xref: /openbmc/linux/net/mac80211/util.c (revision 5104d265)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * utilities for mac80211
12  */
13 
14 #include <net/mac80211.h>
15 #include <linux/netdevice.h>
16 #include <linux/export.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/skbuff.h>
20 #include <linux/etherdevice.h>
21 #include <linux/if_arp.h>
22 #include <linux/bitmap.h>
23 #include <linux/crc32.h>
24 #include <net/net_namespace.h>
25 #include <net/cfg80211.h>
26 #include <net/rtnetlink.h>
27 
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
30 #include "rate.h"
31 #include "mesh.h"
32 #include "wme.h"
33 #include "led.h"
34 #include "wep.h"
35 
36 /* privid for wiphys to determine whether they belong to us or not */
37 void *mac80211_wiphy_privid = &mac80211_wiphy_privid;
38 
39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy)
40 {
41 	struct ieee80211_local *local;
42 	BUG_ON(!wiphy);
43 
44 	local = wiphy_priv(wiphy);
45 	return &local->hw;
46 }
47 EXPORT_SYMBOL(wiphy_to_ieee80211_hw);
48 
49 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
50 			enum nl80211_iftype type)
51 {
52 	__le16 fc = hdr->frame_control;
53 
54 	 /* drop ACK/CTS frames and incorrect hdr len (ctrl) */
55 	if (len < 16)
56 		return NULL;
57 
58 	if (ieee80211_is_data(fc)) {
59 		if (len < 24) /* drop incorrect hdr len (data) */
60 			return NULL;
61 
62 		if (ieee80211_has_a4(fc))
63 			return NULL;
64 		if (ieee80211_has_tods(fc))
65 			return hdr->addr1;
66 		if (ieee80211_has_fromds(fc))
67 			return hdr->addr2;
68 
69 		return hdr->addr3;
70 	}
71 
72 	if (ieee80211_is_mgmt(fc)) {
73 		if (len < 24) /* drop incorrect hdr len (mgmt) */
74 			return NULL;
75 		return hdr->addr3;
76 	}
77 
78 	if (ieee80211_is_ctl(fc)) {
79 		if(ieee80211_is_pspoll(fc))
80 			return hdr->addr1;
81 
82 		if (ieee80211_is_back_req(fc)) {
83 			switch (type) {
84 			case NL80211_IFTYPE_STATION:
85 				return hdr->addr2;
86 			case NL80211_IFTYPE_AP:
87 			case NL80211_IFTYPE_AP_VLAN:
88 				return hdr->addr1;
89 			default:
90 				break; /* fall through to the return */
91 			}
92 		}
93 	}
94 
95 	return NULL;
96 }
97 
98 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx)
99 {
100 	struct sk_buff *skb;
101 	struct ieee80211_hdr *hdr;
102 
103 	skb_queue_walk(&tx->skbs, skb) {
104 		hdr = (struct ieee80211_hdr *) skb->data;
105 		hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
106 	}
107 }
108 
109 int ieee80211_frame_duration(enum ieee80211_band band, size_t len,
110 			     int rate, int erp, int short_preamble)
111 {
112 	int dur;
113 
114 	/* calculate duration (in microseconds, rounded up to next higher
115 	 * integer if it includes a fractional microsecond) to send frame of
116 	 * len bytes (does not include FCS) at the given rate. Duration will
117 	 * also include SIFS.
118 	 *
119 	 * rate is in 100 kbps, so divident is multiplied by 10 in the
120 	 * DIV_ROUND_UP() operations.
121 	 */
122 
123 	if (band == IEEE80211_BAND_5GHZ || erp) {
124 		/*
125 		 * OFDM:
126 		 *
127 		 * N_DBPS = DATARATE x 4
128 		 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
129 		 *	(16 = SIGNAL time, 6 = tail bits)
130 		 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
131 		 *
132 		 * T_SYM = 4 usec
133 		 * 802.11a - 17.5.2: aSIFSTime = 16 usec
134 		 * 802.11g - 19.8.4: aSIFSTime = 10 usec +
135 		 *	signal ext = 6 usec
136 		 */
137 		dur = 16; /* SIFS + signal ext */
138 		dur += 16; /* 17.3.2.3: T_PREAMBLE = 16 usec */
139 		dur += 4; /* 17.3.2.3: T_SIGNAL = 4 usec */
140 		dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
141 					4 * rate); /* T_SYM x N_SYM */
142 	} else {
143 		/*
144 		 * 802.11b or 802.11g with 802.11b compatibility:
145 		 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
146 		 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
147 		 *
148 		 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4
149 		 * aSIFSTime = 10 usec
150 		 * aPreambleLength = 144 usec or 72 usec with short preamble
151 		 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble
152 		 */
153 		dur = 10; /* aSIFSTime = 10 usec */
154 		dur += short_preamble ? (72 + 24) : (144 + 48);
155 
156 		dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
157 	}
158 
159 	return dur;
160 }
161 
162 /* Exported duration function for driver use */
163 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
164 					struct ieee80211_vif *vif,
165 					enum ieee80211_band band,
166 					size_t frame_len,
167 					struct ieee80211_rate *rate)
168 {
169 	struct ieee80211_sub_if_data *sdata;
170 	u16 dur;
171 	int erp;
172 	bool short_preamble = false;
173 
174 	erp = 0;
175 	if (vif) {
176 		sdata = vif_to_sdata(vif);
177 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
178 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
179 			erp = rate->flags & IEEE80211_RATE_ERP_G;
180 	}
181 
182 	dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp,
183 				       short_preamble);
184 
185 	return cpu_to_le16(dur);
186 }
187 EXPORT_SYMBOL(ieee80211_generic_frame_duration);
188 
189 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
190 			      struct ieee80211_vif *vif, size_t frame_len,
191 			      const struct ieee80211_tx_info *frame_txctl)
192 {
193 	struct ieee80211_local *local = hw_to_local(hw);
194 	struct ieee80211_rate *rate;
195 	struct ieee80211_sub_if_data *sdata;
196 	bool short_preamble;
197 	int erp;
198 	u16 dur;
199 	struct ieee80211_supported_band *sband;
200 
201 	sband = local->hw.wiphy->bands[frame_txctl->band];
202 
203 	short_preamble = false;
204 
205 	rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
206 
207 	erp = 0;
208 	if (vif) {
209 		sdata = vif_to_sdata(vif);
210 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
211 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
212 			erp = rate->flags & IEEE80211_RATE_ERP_G;
213 	}
214 
215 	/* CTS duration */
216 	dur = ieee80211_frame_duration(sband->band, 10, rate->bitrate,
217 				       erp, short_preamble);
218 	/* Data frame duration */
219 	dur += ieee80211_frame_duration(sband->band, frame_len, rate->bitrate,
220 					erp, short_preamble);
221 	/* ACK duration */
222 	dur += ieee80211_frame_duration(sband->band, 10, rate->bitrate,
223 					erp, short_preamble);
224 
225 	return cpu_to_le16(dur);
226 }
227 EXPORT_SYMBOL(ieee80211_rts_duration);
228 
229 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
230 				    struct ieee80211_vif *vif,
231 				    size_t frame_len,
232 				    const struct ieee80211_tx_info *frame_txctl)
233 {
234 	struct ieee80211_local *local = hw_to_local(hw);
235 	struct ieee80211_rate *rate;
236 	struct ieee80211_sub_if_data *sdata;
237 	bool short_preamble;
238 	int erp;
239 	u16 dur;
240 	struct ieee80211_supported_band *sband;
241 
242 	sband = local->hw.wiphy->bands[frame_txctl->band];
243 
244 	short_preamble = false;
245 
246 	rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
247 	erp = 0;
248 	if (vif) {
249 		sdata = vif_to_sdata(vif);
250 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
251 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
252 			erp = rate->flags & IEEE80211_RATE_ERP_G;
253 	}
254 
255 	/* Data frame duration */
256 	dur = ieee80211_frame_duration(sband->band, frame_len, rate->bitrate,
257 				       erp, short_preamble);
258 	if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) {
259 		/* ACK duration */
260 		dur += ieee80211_frame_duration(sband->band, 10, rate->bitrate,
261 						erp, short_preamble);
262 	}
263 
264 	return cpu_to_le16(dur);
265 }
266 EXPORT_SYMBOL(ieee80211_ctstoself_duration);
267 
268 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue)
269 {
270 	struct ieee80211_sub_if_data *sdata;
271 	int n_acs = IEEE80211_NUM_ACS;
272 
273 	if (local->hw.queues < IEEE80211_NUM_ACS)
274 		n_acs = 1;
275 
276 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
277 		int ac;
278 
279 		if (!sdata->dev)
280 			continue;
281 
282 		if (test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))
283 			continue;
284 
285 		if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE &&
286 		    local->queue_stop_reasons[sdata->vif.cab_queue] != 0)
287 			continue;
288 
289 		for (ac = 0; ac < n_acs; ac++) {
290 			int ac_queue = sdata->vif.hw_queue[ac];
291 
292 			if (ac_queue == queue ||
293 			    (sdata->vif.cab_queue == queue &&
294 			     local->queue_stop_reasons[ac_queue] == 0 &&
295 			     skb_queue_empty(&local->pending[ac_queue])))
296 				netif_wake_subqueue(sdata->dev, ac);
297 		}
298 	}
299 }
300 
301 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue,
302 				   enum queue_stop_reason reason)
303 {
304 	struct ieee80211_local *local = hw_to_local(hw);
305 
306 	trace_wake_queue(local, queue, reason);
307 
308 	if (WARN_ON(queue >= hw->queues))
309 		return;
310 
311 	if (!test_bit(reason, &local->queue_stop_reasons[queue]))
312 		return;
313 
314 	__clear_bit(reason, &local->queue_stop_reasons[queue]);
315 
316 	if (local->queue_stop_reasons[queue] != 0)
317 		/* someone still has this queue stopped */
318 		return;
319 
320 	if (skb_queue_empty(&local->pending[queue])) {
321 		rcu_read_lock();
322 		ieee80211_propagate_queue_wake(local, queue);
323 		rcu_read_unlock();
324 	} else
325 		tasklet_schedule(&local->tx_pending_tasklet);
326 }
327 
328 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue,
329 				    enum queue_stop_reason reason)
330 {
331 	struct ieee80211_local *local = hw_to_local(hw);
332 	unsigned long flags;
333 
334 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
335 	__ieee80211_wake_queue(hw, queue, reason);
336 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
337 }
338 
339 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
340 {
341 	ieee80211_wake_queue_by_reason(hw, queue,
342 				       IEEE80211_QUEUE_STOP_REASON_DRIVER);
343 }
344 EXPORT_SYMBOL(ieee80211_wake_queue);
345 
346 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue,
347 				   enum queue_stop_reason reason)
348 {
349 	struct ieee80211_local *local = hw_to_local(hw);
350 	struct ieee80211_sub_if_data *sdata;
351 	int n_acs = IEEE80211_NUM_ACS;
352 
353 	trace_stop_queue(local, queue, reason);
354 
355 	if (WARN_ON(queue >= hw->queues))
356 		return;
357 
358 	if (test_bit(reason, &local->queue_stop_reasons[queue]))
359 		return;
360 
361 	__set_bit(reason, &local->queue_stop_reasons[queue]);
362 
363 	if (local->hw.queues < IEEE80211_NUM_ACS)
364 		n_acs = 1;
365 
366 	rcu_read_lock();
367 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
368 		int ac;
369 
370 		if (!sdata->dev)
371 			continue;
372 
373 		for (ac = 0; ac < n_acs; ac++) {
374 			if (sdata->vif.hw_queue[ac] == queue ||
375 			    sdata->vif.cab_queue == queue)
376 				netif_stop_subqueue(sdata->dev, ac);
377 		}
378 	}
379 	rcu_read_unlock();
380 }
381 
382 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue,
383 				    enum queue_stop_reason reason)
384 {
385 	struct ieee80211_local *local = hw_to_local(hw);
386 	unsigned long flags;
387 
388 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
389 	__ieee80211_stop_queue(hw, queue, reason);
390 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
391 }
392 
393 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
394 {
395 	ieee80211_stop_queue_by_reason(hw, queue,
396 				       IEEE80211_QUEUE_STOP_REASON_DRIVER);
397 }
398 EXPORT_SYMBOL(ieee80211_stop_queue);
399 
400 void ieee80211_add_pending_skb(struct ieee80211_local *local,
401 			       struct sk_buff *skb)
402 {
403 	struct ieee80211_hw *hw = &local->hw;
404 	unsigned long flags;
405 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
406 	int queue = info->hw_queue;
407 
408 	if (WARN_ON(!info->control.vif)) {
409 		ieee80211_free_txskb(&local->hw, skb);
410 		return;
411 	}
412 
413 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
414 	__ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
415 	__skb_queue_tail(&local->pending[queue], skb);
416 	__ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
417 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
418 }
419 
420 void ieee80211_add_pending_skbs_fn(struct ieee80211_local *local,
421 				   struct sk_buff_head *skbs,
422 				   void (*fn)(void *data), void *data)
423 {
424 	struct ieee80211_hw *hw = &local->hw;
425 	struct sk_buff *skb;
426 	unsigned long flags;
427 	int queue, i;
428 
429 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
430 	while ((skb = skb_dequeue(skbs))) {
431 		struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
432 
433 		if (WARN_ON(!info->control.vif)) {
434 			ieee80211_free_txskb(&local->hw, skb);
435 			continue;
436 		}
437 
438 		queue = info->hw_queue;
439 
440 		__ieee80211_stop_queue(hw, queue,
441 				IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
442 
443 		__skb_queue_tail(&local->pending[queue], skb);
444 	}
445 
446 	if (fn)
447 		fn(data);
448 
449 	for (i = 0; i < hw->queues; i++)
450 		__ieee80211_wake_queue(hw, i,
451 			IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
452 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
453 }
454 
455 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw,
456 				     unsigned long queues,
457 				     enum queue_stop_reason reason)
458 {
459 	struct ieee80211_local *local = hw_to_local(hw);
460 	unsigned long flags;
461 	int i;
462 
463 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
464 
465 	for_each_set_bit(i, &queues, hw->queues)
466 		__ieee80211_stop_queue(hw, i, reason);
467 
468 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
469 }
470 
471 void ieee80211_stop_queues(struct ieee80211_hw *hw)
472 {
473 	ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
474 					IEEE80211_QUEUE_STOP_REASON_DRIVER);
475 }
476 EXPORT_SYMBOL(ieee80211_stop_queues);
477 
478 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue)
479 {
480 	struct ieee80211_local *local = hw_to_local(hw);
481 	unsigned long flags;
482 	int ret;
483 
484 	if (WARN_ON(queue >= hw->queues))
485 		return true;
486 
487 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
488 	ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER,
489 		       &local->queue_stop_reasons[queue]);
490 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
491 	return ret;
492 }
493 EXPORT_SYMBOL(ieee80211_queue_stopped);
494 
495 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw,
496 				     unsigned long queues,
497 				     enum queue_stop_reason reason)
498 {
499 	struct ieee80211_local *local = hw_to_local(hw);
500 	unsigned long flags;
501 	int i;
502 
503 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
504 
505 	for_each_set_bit(i, &queues, hw->queues)
506 		__ieee80211_wake_queue(hw, i, reason);
507 
508 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
509 }
510 
511 void ieee80211_wake_queues(struct ieee80211_hw *hw)
512 {
513 	ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
514 					IEEE80211_QUEUE_STOP_REASON_DRIVER);
515 }
516 EXPORT_SYMBOL(ieee80211_wake_queues);
517 
518 void ieee80211_flush_queues(struct ieee80211_local *local,
519 			    struct ieee80211_sub_if_data *sdata)
520 {
521 	u32 queues;
522 
523 	if (!local->ops->flush)
524 		return;
525 
526 	if (sdata && local->hw.flags & IEEE80211_HW_QUEUE_CONTROL) {
527 		int ac;
528 
529 		queues = 0;
530 
531 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
532 			queues |= BIT(sdata->vif.hw_queue[ac]);
533 		if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE)
534 			queues |= BIT(sdata->vif.cab_queue);
535 	} else {
536 		/* all queues */
537 		queues = BIT(local->hw.queues) - 1;
538 	}
539 
540 	ieee80211_stop_queues_by_reason(&local->hw, IEEE80211_MAX_QUEUE_MAP,
541 					IEEE80211_QUEUE_STOP_REASON_FLUSH);
542 
543 	drv_flush(local, queues, false);
544 
545 	ieee80211_wake_queues_by_reason(&local->hw, IEEE80211_MAX_QUEUE_MAP,
546 					IEEE80211_QUEUE_STOP_REASON_FLUSH);
547 }
548 
549 void ieee80211_iterate_active_interfaces(
550 	struct ieee80211_hw *hw, u32 iter_flags,
551 	void (*iterator)(void *data, u8 *mac,
552 			 struct ieee80211_vif *vif),
553 	void *data)
554 {
555 	struct ieee80211_local *local = hw_to_local(hw);
556 	struct ieee80211_sub_if_data *sdata;
557 
558 	mutex_lock(&local->iflist_mtx);
559 
560 	list_for_each_entry(sdata, &local->interfaces, list) {
561 		switch (sdata->vif.type) {
562 		case NL80211_IFTYPE_MONITOR:
563 			if (!(sdata->u.mntr_flags & MONITOR_FLAG_ACTIVE))
564 				continue;
565 			break;
566 		case NL80211_IFTYPE_AP_VLAN:
567 			continue;
568 		default:
569 			break;
570 		}
571 		if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
572 		    !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
573 			continue;
574 		if (ieee80211_sdata_running(sdata))
575 			iterator(data, sdata->vif.addr,
576 				 &sdata->vif);
577 	}
578 
579 	sdata = rcu_dereference_protected(local->monitor_sdata,
580 					  lockdep_is_held(&local->iflist_mtx));
581 	if (sdata &&
582 	    (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL ||
583 	     sdata->flags & IEEE80211_SDATA_IN_DRIVER))
584 		iterator(data, sdata->vif.addr, &sdata->vif);
585 
586 	mutex_unlock(&local->iflist_mtx);
587 }
588 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces);
589 
590 void ieee80211_iterate_active_interfaces_atomic(
591 	struct ieee80211_hw *hw, u32 iter_flags,
592 	void (*iterator)(void *data, u8 *mac,
593 			 struct ieee80211_vif *vif),
594 	void *data)
595 {
596 	struct ieee80211_local *local = hw_to_local(hw);
597 	struct ieee80211_sub_if_data *sdata;
598 
599 	rcu_read_lock();
600 
601 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
602 		switch (sdata->vif.type) {
603 		case NL80211_IFTYPE_MONITOR:
604 			if (!(sdata->u.mntr_flags & MONITOR_FLAG_ACTIVE))
605 				continue;
606 			break;
607 		case NL80211_IFTYPE_AP_VLAN:
608 			continue;
609 		default:
610 			break;
611 		}
612 		if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
613 		    !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
614 			continue;
615 		if (ieee80211_sdata_running(sdata))
616 			iterator(data, sdata->vif.addr,
617 				 &sdata->vif);
618 	}
619 
620 	sdata = rcu_dereference(local->monitor_sdata);
621 	if (sdata &&
622 	    (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL ||
623 	     sdata->flags & IEEE80211_SDATA_IN_DRIVER))
624 		iterator(data, sdata->vif.addr, &sdata->vif);
625 
626 	rcu_read_unlock();
627 }
628 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic);
629 
630 /*
631  * Nothing should have been stuffed into the workqueue during
632  * the suspend->resume cycle. If this WARN is seen then there
633  * is a bug with either the driver suspend or something in
634  * mac80211 stuffing into the workqueue which we haven't yet
635  * cleared during mac80211's suspend cycle.
636  */
637 static bool ieee80211_can_queue_work(struct ieee80211_local *local)
638 {
639 	if (WARN(local->suspended && !local->resuming,
640 		 "queueing ieee80211 work while going to suspend\n"))
641 		return false;
642 
643 	return true;
644 }
645 
646 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work)
647 {
648 	struct ieee80211_local *local = hw_to_local(hw);
649 
650 	if (!ieee80211_can_queue_work(local))
651 		return;
652 
653 	queue_work(local->workqueue, work);
654 }
655 EXPORT_SYMBOL(ieee80211_queue_work);
656 
657 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
658 				  struct delayed_work *dwork,
659 				  unsigned long delay)
660 {
661 	struct ieee80211_local *local = hw_to_local(hw);
662 
663 	if (!ieee80211_can_queue_work(local))
664 		return;
665 
666 	queue_delayed_work(local->workqueue, dwork, delay);
667 }
668 EXPORT_SYMBOL(ieee80211_queue_delayed_work);
669 
670 u32 ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action,
671 			       struct ieee802_11_elems *elems,
672 			       u64 filter, u32 crc)
673 {
674 	size_t left = len;
675 	const u8 *pos = start;
676 	bool calc_crc = filter != 0;
677 	DECLARE_BITMAP(seen_elems, 256);
678 	const u8 *ie;
679 
680 	bitmap_zero(seen_elems, 256);
681 	memset(elems, 0, sizeof(*elems));
682 	elems->ie_start = start;
683 	elems->total_len = len;
684 
685 	while (left >= 2) {
686 		u8 id, elen;
687 		bool elem_parse_failed;
688 
689 		id = *pos++;
690 		elen = *pos++;
691 		left -= 2;
692 
693 		if (elen > left) {
694 			elems->parse_error = true;
695 			break;
696 		}
697 
698 		switch (id) {
699 		case WLAN_EID_SSID:
700 		case WLAN_EID_SUPP_RATES:
701 		case WLAN_EID_FH_PARAMS:
702 		case WLAN_EID_DS_PARAMS:
703 		case WLAN_EID_CF_PARAMS:
704 		case WLAN_EID_TIM:
705 		case WLAN_EID_IBSS_PARAMS:
706 		case WLAN_EID_CHALLENGE:
707 		case WLAN_EID_RSN:
708 		case WLAN_EID_ERP_INFO:
709 		case WLAN_EID_EXT_SUPP_RATES:
710 		case WLAN_EID_HT_CAPABILITY:
711 		case WLAN_EID_HT_OPERATION:
712 		case WLAN_EID_VHT_CAPABILITY:
713 		case WLAN_EID_VHT_OPERATION:
714 		case WLAN_EID_MESH_ID:
715 		case WLAN_EID_MESH_CONFIG:
716 		case WLAN_EID_PEER_MGMT:
717 		case WLAN_EID_PREQ:
718 		case WLAN_EID_PREP:
719 		case WLAN_EID_PERR:
720 		case WLAN_EID_RANN:
721 		case WLAN_EID_CHANNEL_SWITCH:
722 		case WLAN_EID_EXT_CHANSWITCH_ANN:
723 		case WLAN_EID_COUNTRY:
724 		case WLAN_EID_PWR_CONSTRAINT:
725 		case WLAN_EID_TIMEOUT_INTERVAL:
726 		case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
727 		case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
728 		/*
729 		 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible
730 		 * that if the content gets bigger it might be needed more than once
731 		 */
732 			if (test_bit(id, seen_elems)) {
733 				elems->parse_error = true;
734 				left -= elen;
735 				pos += elen;
736 				continue;
737 			}
738 			break;
739 		}
740 
741 		if (calc_crc && id < 64 && (filter & (1ULL << id)))
742 			crc = crc32_be(crc, pos - 2, elen + 2);
743 
744 		elem_parse_failed = false;
745 
746 		switch (id) {
747 		case WLAN_EID_SSID:
748 			elems->ssid = pos;
749 			elems->ssid_len = elen;
750 			break;
751 		case WLAN_EID_SUPP_RATES:
752 			elems->supp_rates = pos;
753 			elems->supp_rates_len = elen;
754 			break;
755 		case WLAN_EID_DS_PARAMS:
756 			if (elen >= 1)
757 				elems->ds_params = pos;
758 			else
759 				elem_parse_failed = true;
760 			break;
761 		case WLAN_EID_TIM:
762 			if (elen >= sizeof(struct ieee80211_tim_ie)) {
763 				elems->tim = (void *)pos;
764 				elems->tim_len = elen;
765 			} else
766 				elem_parse_failed = true;
767 			break;
768 		case WLAN_EID_CHALLENGE:
769 			elems->challenge = pos;
770 			elems->challenge_len = elen;
771 			break;
772 		case WLAN_EID_VENDOR_SPECIFIC:
773 			if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
774 			    pos[2] == 0xf2) {
775 				/* Microsoft OUI (00:50:F2) */
776 
777 				if (calc_crc)
778 					crc = crc32_be(crc, pos - 2, elen + 2);
779 
780 				if (elen >= 5 && pos[3] == 2) {
781 					/* OUI Type 2 - WMM IE */
782 					if (pos[4] == 0) {
783 						elems->wmm_info = pos;
784 						elems->wmm_info_len = elen;
785 					} else if (pos[4] == 1) {
786 						elems->wmm_param = pos;
787 						elems->wmm_param_len = elen;
788 					}
789 				}
790 			}
791 			break;
792 		case WLAN_EID_RSN:
793 			elems->rsn = pos;
794 			elems->rsn_len = elen;
795 			break;
796 		case WLAN_EID_ERP_INFO:
797 			if (elen >= 1)
798 				elems->erp_info = pos;
799 			else
800 				elem_parse_failed = true;
801 			break;
802 		case WLAN_EID_EXT_SUPP_RATES:
803 			elems->ext_supp_rates = pos;
804 			elems->ext_supp_rates_len = elen;
805 			break;
806 		case WLAN_EID_HT_CAPABILITY:
807 			if (elen >= sizeof(struct ieee80211_ht_cap))
808 				elems->ht_cap_elem = (void *)pos;
809 			else
810 				elem_parse_failed = true;
811 			break;
812 		case WLAN_EID_HT_OPERATION:
813 			if (elen >= sizeof(struct ieee80211_ht_operation))
814 				elems->ht_operation = (void *)pos;
815 			else
816 				elem_parse_failed = true;
817 			break;
818 		case WLAN_EID_VHT_CAPABILITY:
819 			if (elen >= sizeof(struct ieee80211_vht_cap))
820 				elems->vht_cap_elem = (void *)pos;
821 			else
822 				elem_parse_failed = true;
823 			break;
824 		case WLAN_EID_VHT_OPERATION:
825 			if (elen >= sizeof(struct ieee80211_vht_operation))
826 				elems->vht_operation = (void *)pos;
827 			else
828 				elem_parse_failed = true;
829 			break;
830 		case WLAN_EID_OPMODE_NOTIF:
831 			if (elen > 0)
832 				elems->opmode_notif = pos;
833 			else
834 				elem_parse_failed = true;
835 			break;
836 		case WLAN_EID_MESH_ID:
837 			elems->mesh_id = pos;
838 			elems->mesh_id_len = elen;
839 			break;
840 		case WLAN_EID_MESH_CONFIG:
841 			if (elen >= sizeof(struct ieee80211_meshconf_ie))
842 				elems->mesh_config = (void *)pos;
843 			else
844 				elem_parse_failed = true;
845 			break;
846 		case WLAN_EID_PEER_MGMT:
847 			elems->peering = pos;
848 			elems->peering_len = elen;
849 			break;
850 		case WLAN_EID_MESH_AWAKE_WINDOW:
851 			if (elen >= 2)
852 				elems->awake_window = (void *)pos;
853 			break;
854 		case WLAN_EID_PREQ:
855 			elems->preq = pos;
856 			elems->preq_len = elen;
857 			break;
858 		case WLAN_EID_PREP:
859 			elems->prep = pos;
860 			elems->prep_len = elen;
861 			break;
862 		case WLAN_EID_PERR:
863 			elems->perr = pos;
864 			elems->perr_len = elen;
865 			break;
866 		case WLAN_EID_RANN:
867 			if (elen >= sizeof(struct ieee80211_rann_ie))
868 				elems->rann = (void *)pos;
869 			else
870 				elem_parse_failed = true;
871 			break;
872 		case WLAN_EID_CHANNEL_SWITCH:
873 			if (elen != sizeof(struct ieee80211_channel_sw_ie)) {
874 				elem_parse_failed = true;
875 				break;
876 			}
877 			elems->ch_switch_ie = (void *)pos;
878 			break;
879 		case WLAN_EID_EXT_CHANSWITCH_ANN:
880 			if (elen != sizeof(struct ieee80211_ext_chansw_ie)) {
881 				elem_parse_failed = true;
882 				break;
883 			}
884 			elems->ext_chansw_ie = (void *)pos;
885 			break;
886 		case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
887 			if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) {
888 				elem_parse_failed = true;
889 				break;
890 			}
891 			elems->sec_chan_offs = (void *)pos;
892 			break;
893 		case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
894 			if (!action ||
895 			    elen != sizeof(*elems->wide_bw_chansw_ie)) {
896 				elem_parse_failed = true;
897 				break;
898 			}
899 			elems->wide_bw_chansw_ie = (void *)pos;
900 			break;
901 		case WLAN_EID_CHANNEL_SWITCH_WRAPPER:
902 			if (action) {
903 				elem_parse_failed = true;
904 				break;
905 			}
906 			/*
907 			 * This is a bit tricky, but as we only care about
908 			 * the wide bandwidth channel switch element, so
909 			 * just parse it out manually.
910 			 */
911 			ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH,
912 					      pos, elen);
913 			if (ie) {
914 				if (ie[1] == sizeof(*elems->wide_bw_chansw_ie))
915 					elems->wide_bw_chansw_ie =
916 						(void *)(ie + 2);
917 				else
918 					elem_parse_failed = true;
919 			}
920 			break;
921 		case WLAN_EID_COUNTRY:
922 			elems->country_elem = pos;
923 			elems->country_elem_len = elen;
924 			break;
925 		case WLAN_EID_PWR_CONSTRAINT:
926 			if (elen != 1) {
927 				elem_parse_failed = true;
928 				break;
929 			}
930 			elems->pwr_constr_elem = pos;
931 			break;
932 		case WLAN_EID_TIMEOUT_INTERVAL:
933 			if (elen >= sizeof(struct ieee80211_timeout_interval_ie))
934 				elems->timeout_int = (void *)pos;
935 			else
936 				elem_parse_failed = true;
937 			break;
938 		default:
939 			break;
940 		}
941 
942 		if (elem_parse_failed)
943 			elems->parse_error = true;
944 		else
945 			__set_bit(id, seen_elems);
946 
947 		left -= elen;
948 		pos += elen;
949 	}
950 
951 	if (left != 0)
952 		elems->parse_error = true;
953 
954 	return crc;
955 }
956 
957 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata,
958 			       bool bss_notify)
959 {
960 	struct ieee80211_local *local = sdata->local;
961 	struct ieee80211_tx_queue_params qparam;
962 	struct ieee80211_chanctx_conf *chanctx_conf;
963 	int ac;
964 	bool use_11b, enable_qos;
965 	int aCWmin, aCWmax;
966 
967 	if (!local->ops->conf_tx)
968 		return;
969 
970 	if (local->hw.queues < IEEE80211_NUM_ACS)
971 		return;
972 
973 	memset(&qparam, 0, sizeof(qparam));
974 
975 	rcu_read_lock();
976 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
977 	use_11b = (chanctx_conf &&
978 		   chanctx_conf->def.chan->band == IEEE80211_BAND_2GHZ) &&
979 		 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE);
980 	rcu_read_unlock();
981 
982 	/*
983 	 * By default disable QoS in STA mode for old access points, which do
984 	 * not support 802.11e. New APs will provide proper queue parameters,
985 	 * that we will configure later.
986 	 */
987 	enable_qos = (sdata->vif.type != NL80211_IFTYPE_STATION);
988 
989 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
990 		/* Set defaults according to 802.11-2007 Table 7-37 */
991 		aCWmax = 1023;
992 		if (use_11b)
993 			aCWmin = 31;
994 		else
995 			aCWmin = 15;
996 
997 		if (enable_qos) {
998 			switch (ac) {
999 			case IEEE80211_AC_BK:
1000 				qparam.cw_max = aCWmax;
1001 				qparam.cw_min = aCWmin;
1002 				qparam.txop = 0;
1003 				qparam.aifs = 7;
1004 				break;
1005 			/* never happens but let's not leave undefined */
1006 			default:
1007 			case IEEE80211_AC_BE:
1008 				qparam.cw_max = aCWmax;
1009 				qparam.cw_min = aCWmin;
1010 				qparam.txop = 0;
1011 				qparam.aifs = 3;
1012 				break;
1013 			case IEEE80211_AC_VI:
1014 				qparam.cw_max = aCWmin;
1015 				qparam.cw_min = (aCWmin + 1) / 2 - 1;
1016 				if (use_11b)
1017 					qparam.txop = 6016/32;
1018 				else
1019 					qparam.txop = 3008/32;
1020 				qparam.aifs = 2;
1021 				break;
1022 			case IEEE80211_AC_VO:
1023 				qparam.cw_max = (aCWmin + 1) / 2 - 1;
1024 				qparam.cw_min = (aCWmin + 1) / 4 - 1;
1025 				if (use_11b)
1026 					qparam.txop = 3264/32;
1027 				else
1028 					qparam.txop = 1504/32;
1029 				qparam.aifs = 2;
1030 				break;
1031 			}
1032 		} else {
1033 			/* Confiure old 802.11b/g medium access rules. */
1034 			qparam.cw_max = aCWmax;
1035 			qparam.cw_min = aCWmin;
1036 			qparam.txop = 0;
1037 			qparam.aifs = 2;
1038 		}
1039 
1040 		qparam.uapsd = false;
1041 
1042 		sdata->tx_conf[ac] = qparam;
1043 		drv_conf_tx(local, sdata, ac, &qparam);
1044 	}
1045 
1046 	if (sdata->vif.type != NL80211_IFTYPE_MONITOR &&
1047 	    sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE) {
1048 		sdata->vif.bss_conf.qos = enable_qos;
1049 		if (bss_notify)
1050 			ieee80211_bss_info_change_notify(sdata,
1051 							 BSS_CHANGED_QOS);
1052 	}
1053 }
1054 
1055 void ieee80211_sta_def_wmm_params(struct ieee80211_sub_if_data *sdata,
1056 				  const size_t supp_rates_len,
1057 				  const u8 *supp_rates)
1058 {
1059 	struct ieee80211_chanctx_conf *chanctx_conf;
1060 	int i, have_higher_than_11mbit = 0;
1061 
1062 	/* cf. IEEE 802.11 9.2.12 */
1063 	for (i = 0; i < supp_rates_len; i++)
1064 		if ((supp_rates[i] & 0x7f) * 5 > 110)
1065 			have_higher_than_11mbit = 1;
1066 
1067 	rcu_read_lock();
1068 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1069 
1070 	if (chanctx_conf &&
1071 	    chanctx_conf->def.chan->band == IEEE80211_BAND_2GHZ &&
1072 	    have_higher_than_11mbit)
1073 		sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
1074 	else
1075 		sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
1076 	rcu_read_unlock();
1077 
1078 	ieee80211_set_wmm_default(sdata, true);
1079 }
1080 
1081 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata,
1082 			 u16 transaction, u16 auth_alg, u16 status,
1083 			 const u8 *extra, size_t extra_len, const u8 *da,
1084 			 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx,
1085 			 u32 tx_flags)
1086 {
1087 	struct ieee80211_local *local = sdata->local;
1088 	struct sk_buff *skb;
1089 	struct ieee80211_mgmt *mgmt;
1090 	int err;
1091 
1092 	skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1093 			    sizeof(*mgmt) + 6 + extra_len);
1094 	if (!skb)
1095 		return;
1096 
1097 	skb_reserve(skb, local->hw.extra_tx_headroom);
1098 
1099 	mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
1100 	memset(mgmt, 0, 24 + 6);
1101 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1102 					  IEEE80211_STYPE_AUTH);
1103 	memcpy(mgmt->da, da, ETH_ALEN);
1104 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1105 	memcpy(mgmt->bssid, bssid, ETH_ALEN);
1106 	mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg);
1107 	mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
1108 	mgmt->u.auth.status_code = cpu_to_le16(status);
1109 	if (extra)
1110 		memcpy(skb_put(skb, extra_len), extra, extra_len);
1111 
1112 	if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) {
1113 		mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1114 		err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx);
1115 		WARN_ON(err);
1116 	}
1117 
1118 	IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT |
1119 					tx_flags;
1120 	ieee80211_tx_skb(sdata, skb);
1121 }
1122 
1123 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata,
1124 				    const u8 *bssid, u16 stype, u16 reason,
1125 				    bool send_frame, u8 *frame_buf)
1126 {
1127 	struct ieee80211_local *local = sdata->local;
1128 	struct sk_buff *skb;
1129 	struct ieee80211_mgmt *mgmt = (void *)frame_buf;
1130 
1131 	/* build frame */
1132 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype);
1133 	mgmt->duration = 0; /* initialize only */
1134 	mgmt->seq_ctrl = 0; /* initialize only */
1135 	memcpy(mgmt->da, bssid, ETH_ALEN);
1136 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1137 	memcpy(mgmt->bssid, bssid, ETH_ALEN);
1138 	/* u.deauth.reason_code == u.disassoc.reason_code */
1139 	mgmt->u.deauth.reason_code = cpu_to_le16(reason);
1140 
1141 	if (send_frame) {
1142 		skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1143 				    IEEE80211_DEAUTH_FRAME_LEN);
1144 		if (!skb)
1145 			return;
1146 
1147 		skb_reserve(skb, local->hw.extra_tx_headroom);
1148 
1149 		/* copy in frame */
1150 		memcpy(skb_put(skb, IEEE80211_DEAUTH_FRAME_LEN),
1151 		       mgmt, IEEE80211_DEAUTH_FRAME_LEN);
1152 
1153 		if (sdata->vif.type != NL80211_IFTYPE_STATION ||
1154 		    !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED))
1155 			IEEE80211_SKB_CB(skb)->flags |=
1156 				IEEE80211_TX_INTFL_DONT_ENCRYPT;
1157 
1158 		ieee80211_tx_skb(sdata, skb);
1159 	}
1160 }
1161 
1162 int ieee80211_build_preq_ies(struct ieee80211_local *local, u8 *buffer,
1163 			     size_t buffer_len, const u8 *ie, size_t ie_len,
1164 			     enum ieee80211_band band, u32 rate_mask,
1165 			     u8 channel)
1166 {
1167 	struct ieee80211_supported_band *sband;
1168 	u8 *pos = buffer, *end = buffer + buffer_len;
1169 	size_t offset = 0, noffset;
1170 	int supp_rates_len, i;
1171 	u8 rates[32];
1172 	int num_rates;
1173 	int ext_rates_len;
1174 
1175 	sband = local->hw.wiphy->bands[band];
1176 	if (WARN_ON_ONCE(!sband))
1177 		return 0;
1178 
1179 	num_rates = 0;
1180 	for (i = 0; i < sband->n_bitrates; i++) {
1181 		if ((BIT(i) & rate_mask) == 0)
1182 			continue; /* skip rate */
1183 		rates[num_rates++] = (u8) (sband->bitrates[i].bitrate / 5);
1184 	}
1185 
1186 	supp_rates_len = min_t(int, num_rates, 8);
1187 
1188 	if (end - pos < 2 + supp_rates_len)
1189 		goto out_err;
1190 	*pos++ = WLAN_EID_SUPP_RATES;
1191 	*pos++ = supp_rates_len;
1192 	memcpy(pos, rates, supp_rates_len);
1193 	pos += supp_rates_len;
1194 
1195 	/* insert "request information" if in custom IEs */
1196 	if (ie && ie_len) {
1197 		static const u8 before_extrates[] = {
1198 			WLAN_EID_SSID,
1199 			WLAN_EID_SUPP_RATES,
1200 			WLAN_EID_REQUEST,
1201 		};
1202 		noffset = ieee80211_ie_split(ie, ie_len,
1203 					     before_extrates,
1204 					     ARRAY_SIZE(before_extrates),
1205 					     offset);
1206 		if (end - pos < noffset - offset)
1207 			goto out_err;
1208 		memcpy(pos, ie + offset, noffset - offset);
1209 		pos += noffset - offset;
1210 		offset = noffset;
1211 	}
1212 
1213 	ext_rates_len = num_rates - supp_rates_len;
1214 	if (ext_rates_len > 0) {
1215 		if (end - pos < 2 + ext_rates_len)
1216 			goto out_err;
1217 		*pos++ = WLAN_EID_EXT_SUPP_RATES;
1218 		*pos++ = ext_rates_len;
1219 		memcpy(pos, rates + supp_rates_len, ext_rates_len);
1220 		pos += ext_rates_len;
1221 	}
1222 
1223 	if (channel && sband->band == IEEE80211_BAND_2GHZ) {
1224 		if (end - pos < 3)
1225 			goto out_err;
1226 		*pos++ = WLAN_EID_DS_PARAMS;
1227 		*pos++ = 1;
1228 		*pos++ = channel;
1229 	}
1230 
1231 	/* insert custom IEs that go before HT */
1232 	if (ie && ie_len) {
1233 		static const u8 before_ht[] = {
1234 			WLAN_EID_SSID,
1235 			WLAN_EID_SUPP_RATES,
1236 			WLAN_EID_REQUEST,
1237 			WLAN_EID_EXT_SUPP_RATES,
1238 			WLAN_EID_DS_PARAMS,
1239 			WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
1240 		};
1241 		noffset = ieee80211_ie_split(ie, ie_len,
1242 					     before_ht, ARRAY_SIZE(before_ht),
1243 					     offset);
1244 		if (end - pos < noffset - offset)
1245 			goto out_err;
1246 		memcpy(pos, ie + offset, noffset - offset);
1247 		pos += noffset - offset;
1248 		offset = noffset;
1249 	}
1250 
1251 	if (sband->ht_cap.ht_supported) {
1252 		if (end - pos < 2 + sizeof(struct ieee80211_ht_cap))
1253 			goto out_err;
1254 		pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap,
1255 						sband->ht_cap.cap);
1256 	}
1257 
1258 	/*
1259 	 * If adding more here, adjust code in main.c
1260 	 * that calculates local->scan_ies_len.
1261 	 */
1262 
1263 	/* add any remaining custom IEs */
1264 	if (ie && ie_len) {
1265 		noffset = ie_len;
1266 		if (end - pos < noffset - offset)
1267 			goto out_err;
1268 		memcpy(pos, ie + offset, noffset - offset);
1269 		pos += noffset - offset;
1270 	}
1271 
1272 	if (sband->vht_cap.vht_supported) {
1273 		if (end - pos < 2 + sizeof(struct ieee80211_vht_cap))
1274 			goto out_err;
1275 		pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap,
1276 						 sband->vht_cap.cap);
1277 	}
1278 
1279 	return pos - buffer;
1280  out_err:
1281 	WARN_ONCE(1, "not enough space for preq IEs\n");
1282 	return pos - buffer;
1283 }
1284 
1285 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata,
1286 					  u8 *dst, u32 ratemask,
1287 					  struct ieee80211_channel *chan,
1288 					  const u8 *ssid, size_t ssid_len,
1289 					  const u8 *ie, size_t ie_len,
1290 					  bool directed)
1291 {
1292 	struct ieee80211_local *local = sdata->local;
1293 	struct sk_buff *skb;
1294 	struct ieee80211_mgmt *mgmt;
1295 	u8 chan_no;
1296 	int ies_len;
1297 
1298 	/*
1299 	 * Do not send DS Channel parameter for directed probe requests
1300 	 * in order to maximize the chance that we get a response.  Some
1301 	 * badly-behaved APs don't respond when this parameter is included.
1302 	 */
1303 	if (directed)
1304 		chan_no = 0;
1305 	else
1306 		chan_no = ieee80211_frequency_to_channel(chan->center_freq);
1307 
1308 	skb = ieee80211_probereq_get(&local->hw, &sdata->vif,
1309 				     ssid, ssid_len, 100 + ie_len);
1310 	if (!skb)
1311 		return NULL;
1312 
1313 	ies_len = ieee80211_build_preq_ies(local, skb_tail_pointer(skb),
1314 					   skb_tailroom(skb),
1315 					   ie, ie_len, chan->band,
1316 					   ratemask, chan_no);
1317 	skb_put(skb, ies_len);
1318 
1319 	if (dst) {
1320 		mgmt = (struct ieee80211_mgmt *) skb->data;
1321 		memcpy(mgmt->da, dst, ETH_ALEN);
1322 		memcpy(mgmt->bssid, dst, ETH_ALEN);
1323 	}
1324 
1325 	IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1326 
1327 	return skb;
1328 }
1329 
1330 void ieee80211_send_probe_req(struct ieee80211_sub_if_data *sdata, u8 *dst,
1331 			      const u8 *ssid, size_t ssid_len,
1332 			      const u8 *ie, size_t ie_len,
1333 			      u32 ratemask, bool directed, u32 tx_flags,
1334 			      struct ieee80211_channel *channel, bool scan)
1335 {
1336 	struct sk_buff *skb;
1337 
1338 	skb = ieee80211_build_probe_req(sdata, dst, ratemask, channel,
1339 					ssid, ssid_len,
1340 					ie, ie_len, directed);
1341 	if (skb) {
1342 		IEEE80211_SKB_CB(skb)->flags |= tx_flags;
1343 		if (scan)
1344 			ieee80211_tx_skb_tid_band(sdata, skb, 7, channel->band);
1345 		else
1346 			ieee80211_tx_skb(sdata, skb);
1347 	}
1348 }
1349 
1350 u32 ieee80211_sta_get_rates(struct ieee80211_local *local,
1351 			    struct ieee802_11_elems *elems,
1352 			    enum ieee80211_band band, u32 *basic_rates)
1353 {
1354 	struct ieee80211_supported_band *sband;
1355 	struct ieee80211_rate *bitrates;
1356 	size_t num_rates;
1357 	u32 supp_rates;
1358 	int i, j;
1359 	sband = local->hw.wiphy->bands[band];
1360 
1361 	if (WARN_ON(!sband))
1362 		return 1;
1363 
1364 	bitrates = sband->bitrates;
1365 	num_rates = sband->n_bitrates;
1366 	supp_rates = 0;
1367 	for (i = 0; i < elems->supp_rates_len +
1368 		     elems->ext_supp_rates_len; i++) {
1369 		u8 rate = 0;
1370 		int own_rate;
1371 		bool is_basic;
1372 		if (i < elems->supp_rates_len)
1373 			rate = elems->supp_rates[i];
1374 		else if (elems->ext_supp_rates)
1375 			rate = elems->ext_supp_rates
1376 				[i - elems->supp_rates_len];
1377 		own_rate = 5 * (rate & 0x7f);
1378 		is_basic = !!(rate & 0x80);
1379 
1380 		if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY)
1381 			continue;
1382 
1383 		for (j = 0; j < num_rates; j++) {
1384 			if (bitrates[j].bitrate == own_rate) {
1385 				supp_rates |= BIT(j);
1386 				if (basic_rates && is_basic)
1387 					*basic_rates |= BIT(j);
1388 			}
1389 		}
1390 	}
1391 	return supp_rates;
1392 }
1393 
1394 void ieee80211_stop_device(struct ieee80211_local *local)
1395 {
1396 	ieee80211_led_radio(local, false);
1397 	ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO);
1398 
1399 	cancel_work_sync(&local->reconfig_filter);
1400 
1401 	flush_workqueue(local->workqueue);
1402 	drv_stop(local);
1403 }
1404 
1405 static void ieee80211_assign_chanctx(struct ieee80211_local *local,
1406 				     struct ieee80211_sub_if_data *sdata)
1407 {
1408 	struct ieee80211_chanctx_conf *conf;
1409 	struct ieee80211_chanctx *ctx;
1410 
1411 	if (!local->use_chanctx)
1412 		return;
1413 
1414 	mutex_lock(&local->chanctx_mtx);
1415 	conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
1416 					 lockdep_is_held(&local->chanctx_mtx));
1417 	if (conf) {
1418 		ctx = container_of(conf, struct ieee80211_chanctx, conf);
1419 		drv_assign_vif_chanctx(local, sdata, ctx);
1420 	}
1421 	mutex_unlock(&local->chanctx_mtx);
1422 }
1423 
1424 int ieee80211_reconfig(struct ieee80211_local *local)
1425 {
1426 	struct ieee80211_hw *hw = &local->hw;
1427 	struct ieee80211_sub_if_data *sdata;
1428 	struct ieee80211_chanctx *ctx;
1429 	struct sta_info *sta;
1430 	int res, i;
1431 	bool reconfig_due_to_wowlan = false;
1432 
1433 #ifdef CONFIG_PM
1434 	if (local->suspended)
1435 		local->resuming = true;
1436 
1437 	if (local->wowlan) {
1438 		local->wowlan = false;
1439 		res = drv_resume(local);
1440 		if (res < 0) {
1441 			local->resuming = false;
1442 			return res;
1443 		}
1444 		if (res == 0)
1445 			goto wake_up;
1446 		WARN_ON(res > 1);
1447 		/*
1448 		 * res is 1, which means the driver requested
1449 		 * to go through a regular reset on wakeup.
1450 		 */
1451 		reconfig_due_to_wowlan = true;
1452 	}
1453 #endif
1454 	/* everything else happens only if HW was up & running */
1455 	if (!local->open_count)
1456 		goto wake_up;
1457 
1458 	/*
1459 	 * Upon resume hardware can sometimes be goofy due to
1460 	 * various platform / driver / bus issues, so restarting
1461 	 * the device may at times not work immediately. Propagate
1462 	 * the error.
1463 	 */
1464 	res = drv_start(local);
1465 	if (res) {
1466 		WARN(local->suspended, "Hardware became unavailable "
1467 		     "upon resume. This could be a software issue "
1468 		     "prior to suspend or a hardware issue.\n");
1469 		return res;
1470 	}
1471 
1472 	/* setup fragmentation threshold */
1473 	drv_set_frag_threshold(local, hw->wiphy->frag_threshold);
1474 
1475 	/* setup RTS threshold */
1476 	drv_set_rts_threshold(local, hw->wiphy->rts_threshold);
1477 
1478 	/* reset coverage class */
1479 	drv_set_coverage_class(local, hw->wiphy->coverage_class);
1480 
1481 	ieee80211_led_radio(local, true);
1482 	ieee80211_mod_tpt_led_trig(local,
1483 				   IEEE80211_TPT_LEDTRIG_FL_RADIO, 0);
1484 
1485 	/* add interfaces */
1486 	sdata = rtnl_dereference(local->monitor_sdata);
1487 	if (sdata) {
1488 		/* in HW restart it exists already */
1489 		WARN_ON(local->resuming);
1490 		res = drv_add_interface(local, sdata);
1491 		if (WARN_ON(res)) {
1492 			rcu_assign_pointer(local->monitor_sdata, NULL);
1493 			synchronize_net();
1494 			kfree(sdata);
1495 		}
1496 	}
1497 
1498 	list_for_each_entry(sdata, &local->interfaces, list) {
1499 		if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
1500 		    sdata->vif.type != NL80211_IFTYPE_MONITOR &&
1501 		    ieee80211_sdata_running(sdata))
1502 			res = drv_add_interface(local, sdata);
1503 	}
1504 
1505 	/* add channel contexts */
1506 	if (local->use_chanctx) {
1507 		mutex_lock(&local->chanctx_mtx);
1508 		list_for_each_entry(ctx, &local->chanctx_list, list)
1509 			WARN_ON(drv_add_chanctx(local, ctx));
1510 		mutex_unlock(&local->chanctx_mtx);
1511 	}
1512 
1513 	list_for_each_entry(sdata, &local->interfaces, list) {
1514 		if (!ieee80211_sdata_running(sdata))
1515 			continue;
1516 		ieee80211_assign_chanctx(local, sdata);
1517 	}
1518 
1519 	sdata = rtnl_dereference(local->monitor_sdata);
1520 	if (sdata && ieee80211_sdata_running(sdata))
1521 		ieee80211_assign_chanctx(local, sdata);
1522 
1523 	/* add STAs back */
1524 	mutex_lock(&local->sta_mtx);
1525 	list_for_each_entry(sta, &local->sta_list, list) {
1526 		enum ieee80211_sta_state state;
1527 
1528 		if (!sta->uploaded)
1529 			continue;
1530 
1531 		/* AP-mode stations will be added later */
1532 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP)
1533 			continue;
1534 
1535 		for (state = IEEE80211_STA_NOTEXIST;
1536 		     state < sta->sta_state; state++)
1537 			WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
1538 					      state + 1));
1539 	}
1540 	mutex_unlock(&local->sta_mtx);
1541 
1542 	/* reconfigure tx conf */
1543 	if (hw->queues >= IEEE80211_NUM_ACS) {
1544 		list_for_each_entry(sdata, &local->interfaces, list) {
1545 			if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
1546 			    sdata->vif.type == NL80211_IFTYPE_MONITOR ||
1547 			    !ieee80211_sdata_running(sdata))
1548 				continue;
1549 
1550 			for (i = 0; i < IEEE80211_NUM_ACS; i++)
1551 				drv_conf_tx(local, sdata, i,
1552 					    &sdata->tx_conf[i]);
1553 		}
1554 	}
1555 
1556 	/* reconfigure hardware */
1557 	ieee80211_hw_config(local, ~0);
1558 
1559 	ieee80211_configure_filter(local);
1560 
1561 	/* Finally also reconfigure all the BSS information */
1562 	list_for_each_entry(sdata, &local->interfaces, list) {
1563 		u32 changed;
1564 
1565 		if (!ieee80211_sdata_running(sdata))
1566 			continue;
1567 
1568 		/* common change flags for all interface types */
1569 		changed = BSS_CHANGED_ERP_CTS_PROT |
1570 			  BSS_CHANGED_ERP_PREAMBLE |
1571 			  BSS_CHANGED_ERP_SLOT |
1572 			  BSS_CHANGED_HT |
1573 			  BSS_CHANGED_BASIC_RATES |
1574 			  BSS_CHANGED_BEACON_INT |
1575 			  BSS_CHANGED_BSSID |
1576 			  BSS_CHANGED_CQM |
1577 			  BSS_CHANGED_QOS |
1578 			  BSS_CHANGED_IDLE |
1579 			  BSS_CHANGED_TXPOWER;
1580 
1581 		switch (sdata->vif.type) {
1582 		case NL80211_IFTYPE_STATION:
1583 			changed |= BSS_CHANGED_ASSOC |
1584 				   BSS_CHANGED_ARP_FILTER |
1585 				   BSS_CHANGED_PS;
1586 
1587 			/* Re-send beacon info report to the driver */
1588 			if (sdata->u.mgd.have_beacon)
1589 				changed |= BSS_CHANGED_BEACON_INFO;
1590 
1591 			sdata_lock(sdata);
1592 			ieee80211_bss_info_change_notify(sdata, changed);
1593 			sdata_unlock(sdata);
1594 			break;
1595 		case NL80211_IFTYPE_ADHOC:
1596 			changed |= BSS_CHANGED_IBSS;
1597 			/* fall through */
1598 		case NL80211_IFTYPE_AP:
1599 			changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS;
1600 
1601 			if (sdata->vif.type == NL80211_IFTYPE_AP) {
1602 				changed |= BSS_CHANGED_AP_PROBE_RESP;
1603 
1604 				if (rcu_access_pointer(sdata->u.ap.beacon))
1605 					drv_start_ap(local, sdata);
1606 			}
1607 
1608 			/* fall through */
1609 		case NL80211_IFTYPE_MESH_POINT:
1610 			if (sdata->vif.bss_conf.enable_beacon) {
1611 				changed |= BSS_CHANGED_BEACON |
1612 					   BSS_CHANGED_BEACON_ENABLED;
1613 				ieee80211_bss_info_change_notify(sdata, changed);
1614 			}
1615 			break;
1616 		case NL80211_IFTYPE_WDS:
1617 			break;
1618 		case NL80211_IFTYPE_AP_VLAN:
1619 		case NL80211_IFTYPE_MONITOR:
1620 			/* ignore virtual */
1621 			break;
1622 		case NL80211_IFTYPE_P2P_DEVICE:
1623 			changed = BSS_CHANGED_IDLE;
1624 			break;
1625 		case NL80211_IFTYPE_UNSPECIFIED:
1626 		case NUM_NL80211_IFTYPES:
1627 		case NL80211_IFTYPE_P2P_CLIENT:
1628 		case NL80211_IFTYPE_P2P_GO:
1629 			WARN_ON(1);
1630 			break;
1631 		}
1632 	}
1633 
1634 	ieee80211_recalc_ps(local, -1);
1635 
1636 	/*
1637 	 * The sta might be in psm against the ap (e.g. because
1638 	 * this was the state before a hw restart), so we
1639 	 * explicitly send a null packet in order to make sure
1640 	 * it'll sync against the ap (and get out of psm).
1641 	 */
1642 	if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) {
1643 		list_for_each_entry(sdata, &local->interfaces, list) {
1644 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
1645 				continue;
1646 			if (!sdata->u.mgd.associated)
1647 				continue;
1648 
1649 			ieee80211_send_nullfunc(local, sdata, 0);
1650 		}
1651 	}
1652 
1653 	/* APs are now beaconing, add back stations */
1654 	mutex_lock(&local->sta_mtx);
1655 	list_for_each_entry(sta, &local->sta_list, list) {
1656 		enum ieee80211_sta_state state;
1657 
1658 		if (!sta->uploaded)
1659 			continue;
1660 
1661 		if (sta->sdata->vif.type != NL80211_IFTYPE_AP)
1662 			continue;
1663 
1664 		for (state = IEEE80211_STA_NOTEXIST;
1665 		     state < sta->sta_state; state++)
1666 			WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
1667 					      state + 1));
1668 	}
1669 	mutex_unlock(&local->sta_mtx);
1670 
1671 	/* add back keys */
1672 	list_for_each_entry(sdata, &local->interfaces, list)
1673 		if (ieee80211_sdata_running(sdata))
1674 			ieee80211_enable_keys(sdata);
1675 
1676  wake_up:
1677 	local->in_reconfig = false;
1678 	barrier();
1679 
1680 	if (local->monitors == local->open_count && local->monitors > 0)
1681 		ieee80211_add_virtual_monitor(local);
1682 
1683 	/*
1684 	 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation
1685 	 * sessions can be established after a resume.
1686 	 *
1687 	 * Also tear down aggregation sessions since reconfiguring
1688 	 * them in a hardware restart scenario is not easily done
1689 	 * right now, and the hardware will have lost information
1690 	 * about the sessions, but we and the AP still think they
1691 	 * are active. This is really a workaround though.
1692 	 */
1693 	if (hw->flags & IEEE80211_HW_AMPDU_AGGREGATION) {
1694 		mutex_lock(&local->sta_mtx);
1695 
1696 		list_for_each_entry(sta, &local->sta_list, list) {
1697 			ieee80211_sta_tear_down_BA_sessions(
1698 					sta, AGG_STOP_LOCAL_REQUEST);
1699 			clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
1700 		}
1701 
1702 		mutex_unlock(&local->sta_mtx);
1703 	}
1704 
1705 	ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
1706 					IEEE80211_QUEUE_STOP_REASON_SUSPEND);
1707 
1708 	/*
1709 	 * If this is for hw restart things are still running.
1710 	 * We may want to change that later, however.
1711 	 */
1712 	if (!local->suspended || reconfig_due_to_wowlan)
1713 		drv_restart_complete(local);
1714 
1715 	if (!local->suspended)
1716 		return 0;
1717 
1718 #ifdef CONFIG_PM
1719 	/* first set suspended false, then resuming */
1720 	local->suspended = false;
1721 	mb();
1722 	local->resuming = false;
1723 
1724 	list_for_each_entry(sdata, &local->interfaces, list) {
1725 		if (!ieee80211_sdata_running(sdata))
1726 			continue;
1727 		if (sdata->vif.type == NL80211_IFTYPE_STATION)
1728 			ieee80211_sta_restart(sdata);
1729 	}
1730 
1731 	mod_timer(&local->sta_cleanup, jiffies + 1);
1732 #else
1733 	WARN_ON(1);
1734 #endif
1735 	return 0;
1736 }
1737 
1738 void ieee80211_resume_disconnect(struct ieee80211_vif *vif)
1739 {
1740 	struct ieee80211_sub_if_data *sdata;
1741 	struct ieee80211_local *local;
1742 	struct ieee80211_key *key;
1743 
1744 	if (WARN_ON(!vif))
1745 		return;
1746 
1747 	sdata = vif_to_sdata(vif);
1748 	local = sdata->local;
1749 
1750 	if (WARN_ON(!local->resuming))
1751 		return;
1752 
1753 	if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1754 		return;
1755 
1756 	sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME;
1757 
1758 	mutex_lock(&local->key_mtx);
1759 	list_for_each_entry(key, &sdata->key_list, list)
1760 		key->flags |= KEY_FLAG_TAINTED;
1761 	mutex_unlock(&local->key_mtx);
1762 }
1763 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect);
1764 
1765 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata)
1766 {
1767 	struct ieee80211_local *local = sdata->local;
1768 	struct ieee80211_chanctx_conf *chanctx_conf;
1769 	struct ieee80211_chanctx *chanctx;
1770 
1771 	mutex_lock(&local->chanctx_mtx);
1772 
1773 	chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
1774 					lockdep_is_held(&local->chanctx_mtx));
1775 
1776 	if (WARN_ON_ONCE(!chanctx_conf))
1777 		goto unlock;
1778 
1779 	chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf);
1780 	ieee80211_recalc_smps_chanctx(local, chanctx);
1781  unlock:
1782 	mutex_unlock(&local->chanctx_mtx);
1783 }
1784 
1785 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1786 {
1787 	int i;
1788 
1789 	for (i = 0; i < n_ids; i++)
1790 		if (ids[i] == id)
1791 			return true;
1792 	return false;
1793 }
1794 
1795 /**
1796  * ieee80211_ie_split - split an IE buffer according to ordering
1797  *
1798  * @ies: the IE buffer
1799  * @ielen: the length of the IE buffer
1800  * @ids: an array with element IDs that are allowed before
1801  *	the split
1802  * @n_ids: the size of the element ID array
1803  * @offset: offset where to start splitting in the buffer
1804  *
1805  * This function splits an IE buffer by updating the @offset
1806  * variable to point to the location where the buffer should be
1807  * split.
1808  *
1809  * It assumes that the given IE buffer is well-formed, this
1810  * has to be guaranteed by the caller!
1811  *
1812  * It also assumes that the IEs in the buffer are ordered
1813  * correctly, if not the result of using this function will not
1814  * be ordered correctly either, i.e. it does no reordering.
1815  *
1816  * The function returns the offset where the next part of the
1817  * buffer starts, which may be @ielen if the entire (remainder)
1818  * of the buffer should be used.
1819  */
1820 size_t ieee80211_ie_split(const u8 *ies, size_t ielen,
1821 			  const u8 *ids, int n_ids, size_t offset)
1822 {
1823 	size_t pos = offset;
1824 
1825 	while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos]))
1826 		pos += 2 + ies[pos + 1];
1827 
1828 	return pos;
1829 }
1830 
1831 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset)
1832 {
1833 	size_t pos = offset;
1834 
1835 	while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC)
1836 		pos += 2 + ies[pos + 1];
1837 
1838 	return pos;
1839 }
1840 
1841 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata,
1842 					    int rssi_min_thold,
1843 					    int rssi_max_thold)
1844 {
1845 	trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold);
1846 
1847 	if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
1848 		return;
1849 
1850 	/*
1851 	 * Scale up threshold values before storing it, as the RSSI averaging
1852 	 * algorithm uses a scaled up value as well. Change this scaling
1853 	 * factor if the RSSI averaging algorithm changes.
1854 	 */
1855 	sdata->u.mgd.rssi_min_thold = rssi_min_thold*16;
1856 	sdata->u.mgd.rssi_max_thold = rssi_max_thold*16;
1857 }
1858 
1859 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif,
1860 				    int rssi_min_thold,
1861 				    int rssi_max_thold)
1862 {
1863 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1864 
1865 	WARN_ON(rssi_min_thold == rssi_max_thold ||
1866 		rssi_min_thold > rssi_max_thold);
1867 
1868 	_ieee80211_enable_rssi_reports(sdata, rssi_min_thold,
1869 				       rssi_max_thold);
1870 }
1871 EXPORT_SYMBOL(ieee80211_enable_rssi_reports);
1872 
1873 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif)
1874 {
1875 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1876 
1877 	_ieee80211_enable_rssi_reports(sdata, 0, 0);
1878 }
1879 EXPORT_SYMBOL(ieee80211_disable_rssi_reports);
1880 
1881 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
1882 			      u16 cap)
1883 {
1884 	__le16 tmp;
1885 
1886 	*pos++ = WLAN_EID_HT_CAPABILITY;
1887 	*pos++ = sizeof(struct ieee80211_ht_cap);
1888 	memset(pos, 0, sizeof(struct ieee80211_ht_cap));
1889 
1890 	/* capability flags */
1891 	tmp = cpu_to_le16(cap);
1892 	memcpy(pos, &tmp, sizeof(u16));
1893 	pos += sizeof(u16);
1894 
1895 	/* AMPDU parameters */
1896 	*pos++ = ht_cap->ampdu_factor |
1897 		 (ht_cap->ampdu_density <<
1898 			IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT);
1899 
1900 	/* MCS set */
1901 	memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs));
1902 	pos += sizeof(ht_cap->mcs);
1903 
1904 	/* extended capabilities */
1905 	pos += sizeof(__le16);
1906 
1907 	/* BF capabilities */
1908 	pos += sizeof(__le32);
1909 
1910 	/* antenna selection */
1911 	pos += sizeof(u8);
1912 
1913 	return pos;
1914 }
1915 
1916 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
1917 			       u32 cap)
1918 {
1919 	__le32 tmp;
1920 
1921 	*pos++ = WLAN_EID_VHT_CAPABILITY;
1922 	*pos++ = sizeof(struct ieee80211_vht_cap);
1923 	memset(pos, 0, sizeof(struct ieee80211_vht_cap));
1924 
1925 	/* capability flags */
1926 	tmp = cpu_to_le32(cap);
1927 	memcpy(pos, &tmp, sizeof(u32));
1928 	pos += sizeof(u32);
1929 
1930 	/* VHT MCS set */
1931 	memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs));
1932 	pos += sizeof(vht_cap->vht_mcs);
1933 
1934 	return pos;
1935 }
1936 
1937 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
1938 			       const struct cfg80211_chan_def *chandef,
1939 			       u16 prot_mode)
1940 {
1941 	struct ieee80211_ht_operation *ht_oper;
1942 	/* Build HT Information */
1943 	*pos++ = WLAN_EID_HT_OPERATION;
1944 	*pos++ = sizeof(struct ieee80211_ht_operation);
1945 	ht_oper = (struct ieee80211_ht_operation *)pos;
1946 	ht_oper->primary_chan = ieee80211_frequency_to_channel(
1947 					chandef->chan->center_freq);
1948 	switch (chandef->width) {
1949 	case NL80211_CHAN_WIDTH_160:
1950 	case NL80211_CHAN_WIDTH_80P80:
1951 	case NL80211_CHAN_WIDTH_80:
1952 	case NL80211_CHAN_WIDTH_40:
1953 		if (chandef->center_freq1 > chandef->chan->center_freq)
1954 			ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
1955 		else
1956 			ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
1957 		break;
1958 	default:
1959 		ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE;
1960 		break;
1961 	}
1962 	if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 &&
1963 	    chandef->width != NL80211_CHAN_WIDTH_20_NOHT &&
1964 	    chandef->width != NL80211_CHAN_WIDTH_20)
1965 		ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY;
1966 
1967 	ht_oper->operation_mode = cpu_to_le16(prot_mode);
1968 	ht_oper->stbc_param = 0x0000;
1969 
1970 	/* It seems that Basic MCS set and Supported MCS set
1971 	   are identical for the first 10 bytes */
1972 	memset(&ht_oper->basic_set, 0, 16);
1973 	memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10);
1974 
1975 	return pos + sizeof(struct ieee80211_ht_operation);
1976 }
1977 
1978 void ieee80211_ht_oper_to_chandef(struct ieee80211_channel *control_chan,
1979 				  const struct ieee80211_ht_operation *ht_oper,
1980 				  struct cfg80211_chan_def *chandef)
1981 {
1982 	enum nl80211_channel_type channel_type;
1983 
1984 	if (!ht_oper) {
1985 		cfg80211_chandef_create(chandef, control_chan,
1986 					NL80211_CHAN_NO_HT);
1987 		return;
1988 	}
1989 
1990 	switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) {
1991 	case IEEE80211_HT_PARAM_CHA_SEC_NONE:
1992 		channel_type = NL80211_CHAN_HT20;
1993 		break;
1994 	case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
1995 		channel_type = NL80211_CHAN_HT40PLUS;
1996 		break;
1997 	case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
1998 		channel_type = NL80211_CHAN_HT40MINUS;
1999 		break;
2000 	default:
2001 		channel_type = NL80211_CHAN_NO_HT;
2002 	}
2003 
2004 	cfg80211_chandef_create(chandef, control_chan, channel_type);
2005 }
2006 
2007 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata,
2008 			    struct sk_buff *skb, bool need_basic,
2009 			    enum ieee80211_band band)
2010 {
2011 	struct ieee80211_local *local = sdata->local;
2012 	struct ieee80211_supported_band *sband;
2013 	int rate;
2014 	u8 i, rates, *pos;
2015 	u32 basic_rates = sdata->vif.bss_conf.basic_rates;
2016 
2017 	sband = local->hw.wiphy->bands[band];
2018 	rates = sband->n_bitrates;
2019 	if (rates > 8)
2020 		rates = 8;
2021 
2022 	if (skb_tailroom(skb) < rates + 2)
2023 		return -ENOMEM;
2024 
2025 	pos = skb_put(skb, rates + 2);
2026 	*pos++ = WLAN_EID_SUPP_RATES;
2027 	*pos++ = rates;
2028 	for (i = 0; i < rates; i++) {
2029 		u8 basic = 0;
2030 		if (need_basic && basic_rates & BIT(i))
2031 			basic = 0x80;
2032 		rate = sband->bitrates[i].bitrate;
2033 		*pos++ = basic | (u8) (rate / 5);
2034 	}
2035 
2036 	return 0;
2037 }
2038 
2039 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata,
2040 				struct sk_buff *skb, bool need_basic,
2041 				enum ieee80211_band band)
2042 {
2043 	struct ieee80211_local *local = sdata->local;
2044 	struct ieee80211_supported_band *sband;
2045 	int rate;
2046 	u8 i, exrates, *pos;
2047 	u32 basic_rates = sdata->vif.bss_conf.basic_rates;
2048 
2049 	sband = local->hw.wiphy->bands[band];
2050 	exrates = sband->n_bitrates;
2051 	if (exrates > 8)
2052 		exrates -= 8;
2053 	else
2054 		exrates = 0;
2055 
2056 	if (skb_tailroom(skb) < exrates + 2)
2057 		return -ENOMEM;
2058 
2059 	if (exrates) {
2060 		pos = skb_put(skb, exrates + 2);
2061 		*pos++ = WLAN_EID_EXT_SUPP_RATES;
2062 		*pos++ = exrates;
2063 		for (i = 8; i < sband->n_bitrates; i++) {
2064 			u8 basic = 0;
2065 			if (need_basic && basic_rates & BIT(i))
2066 				basic = 0x80;
2067 			rate = sband->bitrates[i].bitrate;
2068 			*pos++ = basic | (u8) (rate / 5);
2069 		}
2070 	}
2071 	return 0;
2072 }
2073 
2074 int ieee80211_ave_rssi(struct ieee80211_vif *vif)
2075 {
2076 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
2077 	struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
2078 
2079 	if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) {
2080 		/* non-managed type inferfaces */
2081 		return 0;
2082 	}
2083 	return ifmgd->ave_beacon_signal / 16;
2084 }
2085 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi);
2086 
2087 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs)
2088 {
2089 	if (!mcs)
2090 		return 1;
2091 
2092 	/* TODO: consider rx_highest */
2093 
2094 	if (mcs->rx_mask[3])
2095 		return 4;
2096 	if (mcs->rx_mask[2])
2097 		return 3;
2098 	if (mcs->rx_mask[1])
2099 		return 2;
2100 	return 1;
2101 }
2102 
2103 /**
2104  * ieee80211_calculate_rx_timestamp - calculate timestamp in frame
2105  * @local: mac80211 hw info struct
2106  * @status: RX status
2107  * @mpdu_len: total MPDU length (including FCS)
2108  * @mpdu_offset: offset into MPDU to calculate timestamp at
2109  *
2110  * This function calculates the RX timestamp at the given MPDU offset, taking
2111  * into account what the RX timestamp was. An offset of 0 will just normalize
2112  * the timestamp to TSF at beginning of MPDU reception.
2113  */
2114 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local,
2115 				     struct ieee80211_rx_status *status,
2116 				     unsigned int mpdu_len,
2117 				     unsigned int mpdu_offset)
2118 {
2119 	u64 ts = status->mactime;
2120 	struct rate_info ri;
2121 	u16 rate;
2122 
2123 	if (WARN_ON(!ieee80211_have_rx_timestamp(status)))
2124 		return 0;
2125 
2126 	memset(&ri, 0, sizeof(ri));
2127 
2128 	/* Fill cfg80211 rate info */
2129 	if (status->flag & RX_FLAG_HT) {
2130 		ri.mcs = status->rate_idx;
2131 		ri.flags |= RATE_INFO_FLAGS_MCS;
2132 		if (status->flag & RX_FLAG_40MHZ)
2133 			ri.flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH;
2134 		if (status->flag & RX_FLAG_SHORT_GI)
2135 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
2136 	} else if (status->flag & RX_FLAG_VHT) {
2137 		ri.flags |= RATE_INFO_FLAGS_VHT_MCS;
2138 		ri.mcs = status->rate_idx;
2139 		ri.nss = status->vht_nss;
2140 		if (status->flag & RX_FLAG_40MHZ)
2141 			ri.flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH;
2142 		if (status->flag & RX_FLAG_80MHZ)
2143 			ri.flags |= RATE_INFO_FLAGS_80_MHZ_WIDTH;
2144 		if (status->flag & RX_FLAG_80P80MHZ)
2145 			ri.flags |= RATE_INFO_FLAGS_80P80_MHZ_WIDTH;
2146 		if (status->flag & RX_FLAG_160MHZ)
2147 			ri.flags |= RATE_INFO_FLAGS_160_MHZ_WIDTH;
2148 		if (status->flag & RX_FLAG_SHORT_GI)
2149 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
2150 	} else {
2151 		struct ieee80211_supported_band *sband;
2152 
2153 		sband = local->hw.wiphy->bands[status->band];
2154 		ri.legacy = sband->bitrates[status->rate_idx].bitrate;
2155 	}
2156 
2157 	rate = cfg80211_calculate_bitrate(&ri);
2158 
2159 	/* rewind from end of MPDU */
2160 	if (status->flag & RX_FLAG_MACTIME_END)
2161 		ts -= mpdu_len * 8 * 10 / rate;
2162 
2163 	ts += mpdu_offset * 8 * 10 / rate;
2164 
2165 	return ts;
2166 }
2167 
2168 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local)
2169 {
2170 	struct ieee80211_sub_if_data *sdata;
2171 
2172 	mutex_lock(&local->iflist_mtx);
2173 	list_for_each_entry(sdata, &local->interfaces, list) {
2174 		cancel_delayed_work_sync(&sdata->dfs_cac_timer_work);
2175 
2176 		if (sdata->wdev.cac_started) {
2177 			ieee80211_vif_release_channel(sdata);
2178 			cfg80211_cac_event(sdata->dev,
2179 					   NL80211_RADAR_CAC_ABORTED,
2180 					   GFP_KERNEL);
2181 		}
2182 	}
2183 	mutex_unlock(&local->iflist_mtx);
2184 }
2185 
2186 void ieee80211_dfs_radar_detected_work(struct work_struct *work)
2187 {
2188 	struct ieee80211_local *local =
2189 		container_of(work, struct ieee80211_local, radar_detected_work);
2190 	struct cfg80211_chan_def chandef;
2191 
2192 	ieee80211_dfs_cac_cancel(local);
2193 
2194 	if (local->use_chanctx)
2195 		/* currently not handled */
2196 		WARN_ON(1);
2197 	else {
2198 		chandef = local->hw.conf.chandef;
2199 		cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL);
2200 	}
2201 }
2202 
2203 void ieee80211_radar_detected(struct ieee80211_hw *hw)
2204 {
2205 	struct ieee80211_local *local = hw_to_local(hw);
2206 
2207 	trace_api_radar_detected(local);
2208 
2209 	ieee80211_queue_work(hw, &local->radar_detected_work);
2210 }
2211 EXPORT_SYMBOL(ieee80211_radar_detected);
2212