local->reconfig_filter); 2117 2118 flush_workqueue(local->workqueue); 2119 drv_stop(local); 2120 } 2121 2122 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 2123 bool aborted) 2124 { 2125 /* It's possible that we don't handle the scan completion in 2126 * time during suspend, so if it's still marked as completed 2127 * here, queue the work and flush it to clean things up. 2128 * Instead of calling the worker function directly here, we 2129 * really queue it to avoid potential races with other flows 2130 * scheduling the same work. 2131 */ 2132 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 2133 /* If coming from reconfiguration failure, abort the scan so 2134 * we don't attempt to continue a partial HW scan - which is 2135 * possible otherwise if (e.g.) the 2.4 GHz portion was the 2136 * completed scan, and a 5 GHz portion is still pending. 2137 */ 2138 if (aborted) 2139 set_bit(SCAN_ABORTED, &local->scanning); 2140 ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0); 2141 flush_delayed_work(&local->scan_work); 2142 } 2143 } 2144 2145 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 2146 { 2147 struct ieee80211_sub_if_data *sdata; 2148 struct ieee80211_chanctx *ctx; 2149 2150 /* 2151 * We get here if during resume the device can't be restarted properly. 2152 * We might also get here if this happens during HW reset, which is a 2153 * slightly different situation and we need to drop all connections in 2154 * the latter case. 2155 * 2156 * Ask cfg80211 to turn off all interfaces, this will result in more 2157 * warnings but at least we'll then get into a clean stopped state. 2158 */ 2159 2160 local->resuming = false; 2161 local->suspended = false; 2162 local->in_reconfig = false; 2163 2164 ieee80211_flush_completed_scan(local, true); 2165 2166 /* scheduled scan clearly can't be running any more, but tell 2167 * cfg80211 and clear local state 2168 */ 2169 ieee80211_sched_scan_end(local); 2170 2171 list_for_each_entry(sdata, &local->interfaces, list) 2172 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 2173 2174 /* Mark channel contexts as not being in the driver any more to avoid 2175 * removing them from the driver during the shutdown process... 2176 */ 2177 mutex_lock(&local->chanctx_mtx); 2178 list_for_each_entry(ctx, &local->chanctx_list, list) 2179 ctx->driver_present = false; 2180 mutex_unlock(&local->chanctx_mtx); 2181 } 2182 2183 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 2184 struct ieee80211_sub_if_data *sdata) 2185 { 2186 struct ieee80211_chanctx_conf *conf; 2187 struct ieee80211_chanctx *ctx; 2188 2189 if (!local->use_chanctx) 2190 return; 2191 2192 mutex_lock(&local->chanctx_mtx); 2193 conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2194 lockdep_is_held(&local->chanctx_mtx)); 2195 if (conf) { 2196 ctx = container_of(conf, struct ieee80211_chanctx, conf); 2197 drv_assign_vif_chanctx(local, sdata, ctx); 2198 } 2199 mutex_unlock(&local->chanctx_mtx); 2200 } 2201 2202 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 2203 { 2204 struct ieee80211_local *local = sdata->local; 2205 struct sta_info *sta; 2206 2207 /* add STAs back */ 2208 mutex_lock(&local->sta_mtx); 2209 list_for_each_entry(sta, &local->sta_list, list) { 2210 enum ieee80211_sta_state state; 2211 2212 if (!sta->uploaded || sta->sdata != sdata) 2213 continue; 2214 2215 for (state = IEEE80211_STA_NOTEXIST; 2216 state < sta->sta_state; state++) 2217 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2218 state + 1)); 2219 } 2220 mutex_unlock(&local->sta_mtx); 2221 } 2222 2223 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 2224 { 2225 struct cfg80211_nan_func *func, **funcs; 2226 int res, id, i = 0; 2227 2228 res = drv_start_nan(sdata->local, sdata, 2229 &sdata->u.nan.conf); 2230 if (WARN_ON(res)) 2231 return res; 2232 2233 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 2234 sizeof(*funcs), 2235 GFP_KERNEL); 2236 if (!funcs) 2237 return -ENOMEM; 2238 2239 /* Add all the functions: 2240 * This is a little bit ugly. We need to call a potentially sleeping 2241 * callback for each NAN function, so we can't hold the spinlock. 2242 */ 2243 spin_lock_bh(&sdata->u.nan.func_lock); 2244 2245 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 2246 funcs[i++] = func; 2247 2248 spin_unlock_bh(&sdata->u.nan.func_lock); 2249 2250 for (i = 0; funcs[i]; i++) { 2251 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 2252 if (WARN_ON(res)) 2253 ieee80211_nan_func_terminated(&sdata->vif, 2254 funcs[i]->instance_id, 2255 NL80211_NAN_FUNC_TERM_REASON_ERROR, 2256 GFP_KERNEL); 2257 } 2258 2259 kfree(funcs); 2260 2261 return 0; 2262 } 2263 2264 int ieee80211_reconfig(struct ieee80211_local *local) 2265 { 2266 struct ieee80211_hw *hw = &local->hw; 2267 struct ieee80211_sub_if_data *sdata; 2268 struct ieee80211_chanctx *ctx; 2269 struct sta_info *sta; 2270 int res, i; 2271 bool reconfig_due_to_wowlan = false; 2272 struct ieee80211_sub_if_data *sched_scan_sdata; 2273 struct cfg80211_sched_scan_request *sched_scan_req; 2274 bool sched_scan_stopped = false; 2275 bool suspended = local->suspended; 2276 2277 /* nothing to do if HW shouldn't run */ 2278 if (!local->open_count) 2279 goto wake_up; 2280 2281 #ifdef CONFIG_PM 2282 if (suspended) 2283 local->resuming = true; 2284 2285 if (local->wowlan) { 2286 /* 2287 * In the wowlan case, both mac80211 and the device 2288 * are functional when the resume op is called, so 2289 * clear local->suspended so the device could operate 2290 * normally (e.g. pass rx frames). 2291 */ 2292 local->suspended = false; 2293 res = drv_resume(local); 2294 local->wowlan = false; 2295 if (res < 0) { 2296 local->resuming = false; 2297 return res; 2298 } 2299 if (res == 0) 2300 goto wake_up; 2301 WARN_ON(res > 1); 2302 /* 2303 * res is 1, which means the driver requested 2304 * to go through a regular reset on wakeup. 2305 * restore local->suspended in this case. 2306 */ 2307 reconfig_due_to_wowlan = true; 2308 local->suspended = true; 2309 } 2310 #endif 2311 2312 /* 2313 * In case of hw_restart during suspend (without wowlan), 2314 * cancel restart work, as we are reconfiguring the device 2315 * anyway. 2316 * Note that restart_work is scheduled on a frozen workqueue, 2317 * so we can't deadlock in this case. 2318 */ 2319 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 2320 cancel_work_sync(&local->restart_work); 2321 2322 local->started = false; 2323 2324 /* 2325 * Upon resume hardware can sometimes be goofy due to 2326 * various platform / driver / bus issues, so restarting 2327 * the device may at times not work immediately. Propagate 2328 * the error. 2329 */ 2330 res = drv_start(local); 2331 if (res) { 2332 if (suspended) 2333 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 2334 else 2335 WARN(1, "Hardware became unavailable during restart.\n"); 2336 ieee80211_handle_reconfig_failure(local); 2337 return res; 2338 } 2339 2340 /* setup fragmentation threshold */ 2341 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 2342 2343 /* setup RTS threshold */ 2344 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 2345 2346 /* reset coverage class */ 2347 drv_set_coverage_class(local, hw->wiphy->coverage_class); 2348 2349 ieee80211_led_radio(local, true); 2350 ieee80211_mod_tpt_led_trig(local, 2351 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 2352 2353 /* add interfaces */ 2354 sdata = rtnl_dereference(local->monitor_sdata); 2355 if (sdata) { 2356 /* in HW restart it exists already */ 2357 WARN_ON(local->resuming); 2358 res = drv_add_interface(local, sdata); 2359 if (WARN_ON(res)) { 2360 RCU_INIT_POINTER(local->monitor_sdata, NULL); 2361 synchronize_net(); 2362 kfree(sdata); 2363 } 2364 } 2365 2366 list_for_each_entry(sdata, &local->interfaces, list) { 2367 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2368 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2369 ieee80211_sdata_running(sdata)) { 2370 res = drv_add_interface(local, sdata); 2371 if (WARN_ON(res)) 2372 break; 2373 } 2374 } 2375 2376 /* If adding any of the interfaces failed above, roll back and 2377 * report failure. 2378 */ 2379 if (res) { 2380 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 2381 list) 2382 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2383 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2384 ieee80211_sdata_running(sdata)) 2385 drv_remove_interface(local, sdata); 2386 ieee80211_handle_reconfig_failure(local); 2387 return res; 2388 } 2389 2390 /* add channel contexts */ 2391 if (local->use_chanctx) { 2392 mutex_lock(&local->chanctx_mtx); 2393 list_for_each_entry(ctx, &local->chanctx_list, list) 2394 if (ctx->replace_state != 2395 IEEE80211_CHANCTX_REPLACES_OTHER) 2396 WARN_ON(drv_add_chanctx(local, ctx)); 2397 mutex_unlock(&local->chanctx_mtx); 2398 2399 sdata = rtnl_dereference(local->monitor_sdata); 2400 if (sdata && ieee80211_sdata_running(sdata)) 2401 ieee80211_assign_chanctx(local, sdata); 2402 } 2403 2404 /* reconfigure hardware */ 2405 ieee80211_hw_config(local, ~0); 2406 2407 ieee80211_configure_filter(local); 2408 2409 /* Finally also reconfigure all the BSS information */ 2410 list_for_each_entry(sdata, &local->interfaces, list) { 2411 u32 changed; 2412 2413 if (!ieee80211_sdata_running(sdata)) 2414 continue; 2415 2416 ieee80211_assign_chanctx(local, sdata); 2417 2418 switch (sdata->vif.type) { 2419 case NL80211_IFTYPE_AP_VLAN: 2420 case NL80211_IFTYPE_MONITOR: 2421 break; 2422 case NL80211_IFTYPE_ADHOC: 2423 if (sdata->vif.bss_conf.ibss_joined) 2424 WARN_ON(drv_join_ibss(local, sdata)); 2425 fallthrough; 2426 default: 2427 ieee80211_reconfig_stations(sdata); 2428 fallthrough; 2429 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 2430 for (i = 0; i < IEEE80211_NUM_ACS; i++) 2431 drv_conf_tx(local, sdata, i, 2432 &sdata->tx_conf[i]); 2433 break; 2434 } 2435 2436 /* common change flags for all interface types */ 2437 changed = BSS_CHANGED_ERP_CTS_PROT | 2438 BSS_CHANGED_ERP_PREAMBLE | 2439 BSS_CHANGED_ERP_SLOT | 2440 BSS_CHANGED_HT | 2441 BSS_CHANGED_BASIC_RATES | 2442 BSS_CHANGED_BEACON_INT | 2443 BSS_CHANGED_BSSID | 2444 BSS_CHANGED_CQM | 2445 BSS_CHANGED_QOS | 2446 BSS_CHANGED_IDLE | 2447 BSS_CHANGED_TXPOWER | 2448 BSS_CHANGED_MCAST_RATE; 2449 2450 if (sdata->vif.mu_mimo_owner) 2451 changed |= BSS_CHANGED_MU_GROUPS; 2452 2453 switch (sdata->vif.type) { 2454 case NL80211_IFTYPE_STATION: 2455 changed |= BSS_CHANGED_ASSOC | 2456 BSS_CHANGED_ARP_FILTER | 2457 BSS_CHANGED_PS; 2458 2459 /* Re-send beacon info report to the driver */ 2460 if (sdata->u.mgd.have_beacon) 2461 changed |= BSS_CHANGED_BEACON_INFO; 2462 2463 if (sdata->vif.bss_conf.max_idle_period || 2464 sdata->vif.bss_conf.protected_keep_alive) 2465 changed |= BSS_CHANGED_KEEP_ALIVE; 2466 2467 sdata_lock(sdata); 2468 ieee80211_bss_info_change_notify(sdata, changed); 2469 sdata_unlock(sdata); 2470 break; 2471 case NL80211_IFTYPE_OCB: 2472 changed |= BSS_CHANGED_OCB; 2473 ieee80211_bss_info_change_notify(sdata, changed); 2474 break; 2475 case NL80211_IFTYPE_ADHOC: 2476 changed |= BSS_CHANGED_IBSS; 2477 fallthrough; 2478 case NL80211_IFTYPE_AP: 2479 changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS; 2480 2481 if (sdata->vif.bss_conf.ftm_responder == 1 && 2482 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2483 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2484 changed |= BSS_CHANGED_FTM_RESPONDER; 2485 2486 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2487 changed |= BSS_CHANGED_AP_PROBE_RESP; 2488 2489 if (rcu_access_pointer(sdata->u.ap.beacon)) 2490 drv_start_ap(local, sdata); 2491 } 2492 fallthrough; 2493 case NL80211_IFTYPE_MESH_POINT: 2494 if (sdata->vif.bss_conf.enable_beacon) { 2495 changed |= BSS_CHANGED_BEACON | 2496 BSS_CHANGED_BEACON_ENABLED; 2497 ieee80211_bss_info_change_notify(sdata, changed); 2498 } 2499 break; 2500 case NL80211_IFTYPE_NAN: 2501 res = ieee80211_reconfig_nan(sdata); 2502 if (res < 0) { 2503 ieee80211_handle_reconfig_failure(local); 2504 return res; 2505 } 2506 break; 2507 case NL80211_IFTYPE_AP_VLAN: 2508 case NL80211_IFTYPE_MONITOR: 2509 case NL80211_IFTYPE_P2P_DEVICE: 2510 /* nothing to do */ 2511 break; 2512 case NL80211_IFTYPE_UNSPECIFIED: 2513 case NUM_NL80211_IFTYPES: 2514 case NL80211_IFTYPE_P2P_CLIENT: 2515 case NL80211_IFTYPE_P2P_GO: 2516 case NL80211_IFTYPE_WDS: 2517 WARN_ON(1); 2518 break; 2519 } 2520 } 2521 2522 ieee80211_recalc_ps(local); 2523 2524 /* 2525 * The sta might be in psm against the ap (e.g. because 2526 * this was the state before a hw restart), so we 2527 * explicitly send a null packet in order to make sure 2528 * it'll sync against the ap (and get out of psm). 2529 */ 2530 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2531 list_for_each_entry(sdata, &local->interfaces, list) { 2532 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2533 continue; 2534 if (!sdata->u.mgd.associated) 2535 continue; 2536 2537 ieee80211_send_nullfunc(local, sdata, false); 2538 } 2539 } 2540 2541 /* APs are now beaconing, add back stations */ 2542 mutex_lock(&local->sta_mtx); 2543 list_for_each_entry(sta, &local->sta_list, list) { 2544 enum ieee80211_sta_state state; 2545 2546 if (!sta->uploaded) 2547 continue; 2548 2549 if (sta->sdata->vif.type != NL80211_IFTYPE_AP && 2550 sta->sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 2551 continue; 2552 2553 for (state = IEEE80211_STA_NOTEXIST; 2554 state < sta->sta_state; state++) 2555 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2556 state + 1)); 2557 } 2558 mutex_unlock(&local->sta_mtx); 2559 2560 /* add back keys */ 2561 list_for_each_entry(sdata, &local->interfaces, list) 2562 ieee80211_reenable_keys(sdata); 2563 2564 /* Reconfigure sched scan if it was interrupted by FW restart */ 2565 mutex_lock(&local->mtx); 2566 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2567 lockdep_is_held(&local->mtx)); 2568 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2569 lockdep_is_held(&local->mtx)); 2570 if (sched_scan_sdata && sched_scan_req) 2571 /* 2572 * Sched scan stopped, but we don't want to report it. Instead, 2573 * we're trying to reschedule. However, if more than one scan 2574 * plan was set, we cannot reschedule since we don't know which 2575 * scan plan was currently running (and some scan plans may have 2576 * already finished). 2577 */ 2578 if (sched_scan_req->n_scan_plans > 1 || 2579 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2580 sched_scan_req)) { 2581 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2582 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2583 sched_scan_stopped = true; 2584 } 2585 mutex_unlock(&local->mtx); 2586 2587 if (sched_scan_stopped) 2588 cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0); 2589 2590 wake_up: 2591 2592 if (local->monitors == local->open_count && local->monitors > 0) 2593 ieee80211_add_virtual_monitor(local); 2594 2595 /* 2596 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2597 * sessions can be established after a resume. 2598 * 2599 * Also tear down aggregation sessions since reconfiguring 2600 * them in a hardware restart scenario is not easily done 2601 * right now, and the hardware will have lost information 2602 * about the sessions, but we and the AP still think they 2603 * are active. This is really a workaround though. 2604 */ 2605 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2606 mutex_lock(&local->sta_mtx); 2607 2608 list_for_each_entry(sta, &local->sta_list, list) { 2609 if (!local->resuming) 2610 ieee80211_sta_tear_down_BA_sessions( 2611 sta, AGG_STOP_LOCAL_REQUEST); 2612 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2613 } 2614 2615 mutex_unlock(&local->sta_mtx); 2616 } 2617 2618 if (local->in_reconfig) { 2619 local->in_reconfig = false; 2620 barrier(); 2621 2622 /* Restart deferred ROCs */ 2623 mutex_lock(&local->mtx); 2624 ieee80211_start_next_roc(local); 2625 mutex_unlock(&local->mtx); 2626 2627 /* Requeue all works */ 2628 list_for_each_entry(sdata, &local->interfaces, list) 2629 ieee80211_queue_work(&local->hw, &sdata->work); 2630 } 2631 2632 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2633 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2634 false); 2635 2636 /* 2637 * If this is for hw restart things are still running. 2638 * We may want to change that later, however. 2639 */ 2640 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2641 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2642 2643 if (!suspended) 2644 return 0; 2645 2646 #ifdef CONFIG_PM 2647 /* first set suspended false, then resuming */ 2648 local->suspended = false; 2649 mb(); 2650 local->resuming = false; 2651 2652 ieee80211_flush_completed_scan(local, false); 2653 2654 if (local->open_count && !reconfig_due_to_wowlan) 2655 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2656 2657 list_for_each_entry(sdata, &local->interfaces, list) { 2658 if (!ieee80211_sdata_running(sdata)) 2659 continue; 2660 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2661 ieee80211_sta_restart(sdata); 2662 } 2663 2664 mod_timer(&local->sta_cleanup, jiffies + 1); 2665 #else 2666 WARN_ON(1); 2667 #endif 2668 2669 return 0; 2670 } 2671 2672 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 2673 { 2674 struct ieee80211_sub_if_data *sdata; 2675 struct ieee80211_local *local; 2676 struct ieee80211_key *key; 2677 2678 if (WARN_ON(!vif)) 2679 return; 2680 2681 sdata = vif_to_sdata(vif); 2682 local = sdata->local; 2683 2684 if (WARN_ON(!local->resuming)) 2685 return; 2686 2687 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2688 return; 2689 2690 sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME; 2691 2692 mutex_lock(&local->key_mtx); 2693 list_for_each_entry(key, &sdata->key_list, list) 2694 key->flags |= KEY_FLAG_TAINTED; 2695 mutex_unlock(&local->key_mtx); 2696 } 2697 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 2698 2699 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata) 2700 { 2701 struct ieee80211_local *local = sdata->local; 2702 struct ieee80211_chanctx_conf *chanctx_conf; 2703 struct ieee80211_chanctx *chanctx; 2704 2705 mutex_lock(&local->chanctx_mtx); 2706 2707 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2708 lockdep_is_held(&local->chanctx_mtx)); 2709 2710 /* 2711 * This function can be called from a work, thus it may be possible 2712 * that the chanctx_conf is removed (due to a disconnection, for 2713 * example). 2714 * So nothing should be done in such case. 2715 */ 2716 if (!chanctx_conf) 2717 goto unlock; 2718 2719 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2720 ieee80211_recalc_smps_chanctx(local, chanctx); 2721 unlock: 2722 mutex_unlock(&local->chanctx_mtx); 2723 } 2724 2725 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata) 2726 { 2727 struct ieee80211_local *local = sdata->local; 2728 struct ieee80211_chanctx_conf *chanctx_conf; 2729 struct ieee80211_chanctx *chanctx; 2730 2731 mutex_lock(&local->chanctx_mtx); 2732 2733 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2734 lockdep_is_held(&local->chanctx_mtx)); 2735 2736 if (WARN_ON_ONCE(!chanctx_conf)) 2737 goto unlock; 2738 2739 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2740 ieee80211_recalc_chanctx_min_def(local, chanctx); 2741 unlock: 2742 mutex_unlock(&local->chanctx_mtx); 2743 } 2744 2745 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 2746 { 2747 size_t pos = offset; 2748 2749 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 2750 pos += 2 + ies[pos + 1]; 2751 2752 return pos; 2753 } 2754 2755 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata, 2756 int rssi_min_thold, 2757 int rssi_max_thold) 2758 { 2759 trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold); 2760 2761 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 2762 return; 2763 2764 /* 2765 * Scale up threshold values before storing it, as the RSSI averaging 2766 * algorithm uses a scaled up value as well. Change this scaling 2767 * factor if the RSSI averaging algorithm changes. 2768 */ 2769 sdata->u.mgd.rssi_min_thold = rssi_min_thold*16; 2770 sdata->u.mgd.rssi_max_thold = rssi_max_thold*16; 2771 } 2772 2773 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif, 2774 int rssi_min_thold, 2775 int rssi_max_thold) 2776 { 2777 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2778 2779 WARN_ON(rssi_min_thold == rssi_max_thold || 2780 rssi_min_thold > rssi_max_thold); 2781 2782 _ieee80211_enable_rssi_reports(sdata, rssi_min_thold, 2783 rssi_max_thold); 2784 } 2785 EXPORT_SYMBOL(ieee80211_enable_rssi_reports); 2786 2787 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif) 2788 { 2789 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2790 2791 _ieee80211_enable_rssi_reports(sdata, 0, 0); 2792 } 2793 EXPORT_SYMBOL(ieee80211_disable_rssi_reports); 2794 2795 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2796 u16 cap) 2797 { 2798 __le16 tmp; 2799 2800 *pos++ = WLAN_EID_HT_CAPABILITY; 2801 *pos++ = sizeof(struct ieee80211_ht_cap); 2802 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 2803 2804 /* capability flags */ 2805 tmp = cpu_to_le16(cap); 2806 memcpy(pos, &tmp, sizeof(u16)); 2807 pos += sizeof(u16); 2808 2809 /* AMPDU parameters */ 2810 *pos++ = ht_cap->ampdu_factor | 2811 (ht_cap->ampdu_density << 2812 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 2813 2814 /* MCS set */ 2815 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 2816 pos += sizeof(ht_cap->mcs); 2817 2818 /* extended capabilities */ 2819 pos += sizeof(__le16); 2820 2821 /* BF capabilities */ 2822 pos += sizeof(__le32); 2823 2824 /* antenna selection */ 2825 pos += sizeof(u8); 2826 2827 return pos; 2828 } 2829 2830 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2831 u32 cap) 2832 { 2833 __le32 tmp; 2834 2835 *pos++ = WLAN_EID_VHT_CAPABILITY; 2836 *pos++ = sizeof(struct ieee80211_vht_cap); 2837 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 2838 2839 /* capability flags */ 2840 tmp = cpu_to_le32(cap); 2841 memcpy(pos, &tmp, sizeof(u32)); 2842 pos += sizeof(u32); 2843 2844 /* VHT MCS set */ 2845 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 2846 pos += sizeof(vht_cap->vht_mcs); 2847 2848 return pos; 2849 } 2850 2851 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 2852 { 2853 const struct ieee80211_sta_he_cap *he_cap; 2854 struct ieee80211_supported_band *sband; 2855 u8 n; 2856 2857 sband = ieee80211_get_sband(sdata); 2858 if (!sband) 2859 return 0; 2860 2861 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 2862 if (!he_cap) 2863 return 0; 2864 2865 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2866 return 2 + 1 + 2867 sizeof(he_cap->he_cap_elem) + n + 2868 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2869 he_cap->he_cap_elem.phy_cap_info); 2870 } 2871 2872 u8 *ieee80211_ie_build_he_cap(u8 *pos, 2873 const struct ieee80211_sta_he_cap *he_cap, 2874 u8 *end) 2875 { 2876 u8 n; 2877 u8 ie_len; 2878 u8 *orig_pos = pos; 2879 2880 /* Make sure we have place for the IE */ 2881 /* 2882 * TODO: the 1 added is because this temporarily is under the EXTENSION 2883 * IE. Get rid of it when it moves. 2884 */ 2885 if (!he_cap) 2886 return orig_pos; 2887 2888 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2889 ie_len = 2 + 1 + 2890 sizeof(he_cap->he_cap_elem) + n + 2891 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2892 he_cap->he_cap_elem.phy_cap_info); 2893 2894 if ((end - pos) < ie_len) 2895 return orig_pos; 2896 2897 *pos++ = WLAN_EID_EXTENSION; 2898 pos++; /* We'll set the size later below */ 2899 *pos++ = WLAN_EID_EXT_HE_CAPABILITY; 2900 2901 /* Fixed data */ 2902 memcpy(pos, &he_cap->he_cap_elem, sizeof(he_cap->he_cap_elem)); 2903 pos += sizeof(he_cap->he_cap_elem); 2904 2905 memcpy(pos, &he_cap->he_mcs_nss_supp, n); 2906 pos += n; 2907 2908 /* Check if PPE Threshold should be present */ 2909 if ((he_cap->he_cap_elem.phy_cap_info[6] & 2910 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 2911 goto end; 2912 2913 /* 2914 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 2915 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 2916 */ 2917 n = hweight8(he_cap->ppe_thres[0] & 2918 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 2919 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 2920 IEEE80211_PPE_THRES_NSS_POS)); 2921 2922 /* 2923 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 2924 * total size. 2925 */ 2926 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 2927 n = DIV_ROUND_UP(n, 8); 2928 2929 /* Copy PPE Thresholds */ 2930 memcpy(pos, &he_cap->ppe_thres, n); 2931 pos += n; 2932 2933 end: 2934 orig_pos[1] = (pos - orig_pos) - 2; 2935 return pos; 2936 } 2937 2938 void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata, 2939 struct sk_buff *skb) 2940 { 2941 struct ieee80211_supported_band *sband; 2942 const struct ieee80211_sband_iftype_data *iftd; 2943 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 2944 u8 *pos; 2945 u16 cap; 2946 2947 sband = ieee80211_get_sband(sdata); 2948 if (!sband) 2949 return; 2950 2951 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 2952 if (WARN_ON(!iftd)) 2953 return; 2954 2955 /* Check for device HE 6 GHz capability before adding element */ 2956 if (!iftd->he_6ghz_capa.capa) 2957 return; 2958 2959 cap = le16_to_cpu(iftd->he_6ghz_capa.capa); 2960 cap &= ~IEEE80211_HE_6GHZ_CAP_SM_PS; 2961 2962 switch (sdata->smps_mode) { 2963 case IEEE80211_SMPS_AUTOMATIC: 2964 case IEEE80211_SMPS_NUM_MODES: 2965 WARN_ON(1); 2966 fallthrough; 2967 case IEEE80211_SMPS_OFF: 2968 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 2969 IEEE80211_HE_6GHZ_CAP_SM_PS); 2970 break; 2971 case IEEE80211_SMPS_STATIC: 2972 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 2973 IEEE80211_HE_6GHZ_CAP_SM_PS); 2974 break; 2975 case IEEE80211_SMPS_DYNAMIC: 2976 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 2977 IEEE80211_HE_6GHZ_CAP_SM_PS); 2978 break; 2979 } 2980 2981 pos = skb_put(skb, 2 + 1 + sizeof(cap)); 2982 ieee80211_write_he_6ghz_cap(pos, cpu_to_le16(cap), 2983 pos + 2 + 1 + sizeof(cap)); 2984 } 2985 2986 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2987 const struct cfg80211_chan_def *chandef, 2988 u16 prot_mode, bool rifs_mode) 2989 { 2990 struct ieee80211_ht_operation *ht_oper; 2991 /* Build HT Information */ 2992 *pos++ = WLAN_EID_HT_OPERATION; 2993 *pos++ = sizeof(struct ieee80211_ht_operation); 2994 ht_oper = (struct ieee80211_ht_operation *)pos; 2995 ht_oper->primary_chan = ieee80211_frequency_to_channel( 2996 chandef->chan->center_freq); 2997 switch (chandef->width) { 2998 case NL80211_CHAN_WIDTH_160: 2999 case NL80211_CHAN_WIDTH_80P80: 3000 case NL80211_CHAN_WIDTH_80: 3001 case NL80211_CHAN_WIDTH_40: 3002 if (chandef->center_freq1 > chandef->chan->center_freq) 3003 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3004 else 3005 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3006 break; 3007 default: 3008 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 3009 break; 3010 } 3011 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 3012 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 3013 chandef->width != NL80211_CHAN_WIDTH_20) 3014 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 3015 3016 if (rifs_mode) 3017 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 3018 3019 ht_oper->operation_mode = cpu_to_le16(prot_mode); 3020 ht_oper->stbc_param = 0x0000; 3021 3022 /* It seems that Basic MCS set and Supported MCS set 3023 are identical for the first 10 bytes */ 3024 memset(&ht_oper->basic_set, 0, 16); 3025 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 3026 3027 return pos + sizeof(struct ieee80211_ht_operation); 3028 } 3029 3030 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 3031 const struct cfg80211_chan_def *chandef) 3032 { 3033 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 3034 *pos++ = 3; /* IE length */ 3035 /* New channel width */ 3036 switch (chandef->width) { 3037 case NL80211_CHAN_WIDTH_80: 3038 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 3039 break; 3040 case NL80211_CHAN_WIDTH_160: 3041 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 3042 break; 3043 case NL80211_CHAN_WIDTH_80P80: 3044 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 3045 break; 3046 default: 3047 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 3048 } 3049 3050 /* new center frequency segment 0 */ 3051 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 3052 /* new center frequency segment 1 */ 3053 if (chandef->center_freq2) 3054 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 3055 else 3056 *pos++ = 0; 3057 } 3058 3059 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 3060 const struct cfg80211_chan_def *chandef) 3061 { 3062 struct ieee80211_vht_operation *vht_oper; 3063 3064 *pos++ = WLAN_EID_VHT_OPERATION; 3065 *pos++ = sizeof(struct ieee80211_vht_operation); 3066 vht_oper = (struct ieee80211_vht_operation *)pos; 3067 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 3068 chandef->center_freq1); 3069 if (chandef->center_freq2) 3070 vht_oper->center_freq_seg1_idx = 3071 ieee80211_frequency_to_channel(chandef->center_freq2); 3072 else 3073 vht_oper->center_freq_seg1_idx = 0x00; 3074 3075 switch (chandef->width) { 3076 case NL80211_CHAN_WIDTH_160: 3077 /* 3078 * Convert 160 MHz channel width to new style as interop 3079 * workaround. 3080 */ 3081 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3082 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 3083 if (chandef->chan->center_freq < chandef->center_freq1) 3084 vht_oper->center_freq_seg0_idx -= 8; 3085 else 3086 vht_oper->center_freq_seg0_idx += 8; 3087 break; 3088 case NL80211_CHAN_WIDTH_80P80: 3089 /* 3090 * Convert 80+80 MHz channel width to new style as interop 3091 * workaround. 3092 */ 3093 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3094 break; 3095 case NL80211_CHAN_WIDTH_80: 3096 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3097 break; 3098 default: 3099 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 3100 break; 3101 } 3102 3103 /* don't require special VHT peer rates */ 3104 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 3105 3106 return pos + sizeof(struct ieee80211_vht_operation); 3107 } 3108 3109 u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef) 3110 { 3111 struct ieee80211_he_operation *he_oper; 3112 struct ieee80211_he_6ghz_oper *he_6ghz_op; 3113 u32 he_oper_params; 3114 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 3115 3116 if (chandef->chan->band == NL80211_BAND_6GHZ) 3117 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 3118 3119 *pos++ = WLAN_EID_EXTENSION; 3120 *pos++ = ie_len; 3121 *pos++ = WLAN_EID_EXT_HE_OPERATION; 3122 3123 he_oper_params = 0; 3124 he_oper_params |= u32_encode_bits(1023, /* disabled */ 3125 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 3126 he_oper_params |= u32_encode_bits(1, 3127 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 3128 he_oper_params |= u32_encode_bits(1, 3129 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 3130 if (chandef->chan->band == NL80211_BAND_6GHZ) 3131 he_oper_params |= u32_encode_bits(1, 3132 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 3133 3134 he_oper = (struct ieee80211_he_operation *)pos; 3135 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 3136 3137 /* don't require special HE peer rates */ 3138 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 3139 pos += sizeof(struct ieee80211_he_operation); 3140 3141 if (chandef->chan->band != NL80211_BAND_6GHZ) 3142 goto out; 3143 3144 /* TODO add VHT operational */ 3145 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 3146 he_6ghz_op->minrate = 6; /* 6 Mbps */ 3147 he_6ghz_op->primary = 3148 ieee80211_frequency_to_channel(chandef->chan->center_freq); 3149 he_6ghz_op->ccfs0 = 3150 ieee80211_frequency_to_channel(chandef->center_freq1); 3151 if (chandef->center_freq2) 3152 he_6ghz_op->ccfs1 = 3153 ieee80211_frequency_to_channel(chandef->center_freq2); 3154 else 3155 he_6ghz_op->ccfs1 = 0; 3156 3157 switch (chandef->width) { 3158 case NL80211_CHAN_WIDTH_160: 3159 /* Convert 160 MHz channel width to new style as interop 3160 * workaround. 3161 */ 3162 he_6ghz_op->control = 3163 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3164 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 3165 if (chandef->chan->center_freq < chandef->center_freq1) 3166 he_6ghz_op->ccfs0 -= 8; 3167 else 3168 he_6ghz_op->ccfs0 += 8; 3169 fallthrough; 3170 case NL80211_CHAN_WIDTH_80P80: 3171 he_6ghz_op->control = 3172 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3173 break; 3174 case NL80211_CHAN_WIDTH_80: 3175 he_6ghz_op->control = 3176 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 3177 break; 3178 case NL80211_CHAN_WIDTH_40: 3179 he_6ghz_op->control = 3180 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 3181 break; 3182 default: 3183 he_6ghz_op->control = 3184 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 3185 break; 3186 } 3187 3188 pos += sizeof(struct ieee80211_he_6ghz_oper); 3189 3190 out: 3191 return pos; 3192 } 3193 3194 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 3195 struct cfg80211_chan_def *chandef) 3196 { 3197 enum nl80211_channel_type channel_type; 3198 3199 if (!ht_oper) 3200 return false; 3201 3202 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 3203 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 3204 channel_type = NL80211_CHAN_HT20; 3205 break; 3206 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 3207 channel_type = NL80211_CHAN_HT40PLUS; 3208 break; 3209 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 3210 channel_type = NL80211_CHAN_HT40MINUS; 3211 break; 3212 default: 3213 channel_type = NL80211_CHAN_NO_HT; 3214 return false; 3215 } 3216 3217 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 3218 return true; 3219 } 3220 3221 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 3222 const struct ieee80211_vht_operation *oper, 3223 const struct ieee80211_ht_operation *htop, 3224 struct cfg80211_chan_def *chandef) 3225 { 3226 struct cfg80211_chan_def new = *chandef; 3227 int cf0, cf1; 3228 int ccfs0, ccfs1, ccfs2; 3229 int ccf0, ccf1; 3230 u32 vht_cap; 3231 bool support_80_80 = false; 3232 bool support_160 = false; 3233 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 3234 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 3235 u8 supp_chwidth = u32_get_bits(vht_cap_info, 3236 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 3237 3238 if (!oper || !htop) 3239 return false; 3240 3241 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 3242 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 3243 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 3244 support_80_80 = ((vht_cap & 3245 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 3246 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 3247 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 3248 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 3249 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 3250 ccfs0 = oper->center_freq_seg0_idx; 3251 ccfs1 = oper->center_freq_seg1_idx; 3252 ccfs2 = (le16_to_cpu(htop->operation_mode) & 3253 IEEE80211_HT_OP_MODE_CCFS2_MASK) 3254 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 3255 3256 ccf0 = ccfs0; 3257 3258 /* if not supported, parse as though we didn't understand it */ 3259 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 3260 ext_nss_bw_supp = 0; 3261 3262 /* 3263 * Cf. IEEE 802.11 Table 9-250 3264 * 3265 * We really just consider that because it's inefficient to connect 3266 * at a higher bandwidth than we'll actually be able to use. 3267 */ 3268 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 3269 default: 3270 case 0x00: 3271 ccf1 = 0; 3272 support_160 = false; 3273 support_80_80 = false; 3274 break; 3275 case 0x01: 3276 support_80_80 = false; 3277 fallthrough; 3278 case 0x02: 3279 case 0x03: 3280 ccf1 = ccfs2; 3281 break; 3282 case 0x10: 3283 ccf1 = ccfs1; 3284 break; 3285 case 0x11: 3286 case 0x12: 3287 if (!ccfs1) 3288 ccf1 = ccfs2; 3289 else 3290 ccf1 = ccfs1; 3291 break; 3292 case 0x13: 3293 case 0x20: 3294 case 0x23: 3295 ccf1 = ccfs1; 3296 break; 3297 } 3298 3299 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3300 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3301 3302 switch (oper->chan_width) { 3303 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3304 /* just use HT information directly */ 3305 break; 3306 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3307 new.width = NL80211_CHAN_WIDTH_80; 3308 new.center_freq1 = cf0; 3309 /* If needed, adjust based on the newer interop workaround. */ 3310 if (ccf1) { 3311 unsigned int diff; 3312 3313 diff = abs(ccf1 - ccf0); 3314 if ((diff == 8) && support_160) { 3315 new.width = NL80211_CHAN_WIDTH_160; 3316 new.center_freq1 = cf1; 3317 } else if ((diff > 8) && support_80_80) { 3318 new.width = NL80211_CHAN_WIDTH_80P80; 3319 new.center_freq2 = cf1; 3320 } 3321 } 3322 break; 3323 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3324 /* deprecated encoding */ 3325 new.width = NL80211_CHAN_WIDTH_160; 3326 new.center_freq1 = cf0; 3327 break; 3328 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3329 /* deprecated encoding */ 3330 new.width = NL80211_CHAN_WIDTH_80P80; 3331 new.center_freq1 = cf0; 3332 new.center_freq2 = cf1; 3333 break; 3334 default: 3335 return false; 3336 } 3337 3338 if (!cfg80211_chandef_valid(&new)) 3339 return false; 3340 3341 *chandef = new; 3342 return true; 3343 } 3344 3345 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata, 3346 const struct ieee80211_he_operation *he_oper, 3347 struct cfg80211_chan_def *chandef) 3348 { 3349 struct ieee80211_local *local = sdata->local; 3350 struct ieee80211_supported_band *sband; 3351 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3352 const struct ieee80211_sta_he_cap *he_cap; 3353 struct cfg80211_chan_def he_chandef = *chandef; 3354 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3355 bool support_80_80, support_160; 3356 u8 he_phy_cap; 3357 u32 freq; 3358 3359 if (chandef->chan->band != NL80211_BAND_6GHZ) 3360 return true; 3361 3362 sband = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3363 3364 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 3365 if (!he_cap) { 3366 sdata_info(sdata, "Missing iftype sband data/HE cap"); 3367 return false; 3368 } 3369 3370 he_phy_cap = he_cap->he_cap_elem.phy_cap_info[0]; 3371 support_160 = 3372 he_phy_cap & 3373 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 3374 support_80_80 = 3375 he_phy_cap & 3376 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 3377 3378 if (!he_oper) { 3379 sdata_info(sdata, 3380 "HE is not advertised on (on %d MHz), expect issues\n", 3381 chandef->chan->center_freq); 3382 return false; 3383 } 3384 3385 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3386 3387 if (!he_6ghz_oper) { 3388 sdata_info(sdata, 3389 "HE 6GHz operation missing (on %d MHz), expect issues\n", 3390 chandef->chan->center_freq); 3391 return false; 3392 } 3393 3394 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3395 NL80211_BAND_6GHZ); 3396 he_chandef.chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq); 3397 3398 switch (u8_get_bits(he_6ghz_oper->control, 3399 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3400 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3401 he_chandef.width = NL80211_CHAN_WIDTH_20; 3402 break; 3403 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3404 he_chandef.width = NL80211_CHAN_WIDTH_40; 3405 break; 3406 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3407 he_chandef.width = NL80211_CHAN_WIDTH_80; 3408 break; 3409 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3410 he_chandef.width = NL80211_CHAN_WIDTH_80; 3411 if (!he_6ghz_oper->ccfs1) 3412 break; 3413 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) { 3414 if (support_160) 3415 he_chandef.width = NL80211_CHAN_WIDTH_160; 3416 } else { 3417 if (support_80_80) 3418 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3419 } 3420 break; 3421 } 3422 3423 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3424 he_chandef.center_freq1 = 3425 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3426 NL80211_BAND_6GHZ); 3427 } else { 3428 he_chandef.center_freq1 = 3429 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3430 NL80211_BAND_6GHZ); 3431 if (support_80_80 || support_160) 3432 he_chandef.center_freq2 = 3433 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3434 NL80211_BAND_6GHZ); 3435 } 3436 3437 if (!cfg80211_chandef_valid(&he_chandef)) { 3438 sdata_info(sdata, 3439 "HE 6GHz operation resulted in invalid chandef: %d MHz/%d/%d MHz/%d MHz\n", 3440 he_chandef.chan ? he_chandef.chan->center_freq : 0, 3441 he_chandef.width, 3442 he_chandef.center_freq1, 3443 he_chandef.center_freq2); 3444 return false; 3445 } 3446 3447 *chandef = he_chandef; 3448 3449 return true; 3450 } 3451 3452 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, 3453 struct cfg80211_chan_def *chandef) 3454 { 3455 u32 oper_freq; 3456 3457 if (!oper) 3458 return false; 3459 3460 switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { 3461 case IEEE80211_S1G_CHANWIDTH_1MHZ: 3462 chandef->width = NL80211_CHAN_WIDTH_1; 3463 break; 3464 case IEEE80211_S1G_CHANWIDTH_2MHZ: 3465 chandef->width = NL80211_CHAN_WIDTH_2; 3466 break; 3467 case IEEE80211_S1G_CHANWIDTH_4MHZ: 3468 chandef->width = NL80211_CHAN_WIDTH_4; 3469 break; 3470 case IEEE80211_S1G_CHANWIDTH_8MHZ: 3471 chandef->width = NL80211_CHAN_WIDTH_8; 3472 break; 3473 case IEEE80211_S1G_CHANWIDTH_16MHZ: 3474 chandef->width = NL80211_CHAN_WIDTH_16; 3475 break; 3476 default: 3477 return false; 3478 } 3479 3480 oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch, 3481 NL80211_BAND_S1GHZ); 3482 chandef->center_freq1 = KHZ_TO_MHZ(oper_freq); 3483 chandef->freq1_offset = oper_freq % 1000; 3484 3485 return true; 3486 } 3487 3488 int ieee80211_parse_bitrates(struct cfg80211_chan_def *chandef, 3489 const struct ieee80211_supported_band *sband, 3490 const u8 *srates, int srates_len, u32 *rates) 3491 { 3492 u32 rate_flags = ieee80211_chandef_rate_flags(chandef); 3493 int shift = ieee80211_chandef_get_shift(chandef); 3494 struct ieee80211_rate *br; 3495 int brate, rate, i, j, count = 0; 3496 3497 *rates = 0; 3498 3499 for (i = 0; i < srates_len; i++) { 3500 rate = srates[i] & 0x7f; 3501 3502 for (j = 0; j < sband->n_bitrates; j++) { 3503 br = &sband->bitrates[j]; 3504 if ((rate_flags & br->flags) != rate_flags) 3505 continue; 3506 3507 brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5); 3508 if (brate == rate) { 3509 *rates |= BIT(j); 3510 count++; 3511 break; 3512 } 3513 } 3514 } 3515 return count; 3516 } 3517 3518 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, 3519 struct sk_buff *skb, bool need_basic, 3520 enum nl80211_band band) 3521 { 3522 struct ieee80211_local *local = sdata->local; 3523 struct ieee80211_supported_band *sband; 3524 int rate, shift; 3525 u8 i, rates, *pos; 3526 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3527 u32 rate_flags; 3528 3529 shift = ieee80211_vif_get_shift(&sdata->vif); 3530 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3531 sband = local->hw.wiphy->bands[band]; 3532 rates = 0; 3533 for (i = 0; i < sband->n_bitrates; i++) { 3534 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3535 continue; 3536 rates++; 3537 } 3538 if (rates > 8) 3539 rates = 8; 3540 3541 if (skb_tailroom(skb) < rates + 2) 3542 return -ENOMEM; 3543 3544 pos = skb_put(skb, rates + 2); 3545 *pos++ = WLAN_EID_SUPP_RATES; 3546 *pos++ = rates; 3547 for (i = 0; i < rates; i++) { 3548 u8 basic = 0; 3549 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3550 continue; 3551 3552 if (need_basic && basic_rates & BIT(i)) 3553 basic = 0x80; 3554 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3555 5 * (1 << shift)); 3556 *pos++ = basic | (u8) rate; 3557 } 3558 3559 return 0; 3560 } 3561 3562 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, 3563 struct sk_buff *skb, bool need_basic, 3564 enum nl80211_band band) 3565 { 3566 struct ieee80211_local *local = sdata->local; 3567 struct ieee80211_supported_band *sband; 3568 int rate, shift; 3569 u8 i, exrates, *pos; 3570 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3571 u32 rate_flags; 3572 3573 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3574 shift = ieee80211_vif_get_shift(&sdata->vif); 3575 3576 sband = local->hw.wiphy->bands[band]; 3577 exrates = 0; 3578 for (i = 0; i < sband->n_bitrates; i++) { 3579 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3580 continue; 3581 exrates++; 3582 } 3583 3584 if (exrates > 8) 3585 exrates -= 8; 3586 else 3587 exrates = 0; 3588 3589 if (skb_tailroom(skb) < exrates + 2) 3590 return -ENOMEM; 3591 3592 if (exrates) { 3593 pos = skb_put(skb, exrates + 2); 3594 *pos++ = WLAN_EID_EXT_SUPP_RATES; 3595 *pos++ = exrates; 3596 for (i = 8; i < sband->n_bitrates; i++) { 3597 u8 basic = 0; 3598 if ((rate_flags & sband->bitrates[i].flags) 3599 != rate_flags) 3600 continue; 3601 if (need_basic && basic_rates & BIT(i)) 3602 basic = 0x80; 3603 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3604 5 * (1 << shift)); 3605 *pos++ = basic | (u8) rate; 3606 } 3607 } 3608 return 0; 3609 } 3610 3611 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 3612 { 3613 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 3614 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 3615 3616 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) { 3617 /* non-managed type inferfaces */ 3618 return 0; 3619 } 3620 return -ewma_beacon_signal_read(&ifmgd->ave_beacon_signal); 3621 } 3622 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 3623 3624 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 3625 { 3626 if (!mcs) 3627 return 1; 3628 3629 /* TODO: consider rx_highest */ 3630 3631 if (mcs->rx_mask[3]) 3632 return 4; 3633 if (mcs->rx_mask[2]) 3634 return 3; 3635 if (mcs->rx_mask[1]) 3636 return 2; 3637 return 1; 3638 } 3639 3640 /** 3641 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 3642 * @local: mac80211 hw info struct 3643 * @status: RX status 3644 * @mpdu_len: total MPDU length (including FCS) 3645 * @mpdu_offset: offset into MPDU to calculate timestamp at 3646 * 3647 * This function calculates the RX timestamp at the given MPDU offset, taking 3648 * into account what the RX timestamp was. An offset of 0 will just normalize 3649 * the timestamp to TSF at beginning of MPDU reception. 3650 */ 3651 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 3652 struct ieee80211_rx_status *status, 3653 unsigned int mpdu_len, 3654 unsigned int mpdu_offset) 3655 { 3656 u64 ts = status->mactime; 3657 struct rate_info ri; 3658 u16 rate; 3659 u8 n_ltf; 3660 3661 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 3662 return 0; 3663 3664 memset(&ri, 0, sizeof(ri)); 3665 3666 ri.bw = status->bw; 3667 3668 /* Fill cfg80211 rate info */ 3669 switch (status->encoding) { 3670 case RX_ENC_HE: 3671 ri.flags |= RATE_INFO_FLAGS_HE_MCS; 3672 ri.mcs = status->rate_idx; 3673 ri.nss = status->nss; 3674 ri.he_ru_alloc = status->he_ru; 3675 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3676 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3677 3678 /* 3679 * See P802.11ax_D6.0, section 27.3.4 for 3680 * VHT PPDU format. 3681 */ 3682 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3683 mpdu_offset += 2; 3684 ts += 36; 3685 3686 /* 3687 * TODO: 3688 * For HE MU PPDU, add the HE-SIG-B. 3689 * For HE ER PPDU, add 8us for the HE-SIG-A. 3690 * For HE TB PPDU, add 4us for the HE-STF. 3691 * Add the HE-LTF durations - variable. 3692 */ 3693 } 3694 3695 break; 3696 case RX_ENC_HT: 3697 ri.mcs = status->rate_idx; 3698 ri.flags |= RATE_INFO_FLAGS_MCS; 3699 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3700 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3701 3702 /* 3703 * See P802.11REVmd_D3.0, section 19.3.2 for 3704 * HT PPDU format. 3705 */ 3706 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3707 mpdu_offset += 2; 3708 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 3709 ts += 24; 3710 else 3711 ts += 32; 3712 3713 /* 3714 * Add Data HT-LTFs per streams 3715 * TODO: add Extension HT-LTFs, 4us per LTF 3716 */ 3717 n_ltf = ((ri.mcs >> 3) & 3) + 1; 3718 n_ltf = n_ltf == 3 ? 4 : n_ltf; 3719 ts += n_ltf * 4; 3720 } 3721 3722 break; 3723 case RX_ENC_VHT: 3724 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 3725 ri.mcs = status->rate_idx; 3726 ri.nss = status->nss; 3727 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3728 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3729 3730 /* 3731 * See P802.11REVmd_D3.0, section 21.3.2 for 3732 * VHT PPDU format. 3733 */ 3734 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3735 mpdu_offset += 2; 3736 ts += 36; 3737 3738 /* 3739 * Add VHT-LTFs per streams 3740 */ 3741 n_ltf = (ri.nss != 1) && (ri.nss % 2) ? 3742 ri.nss + 1 : ri.nss; 3743 ts += 4 * n_ltf; 3744 } 3745 3746 break; 3747 default: 3748 WARN_ON(1); 3749 fallthrough; 3750 case RX_ENC_LEGACY: { 3751 struct ieee80211_supported_band *sband; 3752 int shift = 0; 3753 int bitrate; 3754 3755 switch (status->bw) { 3756 case RATE_INFO_BW_10: 3757 shift = 1; 3758 break; 3759 case RATE_INFO_BW_5: 3760 shift = 2; 3761 break; 3762 } 3763 3764 sband = local->hw.wiphy->bands[status->band]; 3765 bitrate = sband->bitrates[status->rate_idx].bitrate; 3766 ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift)); 3767 3768 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3769 if (status->band == NL80211_BAND_5GHZ) { 3770 ts += 20 << shift; 3771 mpdu_offset += 2; 3772 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 3773 ts += 96; 3774 } else { 3775 ts += 192; 3776 } 3777 } 3778 break; 3779 } 3780 } 3781 3782 rate = cfg80211_calculate_bitrate(&ri); 3783 if (WARN_ONCE(!rate, 3784 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 3785 (unsigned long long)status->flag, status->rate_idx, 3786 status->nss)) 3787 return 0; 3788 3789 /* rewind from end of MPDU */ 3790 if (status->flag & RX_FLAG_MACTIME_END) 3791 ts -= mpdu_len * 8 * 10 / rate; 3792 3793 ts += mpdu_offset * 8 * 10 / rate; 3794 3795 return ts; 3796 } 3797 3798 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) 3799 { 3800 struct ieee80211_sub_if_data *sdata; 3801 struct cfg80211_chan_def chandef; 3802 3803 /* for interface list, to avoid linking iflist_mtx and chanctx_mtx */ 3804 lockdep_assert_wiphy(local->hw.wiphy); 3805 3806 mutex_lock(&local->mtx); 3807 list_for_each_entry(sdata, &local->interfaces, list) { 3808 /* it might be waiting for the local->mtx, but then 3809 * by the time it gets it, sdata->wdev.cac_started 3810 * will no longer be true 3811 */ 3812 cancel_delayed_work(&sdata->dfs_cac_timer_work); 3813 3814 if (sdata->wdev.cac_started) { 3815 chandef = sdata->vif.bss_conf.chandef; 3816 ieee80211_vif_release_channel(sdata); 3817 cfg80211_cac_event(sdata->dev, 3818 &chandef, 3819 NL80211_RADAR_CAC_ABORTED, 3820 GFP_KERNEL); 3821 } 3822 } 3823 mutex_unlock(&local->mtx); 3824 } 3825 3826 void ieee80211_dfs_radar_detected_work(struct work_struct *work) 3827 { 3828 struct ieee80211_local *local = 3829 container_of(work, struct ieee80211_local, radar_detected_work); 3830 struct cfg80211_chan_def chandef = local->hw.conf.chandef; 3831 struct ieee80211_chanctx *ctx; 3832 int num_chanctx = 0; 3833 3834 mutex_lock(&local->chanctx_mtx); 3835 list_for_each_entry(ctx, &local->chanctx_list, list) { 3836 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 3837 continue; 3838 3839 num_chanctx++; 3840 chandef = ctx->conf.def; 3841 } 3842 mutex_unlock(&local->chanctx_mtx); 3843 3844 wiphy_lock(local->hw.wiphy); 3845 ieee80211_dfs_cac_cancel(local); 3846 wiphy_unlock(local->hw.wiphy); 3847 3848 if (num_chanctx > 1) 3849 /* XXX: multi-channel is not supported yet */ 3850 WARN_ON(1); 3851 else 3852 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 3853 } 3854 3855 void ieee80211_radar_detected(struct ieee80211_hw *hw) 3856 { 3857 struct ieee80211_local *local = hw_to_local(hw); 3858 3859 trace_api_radar_detected(local); 3860 3861 schedule_work(&local->radar_detected_work); 3862 } 3863 EXPORT_SYMBOL(ieee80211_radar_detected); 3864 3865 u32 ieee80211_chandef_downgrade(struct cfg80211_chan_def *c) 3866 { 3867 u32 ret; 3868 int tmp; 3869 3870 switch (c->width) { 3871 case NL80211_CHAN_WIDTH_20: 3872 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3873 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3874 break; 3875 case NL80211_CHAN_WIDTH_40: 3876 c->width = NL80211_CHAN_WIDTH_20; 3877 c->center_freq1 = c->chan->center_freq; 3878 ret = IEEE80211_STA_DISABLE_40MHZ | 3879 IEEE80211_STA_DISABLE_VHT; 3880 break; 3881 case NL80211_CHAN_WIDTH_80: 3882 tmp = (30 + c->chan->center_freq - c->center_freq1)/20; 3883 /* n_P40 */ 3884 tmp /= 2; 3885 /* freq_P40 */ 3886 c->center_freq1 = c->center_freq1 - 20 + 40 * tmp; 3887 c->width = NL80211_CHAN_WIDTH_40; 3888 ret = IEEE80211_STA_DISABLE_VHT; 3889 break; 3890 case NL80211_CHAN_WIDTH_80P80: 3891 c->center_freq2 = 0; 3892 c->width = NL80211_CHAN_WIDTH_80; 3893 ret = IEEE80211_STA_DISABLE_80P80MHZ | 3894 IEEE80211_STA_DISABLE_160MHZ; 3895 break; 3896 case NL80211_CHAN_WIDTH_160: 3897 /* n_P20 */ 3898 tmp = (70 + c->chan->center_freq - c->center_freq1)/20; 3899 /* n_P80 */ 3900 tmp /= 4; 3901 c->center_freq1 = c->center_freq1 - 40 + 80 * tmp; 3902 c->width = NL80211_CHAN_WIDTH_80; 3903 ret = IEEE80211_STA_DISABLE_80P80MHZ | 3904 IEEE80211_STA_DISABLE_160MHZ; 3905 break; 3906 default: 3907 case NL80211_CHAN_WIDTH_20_NOHT: 3908 WARN_ON_ONCE(1); 3909 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3910 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3911 break; 3912 case NL80211_CHAN_WIDTH_1: 3913 case NL80211_CHAN_WIDTH_2: 3914 case NL80211_CHAN_WIDTH_4: 3915 case NL80211_CHAN_WIDTH_8: 3916 case NL80211_CHAN_WIDTH_16: 3917 case NL80211_CHAN_WIDTH_5: 3918 case NL80211_CHAN_WIDTH_10: 3919 WARN_ON_ONCE(1); 3920 /* keep c->width */ 3921 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3922 break; 3923 } 3924 3925 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 3926 3927 return ret; 3928 } 3929 3930 /* 3931 * Returns true if smps_mode_new is strictly more restrictive than 3932 * smps_mode_old. 3933 */ 3934 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 3935 enum ieee80211_smps_mode smps_mode_new) 3936 { 3937 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 3938 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 3939 return false; 3940 3941 switch (smps_mode_old) { 3942 case IEEE80211_SMPS_STATIC: 3943 return false; 3944 case IEEE80211_SMPS_DYNAMIC: 3945 return smps_mode_new == IEEE80211_SMPS_STATIC; 3946 case IEEE80211_SMPS_OFF: 3947 return smps_mode_new != IEEE80211_SMPS_OFF; 3948 default: 3949 WARN_ON(1); 3950 } 3951 3952 return false; 3953 } 3954 3955 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 3956 struct cfg80211_csa_settings *csa_settings) 3957 { 3958 struct sk_buff *skb; 3959 struct ieee80211_mgmt *mgmt; 3960 struct ieee80211_local *local = sdata->local; 3961 int freq; 3962 int hdr_len = offsetofend(struct ieee80211_mgmt, 3963 u.action.u.chan_switch); 3964 u8 *pos; 3965 3966 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3967 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3968 return -EOPNOTSUPP; 3969 3970 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 3971 5 + /* channel switch announcement element */ 3972 3 + /* secondary channel offset element */ 3973 5 + /* wide bandwidth channel switch announcement */ 3974 8); /* mesh channel switch parameters element */ 3975 if (!skb) 3976 return -ENOMEM; 3977 3978 skb_reserve(skb, local->tx_headroom); 3979 mgmt = skb_put_zero(skb, hdr_len); 3980 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3981 IEEE80211_STYPE_ACTION); 3982 3983 eth_broadcast_addr(mgmt->da); 3984 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 3985 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3986 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 3987 } else { 3988 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 3989 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 3990 } 3991 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 3992 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 3993 pos = skb_put(skb, 5); 3994 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 3995 *pos++ = 3; /* IE length */ 3996 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 3997 freq = csa_settings->chandef.chan->center_freq; 3998 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 3999 *pos++ = csa_settings->count; /* count */ 4000 4001 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 4002 enum nl80211_channel_type ch_type; 4003 4004 skb_put(skb, 3); 4005 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 4006 *pos++ = 1; /* IE length */ 4007 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 4008 if (ch_type == NL80211_CHAN_HT40PLUS) 4009 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 4010 else 4011 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 4012 } 4013 4014 if (ieee80211_vif_is_mesh(&sdata->vif)) { 4015 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 4016 4017 skb_put(skb, 8); 4018 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 4019 *pos++ = 6; /* IE length */ 4020 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 4021 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 4022 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 4023 *pos++ |= csa_settings->block_tx ? 4024 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 4025 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 4026 pos += 2; 4027 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 4028 pos += 2; 4029 } 4030 4031 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 4032 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 4033 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 4034 skb_put(skb, 5); 4035 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 4036 } 4037 4038 ieee80211_tx_skb(sdata, skb); 4039 return 0; 4040 } 4041 4042 bool ieee80211_cs_valid(const struct ieee80211_cipher_scheme *cs) 4043 { 4044 return !(cs == NULL || cs->cipher == 0 || 4045 cs->hdr_len < cs->pn_len + cs->pn_off || 4046 cs->hdr_len <= cs->key_idx_off || 4047 cs->key_idx_shift > 7 || 4048 cs->key_idx_mask == 0); 4049 } 4050 4051 bool ieee80211_cs_list_valid(const struct ieee80211_cipher_scheme *cs, int n) 4052 { 4053 int i; 4054 4055 /* Ensure we have enough iftype bitmap space for all iftype values */ 4056 WARN_ON((NUM_NL80211_IFTYPES / 8 + 1) > sizeof(cs[0].iftype)); 4057 4058 for (i = 0; i < n; i++) 4059 if (!ieee80211_cs_valid(&cs[i])) 4060 return false; 4061 4062 return true; 4063 } 4064 4065 const struct ieee80211_cipher_scheme * 4066 ieee80211_cs_get(struct ieee80211_local *local, u32 cipher, 4067 enum nl80211_iftype iftype) 4068 { 4069 const struct ieee80211_cipher_scheme *l = local->hw.cipher_schemes; 4070 int n = local->hw.n_cipher_schemes; 4071 int i; 4072 const struct ieee80211_cipher_scheme *cs = NULL; 4073 4074 for (i = 0; i < n; i++) { 4075 if (l[i].cipher == cipher) { 4076 cs = &l[i]; 4077 break; 4078 } 4079 } 4080 4081 if (!cs || !(cs->iftype & BIT(iftype))) 4082 return NULL; 4083 4084 return cs; 4085 } 4086 4087 int ieee80211_cs_headroom(struct ieee80211_local *local, 4088 struct cfg80211_crypto_settings *crypto, 4089 enum nl80211_iftype iftype) 4090 { 4091 const struct ieee80211_cipher_scheme *cs; 4092 int headroom = IEEE80211_ENCRYPT_HEADROOM; 4093 int i; 4094 4095 for (i = 0; i < crypto->n_ciphers_pairwise; i++) { 4096 cs = ieee80211_cs_get(local, crypto->ciphers_pairwise[i], 4097 iftype); 4098 4099 if (cs && headroom < cs->hdr_len) 4100 headroom = cs->hdr_len; 4101 } 4102 4103 cs = ieee80211_cs_get(local, crypto->cipher_group, iftype); 4104 if (cs && headroom < cs->hdr_len) 4105 headroom = cs->hdr_len; 4106 4107 return headroom; 4108 } 4109 4110 static bool 4111 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 4112 { 4113 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 4114 int skip; 4115 4116 if (end > 0) 4117 return false; 4118 4119 /* One shot NOA */ 4120 if (data->count[i] == 1) 4121 return false; 4122 4123 if (data->desc[i].interval == 0) 4124 return false; 4125 4126 /* End time is in the past, check for repetitions */ 4127 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 4128 if (data->count[i] < 255) { 4129 if (data->count[i] <= skip) { 4130 data->count[i] = 0; 4131 return false; 4132 } 4133 4134 data->count[i] -= skip; 4135 } 4136 4137 data->desc[i].start += skip * data->desc[i].interval; 4138 4139 return true; 4140 } 4141 4142 static bool 4143 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 4144 s32 *offset) 4145 { 4146 bool ret = false; 4147 int i; 4148 4149 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4150 s32 cur; 4151 4152 if (!data->count[i]) 4153 continue; 4154 4155 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 4156 ret = true; 4157 4158 cur = data->desc[i].start - tsf; 4159 if (cur > *offset) 4160 continue; 4161 4162 cur = data->desc[i].start + data->desc[i].duration - tsf; 4163 if (cur > *offset) 4164 *offset = cur; 4165 } 4166 4167 return ret; 4168 } 4169 4170 static u32 4171 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 4172 { 4173 s32 offset = 0; 4174 int tries = 0; 4175 /* 4176 * arbitrary limit, used to avoid infinite loops when combined NoA 4177 * descriptors cover the full time period. 4178 */ 4179 int max_tries = 5; 4180 4181 ieee80211_extend_absent_time(data, tsf, &offset); 4182 do { 4183 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 4184 break; 4185 4186 tries++; 4187 } while (tries < max_tries); 4188 4189 return offset; 4190 } 4191 4192 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 4193 { 4194 u32 next_offset = BIT(31) - 1; 4195 int i; 4196 4197 data->absent = 0; 4198 data->has_next_tsf = false; 4199 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4200 s32 start; 4201 4202 if (!data->count[i]) 4203 continue; 4204 4205 ieee80211_extend_noa_desc(data, tsf, i); 4206 start = data->desc[i].start - tsf; 4207 if (start <= 0) 4208 data->absent |= BIT(i); 4209 4210 if (next_offset > start) 4211 next_offset = start; 4212 4213 data->has_next_tsf = true; 4214 } 4215 4216 if (data->absent) 4217 next_offset = ieee80211_get_noa_absent_time(data, tsf); 4218 4219 data->next_tsf = tsf + next_offset; 4220 } 4221 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 4222 4223 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 4224 struct ieee80211_noa_data *data, u32 tsf) 4225 { 4226 int ret = 0; 4227 int i; 4228 4229 memset(data, 0, sizeof(*data)); 4230 4231 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4232 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 4233 4234 if (!desc->count || !desc->duration) 4235 continue; 4236 4237 data->count[i] = desc->count; 4238 data->desc[i].start = le32_to_cpu(desc->start_time); 4239 data->desc[i].duration = le32_to_cpu(desc->duration); 4240 data->desc[i].interval = le32_to_cpu(desc->interval); 4241 4242 if (data->count[i] > 1 && 4243 data->desc[i].interval < data->desc[i].duration) 4244 continue; 4245 4246 ieee80211_extend_noa_desc(data, tsf, i); 4247 ret++; 4248 } 4249 4250 if (ret) 4251 ieee80211_update_p2p_noa(data, tsf); 4252 4253 return ret; 4254 } 4255 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 4256 4257 void ieee80211_recalc_dtim(struct ieee80211_local *local, 4258 struct ieee80211_sub_if_data *sdata) 4259 { 4260 u64 tsf = drv_get_tsf(local, sdata); 4261 u64 dtim_count = 0; 4262 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 4263 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 4264 struct ps_data *ps; 4265 u8 bcns_from_dtim; 4266 4267 if (tsf == -1ULL || !beacon_int || !dtim_period) 4268 return; 4269 4270 if (sdata->vif.type == NL80211_IFTYPE_AP || 4271 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 4272 if (!sdata->bss) 4273 return; 4274 4275 ps = &sdata->bss->ps; 4276 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 4277 ps = &sdata->u.mesh.ps; 4278 } else { 4279 return; 4280 } 4281 4282 /* 4283 * actually finds last dtim_count, mac80211 will update in 4284 * __beacon_add_tim(). 4285 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 4286 */ 4287 do_div(tsf, beacon_int); 4288 bcns_from_dtim = do_div(tsf, dtim_period); 4289 /* just had a DTIM */ 4290 if (!bcns_from_dtim) 4291 dtim_count = 0; 4292 else 4293 dtim_count = dtim_period - bcns_from_dtim; 4294 4295 ps->dtim_count = dtim_count; 4296 } 4297 4298 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 4299 struct ieee80211_chanctx *ctx) 4300 { 4301 struct ieee80211_sub_if_data *sdata; 4302 u8 radar_detect = 0; 4303 4304 lockdep_assert_held(&local->chanctx_mtx); 4305 4306 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 4307 return 0; 4308 4309 list_for_each_entry(sdata, &ctx->reserved_vifs, reserved_chanctx_list) 4310 if (sdata->reserved_radar_required) 4311 radar_detect |= BIT(sdata->reserved_chandef.width); 4312 4313 /* 4314 * An in-place reservation context should not have any assigned vifs 4315 * until it replaces the other context. 4316 */ 4317 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 4318 !list_empty(&ctx->assigned_vifs)); 4319 4320 list_for_each_entry(sdata, &ctx->assigned_vifs, assigned_chanctx_list) 4321 if (sdata->radar_required) 4322 radar_detect |= BIT(sdata->vif.bss_conf.chandef.width); 4323 4324 return radar_detect; 4325 } 4326 4327 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 4328 const struct cfg80211_chan_def *chandef, 4329 enum ieee80211_chanctx_mode chanmode, 4330 u8 radar_detect) 4331 { 4332 struct ieee80211_local *local = sdata->local; 4333 struct ieee80211_sub_if_data *sdata_iter; 4334 enum nl80211_iftype iftype = sdata->wdev.iftype; 4335 struct ieee80211_chanctx *ctx; 4336 int total = 1; 4337 struct iface_combination_params params = { 4338 .radar_detect = radar_detect, 4339 }; 4340 4341 lockdep_assert_held(&local->chanctx_mtx); 4342 4343 if (WARN_ON(hweight32(radar_detect) > 1)) 4344 return -EINVAL; 4345 4346 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4347 !chandef->chan)) 4348 return -EINVAL; 4349 4350 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 4351 return -EINVAL; 4352 4353 if (sdata->vif.type == NL80211_IFTYPE_AP || 4354 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 4355 /* 4356 * always passing this is harmless, since it'll be the 4357 * same value that cfg80211 finds if it finds the same 4358 * interface ... and that's always allowed 4359 */ 4360 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 4361 } 4362 4363 /* Always allow software iftypes */ 4364 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 4365 if (radar_detect) 4366 return -EINVAL; 4367 return 0; 4368 } 4369 4370 if (chandef) 4371 params.num_different_channels = 1; 4372 4373 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 4374 params.iftype_num[iftype] = 1; 4375 4376 list_for_each_entry(ctx, &local->chanctx_list, list) { 4377 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4378 continue; 4379 params.radar_detect |= 4380 ieee80211_chanctx_radar_detect(local, ctx); 4381 if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) { 4382 params.num_different_channels++; 4383 continue; 4384 } 4385 if (chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4386 cfg80211_chandef_compatible(chandef, 4387 &ctx->conf.def)) 4388 continue; 4389 params.num_different_channels++; 4390 } 4391 4392 list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) { 4393 struct wireless_dev *wdev_iter; 4394 4395 wdev_iter = &sdata_iter->wdev; 4396 4397 if (sdata_iter == sdata || 4398 !ieee80211_sdata_running(sdata_iter) || 4399 cfg80211_iftype_allowed(local->hw.wiphy, 4400 wdev_iter->iftype, 0, 1)) 4401 continue; 4402 4403 params.iftype_num[wdev_iter->iftype]++; 4404 total++; 4405 } 4406 4407 if (total == 1 && !params.radar_detect) 4408 return 0; 4409 4410 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4411 } 4412 4413 static void 4414 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4415 void *data) 4416 { 4417 u32 *max_num_different_channels = data; 4418 4419 *max_num_different_channels = max(*max_num_different_channels, 4420 c->num_different_channels); 4421 } 4422 4423 int ieee80211_max_num_channels(struct ieee80211_local *local) 4424 { 4425 struct ieee80211_sub_if_data *sdata; 4426 struct ieee80211_chanctx *ctx; 4427 u32 max_num_different_channels = 1; 4428 int err; 4429 struct iface_combination_params params = {0}; 4430 4431 lockdep_assert_held(&local->chanctx_mtx); 4432 4433 list_for_each_entry(ctx, &local->chanctx_list, list) { 4434 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4435 continue; 4436 4437 params.num_different_channels++; 4438 4439 params.radar_detect |= 4440 ieee80211_chanctx_radar_detect(local, ctx); 4441 } 4442 4443 list_for_each_entry_rcu(sdata, &local->interfaces, list) 4444 params.iftype_num[sdata->wdev.iftype]++; 4445 4446 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4447 ieee80211_iter_max_chans, 4448 &max_num_different_channels); 4449 if (err < 0) 4450 return err; 4451 4452 return max_num_different_channels; 4453 } 4454 4455 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, 4456 struct ieee80211_sta_s1g_cap *caps, 4457 struct sk_buff *skb) 4458 { 4459 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 4460 struct ieee80211_s1g_cap s1g_capab; 4461 u8 *pos; 4462 int i; 4463 4464 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 4465 return; 4466 4467 if (!caps->s1g) 4468 return; 4469 4470 memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); 4471 memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); 4472 4473 /* override the capability info */ 4474 for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { 4475 u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; 4476 4477 s1g_capab.capab_info[i] &= ~mask; 4478 s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; 4479 } 4480 4481 /* then MCS and NSS set */ 4482 for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { 4483 u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; 4484 4485 s1g_capab.supp_mcs_nss[i] &= ~mask; 4486 s1g_capab.supp_mcs_nss[i] |= 4487 ifmgd->s1g_capa.supp_mcs_nss[i] & mask; 4488 } 4489 4490 pos = skb_put(skb, 2 + sizeof(s1g_capab)); 4491 *pos++ = WLAN_EID_S1G_CAPABILITIES; 4492 *pos++ = sizeof(s1g_capab); 4493 4494 memcpy(pos, &s1g_capab, sizeof(s1g_capab)); 4495 } 4496 4497 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, 4498 struct sk_buff *skb) 4499 { 4500 u8 *pos = skb_put(skb, 3); 4501 4502 *pos++ = WLAN_EID_AID_REQUEST; 4503 *pos++ = 1; 4504 *pos++ = 0; 4505 } 4506 4507 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 4508 { 4509 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 4510 *buf++ = 7; /* len */ 4511 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 4512 *buf++ = 0x50; 4513 *buf++ = 0xf2; 4514 *buf++ = 2; /* WME */ 4515 *buf++ = 0; /* WME info */ 4516 *buf++ = 1; /* WME ver */ 4517 *buf++ = qosinfo; /* U-APSD no in use */ 4518 4519 return buf; 4520 } 4521 4522 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 4523 unsigned long *frame_cnt, 4524 unsigned long *byte_cnt) 4525 { 4526 struct txq_info *txqi = to_txq_info(txq); 4527 u32 frag_cnt = 0, frag_bytes = 0; 4528 struct sk_buff *skb; 4529 4530 skb_queue_walk(&txqi->frags, skb) { 4531 frag_cnt++; 4532 frag_bytes += skb->len; 4533 } 4534 4535 if (frame_cnt) 4536 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 4537 4538 if (byte_cnt) 4539 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 4540 } 4541 EXPORT_SYMBOL(ieee80211_txq_get_depth); 4542 4543 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 4544 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 4545 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 4546 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 4547 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 4548 }; 4549 4550 u16 ieee80211_encode_usf(int listen_interval) 4551 { 4552 static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; 4553 u16 ui, usf = 0; 4554 4555 /* find greatest USF */ 4556 while (usf < IEEE80211_MAX_USF) { 4557 if (listen_interval % listen_int_usf[usf + 1]) 4558 break; 4559 usf += 1; 4560 } 4561 ui = listen_interval / listen_int_usf[usf]; 4562 4563 /* error if there is a remainder. Should've been checked by user */ 4564 WARN_ON_ONCE(ui > IEEE80211_MAX_UI); 4565 listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | 4566 FIELD_PREP(LISTEN_INT_UI, ui); 4567 4568 return (u16) listen_interval; 4569 } 4570