1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2022 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 28 #include "ieee80211_i.h" 29 #include "driver-ops.h" 30 #include "rate.h" 31 #include "mesh.h" 32 #include "wme.h" 33 #include "led.h" 34 #include "wep.h" 35 36 /* privid for wiphys to determine whether they belong to us or not */ 37 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 38 39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 40 { 41 struct ieee80211_local *local; 42 43 local = wiphy_priv(wiphy); 44 return &local->hw; 45 } 46 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 47 48 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 49 enum nl80211_iftype type) 50 { 51 __le16 fc = hdr->frame_control; 52 53 if (ieee80211_is_data(fc)) { 54 if (len < 24) /* drop incorrect hdr len (data) */ 55 return NULL; 56 57 if (ieee80211_has_a4(fc)) 58 return NULL; 59 if (ieee80211_has_tods(fc)) 60 return hdr->addr1; 61 if (ieee80211_has_fromds(fc)) 62 return hdr->addr2; 63 64 return hdr->addr3; 65 } 66 67 if (ieee80211_is_s1g_beacon(fc)) { 68 struct ieee80211_ext *ext = (void *) hdr; 69 70 return ext->u.s1g_beacon.sa; 71 } 72 73 if (ieee80211_is_mgmt(fc)) { 74 if (len < 24) /* drop incorrect hdr len (mgmt) */ 75 return NULL; 76 return hdr->addr3; 77 } 78 79 if (ieee80211_is_ctl(fc)) { 80 if (ieee80211_is_pspoll(fc)) 81 return hdr->addr1; 82 83 if (ieee80211_is_back_req(fc)) { 84 switch (type) { 85 case NL80211_IFTYPE_STATION: 86 return hdr->addr2; 87 case NL80211_IFTYPE_AP: 88 case NL80211_IFTYPE_AP_VLAN: 89 return hdr->addr1; 90 default: 91 break; /* fall through to the return */ 92 } 93 } 94 } 95 96 return NULL; 97 } 98 EXPORT_SYMBOL(ieee80211_get_bssid); 99 100 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 101 { 102 struct sk_buff *skb; 103 struct ieee80211_hdr *hdr; 104 105 skb_queue_walk(&tx->skbs, skb) { 106 hdr = (struct ieee80211_hdr *) skb->data; 107 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 108 } 109 } 110 111 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 112 int rate, int erp, int short_preamble, 113 int shift) 114 { 115 int dur; 116 117 /* calculate duration (in microseconds, rounded up to next higher 118 * integer if it includes a fractional microsecond) to send frame of 119 * len bytes (does not include FCS) at the given rate. Duration will 120 * also include SIFS. 121 * 122 * rate is in 100 kbps, so divident is multiplied by 10 in the 123 * DIV_ROUND_UP() operations. 124 * 125 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and 126 * is assumed to be 0 otherwise. 127 */ 128 129 if (band == NL80211_BAND_5GHZ || erp) { 130 /* 131 * OFDM: 132 * 133 * N_DBPS = DATARATE x 4 134 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 135 * (16 = SIGNAL time, 6 = tail bits) 136 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 137 * 138 * T_SYM = 4 usec 139 * 802.11a - 18.5.2: aSIFSTime = 16 usec 140 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 141 * signal ext = 6 usec 142 */ 143 dur = 16; /* SIFS + signal ext */ 144 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 145 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 146 147 /* IEEE 802.11-2012 18.3.2.4: all values above are: 148 * * times 4 for 5 MHz 149 * * times 2 for 10 MHz 150 */ 151 dur *= 1 << shift; 152 153 /* rates should already consider the channel bandwidth, 154 * don't apply divisor again. 155 */ 156 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 157 4 * rate); /* T_SYM x N_SYM */ 158 } else { 159 /* 160 * 802.11b or 802.11g with 802.11b compatibility: 161 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 162 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 163 * 164 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 165 * aSIFSTime = 10 usec 166 * aPreambleLength = 144 usec or 72 usec with short preamble 167 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 168 */ 169 dur = 10; /* aSIFSTime = 10 usec */ 170 dur += short_preamble ? (72 + 24) : (144 + 48); 171 172 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 173 } 174 175 return dur; 176 } 177 178 /* Exported duration function for driver use */ 179 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 180 struct ieee80211_vif *vif, 181 enum nl80211_band band, 182 size_t frame_len, 183 struct ieee80211_rate *rate) 184 { 185 struct ieee80211_sub_if_data *sdata; 186 u16 dur; 187 int erp, shift = 0; 188 bool short_preamble = false; 189 190 erp = 0; 191 if (vif) { 192 sdata = vif_to_sdata(vif); 193 short_preamble = sdata->vif.bss_conf.use_short_preamble; 194 if (sdata->deflink.operating_11g_mode) 195 erp = rate->flags & IEEE80211_RATE_ERP_G; 196 shift = ieee80211_vif_get_shift(vif); 197 } 198 199 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 200 short_preamble, shift); 201 202 return cpu_to_le16(dur); 203 } 204 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 205 206 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 207 struct ieee80211_vif *vif, size_t frame_len, 208 const struct ieee80211_tx_info *frame_txctl) 209 { 210 struct ieee80211_local *local = hw_to_local(hw); 211 struct ieee80211_rate *rate; 212 struct ieee80211_sub_if_data *sdata; 213 bool short_preamble; 214 int erp, shift = 0, bitrate; 215 u16 dur; 216 struct ieee80211_supported_band *sband; 217 218 sband = local->hw.wiphy->bands[frame_txctl->band]; 219 220 short_preamble = false; 221 222 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 223 224 erp = 0; 225 if (vif) { 226 sdata = vif_to_sdata(vif); 227 short_preamble = sdata->vif.bss_conf.use_short_preamble; 228 if (sdata->deflink.operating_11g_mode) 229 erp = rate->flags & IEEE80211_RATE_ERP_G; 230 shift = ieee80211_vif_get_shift(vif); 231 } 232 233 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 234 235 /* CTS duration */ 236 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 237 erp, short_preamble, shift); 238 /* Data frame duration */ 239 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 240 erp, short_preamble, shift); 241 /* ACK duration */ 242 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 243 erp, short_preamble, shift); 244 245 return cpu_to_le16(dur); 246 } 247 EXPORT_SYMBOL(ieee80211_rts_duration); 248 249 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 250 struct ieee80211_vif *vif, 251 size_t frame_len, 252 const struct ieee80211_tx_info *frame_txctl) 253 { 254 struct ieee80211_local *local = hw_to_local(hw); 255 struct ieee80211_rate *rate; 256 struct ieee80211_sub_if_data *sdata; 257 bool short_preamble; 258 int erp, shift = 0, bitrate; 259 u16 dur; 260 struct ieee80211_supported_band *sband; 261 262 sband = local->hw.wiphy->bands[frame_txctl->band]; 263 264 short_preamble = false; 265 266 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 267 erp = 0; 268 if (vif) { 269 sdata = vif_to_sdata(vif); 270 short_preamble = sdata->vif.bss_conf.use_short_preamble; 271 if (sdata->deflink.operating_11g_mode) 272 erp = rate->flags & IEEE80211_RATE_ERP_G; 273 shift = ieee80211_vif_get_shift(vif); 274 } 275 276 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 277 278 /* Data frame duration */ 279 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 280 erp, short_preamble, shift); 281 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 282 /* ACK duration */ 283 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 284 erp, short_preamble, shift); 285 } 286 287 return cpu_to_le16(dur); 288 } 289 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 290 291 static void wake_tx_push_queue(struct ieee80211_local *local, 292 struct ieee80211_sub_if_data *sdata, 293 struct ieee80211_txq *queue) 294 { 295 struct ieee80211_tx_control control = { 296 .sta = queue->sta, 297 }; 298 struct sk_buff *skb; 299 300 while (1) { 301 skb = ieee80211_tx_dequeue(&local->hw, queue); 302 if (!skb) 303 break; 304 305 drv_tx(local, &control, skb); 306 } 307 } 308 309 /* wake_tx_queue handler for driver not implementing a custom one*/ 310 void ieee80211_handle_wake_tx_queue(struct ieee80211_hw *hw, 311 struct ieee80211_txq *txq) 312 { 313 struct ieee80211_local *local = hw_to_local(hw); 314 struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif); 315 struct ieee80211_txq *queue; 316 317 spin_lock(&local->handle_wake_tx_queue_lock); 318 319 /* Use ieee80211_next_txq() for airtime fairness accounting */ 320 ieee80211_txq_schedule_start(hw, txq->ac); 321 while ((queue = ieee80211_next_txq(hw, txq->ac))) { 322 wake_tx_push_queue(local, sdata, queue); 323 ieee80211_return_txq(hw, queue, false); 324 } 325 ieee80211_txq_schedule_end(hw, txq->ac); 326 spin_unlock(&local->handle_wake_tx_queue_lock); 327 } 328 EXPORT_SYMBOL(ieee80211_handle_wake_tx_queue); 329 330 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 331 { 332 struct ieee80211_local *local = sdata->local; 333 struct ieee80211_vif *vif = &sdata->vif; 334 struct fq *fq = &local->fq; 335 struct ps_data *ps = NULL; 336 struct txq_info *txqi; 337 struct sta_info *sta; 338 int i; 339 340 local_bh_disable(); 341 spin_lock(&fq->lock); 342 343 if (!test_bit(SDATA_STATE_RUNNING, &sdata->state)) 344 goto out; 345 346 if (sdata->vif.type == NL80211_IFTYPE_AP) 347 ps = &sdata->bss->ps; 348 349 list_for_each_entry_rcu(sta, &local->sta_list, list) { 350 if (sdata != sta->sdata) 351 continue; 352 353 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 354 struct ieee80211_txq *txq = sta->sta.txq[i]; 355 356 if (!txq) 357 continue; 358 359 txqi = to_txq_info(txq); 360 361 if (ac != txq->ac) 362 continue; 363 364 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, 365 &txqi->flags)) 366 continue; 367 368 spin_unlock(&fq->lock); 369 drv_wake_tx_queue(local, txqi); 370 spin_lock(&fq->lock); 371 } 372 } 373 374 if (!vif->txq) 375 goto out; 376 377 txqi = to_txq_info(vif->txq); 378 379 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, &txqi->flags) || 380 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 381 goto out; 382 383 spin_unlock(&fq->lock); 384 385 drv_wake_tx_queue(local, txqi); 386 local_bh_enable(); 387 return; 388 out: 389 spin_unlock(&fq->lock); 390 local_bh_enable(); 391 } 392 393 static void 394 __releases(&local->queue_stop_reason_lock) 395 __acquires(&local->queue_stop_reason_lock) 396 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 397 { 398 struct ieee80211_sub_if_data *sdata; 399 int n_acs = IEEE80211_NUM_ACS; 400 int i; 401 402 rcu_read_lock(); 403 404 if (local->hw.queues < IEEE80211_NUM_ACS) 405 n_acs = 1; 406 407 for (i = 0; i < local->hw.queues; i++) { 408 if (local->queue_stop_reasons[i]) 409 continue; 410 411 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 412 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 413 int ac; 414 415 for (ac = 0; ac < n_acs; ac++) { 416 int ac_queue = sdata->vif.hw_queue[ac]; 417 418 if (ac_queue == i || 419 sdata->vif.cab_queue == i) 420 __ieee80211_wake_txqs(sdata, ac); 421 } 422 } 423 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 424 } 425 426 rcu_read_unlock(); 427 } 428 429 void ieee80211_wake_txqs(struct tasklet_struct *t) 430 { 431 struct ieee80211_local *local = from_tasklet(local, t, 432 wake_txqs_tasklet); 433 unsigned long flags; 434 435 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 436 _ieee80211_wake_txqs(local, &flags); 437 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 438 } 439 440 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 441 enum queue_stop_reason reason, 442 bool refcounted, 443 unsigned long *flags) 444 { 445 struct ieee80211_local *local = hw_to_local(hw); 446 447 trace_wake_queue(local, queue, reason); 448 449 if (WARN_ON(queue >= hw->queues)) 450 return; 451 452 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 453 return; 454 455 if (!refcounted) { 456 local->q_stop_reasons[queue][reason] = 0; 457 } else { 458 local->q_stop_reasons[queue][reason]--; 459 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 460 local->q_stop_reasons[queue][reason] = 0; 461 } 462 463 if (local->q_stop_reasons[queue][reason] == 0) 464 __clear_bit(reason, &local->queue_stop_reasons[queue]); 465 466 if (local->queue_stop_reasons[queue] != 0) 467 /* someone still has this queue stopped */ 468 return; 469 470 if (!skb_queue_empty(&local->pending[queue])) 471 tasklet_schedule(&local->tx_pending_tasklet); 472 473 /* 474 * Calling _ieee80211_wake_txqs here can be a problem because it may 475 * release queue_stop_reason_lock which has been taken by 476 * __ieee80211_wake_queue's caller. It is certainly not very nice to 477 * release someone's lock, but it is fine because all the callers of 478 * __ieee80211_wake_queue call it right before releasing the lock. 479 */ 480 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 481 tasklet_schedule(&local->wake_txqs_tasklet); 482 else 483 _ieee80211_wake_txqs(local, flags); 484 } 485 486 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 487 enum queue_stop_reason reason, 488 bool refcounted) 489 { 490 struct ieee80211_local *local = hw_to_local(hw); 491 unsigned long flags; 492 493 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 494 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 495 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 496 } 497 498 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 499 { 500 ieee80211_wake_queue_by_reason(hw, queue, 501 IEEE80211_QUEUE_STOP_REASON_DRIVER, 502 false); 503 } 504 EXPORT_SYMBOL(ieee80211_wake_queue); 505 506 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 507 enum queue_stop_reason reason, 508 bool refcounted) 509 { 510 struct ieee80211_local *local = hw_to_local(hw); 511 512 trace_stop_queue(local, queue, reason); 513 514 if (WARN_ON(queue >= hw->queues)) 515 return; 516 517 if (!refcounted) 518 local->q_stop_reasons[queue][reason] = 1; 519 else 520 local->q_stop_reasons[queue][reason]++; 521 522 set_bit(reason, &local->queue_stop_reasons[queue]); 523 } 524 525 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 526 enum queue_stop_reason reason, 527 bool refcounted) 528 { 529 struct ieee80211_local *local = hw_to_local(hw); 530 unsigned long flags; 531 532 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 533 __ieee80211_stop_queue(hw, queue, reason, refcounted); 534 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 535 } 536 537 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 538 { 539 ieee80211_stop_queue_by_reason(hw, queue, 540 IEEE80211_QUEUE_STOP_REASON_DRIVER, 541 false); 542 } 543 EXPORT_SYMBOL(ieee80211_stop_queue); 544 545 void ieee80211_add_pending_skb(struct ieee80211_local *local, 546 struct sk_buff *skb) 547 { 548 struct ieee80211_hw *hw = &local->hw; 549 unsigned long flags; 550 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 551 int queue = info->hw_queue; 552 553 if (WARN_ON(!info->control.vif)) { 554 ieee80211_free_txskb(&local->hw, skb); 555 return; 556 } 557 558 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 559 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 560 false); 561 __skb_queue_tail(&local->pending[queue], skb); 562 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 563 false, &flags); 564 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 565 } 566 567 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 568 struct sk_buff_head *skbs) 569 { 570 struct ieee80211_hw *hw = &local->hw; 571 struct sk_buff *skb; 572 unsigned long flags; 573 int queue, i; 574 575 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 576 while ((skb = skb_dequeue(skbs))) { 577 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 578 579 if (WARN_ON(!info->control.vif)) { 580 ieee80211_free_txskb(&local->hw, skb); 581 continue; 582 } 583 584 queue = info->hw_queue; 585 586 __ieee80211_stop_queue(hw, queue, 587 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 588 false); 589 590 __skb_queue_tail(&local->pending[queue], skb); 591 } 592 593 for (i = 0; i < hw->queues; i++) 594 __ieee80211_wake_queue(hw, i, 595 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 596 false, &flags); 597 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 598 } 599 600 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 601 unsigned long queues, 602 enum queue_stop_reason reason, 603 bool refcounted) 604 { 605 struct ieee80211_local *local = hw_to_local(hw); 606 unsigned long flags; 607 int i; 608 609 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 610 611 for_each_set_bit(i, &queues, hw->queues) 612 __ieee80211_stop_queue(hw, i, reason, refcounted); 613 614 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 615 } 616 617 void ieee80211_stop_queues(struct ieee80211_hw *hw) 618 { 619 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 620 IEEE80211_QUEUE_STOP_REASON_DRIVER, 621 false); 622 } 623 EXPORT_SYMBOL(ieee80211_stop_queues); 624 625 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 626 { 627 struct ieee80211_local *local = hw_to_local(hw); 628 unsigned long flags; 629 int ret; 630 631 if (WARN_ON(queue >= hw->queues)) 632 return true; 633 634 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 635 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 636 &local->queue_stop_reasons[queue]); 637 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 638 return ret; 639 } 640 EXPORT_SYMBOL(ieee80211_queue_stopped); 641 642 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 643 unsigned long queues, 644 enum queue_stop_reason reason, 645 bool refcounted) 646 { 647 struct ieee80211_local *local = hw_to_local(hw); 648 unsigned long flags; 649 int i; 650 651 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 652 653 for_each_set_bit(i, &queues, hw->queues) 654 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 655 656 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 657 } 658 659 void ieee80211_wake_queues(struct ieee80211_hw *hw) 660 { 661 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 662 IEEE80211_QUEUE_STOP_REASON_DRIVER, 663 false); 664 } 665 EXPORT_SYMBOL(ieee80211_wake_queues); 666 667 static unsigned int 668 ieee80211_get_vif_queues(struct ieee80211_local *local, 669 struct ieee80211_sub_if_data *sdata) 670 { 671 unsigned int queues; 672 673 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 674 int ac; 675 676 queues = 0; 677 678 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 679 queues |= BIT(sdata->vif.hw_queue[ac]); 680 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 681 queues |= BIT(sdata->vif.cab_queue); 682 } else { 683 /* all queues */ 684 queues = BIT(local->hw.queues) - 1; 685 } 686 687 return queues; 688 } 689 690 void __ieee80211_flush_queues(struct ieee80211_local *local, 691 struct ieee80211_sub_if_data *sdata, 692 unsigned int queues, bool drop) 693 { 694 if (!local->ops->flush) 695 return; 696 697 /* 698 * If no queue was set, or if the HW doesn't support 699 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 700 */ 701 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 702 queues = ieee80211_get_vif_queues(local, sdata); 703 704 ieee80211_stop_queues_by_reason(&local->hw, queues, 705 IEEE80211_QUEUE_STOP_REASON_FLUSH, 706 false); 707 708 drv_flush(local, sdata, queues, drop); 709 710 ieee80211_wake_queues_by_reason(&local->hw, queues, 711 IEEE80211_QUEUE_STOP_REASON_FLUSH, 712 false); 713 } 714 715 void ieee80211_flush_queues(struct ieee80211_local *local, 716 struct ieee80211_sub_if_data *sdata, bool drop) 717 { 718 __ieee80211_flush_queues(local, sdata, 0, drop); 719 } 720 721 void ieee80211_stop_vif_queues(struct ieee80211_local *local, 722 struct ieee80211_sub_if_data *sdata, 723 enum queue_stop_reason reason) 724 { 725 ieee80211_stop_queues_by_reason(&local->hw, 726 ieee80211_get_vif_queues(local, sdata), 727 reason, true); 728 } 729 730 void ieee80211_wake_vif_queues(struct ieee80211_local *local, 731 struct ieee80211_sub_if_data *sdata, 732 enum queue_stop_reason reason) 733 { 734 ieee80211_wake_queues_by_reason(&local->hw, 735 ieee80211_get_vif_queues(local, sdata), 736 reason, true); 737 } 738 739 static void __iterate_interfaces(struct ieee80211_local *local, 740 u32 iter_flags, 741 void (*iterator)(void *data, u8 *mac, 742 struct ieee80211_vif *vif), 743 void *data) 744 { 745 struct ieee80211_sub_if_data *sdata; 746 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 747 748 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 749 switch (sdata->vif.type) { 750 case NL80211_IFTYPE_MONITOR: 751 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) 752 continue; 753 break; 754 case NL80211_IFTYPE_AP_VLAN: 755 continue; 756 default: 757 break; 758 } 759 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 760 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 761 continue; 762 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && 763 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 764 continue; 765 if (ieee80211_sdata_running(sdata) || !active_only) 766 iterator(data, sdata->vif.addr, 767 &sdata->vif); 768 } 769 770 sdata = rcu_dereference_check(local->monitor_sdata, 771 lockdep_is_held(&local->iflist_mtx) || 772 lockdep_is_held(&local->hw.wiphy->mtx)); 773 if (sdata && 774 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 775 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 776 iterator(data, sdata->vif.addr, &sdata->vif); 777 } 778 779 void ieee80211_iterate_interfaces( 780 struct ieee80211_hw *hw, u32 iter_flags, 781 void (*iterator)(void *data, u8 *mac, 782 struct ieee80211_vif *vif), 783 void *data) 784 { 785 struct ieee80211_local *local = hw_to_local(hw); 786 787 mutex_lock(&local->iflist_mtx); 788 __iterate_interfaces(local, iter_flags, iterator, data); 789 mutex_unlock(&local->iflist_mtx); 790 } 791 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 792 793 void ieee80211_iterate_active_interfaces_atomic( 794 struct ieee80211_hw *hw, u32 iter_flags, 795 void (*iterator)(void *data, u8 *mac, 796 struct ieee80211_vif *vif), 797 void *data) 798 { 799 struct ieee80211_local *local = hw_to_local(hw); 800 801 rcu_read_lock(); 802 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 803 iterator, data); 804 rcu_read_unlock(); 805 } 806 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 807 808 void ieee80211_iterate_active_interfaces_mtx( 809 struct ieee80211_hw *hw, u32 iter_flags, 810 void (*iterator)(void *data, u8 *mac, 811 struct ieee80211_vif *vif), 812 void *data) 813 { 814 struct ieee80211_local *local = hw_to_local(hw); 815 816 lockdep_assert_wiphy(hw->wiphy); 817 818 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 819 iterator, data); 820 } 821 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx); 822 823 static void __iterate_stations(struct ieee80211_local *local, 824 void (*iterator)(void *data, 825 struct ieee80211_sta *sta), 826 void *data) 827 { 828 struct sta_info *sta; 829 830 list_for_each_entry_rcu(sta, &local->sta_list, list) { 831 if (!sta->uploaded) 832 continue; 833 834 iterator(data, &sta->sta); 835 } 836 } 837 838 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 839 void (*iterator)(void *data, 840 struct ieee80211_sta *sta), 841 void *data) 842 { 843 struct ieee80211_local *local = hw_to_local(hw); 844 845 rcu_read_lock(); 846 __iterate_stations(local, iterator, data); 847 rcu_read_unlock(); 848 } 849 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 850 851 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 852 { 853 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 854 855 if (!ieee80211_sdata_running(sdata) || 856 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 857 return NULL; 858 return &sdata->vif; 859 } 860 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 861 862 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 863 { 864 if (!vif) 865 return NULL; 866 867 return &vif_to_sdata(vif)->wdev; 868 } 869 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 870 871 /* 872 * Nothing should have been stuffed into the workqueue during 873 * the suspend->resume cycle. Since we can't check each caller 874 * of this function if we are already quiescing / suspended, 875 * check here and don't WARN since this can actually happen when 876 * the rx path (for example) is racing against __ieee80211_suspend 877 * and suspending / quiescing was set after the rx path checked 878 * them. 879 */ 880 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 881 { 882 if (local->quiescing || (local->suspended && !local->resuming)) { 883 pr_warn("queueing ieee80211 work while going to suspend\n"); 884 return false; 885 } 886 887 return true; 888 } 889 890 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 891 { 892 struct ieee80211_local *local = hw_to_local(hw); 893 894 if (!ieee80211_can_queue_work(local)) 895 return; 896 897 queue_work(local->workqueue, work); 898 } 899 EXPORT_SYMBOL(ieee80211_queue_work); 900 901 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 902 struct delayed_work *dwork, 903 unsigned long delay) 904 { 905 struct ieee80211_local *local = hw_to_local(hw); 906 907 if (!ieee80211_can_queue_work(local)) 908 return; 909 910 queue_delayed_work(local->workqueue, dwork, delay); 911 } 912 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 913 914 static void 915 ieee80211_parse_extension_element(u32 *crc, 916 const struct element *elem, 917 struct ieee802_11_elems *elems, 918 struct ieee80211_elems_parse_params *params) 919 { 920 const void *data = elem->data + 1; 921 u8 len; 922 923 if (!elem->datalen) 924 return; 925 926 len = elem->datalen - 1; 927 928 switch (elem->data[0]) { 929 case WLAN_EID_EXT_HE_MU_EDCA: 930 if (len >= sizeof(*elems->mu_edca_param_set)) { 931 elems->mu_edca_param_set = data; 932 if (crc) 933 *crc = crc32_be(*crc, (void *)elem, 934 elem->datalen + 2); 935 } 936 break; 937 case WLAN_EID_EXT_HE_CAPABILITY: 938 if (ieee80211_he_capa_size_ok(data, len)) { 939 elems->he_cap = data; 940 elems->he_cap_len = len; 941 } 942 break; 943 case WLAN_EID_EXT_HE_OPERATION: 944 if (len >= sizeof(*elems->he_operation) && 945 len >= ieee80211_he_oper_size(data) - 1) { 946 if (crc) 947 *crc = crc32_be(*crc, (void *)elem, 948 elem->datalen + 2); 949 elems->he_operation = data; 950 } 951 break; 952 case WLAN_EID_EXT_UORA: 953 if (len >= 1) 954 elems->uora_element = data; 955 break; 956 case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME: 957 if (len == 3) 958 elems->max_channel_switch_time = data; 959 break; 960 case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION: 961 if (len >= sizeof(*elems->mbssid_config_ie)) 962 elems->mbssid_config_ie = data; 963 break; 964 case WLAN_EID_EXT_HE_SPR: 965 if (len >= sizeof(*elems->he_spr) && 966 len >= ieee80211_he_spr_size(data)) 967 elems->he_spr = data; 968 break; 969 case WLAN_EID_EXT_HE_6GHZ_CAPA: 970 if (len >= sizeof(*elems->he_6ghz_capa)) 971 elems->he_6ghz_capa = data; 972 break; 973 case WLAN_EID_EXT_EHT_CAPABILITY: 974 if (ieee80211_eht_capa_size_ok(elems->he_cap, 975 data, len, 976 params->from_ap)) { 977 elems->eht_cap = data; 978 elems->eht_cap_len = len; 979 } 980 break; 981 case WLAN_EID_EXT_EHT_OPERATION: 982 if (ieee80211_eht_oper_size_ok(data, len)) 983 elems->eht_operation = data; 984 break; 985 case WLAN_EID_EXT_EHT_MULTI_LINK: 986 if (ieee80211_mle_size_ok(data, len)) { 987 elems->multi_link = (void *)data; 988 elems->multi_link_len = len; 989 } 990 break; 991 } 992 } 993 994 static u32 995 _ieee802_11_parse_elems_full(struct ieee80211_elems_parse_params *params, 996 struct ieee802_11_elems *elems, 997 const struct element *check_inherit) 998 { 999 const struct element *elem; 1000 bool calc_crc = params->filter != 0; 1001 DECLARE_BITMAP(seen_elems, 256); 1002 u32 crc = params->crc; 1003 const u8 *ie; 1004 1005 bitmap_zero(seen_elems, 256); 1006 1007 for_each_element(elem, params->start, params->len) { 1008 bool elem_parse_failed; 1009 u8 id = elem->id; 1010 u8 elen = elem->datalen; 1011 const u8 *pos = elem->data; 1012 1013 if (check_inherit && 1014 !cfg80211_is_element_inherited(elem, 1015 check_inherit)) 1016 continue; 1017 1018 switch (id) { 1019 case WLAN_EID_SSID: 1020 case WLAN_EID_SUPP_RATES: 1021 case WLAN_EID_FH_PARAMS: 1022 case WLAN_EID_DS_PARAMS: 1023 case WLAN_EID_CF_PARAMS: 1024 case WLAN_EID_TIM: 1025 case WLAN_EID_IBSS_PARAMS: 1026 case WLAN_EID_CHALLENGE: 1027 case WLAN_EID_RSN: 1028 case WLAN_EID_ERP_INFO: 1029 case WLAN_EID_EXT_SUPP_RATES: 1030 case WLAN_EID_HT_CAPABILITY: 1031 case WLAN_EID_HT_OPERATION: 1032 case WLAN_EID_VHT_CAPABILITY: 1033 case WLAN_EID_VHT_OPERATION: 1034 case WLAN_EID_MESH_ID: 1035 case WLAN_EID_MESH_CONFIG: 1036 case WLAN_EID_PEER_MGMT: 1037 case WLAN_EID_PREQ: 1038 case WLAN_EID_PREP: 1039 case WLAN_EID_PERR: 1040 case WLAN_EID_RANN: 1041 case WLAN_EID_CHANNEL_SWITCH: 1042 case WLAN_EID_EXT_CHANSWITCH_ANN: 1043 case WLAN_EID_COUNTRY: 1044 case WLAN_EID_PWR_CONSTRAINT: 1045 case WLAN_EID_TIMEOUT_INTERVAL: 1046 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1047 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1048 case WLAN_EID_CHAN_SWITCH_PARAM: 1049 case WLAN_EID_EXT_CAPABILITY: 1050 case WLAN_EID_CHAN_SWITCH_TIMING: 1051 case WLAN_EID_LINK_ID: 1052 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1053 case WLAN_EID_RSNX: 1054 case WLAN_EID_S1G_BCN_COMPAT: 1055 case WLAN_EID_S1G_CAPABILITIES: 1056 case WLAN_EID_S1G_OPERATION: 1057 case WLAN_EID_AID_RESPONSE: 1058 case WLAN_EID_S1G_SHORT_BCN_INTERVAL: 1059 /* 1060 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible 1061 * that if the content gets bigger it might be needed more than once 1062 */ 1063 if (test_bit(id, seen_elems)) { 1064 elems->parse_error = true; 1065 continue; 1066 } 1067 break; 1068 } 1069 1070 if (calc_crc && id < 64 && (params->filter & (1ULL << id))) 1071 crc = crc32_be(crc, pos - 2, elen + 2); 1072 1073 elem_parse_failed = false; 1074 1075 switch (id) { 1076 case WLAN_EID_LINK_ID: 1077 if (elen + 2 < sizeof(struct ieee80211_tdls_lnkie)) { 1078 elem_parse_failed = true; 1079 break; 1080 } 1081 elems->lnk_id = (void *)(pos - 2); 1082 break; 1083 case WLAN_EID_CHAN_SWITCH_TIMING: 1084 if (elen < sizeof(struct ieee80211_ch_switch_timing)) { 1085 elem_parse_failed = true; 1086 break; 1087 } 1088 elems->ch_sw_timing = (void *)pos; 1089 break; 1090 case WLAN_EID_EXT_CAPABILITY: 1091 elems->ext_capab = pos; 1092 elems->ext_capab_len = elen; 1093 break; 1094 case WLAN_EID_SSID: 1095 elems->ssid = pos; 1096 elems->ssid_len = elen; 1097 break; 1098 case WLAN_EID_SUPP_RATES: 1099 elems->supp_rates = pos; 1100 elems->supp_rates_len = elen; 1101 break; 1102 case WLAN_EID_DS_PARAMS: 1103 if (elen >= 1) 1104 elems->ds_params = pos; 1105 else 1106 elem_parse_failed = true; 1107 break; 1108 case WLAN_EID_TIM: 1109 if (elen >= sizeof(struct ieee80211_tim_ie)) { 1110 elems->tim = (void *)pos; 1111 elems->tim_len = elen; 1112 } else 1113 elem_parse_failed = true; 1114 break; 1115 case WLAN_EID_VENDOR_SPECIFIC: 1116 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && 1117 pos[2] == 0xf2) { 1118 /* Microsoft OUI (00:50:F2) */ 1119 1120 if (calc_crc) 1121 crc = crc32_be(crc, pos - 2, elen + 2); 1122 1123 if (elen >= 5 && pos[3] == 2) { 1124 /* OUI Type 2 - WMM IE */ 1125 if (pos[4] == 0) { 1126 elems->wmm_info = pos; 1127 elems->wmm_info_len = elen; 1128 } else if (pos[4] == 1) { 1129 elems->wmm_param = pos; 1130 elems->wmm_param_len = elen; 1131 } 1132 } 1133 } 1134 break; 1135 case WLAN_EID_RSN: 1136 elems->rsn = pos; 1137 elems->rsn_len = elen; 1138 break; 1139 case WLAN_EID_ERP_INFO: 1140 if (elen >= 1) 1141 elems->erp_info = pos; 1142 else 1143 elem_parse_failed = true; 1144 break; 1145 case WLAN_EID_EXT_SUPP_RATES: 1146 elems->ext_supp_rates = pos; 1147 elems->ext_supp_rates_len = elen; 1148 break; 1149 case WLAN_EID_HT_CAPABILITY: 1150 if (elen >= sizeof(struct ieee80211_ht_cap)) 1151 elems->ht_cap_elem = (void *)pos; 1152 else 1153 elem_parse_failed = true; 1154 break; 1155 case WLAN_EID_HT_OPERATION: 1156 if (elen >= sizeof(struct ieee80211_ht_operation)) 1157 elems->ht_operation = (void *)pos; 1158 else 1159 elem_parse_failed = true; 1160 break; 1161 case WLAN_EID_VHT_CAPABILITY: 1162 if (elen >= sizeof(struct ieee80211_vht_cap)) 1163 elems->vht_cap_elem = (void *)pos; 1164 else 1165 elem_parse_failed = true; 1166 break; 1167 case WLAN_EID_VHT_OPERATION: 1168 if (elen >= sizeof(struct ieee80211_vht_operation)) { 1169 elems->vht_operation = (void *)pos; 1170 if (calc_crc) 1171 crc = crc32_be(crc, pos - 2, elen + 2); 1172 break; 1173 } 1174 elem_parse_failed = true; 1175 break; 1176 case WLAN_EID_OPMODE_NOTIF: 1177 if (elen > 0) { 1178 elems->opmode_notif = pos; 1179 if (calc_crc) 1180 crc = crc32_be(crc, pos - 2, elen + 2); 1181 break; 1182 } 1183 elem_parse_failed = true; 1184 break; 1185 case WLAN_EID_MESH_ID: 1186 elems->mesh_id = pos; 1187 elems->mesh_id_len = elen; 1188 break; 1189 case WLAN_EID_MESH_CONFIG: 1190 if (elen >= sizeof(struct ieee80211_meshconf_ie)) 1191 elems->mesh_config = (void *)pos; 1192 else 1193 elem_parse_failed = true; 1194 break; 1195 case WLAN_EID_PEER_MGMT: 1196 elems->peering = pos; 1197 elems->peering_len = elen; 1198 break; 1199 case WLAN_EID_MESH_AWAKE_WINDOW: 1200 if (elen >= 2) 1201 elems->awake_window = (void *)pos; 1202 break; 1203 case WLAN_EID_PREQ: 1204 elems->preq = pos; 1205 elems->preq_len = elen; 1206 break; 1207 case WLAN_EID_PREP: 1208 elems->prep = pos; 1209 elems->prep_len = elen; 1210 break; 1211 case WLAN_EID_PERR: 1212 elems->perr = pos; 1213 elems->perr_len = elen; 1214 break; 1215 case WLAN_EID_RANN: 1216 if (elen >= sizeof(struct ieee80211_rann_ie)) 1217 elems->rann = (void *)pos; 1218 else 1219 elem_parse_failed = true; 1220 break; 1221 case WLAN_EID_CHANNEL_SWITCH: 1222 if (elen != sizeof(struct ieee80211_channel_sw_ie)) { 1223 elem_parse_failed = true; 1224 break; 1225 } 1226 elems->ch_switch_ie = (void *)pos; 1227 break; 1228 case WLAN_EID_EXT_CHANSWITCH_ANN: 1229 if (elen != sizeof(struct ieee80211_ext_chansw_ie)) { 1230 elem_parse_failed = true; 1231 break; 1232 } 1233 elems->ext_chansw_ie = (void *)pos; 1234 break; 1235 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1236 if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) { 1237 elem_parse_failed = true; 1238 break; 1239 } 1240 elems->sec_chan_offs = (void *)pos; 1241 break; 1242 case WLAN_EID_CHAN_SWITCH_PARAM: 1243 if (elen < 1244 sizeof(*elems->mesh_chansw_params_ie)) { 1245 elem_parse_failed = true; 1246 break; 1247 } 1248 elems->mesh_chansw_params_ie = (void *)pos; 1249 break; 1250 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1251 if (!params->action || 1252 elen < sizeof(*elems->wide_bw_chansw_ie)) { 1253 elem_parse_failed = true; 1254 break; 1255 } 1256 elems->wide_bw_chansw_ie = (void *)pos; 1257 break; 1258 case WLAN_EID_CHANNEL_SWITCH_WRAPPER: 1259 if (params->action) { 1260 elem_parse_failed = true; 1261 break; 1262 } 1263 /* 1264 * This is a bit tricky, but as we only care about 1265 * the wide bandwidth channel switch element, so 1266 * just parse it out manually. 1267 */ 1268 ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH, 1269 pos, elen); 1270 if (ie) { 1271 if (ie[1] >= sizeof(*elems->wide_bw_chansw_ie)) 1272 elems->wide_bw_chansw_ie = 1273 (void *)(ie + 2); 1274 else 1275 elem_parse_failed = true; 1276 } 1277 break; 1278 case WLAN_EID_COUNTRY: 1279 elems->country_elem = pos; 1280 elems->country_elem_len = elen; 1281 break; 1282 case WLAN_EID_PWR_CONSTRAINT: 1283 if (elen != 1) { 1284 elem_parse_failed = true; 1285 break; 1286 } 1287 elems->pwr_constr_elem = pos; 1288 break; 1289 case WLAN_EID_CISCO_VENDOR_SPECIFIC: 1290 /* Lots of different options exist, but we only care 1291 * about the Dynamic Transmit Power Control element. 1292 * First check for the Cisco OUI, then for the DTPC 1293 * tag (0x00). 1294 */ 1295 if (elen < 4) { 1296 elem_parse_failed = true; 1297 break; 1298 } 1299 1300 if (pos[0] != 0x00 || pos[1] != 0x40 || 1301 pos[2] != 0x96 || pos[3] != 0x00) 1302 break; 1303 1304 if (elen != 6) { 1305 elem_parse_failed = true; 1306 break; 1307 } 1308 1309 if (calc_crc) 1310 crc = crc32_be(crc, pos - 2, elen + 2); 1311 1312 elems->cisco_dtpc_elem = pos; 1313 break; 1314 case WLAN_EID_ADDBA_EXT: 1315 if (elen < sizeof(struct ieee80211_addba_ext_ie)) { 1316 elem_parse_failed = true; 1317 break; 1318 } 1319 elems->addba_ext_ie = (void *)pos; 1320 break; 1321 case WLAN_EID_TIMEOUT_INTERVAL: 1322 if (elen >= sizeof(struct ieee80211_timeout_interval_ie)) 1323 elems->timeout_int = (void *)pos; 1324 else 1325 elem_parse_failed = true; 1326 break; 1327 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1328 if (elen >= sizeof(*elems->max_idle_period_ie)) 1329 elems->max_idle_period_ie = (void *)pos; 1330 break; 1331 case WLAN_EID_RSNX: 1332 elems->rsnx = pos; 1333 elems->rsnx_len = elen; 1334 break; 1335 case WLAN_EID_TX_POWER_ENVELOPE: 1336 if (elen < 1 || 1337 elen > sizeof(struct ieee80211_tx_pwr_env)) 1338 break; 1339 1340 if (elems->tx_pwr_env_num >= ARRAY_SIZE(elems->tx_pwr_env)) 1341 break; 1342 1343 elems->tx_pwr_env[elems->tx_pwr_env_num] = (void *)pos; 1344 elems->tx_pwr_env_len[elems->tx_pwr_env_num] = elen; 1345 elems->tx_pwr_env_num++; 1346 break; 1347 case WLAN_EID_EXTENSION: 1348 ieee80211_parse_extension_element(calc_crc ? 1349 &crc : NULL, 1350 elem, elems, params); 1351 break; 1352 case WLAN_EID_S1G_CAPABILITIES: 1353 if (elen >= sizeof(*elems->s1g_capab)) 1354 elems->s1g_capab = (void *)pos; 1355 else 1356 elem_parse_failed = true; 1357 break; 1358 case WLAN_EID_S1G_OPERATION: 1359 if (elen == sizeof(*elems->s1g_oper)) 1360 elems->s1g_oper = (void *)pos; 1361 else 1362 elem_parse_failed = true; 1363 break; 1364 case WLAN_EID_S1G_BCN_COMPAT: 1365 if (elen == sizeof(*elems->s1g_bcn_compat)) 1366 elems->s1g_bcn_compat = (void *)pos; 1367 else 1368 elem_parse_failed = true; 1369 break; 1370 case WLAN_EID_AID_RESPONSE: 1371 if (elen == sizeof(struct ieee80211_aid_response_ie)) 1372 elems->aid_resp = (void *)pos; 1373 else 1374 elem_parse_failed = true; 1375 break; 1376 default: 1377 break; 1378 } 1379 1380 if (elem_parse_failed) 1381 elems->parse_error = true; 1382 else 1383 __set_bit(id, seen_elems); 1384 } 1385 1386 if (!for_each_element_completed(elem, params->start, params->len)) 1387 elems->parse_error = true; 1388 1389 return crc; 1390 } 1391 1392 static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len, 1393 struct ieee802_11_elems *elems, 1394 struct cfg80211_bss *bss, 1395 u8 *nontransmitted_profile) 1396 { 1397 const struct element *elem, *sub; 1398 size_t profile_len = 0; 1399 bool found = false; 1400 1401 if (!bss || !bss->transmitted_bss) 1402 return profile_len; 1403 1404 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) { 1405 if (elem->datalen < 2) 1406 continue; 1407 if (elem->data[0] < 1 || elem->data[0] > 8) 1408 continue; 1409 1410 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 1411 u8 new_bssid[ETH_ALEN]; 1412 const u8 *index; 1413 1414 if (sub->id != 0 || sub->datalen < 4) { 1415 /* not a valid BSS profile */ 1416 continue; 1417 } 1418 1419 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 1420 sub->data[1] != 2) { 1421 /* The first element of the 1422 * Nontransmitted BSSID Profile is not 1423 * the Nontransmitted BSSID Capability 1424 * element. 1425 */ 1426 continue; 1427 } 1428 1429 memset(nontransmitted_profile, 0, len); 1430 profile_len = cfg80211_merge_profile(start, len, 1431 elem, 1432 sub, 1433 nontransmitted_profile, 1434 len); 1435 1436 /* found a Nontransmitted BSSID Profile */ 1437 index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, 1438 nontransmitted_profile, 1439 profile_len); 1440 if (!index || index[1] < 1 || index[2] == 0) { 1441 /* Invalid MBSSID Index element */ 1442 continue; 1443 } 1444 1445 cfg80211_gen_new_bssid(bss->transmitted_bss->bssid, 1446 elem->data[0], 1447 index[2], 1448 new_bssid); 1449 if (ether_addr_equal(new_bssid, bss->bssid)) { 1450 found = true; 1451 elems->bssid_index_len = index[1]; 1452 elems->bssid_index = (void *)&index[2]; 1453 break; 1454 } 1455 } 1456 } 1457 1458 return found ? profile_len : 0; 1459 } 1460 1461 static void ieee80211_defragment_element(struct ieee802_11_elems *elems, 1462 void **elem_ptr, size_t *len, 1463 size_t total_len, u8 frag_id) 1464 { 1465 u8 *data = *elem_ptr, *pos, *start; 1466 const struct element *elem; 1467 1468 /* 1469 * Since 'data' points to the data of the element, not the element 1470 * itself, allow 254 in case it was an extended element where the 1471 * extended ID isn't part of the data we see here and thus not part of 1472 * 'len' either. 1473 */ 1474 if (!data || (*len != 254 && *len != 255)) 1475 return; 1476 1477 start = elems->scratch_pos; 1478 1479 if (WARN_ON(*len > (elems->scratch + elems->scratch_len - 1480 elems->scratch_pos))) 1481 return; 1482 1483 memcpy(elems->scratch_pos, data, *len); 1484 elems->scratch_pos += *len; 1485 1486 pos = data + *len; 1487 total_len -= *len; 1488 for_each_element(elem, pos, total_len) { 1489 if (elem->id != frag_id) 1490 break; 1491 1492 if (WARN_ON(elem->datalen > 1493 (elems->scratch + elems->scratch_len - 1494 elems->scratch_pos))) 1495 return; 1496 1497 memcpy(elems->scratch_pos, elem->data, elem->datalen); 1498 elems->scratch_pos += elem->datalen; 1499 1500 *len += elem->datalen; 1501 } 1502 1503 *elem_ptr = start; 1504 } 1505 1506 static void ieee80211_mle_get_sta_prof(struct ieee802_11_elems *elems, 1507 u8 link_id) 1508 { 1509 const struct ieee80211_multi_link_elem *ml = elems->multi_link; 1510 size_t ml_len = elems->multi_link_len; 1511 const struct element *sub; 1512 1513 if (!ml || !ml_len) 1514 return; 1515 1516 if (le16_get_bits(ml->control, IEEE80211_ML_CONTROL_TYPE) != 1517 IEEE80211_ML_CONTROL_TYPE_BASIC) 1518 return; 1519 1520 for_each_mle_subelement(sub, (u8 *)ml, ml_len) { 1521 struct ieee80211_mle_per_sta_profile *prof = (void *)sub->data; 1522 u16 control; 1523 1524 if (sub->id != IEEE80211_MLE_SUBELEM_PER_STA_PROFILE) 1525 continue; 1526 1527 if (!ieee80211_mle_sta_prof_size_ok(sub->data, sub->datalen)) 1528 return; 1529 1530 control = le16_to_cpu(prof->control); 1531 1532 if (link_id != u16_get_bits(control, 1533 IEEE80211_MLE_STA_CONTROL_LINK_ID)) 1534 continue; 1535 1536 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE)) 1537 return; 1538 1539 elems->prof = prof; 1540 elems->sta_prof_len = sub->datalen; 1541 1542 /* the sub element can be fragmented */ 1543 ieee80211_defragment_element(elems, (void **)&elems->prof, 1544 &elems->sta_prof_len, 1545 ml_len - (sub->data - (u8 *)ml), 1546 IEEE80211_MLE_SUBELEM_FRAGMENT); 1547 return; 1548 } 1549 } 1550 1551 static void ieee80211_mle_parse_link(struct ieee802_11_elems *elems, 1552 struct ieee80211_elems_parse_params *params) 1553 { 1554 struct ieee80211_mle_per_sta_profile *prof; 1555 struct ieee80211_elems_parse_params sub = { 1556 .action = params->action, 1557 .from_ap = params->from_ap, 1558 .link_id = -1, 1559 }; 1560 const struct element *non_inherit = NULL; 1561 const u8 *end; 1562 1563 if (params->link_id == -1) 1564 return; 1565 1566 ieee80211_defragment_element(elems, (void **)&elems->multi_link, 1567 &elems->multi_link_len, 1568 elems->total_len - ((u8 *)elems->multi_link - 1569 elems->ie_start), 1570 WLAN_EID_FRAGMENT); 1571 1572 ieee80211_mle_get_sta_prof(elems, params->link_id); 1573 prof = elems->prof; 1574 1575 if (!prof) 1576 return; 1577 1578 /* check if we have the 4 bytes for the fixed part in assoc response */ 1579 if (elems->sta_prof_len < sizeof(*prof) + prof->sta_info_len - 1 + 4) { 1580 elems->prof = NULL; 1581 elems->sta_prof_len = 0; 1582 return; 1583 } 1584 1585 /* 1586 * Skip the capability information and the status code that are expected 1587 * as part of the station profile in association response frames. Note 1588 * the -1 is because the 'sta_info_len' is accounted to as part of the 1589 * per-STA profile, but not part of the 'u8 variable[]' portion. 1590 */ 1591 sub.start = prof->variable + prof->sta_info_len - 1 + 4; 1592 end = (const u8 *)prof + elems->sta_prof_len; 1593 sub.len = end - sub.start; 1594 1595 non_inherit = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 1596 sub.start, sub.len); 1597 _ieee802_11_parse_elems_full(&sub, elems, non_inherit); 1598 } 1599 1600 struct ieee802_11_elems * 1601 ieee802_11_parse_elems_full(struct ieee80211_elems_parse_params *params) 1602 { 1603 struct ieee802_11_elems *elems; 1604 const struct element *non_inherit = NULL; 1605 u8 *nontransmitted_profile; 1606 int nontransmitted_profile_len = 0; 1607 size_t scratch_len = params->scratch_len ?: 3 * params->len; 1608 1609 elems = kzalloc(sizeof(*elems) + scratch_len, GFP_ATOMIC); 1610 if (!elems) 1611 return NULL; 1612 elems->ie_start = params->start; 1613 elems->total_len = params->len; 1614 elems->scratch_len = scratch_len; 1615 elems->scratch_pos = elems->scratch; 1616 1617 nontransmitted_profile = elems->scratch_pos; 1618 nontransmitted_profile_len = 1619 ieee802_11_find_bssid_profile(params->start, params->len, 1620 elems, params->bss, 1621 nontransmitted_profile); 1622 elems->scratch_pos += nontransmitted_profile_len; 1623 elems->scratch_len -= nontransmitted_profile_len; 1624 non_inherit = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 1625 nontransmitted_profile, 1626 nontransmitted_profile_len); 1627 1628 elems->crc = _ieee802_11_parse_elems_full(params, elems, non_inherit); 1629 1630 /* Override with nontransmitted profile, if found */ 1631 if (nontransmitted_profile_len) { 1632 struct ieee80211_elems_parse_params sub = { 1633 .start = nontransmitted_profile, 1634 .len = nontransmitted_profile_len, 1635 .action = params->action, 1636 .link_id = params->link_id, 1637 }; 1638 1639 _ieee802_11_parse_elems_full(&sub, elems, NULL); 1640 } 1641 1642 ieee80211_mle_parse_link(elems, params); 1643 1644 if (elems->tim && !elems->parse_error) { 1645 const struct ieee80211_tim_ie *tim_ie = elems->tim; 1646 1647 elems->dtim_period = tim_ie->dtim_period; 1648 elems->dtim_count = tim_ie->dtim_count; 1649 } 1650 1651 /* Override DTIM period and count if needed */ 1652 if (elems->bssid_index && 1653 elems->bssid_index_len >= 1654 offsetofend(struct ieee80211_bssid_index, dtim_period)) 1655 elems->dtim_period = elems->bssid_index->dtim_period; 1656 1657 if (elems->bssid_index && 1658 elems->bssid_index_len >= 1659 offsetofend(struct ieee80211_bssid_index, dtim_count)) 1660 elems->dtim_count = elems->bssid_index->dtim_count; 1661 1662 return elems; 1663 } 1664 1665 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 1666 struct ieee80211_tx_queue_params 1667 *qparam, int ac) 1668 { 1669 struct ieee80211_chanctx_conf *chanctx_conf; 1670 const struct ieee80211_reg_rule *rrule; 1671 const struct ieee80211_wmm_ac *wmm_ac; 1672 u16 center_freq = 0; 1673 1674 if (sdata->vif.type != NL80211_IFTYPE_AP && 1675 sdata->vif.type != NL80211_IFTYPE_STATION) 1676 return; 1677 1678 rcu_read_lock(); 1679 chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); 1680 if (chanctx_conf) 1681 center_freq = chanctx_conf->def.chan->center_freq; 1682 1683 if (!center_freq) { 1684 rcu_read_unlock(); 1685 return; 1686 } 1687 1688 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 1689 1690 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 1691 rcu_read_unlock(); 1692 return; 1693 } 1694 1695 if (sdata->vif.type == NL80211_IFTYPE_AP) 1696 wmm_ac = &rrule->wmm_rule.ap[ac]; 1697 else 1698 wmm_ac = &rrule->wmm_rule.client[ac]; 1699 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 1700 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 1701 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 1702 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 1703 rcu_read_unlock(); 1704 } 1705 1706 void ieee80211_set_wmm_default(struct ieee80211_link_data *link, 1707 bool bss_notify, bool enable_qos) 1708 { 1709 struct ieee80211_sub_if_data *sdata = link->sdata; 1710 struct ieee80211_local *local = sdata->local; 1711 struct ieee80211_tx_queue_params qparam; 1712 struct ieee80211_chanctx_conf *chanctx_conf; 1713 int ac; 1714 bool use_11b; 1715 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 1716 int aCWmin, aCWmax; 1717 1718 if (!local->ops->conf_tx) 1719 return; 1720 1721 if (local->hw.queues < IEEE80211_NUM_ACS) 1722 return; 1723 1724 memset(&qparam, 0, sizeof(qparam)); 1725 1726 rcu_read_lock(); 1727 chanctx_conf = rcu_dereference(link->conf->chanctx_conf); 1728 use_11b = (chanctx_conf && 1729 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 1730 !link->operating_11g_mode; 1731 rcu_read_unlock(); 1732 1733 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 1734 1735 /* Set defaults according to 802.11-2007 Table 7-37 */ 1736 aCWmax = 1023; 1737 if (use_11b) 1738 aCWmin = 31; 1739 else 1740 aCWmin = 15; 1741 1742 /* Confiure old 802.11b/g medium access rules. */ 1743 qparam.cw_max = aCWmax; 1744 qparam.cw_min = aCWmin; 1745 qparam.txop = 0; 1746 qparam.aifs = 2; 1747 1748 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1749 /* Update if QoS is enabled. */ 1750 if (enable_qos) { 1751 switch (ac) { 1752 case IEEE80211_AC_BK: 1753 qparam.cw_max = aCWmax; 1754 qparam.cw_min = aCWmin; 1755 qparam.txop = 0; 1756 if (is_ocb) 1757 qparam.aifs = 9; 1758 else 1759 qparam.aifs = 7; 1760 break; 1761 /* never happens but let's not leave undefined */ 1762 default: 1763 case IEEE80211_AC_BE: 1764 qparam.cw_max = aCWmax; 1765 qparam.cw_min = aCWmin; 1766 qparam.txop = 0; 1767 if (is_ocb) 1768 qparam.aifs = 6; 1769 else 1770 qparam.aifs = 3; 1771 break; 1772 case IEEE80211_AC_VI: 1773 qparam.cw_max = aCWmin; 1774 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1775 if (is_ocb) 1776 qparam.txop = 0; 1777 else if (use_11b) 1778 qparam.txop = 6016/32; 1779 else 1780 qparam.txop = 3008/32; 1781 1782 if (is_ocb) 1783 qparam.aifs = 3; 1784 else 1785 qparam.aifs = 2; 1786 break; 1787 case IEEE80211_AC_VO: 1788 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1789 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1790 if (is_ocb) 1791 qparam.txop = 0; 1792 else if (use_11b) 1793 qparam.txop = 3264/32; 1794 else 1795 qparam.txop = 1504/32; 1796 qparam.aifs = 2; 1797 break; 1798 } 1799 } 1800 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1801 1802 qparam.uapsd = false; 1803 1804 link->tx_conf[ac] = qparam; 1805 drv_conf_tx(local, link, ac, &qparam); 1806 } 1807 1808 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1809 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1810 sdata->vif.type != NL80211_IFTYPE_NAN) { 1811 link->conf->qos = enable_qos; 1812 if (bss_notify) 1813 ieee80211_link_info_change_notify(sdata, link, 1814 BSS_CHANGED_QOS); 1815 } 1816 } 1817 1818 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1819 u16 transaction, u16 auth_alg, u16 status, 1820 const u8 *extra, size_t extra_len, const u8 *da, 1821 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1822 u32 tx_flags) 1823 { 1824 struct ieee80211_local *local = sdata->local; 1825 struct sk_buff *skb; 1826 struct ieee80211_mgmt *mgmt; 1827 bool multi_link = sdata->vif.valid_links; 1828 struct { 1829 u8 id; 1830 u8 len; 1831 u8 ext_id; 1832 struct ieee80211_multi_link_elem ml; 1833 struct ieee80211_mle_basic_common_info basic; 1834 } __packed mle = { 1835 .id = WLAN_EID_EXTENSION, 1836 .len = sizeof(mle) - 2, 1837 .ext_id = WLAN_EID_EXT_EHT_MULTI_LINK, 1838 .ml.control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_BASIC), 1839 .basic.len = sizeof(mle.basic), 1840 }; 1841 int err; 1842 1843 memcpy(mle.basic.mld_mac_addr, sdata->vif.addr, ETH_ALEN); 1844 1845 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1846 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1847 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN + 1848 multi_link * sizeof(mle)); 1849 if (!skb) 1850 return; 1851 1852 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1853 1854 mgmt = skb_put_zero(skb, 24 + 6); 1855 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1856 IEEE80211_STYPE_AUTH); 1857 memcpy(mgmt->da, da, ETH_ALEN); 1858 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1859 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1860 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1861 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1862 mgmt->u.auth.status_code = cpu_to_le16(status); 1863 if (extra) 1864 skb_put_data(skb, extra, extra_len); 1865 if (multi_link) 1866 skb_put_data(skb, &mle, sizeof(mle)); 1867 1868 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1869 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1870 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1871 if (WARN_ON(err)) { 1872 kfree_skb(skb); 1873 return; 1874 } 1875 } 1876 1877 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1878 tx_flags; 1879 ieee80211_tx_skb(sdata, skb); 1880 } 1881 1882 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1883 const u8 *da, const u8 *bssid, 1884 u16 stype, u16 reason, 1885 bool send_frame, u8 *frame_buf) 1886 { 1887 struct ieee80211_local *local = sdata->local; 1888 struct sk_buff *skb; 1889 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1890 1891 /* build frame */ 1892 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1893 mgmt->duration = 0; /* initialize only */ 1894 mgmt->seq_ctrl = 0; /* initialize only */ 1895 memcpy(mgmt->da, da, ETH_ALEN); 1896 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1897 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1898 /* u.deauth.reason_code == u.disassoc.reason_code */ 1899 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1900 1901 if (send_frame) { 1902 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1903 IEEE80211_DEAUTH_FRAME_LEN); 1904 if (!skb) 1905 return; 1906 1907 skb_reserve(skb, local->hw.extra_tx_headroom); 1908 1909 /* copy in frame */ 1910 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1911 1912 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1913 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1914 IEEE80211_SKB_CB(skb)->flags |= 1915 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1916 1917 ieee80211_tx_skb(sdata, skb); 1918 } 1919 } 1920 1921 static u8 *ieee80211_write_he_6ghz_cap(u8 *pos, __le16 cap, u8 *end) 1922 { 1923 if ((end - pos) < 5) 1924 return pos; 1925 1926 *pos++ = WLAN_EID_EXTENSION; 1927 *pos++ = 1 + sizeof(cap); 1928 *pos++ = WLAN_EID_EXT_HE_6GHZ_CAPA; 1929 memcpy(pos, &cap, sizeof(cap)); 1930 1931 return pos + 2; 1932 } 1933 1934 static int ieee80211_build_preq_ies_band(struct ieee80211_sub_if_data *sdata, 1935 u8 *buffer, size_t buffer_len, 1936 const u8 *ie, size_t ie_len, 1937 enum nl80211_band band, 1938 u32 rate_mask, 1939 struct cfg80211_chan_def *chandef, 1940 size_t *offset, u32 flags) 1941 { 1942 struct ieee80211_local *local = sdata->local; 1943 struct ieee80211_supported_band *sband; 1944 const struct ieee80211_sta_he_cap *he_cap; 1945 const struct ieee80211_sta_eht_cap *eht_cap; 1946 u8 *pos = buffer, *end = buffer + buffer_len; 1947 size_t noffset; 1948 int supp_rates_len, i; 1949 u8 rates[32]; 1950 int num_rates; 1951 int ext_rates_len; 1952 int shift; 1953 u32 rate_flags; 1954 bool have_80mhz = false; 1955 1956 *offset = 0; 1957 1958 sband = local->hw.wiphy->bands[band]; 1959 if (WARN_ON_ONCE(!sband)) 1960 return 0; 1961 1962 rate_flags = ieee80211_chandef_rate_flags(chandef); 1963 shift = ieee80211_chandef_get_shift(chandef); 1964 1965 num_rates = 0; 1966 for (i = 0; i < sband->n_bitrates; i++) { 1967 if ((BIT(i) & rate_mask) == 0) 1968 continue; /* skip rate */ 1969 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 1970 continue; 1971 1972 rates[num_rates++] = 1973 (u8) DIV_ROUND_UP(sband->bitrates[i].bitrate, 1974 (1 << shift) * 5); 1975 } 1976 1977 supp_rates_len = min_t(int, num_rates, 8); 1978 1979 if (end - pos < 2 + supp_rates_len) 1980 goto out_err; 1981 *pos++ = WLAN_EID_SUPP_RATES; 1982 *pos++ = supp_rates_len; 1983 memcpy(pos, rates, supp_rates_len); 1984 pos += supp_rates_len; 1985 1986 /* insert "request information" if in custom IEs */ 1987 if (ie && ie_len) { 1988 static const u8 before_extrates[] = { 1989 WLAN_EID_SSID, 1990 WLAN_EID_SUPP_RATES, 1991 WLAN_EID_REQUEST, 1992 }; 1993 noffset = ieee80211_ie_split(ie, ie_len, 1994 before_extrates, 1995 ARRAY_SIZE(before_extrates), 1996 *offset); 1997 if (end - pos < noffset - *offset) 1998 goto out_err; 1999 memcpy(pos, ie + *offset, noffset - *offset); 2000 pos += noffset - *offset; 2001 *offset = noffset; 2002 } 2003 2004 ext_rates_len = num_rates - supp_rates_len; 2005 if (ext_rates_len > 0) { 2006 if (end - pos < 2 + ext_rates_len) 2007 goto out_err; 2008 *pos++ = WLAN_EID_EXT_SUPP_RATES; 2009 *pos++ = ext_rates_len; 2010 memcpy(pos, rates + supp_rates_len, ext_rates_len); 2011 pos += ext_rates_len; 2012 } 2013 2014 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 2015 if (end - pos < 3) 2016 goto out_err; 2017 *pos++ = WLAN_EID_DS_PARAMS; 2018 *pos++ = 1; 2019 *pos++ = ieee80211_frequency_to_channel( 2020 chandef->chan->center_freq); 2021 } 2022 2023 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 2024 goto done; 2025 2026 /* insert custom IEs that go before HT */ 2027 if (ie && ie_len) { 2028 static const u8 before_ht[] = { 2029 /* 2030 * no need to list the ones split off already 2031 * (or generated here) 2032 */ 2033 WLAN_EID_DS_PARAMS, 2034 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 2035 }; 2036 noffset = ieee80211_ie_split(ie, ie_len, 2037 before_ht, ARRAY_SIZE(before_ht), 2038 *offset); 2039 if (end - pos < noffset - *offset) 2040 goto out_err; 2041 memcpy(pos, ie + *offset, noffset - *offset); 2042 pos += noffset - *offset; 2043 *offset = noffset; 2044 } 2045 2046 if (sband->ht_cap.ht_supported) { 2047 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap)) 2048 goto out_err; 2049 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 2050 sband->ht_cap.cap); 2051 } 2052 2053 /* insert custom IEs that go before VHT */ 2054 if (ie && ie_len) { 2055 static const u8 before_vht[] = { 2056 /* 2057 * no need to list the ones split off already 2058 * (or generated here) 2059 */ 2060 WLAN_EID_BSS_COEX_2040, 2061 WLAN_EID_EXT_CAPABILITY, 2062 WLAN_EID_SSID_LIST, 2063 WLAN_EID_CHANNEL_USAGE, 2064 WLAN_EID_INTERWORKING, 2065 WLAN_EID_MESH_ID, 2066 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 2067 }; 2068 noffset = ieee80211_ie_split(ie, ie_len, 2069 before_vht, ARRAY_SIZE(before_vht), 2070 *offset); 2071 if (end - pos < noffset - *offset) 2072 goto out_err; 2073 memcpy(pos, ie + *offset, noffset - *offset); 2074 pos += noffset - *offset; 2075 *offset = noffset; 2076 } 2077 2078 /* Check if any channel in this sband supports at least 80 MHz */ 2079 for (i = 0; i < sband->n_channels; i++) { 2080 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 2081 IEEE80211_CHAN_NO_80MHZ)) 2082 continue; 2083 2084 have_80mhz = true; 2085 break; 2086 } 2087 2088 if (sband->vht_cap.vht_supported && have_80mhz) { 2089 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap)) 2090 goto out_err; 2091 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 2092 sband->vht_cap.cap); 2093 } 2094 2095 /* insert custom IEs that go before HE */ 2096 if (ie && ie_len) { 2097 static const u8 before_he[] = { 2098 /* 2099 * no need to list the ones split off before VHT 2100 * or generated here 2101 */ 2102 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 2103 WLAN_EID_AP_CSN, 2104 /* TODO: add 11ah/11aj/11ak elements */ 2105 }; 2106 noffset = ieee80211_ie_split(ie, ie_len, 2107 before_he, ARRAY_SIZE(before_he), 2108 *offset); 2109 if (end - pos < noffset - *offset) 2110 goto out_err; 2111 memcpy(pos, ie + *offset, noffset - *offset); 2112 pos += noffset - *offset; 2113 *offset = noffset; 2114 } 2115 2116 he_cap = ieee80211_get_he_iftype_cap(sband, 2117 ieee80211_vif_type_p2p(&sdata->vif)); 2118 if (he_cap && 2119 cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 2120 IEEE80211_CHAN_NO_HE)) { 2121 pos = ieee80211_ie_build_he_cap(0, pos, he_cap, end); 2122 if (!pos) 2123 goto out_err; 2124 } 2125 2126 eht_cap = ieee80211_get_eht_iftype_cap(sband, 2127 ieee80211_vif_type_p2p(&sdata->vif)); 2128 2129 if (eht_cap && 2130 cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 2131 IEEE80211_CHAN_NO_HE | 2132 IEEE80211_CHAN_NO_EHT)) { 2133 pos = ieee80211_ie_build_eht_cap(pos, he_cap, eht_cap, end, 2134 sdata->vif.type == NL80211_IFTYPE_AP); 2135 if (!pos) 2136 goto out_err; 2137 } 2138 2139 if (cfg80211_any_usable_channels(local->hw.wiphy, 2140 BIT(NL80211_BAND_6GHZ), 2141 IEEE80211_CHAN_NO_HE)) { 2142 struct ieee80211_supported_band *sband6; 2143 2144 sband6 = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 2145 he_cap = ieee80211_get_he_iftype_cap(sband6, 2146 ieee80211_vif_type_p2p(&sdata->vif)); 2147 2148 if (he_cap) { 2149 enum nl80211_iftype iftype = 2150 ieee80211_vif_type_p2p(&sdata->vif); 2151 __le16 cap = ieee80211_get_he_6ghz_capa(sband6, iftype); 2152 2153 pos = ieee80211_write_he_6ghz_cap(pos, cap, end); 2154 } 2155 } 2156 2157 /* 2158 * If adding more here, adjust code in main.c 2159 * that calculates local->scan_ies_len. 2160 */ 2161 2162 return pos - buffer; 2163 out_err: 2164 WARN_ONCE(1, "not enough space for preq IEs\n"); 2165 done: 2166 return pos - buffer; 2167 } 2168 2169 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 2170 size_t buffer_len, 2171 struct ieee80211_scan_ies *ie_desc, 2172 const u8 *ie, size_t ie_len, 2173 u8 bands_used, u32 *rate_masks, 2174 struct cfg80211_chan_def *chandef, 2175 u32 flags) 2176 { 2177 size_t pos = 0, old_pos = 0, custom_ie_offset = 0; 2178 int i; 2179 2180 memset(ie_desc, 0, sizeof(*ie_desc)); 2181 2182 for (i = 0; i < NUM_NL80211_BANDS; i++) { 2183 if (bands_used & BIT(i)) { 2184 pos += ieee80211_build_preq_ies_band(sdata, 2185 buffer + pos, 2186 buffer_len - pos, 2187 ie, ie_len, i, 2188 rate_masks[i], 2189 chandef, 2190 &custom_ie_offset, 2191 flags); 2192 ie_desc->ies[i] = buffer + old_pos; 2193 ie_desc->len[i] = pos - old_pos; 2194 old_pos = pos; 2195 } 2196 } 2197 2198 /* add any remaining custom IEs */ 2199 if (ie && ie_len) { 2200 if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset, 2201 "not enough space for preq custom IEs\n")) 2202 return pos; 2203 memcpy(buffer + pos, ie + custom_ie_offset, 2204 ie_len - custom_ie_offset); 2205 ie_desc->common_ies = buffer + pos; 2206 ie_desc->common_ie_len = ie_len - custom_ie_offset; 2207 pos += ie_len - custom_ie_offset; 2208 } 2209 2210 return pos; 2211 }; 2212 2213 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 2214 const u8 *src, const u8 *dst, 2215 u32 ratemask, 2216 struct ieee80211_channel *chan, 2217 const u8 *ssid, size_t ssid_len, 2218 const u8 *ie, size_t ie_len, 2219 u32 flags) 2220 { 2221 struct ieee80211_local *local = sdata->local; 2222 struct cfg80211_chan_def chandef; 2223 struct sk_buff *skb; 2224 struct ieee80211_mgmt *mgmt; 2225 int ies_len; 2226 u32 rate_masks[NUM_NL80211_BANDS] = {}; 2227 struct ieee80211_scan_ies dummy_ie_desc; 2228 2229 /* 2230 * Do not send DS Channel parameter for directed probe requests 2231 * in order to maximize the chance that we get a response. Some 2232 * badly-behaved APs don't respond when this parameter is included. 2233 */ 2234 chandef.width = sdata->vif.bss_conf.chandef.width; 2235 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 2236 chandef.chan = NULL; 2237 else 2238 chandef.chan = chan; 2239 2240 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 2241 local->scan_ies_len + ie_len); 2242 if (!skb) 2243 return NULL; 2244 2245 rate_masks[chan->band] = ratemask; 2246 ies_len = ieee80211_build_preq_ies(sdata, skb_tail_pointer(skb), 2247 skb_tailroom(skb), &dummy_ie_desc, 2248 ie, ie_len, BIT(chan->band), 2249 rate_masks, &chandef, flags); 2250 skb_put(skb, ies_len); 2251 2252 if (dst) { 2253 mgmt = (struct ieee80211_mgmt *) skb->data; 2254 memcpy(mgmt->da, dst, ETH_ALEN); 2255 memcpy(mgmt->bssid, dst, ETH_ALEN); 2256 } 2257 2258 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 2259 2260 return skb; 2261 } 2262 2263 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 2264 struct ieee802_11_elems *elems, 2265 enum nl80211_band band, u32 *basic_rates) 2266 { 2267 struct ieee80211_supported_band *sband; 2268 size_t num_rates; 2269 u32 supp_rates, rate_flags; 2270 int i, j, shift; 2271 2272 sband = sdata->local->hw.wiphy->bands[band]; 2273 if (WARN_ON(!sband)) 2274 return 1; 2275 2276 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 2277 shift = ieee80211_vif_get_shift(&sdata->vif); 2278 2279 num_rates = sband->n_bitrates; 2280 supp_rates = 0; 2281 for (i = 0; i < elems->supp_rates_len + 2282 elems->ext_supp_rates_len; i++) { 2283 u8 rate = 0; 2284 int own_rate; 2285 bool is_basic; 2286 if (i < elems->supp_rates_len) 2287 rate = elems->supp_rates[i]; 2288 else if (elems->ext_supp_rates) 2289 rate = elems->ext_supp_rates 2290 [i - elems->supp_rates_len]; 2291 own_rate = 5 * (rate & 0x7f); 2292 is_basic = !!(rate & 0x80); 2293 2294 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 2295 continue; 2296 2297 for (j = 0; j < num_rates; j++) { 2298 int brate; 2299 if ((rate_flags & sband->bitrates[j].flags) 2300 != rate_flags) 2301 continue; 2302 2303 brate = DIV_ROUND_UP(sband->bitrates[j].bitrate, 2304 1 << shift); 2305 2306 if (brate == own_rate) { 2307 supp_rates |= BIT(j); 2308 if (basic_rates && is_basic) 2309 *basic_rates |= BIT(j); 2310 } 2311 } 2312 } 2313 return supp_rates; 2314 } 2315 2316 void ieee80211_stop_device(struct ieee80211_local *local) 2317 { 2318 ieee80211_led_radio(local, false); 2319 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 2320 2321 cancel_work_sync(&local->reconfig_filter); 2322 2323 flush_workqueue(local->workqueue); 2324 drv_stop(local); 2325 } 2326 2327 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 2328 bool aborted) 2329 { 2330 /* It's possible that we don't handle the scan completion in 2331 * time during suspend, so if it's still marked as completed 2332 * here, queue the work and flush it to clean things up. 2333 * Instead of calling the worker function directly here, we 2334 * really queue it to avoid potential races with other flows 2335 * scheduling the same work. 2336 */ 2337 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 2338 /* If coming from reconfiguration failure, abort the scan so 2339 * we don't attempt to continue a partial HW scan - which is 2340 * possible otherwise if (e.g.) the 2.4 GHz portion was the 2341 * completed scan, and a 5 GHz portion is still pending. 2342 */ 2343 if (aborted) 2344 set_bit(SCAN_ABORTED, &local->scanning); 2345 ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0); 2346 flush_delayed_work(&local->scan_work); 2347 } 2348 } 2349 2350 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 2351 { 2352 struct ieee80211_sub_if_data *sdata; 2353 struct ieee80211_chanctx *ctx; 2354 2355 /* 2356 * We get here if during resume the device can't be restarted properly. 2357 * We might also get here if this happens during HW reset, which is a 2358 * slightly different situation and we need to drop all connections in 2359 * the latter case. 2360 * 2361 * Ask cfg80211 to turn off all interfaces, this will result in more 2362 * warnings but at least we'll then get into a clean stopped state. 2363 */ 2364 2365 local->resuming = false; 2366 local->suspended = false; 2367 local->in_reconfig = false; 2368 2369 ieee80211_flush_completed_scan(local, true); 2370 2371 /* scheduled scan clearly can't be running any more, but tell 2372 * cfg80211 and clear local state 2373 */ 2374 ieee80211_sched_scan_end(local); 2375 2376 list_for_each_entry(sdata, &local->interfaces, list) 2377 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 2378 2379 /* Mark channel contexts as not being in the driver any more to avoid 2380 * removing them from the driver during the shutdown process... 2381 */ 2382 mutex_lock(&local->chanctx_mtx); 2383 list_for_each_entry(ctx, &local->chanctx_list, list) 2384 ctx->driver_present = false; 2385 mutex_unlock(&local->chanctx_mtx); 2386 } 2387 2388 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 2389 struct ieee80211_sub_if_data *sdata, 2390 struct ieee80211_link_data *link) 2391 { 2392 struct ieee80211_chanctx_conf *conf; 2393 struct ieee80211_chanctx *ctx; 2394 2395 if (!local->use_chanctx) 2396 return; 2397 2398 mutex_lock(&local->chanctx_mtx); 2399 conf = rcu_dereference_protected(link->conf->chanctx_conf, 2400 lockdep_is_held(&local->chanctx_mtx)); 2401 if (conf) { 2402 ctx = container_of(conf, struct ieee80211_chanctx, conf); 2403 drv_assign_vif_chanctx(local, sdata, link->conf, ctx); 2404 } 2405 mutex_unlock(&local->chanctx_mtx); 2406 } 2407 2408 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 2409 { 2410 struct ieee80211_local *local = sdata->local; 2411 struct sta_info *sta; 2412 2413 /* add STAs back */ 2414 mutex_lock(&local->sta_mtx); 2415 list_for_each_entry(sta, &local->sta_list, list) { 2416 enum ieee80211_sta_state state; 2417 2418 if (!sta->uploaded || sta->sdata != sdata) 2419 continue; 2420 2421 for (state = IEEE80211_STA_NOTEXIST; 2422 state < sta->sta_state; state++) 2423 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2424 state + 1)); 2425 } 2426 mutex_unlock(&local->sta_mtx); 2427 } 2428 2429 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 2430 { 2431 struct cfg80211_nan_func *func, **funcs; 2432 int res, id, i = 0; 2433 2434 res = drv_start_nan(sdata->local, sdata, 2435 &sdata->u.nan.conf); 2436 if (WARN_ON(res)) 2437 return res; 2438 2439 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 2440 sizeof(*funcs), 2441 GFP_KERNEL); 2442 if (!funcs) 2443 return -ENOMEM; 2444 2445 /* Add all the functions: 2446 * This is a little bit ugly. We need to call a potentially sleeping 2447 * callback for each NAN function, so we can't hold the spinlock. 2448 */ 2449 spin_lock_bh(&sdata->u.nan.func_lock); 2450 2451 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 2452 funcs[i++] = func; 2453 2454 spin_unlock_bh(&sdata->u.nan.func_lock); 2455 2456 for (i = 0; funcs[i]; i++) { 2457 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 2458 if (WARN_ON(res)) 2459 ieee80211_nan_func_terminated(&sdata->vif, 2460 funcs[i]->instance_id, 2461 NL80211_NAN_FUNC_TERM_REASON_ERROR, 2462 GFP_KERNEL); 2463 } 2464 2465 kfree(funcs); 2466 2467 return 0; 2468 } 2469 2470 int ieee80211_reconfig(struct ieee80211_local *local) 2471 { 2472 struct ieee80211_hw *hw = &local->hw; 2473 struct ieee80211_sub_if_data *sdata; 2474 struct ieee80211_chanctx *ctx; 2475 struct sta_info *sta; 2476 int res, i; 2477 bool reconfig_due_to_wowlan = false; 2478 struct ieee80211_sub_if_data *sched_scan_sdata; 2479 struct cfg80211_sched_scan_request *sched_scan_req; 2480 bool sched_scan_stopped = false; 2481 bool suspended = local->suspended; 2482 bool in_reconfig = false; 2483 2484 /* nothing to do if HW shouldn't run */ 2485 if (!local->open_count) 2486 goto wake_up; 2487 2488 #ifdef CONFIG_PM 2489 if (suspended) 2490 local->resuming = true; 2491 2492 if (local->wowlan) { 2493 /* 2494 * In the wowlan case, both mac80211 and the device 2495 * are functional when the resume op is called, so 2496 * clear local->suspended so the device could operate 2497 * normally (e.g. pass rx frames). 2498 */ 2499 local->suspended = false; 2500 res = drv_resume(local); 2501 local->wowlan = false; 2502 if (res < 0) { 2503 local->resuming = false; 2504 return res; 2505 } 2506 if (res == 0) 2507 goto wake_up; 2508 WARN_ON(res > 1); 2509 /* 2510 * res is 1, which means the driver requested 2511 * to go through a regular reset on wakeup. 2512 * restore local->suspended in this case. 2513 */ 2514 reconfig_due_to_wowlan = true; 2515 local->suspended = true; 2516 } 2517 #endif 2518 2519 /* 2520 * In case of hw_restart during suspend (without wowlan), 2521 * cancel restart work, as we are reconfiguring the device 2522 * anyway. 2523 * Note that restart_work is scheduled on a frozen workqueue, 2524 * so we can't deadlock in this case. 2525 */ 2526 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 2527 cancel_work_sync(&local->restart_work); 2528 2529 local->started = false; 2530 2531 /* 2532 * Upon resume hardware can sometimes be goofy due to 2533 * various platform / driver / bus issues, so restarting 2534 * the device may at times not work immediately. Propagate 2535 * the error. 2536 */ 2537 res = drv_start(local); 2538 if (res) { 2539 if (suspended) 2540 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 2541 else 2542 WARN(1, "Hardware became unavailable during restart.\n"); 2543 ieee80211_handle_reconfig_failure(local); 2544 return res; 2545 } 2546 2547 /* setup fragmentation threshold */ 2548 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 2549 2550 /* setup RTS threshold */ 2551 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 2552 2553 /* reset coverage class */ 2554 drv_set_coverage_class(local, hw->wiphy->coverage_class); 2555 2556 ieee80211_led_radio(local, true); 2557 ieee80211_mod_tpt_led_trig(local, 2558 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 2559 2560 /* add interfaces */ 2561 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 2562 if (sdata) { 2563 /* in HW restart it exists already */ 2564 WARN_ON(local->resuming); 2565 res = drv_add_interface(local, sdata); 2566 if (WARN_ON(res)) { 2567 RCU_INIT_POINTER(local->monitor_sdata, NULL); 2568 synchronize_net(); 2569 kfree(sdata); 2570 } 2571 } 2572 2573 list_for_each_entry(sdata, &local->interfaces, list) { 2574 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2575 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2576 ieee80211_sdata_running(sdata)) { 2577 res = drv_add_interface(local, sdata); 2578 if (WARN_ON(res)) 2579 break; 2580 } 2581 } 2582 2583 /* If adding any of the interfaces failed above, roll back and 2584 * report failure. 2585 */ 2586 if (res) { 2587 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 2588 list) 2589 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2590 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2591 ieee80211_sdata_running(sdata)) 2592 drv_remove_interface(local, sdata); 2593 ieee80211_handle_reconfig_failure(local); 2594 return res; 2595 } 2596 2597 /* add channel contexts */ 2598 if (local->use_chanctx) { 2599 mutex_lock(&local->chanctx_mtx); 2600 list_for_each_entry(ctx, &local->chanctx_list, list) 2601 if (ctx->replace_state != 2602 IEEE80211_CHANCTX_REPLACES_OTHER) 2603 WARN_ON(drv_add_chanctx(local, ctx)); 2604 mutex_unlock(&local->chanctx_mtx); 2605 2606 sdata = wiphy_dereference(local->hw.wiphy, 2607 local->monitor_sdata); 2608 if (sdata && ieee80211_sdata_running(sdata)) 2609 ieee80211_assign_chanctx(local, sdata, &sdata->deflink); 2610 } 2611 2612 /* reconfigure hardware */ 2613 ieee80211_hw_config(local, ~0); 2614 2615 ieee80211_configure_filter(local); 2616 2617 /* Finally also reconfigure all the BSS information */ 2618 list_for_each_entry(sdata, &local->interfaces, list) { 2619 unsigned int link_id; 2620 u32 changed; 2621 2622 if (!ieee80211_sdata_running(sdata)) 2623 continue; 2624 2625 sdata_lock(sdata); 2626 for (link_id = 0; 2627 link_id < ARRAY_SIZE(sdata->vif.link_conf); 2628 link_id++) { 2629 struct ieee80211_link_data *link; 2630 2631 link = sdata_dereference(sdata->link[link_id], sdata); 2632 if (link) 2633 ieee80211_assign_chanctx(local, sdata, link); 2634 } 2635 2636 switch (sdata->vif.type) { 2637 case NL80211_IFTYPE_AP_VLAN: 2638 case NL80211_IFTYPE_MONITOR: 2639 break; 2640 case NL80211_IFTYPE_ADHOC: 2641 if (sdata->vif.cfg.ibss_joined) 2642 WARN_ON(drv_join_ibss(local, sdata)); 2643 fallthrough; 2644 default: 2645 ieee80211_reconfig_stations(sdata); 2646 fallthrough; 2647 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 2648 for (i = 0; i < IEEE80211_NUM_ACS; i++) 2649 drv_conf_tx(local, &sdata->deflink, i, 2650 &sdata->deflink.tx_conf[i]); 2651 break; 2652 } 2653 sdata_unlock(sdata); 2654 2655 /* common change flags for all interface types */ 2656 changed = BSS_CHANGED_ERP_CTS_PROT | 2657 BSS_CHANGED_ERP_PREAMBLE | 2658 BSS_CHANGED_ERP_SLOT | 2659 BSS_CHANGED_HT | 2660 BSS_CHANGED_BASIC_RATES | 2661 BSS_CHANGED_BEACON_INT | 2662 BSS_CHANGED_BSSID | 2663 BSS_CHANGED_CQM | 2664 BSS_CHANGED_QOS | 2665 BSS_CHANGED_IDLE | 2666 BSS_CHANGED_TXPOWER | 2667 BSS_CHANGED_MCAST_RATE; 2668 2669 if (sdata->vif.bss_conf.mu_mimo_owner) 2670 changed |= BSS_CHANGED_MU_GROUPS; 2671 2672 switch (sdata->vif.type) { 2673 case NL80211_IFTYPE_STATION: 2674 changed |= BSS_CHANGED_ASSOC | 2675 BSS_CHANGED_ARP_FILTER | 2676 BSS_CHANGED_PS; 2677 2678 /* Re-send beacon info report to the driver */ 2679 if (sdata->deflink.u.mgd.have_beacon) 2680 changed |= BSS_CHANGED_BEACON_INFO; 2681 2682 if (sdata->vif.bss_conf.max_idle_period || 2683 sdata->vif.bss_conf.protected_keep_alive) 2684 changed |= BSS_CHANGED_KEEP_ALIVE; 2685 2686 sdata_lock(sdata); 2687 ieee80211_bss_info_change_notify(sdata, changed); 2688 sdata_unlock(sdata); 2689 break; 2690 case NL80211_IFTYPE_OCB: 2691 changed |= BSS_CHANGED_OCB; 2692 ieee80211_bss_info_change_notify(sdata, changed); 2693 break; 2694 case NL80211_IFTYPE_ADHOC: 2695 changed |= BSS_CHANGED_IBSS; 2696 fallthrough; 2697 case NL80211_IFTYPE_AP: 2698 changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS; 2699 2700 if (sdata->vif.bss_conf.ftm_responder == 1 && 2701 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2702 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2703 changed |= BSS_CHANGED_FTM_RESPONDER; 2704 2705 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2706 changed |= BSS_CHANGED_AP_PROBE_RESP; 2707 2708 if (rcu_access_pointer(sdata->deflink.u.ap.beacon)) 2709 drv_start_ap(local, sdata, 2710 sdata->deflink.conf); 2711 } 2712 fallthrough; 2713 case NL80211_IFTYPE_MESH_POINT: 2714 if (sdata->vif.bss_conf.enable_beacon) { 2715 changed |= BSS_CHANGED_BEACON | 2716 BSS_CHANGED_BEACON_ENABLED; 2717 ieee80211_bss_info_change_notify(sdata, changed); 2718 } 2719 break; 2720 case NL80211_IFTYPE_NAN: 2721 res = ieee80211_reconfig_nan(sdata); 2722 if (res < 0) { 2723 ieee80211_handle_reconfig_failure(local); 2724 return res; 2725 } 2726 break; 2727 case NL80211_IFTYPE_AP_VLAN: 2728 case NL80211_IFTYPE_MONITOR: 2729 case NL80211_IFTYPE_P2P_DEVICE: 2730 /* nothing to do */ 2731 break; 2732 case NL80211_IFTYPE_UNSPECIFIED: 2733 case NUM_NL80211_IFTYPES: 2734 case NL80211_IFTYPE_P2P_CLIENT: 2735 case NL80211_IFTYPE_P2P_GO: 2736 case NL80211_IFTYPE_WDS: 2737 WARN_ON(1); 2738 break; 2739 } 2740 } 2741 2742 ieee80211_recalc_ps(local); 2743 2744 /* 2745 * The sta might be in psm against the ap (e.g. because 2746 * this was the state before a hw restart), so we 2747 * explicitly send a null packet in order to make sure 2748 * it'll sync against the ap (and get out of psm). 2749 */ 2750 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2751 list_for_each_entry(sdata, &local->interfaces, list) { 2752 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2753 continue; 2754 if (!sdata->u.mgd.associated) 2755 continue; 2756 2757 ieee80211_send_nullfunc(local, sdata, false); 2758 } 2759 } 2760 2761 /* APs are now beaconing, add back stations */ 2762 list_for_each_entry(sdata, &local->interfaces, list) { 2763 if (!ieee80211_sdata_running(sdata)) 2764 continue; 2765 2766 sdata_lock(sdata); 2767 switch (sdata->vif.type) { 2768 case NL80211_IFTYPE_AP_VLAN: 2769 case NL80211_IFTYPE_AP: 2770 ieee80211_reconfig_stations(sdata); 2771 break; 2772 default: 2773 break; 2774 } 2775 sdata_unlock(sdata); 2776 } 2777 2778 /* add back keys */ 2779 list_for_each_entry(sdata, &local->interfaces, list) 2780 ieee80211_reenable_keys(sdata); 2781 2782 /* Reconfigure sched scan if it was interrupted by FW restart */ 2783 mutex_lock(&local->mtx); 2784 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2785 lockdep_is_held(&local->mtx)); 2786 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2787 lockdep_is_held(&local->mtx)); 2788 if (sched_scan_sdata && sched_scan_req) 2789 /* 2790 * Sched scan stopped, but we don't want to report it. Instead, 2791 * we're trying to reschedule. However, if more than one scan 2792 * plan was set, we cannot reschedule since we don't know which 2793 * scan plan was currently running (and some scan plans may have 2794 * already finished). 2795 */ 2796 if (sched_scan_req->n_scan_plans > 1 || 2797 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2798 sched_scan_req)) { 2799 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2800 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2801 sched_scan_stopped = true; 2802 } 2803 mutex_unlock(&local->mtx); 2804 2805 if (sched_scan_stopped) 2806 cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0); 2807 2808 wake_up: 2809 2810 if (local->monitors == local->open_count && local->monitors > 0) 2811 ieee80211_add_virtual_monitor(local); 2812 2813 /* 2814 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2815 * sessions can be established after a resume. 2816 * 2817 * Also tear down aggregation sessions since reconfiguring 2818 * them in a hardware restart scenario is not easily done 2819 * right now, and the hardware will have lost information 2820 * about the sessions, but we and the AP still think they 2821 * are active. This is really a workaround though. 2822 */ 2823 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2824 mutex_lock(&local->sta_mtx); 2825 2826 list_for_each_entry(sta, &local->sta_list, list) { 2827 if (!local->resuming) 2828 ieee80211_sta_tear_down_BA_sessions( 2829 sta, AGG_STOP_LOCAL_REQUEST); 2830 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2831 } 2832 2833 mutex_unlock(&local->sta_mtx); 2834 } 2835 2836 /* 2837 * If this is for hw restart things are still running. 2838 * We may want to change that later, however. 2839 */ 2840 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2841 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2842 2843 if (local->in_reconfig) { 2844 in_reconfig = local->in_reconfig; 2845 local->in_reconfig = false; 2846 barrier(); 2847 2848 /* Restart deferred ROCs */ 2849 mutex_lock(&local->mtx); 2850 ieee80211_start_next_roc(local); 2851 mutex_unlock(&local->mtx); 2852 2853 /* Requeue all works */ 2854 list_for_each_entry(sdata, &local->interfaces, list) 2855 ieee80211_queue_work(&local->hw, &sdata->work); 2856 } 2857 2858 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2859 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2860 false); 2861 2862 if (in_reconfig) { 2863 list_for_each_entry(sdata, &local->interfaces, list) { 2864 if (!ieee80211_sdata_running(sdata)) 2865 continue; 2866 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2867 ieee80211_sta_restart(sdata); 2868 } 2869 } 2870 2871 if (!suspended) 2872 return 0; 2873 2874 #ifdef CONFIG_PM 2875 /* first set suspended false, then resuming */ 2876 local->suspended = false; 2877 mb(); 2878 local->resuming = false; 2879 2880 ieee80211_flush_completed_scan(local, false); 2881 2882 if (local->open_count && !reconfig_due_to_wowlan) 2883 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2884 2885 list_for_each_entry(sdata, &local->interfaces, list) { 2886 if (!ieee80211_sdata_running(sdata)) 2887 continue; 2888 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2889 ieee80211_sta_restart(sdata); 2890 } 2891 2892 mod_timer(&local->sta_cleanup, jiffies + 1); 2893 #else 2894 WARN_ON(1); 2895 #endif 2896 2897 return 0; 2898 } 2899 2900 static void ieee80211_reconfig_disconnect(struct ieee80211_vif *vif, u8 flag) 2901 { 2902 struct ieee80211_sub_if_data *sdata; 2903 struct ieee80211_local *local; 2904 struct ieee80211_key *key; 2905 2906 if (WARN_ON(!vif)) 2907 return; 2908 2909 sdata = vif_to_sdata(vif); 2910 local = sdata->local; 2911 2912 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_RESUME && 2913 !local->resuming)) 2914 return; 2915 2916 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_HW_RESTART && 2917 !local->in_reconfig)) 2918 return; 2919 2920 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2921 return; 2922 2923 sdata->flags |= flag; 2924 2925 mutex_lock(&local->key_mtx); 2926 list_for_each_entry(key, &sdata->key_list, list) 2927 key->flags |= KEY_FLAG_TAINTED; 2928 mutex_unlock(&local->key_mtx); 2929 } 2930 2931 void ieee80211_hw_restart_disconnect(struct ieee80211_vif *vif) 2932 { 2933 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_HW_RESTART); 2934 } 2935 EXPORT_SYMBOL_GPL(ieee80211_hw_restart_disconnect); 2936 2937 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 2938 { 2939 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_RESUME); 2940 } 2941 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 2942 2943 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata, 2944 struct ieee80211_link_data *link) 2945 { 2946 struct ieee80211_local *local = sdata->local; 2947 struct ieee80211_chanctx_conf *chanctx_conf; 2948 struct ieee80211_chanctx *chanctx; 2949 2950 mutex_lock(&local->chanctx_mtx); 2951 2952 chanctx_conf = rcu_dereference_protected(link->conf->chanctx_conf, 2953 lockdep_is_held(&local->chanctx_mtx)); 2954 2955 /* 2956 * This function can be called from a work, thus it may be possible 2957 * that the chanctx_conf is removed (due to a disconnection, for 2958 * example). 2959 * So nothing should be done in such case. 2960 */ 2961 if (!chanctx_conf) 2962 goto unlock; 2963 2964 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2965 ieee80211_recalc_smps_chanctx(local, chanctx); 2966 unlock: 2967 mutex_unlock(&local->chanctx_mtx); 2968 } 2969 2970 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata, 2971 int link_id) 2972 { 2973 struct ieee80211_local *local = sdata->local; 2974 struct ieee80211_chanctx_conf *chanctx_conf; 2975 struct ieee80211_chanctx *chanctx; 2976 int i; 2977 2978 mutex_lock(&local->chanctx_mtx); 2979 2980 for (i = 0; i < ARRAY_SIZE(sdata->vif.link_conf); i++) { 2981 struct ieee80211_bss_conf *bss_conf; 2982 2983 if (link_id >= 0 && link_id != i) 2984 continue; 2985 2986 rcu_read_lock(); 2987 bss_conf = rcu_dereference(sdata->vif.link_conf[i]); 2988 if (!bss_conf) { 2989 rcu_read_unlock(); 2990 continue; 2991 } 2992 2993 chanctx_conf = rcu_dereference_protected(bss_conf->chanctx_conf, 2994 lockdep_is_held(&local->chanctx_mtx)); 2995 /* 2996 * Since we hold the chanctx_mtx (checked above) 2997 * we can take the chanctx_conf pointer out of the 2998 * RCU critical section, it cannot go away without 2999 * the mutex. Just the way we reached it could - in 3000 * theory - go away, but we don't really care and 3001 * it really shouldn't happen anyway. 3002 */ 3003 rcu_read_unlock(); 3004 3005 if (!chanctx_conf) 3006 goto unlock; 3007 3008 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, 3009 conf); 3010 ieee80211_recalc_chanctx_min_def(local, chanctx); 3011 } 3012 unlock: 3013 mutex_unlock(&local->chanctx_mtx); 3014 } 3015 3016 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 3017 { 3018 size_t pos = offset; 3019 3020 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 3021 pos += 2 + ies[pos + 1]; 3022 3023 return pos; 3024 } 3025 3026 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 3027 u16 cap) 3028 { 3029 __le16 tmp; 3030 3031 *pos++ = WLAN_EID_HT_CAPABILITY; 3032 *pos++ = sizeof(struct ieee80211_ht_cap); 3033 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 3034 3035 /* capability flags */ 3036 tmp = cpu_to_le16(cap); 3037 memcpy(pos, &tmp, sizeof(u16)); 3038 pos += sizeof(u16); 3039 3040 /* AMPDU parameters */ 3041 *pos++ = ht_cap->ampdu_factor | 3042 (ht_cap->ampdu_density << 3043 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 3044 3045 /* MCS set */ 3046 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 3047 pos += sizeof(ht_cap->mcs); 3048 3049 /* extended capabilities */ 3050 pos += sizeof(__le16); 3051 3052 /* BF capabilities */ 3053 pos += sizeof(__le32); 3054 3055 /* antenna selection */ 3056 pos += sizeof(u8); 3057 3058 return pos; 3059 } 3060 3061 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 3062 u32 cap) 3063 { 3064 __le32 tmp; 3065 3066 *pos++ = WLAN_EID_VHT_CAPABILITY; 3067 *pos++ = sizeof(struct ieee80211_vht_cap); 3068 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 3069 3070 /* capability flags */ 3071 tmp = cpu_to_le32(cap); 3072 memcpy(pos, &tmp, sizeof(u32)); 3073 pos += sizeof(u32); 3074 3075 /* VHT MCS set */ 3076 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 3077 pos += sizeof(vht_cap->vht_mcs); 3078 3079 return pos; 3080 } 3081 3082 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 3083 { 3084 const struct ieee80211_sta_he_cap *he_cap; 3085 struct ieee80211_supported_band *sband; 3086 u8 n; 3087 3088 sband = ieee80211_get_sband(sdata); 3089 if (!sband) 3090 return 0; 3091 3092 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 3093 if (!he_cap) 3094 return 0; 3095 3096 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 3097 return 2 + 1 + 3098 sizeof(he_cap->he_cap_elem) + n + 3099 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 3100 he_cap->he_cap_elem.phy_cap_info); 3101 } 3102 3103 u8 *ieee80211_ie_build_he_cap(ieee80211_conn_flags_t disable_flags, u8 *pos, 3104 const struct ieee80211_sta_he_cap *he_cap, 3105 u8 *end) 3106 { 3107 struct ieee80211_he_cap_elem elem; 3108 u8 n; 3109 u8 ie_len; 3110 u8 *orig_pos = pos; 3111 3112 /* Make sure we have place for the IE */ 3113 /* 3114 * TODO: the 1 added is because this temporarily is under the EXTENSION 3115 * IE. Get rid of it when it moves. 3116 */ 3117 if (!he_cap) 3118 return orig_pos; 3119 3120 /* modify on stack first to calculate 'n' and 'ie_len' correctly */ 3121 elem = he_cap->he_cap_elem; 3122 3123 if (disable_flags & IEEE80211_CONN_DISABLE_40MHZ) 3124 elem.phy_cap_info[0] &= 3125 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | 3126 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G); 3127 3128 if (disable_flags & IEEE80211_CONN_DISABLE_160MHZ) 3129 elem.phy_cap_info[0] &= 3130 ~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 3131 3132 if (disable_flags & IEEE80211_CONN_DISABLE_80P80MHZ) 3133 elem.phy_cap_info[0] &= 3134 ~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 3135 3136 n = ieee80211_he_mcs_nss_size(&elem); 3137 ie_len = 2 + 1 + 3138 sizeof(he_cap->he_cap_elem) + n + 3139 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 3140 he_cap->he_cap_elem.phy_cap_info); 3141 3142 if ((end - pos) < ie_len) 3143 return orig_pos; 3144 3145 *pos++ = WLAN_EID_EXTENSION; 3146 pos++; /* We'll set the size later below */ 3147 *pos++ = WLAN_EID_EXT_HE_CAPABILITY; 3148 3149 /* Fixed data */ 3150 memcpy(pos, &elem, sizeof(elem)); 3151 pos += sizeof(elem); 3152 3153 memcpy(pos, &he_cap->he_mcs_nss_supp, n); 3154 pos += n; 3155 3156 /* Check if PPE Threshold should be present */ 3157 if ((he_cap->he_cap_elem.phy_cap_info[6] & 3158 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 3159 goto end; 3160 3161 /* 3162 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 3163 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 3164 */ 3165 n = hweight8(he_cap->ppe_thres[0] & 3166 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 3167 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 3168 IEEE80211_PPE_THRES_NSS_POS)); 3169 3170 /* 3171 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 3172 * total size. 3173 */ 3174 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 3175 n = DIV_ROUND_UP(n, 8); 3176 3177 /* Copy PPE Thresholds */ 3178 memcpy(pos, &he_cap->ppe_thres, n); 3179 pos += n; 3180 3181 end: 3182 orig_pos[1] = (pos - orig_pos) - 2; 3183 return pos; 3184 } 3185 3186 void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata, 3187 enum ieee80211_smps_mode smps_mode, 3188 struct sk_buff *skb) 3189 { 3190 struct ieee80211_supported_band *sband; 3191 const struct ieee80211_sband_iftype_data *iftd; 3192 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3193 u8 *pos; 3194 u16 cap; 3195 3196 if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy, 3197 BIT(NL80211_BAND_6GHZ), 3198 IEEE80211_CHAN_NO_HE)) 3199 return; 3200 3201 sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3202 3203 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 3204 if (!iftd) 3205 return; 3206 3207 /* Check for device HE 6 GHz capability before adding element */ 3208 if (!iftd->he_6ghz_capa.capa) 3209 return; 3210 3211 cap = le16_to_cpu(iftd->he_6ghz_capa.capa); 3212 cap &= ~IEEE80211_HE_6GHZ_CAP_SM_PS; 3213 3214 switch (smps_mode) { 3215 case IEEE80211_SMPS_AUTOMATIC: 3216 case IEEE80211_SMPS_NUM_MODES: 3217 WARN_ON(1); 3218 fallthrough; 3219 case IEEE80211_SMPS_OFF: 3220 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 3221 IEEE80211_HE_6GHZ_CAP_SM_PS); 3222 break; 3223 case IEEE80211_SMPS_STATIC: 3224 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 3225 IEEE80211_HE_6GHZ_CAP_SM_PS); 3226 break; 3227 case IEEE80211_SMPS_DYNAMIC: 3228 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 3229 IEEE80211_HE_6GHZ_CAP_SM_PS); 3230 break; 3231 } 3232 3233 pos = skb_put(skb, 2 + 1 + sizeof(cap)); 3234 ieee80211_write_he_6ghz_cap(pos, cpu_to_le16(cap), 3235 pos + 2 + 1 + sizeof(cap)); 3236 } 3237 3238 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 3239 const struct cfg80211_chan_def *chandef, 3240 u16 prot_mode, bool rifs_mode) 3241 { 3242 struct ieee80211_ht_operation *ht_oper; 3243 /* Build HT Information */ 3244 *pos++ = WLAN_EID_HT_OPERATION; 3245 *pos++ = sizeof(struct ieee80211_ht_operation); 3246 ht_oper = (struct ieee80211_ht_operation *)pos; 3247 ht_oper->primary_chan = ieee80211_frequency_to_channel( 3248 chandef->chan->center_freq); 3249 switch (chandef->width) { 3250 case NL80211_CHAN_WIDTH_160: 3251 case NL80211_CHAN_WIDTH_80P80: 3252 case NL80211_CHAN_WIDTH_80: 3253 case NL80211_CHAN_WIDTH_40: 3254 if (chandef->center_freq1 > chandef->chan->center_freq) 3255 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3256 else 3257 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3258 break; 3259 case NL80211_CHAN_WIDTH_320: 3260 /* HT information element should not be included on 6GHz */ 3261 WARN_ON(1); 3262 return pos; 3263 default: 3264 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 3265 break; 3266 } 3267 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 3268 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 3269 chandef->width != NL80211_CHAN_WIDTH_20) 3270 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 3271 3272 if (rifs_mode) 3273 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 3274 3275 ht_oper->operation_mode = cpu_to_le16(prot_mode); 3276 ht_oper->stbc_param = 0x0000; 3277 3278 /* It seems that Basic MCS set and Supported MCS set 3279 are identical for the first 10 bytes */ 3280 memset(&ht_oper->basic_set, 0, 16); 3281 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 3282 3283 return pos + sizeof(struct ieee80211_ht_operation); 3284 } 3285 3286 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 3287 const struct cfg80211_chan_def *chandef) 3288 { 3289 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 3290 *pos++ = 3; /* IE length */ 3291 /* New channel width */ 3292 switch (chandef->width) { 3293 case NL80211_CHAN_WIDTH_80: 3294 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 3295 break; 3296 case NL80211_CHAN_WIDTH_160: 3297 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 3298 break; 3299 case NL80211_CHAN_WIDTH_80P80: 3300 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 3301 break; 3302 case NL80211_CHAN_WIDTH_320: 3303 /* The behavior is not defined for 320 MHz channels */ 3304 WARN_ON(1); 3305 fallthrough; 3306 default: 3307 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 3308 } 3309 3310 /* new center frequency segment 0 */ 3311 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 3312 /* new center frequency segment 1 */ 3313 if (chandef->center_freq2) 3314 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 3315 else 3316 *pos++ = 0; 3317 } 3318 3319 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 3320 const struct cfg80211_chan_def *chandef) 3321 { 3322 struct ieee80211_vht_operation *vht_oper; 3323 3324 *pos++ = WLAN_EID_VHT_OPERATION; 3325 *pos++ = sizeof(struct ieee80211_vht_operation); 3326 vht_oper = (struct ieee80211_vht_operation *)pos; 3327 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 3328 chandef->center_freq1); 3329 if (chandef->center_freq2) 3330 vht_oper->center_freq_seg1_idx = 3331 ieee80211_frequency_to_channel(chandef->center_freq2); 3332 else 3333 vht_oper->center_freq_seg1_idx = 0x00; 3334 3335 switch (chandef->width) { 3336 case NL80211_CHAN_WIDTH_160: 3337 /* 3338 * Convert 160 MHz channel width to new style as interop 3339 * workaround. 3340 */ 3341 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3342 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 3343 if (chandef->chan->center_freq < chandef->center_freq1) 3344 vht_oper->center_freq_seg0_idx -= 8; 3345 else 3346 vht_oper->center_freq_seg0_idx += 8; 3347 break; 3348 case NL80211_CHAN_WIDTH_80P80: 3349 /* 3350 * Convert 80+80 MHz channel width to new style as interop 3351 * workaround. 3352 */ 3353 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3354 break; 3355 case NL80211_CHAN_WIDTH_80: 3356 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3357 break; 3358 case NL80211_CHAN_WIDTH_320: 3359 /* VHT information element should not be included on 6GHz */ 3360 WARN_ON(1); 3361 return pos; 3362 default: 3363 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 3364 break; 3365 } 3366 3367 /* don't require special VHT peer rates */ 3368 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 3369 3370 return pos + sizeof(struct ieee80211_vht_operation); 3371 } 3372 3373 u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef) 3374 { 3375 struct ieee80211_he_operation *he_oper; 3376 struct ieee80211_he_6ghz_oper *he_6ghz_op; 3377 u32 he_oper_params; 3378 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 3379 3380 if (chandef->chan->band == NL80211_BAND_6GHZ) 3381 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 3382 3383 *pos++ = WLAN_EID_EXTENSION; 3384 *pos++ = ie_len; 3385 *pos++ = WLAN_EID_EXT_HE_OPERATION; 3386 3387 he_oper_params = 0; 3388 he_oper_params |= u32_encode_bits(1023, /* disabled */ 3389 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 3390 he_oper_params |= u32_encode_bits(1, 3391 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 3392 he_oper_params |= u32_encode_bits(1, 3393 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 3394 if (chandef->chan->band == NL80211_BAND_6GHZ) 3395 he_oper_params |= u32_encode_bits(1, 3396 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 3397 3398 he_oper = (struct ieee80211_he_operation *)pos; 3399 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 3400 3401 /* don't require special HE peer rates */ 3402 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 3403 pos += sizeof(struct ieee80211_he_operation); 3404 3405 if (chandef->chan->band != NL80211_BAND_6GHZ) 3406 goto out; 3407 3408 /* TODO add VHT operational */ 3409 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 3410 he_6ghz_op->minrate = 6; /* 6 Mbps */ 3411 he_6ghz_op->primary = 3412 ieee80211_frequency_to_channel(chandef->chan->center_freq); 3413 he_6ghz_op->ccfs0 = 3414 ieee80211_frequency_to_channel(chandef->center_freq1); 3415 if (chandef->center_freq2) 3416 he_6ghz_op->ccfs1 = 3417 ieee80211_frequency_to_channel(chandef->center_freq2); 3418 else 3419 he_6ghz_op->ccfs1 = 0; 3420 3421 switch (chandef->width) { 3422 case NL80211_CHAN_WIDTH_320: 3423 /* 3424 * TODO: mesh operation is not defined over 6GHz 320 MHz 3425 * channels. 3426 */ 3427 WARN_ON(1); 3428 break; 3429 case NL80211_CHAN_WIDTH_160: 3430 /* Convert 160 MHz channel width to new style as interop 3431 * workaround. 3432 */ 3433 he_6ghz_op->control = 3434 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3435 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 3436 if (chandef->chan->center_freq < chandef->center_freq1) 3437 he_6ghz_op->ccfs0 -= 8; 3438 else 3439 he_6ghz_op->ccfs0 += 8; 3440 fallthrough; 3441 case NL80211_CHAN_WIDTH_80P80: 3442 he_6ghz_op->control = 3443 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3444 break; 3445 case NL80211_CHAN_WIDTH_80: 3446 he_6ghz_op->control = 3447 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 3448 break; 3449 case NL80211_CHAN_WIDTH_40: 3450 he_6ghz_op->control = 3451 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 3452 break; 3453 default: 3454 he_6ghz_op->control = 3455 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 3456 break; 3457 } 3458 3459 pos += sizeof(struct ieee80211_he_6ghz_oper); 3460 3461 out: 3462 return pos; 3463 } 3464 3465 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 3466 struct cfg80211_chan_def *chandef) 3467 { 3468 enum nl80211_channel_type channel_type; 3469 3470 if (!ht_oper) 3471 return false; 3472 3473 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 3474 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 3475 channel_type = NL80211_CHAN_HT20; 3476 break; 3477 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 3478 channel_type = NL80211_CHAN_HT40PLUS; 3479 break; 3480 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 3481 channel_type = NL80211_CHAN_HT40MINUS; 3482 break; 3483 default: 3484 return false; 3485 } 3486 3487 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 3488 return true; 3489 } 3490 3491 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 3492 const struct ieee80211_vht_operation *oper, 3493 const struct ieee80211_ht_operation *htop, 3494 struct cfg80211_chan_def *chandef) 3495 { 3496 struct cfg80211_chan_def new = *chandef; 3497 int cf0, cf1; 3498 int ccfs0, ccfs1, ccfs2; 3499 int ccf0, ccf1; 3500 u32 vht_cap; 3501 bool support_80_80 = false; 3502 bool support_160 = false; 3503 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 3504 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 3505 u8 supp_chwidth = u32_get_bits(vht_cap_info, 3506 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 3507 3508 if (!oper || !htop) 3509 return false; 3510 3511 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 3512 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 3513 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 3514 support_80_80 = ((vht_cap & 3515 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 3516 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 3517 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 3518 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 3519 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 3520 ccfs0 = oper->center_freq_seg0_idx; 3521 ccfs1 = oper->center_freq_seg1_idx; 3522 ccfs2 = (le16_to_cpu(htop->operation_mode) & 3523 IEEE80211_HT_OP_MODE_CCFS2_MASK) 3524 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 3525 3526 ccf0 = ccfs0; 3527 3528 /* if not supported, parse as though we didn't understand it */ 3529 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 3530 ext_nss_bw_supp = 0; 3531 3532 /* 3533 * Cf. IEEE 802.11 Table 9-250 3534 * 3535 * We really just consider that because it's inefficient to connect 3536 * at a higher bandwidth than we'll actually be able to use. 3537 */ 3538 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 3539 default: 3540 case 0x00: 3541 ccf1 = 0; 3542 support_160 = false; 3543 support_80_80 = false; 3544 break; 3545 case 0x01: 3546 support_80_80 = false; 3547 fallthrough; 3548 case 0x02: 3549 case 0x03: 3550 ccf1 = ccfs2; 3551 break; 3552 case 0x10: 3553 ccf1 = ccfs1; 3554 break; 3555 case 0x11: 3556 case 0x12: 3557 if (!ccfs1) 3558 ccf1 = ccfs2; 3559 else 3560 ccf1 = ccfs1; 3561 break; 3562 case 0x13: 3563 case 0x20: 3564 case 0x23: 3565 ccf1 = ccfs1; 3566 break; 3567 } 3568 3569 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3570 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3571 3572 switch (oper->chan_width) { 3573 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3574 /* just use HT information directly */ 3575 break; 3576 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3577 new.width = NL80211_CHAN_WIDTH_80; 3578 new.center_freq1 = cf0; 3579 /* If needed, adjust based on the newer interop workaround. */ 3580 if (ccf1) { 3581 unsigned int diff; 3582 3583 diff = abs(ccf1 - ccf0); 3584 if ((diff == 8) && support_160) { 3585 new.width = NL80211_CHAN_WIDTH_160; 3586 new.center_freq1 = cf1; 3587 } else if ((diff > 8) && support_80_80) { 3588 new.width = NL80211_CHAN_WIDTH_80P80; 3589 new.center_freq2 = cf1; 3590 } 3591 } 3592 break; 3593 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3594 /* deprecated encoding */ 3595 new.width = NL80211_CHAN_WIDTH_160; 3596 new.center_freq1 = cf0; 3597 break; 3598 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3599 /* deprecated encoding */ 3600 new.width = NL80211_CHAN_WIDTH_80P80; 3601 new.center_freq1 = cf0; 3602 new.center_freq2 = cf1; 3603 break; 3604 default: 3605 return false; 3606 } 3607 3608 if (!cfg80211_chandef_valid(&new)) 3609 return false; 3610 3611 *chandef = new; 3612 return true; 3613 } 3614 3615 void ieee80211_chandef_eht_oper(const struct ieee80211_eht_operation *eht_oper, 3616 bool support_160, bool support_320, 3617 struct cfg80211_chan_def *chandef) 3618 { 3619 struct ieee80211_eht_operation_info *info = (void *)eht_oper->optional; 3620 3621 chandef->center_freq1 = 3622 ieee80211_channel_to_frequency(info->ccfs0, 3623 chandef->chan->band); 3624 3625 switch (u8_get_bits(info->control, 3626 IEEE80211_EHT_OPER_CHAN_WIDTH)) { 3627 case IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ: 3628 chandef->width = NL80211_CHAN_WIDTH_20; 3629 break; 3630 case IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ: 3631 chandef->width = NL80211_CHAN_WIDTH_40; 3632 break; 3633 case IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ: 3634 chandef->width = NL80211_CHAN_WIDTH_80; 3635 break; 3636 case IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ: 3637 if (support_160) { 3638 chandef->width = NL80211_CHAN_WIDTH_160; 3639 chandef->center_freq1 = 3640 ieee80211_channel_to_frequency(info->ccfs1, 3641 chandef->chan->band); 3642 } else { 3643 chandef->width = NL80211_CHAN_WIDTH_80; 3644 } 3645 break; 3646 case IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ: 3647 if (support_320) { 3648 chandef->width = NL80211_CHAN_WIDTH_320; 3649 chandef->center_freq1 = 3650 ieee80211_channel_to_frequency(info->ccfs1, 3651 chandef->chan->band); 3652 } else if (support_160) { 3653 chandef->width = NL80211_CHAN_WIDTH_160; 3654 } else { 3655 chandef->width = NL80211_CHAN_WIDTH_80; 3656 3657 if (chandef->center_freq1 > chandef->chan->center_freq) 3658 chandef->center_freq1 -= 40; 3659 else 3660 chandef->center_freq1 += 40; 3661 } 3662 break; 3663 } 3664 } 3665 3666 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata, 3667 const struct ieee80211_he_operation *he_oper, 3668 const struct ieee80211_eht_operation *eht_oper, 3669 struct cfg80211_chan_def *chandef) 3670 { 3671 struct ieee80211_local *local = sdata->local; 3672 struct ieee80211_supported_band *sband; 3673 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3674 const struct ieee80211_sta_he_cap *he_cap; 3675 const struct ieee80211_sta_eht_cap *eht_cap; 3676 struct cfg80211_chan_def he_chandef = *chandef; 3677 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3678 struct ieee80211_bss_conf *bss_conf = &sdata->vif.bss_conf; 3679 bool support_80_80, support_160, support_320; 3680 u8 he_phy_cap, eht_phy_cap; 3681 u32 freq; 3682 3683 if (chandef->chan->band != NL80211_BAND_6GHZ) 3684 return true; 3685 3686 sband = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3687 3688 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 3689 if (!he_cap) { 3690 sdata_info(sdata, "Missing iftype sband data/HE cap"); 3691 return false; 3692 } 3693 3694 he_phy_cap = he_cap->he_cap_elem.phy_cap_info[0]; 3695 support_160 = 3696 he_phy_cap & 3697 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 3698 support_80_80 = 3699 he_phy_cap & 3700 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 3701 3702 if (!he_oper) { 3703 sdata_info(sdata, 3704 "HE is not advertised on (on %d MHz), expect issues\n", 3705 chandef->chan->center_freq); 3706 return false; 3707 } 3708 3709 eht_cap = ieee80211_get_eht_iftype_cap(sband, iftype); 3710 if (!eht_cap) { 3711 sdata_info(sdata, "Missing iftype sband data/EHT cap"); 3712 eht_oper = NULL; 3713 } 3714 3715 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3716 3717 if (!he_6ghz_oper) { 3718 sdata_info(sdata, 3719 "HE 6GHz operation missing (on %d MHz), expect issues\n", 3720 chandef->chan->center_freq); 3721 return false; 3722 } 3723 3724 /* 3725 * The EHT operation IE does not contain the primary channel so the 3726 * primary channel frequency should be taken from the 6 GHz operation 3727 * information. 3728 */ 3729 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3730 NL80211_BAND_6GHZ); 3731 he_chandef.chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq); 3732 3733 switch (u8_get_bits(he_6ghz_oper->control, 3734 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) { 3735 case IEEE80211_6GHZ_CTRL_REG_LPI_AP: 3736 bss_conf->power_type = IEEE80211_REG_LPI_AP; 3737 break; 3738 case IEEE80211_6GHZ_CTRL_REG_SP_AP: 3739 bss_conf->power_type = IEEE80211_REG_SP_AP; 3740 break; 3741 default: 3742 bss_conf->power_type = IEEE80211_REG_UNSET_AP; 3743 break; 3744 } 3745 3746 if (!eht_oper || 3747 !(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) { 3748 switch (u8_get_bits(he_6ghz_oper->control, 3749 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3750 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3751 he_chandef.width = NL80211_CHAN_WIDTH_20; 3752 break; 3753 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3754 he_chandef.width = NL80211_CHAN_WIDTH_40; 3755 break; 3756 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3757 he_chandef.width = NL80211_CHAN_WIDTH_80; 3758 break; 3759 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3760 he_chandef.width = NL80211_CHAN_WIDTH_80; 3761 if (!he_6ghz_oper->ccfs1) 3762 break; 3763 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) { 3764 if (support_160) 3765 he_chandef.width = NL80211_CHAN_WIDTH_160; 3766 } else { 3767 if (support_80_80) 3768 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3769 } 3770 break; 3771 } 3772 3773 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3774 he_chandef.center_freq1 = 3775 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3776 NL80211_BAND_6GHZ); 3777 } else { 3778 he_chandef.center_freq1 = 3779 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3780 NL80211_BAND_6GHZ); 3781 if (support_80_80 || support_160) 3782 he_chandef.center_freq2 = 3783 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3784 NL80211_BAND_6GHZ); 3785 } 3786 } else { 3787 eht_phy_cap = eht_cap->eht_cap_elem.phy_cap_info[0]; 3788 support_320 = 3789 eht_phy_cap & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ; 3790 3791 ieee80211_chandef_eht_oper(eht_oper, support_160, 3792 support_320, &he_chandef); 3793 } 3794 3795 if (!cfg80211_chandef_valid(&he_chandef)) { 3796 sdata_info(sdata, 3797 "HE 6GHz operation resulted in invalid chandef: %d MHz/%d/%d MHz/%d MHz\n", 3798 he_chandef.chan ? he_chandef.chan->center_freq : 0, 3799 he_chandef.width, 3800 he_chandef.center_freq1, 3801 he_chandef.center_freq2); 3802 return false; 3803 } 3804 3805 *chandef = he_chandef; 3806 3807 return true; 3808 } 3809 3810 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, 3811 struct cfg80211_chan_def *chandef) 3812 { 3813 u32 oper_freq; 3814 3815 if (!oper) 3816 return false; 3817 3818 switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { 3819 case IEEE80211_S1G_CHANWIDTH_1MHZ: 3820 chandef->width = NL80211_CHAN_WIDTH_1; 3821 break; 3822 case IEEE80211_S1G_CHANWIDTH_2MHZ: 3823 chandef->width = NL80211_CHAN_WIDTH_2; 3824 break; 3825 case IEEE80211_S1G_CHANWIDTH_4MHZ: 3826 chandef->width = NL80211_CHAN_WIDTH_4; 3827 break; 3828 case IEEE80211_S1G_CHANWIDTH_8MHZ: 3829 chandef->width = NL80211_CHAN_WIDTH_8; 3830 break; 3831 case IEEE80211_S1G_CHANWIDTH_16MHZ: 3832 chandef->width = NL80211_CHAN_WIDTH_16; 3833 break; 3834 default: 3835 return false; 3836 } 3837 3838 oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch, 3839 NL80211_BAND_S1GHZ); 3840 chandef->center_freq1 = KHZ_TO_MHZ(oper_freq); 3841 chandef->freq1_offset = oper_freq % 1000; 3842 3843 return true; 3844 } 3845 3846 int ieee80211_parse_bitrates(enum nl80211_chan_width width, 3847 const struct ieee80211_supported_band *sband, 3848 const u8 *srates, int srates_len, u32 *rates) 3849 { 3850 u32 rate_flags = ieee80211_chanwidth_rate_flags(width); 3851 int shift = ieee80211_chanwidth_get_shift(width); 3852 struct ieee80211_rate *br; 3853 int brate, rate, i, j, count = 0; 3854 3855 *rates = 0; 3856 3857 for (i = 0; i < srates_len; i++) { 3858 rate = srates[i] & 0x7f; 3859 3860 for (j = 0; j < sband->n_bitrates; j++) { 3861 br = &sband->bitrates[j]; 3862 if ((rate_flags & br->flags) != rate_flags) 3863 continue; 3864 3865 brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5); 3866 if (brate == rate) { 3867 *rates |= BIT(j); 3868 count++; 3869 break; 3870 } 3871 } 3872 } 3873 return count; 3874 } 3875 3876 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, 3877 struct sk_buff *skb, bool need_basic, 3878 enum nl80211_band band) 3879 { 3880 struct ieee80211_local *local = sdata->local; 3881 struct ieee80211_supported_band *sband; 3882 int rate, shift; 3883 u8 i, rates, *pos; 3884 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3885 u32 rate_flags; 3886 3887 shift = ieee80211_vif_get_shift(&sdata->vif); 3888 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3889 sband = local->hw.wiphy->bands[band]; 3890 rates = 0; 3891 for (i = 0; i < sband->n_bitrates; i++) { 3892 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3893 continue; 3894 rates++; 3895 } 3896 if (rates > 8) 3897 rates = 8; 3898 3899 if (skb_tailroom(skb) < rates + 2) 3900 return -ENOMEM; 3901 3902 pos = skb_put(skb, rates + 2); 3903 *pos++ = WLAN_EID_SUPP_RATES; 3904 *pos++ = rates; 3905 for (i = 0; i < rates; i++) { 3906 u8 basic = 0; 3907 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3908 continue; 3909 3910 if (need_basic && basic_rates & BIT(i)) 3911 basic = 0x80; 3912 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3913 5 * (1 << shift)); 3914 *pos++ = basic | (u8) rate; 3915 } 3916 3917 return 0; 3918 } 3919 3920 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, 3921 struct sk_buff *skb, bool need_basic, 3922 enum nl80211_band band) 3923 { 3924 struct ieee80211_local *local = sdata->local; 3925 struct ieee80211_supported_band *sband; 3926 int rate, shift; 3927 u8 i, exrates, *pos; 3928 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3929 u32 rate_flags; 3930 3931 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3932 shift = ieee80211_vif_get_shift(&sdata->vif); 3933 3934 sband = local->hw.wiphy->bands[band]; 3935 exrates = 0; 3936 for (i = 0; i < sband->n_bitrates; i++) { 3937 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3938 continue; 3939 exrates++; 3940 } 3941 3942 if (exrates > 8) 3943 exrates -= 8; 3944 else 3945 exrates = 0; 3946 3947 if (skb_tailroom(skb) < exrates + 2) 3948 return -ENOMEM; 3949 3950 if (exrates) { 3951 pos = skb_put(skb, exrates + 2); 3952 *pos++ = WLAN_EID_EXT_SUPP_RATES; 3953 *pos++ = exrates; 3954 for (i = 8; i < sband->n_bitrates; i++) { 3955 u8 basic = 0; 3956 if ((rate_flags & sband->bitrates[i].flags) 3957 != rate_flags) 3958 continue; 3959 if (need_basic && basic_rates & BIT(i)) 3960 basic = 0x80; 3961 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3962 5 * (1 << shift)); 3963 *pos++ = basic | (u8) rate; 3964 } 3965 } 3966 return 0; 3967 } 3968 3969 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 3970 { 3971 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 3972 3973 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) 3974 return 0; 3975 3976 return -ewma_beacon_signal_read(&sdata->deflink.u.mgd.ave_beacon_signal); 3977 } 3978 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 3979 3980 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 3981 { 3982 if (!mcs) 3983 return 1; 3984 3985 /* TODO: consider rx_highest */ 3986 3987 if (mcs->rx_mask[3]) 3988 return 4; 3989 if (mcs->rx_mask[2]) 3990 return 3; 3991 if (mcs->rx_mask[1]) 3992 return 2; 3993 return 1; 3994 } 3995 3996 /** 3997 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 3998 * @local: mac80211 hw info struct 3999 * @status: RX status 4000 * @mpdu_len: total MPDU length (including FCS) 4001 * @mpdu_offset: offset into MPDU to calculate timestamp at 4002 * 4003 * This function calculates the RX timestamp at the given MPDU offset, taking 4004 * into account what the RX timestamp was. An offset of 0 will just normalize 4005 * the timestamp to TSF at beginning of MPDU reception. 4006 */ 4007 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 4008 struct ieee80211_rx_status *status, 4009 unsigned int mpdu_len, 4010 unsigned int mpdu_offset) 4011 { 4012 u64 ts = status->mactime; 4013 struct rate_info ri; 4014 u16 rate; 4015 u8 n_ltf; 4016 4017 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 4018 return 0; 4019 4020 memset(&ri, 0, sizeof(ri)); 4021 4022 ri.bw = status->bw; 4023 4024 /* Fill cfg80211 rate info */ 4025 switch (status->encoding) { 4026 case RX_ENC_EHT: 4027 ri.flags |= RATE_INFO_FLAGS_EHT_MCS; 4028 ri.mcs = status->rate_idx; 4029 ri.nss = status->nss; 4030 ri.eht_ru_alloc = status->eht.ru; 4031 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4032 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4033 /* TODO/FIXME: is this right? handle other PPDUs */ 4034 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4035 mpdu_offset += 2; 4036 ts += 36; 4037 } 4038 break; 4039 case RX_ENC_HE: 4040 ri.flags |= RATE_INFO_FLAGS_HE_MCS; 4041 ri.mcs = status->rate_idx; 4042 ri.nss = status->nss; 4043 ri.he_ru_alloc = status->he_ru; 4044 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4045 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4046 4047 /* 4048 * See P802.11ax_D6.0, section 27.3.4 for 4049 * VHT PPDU format. 4050 */ 4051 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4052 mpdu_offset += 2; 4053 ts += 36; 4054 4055 /* 4056 * TODO: 4057 * For HE MU PPDU, add the HE-SIG-B. 4058 * For HE ER PPDU, add 8us for the HE-SIG-A. 4059 * For HE TB PPDU, add 4us for the HE-STF. 4060 * Add the HE-LTF durations - variable. 4061 */ 4062 } 4063 4064 break; 4065 case RX_ENC_HT: 4066 ri.mcs = status->rate_idx; 4067 ri.flags |= RATE_INFO_FLAGS_MCS; 4068 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4069 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4070 4071 /* 4072 * See P802.11REVmd_D3.0, section 19.3.2 for 4073 * HT PPDU format. 4074 */ 4075 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4076 mpdu_offset += 2; 4077 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 4078 ts += 24; 4079 else 4080 ts += 32; 4081 4082 /* 4083 * Add Data HT-LTFs per streams 4084 * TODO: add Extension HT-LTFs, 4us per LTF 4085 */ 4086 n_ltf = ((ri.mcs >> 3) & 3) + 1; 4087 n_ltf = n_ltf == 3 ? 4 : n_ltf; 4088 ts += n_ltf * 4; 4089 } 4090 4091 break; 4092 case RX_ENC_VHT: 4093 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 4094 ri.mcs = status->rate_idx; 4095 ri.nss = status->nss; 4096 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4097 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4098 4099 /* 4100 * See P802.11REVmd_D3.0, section 21.3.2 for 4101 * VHT PPDU format. 4102 */ 4103 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4104 mpdu_offset += 2; 4105 ts += 36; 4106 4107 /* 4108 * Add VHT-LTFs per streams 4109 */ 4110 n_ltf = (ri.nss != 1) && (ri.nss % 2) ? 4111 ri.nss + 1 : ri.nss; 4112 ts += 4 * n_ltf; 4113 } 4114 4115 break; 4116 default: 4117 WARN_ON(1); 4118 fallthrough; 4119 case RX_ENC_LEGACY: { 4120 struct ieee80211_supported_band *sband; 4121 int shift = 0; 4122 int bitrate; 4123 4124 switch (status->bw) { 4125 case RATE_INFO_BW_10: 4126 shift = 1; 4127 break; 4128 case RATE_INFO_BW_5: 4129 shift = 2; 4130 break; 4131 } 4132 4133 sband = local->hw.wiphy->bands[status->band]; 4134 bitrate = sband->bitrates[status->rate_idx].bitrate; 4135 ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift)); 4136 4137 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4138 if (status->band == NL80211_BAND_5GHZ) { 4139 ts += 20 << shift; 4140 mpdu_offset += 2; 4141 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 4142 ts += 96; 4143 } else { 4144 ts += 192; 4145 } 4146 } 4147 break; 4148 } 4149 } 4150 4151 rate = cfg80211_calculate_bitrate(&ri); 4152 if (WARN_ONCE(!rate, 4153 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 4154 (unsigned long long)status->flag, status->rate_idx, 4155 status->nss)) 4156 return 0; 4157 4158 /* rewind from end of MPDU */ 4159 if (status->flag & RX_FLAG_MACTIME_END) 4160 ts -= mpdu_len * 8 * 10 / rate; 4161 4162 ts += mpdu_offset * 8 * 10 / rate; 4163 4164 return ts; 4165 } 4166 4167 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) 4168 { 4169 struct ieee80211_sub_if_data *sdata; 4170 struct cfg80211_chan_def chandef; 4171 4172 /* for interface list, to avoid linking iflist_mtx and chanctx_mtx */ 4173 lockdep_assert_wiphy(local->hw.wiphy); 4174 4175 mutex_lock(&local->mtx); 4176 list_for_each_entry(sdata, &local->interfaces, list) { 4177 /* it might be waiting for the local->mtx, but then 4178 * by the time it gets it, sdata->wdev.cac_started 4179 * will no longer be true 4180 */ 4181 cancel_delayed_work(&sdata->deflink.dfs_cac_timer_work); 4182 4183 if (sdata->wdev.cac_started) { 4184 chandef = sdata->vif.bss_conf.chandef; 4185 ieee80211_link_release_channel(&sdata->deflink); 4186 cfg80211_cac_event(sdata->dev, 4187 &chandef, 4188 NL80211_RADAR_CAC_ABORTED, 4189 GFP_KERNEL); 4190 } 4191 } 4192 mutex_unlock(&local->mtx); 4193 } 4194 4195 void ieee80211_dfs_radar_detected_work(struct work_struct *work) 4196 { 4197 struct ieee80211_local *local = 4198 container_of(work, struct ieee80211_local, radar_detected_work); 4199 struct cfg80211_chan_def chandef = local->hw.conf.chandef; 4200 struct ieee80211_chanctx *ctx; 4201 int num_chanctx = 0; 4202 4203 mutex_lock(&local->chanctx_mtx); 4204 list_for_each_entry(ctx, &local->chanctx_list, list) { 4205 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 4206 continue; 4207 4208 num_chanctx++; 4209 chandef = ctx->conf.def; 4210 } 4211 mutex_unlock(&local->chanctx_mtx); 4212 4213 wiphy_lock(local->hw.wiphy); 4214 ieee80211_dfs_cac_cancel(local); 4215 wiphy_unlock(local->hw.wiphy); 4216 4217 if (num_chanctx > 1) 4218 /* XXX: multi-channel is not supported yet */ 4219 WARN_ON(1); 4220 else 4221 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 4222 } 4223 4224 void ieee80211_radar_detected(struct ieee80211_hw *hw) 4225 { 4226 struct ieee80211_local *local = hw_to_local(hw); 4227 4228 trace_api_radar_detected(local); 4229 4230 schedule_work(&local->radar_detected_work); 4231 } 4232 EXPORT_SYMBOL(ieee80211_radar_detected); 4233 4234 ieee80211_conn_flags_t ieee80211_chandef_downgrade(struct cfg80211_chan_def *c) 4235 { 4236 ieee80211_conn_flags_t ret; 4237 int tmp; 4238 4239 switch (c->width) { 4240 case NL80211_CHAN_WIDTH_20: 4241 c->width = NL80211_CHAN_WIDTH_20_NOHT; 4242 ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT; 4243 break; 4244 case NL80211_CHAN_WIDTH_40: 4245 c->width = NL80211_CHAN_WIDTH_20; 4246 c->center_freq1 = c->chan->center_freq; 4247 ret = IEEE80211_CONN_DISABLE_40MHZ | 4248 IEEE80211_CONN_DISABLE_VHT; 4249 break; 4250 case NL80211_CHAN_WIDTH_80: 4251 tmp = (30 + c->chan->center_freq - c->center_freq1)/20; 4252 /* n_P40 */ 4253 tmp /= 2; 4254 /* freq_P40 */ 4255 c->center_freq1 = c->center_freq1 - 20 + 40 * tmp; 4256 c->width = NL80211_CHAN_WIDTH_40; 4257 ret = IEEE80211_CONN_DISABLE_VHT; 4258 break; 4259 case NL80211_CHAN_WIDTH_80P80: 4260 c->center_freq2 = 0; 4261 c->width = NL80211_CHAN_WIDTH_80; 4262 ret = IEEE80211_CONN_DISABLE_80P80MHZ | 4263 IEEE80211_CONN_DISABLE_160MHZ; 4264 break; 4265 case NL80211_CHAN_WIDTH_160: 4266 /* n_P20 */ 4267 tmp = (70 + c->chan->center_freq - c->center_freq1)/20; 4268 /* n_P80 */ 4269 tmp /= 4; 4270 c->center_freq1 = c->center_freq1 - 40 + 80 * tmp; 4271 c->width = NL80211_CHAN_WIDTH_80; 4272 ret = IEEE80211_CONN_DISABLE_80P80MHZ | 4273 IEEE80211_CONN_DISABLE_160MHZ; 4274 break; 4275 case NL80211_CHAN_WIDTH_320: 4276 /* n_P20 */ 4277 tmp = (150 + c->chan->center_freq - c->center_freq1) / 20; 4278 /* n_P160 */ 4279 tmp /= 8; 4280 c->center_freq1 = c->center_freq1 - 80 + 160 * tmp; 4281 c->width = NL80211_CHAN_WIDTH_160; 4282 ret = IEEE80211_CONN_DISABLE_320MHZ; 4283 break; 4284 default: 4285 case NL80211_CHAN_WIDTH_20_NOHT: 4286 WARN_ON_ONCE(1); 4287 c->width = NL80211_CHAN_WIDTH_20_NOHT; 4288 ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT; 4289 break; 4290 case NL80211_CHAN_WIDTH_1: 4291 case NL80211_CHAN_WIDTH_2: 4292 case NL80211_CHAN_WIDTH_4: 4293 case NL80211_CHAN_WIDTH_8: 4294 case NL80211_CHAN_WIDTH_16: 4295 case NL80211_CHAN_WIDTH_5: 4296 case NL80211_CHAN_WIDTH_10: 4297 WARN_ON_ONCE(1); 4298 /* keep c->width */ 4299 ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT; 4300 break; 4301 } 4302 4303 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 4304 4305 return ret; 4306 } 4307 4308 /* 4309 * Returns true if smps_mode_new is strictly more restrictive than 4310 * smps_mode_old. 4311 */ 4312 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 4313 enum ieee80211_smps_mode smps_mode_new) 4314 { 4315 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 4316 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 4317 return false; 4318 4319 switch (smps_mode_old) { 4320 case IEEE80211_SMPS_STATIC: 4321 return false; 4322 case IEEE80211_SMPS_DYNAMIC: 4323 return smps_mode_new == IEEE80211_SMPS_STATIC; 4324 case IEEE80211_SMPS_OFF: 4325 return smps_mode_new != IEEE80211_SMPS_OFF; 4326 default: 4327 WARN_ON(1); 4328 } 4329 4330 return false; 4331 } 4332 4333 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 4334 struct cfg80211_csa_settings *csa_settings) 4335 { 4336 struct sk_buff *skb; 4337 struct ieee80211_mgmt *mgmt; 4338 struct ieee80211_local *local = sdata->local; 4339 int freq; 4340 int hdr_len = offsetofend(struct ieee80211_mgmt, 4341 u.action.u.chan_switch); 4342 u8 *pos; 4343 4344 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 4345 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 4346 return -EOPNOTSUPP; 4347 4348 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 4349 5 + /* channel switch announcement element */ 4350 3 + /* secondary channel offset element */ 4351 5 + /* wide bandwidth channel switch announcement */ 4352 8); /* mesh channel switch parameters element */ 4353 if (!skb) 4354 return -ENOMEM; 4355 4356 skb_reserve(skb, local->tx_headroom); 4357 mgmt = skb_put_zero(skb, hdr_len); 4358 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 4359 IEEE80211_STYPE_ACTION); 4360 4361 eth_broadcast_addr(mgmt->da); 4362 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 4363 if (ieee80211_vif_is_mesh(&sdata->vif)) { 4364 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 4365 } else { 4366 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 4367 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 4368 } 4369 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 4370 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 4371 pos = skb_put(skb, 5); 4372 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 4373 *pos++ = 3; /* IE length */ 4374 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 4375 freq = csa_settings->chandef.chan->center_freq; 4376 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 4377 *pos++ = csa_settings->count; /* count */ 4378 4379 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 4380 enum nl80211_channel_type ch_type; 4381 4382 skb_put(skb, 3); 4383 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 4384 *pos++ = 1; /* IE length */ 4385 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 4386 if (ch_type == NL80211_CHAN_HT40PLUS) 4387 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 4388 else 4389 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 4390 } 4391 4392 if (ieee80211_vif_is_mesh(&sdata->vif)) { 4393 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 4394 4395 skb_put(skb, 8); 4396 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 4397 *pos++ = 6; /* IE length */ 4398 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 4399 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 4400 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 4401 *pos++ |= csa_settings->block_tx ? 4402 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 4403 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 4404 pos += 2; 4405 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 4406 pos += 2; 4407 } 4408 4409 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 4410 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 4411 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 4412 skb_put(skb, 5); 4413 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 4414 } 4415 4416 ieee80211_tx_skb(sdata, skb); 4417 return 0; 4418 } 4419 4420 static bool 4421 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 4422 { 4423 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 4424 int skip; 4425 4426 if (end > 0) 4427 return false; 4428 4429 /* One shot NOA */ 4430 if (data->count[i] == 1) 4431 return false; 4432 4433 if (data->desc[i].interval == 0) 4434 return false; 4435 4436 /* End time is in the past, check for repetitions */ 4437 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 4438 if (data->count[i] < 255) { 4439 if (data->count[i] <= skip) { 4440 data->count[i] = 0; 4441 return false; 4442 } 4443 4444 data->count[i] -= skip; 4445 } 4446 4447 data->desc[i].start += skip * data->desc[i].interval; 4448 4449 return true; 4450 } 4451 4452 static bool 4453 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 4454 s32 *offset) 4455 { 4456 bool ret = false; 4457 int i; 4458 4459 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4460 s32 cur; 4461 4462 if (!data->count[i]) 4463 continue; 4464 4465 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 4466 ret = true; 4467 4468 cur = data->desc[i].start - tsf; 4469 if (cur > *offset) 4470 continue; 4471 4472 cur = data->desc[i].start + data->desc[i].duration - tsf; 4473 if (cur > *offset) 4474 *offset = cur; 4475 } 4476 4477 return ret; 4478 } 4479 4480 static u32 4481 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 4482 { 4483 s32 offset = 0; 4484 int tries = 0; 4485 /* 4486 * arbitrary limit, used to avoid infinite loops when combined NoA 4487 * descriptors cover the full time period. 4488 */ 4489 int max_tries = 5; 4490 4491 ieee80211_extend_absent_time(data, tsf, &offset); 4492 do { 4493 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 4494 break; 4495 4496 tries++; 4497 } while (tries < max_tries); 4498 4499 return offset; 4500 } 4501 4502 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 4503 { 4504 u32 next_offset = BIT(31) - 1; 4505 int i; 4506 4507 data->absent = 0; 4508 data->has_next_tsf = false; 4509 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4510 s32 start; 4511 4512 if (!data->count[i]) 4513 continue; 4514 4515 ieee80211_extend_noa_desc(data, tsf, i); 4516 start = data->desc[i].start - tsf; 4517 if (start <= 0) 4518 data->absent |= BIT(i); 4519 4520 if (next_offset > start) 4521 next_offset = start; 4522 4523 data->has_next_tsf = true; 4524 } 4525 4526 if (data->absent) 4527 next_offset = ieee80211_get_noa_absent_time(data, tsf); 4528 4529 data->next_tsf = tsf + next_offset; 4530 } 4531 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 4532 4533 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 4534 struct ieee80211_noa_data *data, u32 tsf) 4535 { 4536 int ret = 0; 4537 int i; 4538 4539 memset(data, 0, sizeof(*data)); 4540 4541 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4542 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 4543 4544 if (!desc->count || !desc->duration) 4545 continue; 4546 4547 data->count[i] = desc->count; 4548 data->desc[i].start = le32_to_cpu(desc->start_time); 4549 data->desc[i].duration = le32_to_cpu(desc->duration); 4550 data->desc[i].interval = le32_to_cpu(desc->interval); 4551 4552 if (data->count[i] > 1 && 4553 data->desc[i].interval < data->desc[i].duration) 4554 continue; 4555 4556 ieee80211_extend_noa_desc(data, tsf, i); 4557 ret++; 4558 } 4559 4560 if (ret) 4561 ieee80211_update_p2p_noa(data, tsf); 4562 4563 return ret; 4564 } 4565 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 4566 4567 void ieee80211_recalc_dtim(struct ieee80211_local *local, 4568 struct ieee80211_sub_if_data *sdata) 4569 { 4570 u64 tsf = drv_get_tsf(local, sdata); 4571 u64 dtim_count = 0; 4572 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 4573 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 4574 struct ps_data *ps; 4575 u8 bcns_from_dtim; 4576 4577 if (tsf == -1ULL || !beacon_int || !dtim_period) 4578 return; 4579 4580 if (sdata->vif.type == NL80211_IFTYPE_AP || 4581 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 4582 if (!sdata->bss) 4583 return; 4584 4585 ps = &sdata->bss->ps; 4586 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 4587 ps = &sdata->u.mesh.ps; 4588 } else { 4589 return; 4590 } 4591 4592 /* 4593 * actually finds last dtim_count, mac80211 will update in 4594 * __beacon_add_tim(). 4595 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 4596 */ 4597 do_div(tsf, beacon_int); 4598 bcns_from_dtim = do_div(tsf, dtim_period); 4599 /* just had a DTIM */ 4600 if (!bcns_from_dtim) 4601 dtim_count = 0; 4602 else 4603 dtim_count = dtim_period - bcns_from_dtim; 4604 4605 ps->dtim_count = dtim_count; 4606 } 4607 4608 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 4609 struct ieee80211_chanctx *ctx) 4610 { 4611 struct ieee80211_link_data *link; 4612 u8 radar_detect = 0; 4613 4614 lockdep_assert_held(&local->chanctx_mtx); 4615 4616 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 4617 return 0; 4618 4619 list_for_each_entry(link, &ctx->reserved_links, reserved_chanctx_list) 4620 if (link->reserved_radar_required) 4621 radar_detect |= BIT(link->reserved_chandef.width); 4622 4623 /* 4624 * An in-place reservation context should not have any assigned vifs 4625 * until it replaces the other context. 4626 */ 4627 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 4628 !list_empty(&ctx->assigned_links)); 4629 4630 list_for_each_entry(link, &ctx->assigned_links, assigned_chanctx_list) { 4631 if (!link->radar_required) 4632 continue; 4633 4634 radar_detect |= 4635 BIT(link->conf->chandef.width); 4636 } 4637 4638 return radar_detect; 4639 } 4640 4641 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 4642 const struct cfg80211_chan_def *chandef, 4643 enum ieee80211_chanctx_mode chanmode, 4644 u8 radar_detect) 4645 { 4646 struct ieee80211_local *local = sdata->local; 4647 struct ieee80211_sub_if_data *sdata_iter; 4648 enum nl80211_iftype iftype = sdata->wdev.iftype; 4649 struct ieee80211_chanctx *ctx; 4650 int total = 1; 4651 struct iface_combination_params params = { 4652 .radar_detect = radar_detect, 4653 }; 4654 4655 lockdep_assert_held(&local->chanctx_mtx); 4656 4657 if (WARN_ON(hweight32(radar_detect) > 1)) 4658 return -EINVAL; 4659 4660 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4661 !chandef->chan)) 4662 return -EINVAL; 4663 4664 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 4665 return -EINVAL; 4666 4667 if (sdata->vif.type == NL80211_IFTYPE_AP || 4668 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 4669 /* 4670 * always passing this is harmless, since it'll be the 4671 * same value that cfg80211 finds if it finds the same 4672 * interface ... and that's always allowed 4673 */ 4674 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 4675 } 4676 4677 /* Always allow software iftypes */ 4678 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 4679 if (radar_detect) 4680 return -EINVAL; 4681 return 0; 4682 } 4683 4684 if (chandef) 4685 params.num_different_channels = 1; 4686 4687 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 4688 params.iftype_num[iftype] = 1; 4689 4690 list_for_each_entry(ctx, &local->chanctx_list, list) { 4691 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4692 continue; 4693 params.radar_detect |= 4694 ieee80211_chanctx_radar_detect(local, ctx); 4695 if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) { 4696 params.num_different_channels++; 4697 continue; 4698 } 4699 if (chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4700 cfg80211_chandef_compatible(chandef, 4701 &ctx->conf.def)) 4702 continue; 4703 params.num_different_channels++; 4704 } 4705 4706 list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) { 4707 struct wireless_dev *wdev_iter; 4708 4709 wdev_iter = &sdata_iter->wdev; 4710 4711 if (sdata_iter == sdata || 4712 !ieee80211_sdata_running(sdata_iter) || 4713 cfg80211_iftype_allowed(local->hw.wiphy, 4714 wdev_iter->iftype, 0, 1)) 4715 continue; 4716 4717 params.iftype_num[wdev_iter->iftype]++; 4718 total++; 4719 } 4720 4721 if (total == 1 && !params.radar_detect) 4722 return 0; 4723 4724 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4725 } 4726 4727 static void 4728 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4729 void *data) 4730 { 4731 u32 *max_num_different_channels = data; 4732 4733 *max_num_different_channels = max(*max_num_different_channels, 4734 c->num_different_channels); 4735 } 4736 4737 int ieee80211_max_num_channels(struct ieee80211_local *local) 4738 { 4739 struct ieee80211_sub_if_data *sdata; 4740 struct ieee80211_chanctx *ctx; 4741 u32 max_num_different_channels = 1; 4742 int err; 4743 struct iface_combination_params params = {0}; 4744 4745 lockdep_assert_held(&local->chanctx_mtx); 4746 4747 list_for_each_entry(ctx, &local->chanctx_list, list) { 4748 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4749 continue; 4750 4751 params.num_different_channels++; 4752 4753 params.radar_detect |= 4754 ieee80211_chanctx_radar_detect(local, ctx); 4755 } 4756 4757 list_for_each_entry_rcu(sdata, &local->interfaces, list) 4758 params.iftype_num[sdata->wdev.iftype]++; 4759 4760 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4761 ieee80211_iter_max_chans, 4762 &max_num_different_channels); 4763 if (err < 0) 4764 return err; 4765 4766 return max_num_different_channels; 4767 } 4768 4769 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, 4770 struct ieee80211_sta_s1g_cap *caps, 4771 struct sk_buff *skb) 4772 { 4773 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 4774 struct ieee80211_s1g_cap s1g_capab; 4775 u8 *pos; 4776 int i; 4777 4778 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 4779 return; 4780 4781 if (!caps->s1g) 4782 return; 4783 4784 memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); 4785 memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); 4786 4787 /* override the capability info */ 4788 for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { 4789 u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; 4790 4791 s1g_capab.capab_info[i] &= ~mask; 4792 s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; 4793 } 4794 4795 /* then MCS and NSS set */ 4796 for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { 4797 u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; 4798 4799 s1g_capab.supp_mcs_nss[i] &= ~mask; 4800 s1g_capab.supp_mcs_nss[i] |= 4801 ifmgd->s1g_capa.supp_mcs_nss[i] & mask; 4802 } 4803 4804 pos = skb_put(skb, 2 + sizeof(s1g_capab)); 4805 *pos++ = WLAN_EID_S1G_CAPABILITIES; 4806 *pos++ = sizeof(s1g_capab); 4807 4808 memcpy(pos, &s1g_capab, sizeof(s1g_capab)); 4809 } 4810 4811 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, 4812 struct sk_buff *skb) 4813 { 4814 u8 *pos = skb_put(skb, 3); 4815 4816 *pos++ = WLAN_EID_AID_REQUEST; 4817 *pos++ = 1; 4818 *pos++ = 0; 4819 } 4820 4821 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 4822 { 4823 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 4824 *buf++ = 7; /* len */ 4825 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 4826 *buf++ = 0x50; 4827 *buf++ = 0xf2; 4828 *buf++ = 2; /* WME */ 4829 *buf++ = 0; /* WME info */ 4830 *buf++ = 1; /* WME ver */ 4831 *buf++ = qosinfo; /* U-APSD no in use */ 4832 4833 return buf; 4834 } 4835 4836 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 4837 unsigned long *frame_cnt, 4838 unsigned long *byte_cnt) 4839 { 4840 struct txq_info *txqi = to_txq_info(txq); 4841 u32 frag_cnt = 0, frag_bytes = 0; 4842 struct sk_buff *skb; 4843 4844 skb_queue_walk(&txqi->frags, skb) { 4845 frag_cnt++; 4846 frag_bytes += skb->len; 4847 } 4848 4849 if (frame_cnt) 4850 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 4851 4852 if (byte_cnt) 4853 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 4854 } 4855 EXPORT_SYMBOL(ieee80211_txq_get_depth); 4856 4857 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 4858 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 4859 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 4860 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 4861 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 4862 }; 4863 4864 u16 ieee80211_encode_usf(int listen_interval) 4865 { 4866 static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; 4867 u16 ui, usf = 0; 4868 4869 /* find greatest USF */ 4870 while (usf < IEEE80211_MAX_USF) { 4871 if (listen_interval % listen_int_usf[usf + 1]) 4872 break; 4873 usf += 1; 4874 } 4875 ui = listen_interval / listen_int_usf[usf]; 4876 4877 /* error if there is a remainder. Should've been checked by user */ 4878 WARN_ON_ONCE(ui > IEEE80211_MAX_UI); 4879 listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | 4880 FIELD_PREP(LISTEN_INT_UI, ui); 4881 4882 return (u16) listen_interval; 4883 } 4884 4885 u8 ieee80211_ie_len_eht_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 4886 { 4887 const struct ieee80211_sta_he_cap *he_cap; 4888 const struct ieee80211_sta_eht_cap *eht_cap; 4889 struct ieee80211_supported_band *sband; 4890 bool is_ap; 4891 u8 n; 4892 4893 sband = ieee80211_get_sband(sdata); 4894 if (!sband) 4895 return 0; 4896 4897 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 4898 eht_cap = ieee80211_get_eht_iftype_cap(sband, iftype); 4899 if (!he_cap || !eht_cap) 4900 return 0; 4901 4902 is_ap = iftype == NL80211_IFTYPE_AP || 4903 iftype == NL80211_IFTYPE_P2P_GO; 4904 4905 n = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4906 &eht_cap->eht_cap_elem, 4907 is_ap); 4908 return 2 + 1 + 4909 sizeof(he_cap->he_cap_elem) + n + 4910 ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4911 eht_cap->eht_cap_elem.phy_cap_info); 4912 return 0; 4913 } 4914 4915 u8 *ieee80211_ie_build_eht_cap(u8 *pos, 4916 const struct ieee80211_sta_he_cap *he_cap, 4917 const struct ieee80211_sta_eht_cap *eht_cap, 4918 u8 *end, 4919 bool for_ap) 4920 { 4921 u8 mcs_nss_len, ppet_len; 4922 u8 ie_len; 4923 u8 *orig_pos = pos; 4924 4925 /* Make sure we have place for the IE */ 4926 if (!he_cap || !eht_cap) 4927 return orig_pos; 4928 4929 mcs_nss_len = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4930 &eht_cap->eht_cap_elem, 4931 for_ap); 4932 ppet_len = ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4933 eht_cap->eht_cap_elem.phy_cap_info); 4934 4935 ie_len = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + mcs_nss_len + ppet_len; 4936 if ((end - pos) < ie_len) 4937 return orig_pos; 4938 4939 *pos++ = WLAN_EID_EXTENSION; 4940 *pos++ = ie_len - 2; 4941 *pos++ = WLAN_EID_EXT_EHT_CAPABILITY; 4942 4943 /* Fixed data */ 4944 memcpy(pos, &eht_cap->eht_cap_elem, sizeof(eht_cap->eht_cap_elem)); 4945 pos += sizeof(eht_cap->eht_cap_elem); 4946 4947 memcpy(pos, &eht_cap->eht_mcs_nss_supp, mcs_nss_len); 4948 pos += mcs_nss_len; 4949 4950 if (ppet_len) { 4951 memcpy(pos, &eht_cap->eht_ppe_thres, ppet_len); 4952 pos += ppet_len; 4953 } 4954 4955 return pos; 4956 } 4957 4958 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos) 4959 { 4960 unsigned int elem_len; 4961 4962 if (!len_pos) 4963 return; 4964 4965 elem_len = skb->data + skb->len - len_pos - 1; 4966 4967 while (elem_len > 255) { 4968 /* this one is 255 */ 4969 *len_pos = 255; 4970 /* remaining data gets smaller */ 4971 elem_len -= 255; 4972 /* make space for the fragment ID/len in SKB */ 4973 skb_put(skb, 2); 4974 /* shift back the remaining data to place fragment ID/len */ 4975 memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len); 4976 /* place the fragment ID */ 4977 len_pos += 255 + 1; 4978 *len_pos = WLAN_EID_FRAGMENT; 4979 /* and point to fragment length to update later */ 4980 len_pos++; 4981 } 4982 4983 *len_pos = elem_len; 4984 } 4985