xref: /openbmc/linux/net/mac80211/util.c (revision 7b6d864b)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * utilities for mac80211
12  */
13 
14 #include <net/mac80211.h>
15 #include <linux/netdevice.h>
16 #include <linux/export.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/skbuff.h>
20 #include <linux/etherdevice.h>
21 #include <linux/if_arp.h>
22 #include <linux/bitmap.h>
23 #include <linux/crc32.h>
24 #include <net/net_namespace.h>
25 #include <net/cfg80211.h>
26 #include <net/rtnetlink.h>
27 
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
30 #include "rate.h"
31 #include "mesh.h"
32 #include "wme.h"
33 #include "led.h"
34 #include "wep.h"
35 
36 /* privid for wiphys to determine whether they belong to us or not */
37 void *mac80211_wiphy_privid = &mac80211_wiphy_privid;
38 
39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy)
40 {
41 	struct ieee80211_local *local;
42 	BUG_ON(!wiphy);
43 
44 	local = wiphy_priv(wiphy);
45 	return &local->hw;
46 }
47 EXPORT_SYMBOL(wiphy_to_ieee80211_hw);
48 
49 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
50 			enum nl80211_iftype type)
51 {
52 	__le16 fc = hdr->frame_control;
53 
54 	 /* drop ACK/CTS frames and incorrect hdr len (ctrl) */
55 	if (len < 16)
56 		return NULL;
57 
58 	if (ieee80211_is_data(fc)) {
59 		if (len < 24) /* drop incorrect hdr len (data) */
60 			return NULL;
61 
62 		if (ieee80211_has_a4(fc))
63 			return NULL;
64 		if (ieee80211_has_tods(fc))
65 			return hdr->addr1;
66 		if (ieee80211_has_fromds(fc))
67 			return hdr->addr2;
68 
69 		return hdr->addr3;
70 	}
71 
72 	if (ieee80211_is_mgmt(fc)) {
73 		if (len < 24) /* drop incorrect hdr len (mgmt) */
74 			return NULL;
75 		return hdr->addr3;
76 	}
77 
78 	if (ieee80211_is_ctl(fc)) {
79 		if(ieee80211_is_pspoll(fc))
80 			return hdr->addr1;
81 
82 		if (ieee80211_is_back_req(fc)) {
83 			switch (type) {
84 			case NL80211_IFTYPE_STATION:
85 				return hdr->addr2;
86 			case NL80211_IFTYPE_AP:
87 			case NL80211_IFTYPE_AP_VLAN:
88 				return hdr->addr1;
89 			default:
90 				break; /* fall through to the return */
91 			}
92 		}
93 	}
94 
95 	return NULL;
96 }
97 
98 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx)
99 {
100 	struct sk_buff *skb;
101 	struct ieee80211_hdr *hdr;
102 
103 	skb_queue_walk(&tx->skbs, skb) {
104 		hdr = (struct ieee80211_hdr *) skb->data;
105 		hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
106 	}
107 }
108 
109 int ieee80211_frame_duration(enum ieee80211_band band, size_t len,
110 			     int rate, int erp, int short_preamble)
111 {
112 	int dur;
113 
114 	/* calculate duration (in microseconds, rounded up to next higher
115 	 * integer if it includes a fractional microsecond) to send frame of
116 	 * len bytes (does not include FCS) at the given rate. Duration will
117 	 * also include SIFS.
118 	 *
119 	 * rate is in 100 kbps, so divident is multiplied by 10 in the
120 	 * DIV_ROUND_UP() operations.
121 	 */
122 
123 	if (band == IEEE80211_BAND_5GHZ || erp) {
124 		/*
125 		 * OFDM:
126 		 *
127 		 * N_DBPS = DATARATE x 4
128 		 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
129 		 *	(16 = SIGNAL time, 6 = tail bits)
130 		 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
131 		 *
132 		 * T_SYM = 4 usec
133 		 * 802.11a - 17.5.2: aSIFSTime = 16 usec
134 		 * 802.11g - 19.8.4: aSIFSTime = 10 usec +
135 		 *	signal ext = 6 usec
136 		 */
137 		dur = 16; /* SIFS + signal ext */
138 		dur += 16; /* 17.3.2.3: T_PREAMBLE = 16 usec */
139 		dur += 4; /* 17.3.2.3: T_SIGNAL = 4 usec */
140 		dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
141 					4 * rate); /* T_SYM x N_SYM */
142 	} else {
143 		/*
144 		 * 802.11b or 802.11g with 802.11b compatibility:
145 		 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
146 		 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
147 		 *
148 		 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4
149 		 * aSIFSTime = 10 usec
150 		 * aPreambleLength = 144 usec or 72 usec with short preamble
151 		 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble
152 		 */
153 		dur = 10; /* aSIFSTime = 10 usec */
154 		dur += short_preamble ? (72 + 24) : (144 + 48);
155 
156 		dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
157 	}
158 
159 	return dur;
160 }
161 
162 /* Exported duration function for driver use */
163 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
164 					struct ieee80211_vif *vif,
165 					enum ieee80211_band band,
166 					size_t frame_len,
167 					struct ieee80211_rate *rate)
168 {
169 	struct ieee80211_sub_if_data *sdata;
170 	u16 dur;
171 	int erp;
172 	bool short_preamble = false;
173 
174 	erp = 0;
175 	if (vif) {
176 		sdata = vif_to_sdata(vif);
177 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
178 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
179 			erp = rate->flags & IEEE80211_RATE_ERP_G;
180 	}
181 
182 	dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp,
183 				       short_preamble);
184 
185 	return cpu_to_le16(dur);
186 }
187 EXPORT_SYMBOL(ieee80211_generic_frame_duration);
188 
189 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
190 			      struct ieee80211_vif *vif, size_t frame_len,
191 			      const struct ieee80211_tx_info *frame_txctl)
192 {
193 	struct ieee80211_local *local = hw_to_local(hw);
194 	struct ieee80211_rate *rate;
195 	struct ieee80211_sub_if_data *sdata;
196 	bool short_preamble;
197 	int erp;
198 	u16 dur;
199 	struct ieee80211_supported_band *sband;
200 
201 	sband = local->hw.wiphy->bands[frame_txctl->band];
202 
203 	short_preamble = false;
204 
205 	rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
206 
207 	erp = 0;
208 	if (vif) {
209 		sdata = vif_to_sdata(vif);
210 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
211 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
212 			erp = rate->flags & IEEE80211_RATE_ERP_G;
213 	}
214 
215 	/* CTS duration */
216 	dur = ieee80211_frame_duration(sband->band, 10, rate->bitrate,
217 				       erp, short_preamble);
218 	/* Data frame duration */
219 	dur += ieee80211_frame_duration(sband->band, frame_len, rate->bitrate,
220 					erp, short_preamble);
221 	/* ACK duration */
222 	dur += ieee80211_frame_duration(sband->band, 10, rate->bitrate,
223 					erp, short_preamble);
224 
225 	return cpu_to_le16(dur);
226 }
227 EXPORT_SYMBOL(ieee80211_rts_duration);
228 
229 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
230 				    struct ieee80211_vif *vif,
231 				    size_t frame_len,
232 				    const struct ieee80211_tx_info *frame_txctl)
233 {
234 	struct ieee80211_local *local = hw_to_local(hw);
235 	struct ieee80211_rate *rate;
236 	struct ieee80211_sub_if_data *sdata;
237 	bool short_preamble;
238 	int erp;
239 	u16 dur;
240 	struct ieee80211_supported_band *sband;
241 
242 	sband = local->hw.wiphy->bands[frame_txctl->band];
243 
244 	short_preamble = false;
245 
246 	rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
247 	erp = 0;
248 	if (vif) {
249 		sdata = vif_to_sdata(vif);
250 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
251 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
252 			erp = rate->flags & IEEE80211_RATE_ERP_G;
253 	}
254 
255 	/* Data frame duration */
256 	dur = ieee80211_frame_duration(sband->band, frame_len, rate->bitrate,
257 				       erp, short_preamble);
258 	if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) {
259 		/* ACK duration */
260 		dur += ieee80211_frame_duration(sband->band, 10, rate->bitrate,
261 						erp, short_preamble);
262 	}
263 
264 	return cpu_to_le16(dur);
265 }
266 EXPORT_SYMBOL(ieee80211_ctstoself_duration);
267 
268 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue)
269 {
270 	struct ieee80211_sub_if_data *sdata;
271 	int n_acs = IEEE80211_NUM_ACS;
272 
273 	if (local->hw.queues < IEEE80211_NUM_ACS)
274 		n_acs = 1;
275 
276 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
277 		int ac;
278 
279 		if (!sdata->dev)
280 			continue;
281 
282 		if (test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))
283 			continue;
284 
285 		if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE &&
286 		    local->queue_stop_reasons[sdata->vif.cab_queue] != 0)
287 			continue;
288 
289 		for (ac = 0; ac < n_acs; ac++) {
290 			int ac_queue = sdata->vif.hw_queue[ac];
291 
292 			if (ac_queue == queue ||
293 			    (sdata->vif.cab_queue == queue &&
294 			     local->queue_stop_reasons[ac_queue] == 0 &&
295 			     skb_queue_empty(&local->pending[ac_queue])))
296 				netif_wake_subqueue(sdata->dev, ac);
297 		}
298 	}
299 }
300 
301 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue,
302 				   enum queue_stop_reason reason)
303 {
304 	struct ieee80211_local *local = hw_to_local(hw);
305 
306 	trace_wake_queue(local, queue, reason);
307 
308 	if (WARN_ON(queue >= hw->queues))
309 		return;
310 
311 	if (!test_bit(reason, &local->queue_stop_reasons[queue]))
312 		return;
313 
314 	__clear_bit(reason, &local->queue_stop_reasons[queue]);
315 
316 	if (local->queue_stop_reasons[queue] != 0)
317 		/* someone still has this queue stopped */
318 		return;
319 
320 	if (skb_queue_empty(&local->pending[queue])) {
321 		rcu_read_lock();
322 		ieee80211_propagate_queue_wake(local, queue);
323 		rcu_read_unlock();
324 	} else
325 		tasklet_schedule(&local->tx_pending_tasklet);
326 }
327 
328 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue,
329 				    enum queue_stop_reason reason)
330 {
331 	struct ieee80211_local *local = hw_to_local(hw);
332 	unsigned long flags;
333 
334 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
335 	__ieee80211_wake_queue(hw, queue, reason);
336 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
337 }
338 
339 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
340 {
341 	ieee80211_wake_queue_by_reason(hw, queue,
342 				       IEEE80211_QUEUE_STOP_REASON_DRIVER);
343 }
344 EXPORT_SYMBOL(ieee80211_wake_queue);
345 
346 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue,
347 				   enum queue_stop_reason reason)
348 {
349 	struct ieee80211_local *local = hw_to_local(hw);
350 	struct ieee80211_sub_if_data *sdata;
351 	int n_acs = IEEE80211_NUM_ACS;
352 
353 	trace_stop_queue(local, queue, reason);
354 
355 	if (WARN_ON(queue >= hw->queues))
356 		return;
357 
358 	if (test_bit(reason, &local->queue_stop_reasons[queue]))
359 		return;
360 
361 	__set_bit(reason, &local->queue_stop_reasons[queue]);
362 
363 	if (local->hw.queues < IEEE80211_NUM_ACS)
364 		n_acs = 1;
365 
366 	rcu_read_lock();
367 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
368 		int ac;
369 
370 		if (!sdata->dev)
371 			continue;
372 
373 		for (ac = 0; ac < n_acs; ac++) {
374 			if (sdata->vif.hw_queue[ac] == queue ||
375 			    sdata->vif.cab_queue == queue)
376 				netif_stop_subqueue(sdata->dev, ac);
377 		}
378 	}
379 	rcu_read_unlock();
380 }
381 
382 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue,
383 				    enum queue_stop_reason reason)
384 {
385 	struct ieee80211_local *local = hw_to_local(hw);
386 	unsigned long flags;
387 
388 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
389 	__ieee80211_stop_queue(hw, queue, reason);
390 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
391 }
392 
393 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
394 {
395 	ieee80211_stop_queue_by_reason(hw, queue,
396 				       IEEE80211_QUEUE_STOP_REASON_DRIVER);
397 }
398 EXPORT_SYMBOL(ieee80211_stop_queue);
399 
400 void ieee80211_add_pending_skb(struct ieee80211_local *local,
401 			       struct sk_buff *skb)
402 {
403 	struct ieee80211_hw *hw = &local->hw;
404 	unsigned long flags;
405 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
406 	int queue = info->hw_queue;
407 
408 	if (WARN_ON(!info->control.vif)) {
409 		ieee80211_free_txskb(&local->hw, skb);
410 		return;
411 	}
412 
413 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
414 	__ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
415 	__skb_queue_tail(&local->pending[queue], skb);
416 	__ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
417 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
418 }
419 
420 void ieee80211_add_pending_skbs_fn(struct ieee80211_local *local,
421 				   struct sk_buff_head *skbs,
422 				   void (*fn)(void *data), void *data)
423 {
424 	struct ieee80211_hw *hw = &local->hw;
425 	struct sk_buff *skb;
426 	unsigned long flags;
427 	int queue, i;
428 
429 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
430 	while ((skb = skb_dequeue(skbs))) {
431 		struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
432 
433 		if (WARN_ON(!info->control.vif)) {
434 			ieee80211_free_txskb(&local->hw, skb);
435 			continue;
436 		}
437 
438 		queue = info->hw_queue;
439 
440 		__ieee80211_stop_queue(hw, queue,
441 				IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
442 
443 		__skb_queue_tail(&local->pending[queue], skb);
444 	}
445 
446 	if (fn)
447 		fn(data);
448 
449 	for (i = 0; i < hw->queues; i++)
450 		__ieee80211_wake_queue(hw, i,
451 			IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
452 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
453 }
454 
455 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw,
456 				     unsigned long queues,
457 				     enum queue_stop_reason reason)
458 {
459 	struct ieee80211_local *local = hw_to_local(hw);
460 	unsigned long flags;
461 	int i;
462 
463 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
464 
465 	for_each_set_bit(i, &queues, hw->queues)
466 		__ieee80211_stop_queue(hw, i, reason);
467 
468 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
469 }
470 
471 void ieee80211_stop_queues(struct ieee80211_hw *hw)
472 {
473 	ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
474 					IEEE80211_QUEUE_STOP_REASON_DRIVER);
475 }
476 EXPORT_SYMBOL(ieee80211_stop_queues);
477 
478 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue)
479 {
480 	struct ieee80211_local *local = hw_to_local(hw);
481 	unsigned long flags;
482 	int ret;
483 
484 	if (WARN_ON(queue >= hw->queues))
485 		return true;
486 
487 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
488 	ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER,
489 		       &local->queue_stop_reasons[queue]);
490 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
491 	return ret;
492 }
493 EXPORT_SYMBOL(ieee80211_queue_stopped);
494 
495 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw,
496 				     unsigned long queues,
497 				     enum queue_stop_reason reason)
498 {
499 	struct ieee80211_local *local = hw_to_local(hw);
500 	unsigned long flags;
501 	int i;
502 
503 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
504 
505 	for_each_set_bit(i, &queues, hw->queues)
506 		__ieee80211_wake_queue(hw, i, reason);
507 
508 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
509 }
510 
511 void ieee80211_wake_queues(struct ieee80211_hw *hw)
512 {
513 	ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
514 					IEEE80211_QUEUE_STOP_REASON_DRIVER);
515 }
516 EXPORT_SYMBOL(ieee80211_wake_queues);
517 
518 void ieee80211_flush_queues(struct ieee80211_local *local,
519 			    struct ieee80211_sub_if_data *sdata)
520 {
521 	u32 queues;
522 
523 	if (!local->ops->flush)
524 		return;
525 
526 	if (sdata && local->hw.flags & IEEE80211_HW_QUEUE_CONTROL) {
527 		int ac;
528 
529 		queues = 0;
530 
531 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
532 			queues |= BIT(sdata->vif.hw_queue[ac]);
533 		if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE)
534 			queues |= BIT(sdata->vif.cab_queue);
535 	} else {
536 		/* all queues */
537 		queues = BIT(local->hw.queues) - 1;
538 	}
539 
540 	ieee80211_stop_queues_by_reason(&local->hw, IEEE80211_MAX_QUEUE_MAP,
541 					IEEE80211_QUEUE_STOP_REASON_FLUSH);
542 
543 	drv_flush(local, queues, false);
544 
545 	ieee80211_wake_queues_by_reason(&local->hw, IEEE80211_MAX_QUEUE_MAP,
546 					IEEE80211_QUEUE_STOP_REASON_FLUSH);
547 }
548 
549 void ieee80211_iterate_active_interfaces(
550 	struct ieee80211_hw *hw, u32 iter_flags,
551 	void (*iterator)(void *data, u8 *mac,
552 			 struct ieee80211_vif *vif),
553 	void *data)
554 {
555 	struct ieee80211_local *local = hw_to_local(hw);
556 	struct ieee80211_sub_if_data *sdata;
557 
558 	mutex_lock(&local->iflist_mtx);
559 
560 	list_for_each_entry(sdata, &local->interfaces, list) {
561 		switch (sdata->vif.type) {
562 		case NL80211_IFTYPE_MONITOR:
563 		case NL80211_IFTYPE_AP_VLAN:
564 			continue;
565 		default:
566 			break;
567 		}
568 		if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
569 		    !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
570 			continue;
571 		if (ieee80211_sdata_running(sdata))
572 			iterator(data, sdata->vif.addr,
573 				 &sdata->vif);
574 	}
575 
576 	sdata = rcu_dereference_protected(local->monitor_sdata,
577 					  lockdep_is_held(&local->iflist_mtx));
578 	if (sdata &&
579 	    (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL ||
580 	     sdata->flags & IEEE80211_SDATA_IN_DRIVER))
581 		iterator(data, sdata->vif.addr, &sdata->vif);
582 
583 	mutex_unlock(&local->iflist_mtx);
584 }
585 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces);
586 
587 void ieee80211_iterate_active_interfaces_atomic(
588 	struct ieee80211_hw *hw, u32 iter_flags,
589 	void (*iterator)(void *data, u8 *mac,
590 			 struct ieee80211_vif *vif),
591 	void *data)
592 {
593 	struct ieee80211_local *local = hw_to_local(hw);
594 	struct ieee80211_sub_if_data *sdata;
595 
596 	rcu_read_lock();
597 
598 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
599 		switch (sdata->vif.type) {
600 		case NL80211_IFTYPE_MONITOR:
601 		case NL80211_IFTYPE_AP_VLAN:
602 			continue;
603 		default:
604 			break;
605 		}
606 		if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
607 		    !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
608 			continue;
609 		if (ieee80211_sdata_running(sdata))
610 			iterator(data, sdata->vif.addr,
611 				 &sdata->vif);
612 	}
613 
614 	sdata = rcu_dereference(local->monitor_sdata);
615 	if (sdata &&
616 	    (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL ||
617 	     sdata->flags & IEEE80211_SDATA_IN_DRIVER))
618 		iterator(data, sdata->vif.addr, &sdata->vif);
619 
620 	rcu_read_unlock();
621 }
622 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic);
623 
624 /*
625  * Nothing should have been stuffed into the workqueue during
626  * the suspend->resume cycle. If this WARN is seen then there
627  * is a bug with either the driver suspend or something in
628  * mac80211 stuffing into the workqueue which we haven't yet
629  * cleared during mac80211's suspend cycle.
630  */
631 static bool ieee80211_can_queue_work(struct ieee80211_local *local)
632 {
633 	if (WARN(local->suspended && !local->resuming,
634 		 "queueing ieee80211 work while going to suspend\n"))
635 		return false;
636 
637 	return true;
638 }
639 
640 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work)
641 {
642 	struct ieee80211_local *local = hw_to_local(hw);
643 
644 	if (!ieee80211_can_queue_work(local))
645 		return;
646 
647 	queue_work(local->workqueue, work);
648 }
649 EXPORT_SYMBOL(ieee80211_queue_work);
650 
651 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
652 				  struct delayed_work *dwork,
653 				  unsigned long delay)
654 {
655 	struct ieee80211_local *local = hw_to_local(hw);
656 
657 	if (!ieee80211_can_queue_work(local))
658 		return;
659 
660 	queue_delayed_work(local->workqueue, dwork, delay);
661 }
662 EXPORT_SYMBOL(ieee80211_queue_delayed_work);
663 
664 u32 ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action,
665 			       struct ieee802_11_elems *elems,
666 			       u64 filter, u32 crc)
667 {
668 	size_t left = len;
669 	const u8 *pos = start;
670 	bool calc_crc = filter != 0;
671 	DECLARE_BITMAP(seen_elems, 256);
672 	const u8 *ie;
673 
674 	bitmap_zero(seen_elems, 256);
675 	memset(elems, 0, sizeof(*elems));
676 	elems->ie_start = start;
677 	elems->total_len = len;
678 
679 	while (left >= 2) {
680 		u8 id, elen;
681 		bool elem_parse_failed;
682 
683 		id = *pos++;
684 		elen = *pos++;
685 		left -= 2;
686 
687 		if (elen > left) {
688 			elems->parse_error = true;
689 			break;
690 		}
691 
692 		switch (id) {
693 		case WLAN_EID_SSID:
694 		case WLAN_EID_SUPP_RATES:
695 		case WLAN_EID_FH_PARAMS:
696 		case WLAN_EID_DS_PARAMS:
697 		case WLAN_EID_CF_PARAMS:
698 		case WLAN_EID_TIM:
699 		case WLAN_EID_IBSS_PARAMS:
700 		case WLAN_EID_CHALLENGE:
701 		case WLAN_EID_RSN:
702 		case WLAN_EID_ERP_INFO:
703 		case WLAN_EID_EXT_SUPP_RATES:
704 		case WLAN_EID_HT_CAPABILITY:
705 		case WLAN_EID_HT_OPERATION:
706 		case WLAN_EID_VHT_CAPABILITY:
707 		case WLAN_EID_VHT_OPERATION:
708 		case WLAN_EID_MESH_ID:
709 		case WLAN_EID_MESH_CONFIG:
710 		case WLAN_EID_PEER_MGMT:
711 		case WLAN_EID_PREQ:
712 		case WLAN_EID_PREP:
713 		case WLAN_EID_PERR:
714 		case WLAN_EID_RANN:
715 		case WLAN_EID_CHANNEL_SWITCH:
716 		case WLAN_EID_EXT_CHANSWITCH_ANN:
717 		case WLAN_EID_COUNTRY:
718 		case WLAN_EID_PWR_CONSTRAINT:
719 		case WLAN_EID_TIMEOUT_INTERVAL:
720 		case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
721 		case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
722 		/*
723 		 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible
724 		 * that if the content gets bigger it might be needed more than once
725 		 */
726 			if (test_bit(id, seen_elems)) {
727 				elems->parse_error = true;
728 				left -= elen;
729 				pos += elen;
730 				continue;
731 			}
732 			break;
733 		}
734 
735 		if (calc_crc && id < 64 && (filter & (1ULL << id)))
736 			crc = crc32_be(crc, pos - 2, elen + 2);
737 
738 		elem_parse_failed = false;
739 
740 		switch (id) {
741 		case WLAN_EID_SSID:
742 			elems->ssid = pos;
743 			elems->ssid_len = elen;
744 			break;
745 		case WLAN_EID_SUPP_RATES:
746 			elems->supp_rates = pos;
747 			elems->supp_rates_len = elen;
748 			break;
749 		case WLAN_EID_DS_PARAMS:
750 			if (elen >= 1)
751 				elems->ds_params = pos;
752 			else
753 				elem_parse_failed = true;
754 			break;
755 		case WLAN_EID_TIM:
756 			if (elen >= sizeof(struct ieee80211_tim_ie)) {
757 				elems->tim = (void *)pos;
758 				elems->tim_len = elen;
759 			} else
760 				elem_parse_failed = true;
761 			break;
762 		case WLAN_EID_CHALLENGE:
763 			elems->challenge = pos;
764 			elems->challenge_len = elen;
765 			break;
766 		case WLAN_EID_VENDOR_SPECIFIC:
767 			if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
768 			    pos[2] == 0xf2) {
769 				/* Microsoft OUI (00:50:F2) */
770 
771 				if (calc_crc)
772 					crc = crc32_be(crc, pos - 2, elen + 2);
773 
774 				if (elen >= 5 && pos[3] == 2) {
775 					/* OUI Type 2 - WMM IE */
776 					if (pos[4] == 0) {
777 						elems->wmm_info = pos;
778 						elems->wmm_info_len = elen;
779 					} else if (pos[4] == 1) {
780 						elems->wmm_param = pos;
781 						elems->wmm_param_len = elen;
782 					}
783 				}
784 			}
785 			break;
786 		case WLAN_EID_RSN:
787 			elems->rsn = pos;
788 			elems->rsn_len = elen;
789 			break;
790 		case WLAN_EID_ERP_INFO:
791 			if (elen >= 1)
792 				elems->erp_info = pos;
793 			else
794 				elem_parse_failed = true;
795 			break;
796 		case WLAN_EID_EXT_SUPP_RATES:
797 			elems->ext_supp_rates = pos;
798 			elems->ext_supp_rates_len = elen;
799 			break;
800 		case WLAN_EID_HT_CAPABILITY:
801 			if (elen >= sizeof(struct ieee80211_ht_cap))
802 				elems->ht_cap_elem = (void *)pos;
803 			else
804 				elem_parse_failed = true;
805 			break;
806 		case WLAN_EID_HT_OPERATION:
807 			if (elen >= sizeof(struct ieee80211_ht_operation))
808 				elems->ht_operation = (void *)pos;
809 			else
810 				elem_parse_failed = true;
811 			break;
812 		case WLAN_EID_VHT_CAPABILITY:
813 			if (elen >= sizeof(struct ieee80211_vht_cap))
814 				elems->vht_cap_elem = (void *)pos;
815 			else
816 				elem_parse_failed = true;
817 			break;
818 		case WLAN_EID_VHT_OPERATION:
819 			if (elen >= sizeof(struct ieee80211_vht_operation))
820 				elems->vht_operation = (void *)pos;
821 			else
822 				elem_parse_failed = true;
823 			break;
824 		case WLAN_EID_OPMODE_NOTIF:
825 			if (elen > 0)
826 				elems->opmode_notif = pos;
827 			else
828 				elem_parse_failed = true;
829 			break;
830 		case WLAN_EID_MESH_ID:
831 			elems->mesh_id = pos;
832 			elems->mesh_id_len = elen;
833 			break;
834 		case WLAN_EID_MESH_CONFIG:
835 			if (elen >= sizeof(struct ieee80211_meshconf_ie))
836 				elems->mesh_config = (void *)pos;
837 			else
838 				elem_parse_failed = true;
839 			break;
840 		case WLAN_EID_PEER_MGMT:
841 			elems->peering = pos;
842 			elems->peering_len = elen;
843 			break;
844 		case WLAN_EID_MESH_AWAKE_WINDOW:
845 			if (elen >= 2)
846 				elems->awake_window = (void *)pos;
847 			break;
848 		case WLAN_EID_PREQ:
849 			elems->preq = pos;
850 			elems->preq_len = elen;
851 			break;
852 		case WLAN_EID_PREP:
853 			elems->prep = pos;
854 			elems->prep_len = elen;
855 			break;
856 		case WLAN_EID_PERR:
857 			elems->perr = pos;
858 			elems->perr_len = elen;
859 			break;
860 		case WLAN_EID_RANN:
861 			if (elen >= sizeof(struct ieee80211_rann_ie))
862 				elems->rann = (void *)pos;
863 			else
864 				elem_parse_failed = true;
865 			break;
866 		case WLAN_EID_CHANNEL_SWITCH:
867 			if (elen != sizeof(struct ieee80211_channel_sw_ie)) {
868 				elem_parse_failed = true;
869 				break;
870 			}
871 			elems->ch_switch_ie = (void *)pos;
872 			break;
873 		case WLAN_EID_EXT_CHANSWITCH_ANN:
874 			if (elen != sizeof(struct ieee80211_ext_chansw_ie)) {
875 				elem_parse_failed = true;
876 				break;
877 			}
878 			elems->ext_chansw_ie = (void *)pos;
879 			break;
880 		case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
881 			if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) {
882 				elem_parse_failed = true;
883 				break;
884 			}
885 			elems->sec_chan_offs = (void *)pos;
886 			break;
887 		case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
888 			if (!action ||
889 			    elen != sizeof(*elems->wide_bw_chansw_ie)) {
890 				elem_parse_failed = true;
891 				break;
892 			}
893 			elems->wide_bw_chansw_ie = (void *)pos;
894 			break;
895 		case WLAN_EID_CHANNEL_SWITCH_WRAPPER:
896 			if (action) {
897 				elem_parse_failed = true;
898 				break;
899 			}
900 			/*
901 			 * This is a bit tricky, but as we only care about
902 			 * the wide bandwidth channel switch element, so
903 			 * just parse it out manually.
904 			 */
905 			ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH,
906 					      pos, elen);
907 			if (ie) {
908 				if (ie[1] == sizeof(*elems->wide_bw_chansw_ie))
909 					elems->wide_bw_chansw_ie =
910 						(void *)(ie + 2);
911 				else
912 					elem_parse_failed = true;
913 			}
914 			break;
915 		case WLAN_EID_COUNTRY:
916 			elems->country_elem = pos;
917 			elems->country_elem_len = elen;
918 			break;
919 		case WLAN_EID_PWR_CONSTRAINT:
920 			if (elen != 1) {
921 				elem_parse_failed = true;
922 				break;
923 			}
924 			elems->pwr_constr_elem = pos;
925 			break;
926 		case WLAN_EID_TIMEOUT_INTERVAL:
927 			if (elen >= sizeof(struct ieee80211_timeout_interval_ie))
928 				elems->timeout_int = (void *)pos;
929 			else
930 				elem_parse_failed = true;
931 			break;
932 		default:
933 			break;
934 		}
935 
936 		if (elem_parse_failed)
937 			elems->parse_error = true;
938 		else
939 			__set_bit(id, seen_elems);
940 
941 		left -= elen;
942 		pos += elen;
943 	}
944 
945 	if (left != 0)
946 		elems->parse_error = true;
947 
948 	return crc;
949 }
950 
951 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata,
952 			       bool bss_notify)
953 {
954 	struct ieee80211_local *local = sdata->local;
955 	struct ieee80211_tx_queue_params qparam;
956 	struct ieee80211_chanctx_conf *chanctx_conf;
957 	int ac;
958 	bool use_11b, enable_qos;
959 	int aCWmin, aCWmax;
960 
961 	if (!local->ops->conf_tx)
962 		return;
963 
964 	if (local->hw.queues < IEEE80211_NUM_ACS)
965 		return;
966 
967 	memset(&qparam, 0, sizeof(qparam));
968 
969 	rcu_read_lock();
970 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
971 	use_11b = (chanctx_conf &&
972 		   chanctx_conf->def.chan->band == IEEE80211_BAND_2GHZ) &&
973 		 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE);
974 	rcu_read_unlock();
975 
976 	/*
977 	 * By default disable QoS in STA mode for old access points, which do
978 	 * not support 802.11e. New APs will provide proper queue parameters,
979 	 * that we will configure later.
980 	 */
981 	enable_qos = (sdata->vif.type != NL80211_IFTYPE_STATION);
982 
983 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
984 		/* Set defaults according to 802.11-2007 Table 7-37 */
985 		aCWmax = 1023;
986 		if (use_11b)
987 			aCWmin = 31;
988 		else
989 			aCWmin = 15;
990 
991 		if (enable_qos) {
992 			switch (ac) {
993 			case IEEE80211_AC_BK:
994 				qparam.cw_max = aCWmax;
995 				qparam.cw_min = aCWmin;
996 				qparam.txop = 0;
997 				qparam.aifs = 7;
998 				break;
999 			/* never happens but let's not leave undefined */
1000 			default:
1001 			case IEEE80211_AC_BE:
1002 				qparam.cw_max = aCWmax;
1003 				qparam.cw_min = aCWmin;
1004 				qparam.txop = 0;
1005 				qparam.aifs = 3;
1006 				break;
1007 			case IEEE80211_AC_VI:
1008 				qparam.cw_max = aCWmin;
1009 				qparam.cw_min = (aCWmin + 1) / 2 - 1;
1010 				if (use_11b)
1011 					qparam.txop = 6016/32;
1012 				else
1013 					qparam.txop = 3008/32;
1014 				qparam.aifs = 2;
1015 				break;
1016 			case IEEE80211_AC_VO:
1017 				qparam.cw_max = (aCWmin + 1) / 2 - 1;
1018 				qparam.cw_min = (aCWmin + 1) / 4 - 1;
1019 				if (use_11b)
1020 					qparam.txop = 3264/32;
1021 				else
1022 					qparam.txop = 1504/32;
1023 				qparam.aifs = 2;
1024 				break;
1025 			}
1026 		} else {
1027 			/* Confiure old 802.11b/g medium access rules. */
1028 			qparam.cw_max = aCWmax;
1029 			qparam.cw_min = aCWmin;
1030 			qparam.txop = 0;
1031 			qparam.aifs = 2;
1032 		}
1033 
1034 		qparam.uapsd = false;
1035 
1036 		sdata->tx_conf[ac] = qparam;
1037 		drv_conf_tx(local, sdata, ac, &qparam);
1038 	}
1039 
1040 	if (sdata->vif.type != NL80211_IFTYPE_MONITOR &&
1041 	    sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE) {
1042 		sdata->vif.bss_conf.qos = enable_qos;
1043 		if (bss_notify)
1044 			ieee80211_bss_info_change_notify(sdata,
1045 							 BSS_CHANGED_QOS);
1046 	}
1047 }
1048 
1049 void ieee80211_sta_def_wmm_params(struct ieee80211_sub_if_data *sdata,
1050 				  const size_t supp_rates_len,
1051 				  const u8 *supp_rates)
1052 {
1053 	struct ieee80211_chanctx_conf *chanctx_conf;
1054 	int i, have_higher_than_11mbit = 0;
1055 
1056 	/* cf. IEEE 802.11 9.2.12 */
1057 	for (i = 0; i < supp_rates_len; i++)
1058 		if ((supp_rates[i] & 0x7f) * 5 > 110)
1059 			have_higher_than_11mbit = 1;
1060 
1061 	rcu_read_lock();
1062 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1063 
1064 	if (chanctx_conf &&
1065 	    chanctx_conf->def.chan->band == IEEE80211_BAND_2GHZ &&
1066 	    have_higher_than_11mbit)
1067 		sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
1068 	else
1069 		sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
1070 	rcu_read_unlock();
1071 
1072 	ieee80211_set_wmm_default(sdata, true);
1073 }
1074 
1075 u32 ieee80211_mandatory_rates(struct ieee80211_local *local,
1076 			      enum ieee80211_band band)
1077 {
1078 	struct ieee80211_supported_band *sband;
1079 	struct ieee80211_rate *bitrates;
1080 	u32 mandatory_rates;
1081 	enum ieee80211_rate_flags mandatory_flag;
1082 	int i;
1083 
1084 	sband = local->hw.wiphy->bands[band];
1085 	if (WARN_ON(!sband))
1086 		return 1;
1087 
1088 	if (band == IEEE80211_BAND_2GHZ)
1089 		mandatory_flag = IEEE80211_RATE_MANDATORY_B;
1090 	else
1091 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
1092 
1093 	bitrates = sband->bitrates;
1094 	mandatory_rates = 0;
1095 	for (i = 0; i < sband->n_bitrates; i++)
1096 		if (bitrates[i].flags & mandatory_flag)
1097 			mandatory_rates |= BIT(i);
1098 	return mandatory_rates;
1099 }
1100 
1101 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata,
1102 			 u16 transaction, u16 auth_alg, u16 status,
1103 			 const u8 *extra, size_t extra_len, const u8 *da,
1104 			 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx,
1105 			 u32 tx_flags)
1106 {
1107 	struct ieee80211_local *local = sdata->local;
1108 	struct sk_buff *skb;
1109 	struct ieee80211_mgmt *mgmt;
1110 	int err;
1111 
1112 	skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1113 			    sizeof(*mgmt) + 6 + extra_len);
1114 	if (!skb)
1115 		return;
1116 
1117 	skb_reserve(skb, local->hw.extra_tx_headroom);
1118 
1119 	mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
1120 	memset(mgmt, 0, 24 + 6);
1121 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1122 					  IEEE80211_STYPE_AUTH);
1123 	memcpy(mgmt->da, da, ETH_ALEN);
1124 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1125 	memcpy(mgmt->bssid, bssid, ETH_ALEN);
1126 	mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg);
1127 	mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
1128 	mgmt->u.auth.status_code = cpu_to_le16(status);
1129 	if (extra)
1130 		memcpy(skb_put(skb, extra_len), extra, extra_len);
1131 
1132 	if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) {
1133 		mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1134 		err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx);
1135 		WARN_ON(err);
1136 	}
1137 
1138 	IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT |
1139 					tx_flags;
1140 	ieee80211_tx_skb(sdata, skb);
1141 }
1142 
1143 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata,
1144 				    const u8 *bssid, u16 stype, u16 reason,
1145 				    bool send_frame, u8 *frame_buf)
1146 {
1147 	struct ieee80211_local *local = sdata->local;
1148 	struct sk_buff *skb;
1149 	struct ieee80211_mgmt *mgmt = (void *)frame_buf;
1150 
1151 	/* build frame */
1152 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype);
1153 	mgmt->duration = 0; /* initialize only */
1154 	mgmt->seq_ctrl = 0; /* initialize only */
1155 	memcpy(mgmt->da, bssid, ETH_ALEN);
1156 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1157 	memcpy(mgmt->bssid, bssid, ETH_ALEN);
1158 	/* u.deauth.reason_code == u.disassoc.reason_code */
1159 	mgmt->u.deauth.reason_code = cpu_to_le16(reason);
1160 
1161 	if (send_frame) {
1162 		skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1163 				    IEEE80211_DEAUTH_FRAME_LEN);
1164 		if (!skb)
1165 			return;
1166 
1167 		skb_reserve(skb, local->hw.extra_tx_headroom);
1168 
1169 		/* copy in frame */
1170 		memcpy(skb_put(skb, IEEE80211_DEAUTH_FRAME_LEN),
1171 		       mgmt, IEEE80211_DEAUTH_FRAME_LEN);
1172 
1173 		if (sdata->vif.type != NL80211_IFTYPE_STATION ||
1174 		    !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED))
1175 			IEEE80211_SKB_CB(skb)->flags |=
1176 				IEEE80211_TX_INTFL_DONT_ENCRYPT;
1177 
1178 		ieee80211_tx_skb(sdata, skb);
1179 	}
1180 }
1181 
1182 int ieee80211_build_preq_ies(struct ieee80211_local *local, u8 *buffer,
1183 			     size_t buffer_len, const u8 *ie, size_t ie_len,
1184 			     enum ieee80211_band band, u32 rate_mask,
1185 			     u8 channel)
1186 {
1187 	struct ieee80211_supported_band *sband;
1188 	u8 *pos = buffer, *end = buffer + buffer_len;
1189 	size_t offset = 0, noffset;
1190 	int supp_rates_len, i;
1191 	u8 rates[32];
1192 	int num_rates;
1193 	int ext_rates_len;
1194 
1195 	sband = local->hw.wiphy->bands[band];
1196 	if (WARN_ON_ONCE(!sband))
1197 		return 0;
1198 
1199 	num_rates = 0;
1200 	for (i = 0; i < sband->n_bitrates; i++) {
1201 		if ((BIT(i) & rate_mask) == 0)
1202 			continue; /* skip rate */
1203 		rates[num_rates++] = (u8) (sband->bitrates[i].bitrate / 5);
1204 	}
1205 
1206 	supp_rates_len = min_t(int, num_rates, 8);
1207 
1208 	if (end - pos < 2 + supp_rates_len)
1209 		goto out_err;
1210 	*pos++ = WLAN_EID_SUPP_RATES;
1211 	*pos++ = supp_rates_len;
1212 	memcpy(pos, rates, supp_rates_len);
1213 	pos += supp_rates_len;
1214 
1215 	/* insert "request information" if in custom IEs */
1216 	if (ie && ie_len) {
1217 		static const u8 before_extrates[] = {
1218 			WLAN_EID_SSID,
1219 			WLAN_EID_SUPP_RATES,
1220 			WLAN_EID_REQUEST,
1221 		};
1222 		noffset = ieee80211_ie_split(ie, ie_len,
1223 					     before_extrates,
1224 					     ARRAY_SIZE(before_extrates),
1225 					     offset);
1226 		if (end - pos < noffset - offset)
1227 			goto out_err;
1228 		memcpy(pos, ie + offset, noffset - offset);
1229 		pos += noffset - offset;
1230 		offset = noffset;
1231 	}
1232 
1233 	ext_rates_len = num_rates - supp_rates_len;
1234 	if (ext_rates_len > 0) {
1235 		if (end - pos < 2 + ext_rates_len)
1236 			goto out_err;
1237 		*pos++ = WLAN_EID_EXT_SUPP_RATES;
1238 		*pos++ = ext_rates_len;
1239 		memcpy(pos, rates + supp_rates_len, ext_rates_len);
1240 		pos += ext_rates_len;
1241 	}
1242 
1243 	if (channel && sband->band == IEEE80211_BAND_2GHZ) {
1244 		if (end - pos < 3)
1245 			goto out_err;
1246 		*pos++ = WLAN_EID_DS_PARAMS;
1247 		*pos++ = 1;
1248 		*pos++ = channel;
1249 	}
1250 
1251 	/* insert custom IEs that go before HT */
1252 	if (ie && ie_len) {
1253 		static const u8 before_ht[] = {
1254 			WLAN_EID_SSID,
1255 			WLAN_EID_SUPP_RATES,
1256 			WLAN_EID_REQUEST,
1257 			WLAN_EID_EXT_SUPP_RATES,
1258 			WLAN_EID_DS_PARAMS,
1259 			WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
1260 		};
1261 		noffset = ieee80211_ie_split(ie, ie_len,
1262 					     before_ht, ARRAY_SIZE(before_ht),
1263 					     offset);
1264 		if (end - pos < noffset - offset)
1265 			goto out_err;
1266 		memcpy(pos, ie + offset, noffset - offset);
1267 		pos += noffset - offset;
1268 		offset = noffset;
1269 	}
1270 
1271 	if (sband->ht_cap.ht_supported) {
1272 		if (end - pos < 2 + sizeof(struct ieee80211_ht_cap))
1273 			goto out_err;
1274 		pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap,
1275 						sband->ht_cap.cap);
1276 	}
1277 
1278 	/*
1279 	 * If adding more here, adjust code in main.c
1280 	 * that calculates local->scan_ies_len.
1281 	 */
1282 
1283 	/* add any remaining custom IEs */
1284 	if (ie && ie_len) {
1285 		noffset = ie_len;
1286 		if (end - pos < noffset - offset)
1287 			goto out_err;
1288 		memcpy(pos, ie + offset, noffset - offset);
1289 		pos += noffset - offset;
1290 	}
1291 
1292 	if (sband->vht_cap.vht_supported) {
1293 		if (end - pos < 2 + sizeof(struct ieee80211_vht_cap))
1294 			goto out_err;
1295 		pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap,
1296 						 sband->vht_cap.cap);
1297 	}
1298 
1299 	return pos - buffer;
1300  out_err:
1301 	WARN_ONCE(1, "not enough space for preq IEs\n");
1302 	return pos - buffer;
1303 }
1304 
1305 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata,
1306 					  u8 *dst, u32 ratemask,
1307 					  struct ieee80211_channel *chan,
1308 					  const u8 *ssid, size_t ssid_len,
1309 					  const u8 *ie, size_t ie_len,
1310 					  bool directed)
1311 {
1312 	struct ieee80211_local *local = sdata->local;
1313 	struct sk_buff *skb;
1314 	struct ieee80211_mgmt *mgmt;
1315 	u8 chan_no;
1316 	int ies_len;
1317 
1318 	/*
1319 	 * Do not send DS Channel parameter for directed probe requests
1320 	 * in order to maximize the chance that we get a response.  Some
1321 	 * badly-behaved APs don't respond when this parameter is included.
1322 	 */
1323 	if (directed)
1324 		chan_no = 0;
1325 	else
1326 		chan_no = ieee80211_frequency_to_channel(chan->center_freq);
1327 
1328 	skb = ieee80211_probereq_get(&local->hw, &sdata->vif,
1329 				     ssid, ssid_len, 100 + ie_len);
1330 	if (!skb)
1331 		return NULL;
1332 
1333 	ies_len = ieee80211_build_preq_ies(local, skb_tail_pointer(skb),
1334 					   skb_tailroom(skb),
1335 					   ie, ie_len, chan->band,
1336 					   ratemask, chan_no);
1337 	skb_put(skb, ies_len);
1338 
1339 	if (dst) {
1340 		mgmt = (struct ieee80211_mgmt *) skb->data;
1341 		memcpy(mgmt->da, dst, ETH_ALEN);
1342 		memcpy(mgmt->bssid, dst, ETH_ALEN);
1343 	}
1344 
1345 	IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1346 
1347 	return skb;
1348 }
1349 
1350 void ieee80211_send_probe_req(struct ieee80211_sub_if_data *sdata, u8 *dst,
1351 			      const u8 *ssid, size_t ssid_len,
1352 			      const u8 *ie, size_t ie_len,
1353 			      u32 ratemask, bool directed, u32 tx_flags,
1354 			      struct ieee80211_channel *channel, bool scan)
1355 {
1356 	struct sk_buff *skb;
1357 
1358 	skb = ieee80211_build_probe_req(sdata, dst, ratemask, channel,
1359 					ssid, ssid_len,
1360 					ie, ie_len, directed);
1361 	if (skb) {
1362 		IEEE80211_SKB_CB(skb)->flags |= tx_flags;
1363 		if (scan)
1364 			ieee80211_tx_skb_tid_band(sdata, skb, 7, channel->band);
1365 		else
1366 			ieee80211_tx_skb(sdata, skb);
1367 	}
1368 }
1369 
1370 u32 ieee80211_sta_get_rates(struct ieee80211_local *local,
1371 			    struct ieee802_11_elems *elems,
1372 			    enum ieee80211_band band, u32 *basic_rates)
1373 {
1374 	struct ieee80211_supported_band *sband;
1375 	struct ieee80211_rate *bitrates;
1376 	size_t num_rates;
1377 	u32 supp_rates;
1378 	int i, j;
1379 	sband = local->hw.wiphy->bands[band];
1380 
1381 	if (WARN_ON(!sband))
1382 		return 1;
1383 
1384 	bitrates = sband->bitrates;
1385 	num_rates = sband->n_bitrates;
1386 	supp_rates = 0;
1387 	for (i = 0; i < elems->supp_rates_len +
1388 		     elems->ext_supp_rates_len; i++) {
1389 		u8 rate = 0;
1390 		int own_rate;
1391 		bool is_basic;
1392 		if (i < elems->supp_rates_len)
1393 			rate = elems->supp_rates[i];
1394 		else if (elems->ext_supp_rates)
1395 			rate = elems->ext_supp_rates
1396 				[i - elems->supp_rates_len];
1397 		own_rate = 5 * (rate & 0x7f);
1398 		is_basic = !!(rate & 0x80);
1399 
1400 		if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY)
1401 			continue;
1402 
1403 		for (j = 0; j < num_rates; j++) {
1404 			if (bitrates[j].bitrate == own_rate) {
1405 				supp_rates |= BIT(j);
1406 				if (basic_rates && is_basic)
1407 					*basic_rates |= BIT(j);
1408 			}
1409 		}
1410 	}
1411 	return supp_rates;
1412 }
1413 
1414 void ieee80211_stop_device(struct ieee80211_local *local)
1415 {
1416 	ieee80211_led_radio(local, false);
1417 	ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO);
1418 
1419 	cancel_work_sync(&local->reconfig_filter);
1420 
1421 	flush_workqueue(local->workqueue);
1422 	drv_stop(local);
1423 }
1424 
1425 static void ieee80211_assign_chanctx(struct ieee80211_local *local,
1426 				     struct ieee80211_sub_if_data *sdata)
1427 {
1428 	struct ieee80211_chanctx_conf *conf;
1429 	struct ieee80211_chanctx *ctx;
1430 
1431 	if (!local->use_chanctx)
1432 		return;
1433 
1434 	mutex_lock(&local->chanctx_mtx);
1435 	conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
1436 					 lockdep_is_held(&local->chanctx_mtx));
1437 	if (conf) {
1438 		ctx = container_of(conf, struct ieee80211_chanctx, conf);
1439 		drv_assign_vif_chanctx(local, sdata, ctx);
1440 	}
1441 	mutex_unlock(&local->chanctx_mtx);
1442 }
1443 
1444 int ieee80211_reconfig(struct ieee80211_local *local)
1445 {
1446 	struct ieee80211_hw *hw = &local->hw;
1447 	struct ieee80211_sub_if_data *sdata;
1448 	struct ieee80211_chanctx *ctx;
1449 	struct sta_info *sta;
1450 	int res, i;
1451 	bool reconfig_due_to_wowlan = false;
1452 
1453 #ifdef CONFIG_PM
1454 	if (local->suspended)
1455 		local->resuming = true;
1456 
1457 	if (local->wowlan) {
1458 		local->wowlan = false;
1459 		res = drv_resume(local);
1460 		if (res < 0) {
1461 			local->resuming = false;
1462 			return res;
1463 		}
1464 		if (res == 0)
1465 			goto wake_up;
1466 		WARN_ON(res > 1);
1467 		/*
1468 		 * res is 1, which means the driver requested
1469 		 * to go through a regular reset on wakeup.
1470 		 */
1471 		reconfig_due_to_wowlan = true;
1472 	}
1473 #endif
1474 	/* everything else happens only if HW was up & running */
1475 	if (!local->open_count)
1476 		goto wake_up;
1477 
1478 	/*
1479 	 * Upon resume hardware can sometimes be goofy due to
1480 	 * various platform / driver / bus issues, so restarting
1481 	 * the device may at times not work immediately. Propagate
1482 	 * the error.
1483 	 */
1484 	res = drv_start(local);
1485 	if (res) {
1486 		WARN(local->suspended, "Hardware became unavailable "
1487 		     "upon resume. This could be a software issue "
1488 		     "prior to suspend or a hardware issue.\n");
1489 		return res;
1490 	}
1491 
1492 	/* setup fragmentation threshold */
1493 	drv_set_frag_threshold(local, hw->wiphy->frag_threshold);
1494 
1495 	/* setup RTS threshold */
1496 	drv_set_rts_threshold(local, hw->wiphy->rts_threshold);
1497 
1498 	/* reset coverage class */
1499 	drv_set_coverage_class(local, hw->wiphy->coverage_class);
1500 
1501 	ieee80211_led_radio(local, true);
1502 	ieee80211_mod_tpt_led_trig(local,
1503 				   IEEE80211_TPT_LEDTRIG_FL_RADIO, 0);
1504 
1505 	/* add interfaces */
1506 	sdata = rtnl_dereference(local->monitor_sdata);
1507 	if (sdata) {
1508 		/* in HW restart it exists already */
1509 		WARN_ON(local->resuming);
1510 		res = drv_add_interface(local, sdata);
1511 		if (WARN_ON(res)) {
1512 			rcu_assign_pointer(local->monitor_sdata, NULL);
1513 			synchronize_net();
1514 			kfree(sdata);
1515 		}
1516 	}
1517 
1518 	list_for_each_entry(sdata, &local->interfaces, list) {
1519 		if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
1520 		    sdata->vif.type != NL80211_IFTYPE_MONITOR &&
1521 		    ieee80211_sdata_running(sdata))
1522 			res = drv_add_interface(local, sdata);
1523 	}
1524 
1525 	/* add channel contexts */
1526 	if (local->use_chanctx) {
1527 		mutex_lock(&local->chanctx_mtx);
1528 		list_for_each_entry(ctx, &local->chanctx_list, list)
1529 			WARN_ON(drv_add_chanctx(local, ctx));
1530 		mutex_unlock(&local->chanctx_mtx);
1531 	}
1532 
1533 	list_for_each_entry(sdata, &local->interfaces, list) {
1534 		if (!ieee80211_sdata_running(sdata))
1535 			continue;
1536 		ieee80211_assign_chanctx(local, sdata);
1537 	}
1538 
1539 	sdata = rtnl_dereference(local->monitor_sdata);
1540 	if (sdata && ieee80211_sdata_running(sdata))
1541 		ieee80211_assign_chanctx(local, sdata);
1542 
1543 	/* add STAs back */
1544 	mutex_lock(&local->sta_mtx);
1545 	list_for_each_entry(sta, &local->sta_list, list) {
1546 		enum ieee80211_sta_state state;
1547 
1548 		if (!sta->uploaded)
1549 			continue;
1550 
1551 		/* AP-mode stations will be added later */
1552 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP)
1553 			continue;
1554 
1555 		for (state = IEEE80211_STA_NOTEXIST;
1556 		     state < sta->sta_state; state++)
1557 			WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
1558 					      state + 1));
1559 	}
1560 	mutex_unlock(&local->sta_mtx);
1561 
1562 	/* reconfigure tx conf */
1563 	if (hw->queues >= IEEE80211_NUM_ACS) {
1564 		list_for_each_entry(sdata, &local->interfaces, list) {
1565 			if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
1566 			    sdata->vif.type == NL80211_IFTYPE_MONITOR ||
1567 			    !ieee80211_sdata_running(sdata))
1568 				continue;
1569 
1570 			for (i = 0; i < IEEE80211_NUM_ACS; i++)
1571 				drv_conf_tx(local, sdata, i,
1572 					    &sdata->tx_conf[i]);
1573 		}
1574 	}
1575 
1576 	/* reconfigure hardware */
1577 	ieee80211_hw_config(local, ~0);
1578 
1579 	ieee80211_configure_filter(local);
1580 
1581 	/* Finally also reconfigure all the BSS information */
1582 	list_for_each_entry(sdata, &local->interfaces, list) {
1583 		u32 changed;
1584 
1585 		if (!ieee80211_sdata_running(sdata))
1586 			continue;
1587 
1588 		/* common change flags for all interface types */
1589 		changed = BSS_CHANGED_ERP_CTS_PROT |
1590 			  BSS_CHANGED_ERP_PREAMBLE |
1591 			  BSS_CHANGED_ERP_SLOT |
1592 			  BSS_CHANGED_HT |
1593 			  BSS_CHANGED_BASIC_RATES |
1594 			  BSS_CHANGED_BEACON_INT |
1595 			  BSS_CHANGED_BSSID |
1596 			  BSS_CHANGED_CQM |
1597 			  BSS_CHANGED_QOS |
1598 			  BSS_CHANGED_IDLE |
1599 			  BSS_CHANGED_TXPOWER;
1600 
1601 		switch (sdata->vif.type) {
1602 		case NL80211_IFTYPE_STATION:
1603 			changed |= BSS_CHANGED_ASSOC |
1604 				   BSS_CHANGED_ARP_FILTER |
1605 				   BSS_CHANGED_PS;
1606 
1607 			if (sdata->u.mgd.dtim_period)
1608 				changed |= BSS_CHANGED_DTIM_PERIOD;
1609 
1610 			mutex_lock(&sdata->u.mgd.mtx);
1611 			ieee80211_bss_info_change_notify(sdata, changed);
1612 			mutex_unlock(&sdata->u.mgd.mtx);
1613 			break;
1614 		case NL80211_IFTYPE_ADHOC:
1615 			changed |= BSS_CHANGED_IBSS;
1616 			/* fall through */
1617 		case NL80211_IFTYPE_AP:
1618 			changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS;
1619 
1620 			if (sdata->vif.type == NL80211_IFTYPE_AP) {
1621 				changed |= BSS_CHANGED_AP_PROBE_RESP;
1622 
1623 				if (rcu_access_pointer(sdata->u.ap.beacon))
1624 					drv_start_ap(local, sdata);
1625 			}
1626 
1627 			/* fall through */
1628 		case NL80211_IFTYPE_MESH_POINT:
1629 			if (sdata->vif.bss_conf.enable_beacon) {
1630 				changed |= BSS_CHANGED_BEACON |
1631 					   BSS_CHANGED_BEACON_ENABLED;
1632 				ieee80211_bss_info_change_notify(sdata, changed);
1633 			}
1634 			break;
1635 		case NL80211_IFTYPE_WDS:
1636 			break;
1637 		case NL80211_IFTYPE_AP_VLAN:
1638 		case NL80211_IFTYPE_MONITOR:
1639 			/* ignore virtual */
1640 			break;
1641 		case NL80211_IFTYPE_P2P_DEVICE:
1642 			changed = BSS_CHANGED_IDLE;
1643 			break;
1644 		case NL80211_IFTYPE_UNSPECIFIED:
1645 		case NUM_NL80211_IFTYPES:
1646 		case NL80211_IFTYPE_P2P_CLIENT:
1647 		case NL80211_IFTYPE_P2P_GO:
1648 			WARN_ON(1);
1649 			break;
1650 		}
1651 	}
1652 
1653 	ieee80211_recalc_ps(local, -1);
1654 
1655 	/*
1656 	 * The sta might be in psm against the ap (e.g. because
1657 	 * this was the state before a hw restart), so we
1658 	 * explicitly send a null packet in order to make sure
1659 	 * it'll sync against the ap (and get out of psm).
1660 	 */
1661 	if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) {
1662 		list_for_each_entry(sdata, &local->interfaces, list) {
1663 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
1664 				continue;
1665 			if (!sdata->u.mgd.associated)
1666 				continue;
1667 
1668 			ieee80211_send_nullfunc(local, sdata, 0);
1669 		}
1670 	}
1671 
1672 	/* APs are now beaconing, add back stations */
1673 	mutex_lock(&local->sta_mtx);
1674 	list_for_each_entry(sta, &local->sta_list, list) {
1675 		enum ieee80211_sta_state state;
1676 
1677 		if (!sta->uploaded)
1678 			continue;
1679 
1680 		if (sta->sdata->vif.type != NL80211_IFTYPE_AP)
1681 			continue;
1682 
1683 		for (state = IEEE80211_STA_NOTEXIST;
1684 		     state < sta->sta_state; state++)
1685 			WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
1686 					      state + 1));
1687 	}
1688 	mutex_unlock(&local->sta_mtx);
1689 
1690 	/* add back keys */
1691 	list_for_each_entry(sdata, &local->interfaces, list)
1692 		if (ieee80211_sdata_running(sdata))
1693 			ieee80211_enable_keys(sdata);
1694 
1695  wake_up:
1696 	local->in_reconfig = false;
1697 	barrier();
1698 
1699 	if (local->monitors == local->open_count && local->monitors > 0)
1700 		ieee80211_add_virtual_monitor(local);
1701 
1702 	/*
1703 	 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation
1704 	 * sessions can be established after a resume.
1705 	 *
1706 	 * Also tear down aggregation sessions since reconfiguring
1707 	 * them in a hardware restart scenario is not easily done
1708 	 * right now, and the hardware will have lost information
1709 	 * about the sessions, but we and the AP still think they
1710 	 * are active. This is really a workaround though.
1711 	 */
1712 	if (hw->flags & IEEE80211_HW_AMPDU_AGGREGATION) {
1713 		mutex_lock(&local->sta_mtx);
1714 
1715 		list_for_each_entry(sta, &local->sta_list, list) {
1716 			ieee80211_sta_tear_down_BA_sessions(
1717 					sta, AGG_STOP_LOCAL_REQUEST);
1718 			clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
1719 		}
1720 
1721 		mutex_unlock(&local->sta_mtx);
1722 	}
1723 
1724 	ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
1725 					IEEE80211_QUEUE_STOP_REASON_SUSPEND);
1726 
1727 	/*
1728 	 * If this is for hw restart things are still running.
1729 	 * We may want to change that later, however.
1730 	 */
1731 	if (!local->suspended || reconfig_due_to_wowlan)
1732 		drv_restart_complete(local);
1733 
1734 	if (!local->suspended)
1735 		return 0;
1736 
1737 #ifdef CONFIG_PM
1738 	/* first set suspended false, then resuming */
1739 	local->suspended = false;
1740 	mb();
1741 	local->resuming = false;
1742 
1743 	list_for_each_entry(sdata, &local->interfaces, list) {
1744 		if (!ieee80211_sdata_running(sdata))
1745 			continue;
1746 		if (sdata->vif.type == NL80211_IFTYPE_STATION)
1747 			ieee80211_sta_restart(sdata);
1748 	}
1749 
1750 	mod_timer(&local->sta_cleanup, jiffies + 1);
1751 #else
1752 	WARN_ON(1);
1753 #endif
1754 	return 0;
1755 }
1756 
1757 void ieee80211_resume_disconnect(struct ieee80211_vif *vif)
1758 {
1759 	struct ieee80211_sub_if_data *sdata;
1760 	struct ieee80211_local *local;
1761 	struct ieee80211_key *key;
1762 
1763 	if (WARN_ON(!vif))
1764 		return;
1765 
1766 	sdata = vif_to_sdata(vif);
1767 	local = sdata->local;
1768 
1769 	if (WARN_ON(!local->resuming))
1770 		return;
1771 
1772 	if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1773 		return;
1774 
1775 	sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME;
1776 
1777 	mutex_lock(&local->key_mtx);
1778 	list_for_each_entry(key, &sdata->key_list, list)
1779 		key->flags |= KEY_FLAG_TAINTED;
1780 	mutex_unlock(&local->key_mtx);
1781 }
1782 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect);
1783 
1784 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata)
1785 {
1786 	struct ieee80211_local *local = sdata->local;
1787 	struct ieee80211_chanctx_conf *chanctx_conf;
1788 	struct ieee80211_chanctx *chanctx;
1789 
1790 	mutex_lock(&local->chanctx_mtx);
1791 
1792 	chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
1793 					lockdep_is_held(&local->chanctx_mtx));
1794 
1795 	if (WARN_ON_ONCE(!chanctx_conf))
1796 		goto unlock;
1797 
1798 	chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf);
1799 	ieee80211_recalc_smps_chanctx(local, chanctx);
1800  unlock:
1801 	mutex_unlock(&local->chanctx_mtx);
1802 }
1803 
1804 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1805 {
1806 	int i;
1807 
1808 	for (i = 0; i < n_ids; i++)
1809 		if (ids[i] == id)
1810 			return true;
1811 	return false;
1812 }
1813 
1814 /**
1815  * ieee80211_ie_split - split an IE buffer according to ordering
1816  *
1817  * @ies: the IE buffer
1818  * @ielen: the length of the IE buffer
1819  * @ids: an array with element IDs that are allowed before
1820  *	the split
1821  * @n_ids: the size of the element ID array
1822  * @offset: offset where to start splitting in the buffer
1823  *
1824  * This function splits an IE buffer by updating the @offset
1825  * variable to point to the location where the buffer should be
1826  * split.
1827  *
1828  * It assumes that the given IE buffer is well-formed, this
1829  * has to be guaranteed by the caller!
1830  *
1831  * It also assumes that the IEs in the buffer are ordered
1832  * correctly, if not the result of using this function will not
1833  * be ordered correctly either, i.e. it does no reordering.
1834  *
1835  * The function returns the offset where the next part of the
1836  * buffer starts, which may be @ielen if the entire (remainder)
1837  * of the buffer should be used.
1838  */
1839 size_t ieee80211_ie_split(const u8 *ies, size_t ielen,
1840 			  const u8 *ids, int n_ids, size_t offset)
1841 {
1842 	size_t pos = offset;
1843 
1844 	while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos]))
1845 		pos += 2 + ies[pos + 1];
1846 
1847 	return pos;
1848 }
1849 
1850 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset)
1851 {
1852 	size_t pos = offset;
1853 
1854 	while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC)
1855 		pos += 2 + ies[pos + 1];
1856 
1857 	return pos;
1858 }
1859 
1860 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata,
1861 					    int rssi_min_thold,
1862 					    int rssi_max_thold)
1863 {
1864 	trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold);
1865 
1866 	if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
1867 		return;
1868 
1869 	/*
1870 	 * Scale up threshold values before storing it, as the RSSI averaging
1871 	 * algorithm uses a scaled up value as well. Change this scaling
1872 	 * factor if the RSSI averaging algorithm changes.
1873 	 */
1874 	sdata->u.mgd.rssi_min_thold = rssi_min_thold*16;
1875 	sdata->u.mgd.rssi_max_thold = rssi_max_thold*16;
1876 }
1877 
1878 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif,
1879 				    int rssi_min_thold,
1880 				    int rssi_max_thold)
1881 {
1882 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1883 
1884 	WARN_ON(rssi_min_thold == rssi_max_thold ||
1885 		rssi_min_thold > rssi_max_thold);
1886 
1887 	_ieee80211_enable_rssi_reports(sdata, rssi_min_thold,
1888 				       rssi_max_thold);
1889 }
1890 EXPORT_SYMBOL(ieee80211_enable_rssi_reports);
1891 
1892 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif)
1893 {
1894 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1895 
1896 	_ieee80211_enable_rssi_reports(sdata, 0, 0);
1897 }
1898 EXPORT_SYMBOL(ieee80211_disable_rssi_reports);
1899 
1900 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
1901 			      u16 cap)
1902 {
1903 	__le16 tmp;
1904 
1905 	*pos++ = WLAN_EID_HT_CAPABILITY;
1906 	*pos++ = sizeof(struct ieee80211_ht_cap);
1907 	memset(pos, 0, sizeof(struct ieee80211_ht_cap));
1908 
1909 	/* capability flags */
1910 	tmp = cpu_to_le16(cap);
1911 	memcpy(pos, &tmp, sizeof(u16));
1912 	pos += sizeof(u16);
1913 
1914 	/* AMPDU parameters */
1915 	*pos++ = ht_cap->ampdu_factor |
1916 		 (ht_cap->ampdu_density <<
1917 			IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT);
1918 
1919 	/* MCS set */
1920 	memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs));
1921 	pos += sizeof(ht_cap->mcs);
1922 
1923 	/* extended capabilities */
1924 	pos += sizeof(__le16);
1925 
1926 	/* BF capabilities */
1927 	pos += sizeof(__le32);
1928 
1929 	/* antenna selection */
1930 	pos += sizeof(u8);
1931 
1932 	return pos;
1933 }
1934 
1935 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
1936 			       u32 cap)
1937 {
1938 	__le32 tmp;
1939 
1940 	*pos++ = WLAN_EID_VHT_CAPABILITY;
1941 	*pos++ = sizeof(struct ieee80211_vht_cap);
1942 	memset(pos, 0, sizeof(struct ieee80211_vht_cap));
1943 
1944 	/* capability flags */
1945 	tmp = cpu_to_le32(cap);
1946 	memcpy(pos, &tmp, sizeof(u32));
1947 	pos += sizeof(u32);
1948 
1949 	/* VHT MCS set */
1950 	memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs));
1951 	pos += sizeof(vht_cap->vht_mcs);
1952 
1953 	return pos;
1954 }
1955 
1956 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
1957 			       const struct cfg80211_chan_def *chandef,
1958 			       u16 prot_mode)
1959 {
1960 	struct ieee80211_ht_operation *ht_oper;
1961 	/* Build HT Information */
1962 	*pos++ = WLAN_EID_HT_OPERATION;
1963 	*pos++ = sizeof(struct ieee80211_ht_operation);
1964 	ht_oper = (struct ieee80211_ht_operation *)pos;
1965 	ht_oper->primary_chan = ieee80211_frequency_to_channel(
1966 					chandef->chan->center_freq);
1967 	switch (chandef->width) {
1968 	case NL80211_CHAN_WIDTH_160:
1969 	case NL80211_CHAN_WIDTH_80P80:
1970 	case NL80211_CHAN_WIDTH_80:
1971 	case NL80211_CHAN_WIDTH_40:
1972 		if (chandef->center_freq1 > chandef->chan->center_freq)
1973 			ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
1974 		else
1975 			ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
1976 		break;
1977 	default:
1978 		ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE;
1979 		break;
1980 	}
1981 	if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 &&
1982 	    chandef->width != NL80211_CHAN_WIDTH_20_NOHT &&
1983 	    chandef->width != NL80211_CHAN_WIDTH_20)
1984 		ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY;
1985 
1986 	ht_oper->operation_mode = cpu_to_le16(prot_mode);
1987 	ht_oper->stbc_param = 0x0000;
1988 
1989 	/* It seems that Basic MCS set and Supported MCS set
1990 	   are identical for the first 10 bytes */
1991 	memset(&ht_oper->basic_set, 0, 16);
1992 	memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10);
1993 
1994 	return pos + sizeof(struct ieee80211_ht_operation);
1995 }
1996 
1997 void ieee80211_ht_oper_to_chandef(struct ieee80211_channel *control_chan,
1998 				  const struct ieee80211_ht_operation *ht_oper,
1999 				  struct cfg80211_chan_def *chandef)
2000 {
2001 	enum nl80211_channel_type channel_type;
2002 
2003 	if (!ht_oper) {
2004 		cfg80211_chandef_create(chandef, control_chan,
2005 					NL80211_CHAN_NO_HT);
2006 		return;
2007 	}
2008 
2009 	switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) {
2010 	case IEEE80211_HT_PARAM_CHA_SEC_NONE:
2011 		channel_type = NL80211_CHAN_HT20;
2012 		break;
2013 	case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
2014 		channel_type = NL80211_CHAN_HT40PLUS;
2015 		break;
2016 	case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
2017 		channel_type = NL80211_CHAN_HT40MINUS;
2018 		break;
2019 	default:
2020 		channel_type = NL80211_CHAN_NO_HT;
2021 	}
2022 
2023 	cfg80211_chandef_create(chandef, control_chan, channel_type);
2024 }
2025 
2026 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata,
2027 			    struct sk_buff *skb, bool need_basic,
2028 			    enum ieee80211_band band)
2029 {
2030 	struct ieee80211_local *local = sdata->local;
2031 	struct ieee80211_supported_band *sband;
2032 	int rate;
2033 	u8 i, rates, *pos;
2034 	u32 basic_rates = sdata->vif.bss_conf.basic_rates;
2035 
2036 	sband = local->hw.wiphy->bands[band];
2037 	rates = sband->n_bitrates;
2038 	if (rates > 8)
2039 		rates = 8;
2040 
2041 	if (skb_tailroom(skb) < rates + 2)
2042 		return -ENOMEM;
2043 
2044 	pos = skb_put(skb, rates + 2);
2045 	*pos++ = WLAN_EID_SUPP_RATES;
2046 	*pos++ = rates;
2047 	for (i = 0; i < rates; i++) {
2048 		u8 basic = 0;
2049 		if (need_basic && basic_rates & BIT(i))
2050 			basic = 0x80;
2051 		rate = sband->bitrates[i].bitrate;
2052 		*pos++ = basic | (u8) (rate / 5);
2053 	}
2054 
2055 	return 0;
2056 }
2057 
2058 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata,
2059 				struct sk_buff *skb, bool need_basic,
2060 				enum ieee80211_band band)
2061 {
2062 	struct ieee80211_local *local = sdata->local;
2063 	struct ieee80211_supported_band *sband;
2064 	int rate;
2065 	u8 i, exrates, *pos;
2066 	u32 basic_rates = sdata->vif.bss_conf.basic_rates;
2067 
2068 	sband = local->hw.wiphy->bands[band];
2069 	exrates = sband->n_bitrates;
2070 	if (exrates > 8)
2071 		exrates -= 8;
2072 	else
2073 		exrates = 0;
2074 
2075 	if (skb_tailroom(skb) < exrates + 2)
2076 		return -ENOMEM;
2077 
2078 	if (exrates) {
2079 		pos = skb_put(skb, exrates + 2);
2080 		*pos++ = WLAN_EID_EXT_SUPP_RATES;
2081 		*pos++ = exrates;
2082 		for (i = 8; i < sband->n_bitrates; i++) {
2083 			u8 basic = 0;
2084 			if (need_basic && basic_rates & BIT(i))
2085 				basic = 0x80;
2086 			rate = sband->bitrates[i].bitrate;
2087 			*pos++ = basic | (u8) (rate / 5);
2088 		}
2089 	}
2090 	return 0;
2091 }
2092 
2093 int ieee80211_ave_rssi(struct ieee80211_vif *vif)
2094 {
2095 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
2096 	struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
2097 
2098 	if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) {
2099 		/* non-managed type inferfaces */
2100 		return 0;
2101 	}
2102 	return ifmgd->ave_beacon_signal / 16;
2103 }
2104 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi);
2105 
2106 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs)
2107 {
2108 	if (!mcs)
2109 		return 1;
2110 
2111 	/* TODO: consider rx_highest */
2112 
2113 	if (mcs->rx_mask[3])
2114 		return 4;
2115 	if (mcs->rx_mask[2])
2116 		return 3;
2117 	if (mcs->rx_mask[1])
2118 		return 2;
2119 	return 1;
2120 }
2121 
2122 /**
2123  * ieee80211_calculate_rx_timestamp - calculate timestamp in frame
2124  * @local: mac80211 hw info struct
2125  * @status: RX status
2126  * @mpdu_len: total MPDU length (including FCS)
2127  * @mpdu_offset: offset into MPDU to calculate timestamp at
2128  *
2129  * This function calculates the RX timestamp at the given MPDU offset, taking
2130  * into account what the RX timestamp was. An offset of 0 will just normalize
2131  * the timestamp to TSF at beginning of MPDU reception.
2132  */
2133 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local,
2134 				     struct ieee80211_rx_status *status,
2135 				     unsigned int mpdu_len,
2136 				     unsigned int mpdu_offset)
2137 {
2138 	u64 ts = status->mactime;
2139 	struct rate_info ri;
2140 	u16 rate;
2141 
2142 	if (WARN_ON(!ieee80211_have_rx_timestamp(status)))
2143 		return 0;
2144 
2145 	memset(&ri, 0, sizeof(ri));
2146 
2147 	/* Fill cfg80211 rate info */
2148 	if (status->flag & RX_FLAG_HT) {
2149 		ri.mcs = status->rate_idx;
2150 		ri.flags |= RATE_INFO_FLAGS_MCS;
2151 		if (status->flag & RX_FLAG_40MHZ)
2152 			ri.flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH;
2153 		if (status->flag & RX_FLAG_SHORT_GI)
2154 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
2155 	} else if (status->flag & RX_FLAG_VHT) {
2156 		ri.flags |= RATE_INFO_FLAGS_VHT_MCS;
2157 		ri.mcs = status->rate_idx;
2158 		ri.nss = status->vht_nss;
2159 		if (status->flag & RX_FLAG_40MHZ)
2160 			ri.flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH;
2161 		if (status->flag & RX_FLAG_80MHZ)
2162 			ri.flags |= RATE_INFO_FLAGS_80_MHZ_WIDTH;
2163 		if (status->flag & RX_FLAG_80P80MHZ)
2164 			ri.flags |= RATE_INFO_FLAGS_80P80_MHZ_WIDTH;
2165 		if (status->flag & RX_FLAG_160MHZ)
2166 			ri.flags |= RATE_INFO_FLAGS_160_MHZ_WIDTH;
2167 		if (status->flag & RX_FLAG_SHORT_GI)
2168 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
2169 	} else {
2170 		struct ieee80211_supported_band *sband;
2171 
2172 		sband = local->hw.wiphy->bands[status->band];
2173 		ri.legacy = sband->bitrates[status->rate_idx].bitrate;
2174 	}
2175 
2176 	rate = cfg80211_calculate_bitrate(&ri);
2177 
2178 	/* rewind from end of MPDU */
2179 	if (status->flag & RX_FLAG_MACTIME_END)
2180 		ts -= mpdu_len * 8 * 10 / rate;
2181 
2182 	ts += mpdu_offset * 8 * 10 / rate;
2183 
2184 	return ts;
2185 }
2186 
2187 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local)
2188 {
2189 	struct ieee80211_sub_if_data *sdata;
2190 
2191 	mutex_lock(&local->iflist_mtx);
2192 	list_for_each_entry(sdata, &local->interfaces, list) {
2193 		cancel_delayed_work_sync(&sdata->dfs_cac_timer_work);
2194 
2195 		if (sdata->wdev.cac_started) {
2196 			ieee80211_vif_release_channel(sdata);
2197 			cfg80211_cac_event(sdata->dev,
2198 					   NL80211_RADAR_CAC_ABORTED,
2199 					   GFP_KERNEL);
2200 		}
2201 	}
2202 	mutex_unlock(&local->iflist_mtx);
2203 }
2204 
2205 void ieee80211_dfs_radar_detected_work(struct work_struct *work)
2206 {
2207 	struct ieee80211_local *local =
2208 		container_of(work, struct ieee80211_local, radar_detected_work);
2209 	struct cfg80211_chan_def chandef;
2210 
2211 	ieee80211_dfs_cac_cancel(local);
2212 
2213 	if (local->use_chanctx)
2214 		/* currently not handled */
2215 		WARN_ON(1);
2216 	else {
2217 		chandef = local->hw.conf.chandef;
2218 		cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL);
2219 	}
2220 }
2221 
2222 void ieee80211_radar_detected(struct ieee80211_hw *hw)
2223 {
2224 	struct ieee80211_local *local = hw_to_local(hw);
2225 
2226 	trace_api_radar_detected(local);
2227 
2228 	ieee80211_queue_work(hw, &local->radar_detected_work);
2229 }
2230 EXPORT_SYMBOL(ieee80211_radar_detected);
2231