1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright (C) 2015-2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 Intel Corporation 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License version 2 as 12 * published by the Free Software Foundation. 13 * 14 * utilities for mac80211 15 */ 16 17 #include <net/mac80211.h> 18 #include <linux/netdevice.h> 19 #include <linux/export.h> 20 #include <linux/types.h> 21 #include <linux/slab.h> 22 #include <linux/skbuff.h> 23 #include <linux/etherdevice.h> 24 #include <linux/if_arp.h> 25 #include <linux/bitmap.h> 26 #include <linux/crc32.h> 27 #include <net/net_namespace.h> 28 #include <net/cfg80211.h> 29 #include <net/rtnetlink.h> 30 31 #include "ieee80211_i.h" 32 #include "driver-ops.h" 33 #include "rate.h" 34 #include "mesh.h" 35 #include "wme.h" 36 #include "led.h" 37 #include "wep.h" 38 39 /* privid for wiphys to determine whether they belong to us or not */ 40 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 41 42 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 43 { 44 struct ieee80211_local *local; 45 BUG_ON(!wiphy); 46 47 local = wiphy_priv(wiphy); 48 return &local->hw; 49 } 50 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 51 52 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 53 { 54 struct sk_buff *skb; 55 struct ieee80211_hdr *hdr; 56 57 skb_queue_walk(&tx->skbs, skb) { 58 hdr = (struct ieee80211_hdr *) skb->data; 59 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 60 } 61 } 62 63 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 64 int rate, int erp, int short_preamble, 65 int shift) 66 { 67 int dur; 68 69 /* calculate duration (in microseconds, rounded up to next higher 70 * integer if it includes a fractional microsecond) to send frame of 71 * len bytes (does not include FCS) at the given rate. Duration will 72 * also include SIFS. 73 * 74 * rate is in 100 kbps, so divident is multiplied by 10 in the 75 * DIV_ROUND_UP() operations. 76 * 77 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and 78 * is assumed to be 0 otherwise. 79 */ 80 81 if (band == NL80211_BAND_5GHZ || erp) { 82 /* 83 * OFDM: 84 * 85 * N_DBPS = DATARATE x 4 86 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 87 * (16 = SIGNAL time, 6 = tail bits) 88 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 89 * 90 * T_SYM = 4 usec 91 * 802.11a - 18.5.2: aSIFSTime = 16 usec 92 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 93 * signal ext = 6 usec 94 */ 95 dur = 16; /* SIFS + signal ext */ 96 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 97 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 98 99 /* IEEE 802.11-2012 18.3.2.4: all values above are: 100 * * times 4 for 5 MHz 101 * * times 2 for 10 MHz 102 */ 103 dur *= 1 << shift; 104 105 /* rates should already consider the channel bandwidth, 106 * don't apply divisor again. 107 */ 108 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 109 4 * rate); /* T_SYM x N_SYM */ 110 } else { 111 /* 112 * 802.11b or 802.11g with 802.11b compatibility: 113 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 114 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 115 * 116 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 117 * aSIFSTime = 10 usec 118 * aPreambleLength = 144 usec or 72 usec with short preamble 119 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 120 */ 121 dur = 10; /* aSIFSTime = 10 usec */ 122 dur += short_preamble ? (72 + 24) : (144 + 48); 123 124 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 125 } 126 127 return dur; 128 } 129 130 /* Exported duration function for driver use */ 131 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 132 struct ieee80211_vif *vif, 133 enum nl80211_band band, 134 size_t frame_len, 135 struct ieee80211_rate *rate) 136 { 137 struct ieee80211_sub_if_data *sdata; 138 u16 dur; 139 int erp, shift = 0; 140 bool short_preamble = false; 141 142 erp = 0; 143 if (vif) { 144 sdata = vif_to_sdata(vif); 145 short_preamble = sdata->vif.bss_conf.use_short_preamble; 146 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 147 erp = rate->flags & IEEE80211_RATE_ERP_G; 148 shift = ieee80211_vif_get_shift(vif); 149 } 150 151 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 152 short_preamble, shift); 153 154 return cpu_to_le16(dur); 155 } 156 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 157 158 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 159 struct ieee80211_vif *vif, size_t frame_len, 160 const struct ieee80211_tx_info *frame_txctl) 161 { 162 struct ieee80211_local *local = hw_to_local(hw); 163 struct ieee80211_rate *rate; 164 struct ieee80211_sub_if_data *sdata; 165 bool short_preamble; 166 int erp, shift = 0, bitrate; 167 u16 dur; 168 struct ieee80211_supported_band *sband; 169 170 sband = local->hw.wiphy->bands[frame_txctl->band]; 171 172 short_preamble = false; 173 174 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 175 176 erp = 0; 177 if (vif) { 178 sdata = vif_to_sdata(vif); 179 short_preamble = sdata->vif.bss_conf.use_short_preamble; 180 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 181 erp = rate->flags & IEEE80211_RATE_ERP_G; 182 shift = ieee80211_vif_get_shift(vif); 183 } 184 185 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 186 187 /* CTS duration */ 188 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 189 erp, short_preamble, shift); 190 /* Data frame duration */ 191 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 192 erp, short_preamble, shift); 193 /* ACK duration */ 194 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 195 erp, short_preamble, shift); 196 197 return cpu_to_le16(dur); 198 } 199 EXPORT_SYMBOL(ieee80211_rts_duration); 200 201 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 202 struct ieee80211_vif *vif, 203 size_t frame_len, 204 const struct ieee80211_tx_info *frame_txctl) 205 { 206 struct ieee80211_local *local = hw_to_local(hw); 207 struct ieee80211_rate *rate; 208 struct ieee80211_sub_if_data *sdata; 209 bool short_preamble; 210 int erp, shift = 0, bitrate; 211 u16 dur; 212 struct ieee80211_supported_band *sband; 213 214 sband = local->hw.wiphy->bands[frame_txctl->band]; 215 216 short_preamble = false; 217 218 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 219 erp = 0; 220 if (vif) { 221 sdata = vif_to_sdata(vif); 222 short_preamble = sdata->vif.bss_conf.use_short_preamble; 223 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 224 erp = rate->flags & IEEE80211_RATE_ERP_G; 225 shift = ieee80211_vif_get_shift(vif); 226 } 227 228 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 229 230 /* Data frame duration */ 231 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 232 erp, short_preamble, shift); 233 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 234 /* ACK duration */ 235 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 236 erp, short_preamble, shift); 237 } 238 239 return cpu_to_le16(dur); 240 } 241 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 242 243 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue) 244 { 245 struct ieee80211_sub_if_data *sdata; 246 int n_acs = IEEE80211_NUM_ACS; 247 248 if (local->ops->wake_tx_queue) 249 return; 250 251 if (local->hw.queues < IEEE80211_NUM_ACS) 252 n_acs = 1; 253 254 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 255 int ac; 256 257 if (!sdata->dev) 258 continue; 259 260 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE && 261 local->queue_stop_reasons[sdata->vif.cab_queue] != 0) 262 continue; 263 264 for (ac = 0; ac < n_acs; ac++) { 265 int ac_queue = sdata->vif.hw_queue[ac]; 266 267 if (ac_queue == queue || 268 (sdata->vif.cab_queue == queue && 269 local->queue_stop_reasons[ac_queue] == 0 && 270 skb_queue_empty(&local->pending[ac_queue]))) 271 netif_wake_subqueue(sdata->dev, ac); 272 } 273 } 274 } 275 276 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 277 enum queue_stop_reason reason, 278 bool refcounted) 279 { 280 struct ieee80211_local *local = hw_to_local(hw); 281 282 trace_wake_queue(local, queue, reason); 283 284 if (WARN_ON(queue >= hw->queues)) 285 return; 286 287 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 288 return; 289 290 if (!refcounted) { 291 local->q_stop_reasons[queue][reason] = 0; 292 } else { 293 local->q_stop_reasons[queue][reason]--; 294 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 295 local->q_stop_reasons[queue][reason] = 0; 296 } 297 298 if (local->q_stop_reasons[queue][reason] == 0) 299 __clear_bit(reason, &local->queue_stop_reasons[queue]); 300 301 if (local->queue_stop_reasons[queue] != 0) 302 /* someone still has this queue stopped */ 303 return; 304 305 if (skb_queue_empty(&local->pending[queue])) { 306 rcu_read_lock(); 307 ieee80211_propagate_queue_wake(local, queue); 308 rcu_read_unlock(); 309 } else 310 tasklet_schedule(&local->tx_pending_tasklet); 311 } 312 313 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 314 enum queue_stop_reason reason, 315 bool refcounted) 316 { 317 struct ieee80211_local *local = hw_to_local(hw); 318 unsigned long flags; 319 320 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 321 __ieee80211_wake_queue(hw, queue, reason, refcounted); 322 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 323 } 324 325 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 326 { 327 ieee80211_wake_queue_by_reason(hw, queue, 328 IEEE80211_QUEUE_STOP_REASON_DRIVER, 329 false); 330 } 331 EXPORT_SYMBOL(ieee80211_wake_queue); 332 333 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 334 enum queue_stop_reason reason, 335 bool refcounted) 336 { 337 struct ieee80211_local *local = hw_to_local(hw); 338 struct ieee80211_sub_if_data *sdata; 339 int n_acs = IEEE80211_NUM_ACS; 340 341 trace_stop_queue(local, queue, reason); 342 343 if (WARN_ON(queue >= hw->queues)) 344 return; 345 346 if (!refcounted) 347 local->q_stop_reasons[queue][reason] = 1; 348 else 349 local->q_stop_reasons[queue][reason]++; 350 351 if (__test_and_set_bit(reason, &local->queue_stop_reasons[queue])) 352 return; 353 354 if (local->ops->wake_tx_queue) 355 return; 356 357 if (local->hw.queues < IEEE80211_NUM_ACS) 358 n_acs = 1; 359 360 rcu_read_lock(); 361 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 362 int ac; 363 364 if (!sdata->dev) 365 continue; 366 367 for (ac = 0; ac < n_acs; ac++) { 368 if (sdata->vif.hw_queue[ac] == queue || 369 sdata->vif.cab_queue == queue) 370 netif_stop_subqueue(sdata->dev, ac); 371 } 372 } 373 rcu_read_unlock(); 374 } 375 376 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 377 enum queue_stop_reason reason, 378 bool refcounted) 379 { 380 struct ieee80211_local *local = hw_to_local(hw); 381 unsigned long flags; 382 383 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 384 __ieee80211_stop_queue(hw, queue, reason, refcounted); 385 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 386 } 387 388 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 389 { 390 ieee80211_stop_queue_by_reason(hw, queue, 391 IEEE80211_QUEUE_STOP_REASON_DRIVER, 392 false); 393 } 394 EXPORT_SYMBOL(ieee80211_stop_queue); 395 396 void ieee80211_add_pending_skb(struct ieee80211_local *local, 397 struct sk_buff *skb) 398 { 399 struct ieee80211_hw *hw = &local->hw; 400 unsigned long flags; 401 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 402 int queue = info->hw_queue; 403 404 if (WARN_ON(!info->control.vif)) { 405 ieee80211_free_txskb(&local->hw, skb); 406 return; 407 } 408 409 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 410 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 411 false); 412 __skb_queue_tail(&local->pending[queue], skb); 413 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 414 false); 415 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 416 } 417 418 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 419 struct sk_buff_head *skbs) 420 { 421 struct ieee80211_hw *hw = &local->hw; 422 struct sk_buff *skb; 423 unsigned long flags; 424 int queue, i; 425 426 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 427 while ((skb = skb_dequeue(skbs))) { 428 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 429 430 if (WARN_ON(!info->control.vif)) { 431 ieee80211_free_txskb(&local->hw, skb); 432 continue; 433 } 434 435 queue = info->hw_queue; 436 437 __ieee80211_stop_queue(hw, queue, 438 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 439 false); 440 441 __skb_queue_tail(&local->pending[queue], skb); 442 } 443 444 for (i = 0; i < hw->queues; i++) 445 __ieee80211_wake_queue(hw, i, 446 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 447 false); 448 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 449 } 450 451 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 452 unsigned long queues, 453 enum queue_stop_reason reason, 454 bool refcounted) 455 { 456 struct ieee80211_local *local = hw_to_local(hw); 457 unsigned long flags; 458 int i; 459 460 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 461 462 for_each_set_bit(i, &queues, hw->queues) 463 __ieee80211_stop_queue(hw, i, reason, refcounted); 464 465 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 466 } 467 468 void ieee80211_stop_queues(struct ieee80211_hw *hw) 469 { 470 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 471 IEEE80211_QUEUE_STOP_REASON_DRIVER, 472 false); 473 } 474 EXPORT_SYMBOL(ieee80211_stop_queues); 475 476 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 477 { 478 struct ieee80211_local *local = hw_to_local(hw); 479 unsigned long flags; 480 int ret; 481 482 if (WARN_ON(queue >= hw->queues)) 483 return true; 484 485 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 486 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 487 &local->queue_stop_reasons[queue]); 488 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 489 return ret; 490 } 491 EXPORT_SYMBOL(ieee80211_queue_stopped); 492 493 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 494 unsigned long queues, 495 enum queue_stop_reason reason, 496 bool refcounted) 497 { 498 struct ieee80211_local *local = hw_to_local(hw); 499 unsigned long flags; 500 int i; 501 502 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 503 504 for_each_set_bit(i, &queues, hw->queues) 505 __ieee80211_wake_queue(hw, i, reason, refcounted); 506 507 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 508 } 509 510 void ieee80211_wake_queues(struct ieee80211_hw *hw) 511 { 512 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 513 IEEE80211_QUEUE_STOP_REASON_DRIVER, 514 false); 515 } 516 EXPORT_SYMBOL(ieee80211_wake_queues); 517 518 static unsigned int 519 ieee80211_get_vif_queues(struct ieee80211_local *local, 520 struct ieee80211_sub_if_data *sdata) 521 { 522 unsigned int queues; 523 524 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 525 int ac; 526 527 queues = 0; 528 529 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 530 queues |= BIT(sdata->vif.hw_queue[ac]); 531 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 532 queues |= BIT(sdata->vif.cab_queue); 533 } else { 534 /* all queues */ 535 queues = BIT(local->hw.queues) - 1; 536 } 537 538 return queues; 539 } 540 541 void __ieee80211_flush_queues(struct ieee80211_local *local, 542 struct ieee80211_sub_if_data *sdata, 543 unsigned int queues, bool drop) 544 { 545 if (!local->ops->flush) 546 return; 547 548 /* 549 * If no queue was set, or if the HW doesn't support 550 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 551 */ 552 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 553 queues = ieee80211_get_vif_queues(local, sdata); 554 555 ieee80211_stop_queues_by_reason(&local->hw, queues, 556 IEEE80211_QUEUE_STOP_REASON_FLUSH, 557 false); 558 559 drv_flush(local, sdata, queues, drop); 560 561 ieee80211_wake_queues_by_reason(&local->hw, queues, 562 IEEE80211_QUEUE_STOP_REASON_FLUSH, 563 false); 564 } 565 566 void ieee80211_flush_queues(struct ieee80211_local *local, 567 struct ieee80211_sub_if_data *sdata, bool drop) 568 { 569 __ieee80211_flush_queues(local, sdata, 0, drop); 570 } 571 572 void ieee80211_stop_vif_queues(struct ieee80211_local *local, 573 struct ieee80211_sub_if_data *sdata, 574 enum queue_stop_reason reason) 575 { 576 ieee80211_stop_queues_by_reason(&local->hw, 577 ieee80211_get_vif_queues(local, sdata), 578 reason, true); 579 } 580 581 void ieee80211_wake_vif_queues(struct ieee80211_local *local, 582 struct ieee80211_sub_if_data *sdata, 583 enum queue_stop_reason reason) 584 { 585 ieee80211_wake_queues_by_reason(&local->hw, 586 ieee80211_get_vif_queues(local, sdata), 587 reason, true); 588 } 589 590 static void __iterate_interfaces(struct ieee80211_local *local, 591 u32 iter_flags, 592 void (*iterator)(void *data, u8 *mac, 593 struct ieee80211_vif *vif), 594 void *data) 595 { 596 struct ieee80211_sub_if_data *sdata; 597 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 598 599 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 600 switch (sdata->vif.type) { 601 case NL80211_IFTYPE_MONITOR: 602 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) 603 continue; 604 break; 605 case NL80211_IFTYPE_AP_VLAN: 606 continue; 607 default: 608 break; 609 } 610 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 611 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 612 continue; 613 if (ieee80211_sdata_running(sdata) || !active_only) 614 iterator(data, sdata->vif.addr, 615 &sdata->vif); 616 } 617 618 sdata = rcu_dereference_check(local->monitor_sdata, 619 lockdep_is_held(&local->iflist_mtx) || 620 lockdep_rtnl_is_held()); 621 if (sdata && 622 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 623 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 624 iterator(data, sdata->vif.addr, &sdata->vif); 625 } 626 627 void ieee80211_iterate_interfaces( 628 struct ieee80211_hw *hw, u32 iter_flags, 629 void (*iterator)(void *data, u8 *mac, 630 struct ieee80211_vif *vif), 631 void *data) 632 { 633 struct ieee80211_local *local = hw_to_local(hw); 634 635 mutex_lock(&local->iflist_mtx); 636 __iterate_interfaces(local, iter_flags, iterator, data); 637 mutex_unlock(&local->iflist_mtx); 638 } 639 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 640 641 void ieee80211_iterate_active_interfaces_atomic( 642 struct ieee80211_hw *hw, u32 iter_flags, 643 void (*iterator)(void *data, u8 *mac, 644 struct ieee80211_vif *vif), 645 void *data) 646 { 647 struct ieee80211_local *local = hw_to_local(hw); 648 649 rcu_read_lock(); 650 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 651 iterator, data); 652 rcu_read_unlock(); 653 } 654 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 655 656 void ieee80211_iterate_active_interfaces_rtnl( 657 struct ieee80211_hw *hw, u32 iter_flags, 658 void (*iterator)(void *data, u8 *mac, 659 struct ieee80211_vif *vif), 660 void *data) 661 { 662 struct ieee80211_local *local = hw_to_local(hw); 663 664 ASSERT_RTNL(); 665 666 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 667 iterator, data); 668 } 669 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_rtnl); 670 671 static void __iterate_stations(struct ieee80211_local *local, 672 void (*iterator)(void *data, 673 struct ieee80211_sta *sta), 674 void *data) 675 { 676 struct sta_info *sta; 677 678 list_for_each_entry_rcu(sta, &local->sta_list, list) { 679 if (!sta->uploaded) 680 continue; 681 682 iterator(data, &sta->sta); 683 } 684 } 685 686 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 687 void (*iterator)(void *data, 688 struct ieee80211_sta *sta), 689 void *data) 690 { 691 struct ieee80211_local *local = hw_to_local(hw); 692 693 rcu_read_lock(); 694 __iterate_stations(local, iterator, data); 695 rcu_read_unlock(); 696 } 697 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 698 699 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 700 { 701 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 702 703 if (!ieee80211_sdata_running(sdata) || 704 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 705 return NULL; 706 return &sdata->vif; 707 } 708 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 709 710 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 711 { 712 struct ieee80211_sub_if_data *sdata; 713 714 if (!vif) 715 return NULL; 716 717 sdata = vif_to_sdata(vif); 718 719 if (!ieee80211_sdata_running(sdata) || 720 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 721 return NULL; 722 723 return &sdata->wdev; 724 } 725 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 726 727 /* 728 * Nothing should have been stuffed into the workqueue during 729 * the suspend->resume cycle. Since we can't check each caller 730 * of this function if we are already quiescing / suspended, 731 * check here and don't WARN since this can actually happen when 732 * the rx path (for example) is racing against __ieee80211_suspend 733 * and suspending / quiescing was set after the rx path checked 734 * them. 735 */ 736 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 737 { 738 if (local->quiescing || (local->suspended && !local->resuming)) { 739 pr_warn("queueing ieee80211 work while going to suspend\n"); 740 return false; 741 } 742 743 return true; 744 } 745 746 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 747 { 748 struct ieee80211_local *local = hw_to_local(hw); 749 750 if (!ieee80211_can_queue_work(local)) 751 return; 752 753 queue_work(local->workqueue, work); 754 } 755 EXPORT_SYMBOL(ieee80211_queue_work); 756 757 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 758 struct delayed_work *dwork, 759 unsigned long delay) 760 { 761 struct ieee80211_local *local = hw_to_local(hw); 762 763 if (!ieee80211_can_queue_work(local)) 764 return; 765 766 queue_delayed_work(local->workqueue, dwork, delay); 767 } 768 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 769 770 u32 ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, 771 struct ieee802_11_elems *elems, 772 u64 filter, u32 crc) 773 { 774 size_t left = len; 775 const u8 *pos = start; 776 bool calc_crc = filter != 0; 777 DECLARE_BITMAP(seen_elems, 256); 778 const u8 *ie; 779 780 bitmap_zero(seen_elems, 256); 781 memset(elems, 0, sizeof(*elems)); 782 elems->ie_start = start; 783 elems->total_len = len; 784 785 while (left >= 2) { 786 u8 id, elen; 787 bool elem_parse_failed; 788 789 id = *pos++; 790 elen = *pos++; 791 left -= 2; 792 793 if (elen > left) { 794 elems->parse_error = true; 795 break; 796 } 797 798 switch (id) { 799 case WLAN_EID_SSID: 800 case WLAN_EID_SUPP_RATES: 801 case WLAN_EID_FH_PARAMS: 802 case WLAN_EID_DS_PARAMS: 803 case WLAN_EID_CF_PARAMS: 804 case WLAN_EID_TIM: 805 case WLAN_EID_IBSS_PARAMS: 806 case WLAN_EID_CHALLENGE: 807 case WLAN_EID_RSN: 808 case WLAN_EID_ERP_INFO: 809 case WLAN_EID_EXT_SUPP_RATES: 810 case WLAN_EID_HT_CAPABILITY: 811 case WLAN_EID_HT_OPERATION: 812 case WLAN_EID_VHT_CAPABILITY: 813 case WLAN_EID_VHT_OPERATION: 814 case WLAN_EID_MESH_ID: 815 case WLAN_EID_MESH_CONFIG: 816 case WLAN_EID_PEER_MGMT: 817 case WLAN_EID_PREQ: 818 case WLAN_EID_PREP: 819 case WLAN_EID_PERR: 820 case WLAN_EID_RANN: 821 case WLAN_EID_CHANNEL_SWITCH: 822 case WLAN_EID_EXT_CHANSWITCH_ANN: 823 case WLAN_EID_COUNTRY: 824 case WLAN_EID_PWR_CONSTRAINT: 825 case WLAN_EID_TIMEOUT_INTERVAL: 826 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 827 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 828 case WLAN_EID_CHAN_SWITCH_PARAM: 829 case WLAN_EID_EXT_CAPABILITY: 830 case WLAN_EID_CHAN_SWITCH_TIMING: 831 case WLAN_EID_LINK_ID: 832 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 833 /* 834 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible 835 * that if the content gets bigger it might be needed more than once 836 */ 837 if (test_bit(id, seen_elems)) { 838 elems->parse_error = true; 839 left -= elen; 840 pos += elen; 841 continue; 842 } 843 break; 844 } 845 846 if (calc_crc && id < 64 && (filter & (1ULL << id))) 847 crc = crc32_be(crc, pos - 2, elen + 2); 848 849 elem_parse_failed = false; 850 851 switch (id) { 852 case WLAN_EID_LINK_ID: 853 if (elen + 2 != sizeof(struct ieee80211_tdls_lnkie)) { 854 elem_parse_failed = true; 855 break; 856 } 857 elems->lnk_id = (void *)(pos - 2); 858 break; 859 case WLAN_EID_CHAN_SWITCH_TIMING: 860 if (elen != sizeof(struct ieee80211_ch_switch_timing)) { 861 elem_parse_failed = true; 862 break; 863 } 864 elems->ch_sw_timing = (void *)pos; 865 break; 866 case WLAN_EID_EXT_CAPABILITY: 867 elems->ext_capab = pos; 868 elems->ext_capab_len = elen; 869 break; 870 case WLAN_EID_SSID: 871 elems->ssid = pos; 872 elems->ssid_len = elen; 873 break; 874 case WLAN_EID_SUPP_RATES: 875 elems->supp_rates = pos; 876 elems->supp_rates_len = elen; 877 break; 878 case WLAN_EID_DS_PARAMS: 879 if (elen >= 1) 880 elems->ds_params = pos; 881 else 882 elem_parse_failed = true; 883 break; 884 case WLAN_EID_TIM: 885 if (elen >= sizeof(struct ieee80211_tim_ie)) { 886 elems->tim = (void *)pos; 887 elems->tim_len = elen; 888 } else 889 elem_parse_failed = true; 890 break; 891 case WLAN_EID_CHALLENGE: 892 elems->challenge = pos; 893 elems->challenge_len = elen; 894 break; 895 case WLAN_EID_VENDOR_SPECIFIC: 896 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && 897 pos[2] == 0xf2) { 898 /* Microsoft OUI (00:50:F2) */ 899 900 if (calc_crc) 901 crc = crc32_be(crc, pos - 2, elen + 2); 902 903 if (elen >= 5 && pos[3] == 2) { 904 /* OUI Type 2 - WMM IE */ 905 if (pos[4] == 0) { 906 elems->wmm_info = pos; 907 elems->wmm_info_len = elen; 908 } else if (pos[4] == 1) { 909 elems->wmm_param = pos; 910 elems->wmm_param_len = elen; 911 } 912 } 913 } 914 break; 915 case WLAN_EID_RSN: 916 elems->rsn = pos; 917 elems->rsn_len = elen; 918 break; 919 case WLAN_EID_ERP_INFO: 920 if (elen >= 1) 921 elems->erp_info = pos; 922 else 923 elem_parse_failed = true; 924 break; 925 case WLAN_EID_EXT_SUPP_RATES: 926 elems->ext_supp_rates = pos; 927 elems->ext_supp_rates_len = elen; 928 break; 929 case WLAN_EID_HT_CAPABILITY: 930 if (elen >= sizeof(struct ieee80211_ht_cap)) 931 elems->ht_cap_elem = (void *)pos; 932 else 933 elem_parse_failed = true; 934 break; 935 case WLAN_EID_HT_OPERATION: 936 if (elen >= sizeof(struct ieee80211_ht_operation)) 937 elems->ht_operation = (void *)pos; 938 else 939 elem_parse_failed = true; 940 break; 941 case WLAN_EID_VHT_CAPABILITY: 942 if (elen >= sizeof(struct ieee80211_vht_cap)) 943 elems->vht_cap_elem = (void *)pos; 944 else 945 elem_parse_failed = true; 946 break; 947 case WLAN_EID_VHT_OPERATION: 948 if (elen >= sizeof(struct ieee80211_vht_operation)) 949 elems->vht_operation = (void *)pos; 950 else 951 elem_parse_failed = true; 952 break; 953 case WLAN_EID_OPMODE_NOTIF: 954 if (elen > 0) 955 elems->opmode_notif = pos; 956 else 957 elem_parse_failed = true; 958 break; 959 case WLAN_EID_MESH_ID: 960 elems->mesh_id = pos; 961 elems->mesh_id_len = elen; 962 break; 963 case WLAN_EID_MESH_CONFIG: 964 if (elen >= sizeof(struct ieee80211_meshconf_ie)) 965 elems->mesh_config = (void *)pos; 966 else 967 elem_parse_failed = true; 968 break; 969 case WLAN_EID_PEER_MGMT: 970 elems->peering = pos; 971 elems->peering_len = elen; 972 break; 973 case WLAN_EID_MESH_AWAKE_WINDOW: 974 if (elen >= 2) 975 elems->awake_window = (void *)pos; 976 break; 977 case WLAN_EID_PREQ: 978 elems->preq = pos; 979 elems->preq_len = elen; 980 break; 981 case WLAN_EID_PREP: 982 elems->prep = pos; 983 elems->prep_len = elen; 984 break; 985 case WLAN_EID_PERR: 986 elems->perr = pos; 987 elems->perr_len = elen; 988 break; 989 case WLAN_EID_RANN: 990 if (elen >= sizeof(struct ieee80211_rann_ie)) 991 elems->rann = (void *)pos; 992 else 993 elem_parse_failed = true; 994 break; 995 case WLAN_EID_CHANNEL_SWITCH: 996 if (elen != sizeof(struct ieee80211_channel_sw_ie)) { 997 elem_parse_failed = true; 998 break; 999 } 1000 elems->ch_switch_ie = (void *)pos; 1001 break; 1002 case WLAN_EID_EXT_CHANSWITCH_ANN: 1003 if (elen != sizeof(struct ieee80211_ext_chansw_ie)) { 1004 elem_parse_failed = true; 1005 break; 1006 } 1007 elems->ext_chansw_ie = (void *)pos; 1008 break; 1009 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1010 if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) { 1011 elem_parse_failed = true; 1012 break; 1013 } 1014 elems->sec_chan_offs = (void *)pos; 1015 break; 1016 case WLAN_EID_CHAN_SWITCH_PARAM: 1017 if (elen != 1018 sizeof(*elems->mesh_chansw_params_ie)) { 1019 elem_parse_failed = true; 1020 break; 1021 } 1022 elems->mesh_chansw_params_ie = (void *)pos; 1023 break; 1024 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1025 if (!action || 1026 elen != sizeof(*elems->wide_bw_chansw_ie)) { 1027 elem_parse_failed = true; 1028 break; 1029 } 1030 elems->wide_bw_chansw_ie = (void *)pos; 1031 break; 1032 case WLAN_EID_CHANNEL_SWITCH_WRAPPER: 1033 if (action) { 1034 elem_parse_failed = true; 1035 break; 1036 } 1037 /* 1038 * This is a bit tricky, but as we only care about 1039 * the wide bandwidth channel switch element, so 1040 * just parse it out manually. 1041 */ 1042 ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH, 1043 pos, elen); 1044 if (ie) { 1045 if (ie[1] == sizeof(*elems->wide_bw_chansw_ie)) 1046 elems->wide_bw_chansw_ie = 1047 (void *)(ie + 2); 1048 else 1049 elem_parse_failed = true; 1050 } 1051 break; 1052 case WLAN_EID_COUNTRY: 1053 elems->country_elem = pos; 1054 elems->country_elem_len = elen; 1055 break; 1056 case WLAN_EID_PWR_CONSTRAINT: 1057 if (elen != 1) { 1058 elem_parse_failed = true; 1059 break; 1060 } 1061 elems->pwr_constr_elem = pos; 1062 break; 1063 case WLAN_EID_CISCO_VENDOR_SPECIFIC: 1064 /* Lots of different options exist, but we only care 1065 * about the Dynamic Transmit Power Control element. 1066 * First check for the Cisco OUI, then for the DTPC 1067 * tag (0x00). 1068 */ 1069 if (elen < 4) { 1070 elem_parse_failed = true; 1071 break; 1072 } 1073 1074 if (pos[0] != 0x00 || pos[1] != 0x40 || 1075 pos[2] != 0x96 || pos[3] != 0x00) 1076 break; 1077 1078 if (elen != 6) { 1079 elem_parse_failed = true; 1080 break; 1081 } 1082 1083 if (calc_crc) 1084 crc = crc32_be(crc, pos - 2, elen + 2); 1085 1086 elems->cisco_dtpc_elem = pos; 1087 break; 1088 case WLAN_EID_TIMEOUT_INTERVAL: 1089 if (elen >= sizeof(struct ieee80211_timeout_interval_ie)) 1090 elems->timeout_int = (void *)pos; 1091 else 1092 elem_parse_failed = true; 1093 break; 1094 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1095 if (elen >= sizeof(*elems->max_idle_period_ie)) 1096 elems->max_idle_period_ie = (void *)pos; 1097 break; 1098 default: 1099 break; 1100 } 1101 1102 if (elem_parse_failed) 1103 elems->parse_error = true; 1104 else 1105 __set_bit(id, seen_elems); 1106 1107 left -= elen; 1108 pos += elen; 1109 } 1110 1111 if (left != 0) 1112 elems->parse_error = true; 1113 1114 return crc; 1115 } 1116 1117 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 1118 struct ieee80211_tx_queue_params 1119 *qparam, int ac) 1120 { 1121 struct ieee80211_chanctx_conf *chanctx_conf; 1122 const struct ieee80211_reg_rule *rrule; 1123 struct ieee80211_wmm_ac *wmm_ac; 1124 u16 center_freq = 0; 1125 1126 if (sdata->vif.type != NL80211_IFTYPE_AP && 1127 sdata->vif.type != NL80211_IFTYPE_STATION) 1128 return; 1129 1130 rcu_read_lock(); 1131 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1132 if (chanctx_conf) 1133 center_freq = chanctx_conf->def.chan->center_freq; 1134 1135 if (!center_freq) { 1136 rcu_read_unlock(); 1137 return; 1138 } 1139 1140 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 1141 1142 if (IS_ERR_OR_NULL(rrule) || !rrule->wmm_rule) { 1143 rcu_read_unlock(); 1144 return; 1145 } 1146 1147 if (sdata->vif.type == NL80211_IFTYPE_AP) 1148 wmm_ac = &rrule->wmm_rule->ap[ac]; 1149 else 1150 wmm_ac = &rrule->wmm_rule->client[ac]; 1151 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 1152 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 1153 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 1154 qparam->txop = !qparam->txop ? wmm_ac->cot / 32 : 1155 min_t(u16, qparam->txop, wmm_ac->cot / 32); 1156 rcu_read_unlock(); 1157 } 1158 1159 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata, 1160 bool bss_notify, bool enable_qos) 1161 { 1162 struct ieee80211_local *local = sdata->local; 1163 struct ieee80211_tx_queue_params qparam; 1164 struct ieee80211_chanctx_conf *chanctx_conf; 1165 int ac; 1166 bool use_11b; 1167 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 1168 int aCWmin, aCWmax; 1169 1170 if (!local->ops->conf_tx) 1171 return; 1172 1173 if (local->hw.queues < IEEE80211_NUM_ACS) 1174 return; 1175 1176 memset(&qparam, 0, sizeof(qparam)); 1177 1178 rcu_read_lock(); 1179 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1180 use_11b = (chanctx_conf && 1181 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 1182 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE); 1183 rcu_read_unlock(); 1184 1185 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 1186 1187 /* Set defaults according to 802.11-2007 Table 7-37 */ 1188 aCWmax = 1023; 1189 if (use_11b) 1190 aCWmin = 31; 1191 else 1192 aCWmin = 15; 1193 1194 /* Confiure old 802.11b/g medium access rules. */ 1195 qparam.cw_max = aCWmax; 1196 qparam.cw_min = aCWmin; 1197 qparam.txop = 0; 1198 qparam.aifs = 2; 1199 1200 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1201 /* Update if QoS is enabled. */ 1202 if (enable_qos) { 1203 switch (ac) { 1204 case IEEE80211_AC_BK: 1205 qparam.cw_max = aCWmax; 1206 qparam.cw_min = aCWmin; 1207 qparam.txop = 0; 1208 if (is_ocb) 1209 qparam.aifs = 9; 1210 else 1211 qparam.aifs = 7; 1212 break; 1213 /* never happens but let's not leave undefined */ 1214 default: 1215 case IEEE80211_AC_BE: 1216 qparam.cw_max = aCWmax; 1217 qparam.cw_min = aCWmin; 1218 qparam.txop = 0; 1219 if (is_ocb) 1220 qparam.aifs = 6; 1221 else 1222 qparam.aifs = 3; 1223 break; 1224 case IEEE80211_AC_VI: 1225 qparam.cw_max = aCWmin; 1226 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1227 if (is_ocb) 1228 qparam.txop = 0; 1229 else if (use_11b) 1230 qparam.txop = 6016/32; 1231 else 1232 qparam.txop = 3008/32; 1233 1234 if (is_ocb) 1235 qparam.aifs = 3; 1236 else 1237 qparam.aifs = 2; 1238 break; 1239 case IEEE80211_AC_VO: 1240 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1241 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1242 if (is_ocb) 1243 qparam.txop = 0; 1244 else if (use_11b) 1245 qparam.txop = 3264/32; 1246 else 1247 qparam.txop = 1504/32; 1248 qparam.aifs = 2; 1249 break; 1250 } 1251 } 1252 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1253 1254 qparam.uapsd = false; 1255 1256 sdata->tx_conf[ac] = qparam; 1257 drv_conf_tx(local, sdata, ac, &qparam); 1258 } 1259 1260 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1261 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1262 sdata->vif.type != NL80211_IFTYPE_NAN) { 1263 sdata->vif.bss_conf.qos = enable_qos; 1264 if (bss_notify) 1265 ieee80211_bss_info_change_notify(sdata, 1266 BSS_CHANGED_QOS); 1267 } 1268 } 1269 1270 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1271 u16 transaction, u16 auth_alg, u16 status, 1272 const u8 *extra, size_t extra_len, const u8 *da, 1273 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1274 u32 tx_flags) 1275 { 1276 struct ieee80211_local *local = sdata->local; 1277 struct sk_buff *skb; 1278 struct ieee80211_mgmt *mgmt; 1279 int err; 1280 1281 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1282 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1283 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN); 1284 if (!skb) 1285 return; 1286 1287 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1288 1289 mgmt = skb_put_zero(skb, 24 + 6); 1290 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1291 IEEE80211_STYPE_AUTH); 1292 memcpy(mgmt->da, da, ETH_ALEN); 1293 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1294 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1295 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1296 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1297 mgmt->u.auth.status_code = cpu_to_le16(status); 1298 if (extra) 1299 skb_put_data(skb, extra, extra_len); 1300 1301 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1302 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1303 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1304 WARN_ON(err); 1305 } 1306 1307 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1308 tx_flags; 1309 ieee80211_tx_skb(sdata, skb); 1310 } 1311 1312 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1313 const u8 *bssid, u16 stype, u16 reason, 1314 bool send_frame, u8 *frame_buf) 1315 { 1316 struct ieee80211_local *local = sdata->local; 1317 struct sk_buff *skb; 1318 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1319 1320 /* build frame */ 1321 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1322 mgmt->duration = 0; /* initialize only */ 1323 mgmt->seq_ctrl = 0; /* initialize only */ 1324 memcpy(mgmt->da, bssid, ETH_ALEN); 1325 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1326 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1327 /* u.deauth.reason_code == u.disassoc.reason_code */ 1328 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1329 1330 if (send_frame) { 1331 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1332 IEEE80211_DEAUTH_FRAME_LEN); 1333 if (!skb) 1334 return; 1335 1336 skb_reserve(skb, local->hw.extra_tx_headroom); 1337 1338 /* copy in frame */ 1339 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1340 1341 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1342 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1343 IEEE80211_SKB_CB(skb)->flags |= 1344 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1345 1346 ieee80211_tx_skb(sdata, skb); 1347 } 1348 } 1349 1350 static int ieee80211_build_preq_ies_band(struct ieee80211_local *local, 1351 u8 *buffer, size_t buffer_len, 1352 const u8 *ie, size_t ie_len, 1353 enum nl80211_band band, 1354 u32 rate_mask, 1355 struct cfg80211_chan_def *chandef, 1356 size_t *offset) 1357 { 1358 struct ieee80211_supported_band *sband; 1359 u8 *pos = buffer, *end = buffer + buffer_len; 1360 size_t noffset; 1361 int supp_rates_len, i; 1362 u8 rates[32]; 1363 int num_rates; 1364 int ext_rates_len; 1365 int shift; 1366 u32 rate_flags; 1367 bool have_80mhz = false; 1368 1369 *offset = 0; 1370 1371 sband = local->hw.wiphy->bands[band]; 1372 if (WARN_ON_ONCE(!sband)) 1373 return 0; 1374 1375 rate_flags = ieee80211_chandef_rate_flags(chandef); 1376 shift = ieee80211_chandef_get_shift(chandef); 1377 1378 num_rates = 0; 1379 for (i = 0; i < sband->n_bitrates; i++) { 1380 if ((BIT(i) & rate_mask) == 0) 1381 continue; /* skip rate */ 1382 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 1383 continue; 1384 1385 rates[num_rates++] = 1386 (u8) DIV_ROUND_UP(sband->bitrates[i].bitrate, 1387 (1 << shift) * 5); 1388 } 1389 1390 supp_rates_len = min_t(int, num_rates, 8); 1391 1392 if (end - pos < 2 + supp_rates_len) 1393 goto out_err; 1394 *pos++ = WLAN_EID_SUPP_RATES; 1395 *pos++ = supp_rates_len; 1396 memcpy(pos, rates, supp_rates_len); 1397 pos += supp_rates_len; 1398 1399 /* insert "request information" if in custom IEs */ 1400 if (ie && ie_len) { 1401 static const u8 before_extrates[] = { 1402 WLAN_EID_SSID, 1403 WLAN_EID_SUPP_RATES, 1404 WLAN_EID_REQUEST, 1405 }; 1406 noffset = ieee80211_ie_split(ie, ie_len, 1407 before_extrates, 1408 ARRAY_SIZE(before_extrates), 1409 *offset); 1410 if (end - pos < noffset - *offset) 1411 goto out_err; 1412 memcpy(pos, ie + *offset, noffset - *offset); 1413 pos += noffset - *offset; 1414 *offset = noffset; 1415 } 1416 1417 ext_rates_len = num_rates - supp_rates_len; 1418 if (ext_rates_len > 0) { 1419 if (end - pos < 2 + ext_rates_len) 1420 goto out_err; 1421 *pos++ = WLAN_EID_EXT_SUPP_RATES; 1422 *pos++ = ext_rates_len; 1423 memcpy(pos, rates + supp_rates_len, ext_rates_len); 1424 pos += ext_rates_len; 1425 } 1426 1427 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 1428 if (end - pos < 3) 1429 goto out_err; 1430 *pos++ = WLAN_EID_DS_PARAMS; 1431 *pos++ = 1; 1432 *pos++ = ieee80211_frequency_to_channel( 1433 chandef->chan->center_freq); 1434 } 1435 1436 /* insert custom IEs that go before HT */ 1437 if (ie && ie_len) { 1438 static const u8 before_ht[] = { 1439 /* 1440 * no need to list the ones split off already 1441 * (or generated here) 1442 */ 1443 WLAN_EID_DS_PARAMS, 1444 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1445 }; 1446 noffset = ieee80211_ie_split(ie, ie_len, 1447 before_ht, ARRAY_SIZE(before_ht), 1448 *offset); 1449 if (end - pos < noffset - *offset) 1450 goto out_err; 1451 memcpy(pos, ie + *offset, noffset - *offset); 1452 pos += noffset - *offset; 1453 *offset = noffset; 1454 } 1455 1456 if (sband->ht_cap.ht_supported) { 1457 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap)) 1458 goto out_err; 1459 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 1460 sband->ht_cap.cap); 1461 } 1462 1463 /* 1464 * If adding more here, adjust code in main.c 1465 * that calculates local->scan_ies_len. 1466 */ 1467 1468 /* insert custom IEs that go before VHT */ 1469 if (ie && ie_len) { 1470 static const u8 before_vht[] = { 1471 /* 1472 * no need to list the ones split off already 1473 * (or generated here) 1474 */ 1475 WLAN_EID_BSS_COEX_2040, 1476 WLAN_EID_EXT_CAPABILITY, 1477 WLAN_EID_SSID_LIST, 1478 WLAN_EID_CHANNEL_USAGE, 1479 WLAN_EID_INTERWORKING, 1480 WLAN_EID_MESH_ID, 1481 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 1482 }; 1483 noffset = ieee80211_ie_split(ie, ie_len, 1484 before_vht, ARRAY_SIZE(before_vht), 1485 *offset); 1486 if (end - pos < noffset - *offset) 1487 goto out_err; 1488 memcpy(pos, ie + *offset, noffset - *offset); 1489 pos += noffset - *offset; 1490 *offset = noffset; 1491 } 1492 1493 /* Check if any channel in this sband supports at least 80 MHz */ 1494 for (i = 0; i < sband->n_channels; i++) { 1495 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 1496 IEEE80211_CHAN_NO_80MHZ)) 1497 continue; 1498 1499 have_80mhz = true; 1500 break; 1501 } 1502 1503 if (sband->vht_cap.vht_supported && have_80mhz) { 1504 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap)) 1505 goto out_err; 1506 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 1507 sband->vht_cap.cap); 1508 } 1509 1510 return pos - buffer; 1511 out_err: 1512 WARN_ONCE(1, "not enough space for preq IEs\n"); 1513 return pos - buffer; 1514 } 1515 1516 int ieee80211_build_preq_ies(struct ieee80211_local *local, u8 *buffer, 1517 size_t buffer_len, 1518 struct ieee80211_scan_ies *ie_desc, 1519 const u8 *ie, size_t ie_len, 1520 u8 bands_used, u32 *rate_masks, 1521 struct cfg80211_chan_def *chandef) 1522 { 1523 size_t pos = 0, old_pos = 0, custom_ie_offset = 0; 1524 int i; 1525 1526 memset(ie_desc, 0, sizeof(*ie_desc)); 1527 1528 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1529 if (bands_used & BIT(i)) { 1530 pos += ieee80211_build_preq_ies_band(local, 1531 buffer + pos, 1532 buffer_len - pos, 1533 ie, ie_len, i, 1534 rate_masks[i], 1535 chandef, 1536 &custom_ie_offset); 1537 ie_desc->ies[i] = buffer + old_pos; 1538 ie_desc->len[i] = pos - old_pos; 1539 old_pos = pos; 1540 } 1541 } 1542 1543 /* add any remaining custom IEs */ 1544 if (ie && ie_len) { 1545 if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset, 1546 "not enough space for preq custom IEs\n")) 1547 return pos; 1548 memcpy(buffer + pos, ie + custom_ie_offset, 1549 ie_len - custom_ie_offset); 1550 ie_desc->common_ies = buffer + pos; 1551 ie_desc->common_ie_len = ie_len - custom_ie_offset; 1552 pos += ie_len - custom_ie_offset; 1553 } 1554 1555 return pos; 1556 }; 1557 1558 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 1559 const u8 *src, const u8 *dst, 1560 u32 ratemask, 1561 struct ieee80211_channel *chan, 1562 const u8 *ssid, size_t ssid_len, 1563 const u8 *ie, size_t ie_len, 1564 bool directed) 1565 { 1566 struct ieee80211_local *local = sdata->local; 1567 struct cfg80211_chan_def chandef; 1568 struct sk_buff *skb; 1569 struct ieee80211_mgmt *mgmt; 1570 int ies_len; 1571 u32 rate_masks[NUM_NL80211_BANDS] = {}; 1572 struct ieee80211_scan_ies dummy_ie_desc; 1573 1574 /* 1575 * Do not send DS Channel parameter for directed probe requests 1576 * in order to maximize the chance that we get a response. Some 1577 * badly-behaved APs don't respond when this parameter is included. 1578 */ 1579 chandef.width = sdata->vif.bss_conf.chandef.width; 1580 if (directed) 1581 chandef.chan = NULL; 1582 else 1583 chandef.chan = chan; 1584 1585 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 1586 100 + ie_len); 1587 if (!skb) 1588 return NULL; 1589 1590 rate_masks[chan->band] = ratemask; 1591 ies_len = ieee80211_build_preq_ies(local, skb_tail_pointer(skb), 1592 skb_tailroom(skb), &dummy_ie_desc, 1593 ie, ie_len, BIT(chan->band), 1594 rate_masks, &chandef); 1595 skb_put(skb, ies_len); 1596 1597 if (dst) { 1598 mgmt = (struct ieee80211_mgmt *) skb->data; 1599 memcpy(mgmt->da, dst, ETH_ALEN); 1600 memcpy(mgmt->bssid, dst, ETH_ALEN); 1601 } 1602 1603 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 1604 1605 return skb; 1606 } 1607 1608 void ieee80211_send_probe_req(struct ieee80211_sub_if_data *sdata, 1609 const u8 *src, const u8 *dst, 1610 const u8 *ssid, size_t ssid_len, 1611 const u8 *ie, size_t ie_len, 1612 u32 ratemask, bool directed, u32 tx_flags, 1613 struct ieee80211_channel *channel, bool scan) 1614 { 1615 struct sk_buff *skb; 1616 1617 skb = ieee80211_build_probe_req(sdata, src, dst, ratemask, channel, 1618 ssid, ssid_len, 1619 ie, ie_len, directed); 1620 if (skb) { 1621 IEEE80211_SKB_CB(skb)->flags |= tx_flags; 1622 if (scan) 1623 ieee80211_tx_skb_tid_band(sdata, skb, 7, channel->band); 1624 else 1625 ieee80211_tx_skb(sdata, skb); 1626 } 1627 } 1628 1629 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 1630 struct ieee802_11_elems *elems, 1631 enum nl80211_band band, u32 *basic_rates) 1632 { 1633 struct ieee80211_supported_band *sband; 1634 size_t num_rates; 1635 u32 supp_rates, rate_flags; 1636 int i, j, shift; 1637 1638 sband = sdata->local->hw.wiphy->bands[band]; 1639 if (WARN_ON(!sband)) 1640 return 1; 1641 1642 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 1643 shift = ieee80211_vif_get_shift(&sdata->vif); 1644 1645 num_rates = sband->n_bitrates; 1646 supp_rates = 0; 1647 for (i = 0; i < elems->supp_rates_len + 1648 elems->ext_supp_rates_len; i++) { 1649 u8 rate = 0; 1650 int own_rate; 1651 bool is_basic; 1652 if (i < elems->supp_rates_len) 1653 rate = elems->supp_rates[i]; 1654 else if (elems->ext_supp_rates) 1655 rate = elems->ext_supp_rates 1656 [i - elems->supp_rates_len]; 1657 own_rate = 5 * (rate & 0x7f); 1658 is_basic = !!(rate & 0x80); 1659 1660 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 1661 continue; 1662 1663 for (j = 0; j < num_rates; j++) { 1664 int brate; 1665 if ((rate_flags & sband->bitrates[j].flags) 1666 != rate_flags) 1667 continue; 1668 1669 brate = DIV_ROUND_UP(sband->bitrates[j].bitrate, 1670 1 << shift); 1671 1672 if (brate == own_rate) { 1673 supp_rates |= BIT(j); 1674 if (basic_rates && is_basic) 1675 *basic_rates |= BIT(j); 1676 } 1677 } 1678 } 1679 return supp_rates; 1680 } 1681 1682 void ieee80211_stop_device(struct ieee80211_local *local) 1683 { 1684 ieee80211_led_radio(local, false); 1685 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 1686 1687 cancel_work_sync(&local->reconfig_filter); 1688 1689 flush_workqueue(local->workqueue); 1690 drv_stop(local); 1691 } 1692 1693 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 1694 bool aborted) 1695 { 1696 /* It's possible that we don't handle the scan completion in 1697 * time during suspend, so if it's still marked as completed 1698 * here, queue the work and flush it to clean things up. 1699 * Instead of calling the worker function directly here, we 1700 * really queue it to avoid potential races with other flows 1701 * scheduling the same work. 1702 */ 1703 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 1704 /* If coming from reconfiguration failure, abort the scan so 1705 * we don't attempt to continue a partial HW scan - which is 1706 * possible otherwise if (e.g.) the 2.4 GHz portion was the 1707 * completed scan, and a 5 GHz portion is still pending. 1708 */ 1709 if (aborted) 1710 set_bit(SCAN_ABORTED, &local->scanning); 1711 ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0); 1712 flush_delayed_work(&local->scan_work); 1713 } 1714 } 1715 1716 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 1717 { 1718 struct ieee80211_sub_if_data *sdata; 1719 struct ieee80211_chanctx *ctx; 1720 1721 /* 1722 * We get here if during resume the device can't be restarted properly. 1723 * We might also get here if this happens during HW reset, which is a 1724 * slightly different situation and we need to drop all connections in 1725 * the latter case. 1726 * 1727 * Ask cfg80211 to turn off all interfaces, this will result in more 1728 * warnings but at least we'll then get into a clean stopped state. 1729 */ 1730 1731 local->resuming = false; 1732 local->suspended = false; 1733 local->in_reconfig = false; 1734 1735 ieee80211_flush_completed_scan(local, true); 1736 1737 /* scheduled scan clearly can't be running any more, but tell 1738 * cfg80211 and clear local state 1739 */ 1740 ieee80211_sched_scan_end(local); 1741 1742 list_for_each_entry(sdata, &local->interfaces, list) 1743 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 1744 1745 /* Mark channel contexts as not being in the driver any more to avoid 1746 * removing them from the driver during the shutdown process... 1747 */ 1748 mutex_lock(&local->chanctx_mtx); 1749 list_for_each_entry(ctx, &local->chanctx_list, list) 1750 ctx->driver_present = false; 1751 mutex_unlock(&local->chanctx_mtx); 1752 1753 cfg80211_shutdown_all_interfaces(local->hw.wiphy); 1754 } 1755 1756 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 1757 struct ieee80211_sub_if_data *sdata) 1758 { 1759 struct ieee80211_chanctx_conf *conf; 1760 struct ieee80211_chanctx *ctx; 1761 1762 if (!local->use_chanctx) 1763 return; 1764 1765 mutex_lock(&local->chanctx_mtx); 1766 conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 1767 lockdep_is_held(&local->chanctx_mtx)); 1768 if (conf) { 1769 ctx = container_of(conf, struct ieee80211_chanctx, conf); 1770 drv_assign_vif_chanctx(local, sdata, ctx); 1771 } 1772 mutex_unlock(&local->chanctx_mtx); 1773 } 1774 1775 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 1776 { 1777 struct ieee80211_local *local = sdata->local; 1778 struct sta_info *sta; 1779 1780 /* add STAs back */ 1781 mutex_lock(&local->sta_mtx); 1782 list_for_each_entry(sta, &local->sta_list, list) { 1783 enum ieee80211_sta_state state; 1784 1785 if (!sta->uploaded || sta->sdata != sdata) 1786 continue; 1787 1788 for (state = IEEE80211_STA_NOTEXIST; 1789 state < sta->sta_state; state++) 1790 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 1791 state + 1)); 1792 } 1793 mutex_unlock(&local->sta_mtx); 1794 } 1795 1796 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 1797 { 1798 struct cfg80211_nan_func *func, **funcs; 1799 int res, id, i = 0; 1800 1801 res = drv_start_nan(sdata->local, sdata, 1802 &sdata->u.nan.conf); 1803 if (WARN_ON(res)) 1804 return res; 1805 1806 funcs = kzalloc((sdata->local->hw.max_nan_de_entries + 1) * 1807 sizeof(*funcs), GFP_KERNEL); 1808 if (!funcs) 1809 return -ENOMEM; 1810 1811 /* Add all the functions: 1812 * This is a little bit ugly. We need to call a potentially sleeping 1813 * callback for each NAN function, so we can't hold the spinlock. 1814 */ 1815 spin_lock_bh(&sdata->u.nan.func_lock); 1816 1817 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 1818 funcs[i++] = func; 1819 1820 spin_unlock_bh(&sdata->u.nan.func_lock); 1821 1822 for (i = 0; funcs[i]; i++) { 1823 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 1824 if (WARN_ON(res)) 1825 ieee80211_nan_func_terminated(&sdata->vif, 1826 funcs[i]->instance_id, 1827 NL80211_NAN_FUNC_TERM_REASON_ERROR, 1828 GFP_KERNEL); 1829 } 1830 1831 kfree(funcs); 1832 1833 return 0; 1834 } 1835 1836 int ieee80211_reconfig(struct ieee80211_local *local) 1837 { 1838 struct ieee80211_hw *hw = &local->hw; 1839 struct ieee80211_sub_if_data *sdata; 1840 struct ieee80211_chanctx *ctx; 1841 struct sta_info *sta; 1842 int res, i; 1843 bool reconfig_due_to_wowlan = false; 1844 struct ieee80211_sub_if_data *sched_scan_sdata; 1845 struct cfg80211_sched_scan_request *sched_scan_req; 1846 bool sched_scan_stopped = false; 1847 bool suspended = local->suspended; 1848 1849 /* nothing to do if HW shouldn't run */ 1850 if (!local->open_count) 1851 goto wake_up; 1852 1853 #ifdef CONFIG_PM 1854 if (suspended) 1855 local->resuming = true; 1856 1857 if (local->wowlan) { 1858 /* 1859 * In the wowlan case, both mac80211 and the device 1860 * are functional when the resume op is called, so 1861 * clear local->suspended so the device could operate 1862 * normally (e.g. pass rx frames). 1863 */ 1864 local->suspended = false; 1865 res = drv_resume(local); 1866 local->wowlan = false; 1867 if (res < 0) { 1868 local->resuming = false; 1869 return res; 1870 } 1871 if (res == 0) 1872 goto wake_up; 1873 WARN_ON(res > 1); 1874 /* 1875 * res is 1, which means the driver requested 1876 * to go through a regular reset on wakeup. 1877 * restore local->suspended in this case. 1878 */ 1879 reconfig_due_to_wowlan = true; 1880 local->suspended = true; 1881 } 1882 #endif 1883 1884 /* 1885 * In case of hw_restart during suspend (without wowlan), 1886 * cancel restart work, as we are reconfiguring the device 1887 * anyway. 1888 * Note that restart_work is scheduled on a frozen workqueue, 1889 * so we can't deadlock in this case. 1890 */ 1891 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 1892 cancel_work_sync(&local->restart_work); 1893 1894 local->started = false; 1895 1896 /* 1897 * Upon resume hardware can sometimes be goofy due to 1898 * various platform / driver / bus issues, so restarting 1899 * the device may at times not work immediately. Propagate 1900 * the error. 1901 */ 1902 res = drv_start(local); 1903 if (res) { 1904 if (suspended) 1905 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 1906 else 1907 WARN(1, "Hardware became unavailable during restart.\n"); 1908 ieee80211_handle_reconfig_failure(local); 1909 return res; 1910 } 1911 1912 /* setup fragmentation threshold */ 1913 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 1914 1915 /* setup RTS threshold */ 1916 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 1917 1918 /* reset coverage class */ 1919 drv_set_coverage_class(local, hw->wiphy->coverage_class); 1920 1921 ieee80211_led_radio(local, true); 1922 ieee80211_mod_tpt_led_trig(local, 1923 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 1924 1925 /* add interfaces */ 1926 sdata = rtnl_dereference(local->monitor_sdata); 1927 if (sdata) { 1928 /* in HW restart it exists already */ 1929 WARN_ON(local->resuming); 1930 res = drv_add_interface(local, sdata); 1931 if (WARN_ON(res)) { 1932 RCU_INIT_POINTER(local->monitor_sdata, NULL); 1933 synchronize_net(); 1934 kfree(sdata); 1935 } 1936 } 1937 1938 list_for_each_entry(sdata, &local->interfaces, list) { 1939 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1940 sdata->vif.type != NL80211_IFTYPE_MONITOR && 1941 ieee80211_sdata_running(sdata)) { 1942 res = drv_add_interface(local, sdata); 1943 if (WARN_ON(res)) 1944 break; 1945 } 1946 } 1947 1948 /* If adding any of the interfaces failed above, roll back and 1949 * report failure. 1950 */ 1951 if (res) { 1952 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 1953 list) 1954 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1955 sdata->vif.type != NL80211_IFTYPE_MONITOR && 1956 ieee80211_sdata_running(sdata)) 1957 drv_remove_interface(local, sdata); 1958 ieee80211_handle_reconfig_failure(local); 1959 return res; 1960 } 1961 1962 /* add channel contexts */ 1963 if (local->use_chanctx) { 1964 mutex_lock(&local->chanctx_mtx); 1965 list_for_each_entry(ctx, &local->chanctx_list, list) 1966 if (ctx->replace_state != 1967 IEEE80211_CHANCTX_REPLACES_OTHER) 1968 WARN_ON(drv_add_chanctx(local, ctx)); 1969 mutex_unlock(&local->chanctx_mtx); 1970 1971 sdata = rtnl_dereference(local->monitor_sdata); 1972 if (sdata && ieee80211_sdata_running(sdata)) 1973 ieee80211_assign_chanctx(local, sdata); 1974 } 1975 1976 /* reconfigure hardware */ 1977 ieee80211_hw_config(local, ~0); 1978 1979 ieee80211_configure_filter(local); 1980 1981 /* Finally also reconfigure all the BSS information */ 1982 list_for_each_entry(sdata, &local->interfaces, list) { 1983 u32 changed; 1984 1985 if (!ieee80211_sdata_running(sdata)) 1986 continue; 1987 1988 ieee80211_assign_chanctx(local, sdata); 1989 1990 switch (sdata->vif.type) { 1991 case NL80211_IFTYPE_AP_VLAN: 1992 case NL80211_IFTYPE_MONITOR: 1993 break; 1994 default: 1995 ieee80211_reconfig_stations(sdata); 1996 /* fall through */ 1997 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 1998 for (i = 0; i < IEEE80211_NUM_ACS; i++) 1999 drv_conf_tx(local, sdata, i, 2000 &sdata->tx_conf[i]); 2001 break; 2002 } 2003 2004 /* common change flags for all interface types */ 2005 changed = BSS_CHANGED_ERP_CTS_PROT | 2006 BSS_CHANGED_ERP_PREAMBLE | 2007 BSS_CHANGED_ERP_SLOT | 2008 BSS_CHANGED_HT | 2009 BSS_CHANGED_BASIC_RATES | 2010 BSS_CHANGED_BEACON_INT | 2011 BSS_CHANGED_BSSID | 2012 BSS_CHANGED_CQM | 2013 BSS_CHANGED_QOS | 2014 BSS_CHANGED_IDLE | 2015 BSS_CHANGED_TXPOWER | 2016 BSS_CHANGED_MCAST_RATE; 2017 2018 if (sdata->vif.mu_mimo_owner) 2019 changed |= BSS_CHANGED_MU_GROUPS; 2020 2021 switch (sdata->vif.type) { 2022 case NL80211_IFTYPE_STATION: 2023 changed |= BSS_CHANGED_ASSOC | 2024 BSS_CHANGED_ARP_FILTER | 2025 BSS_CHANGED_PS; 2026 2027 /* Re-send beacon info report to the driver */ 2028 if (sdata->u.mgd.have_beacon) 2029 changed |= BSS_CHANGED_BEACON_INFO; 2030 2031 if (sdata->vif.bss_conf.max_idle_period || 2032 sdata->vif.bss_conf.protected_keep_alive) 2033 changed |= BSS_CHANGED_KEEP_ALIVE; 2034 2035 sdata_lock(sdata); 2036 ieee80211_bss_info_change_notify(sdata, changed); 2037 sdata_unlock(sdata); 2038 break; 2039 case NL80211_IFTYPE_OCB: 2040 changed |= BSS_CHANGED_OCB; 2041 ieee80211_bss_info_change_notify(sdata, changed); 2042 break; 2043 case NL80211_IFTYPE_ADHOC: 2044 changed |= BSS_CHANGED_IBSS; 2045 /* fall through */ 2046 case NL80211_IFTYPE_AP: 2047 changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS; 2048 2049 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2050 changed |= BSS_CHANGED_AP_PROBE_RESP; 2051 2052 if (rcu_access_pointer(sdata->u.ap.beacon)) 2053 drv_start_ap(local, sdata); 2054 } 2055 2056 /* fall through */ 2057 case NL80211_IFTYPE_MESH_POINT: 2058 if (sdata->vif.bss_conf.enable_beacon) { 2059 changed |= BSS_CHANGED_BEACON | 2060 BSS_CHANGED_BEACON_ENABLED; 2061 ieee80211_bss_info_change_notify(sdata, changed); 2062 } 2063 break; 2064 case NL80211_IFTYPE_NAN: 2065 res = ieee80211_reconfig_nan(sdata); 2066 if (res < 0) { 2067 ieee80211_handle_reconfig_failure(local); 2068 return res; 2069 } 2070 break; 2071 case NL80211_IFTYPE_WDS: 2072 case NL80211_IFTYPE_AP_VLAN: 2073 case NL80211_IFTYPE_MONITOR: 2074 case NL80211_IFTYPE_P2P_DEVICE: 2075 /* nothing to do */ 2076 break; 2077 case NL80211_IFTYPE_UNSPECIFIED: 2078 case NUM_NL80211_IFTYPES: 2079 case NL80211_IFTYPE_P2P_CLIENT: 2080 case NL80211_IFTYPE_P2P_GO: 2081 WARN_ON(1); 2082 break; 2083 } 2084 } 2085 2086 ieee80211_recalc_ps(local); 2087 2088 /* 2089 * The sta might be in psm against the ap (e.g. because 2090 * this was the state before a hw restart), so we 2091 * explicitly send a null packet in order to make sure 2092 * it'll sync against the ap (and get out of psm). 2093 */ 2094 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2095 list_for_each_entry(sdata, &local->interfaces, list) { 2096 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2097 continue; 2098 if (!sdata->u.mgd.associated) 2099 continue; 2100 2101 ieee80211_send_nullfunc(local, sdata, false); 2102 } 2103 } 2104 2105 /* APs are now beaconing, add back stations */ 2106 mutex_lock(&local->sta_mtx); 2107 list_for_each_entry(sta, &local->sta_list, list) { 2108 enum ieee80211_sta_state state; 2109 2110 if (!sta->uploaded) 2111 continue; 2112 2113 if (sta->sdata->vif.type != NL80211_IFTYPE_AP) 2114 continue; 2115 2116 for (state = IEEE80211_STA_NOTEXIST; 2117 state < sta->sta_state; state++) 2118 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2119 state + 1)); 2120 } 2121 mutex_unlock(&local->sta_mtx); 2122 2123 /* add back keys */ 2124 list_for_each_entry(sdata, &local->interfaces, list) 2125 ieee80211_reset_crypto_tx_tailroom(sdata); 2126 2127 list_for_each_entry(sdata, &local->interfaces, list) 2128 if (ieee80211_sdata_running(sdata)) 2129 ieee80211_enable_keys(sdata); 2130 2131 /* Reconfigure sched scan if it was interrupted by FW restart */ 2132 mutex_lock(&local->mtx); 2133 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2134 lockdep_is_held(&local->mtx)); 2135 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2136 lockdep_is_held(&local->mtx)); 2137 if (sched_scan_sdata && sched_scan_req) 2138 /* 2139 * Sched scan stopped, but we don't want to report it. Instead, 2140 * we're trying to reschedule. However, if more than one scan 2141 * plan was set, we cannot reschedule since we don't know which 2142 * scan plan was currently running (and some scan plans may have 2143 * already finished). 2144 */ 2145 if (sched_scan_req->n_scan_plans > 1 || 2146 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2147 sched_scan_req)) { 2148 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2149 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2150 sched_scan_stopped = true; 2151 } 2152 mutex_unlock(&local->mtx); 2153 2154 if (sched_scan_stopped) 2155 cfg80211_sched_scan_stopped_rtnl(local->hw.wiphy, 0); 2156 2157 wake_up: 2158 2159 if (local->monitors == local->open_count && local->monitors > 0) 2160 ieee80211_add_virtual_monitor(local); 2161 2162 /* 2163 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2164 * sessions can be established after a resume. 2165 * 2166 * Also tear down aggregation sessions since reconfiguring 2167 * them in a hardware restart scenario is not easily done 2168 * right now, and the hardware will have lost information 2169 * about the sessions, but we and the AP still think they 2170 * are active. This is really a workaround though. 2171 */ 2172 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2173 mutex_lock(&local->sta_mtx); 2174 2175 list_for_each_entry(sta, &local->sta_list, list) { 2176 if (!local->resuming) 2177 ieee80211_sta_tear_down_BA_sessions( 2178 sta, AGG_STOP_LOCAL_REQUEST); 2179 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2180 } 2181 2182 mutex_unlock(&local->sta_mtx); 2183 } 2184 2185 if (local->in_reconfig) { 2186 local->in_reconfig = false; 2187 barrier(); 2188 2189 /* Restart deferred ROCs */ 2190 mutex_lock(&local->mtx); 2191 ieee80211_start_next_roc(local); 2192 mutex_unlock(&local->mtx); 2193 } 2194 2195 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2196 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2197 false); 2198 2199 /* 2200 * If this is for hw restart things are still running. 2201 * We may want to change that later, however. 2202 */ 2203 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2204 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2205 2206 if (!suspended) 2207 return 0; 2208 2209 #ifdef CONFIG_PM 2210 /* first set suspended false, then resuming */ 2211 local->suspended = false; 2212 mb(); 2213 local->resuming = false; 2214 2215 ieee80211_flush_completed_scan(local, false); 2216 2217 if (local->open_count && !reconfig_due_to_wowlan) 2218 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2219 2220 list_for_each_entry(sdata, &local->interfaces, list) { 2221 if (!ieee80211_sdata_running(sdata)) 2222 continue; 2223 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2224 ieee80211_sta_restart(sdata); 2225 } 2226 2227 mod_timer(&local->sta_cleanup, jiffies + 1); 2228 #else 2229 WARN_ON(1); 2230 #endif 2231 2232 return 0; 2233 } 2234 2235 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 2236 { 2237 struct ieee80211_sub_if_data *sdata; 2238 struct ieee80211_local *local; 2239 struct ieee80211_key *key; 2240 2241 if (WARN_ON(!vif)) 2242 return; 2243 2244 sdata = vif_to_sdata(vif); 2245 local = sdata->local; 2246 2247 if (WARN_ON(!local->resuming)) 2248 return; 2249 2250 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2251 return; 2252 2253 sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME; 2254 2255 mutex_lock(&local->key_mtx); 2256 list_for_each_entry(key, &sdata->key_list, list) 2257 key->flags |= KEY_FLAG_TAINTED; 2258 mutex_unlock(&local->key_mtx); 2259 } 2260 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 2261 2262 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata) 2263 { 2264 struct ieee80211_local *local = sdata->local; 2265 struct ieee80211_chanctx_conf *chanctx_conf; 2266 struct ieee80211_chanctx *chanctx; 2267 2268 mutex_lock(&local->chanctx_mtx); 2269 2270 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2271 lockdep_is_held(&local->chanctx_mtx)); 2272 2273 /* 2274 * This function can be called from a work, thus it may be possible 2275 * that the chanctx_conf is removed (due to a disconnection, for 2276 * example). 2277 * So nothing should be done in such case. 2278 */ 2279 if (!chanctx_conf) 2280 goto unlock; 2281 2282 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2283 ieee80211_recalc_smps_chanctx(local, chanctx); 2284 unlock: 2285 mutex_unlock(&local->chanctx_mtx); 2286 } 2287 2288 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata) 2289 { 2290 struct ieee80211_local *local = sdata->local; 2291 struct ieee80211_chanctx_conf *chanctx_conf; 2292 struct ieee80211_chanctx *chanctx; 2293 2294 mutex_lock(&local->chanctx_mtx); 2295 2296 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2297 lockdep_is_held(&local->chanctx_mtx)); 2298 2299 if (WARN_ON_ONCE(!chanctx_conf)) 2300 goto unlock; 2301 2302 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2303 ieee80211_recalc_chanctx_min_def(local, chanctx); 2304 unlock: 2305 mutex_unlock(&local->chanctx_mtx); 2306 } 2307 2308 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 2309 { 2310 size_t pos = offset; 2311 2312 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 2313 pos += 2 + ies[pos + 1]; 2314 2315 return pos; 2316 } 2317 2318 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata, 2319 int rssi_min_thold, 2320 int rssi_max_thold) 2321 { 2322 trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold); 2323 2324 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 2325 return; 2326 2327 /* 2328 * Scale up threshold values before storing it, as the RSSI averaging 2329 * algorithm uses a scaled up value as well. Change this scaling 2330 * factor if the RSSI averaging algorithm changes. 2331 */ 2332 sdata->u.mgd.rssi_min_thold = rssi_min_thold*16; 2333 sdata->u.mgd.rssi_max_thold = rssi_max_thold*16; 2334 } 2335 2336 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif, 2337 int rssi_min_thold, 2338 int rssi_max_thold) 2339 { 2340 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2341 2342 WARN_ON(rssi_min_thold == rssi_max_thold || 2343 rssi_min_thold > rssi_max_thold); 2344 2345 _ieee80211_enable_rssi_reports(sdata, rssi_min_thold, 2346 rssi_max_thold); 2347 } 2348 EXPORT_SYMBOL(ieee80211_enable_rssi_reports); 2349 2350 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif) 2351 { 2352 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2353 2354 _ieee80211_enable_rssi_reports(sdata, 0, 0); 2355 } 2356 EXPORT_SYMBOL(ieee80211_disable_rssi_reports); 2357 2358 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2359 u16 cap) 2360 { 2361 __le16 tmp; 2362 2363 *pos++ = WLAN_EID_HT_CAPABILITY; 2364 *pos++ = sizeof(struct ieee80211_ht_cap); 2365 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 2366 2367 /* capability flags */ 2368 tmp = cpu_to_le16(cap); 2369 memcpy(pos, &tmp, sizeof(u16)); 2370 pos += sizeof(u16); 2371 2372 /* AMPDU parameters */ 2373 *pos++ = ht_cap->ampdu_factor | 2374 (ht_cap->ampdu_density << 2375 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 2376 2377 /* MCS set */ 2378 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 2379 pos += sizeof(ht_cap->mcs); 2380 2381 /* extended capabilities */ 2382 pos += sizeof(__le16); 2383 2384 /* BF capabilities */ 2385 pos += sizeof(__le32); 2386 2387 /* antenna selection */ 2388 pos += sizeof(u8); 2389 2390 return pos; 2391 } 2392 2393 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2394 u32 cap) 2395 { 2396 __le32 tmp; 2397 2398 *pos++ = WLAN_EID_VHT_CAPABILITY; 2399 *pos++ = sizeof(struct ieee80211_vht_cap); 2400 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 2401 2402 /* capability flags */ 2403 tmp = cpu_to_le32(cap); 2404 memcpy(pos, &tmp, sizeof(u32)); 2405 pos += sizeof(u32); 2406 2407 /* VHT MCS set */ 2408 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 2409 pos += sizeof(vht_cap->vht_mcs); 2410 2411 return pos; 2412 } 2413 2414 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2415 const struct cfg80211_chan_def *chandef, 2416 u16 prot_mode, bool rifs_mode) 2417 { 2418 struct ieee80211_ht_operation *ht_oper; 2419 /* Build HT Information */ 2420 *pos++ = WLAN_EID_HT_OPERATION; 2421 *pos++ = sizeof(struct ieee80211_ht_operation); 2422 ht_oper = (struct ieee80211_ht_operation *)pos; 2423 ht_oper->primary_chan = ieee80211_frequency_to_channel( 2424 chandef->chan->center_freq); 2425 switch (chandef->width) { 2426 case NL80211_CHAN_WIDTH_160: 2427 case NL80211_CHAN_WIDTH_80P80: 2428 case NL80211_CHAN_WIDTH_80: 2429 case NL80211_CHAN_WIDTH_40: 2430 if (chandef->center_freq1 > chandef->chan->center_freq) 2431 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 2432 else 2433 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 2434 break; 2435 default: 2436 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 2437 break; 2438 } 2439 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 2440 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 2441 chandef->width != NL80211_CHAN_WIDTH_20) 2442 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 2443 2444 if (rifs_mode) 2445 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 2446 2447 ht_oper->operation_mode = cpu_to_le16(prot_mode); 2448 ht_oper->stbc_param = 0x0000; 2449 2450 /* It seems that Basic MCS set and Supported MCS set 2451 are identical for the first 10 bytes */ 2452 memset(&ht_oper->basic_set, 0, 16); 2453 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 2454 2455 return pos + sizeof(struct ieee80211_ht_operation); 2456 } 2457 2458 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 2459 const struct cfg80211_chan_def *chandef) 2460 { 2461 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 2462 *pos++ = 3; /* IE length */ 2463 /* New channel width */ 2464 switch (chandef->width) { 2465 case NL80211_CHAN_WIDTH_80: 2466 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 2467 break; 2468 case NL80211_CHAN_WIDTH_160: 2469 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 2470 break; 2471 case NL80211_CHAN_WIDTH_80P80: 2472 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 2473 break; 2474 default: 2475 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 2476 } 2477 2478 /* new center frequency segment 0 */ 2479 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 2480 /* new center frequency segment 1 */ 2481 if (chandef->center_freq2) 2482 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 2483 else 2484 *pos++ = 0; 2485 } 2486 2487 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2488 const struct cfg80211_chan_def *chandef) 2489 { 2490 struct ieee80211_vht_operation *vht_oper; 2491 2492 *pos++ = WLAN_EID_VHT_OPERATION; 2493 *pos++ = sizeof(struct ieee80211_vht_operation); 2494 vht_oper = (struct ieee80211_vht_operation *)pos; 2495 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 2496 chandef->center_freq1); 2497 if (chandef->center_freq2) 2498 vht_oper->center_freq_seg1_idx = 2499 ieee80211_frequency_to_channel(chandef->center_freq2); 2500 else 2501 vht_oper->center_freq_seg1_idx = 0x00; 2502 2503 switch (chandef->width) { 2504 case NL80211_CHAN_WIDTH_160: 2505 /* 2506 * Convert 160 MHz channel width to new style as interop 2507 * workaround. 2508 */ 2509 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2510 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 2511 if (chandef->chan->center_freq < chandef->center_freq1) 2512 vht_oper->center_freq_seg0_idx -= 8; 2513 else 2514 vht_oper->center_freq_seg0_idx += 8; 2515 break; 2516 case NL80211_CHAN_WIDTH_80P80: 2517 /* 2518 * Convert 80+80 MHz channel width to new style as interop 2519 * workaround. 2520 */ 2521 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2522 break; 2523 case NL80211_CHAN_WIDTH_80: 2524 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2525 break; 2526 default: 2527 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 2528 break; 2529 } 2530 2531 /* don't require special VHT peer rates */ 2532 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 2533 2534 return pos + sizeof(struct ieee80211_vht_operation); 2535 } 2536 2537 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 2538 struct cfg80211_chan_def *chandef) 2539 { 2540 enum nl80211_channel_type channel_type; 2541 2542 if (!ht_oper) 2543 return false; 2544 2545 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 2546 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 2547 channel_type = NL80211_CHAN_HT20; 2548 break; 2549 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 2550 channel_type = NL80211_CHAN_HT40PLUS; 2551 break; 2552 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 2553 channel_type = NL80211_CHAN_HT40MINUS; 2554 break; 2555 default: 2556 channel_type = NL80211_CHAN_NO_HT; 2557 return false; 2558 } 2559 2560 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 2561 return true; 2562 } 2563 2564 bool ieee80211_chandef_vht_oper(const struct ieee80211_vht_operation *oper, 2565 struct cfg80211_chan_def *chandef) 2566 { 2567 struct cfg80211_chan_def new = *chandef; 2568 int cf1, cf2; 2569 2570 if (!oper) 2571 return false; 2572 2573 cf1 = ieee80211_channel_to_frequency(oper->center_freq_seg0_idx, 2574 chandef->chan->band); 2575 cf2 = ieee80211_channel_to_frequency(oper->center_freq_seg1_idx, 2576 chandef->chan->band); 2577 2578 switch (oper->chan_width) { 2579 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2580 break; 2581 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2582 new.width = NL80211_CHAN_WIDTH_80; 2583 new.center_freq1 = cf1; 2584 /* If needed, adjust based on the newer interop workaround. */ 2585 if (oper->center_freq_seg1_idx) { 2586 unsigned int diff; 2587 2588 diff = abs(oper->center_freq_seg1_idx - 2589 oper->center_freq_seg0_idx); 2590 if (diff == 8) { 2591 new.width = NL80211_CHAN_WIDTH_160; 2592 new.center_freq1 = cf2; 2593 } else if (diff > 8) { 2594 new.width = NL80211_CHAN_WIDTH_80P80; 2595 new.center_freq2 = cf2; 2596 } 2597 } 2598 break; 2599 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2600 new.width = NL80211_CHAN_WIDTH_160; 2601 new.center_freq1 = cf1; 2602 break; 2603 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2604 new.width = NL80211_CHAN_WIDTH_80P80; 2605 new.center_freq1 = cf1; 2606 new.center_freq2 = cf2; 2607 break; 2608 default: 2609 return false; 2610 } 2611 2612 if (!cfg80211_chandef_valid(&new)) 2613 return false; 2614 2615 *chandef = new; 2616 return true; 2617 } 2618 2619 int ieee80211_parse_bitrates(struct cfg80211_chan_def *chandef, 2620 const struct ieee80211_supported_band *sband, 2621 const u8 *srates, int srates_len, u32 *rates) 2622 { 2623 u32 rate_flags = ieee80211_chandef_rate_flags(chandef); 2624 int shift = ieee80211_chandef_get_shift(chandef); 2625 struct ieee80211_rate *br; 2626 int brate, rate, i, j, count = 0; 2627 2628 *rates = 0; 2629 2630 for (i = 0; i < srates_len; i++) { 2631 rate = srates[i] & 0x7f; 2632 2633 for (j = 0; j < sband->n_bitrates; j++) { 2634 br = &sband->bitrates[j]; 2635 if ((rate_flags & br->flags) != rate_flags) 2636 continue; 2637 2638 brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5); 2639 if (brate == rate) { 2640 *rates |= BIT(j); 2641 count++; 2642 break; 2643 } 2644 } 2645 } 2646 return count; 2647 } 2648 2649 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, 2650 struct sk_buff *skb, bool need_basic, 2651 enum nl80211_band band) 2652 { 2653 struct ieee80211_local *local = sdata->local; 2654 struct ieee80211_supported_band *sband; 2655 int rate, shift; 2656 u8 i, rates, *pos; 2657 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 2658 u32 rate_flags; 2659 2660 shift = ieee80211_vif_get_shift(&sdata->vif); 2661 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 2662 sband = local->hw.wiphy->bands[band]; 2663 rates = 0; 2664 for (i = 0; i < sband->n_bitrates; i++) { 2665 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 2666 continue; 2667 rates++; 2668 } 2669 if (rates > 8) 2670 rates = 8; 2671 2672 if (skb_tailroom(skb) < rates + 2) 2673 return -ENOMEM; 2674 2675 pos = skb_put(skb, rates + 2); 2676 *pos++ = WLAN_EID_SUPP_RATES; 2677 *pos++ = rates; 2678 for (i = 0; i < rates; i++) { 2679 u8 basic = 0; 2680 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 2681 continue; 2682 2683 if (need_basic && basic_rates & BIT(i)) 2684 basic = 0x80; 2685 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 2686 5 * (1 << shift)); 2687 *pos++ = basic | (u8) rate; 2688 } 2689 2690 return 0; 2691 } 2692 2693 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, 2694 struct sk_buff *skb, bool need_basic, 2695 enum nl80211_band band) 2696 { 2697 struct ieee80211_local *local = sdata->local; 2698 struct ieee80211_supported_band *sband; 2699 int rate, shift; 2700 u8 i, exrates, *pos; 2701 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 2702 u32 rate_flags; 2703 2704 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 2705 shift = ieee80211_vif_get_shift(&sdata->vif); 2706 2707 sband = local->hw.wiphy->bands[band]; 2708 exrates = 0; 2709 for (i = 0; i < sband->n_bitrates; i++) { 2710 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 2711 continue; 2712 exrates++; 2713 } 2714 2715 if (exrates > 8) 2716 exrates -= 8; 2717 else 2718 exrates = 0; 2719 2720 if (skb_tailroom(skb) < exrates + 2) 2721 return -ENOMEM; 2722 2723 if (exrates) { 2724 pos = skb_put(skb, exrates + 2); 2725 *pos++ = WLAN_EID_EXT_SUPP_RATES; 2726 *pos++ = exrates; 2727 for (i = 8; i < sband->n_bitrates; i++) { 2728 u8 basic = 0; 2729 if ((rate_flags & sband->bitrates[i].flags) 2730 != rate_flags) 2731 continue; 2732 if (need_basic && basic_rates & BIT(i)) 2733 basic = 0x80; 2734 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 2735 5 * (1 << shift)); 2736 *pos++ = basic | (u8) rate; 2737 } 2738 } 2739 return 0; 2740 } 2741 2742 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 2743 { 2744 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2745 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 2746 2747 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) { 2748 /* non-managed type inferfaces */ 2749 return 0; 2750 } 2751 return -ewma_beacon_signal_read(&ifmgd->ave_beacon_signal); 2752 } 2753 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 2754 2755 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 2756 { 2757 if (!mcs) 2758 return 1; 2759 2760 /* TODO: consider rx_highest */ 2761 2762 if (mcs->rx_mask[3]) 2763 return 4; 2764 if (mcs->rx_mask[2]) 2765 return 3; 2766 if (mcs->rx_mask[1]) 2767 return 2; 2768 return 1; 2769 } 2770 2771 /** 2772 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 2773 * @local: mac80211 hw info struct 2774 * @status: RX status 2775 * @mpdu_len: total MPDU length (including FCS) 2776 * @mpdu_offset: offset into MPDU to calculate timestamp at 2777 * 2778 * This function calculates the RX timestamp at the given MPDU offset, taking 2779 * into account what the RX timestamp was. An offset of 0 will just normalize 2780 * the timestamp to TSF at beginning of MPDU reception. 2781 */ 2782 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 2783 struct ieee80211_rx_status *status, 2784 unsigned int mpdu_len, 2785 unsigned int mpdu_offset) 2786 { 2787 u64 ts = status->mactime; 2788 struct rate_info ri; 2789 u16 rate; 2790 2791 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 2792 return 0; 2793 2794 memset(&ri, 0, sizeof(ri)); 2795 2796 ri.bw = status->bw; 2797 2798 /* Fill cfg80211 rate info */ 2799 switch (status->encoding) { 2800 case RX_ENC_HT: 2801 ri.mcs = status->rate_idx; 2802 ri.flags |= RATE_INFO_FLAGS_MCS; 2803 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 2804 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 2805 break; 2806 case RX_ENC_VHT: 2807 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 2808 ri.mcs = status->rate_idx; 2809 ri.nss = status->nss; 2810 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 2811 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 2812 break; 2813 default: 2814 WARN_ON(1); 2815 /* fall through */ 2816 case RX_ENC_LEGACY: { 2817 struct ieee80211_supported_band *sband; 2818 int shift = 0; 2819 int bitrate; 2820 2821 switch (status->bw) { 2822 case RATE_INFO_BW_10: 2823 shift = 1; 2824 break; 2825 case RATE_INFO_BW_5: 2826 shift = 2; 2827 break; 2828 } 2829 2830 sband = local->hw.wiphy->bands[status->band]; 2831 bitrate = sband->bitrates[status->rate_idx].bitrate; 2832 ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift)); 2833 2834 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 2835 /* TODO: handle HT/VHT preambles */ 2836 if (status->band == NL80211_BAND_5GHZ) { 2837 ts += 20 << shift; 2838 mpdu_offset += 2; 2839 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 2840 ts += 96; 2841 } else { 2842 ts += 192; 2843 } 2844 } 2845 break; 2846 } 2847 } 2848 2849 rate = cfg80211_calculate_bitrate(&ri); 2850 if (WARN_ONCE(!rate, 2851 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 2852 (unsigned long long)status->flag, status->rate_idx, 2853 status->nss)) 2854 return 0; 2855 2856 /* rewind from end of MPDU */ 2857 if (status->flag & RX_FLAG_MACTIME_END) 2858 ts -= mpdu_len * 8 * 10 / rate; 2859 2860 ts += mpdu_offset * 8 * 10 / rate; 2861 2862 return ts; 2863 } 2864 2865 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) 2866 { 2867 struct ieee80211_sub_if_data *sdata; 2868 struct cfg80211_chan_def chandef; 2869 2870 /* for interface list, to avoid linking iflist_mtx and chanctx_mtx */ 2871 ASSERT_RTNL(); 2872 2873 mutex_lock(&local->mtx); 2874 list_for_each_entry(sdata, &local->interfaces, list) { 2875 /* it might be waiting for the local->mtx, but then 2876 * by the time it gets it, sdata->wdev.cac_started 2877 * will no longer be true 2878 */ 2879 cancel_delayed_work(&sdata->dfs_cac_timer_work); 2880 2881 if (sdata->wdev.cac_started) { 2882 chandef = sdata->vif.bss_conf.chandef; 2883 ieee80211_vif_release_channel(sdata); 2884 cfg80211_cac_event(sdata->dev, 2885 &chandef, 2886 NL80211_RADAR_CAC_ABORTED, 2887 GFP_KERNEL); 2888 } 2889 } 2890 mutex_unlock(&local->mtx); 2891 } 2892 2893 void ieee80211_dfs_radar_detected_work(struct work_struct *work) 2894 { 2895 struct ieee80211_local *local = 2896 container_of(work, struct ieee80211_local, radar_detected_work); 2897 struct cfg80211_chan_def chandef = local->hw.conf.chandef; 2898 struct ieee80211_chanctx *ctx; 2899 int num_chanctx = 0; 2900 2901 mutex_lock(&local->chanctx_mtx); 2902 list_for_each_entry(ctx, &local->chanctx_list, list) { 2903 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 2904 continue; 2905 2906 num_chanctx++; 2907 chandef = ctx->conf.def; 2908 } 2909 mutex_unlock(&local->chanctx_mtx); 2910 2911 rtnl_lock(); 2912 ieee80211_dfs_cac_cancel(local); 2913 rtnl_unlock(); 2914 2915 if (num_chanctx > 1) 2916 /* XXX: multi-channel is not supported yet */ 2917 WARN_ON(1); 2918 else 2919 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 2920 } 2921 2922 void ieee80211_radar_detected(struct ieee80211_hw *hw) 2923 { 2924 struct ieee80211_local *local = hw_to_local(hw); 2925 2926 trace_api_radar_detected(local); 2927 2928 schedule_work(&local->radar_detected_work); 2929 } 2930 EXPORT_SYMBOL(ieee80211_radar_detected); 2931 2932 u32 ieee80211_chandef_downgrade(struct cfg80211_chan_def *c) 2933 { 2934 u32 ret; 2935 int tmp; 2936 2937 switch (c->width) { 2938 case NL80211_CHAN_WIDTH_20: 2939 c->width = NL80211_CHAN_WIDTH_20_NOHT; 2940 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 2941 break; 2942 case NL80211_CHAN_WIDTH_40: 2943 c->width = NL80211_CHAN_WIDTH_20; 2944 c->center_freq1 = c->chan->center_freq; 2945 ret = IEEE80211_STA_DISABLE_40MHZ | 2946 IEEE80211_STA_DISABLE_VHT; 2947 break; 2948 case NL80211_CHAN_WIDTH_80: 2949 tmp = (30 + c->chan->center_freq - c->center_freq1)/20; 2950 /* n_P40 */ 2951 tmp /= 2; 2952 /* freq_P40 */ 2953 c->center_freq1 = c->center_freq1 - 20 + 40 * tmp; 2954 c->width = NL80211_CHAN_WIDTH_40; 2955 ret = IEEE80211_STA_DISABLE_VHT; 2956 break; 2957 case NL80211_CHAN_WIDTH_80P80: 2958 c->center_freq2 = 0; 2959 c->width = NL80211_CHAN_WIDTH_80; 2960 ret = IEEE80211_STA_DISABLE_80P80MHZ | 2961 IEEE80211_STA_DISABLE_160MHZ; 2962 break; 2963 case NL80211_CHAN_WIDTH_160: 2964 /* n_P20 */ 2965 tmp = (70 + c->chan->center_freq - c->center_freq1)/20; 2966 /* n_P80 */ 2967 tmp /= 4; 2968 c->center_freq1 = c->center_freq1 - 40 + 80 * tmp; 2969 c->width = NL80211_CHAN_WIDTH_80; 2970 ret = IEEE80211_STA_DISABLE_80P80MHZ | 2971 IEEE80211_STA_DISABLE_160MHZ; 2972 break; 2973 default: 2974 case NL80211_CHAN_WIDTH_20_NOHT: 2975 WARN_ON_ONCE(1); 2976 c->width = NL80211_CHAN_WIDTH_20_NOHT; 2977 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 2978 break; 2979 case NL80211_CHAN_WIDTH_5: 2980 case NL80211_CHAN_WIDTH_10: 2981 WARN_ON_ONCE(1); 2982 /* keep c->width */ 2983 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 2984 break; 2985 } 2986 2987 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 2988 2989 return ret; 2990 } 2991 2992 /* 2993 * Returns true if smps_mode_new is strictly more restrictive than 2994 * smps_mode_old. 2995 */ 2996 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 2997 enum ieee80211_smps_mode smps_mode_new) 2998 { 2999 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 3000 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 3001 return false; 3002 3003 switch (smps_mode_old) { 3004 case IEEE80211_SMPS_STATIC: 3005 return false; 3006 case IEEE80211_SMPS_DYNAMIC: 3007 return smps_mode_new == IEEE80211_SMPS_STATIC; 3008 case IEEE80211_SMPS_OFF: 3009 return smps_mode_new != IEEE80211_SMPS_OFF; 3010 default: 3011 WARN_ON(1); 3012 } 3013 3014 return false; 3015 } 3016 3017 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 3018 struct cfg80211_csa_settings *csa_settings) 3019 { 3020 struct sk_buff *skb; 3021 struct ieee80211_mgmt *mgmt; 3022 struct ieee80211_local *local = sdata->local; 3023 int freq; 3024 int hdr_len = offsetofend(struct ieee80211_mgmt, 3025 u.action.u.chan_switch); 3026 u8 *pos; 3027 3028 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3029 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3030 return -EOPNOTSUPP; 3031 3032 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 3033 5 + /* channel switch announcement element */ 3034 3 + /* secondary channel offset element */ 3035 5 + /* wide bandwidth channel switch announcement */ 3036 8); /* mesh channel switch parameters element */ 3037 if (!skb) 3038 return -ENOMEM; 3039 3040 skb_reserve(skb, local->tx_headroom); 3041 mgmt = skb_put_zero(skb, hdr_len); 3042 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3043 IEEE80211_STYPE_ACTION); 3044 3045 eth_broadcast_addr(mgmt->da); 3046 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 3047 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3048 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 3049 } else { 3050 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 3051 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 3052 } 3053 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 3054 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 3055 pos = skb_put(skb, 5); 3056 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 3057 *pos++ = 3; /* IE length */ 3058 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 3059 freq = csa_settings->chandef.chan->center_freq; 3060 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 3061 *pos++ = csa_settings->count; /* count */ 3062 3063 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 3064 enum nl80211_channel_type ch_type; 3065 3066 skb_put(skb, 3); 3067 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 3068 *pos++ = 1; /* IE length */ 3069 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 3070 if (ch_type == NL80211_CHAN_HT40PLUS) 3071 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3072 else 3073 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3074 } 3075 3076 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3077 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 3078 3079 skb_put(skb, 8); 3080 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 3081 *pos++ = 6; /* IE length */ 3082 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 3083 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 3084 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 3085 *pos++ |= csa_settings->block_tx ? 3086 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 3087 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 3088 pos += 2; 3089 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 3090 pos += 2; 3091 } 3092 3093 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 3094 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 3095 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 3096 skb_put(skb, 5); 3097 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 3098 } 3099 3100 ieee80211_tx_skb(sdata, skb); 3101 return 0; 3102 } 3103 3104 bool ieee80211_cs_valid(const struct ieee80211_cipher_scheme *cs) 3105 { 3106 return !(cs == NULL || cs->cipher == 0 || 3107 cs->hdr_len < cs->pn_len + cs->pn_off || 3108 cs->hdr_len <= cs->key_idx_off || 3109 cs->key_idx_shift > 7 || 3110 cs->key_idx_mask == 0); 3111 } 3112 3113 bool ieee80211_cs_list_valid(const struct ieee80211_cipher_scheme *cs, int n) 3114 { 3115 int i; 3116 3117 /* Ensure we have enough iftype bitmap space for all iftype values */ 3118 WARN_ON((NUM_NL80211_IFTYPES / 8 + 1) > sizeof(cs[0].iftype)); 3119 3120 for (i = 0; i < n; i++) 3121 if (!ieee80211_cs_valid(&cs[i])) 3122 return false; 3123 3124 return true; 3125 } 3126 3127 const struct ieee80211_cipher_scheme * 3128 ieee80211_cs_get(struct ieee80211_local *local, u32 cipher, 3129 enum nl80211_iftype iftype) 3130 { 3131 const struct ieee80211_cipher_scheme *l = local->hw.cipher_schemes; 3132 int n = local->hw.n_cipher_schemes; 3133 int i; 3134 const struct ieee80211_cipher_scheme *cs = NULL; 3135 3136 for (i = 0; i < n; i++) { 3137 if (l[i].cipher == cipher) { 3138 cs = &l[i]; 3139 break; 3140 } 3141 } 3142 3143 if (!cs || !(cs->iftype & BIT(iftype))) 3144 return NULL; 3145 3146 return cs; 3147 } 3148 3149 int ieee80211_cs_headroom(struct ieee80211_local *local, 3150 struct cfg80211_crypto_settings *crypto, 3151 enum nl80211_iftype iftype) 3152 { 3153 const struct ieee80211_cipher_scheme *cs; 3154 int headroom = IEEE80211_ENCRYPT_HEADROOM; 3155 int i; 3156 3157 for (i = 0; i < crypto->n_ciphers_pairwise; i++) { 3158 cs = ieee80211_cs_get(local, crypto->ciphers_pairwise[i], 3159 iftype); 3160 3161 if (cs && headroom < cs->hdr_len) 3162 headroom = cs->hdr_len; 3163 } 3164 3165 cs = ieee80211_cs_get(local, crypto->cipher_group, iftype); 3166 if (cs && headroom < cs->hdr_len) 3167 headroom = cs->hdr_len; 3168 3169 return headroom; 3170 } 3171 3172 static bool 3173 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 3174 { 3175 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 3176 int skip; 3177 3178 if (end > 0) 3179 return false; 3180 3181 /* One shot NOA */ 3182 if (data->count[i] == 1) 3183 return false; 3184 3185 if (data->desc[i].interval == 0) 3186 return false; 3187 3188 /* End time is in the past, check for repetitions */ 3189 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 3190 if (data->count[i] < 255) { 3191 if (data->count[i] <= skip) { 3192 data->count[i] = 0; 3193 return false; 3194 } 3195 3196 data->count[i] -= skip; 3197 } 3198 3199 data->desc[i].start += skip * data->desc[i].interval; 3200 3201 return true; 3202 } 3203 3204 static bool 3205 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 3206 s32 *offset) 3207 { 3208 bool ret = false; 3209 int i; 3210 3211 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3212 s32 cur; 3213 3214 if (!data->count[i]) 3215 continue; 3216 3217 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 3218 ret = true; 3219 3220 cur = data->desc[i].start - tsf; 3221 if (cur > *offset) 3222 continue; 3223 3224 cur = data->desc[i].start + data->desc[i].duration - tsf; 3225 if (cur > *offset) 3226 *offset = cur; 3227 } 3228 3229 return ret; 3230 } 3231 3232 static u32 3233 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 3234 { 3235 s32 offset = 0; 3236 int tries = 0; 3237 /* 3238 * arbitrary limit, used to avoid infinite loops when combined NoA 3239 * descriptors cover the full time period. 3240 */ 3241 int max_tries = 5; 3242 3243 ieee80211_extend_absent_time(data, tsf, &offset); 3244 do { 3245 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 3246 break; 3247 3248 tries++; 3249 } while (tries < max_tries); 3250 3251 return offset; 3252 } 3253 3254 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 3255 { 3256 u32 next_offset = BIT(31) - 1; 3257 int i; 3258 3259 data->absent = 0; 3260 data->has_next_tsf = false; 3261 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3262 s32 start; 3263 3264 if (!data->count[i]) 3265 continue; 3266 3267 ieee80211_extend_noa_desc(data, tsf, i); 3268 start = data->desc[i].start - tsf; 3269 if (start <= 0) 3270 data->absent |= BIT(i); 3271 3272 if (next_offset > start) 3273 next_offset = start; 3274 3275 data->has_next_tsf = true; 3276 } 3277 3278 if (data->absent) 3279 next_offset = ieee80211_get_noa_absent_time(data, tsf); 3280 3281 data->next_tsf = tsf + next_offset; 3282 } 3283 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 3284 3285 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 3286 struct ieee80211_noa_data *data, u32 tsf) 3287 { 3288 int ret = 0; 3289 int i; 3290 3291 memset(data, 0, sizeof(*data)); 3292 3293 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3294 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 3295 3296 if (!desc->count || !desc->duration) 3297 continue; 3298 3299 data->count[i] = desc->count; 3300 data->desc[i].start = le32_to_cpu(desc->start_time); 3301 data->desc[i].duration = le32_to_cpu(desc->duration); 3302 data->desc[i].interval = le32_to_cpu(desc->interval); 3303 3304 if (data->count[i] > 1 && 3305 data->desc[i].interval < data->desc[i].duration) 3306 continue; 3307 3308 ieee80211_extend_noa_desc(data, tsf, i); 3309 ret++; 3310 } 3311 3312 if (ret) 3313 ieee80211_update_p2p_noa(data, tsf); 3314 3315 return ret; 3316 } 3317 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 3318 3319 void ieee80211_recalc_dtim(struct ieee80211_local *local, 3320 struct ieee80211_sub_if_data *sdata) 3321 { 3322 u64 tsf = drv_get_tsf(local, sdata); 3323 u64 dtim_count = 0; 3324 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 3325 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 3326 struct ps_data *ps; 3327 u8 bcns_from_dtim; 3328 3329 if (tsf == -1ULL || !beacon_int || !dtim_period) 3330 return; 3331 3332 if (sdata->vif.type == NL80211_IFTYPE_AP || 3333 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 3334 if (!sdata->bss) 3335 return; 3336 3337 ps = &sdata->bss->ps; 3338 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 3339 ps = &sdata->u.mesh.ps; 3340 } else { 3341 return; 3342 } 3343 3344 /* 3345 * actually finds last dtim_count, mac80211 will update in 3346 * __beacon_add_tim(). 3347 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 3348 */ 3349 do_div(tsf, beacon_int); 3350 bcns_from_dtim = do_div(tsf, dtim_period); 3351 /* just had a DTIM */ 3352 if (!bcns_from_dtim) 3353 dtim_count = 0; 3354 else 3355 dtim_count = dtim_period - bcns_from_dtim; 3356 3357 ps->dtim_count = dtim_count; 3358 } 3359 3360 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 3361 struct ieee80211_chanctx *ctx) 3362 { 3363 struct ieee80211_sub_if_data *sdata; 3364 u8 radar_detect = 0; 3365 3366 lockdep_assert_held(&local->chanctx_mtx); 3367 3368 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 3369 return 0; 3370 3371 list_for_each_entry(sdata, &ctx->reserved_vifs, reserved_chanctx_list) 3372 if (sdata->reserved_radar_required) 3373 radar_detect |= BIT(sdata->reserved_chandef.width); 3374 3375 /* 3376 * An in-place reservation context should not have any assigned vifs 3377 * until it replaces the other context. 3378 */ 3379 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 3380 !list_empty(&ctx->assigned_vifs)); 3381 3382 list_for_each_entry(sdata, &ctx->assigned_vifs, assigned_chanctx_list) 3383 if (sdata->radar_required) 3384 radar_detect |= BIT(sdata->vif.bss_conf.chandef.width); 3385 3386 return radar_detect; 3387 } 3388 3389 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 3390 const struct cfg80211_chan_def *chandef, 3391 enum ieee80211_chanctx_mode chanmode, 3392 u8 radar_detect) 3393 { 3394 struct ieee80211_local *local = sdata->local; 3395 struct ieee80211_sub_if_data *sdata_iter; 3396 enum nl80211_iftype iftype = sdata->wdev.iftype; 3397 struct ieee80211_chanctx *ctx; 3398 int total = 1; 3399 struct iface_combination_params params = { 3400 .radar_detect = radar_detect, 3401 }; 3402 3403 lockdep_assert_held(&local->chanctx_mtx); 3404 3405 if (WARN_ON(hweight32(radar_detect) > 1)) 3406 return -EINVAL; 3407 3408 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 3409 !chandef->chan)) 3410 return -EINVAL; 3411 3412 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 3413 return -EINVAL; 3414 3415 if (sdata->vif.type == NL80211_IFTYPE_AP || 3416 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 3417 /* 3418 * always passing this is harmless, since it'll be the 3419 * same value that cfg80211 finds if it finds the same 3420 * interface ... and that's always allowed 3421 */ 3422 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 3423 } 3424 3425 /* Always allow software iftypes */ 3426 if (local->hw.wiphy->software_iftypes & BIT(iftype)) { 3427 if (radar_detect) 3428 return -EINVAL; 3429 return 0; 3430 } 3431 3432 if (chandef) 3433 params.num_different_channels = 1; 3434 3435 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 3436 params.iftype_num[iftype] = 1; 3437 3438 list_for_each_entry(ctx, &local->chanctx_list, list) { 3439 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 3440 continue; 3441 params.radar_detect |= 3442 ieee80211_chanctx_radar_detect(local, ctx); 3443 if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) { 3444 params.num_different_channels++; 3445 continue; 3446 } 3447 if (chandef && chanmode == IEEE80211_CHANCTX_SHARED && 3448 cfg80211_chandef_compatible(chandef, 3449 &ctx->conf.def)) 3450 continue; 3451 params.num_different_channels++; 3452 } 3453 3454 list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) { 3455 struct wireless_dev *wdev_iter; 3456 3457 wdev_iter = &sdata_iter->wdev; 3458 3459 if (sdata_iter == sdata || 3460 !ieee80211_sdata_running(sdata_iter) || 3461 local->hw.wiphy->software_iftypes & BIT(wdev_iter->iftype)) 3462 continue; 3463 3464 params.iftype_num[wdev_iter->iftype]++; 3465 total++; 3466 } 3467 3468 if (total == 1 && !params.radar_detect) 3469 return 0; 3470 3471 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 3472 } 3473 3474 static void 3475 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 3476 void *data) 3477 { 3478 u32 *max_num_different_channels = data; 3479 3480 *max_num_different_channels = max(*max_num_different_channels, 3481 c->num_different_channels); 3482 } 3483 3484 int ieee80211_max_num_channels(struct ieee80211_local *local) 3485 { 3486 struct ieee80211_sub_if_data *sdata; 3487 struct ieee80211_chanctx *ctx; 3488 u32 max_num_different_channels = 1; 3489 int err; 3490 struct iface_combination_params params = {0}; 3491 3492 lockdep_assert_held(&local->chanctx_mtx); 3493 3494 list_for_each_entry(ctx, &local->chanctx_list, list) { 3495 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 3496 continue; 3497 3498 params.num_different_channels++; 3499 3500 params.radar_detect |= 3501 ieee80211_chanctx_radar_detect(local, ctx); 3502 } 3503 3504 list_for_each_entry_rcu(sdata, &local->interfaces, list) 3505 params.iftype_num[sdata->wdev.iftype]++; 3506 3507 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 3508 ieee80211_iter_max_chans, 3509 &max_num_different_channels); 3510 if (err < 0) 3511 return err; 3512 3513 return max_num_different_channels; 3514 } 3515 3516 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 3517 { 3518 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 3519 *buf++ = 7; /* len */ 3520 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 3521 *buf++ = 0x50; 3522 *buf++ = 0xf2; 3523 *buf++ = 2; /* WME */ 3524 *buf++ = 0; /* WME info */ 3525 *buf++ = 1; /* WME ver */ 3526 *buf++ = qosinfo; /* U-APSD no in use */ 3527 3528 return buf; 3529 } 3530 3531 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 3532 unsigned long *frame_cnt, 3533 unsigned long *byte_cnt) 3534 { 3535 struct txq_info *txqi = to_txq_info(txq); 3536 u32 frag_cnt = 0, frag_bytes = 0; 3537 struct sk_buff *skb; 3538 3539 skb_queue_walk(&txqi->frags, skb) { 3540 frag_cnt++; 3541 frag_bytes += skb->len; 3542 } 3543 3544 if (frame_cnt) 3545 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 3546 3547 if (byte_cnt) 3548 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 3549 } 3550 EXPORT_SYMBOL(ieee80211_txq_get_depth); 3551 3552 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 3553 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 3554 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 3555 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 3556 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 3557 }; 3558