1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2020 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 28 #include "ieee80211_i.h" 29 #include "driver-ops.h" 30 #include "rate.h" 31 #include "mesh.h" 32 #include "wme.h" 33 #include "led.h" 34 #include "wep.h" 35 36 /* privid for wiphys to determine whether they belong to us or not */ 37 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 38 39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 40 { 41 struct ieee80211_local *local; 42 43 local = wiphy_priv(wiphy); 44 return &local->hw; 45 } 46 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 47 48 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 49 enum nl80211_iftype type) 50 { 51 __le16 fc = hdr->frame_control; 52 53 if (ieee80211_is_data(fc)) { 54 if (len < 24) /* drop incorrect hdr len (data) */ 55 return NULL; 56 57 if (ieee80211_has_a4(fc)) 58 return NULL; 59 if (ieee80211_has_tods(fc)) 60 return hdr->addr1; 61 if (ieee80211_has_fromds(fc)) 62 return hdr->addr2; 63 64 return hdr->addr3; 65 } 66 67 if (ieee80211_is_s1g_beacon(fc)) { 68 struct ieee80211_ext *ext = (void *) hdr; 69 70 return ext->u.s1g_beacon.sa; 71 } 72 73 if (ieee80211_is_mgmt(fc)) { 74 if (len < 24) /* drop incorrect hdr len (mgmt) */ 75 return NULL; 76 return hdr->addr3; 77 } 78 79 if (ieee80211_is_ctl(fc)) { 80 if (ieee80211_is_pspoll(fc)) 81 return hdr->addr1; 82 83 if (ieee80211_is_back_req(fc)) { 84 switch (type) { 85 case NL80211_IFTYPE_STATION: 86 return hdr->addr2; 87 case NL80211_IFTYPE_AP: 88 case NL80211_IFTYPE_AP_VLAN: 89 return hdr->addr1; 90 default: 91 break; /* fall through to the return */ 92 } 93 } 94 } 95 96 return NULL; 97 } 98 EXPORT_SYMBOL(ieee80211_get_bssid); 99 100 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 101 { 102 struct sk_buff *skb; 103 struct ieee80211_hdr *hdr; 104 105 skb_queue_walk(&tx->skbs, skb) { 106 hdr = (struct ieee80211_hdr *) skb->data; 107 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 108 } 109 } 110 111 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 112 int rate, int erp, int short_preamble, 113 int shift) 114 { 115 int dur; 116 117 /* calculate duration (in microseconds, rounded up to next higher 118 * integer if it includes a fractional microsecond) to send frame of 119 * len bytes (does not include FCS) at the given rate. Duration will 120 * also include SIFS. 121 * 122 * rate is in 100 kbps, so divident is multiplied by 10 in the 123 * DIV_ROUND_UP() operations. 124 * 125 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and 126 * is assumed to be 0 otherwise. 127 */ 128 129 if (band == NL80211_BAND_5GHZ || erp) { 130 /* 131 * OFDM: 132 * 133 * N_DBPS = DATARATE x 4 134 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 135 * (16 = SIGNAL time, 6 = tail bits) 136 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 137 * 138 * T_SYM = 4 usec 139 * 802.11a - 18.5.2: aSIFSTime = 16 usec 140 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 141 * signal ext = 6 usec 142 */ 143 dur = 16; /* SIFS + signal ext */ 144 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 145 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 146 147 /* IEEE 802.11-2012 18.3.2.4: all values above are: 148 * * times 4 for 5 MHz 149 * * times 2 for 10 MHz 150 */ 151 dur *= 1 << shift; 152 153 /* rates should already consider the channel bandwidth, 154 * don't apply divisor again. 155 */ 156 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 157 4 * rate); /* T_SYM x N_SYM */ 158 } else { 159 /* 160 * 802.11b or 802.11g with 802.11b compatibility: 161 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 162 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 163 * 164 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 165 * aSIFSTime = 10 usec 166 * aPreambleLength = 144 usec or 72 usec with short preamble 167 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 168 */ 169 dur = 10; /* aSIFSTime = 10 usec */ 170 dur += short_preamble ? (72 + 24) : (144 + 48); 171 172 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 173 } 174 175 return dur; 176 } 177 178 /* Exported duration function for driver use */ 179 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 180 struct ieee80211_vif *vif, 181 enum nl80211_band band, 182 size_t frame_len, 183 struct ieee80211_rate *rate) 184 { 185 struct ieee80211_sub_if_data *sdata; 186 u16 dur; 187 int erp, shift = 0; 188 bool short_preamble = false; 189 190 erp = 0; 191 if (vif) { 192 sdata = vif_to_sdata(vif); 193 short_preamble = sdata->vif.bss_conf.use_short_preamble; 194 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 195 erp = rate->flags & IEEE80211_RATE_ERP_G; 196 shift = ieee80211_vif_get_shift(vif); 197 } 198 199 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 200 short_preamble, shift); 201 202 return cpu_to_le16(dur); 203 } 204 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 205 206 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 207 struct ieee80211_vif *vif, size_t frame_len, 208 const struct ieee80211_tx_info *frame_txctl) 209 { 210 struct ieee80211_local *local = hw_to_local(hw); 211 struct ieee80211_rate *rate; 212 struct ieee80211_sub_if_data *sdata; 213 bool short_preamble; 214 int erp, shift = 0, bitrate; 215 u16 dur; 216 struct ieee80211_supported_band *sband; 217 218 sband = local->hw.wiphy->bands[frame_txctl->band]; 219 220 short_preamble = false; 221 222 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 223 224 erp = 0; 225 if (vif) { 226 sdata = vif_to_sdata(vif); 227 short_preamble = sdata->vif.bss_conf.use_short_preamble; 228 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 229 erp = rate->flags & IEEE80211_RATE_ERP_G; 230 shift = ieee80211_vif_get_shift(vif); 231 } 232 233 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 234 235 /* CTS duration */ 236 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 237 erp, short_preamble, shift); 238 /* Data frame duration */ 239 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 240 erp, short_preamble, shift); 241 /* ACK duration */ 242 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 243 erp, short_preamble, shift); 244 245 return cpu_to_le16(dur); 246 } 247 EXPORT_SYMBOL(ieee80211_rts_duration); 248 249 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 250 struct ieee80211_vif *vif, 251 size_t frame_len, 252 const struct ieee80211_tx_info *frame_txctl) 253 { 254 struct ieee80211_local *local = hw_to_local(hw); 255 struct ieee80211_rate *rate; 256 struct ieee80211_sub_if_data *sdata; 257 bool short_preamble; 258 int erp, shift = 0, bitrate; 259 u16 dur; 260 struct ieee80211_supported_band *sband; 261 262 sband = local->hw.wiphy->bands[frame_txctl->band]; 263 264 short_preamble = false; 265 266 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 267 erp = 0; 268 if (vif) { 269 sdata = vif_to_sdata(vif); 270 short_preamble = sdata->vif.bss_conf.use_short_preamble; 271 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 272 erp = rate->flags & IEEE80211_RATE_ERP_G; 273 shift = ieee80211_vif_get_shift(vif); 274 } 275 276 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 277 278 /* Data frame duration */ 279 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 280 erp, short_preamble, shift); 281 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 282 /* ACK duration */ 283 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 284 erp, short_preamble, shift); 285 } 286 287 return cpu_to_le16(dur); 288 } 289 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 290 291 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 292 { 293 struct ieee80211_local *local = sdata->local; 294 struct ieee80211_vif *vif = &sdata->vif; 295 struct fq *fq = &local->fq; 296 struct ps_data *ps = NULL; 297 struct txq_info *txqi; 298 struct sta_info *sta; 299 int i; 300 301 local_bh_disable(); 302 spin_lock(&fq->lock); 303 304 if (sdata->vif.type == NL80211_IFTYPE_AP) 305 ps = &sdata->bss->ps; 306 307 sdata->vif.txqs_stopped[ac] = false; 308 309 list_for_each_entry_rcu(sta, &local->sta_list, list) { 310 if (sdata != sta->sdata) 311 continue; 312 313 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 314 struct ieee80211_txq *txq = sta->sta.txq[i]; 315 316 if (!txq) 317 continue; 318 319 txqi = to_txq_info(txq); 320 321 if (ac != txq->ac) 322 continue; 323 324 if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, 325 &txqi->flags)) 326 continue; 327 328 spin_unlock(&fq->lock); 329 drv_wake_tx_queue(local, txqi); 330 spin_lock(&fq->lock); 331 } 332 } 333 334 if (!vif->txq) 335 goto out; 336 337 txqi = to_txq_info(vif->txq); 338 339 if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, &txqi->flags) || 340 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 341 goto out; 342 343 spin_unlock(&fq->lock); 344 345 drv_wake_tx_queue(local, txqi); 346 local_bh_enable(); 347 return; 348 out: 349 spin_unlock(&fq->lock); 350 local_bh_enable(); 351 } 352 353 static void 354 __releases(&local->queue_stop_reason_lock) 355 __acquires(&local->queue_stop_reason_lock) 356 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 357 { 358 struct ieee80211_sub_if_data *sdata; 359 int n_acs = IEEE80211_NUM_ACS; 360 int i; 361 362 rcu_read_lock(); 363 364 if (local->hw.queues < IEEE80211_NUM_ACS) 365 n_acs = 1; 366 367 for (i = 0; i < local->hw.queues; i++) { 368 if (local->queue_stop_reasons[i]) 369 continue; 370 371 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 372 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 373 int ac; 374 375 for (ac = 0; ac < n_acs; ac++) { 376 int ac_queue = sdata->vif.hw_queue[ac]; 377 378 if (ac_queue == i || 379 sdata->vif.cab_queue == i) 380 __ieee80211_wake_txqs(sdata, ac); 381 } 382 } 383 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 384 } 385 386 rcu_read_unlock(); 387 } 388 389 void ieee80211_wake_txqs(unsigned long data) 390 { 391 struct ieee80211_local *local = (struct ieee80211_local *)data; 392 unsigned long flags; 393 394 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 395 _ieee80211_wake_txqs(local, &flags); 396 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 397 } 398 399 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue) 400 { 401 struct ieee80211_sub_if_data *sdata; 402 int n_acs = IEEE80211_NUM_ACS; 403 404 if (local->ops->wake_tx_queue) 405 return; 406 407 if (local->hw.queues < IEEE80211_NUM_ACS) 408 n_acs = 1; 409 410 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 411 int ac; 412 413 if (!sdata->dev) 414 continue; 415 416 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE && 417 local->queue_stop_reasons[sdata->vif.cab_queue] != 0) 418 continue; 419 420 for (ac = 0; ac < n_acs; ac++) { 421 int ac_queue = sdata->vif.hw_queue[ac]; 422 423 if (ac_queue == queue || 424 (sdata->vif.cab_queue == queue && 425 local->queue_stop_reasons[ac_queue] == 0 && 426 skb_queue_empty(&local->pending[ac_queue]))) 427 netif_wake_subqueue(sdata->dev, ac); 428 } 429 } 430 } 431 432 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 433 enum queue_stop_reason reason, 434 bool refcounted, 435 unsigned long *flags) 436 { 437 struct ieee80211_local *local = hw_to_local(hw); 438 439 trace_wake_queue(local, queue, reason); 440 441 if (WARN_ON(queue >= hw->queues)) 442 return; 443 444 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 445 return; 446 447 if (!refcounted) { 448 local->q_stop_reasons[queue][reason] = 0; 449 } else { 450 local->q_stop_reasons[queue][reason]--; 451 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 452 local->q_stop_reasons[queue][reason] = 0; 453 } 454 455 if (local->q_stop_reasons[queue][reason] == 0) 456 __clear_bit(reason, &local->queue_stop_reasons[queue]); 457 458 if (local->queue_stop_reasons[queue] != 0) 459 /* someone still has this queue stopped */ 460 return; 461 462 if (skb_queue_empty(&local->pending[queue])) { 463 rcu_read_lock(); 464 ieee80211_propagate_queue_wake(local, queue); 465 rcu_read_unlock(); 466 } else 467 tasklet_schedule(&local->tx_pending_tasklet); 468 469 /* 470 * Calling _ieee80211_wake_txqs here can be a problem because it may 471 * release queue_stop_reason_lock which has been taken by 472 * __ieee80211_wake_queue's caller. It is certainly not very nice to 473 * release someone's lock, but it is fine because all the callers of 474 * __ieee80211_wake_queue call it right before releasing the lock. 475 */ 476 if (local->ops->wake_tx_queue) { 477 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 478 tasklet_schedule(&local->wake_txqs_tasklet); 479 else 480 _ieee80211_wake_txqs(local, flags); 481 } 482 } 483 484 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 485 enum queue_stop_reason reason, 486 bool refcounted) 487 { 488 struct ieee80211_local *local = hw_to_local(hw); 489 unsigned long flags; 490 491 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 492 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 493 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 494 } 495 496 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 497 { 498 ieee80211_wake_queue_by_reason(hw, queue, 499 IEEE80211_QUEUE_STOP_REASON_DRIVER, 500 false); 501 } 502 EXPORT_SYMBOL(ieee80211_wake_queue); 503 504 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 505 enum queue_stop_reason reason, 506 bool refcounted) 507 { 508 struct ieee80211_local *local = hw_to_local(hw); 509 struct ieee80211_sub_if_data *sdata; 510 int n_acs = IEEE80211_NUM_ACS; 511 512 trace_stop_queue(local, queue, reason); 513 514 if (WARN_ON(queue >= hw->queues)) 515 return; 516 517 if (!refcounted) 518 local->q_stop_reasons[queue][reason] = 1; 519 else 520 local->q_stop_reasons[queue][reason]++; 521 522 if (__test_and_set_bit(reason, &local->queue_stop_reasons[queue])) 523 return; 524 525 if (local->hw.queues < IEEE80211_NUM_ACS) 526 n_acs = 1; 527 528 rcu_read_lock(); 529 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 530 int ac; 531 532 if (!sdata->dev) 533 continue; 534 535 for (ac = 0; ac < n_acs; ac++) { 536 if (sdata->vif.hw_queue[ac] == queue || 537 sdata->vif.cab_queue == queue) { 538 if (!local->ops->wake_tx_queue) { 539 netif_stop_subqueue(sdata->dev, ac); 540 continue; 541 } 542 spin_lock(&local->fq.lock); 543 sdata->vif.txqs_stopped[ac] = true; 544 spin_unlock(&local->fq.lock); 545 } 546 } 547 } 548 rcu_read_unlock(); 549 } 550 551 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 552 enum queue_stop_reason reason, 553 bool refcounted) 554 { 555 struct ieee80211_local *local = hw_to_local(hw); 556 unsigned long flags; 557 558 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 559 __ieee80211_stop_queue(hw, queue, reason, refcounted); 560 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 561 } 562 563 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 564 { 565 ieee80211_stop_queue_by_reason(hw, queue, 566 IEEE80211_QUEUE_STOP_REASON_DRIVER, 567 false); 568 } 569 EXPORT_SYMBOL(ieee80211_stop_queue); 570 571 void ieee80211_add_pending_skb(struct ieee80211_local *local, 572 struct sk_buff *skb) 573 { 574 struct ieee80211_hw *hw = &local->hw; 575 unsigned long flags; 576 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 577 int queue = info->hw_queue; 578 579 if (WARN_ON(!info->control.vif)) { 580 ieee80211_free_txskb(&local->hw, skb); 581 return; 582 } 583 584 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 585 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 586 false); 587 __skb_queue_tail(&local->pending[queue], skb); 588 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 589 false, &flags); 590 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 591 } 592 593 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 594 struct sk_buff_head *skbs) 595 { 596 struct ieee80211_hw *hw = &local->hw; 597 struct sk_buff *skb; 598 unsigned long flags; 599 int queue, i; 600 601 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 602 while ((skb = skb_dequeue(skbs))) { 603 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 604 605 if (WARN_ON(!info->control.vif)) { 606 ieee80211_free_txskb(&local->hw, skb); 607 continue; 608 } 609 610 queue = info->hw_queue; 611 612 __ieee80211_stop_queue(hw, queue, 613 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 614 false); 615 616 __skb_queue_tail(&local->pending[queue], skb); 617 } 618 619 for (i = 0; i < hw->queues; i++) 620 __ieee80211_wake_queue(hw, i, 621 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 622 false, &flags); 623 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 624 } 625 626 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 627 unsigned long queues, 628 enum queue_stop_reason reason, 629 bool refcounted) 630 { 631 struct ieee80211_local *local = hw_to_local(hw); 632 unsigned long flags; 633 int i; 634 635 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 636 637 for_each_set_bit(i, &queues, hw->queues) 638 __ieee80211_stop_queue(hw, i, reason, refcounted); 639 640 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 641 } 642 643 void ieee80211_stop_queues(struct ieee80211_hw *hw) 644 { 645 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 646 IEEE80211_QUEUE_STOP_REASON_DRIVER, 647 false); 648 } 649 EXPORT_SYMBOL(ieee80211_stop_queues); 650 651 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 652 { 653 struct ieee80211_local *local = hw_to_local(hw); 654 unsigned long flags; 655 int ret; 656 657 if (WARN_ON(queue >= hw->queues)) 658 return true; 659 660 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 661 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 662 &local->queue_stop_reasons[queue]); 663 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 664 return ret; 665 } 666 EXPORT_SYMBOL(ieee80211_queue_stopped); 667 668 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 669 unsigned long queues, 670 enum queue_stop_reason reason, 671 bool refcounted) 672 { 673 struct ieee80211_local *local = hw_to_local(hw); 674 unsigned long flags; 675 int i; 676 677 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 678 679 for_each_set_bit(i, &queues, hw->queues) 680 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 681 682 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 683 } 684 685 void ieee80211_wake_queues(struct ieee80211_hw *hw) 686 { 687 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 688 IEEE80211_QUEUE_STOP_REASON_DRIVER, 689 false); 690 } 691 EXPORT_SYMBOL(ieee80211_wake_queues); 692 693 static unsigned int 694 ieee80211_get_vif_queues(struct ieee80211_local *local, 695 struct ieee80211_sub_if_data *sdata) 696 { 697 unsigned int queues; 698 699 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 700 int ac; 701 702 queues = 0; 703 704 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 705 queues |= BIT(sdata->vif.hw_queue[ac]); 706 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 707 queues |= BIT(sdata->vif.cab_queue); 708 } else { 709 /* all queues */ 710 queues = BIT(local->hw.queues) - 1; 711 } 712 713 return queues; 714 } 715 716 void __ieee80211_flush_queues(struct ieee80211_local *local, 717 struct ieee80211_sub_if_data *sdata, 718 unsigned int queues, bool drop) 719 { 720 if (!local->ops->flush) 721 return; 722 723 /* 724 * If no queue was set, or if the HW doesn't support 725 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 726 */ 727 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 728 queues = ieee80211_get_vif_queues(local, sdata); 729 730 ieee80211_stop_queues_by_reason(&local->hw, queues, 731 IEEE80211_QUEUE_STOP_REASON_FLUSH, 732 false); 733 734 drv_flush(local, sdata, queues, drop); 735 736 ieee80211_wake_queues_by_reason(&local->hw, queues, 737 IEEE80211_QUEUE_STOP_REASON_FLUSH, 738 false); 739 } 740 741 void ieee80211_flush_queues(struct ieee80211_local *local, 742 struct ieee80211_sub_if_data *sdata, bool drop) 743 { 744 __ieee80211_flush_queues(local, sdata, 0, drop); 745 } 746 747 void ieee80211_stop_vif_queues(struct ieee80211_local *local, 748 struct ieee80211_sub_if_data *sdata, 749 enum queue_stop_reason reason) 750 { 751 ieee80211_stop_queues_by_reason(&local->hw, 752 ieee80211_get_vif_queues(local, sdata), 753 reason, true); 754 } 755 756 void ieee80211_wake_vif_queues(struct ieee80211_local *local, 757 struct ieee80211_sub_if_data *sdata, 758 enum queue_stop_reason reason) 759 { 760 ieee80211_wake_queues_by_reason(&local->hw, 761 ieee80211_get_vif_queues(local, sdata), 762 reason, true); 763 } 764 765 static void __iterate_interfaces(struct ieee80211_local *local, 766 u32 iter_flags, 767 void (*iterator)(void *data, u8 *mac, 768 struct ieee80211_vif *vif), 769 void *data) 770 { 771 struct ieee80211_sub_if_data *sdata; 772 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 773 774 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 775 switch (sdata->vif.type) { 776 case NL80211_IFTYPE_MONITOR: 777 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) 778 continue; 779 break; 780 case NL80211_IFTYPE_AP_VLAN: 781 continue; 782 default: 783 break; 784 } 785 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 786 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 787 continue; 788 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && 789 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 790 continue; 791 if (ieee80211_sdata_running(sdata) || !active_only) 792 iterator(data, sdata->vif.addr, 793 &sdata->vif); 794 } 795 796 sdata = rcu_dereference_check(local->monitor_sdata, 797 lockdep_is_held(&local->iflist_mtx) || 798 lockdep_rtnl_is_held()); 799 if (sdata && 800 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 801 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 802 iterator(data, sdata->vif.addr, &sdata->vif); 803 } 804 805 void ieee80211_iterate_interfaces( 806 struct ieee80211_hw *hw, u32 iter_flags, 807 void (*iterator)(void *data, u8 *mac, 808 struct ieee80211_vif *vif), 809 void *data) 810 { 811 struct ieee80211_local *local = hw_to_local(hw); 812 813 mutex_lock(&local->iflist_mtx); 814 __iterate_interfaces(local, iter_flags, iterator, data); 815 mutex_unlock(&local->iflist_mtx); 816 } 817 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 818 819 void ieee80211_iterate_active_interfaces_atomic( 820 struct ieee80211_hw *hw, u32 iter_flags, 821 void (*iterator)(void *data, u8 *mac, 822 struct ieee80211_vif *vif), 823 void *data) 824 { 825 struct ieee80211_local *local = hw_to_local(hw); 826 827 rcu_read_lock(); 828 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 829 iterator, data); 830 rcu_read_unlock(); 831 } 832 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 833 834 void ieee80211_iterate_active_interfaces_rtnl( 835 struct ieee80211_hw *hw, u32 iter_flags, 836 void (*iterator)(void *data, u8 *mac, 837 struct ieee80211_vif *vif), 838 void *data) 839 { 840 struct ieee80211_local *local = hw_to_local(hw); 841 842 ASSERT_RTNL(); 843 844 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 845 iterator, data); 846 } 847 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_rtnl); 848 849 static void __iterate_stations(struct ieee80211_local *local, 850 void (*iterator)(void *data, 851 struct ieee80211_sta *sta), 852 void *data) 853 { 854 struct sta_info *sta; 855 856 list_for_each_entry_rcu(sta, &local->sta_list, list) { 857 if (!sta->uploaded) 858 continue; 859 860 iterator(data, &sta->sta); 861 } 862 } 863 864 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 865 void (*iterator)(void *data, 866 struct ieee80211_sta *sta), 867 void *data) 868 { 869 struct ieee80211_local *local = hw_to_local(hw); 870 871 rcu_read_lock(); 872 __iterate_stations(local, iterator, data); 873 rcu_read_unlock(); 874 } 875 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 876 877 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 878 { 879 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 880 881 if (!ieee80211_sdata_running(sdata) || 882 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 883 return NULL; 884 return &sdata->vif; 885 } 886 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 887 888 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 889 { 890 struct ieee80211_sub_if_data *sdata; 891 892 if (!vif) 893 return NULL; 894 895 sdata = vif_to_sdata(vif); 896 897 if (!ieee80211_sdata_running(sdata) || 898 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 899 return NULL; 900 901 return &sdata->wdev; 902 } 903 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 904 905 /* 906 * Nothing should have been stuffed into the workqueue during 907 * the suspend->resume cycle. Since we can't check each caller 908 * of this function if we are already quiescing / suspended, 909 * check here and don't WARN since this can actually happen when 910 * the rx path (for example) is racing against __ieee80211_suspend 911 * and suspending / quiescing was set after the rx path checked 912 * them. 913 */ 914 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 915 { 916 if (local->quiescing || (local->suspended && !local->resuming)) { 917 pr_warn("queueing ieee80211 work while going to suspend\n"); 918 return false; 919 } 920 921 return true; 922 } 923 924 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 925 { 926 struct ieee80211_local *local = hw_to_local(hw); 927 928 if (!ieee80211_can_queue_work(local)) 929 return; 930 931 queue_work(local->workqueue, work); 932 } 933 EXPORT_SYMBOL(ieee80211_queue_work); 934 935 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 936 struct delayed_work *dwork, 937 unsigned long delay) 938 { 939 struct ieee80211_local *local = hw_to_local(hw); 940 941 if (!ieee80211_can_queue_work(local)) 942 return; 943 944 queue_delayed_work(local->workqueue, dwork, delay); 945 } 946 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 947 948 static void ieee80211_parse_extension_element(u32 *crc, 949 const struct element *elem, 950 struct ieee802_11_elems *elems) 951 { 952 const void *data = elem->data + 1; 953 u8 len = elem->datalen - 1; 954 955 switch (elem->data[0]) { 956 case WLAN_EID_EXT_HE_MU_EDCA: 957 if (len == sizeof(*elems->mu_edca_param_set)) { 958 elems->mu_edca_param_set = data; 959 if (crc) 960 *crc = crc32_be(*crc, (void *)elem, 961 elem->datalen + 2); 962 } 963 break; 964 case WLAN_EID_EXT_HE_CAPABILITY: 965 elems->he_cap = data; 966 elems->he_cap_len = len; 967 break; 968 case WLAN_EID_EXT_HE_OPERATION: 969 if (len >= sizeof(*elems->he_operation) && 970 len == ieee80211_he_oper_size(data) - 1) { 971 if (crc) 972 *crc = crc32_be(*crc, (void *)elem, 973 elem->datalen + 2); 974 elems->he_operation = data; 975 } 976 break; 977 case WLAN_EID_EXT_UORA: 978 if (len == 1) 979 elems->uora_element = data; 980 break; 981 case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME: 982 if (len == 3) 983 elems->max_channel_switch_time = data; 984 break; 985 case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION: 986 if (len == sizeof(*elems->mbssid_config_ie)) 987 elems->mbssid_config_ie = data; 988 break; 989 case WLAN_EID_EXT_HE_SPR: 990 if (len >= sizeof(*elems->he_spr) && 991 len >= ieee80211_he_spr_size(data)) 992 elems->he_spr = data; 993 break; 994 case WLAN_EID_EXT_HE_6GHZ_CAPA: 995 if (len == sizeof(*elems->he_6ghz_capa)) 996 elems->he_6ghz_capa = data; 997 break; 998 } 999 } 1000 1001 static u32 1002 _ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, 1003 struct ieee802_11_elems *elems, 1004 u64 filter, u32 crc, 1005 const struct element *check_inherit) 1006 { 1007 const struct element *elem; 1008 bool calc_crc = filter != 0; 1009 DECLARE_BITMAP(seen_elems, 256); 1010 const u8 *ie; 1011 1012 bitmap_zero(seen_elems, 256); 1013 1014 for_each_element(elem, start, len) { 1015 bool elem_parse_failed; 1016 u8 id = elem->id; 1017 u8 elen = elem->datalen; 1018 const u8 *pos = elem->data; 1019 1020 if (check_inherit && 1021 !cfg80211_is_element_inherited(elem, 1022 check_inherit)) 1023 continue; 1024 1025 switch (id) { 1026 case WLAN_EID_SSID: 1027 case WLAN_EID_SUPP_RATES: 1028 case WLAN_EID_FH_PARAMS: 1029 case WLAN_EID_DS_PARAMS: 1030 case WLAN_EID_CF_PARAMS: 1031 case WLAN_EID_TIM: 1032 case WLAN_EID_IBSS_PARAMS: 1033 case WLAN_EID_CHALLENGE: 1034 case WLAN_EID_RSN: 1035 case WLAN_EID_ERP_INFO: 1036 case WLAN_EID_EXT_SUPP_RATES: 1037 case WLAN_EID_HT_CAPABILITY: 1038 case WLAN_EID_HT_OPERATION: 1039 case WLAN_EID_VHT_CAPABILITY: 1040 case WLAN_EID_VHT_OPERATION: 1041 case WLAN_EID_MESH_ID: 1042 case WLAN_EID_MESH_CONFIG: 1043 case WLAN_EID_PEER_MGMT: 1044 case WLAN_EID_PREQ: 1045 case WLAN_EID_PREP: 1046 case WLAN_EID_PERR: 1047 case WLAN_EID_RANN: 1048 case WLAN_EID_CHANNEL_SWITCH: 1049 case WLAN_EID_EXT_CHANSWITCH_ANN: 1050 case WLAN_EID_COUNTRY: 1051 case WLAN_EID_PWR_CONSTRAINT: 1052 case WLAN_EID_TIMEOUT_INTERVAL: 1053 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1054 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1055 case WLAN_EID_CHAN_SWITCH_PARAM: 1056 case WLAN_EID_EXT_CAPABILITY: 1057 case WLAN_EID_CHAN_SWITCH_TIMING: 1058 case WLAN_EID_LINK_ID: 1059 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1060 case WLAN_EID_RSNX: 1061 case WLAN_EID_S1G_BCN_COMPAT: 1062 case WLAN_EID_S1G_CAPABILITIES: 1063 case WLAN_EID_S1G_OPERATION: 1064 case WLAN_EID_AID_RESPONSE: 1065 case WLAN_EID_S1G_SHORT_BCN_INTERVAL: 1066 /* 1067 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible 1068 * that if the content gets bigger it might be needed more than once 1069 */ 1070 if (test_bit(id, seen_elems)) { 1071 elems->parse_error = true; 1072 continue; 1073 } 1074 break; 1075 } 1076 1077 if (calc_crc && id < 64 && (filter & (1ULL << id))) 1078 crc = crc32_be(crc, pos - 2, elen + 2); 1079 1080 elem_parse_failed = false; 1081 1082 switch (id) { 1083 case WLAN_EID_LINK_ID: 1084 if (elen + 2 != sizeof(struct ieee80211_tdls_lnkie)) { 1085 elem_parse_failed = true; 1086 break; 1087 } 1088 elems->lnk_id = (void *)(pos - 2); 1089 break; 1090 case WLAN_EID_CHAN_SWITCH_TIMING: 1091 if (elen != sizeof(struct ieee80211_ch_switch_timing)) { 1092 elem_parse_failed = true; 1093 break; 1094 } 1095 elems->ch_sw_timing = (void *)pos; 1096 break; 1097 case WLAN_EID_EXT_CAPABILITY: 1098 elems->ext_capab = pos; 1099 elems->ext_capab_len = elen; 1100 break; 1101 case WLAN_EID_SSID: 1102 elems->ssid = pos; 1103 elems->ssid_len = elen; 1104 break; 1105 case WLAN_EID_SUPP_RATES: 1106 elems->supp_rates = pos; 1107 elems->supp_rates_len = elen; 1108 break; 1109 case WLAN_EID_DS_PARAMS: 1110 if (elen >= 1) 1111 elems->ds_params = pos; 1112 else 1113 elem_parse_failed = true; 1114 break; 1115 case WLAN_EID_TIM: 1116 if (elen >= sizeof(struct ieee80211_tim_ie)) { 1117 elems->tim = (void *)pos; 1118 elems->tim_len = elen; 1119 } else 1120 elem_parse_failed = true; 1121 break; 1122 case WLAN_EID_CHALLENGE: 1123 elems->challenge = pos; 1124 elems->challenge_len = elen; 1125 break; 1126 case WLAN_EID_VENDOR_SPECIFIC: 1127 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && 1128 pos[2] == 0xf2) { 1129 /* Microsoft OUI (00:50:F2) */ 1130 1131 if (calc_crc) 1132 crc = crc32_be(crc, pos - 2, elen + 2); 1133 1134 if (elen >= 5 && pos[3] == 2) { 1135 /* OUI Type 2 - WMM IE */ 1136 if (pos[4] == 0) { 1137 elems->wmm_info = pos; 1138 elems->wmm_info_len = elen; 1139 } else if (pos[4] == 1) { 1140 elems->wmm_param = pos; 1141 elems->wmm_param_len = elen; 1142 } 1143 } 1144 } 1145 break; 1146 case WLAN_EID_RSN: 1147 elems->rsn = pos; 1148 elems->rsn_len = elen; 1149 break; 1150 case WLAN_EID_ERP_INFO: 1151 if (elen >= 1) 1152 elems->erp_info = pos; 1153 else 1154 elem_parse_failed = true; 1155 break; 1156 case WLAN_EID_EXT_SUPP_RATES: 1157 elems->ext_supp_rates = pos; 1158 elems->ext_supp_rates_len = elen; 1159 break; 1160 case WLAN_EID_HT_CAPABILITY: 1161 if (elen >= sizeof(struct ieee80211_ht_cap)) 1162 elems->ht_cap_elem = (void *)pos; 1163 else 1164 elem_parse_failed = true; 1165 break; 1166 case WLAN_EID_HT_OPERATION: 1167 if (elen >= sizeof(struct ieee80211_ht_operation)) 1168 elems->ht_operation = (void *)pos; 1169 else 1170 elem_parse_failed = true; 1171 break; 1172 case WLAN_EID_VHT_CAPABILITY: 1173 if (elen >= sizeof(struct ieee80211_vht_cap)) 1174 elems->vht_cap_elem = (void *)pos; 1175 else 1176 elem_parse_failed = true; 1177 break; 1178 case WLAN_EID_VHT_OPERATION: 1179 if (elen >= sizeof(struct ieee80211_vht_operation)) { 1180 elems->vht_operation = (void *)pos; 1181 if (calc_crc) 1182 crc = crc32_be(crc, pos - 2, elen + 2); 1183 break; 1184 } 1185 elem_parse_failed = true; 1186 break; 1187 case WLAN_EID_OPMODE_NOTIF: 1188 if (elen > 0) { 1189 elems->opmode_notif = pos; 1190 if (calc_crc) 1191 crc = crc32_be(crc, pos - 2, elen + 2); 1192 break; 1193 } 1194 elem_parse_failed = true; 1195 break; 1196 case WLAN_EID_MESH_ID: 1197 elems->mesh_id = pos; 1198 elems->mesh_id_len = elen; 1199 break; 1200 case WLAN_EID_MESH_CONFIG: 1201 if (elen >= sizeof(struct ieee80211_meshconf_ie)) 1202 elems->mesh_config = (void *)pos; 1203 else 1204 elem_parse_failed = true; 1205 break; 1206 case WLAN_EID_PEER_MGMT: 1207 elems->peering = pos; 1208 elems->peering_len = elen; 1209 break; 1210 case WLAN_EID_MESH_AWAKE_WINDOW: 1211 if (elen >= 2) 1212 elems->awake_window = (void *)pos; 1213 break; 1214 case WLAN_EID_PREQ: 1215 elems->preq = pos; 1216 elems->preq_len = elen; 1217 break; 1218 case WLAN_EID_PREP: 1219 elems->prep = pos; 1220 elems->prep_len = elen; 1221 break; 1222 case WLAN_EID_PERR: 1223 elems->perr = pos; 1224 elems->perr_len = elen; 1225 break; 1226 case WLAN_EID_RANN: 1227 if (elen >= sizeof(struct ieee80211_rann_ie)) 1228 elems->rann = (void *)pos; 1229 else 1230 elem_parse_failed = true; 1231 break; 1232 case WLAN_EID_CHANNEL_SWITCH: 1233 if (elen != sizeof(struct ieee80211_channel_sw_ie)) { 1234 elem_parse_failed = true; 1235 break; 1236 } 1237 elems->ch_switch_ie = (void *)pos; 1238 break; 1239 case WLAN_EID_EXT_CHANSWITCH_ANN: 1240 if (elen != sizeof(struct ieee80211_ext_chansw_ie)) { 1241 elem_parse_failed = true; 1242 break; 1243 } 1244 elems->ext_chansw_ie = (void *)pos; 1245 break; 1246 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1247 if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) { 1248 elem_parse_failed = true; 1249 break; 1250 } 1251 elems->sec_chan_offs = (void *)pos; 1252 break; 1253 case WLAN_EID_CHAN_SWITCH_PARAM: 1254 if (elen != 1255 sizeof(*elems->mesh_chansw_params_ie)) { 1256 elem_parse_failed = true; 1257 break; 1258 } 1259 elems->mesh_chansw_params_ie = (void *)pos; 1260 break; 1261 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1262 if (!action || 1263 elen != sizeof(*elems->wide_bw_chansw_ie)) { 1264 elem_parse_failed = true; 1265 break; 1266 } 1267 elems->wide_bw_chansw_ie = (void *)pos; 1268 break; 1269 case WLAN_EID_CHANNEL_SWITCH_WRAPPER: 1270 if (action) { 1271 elem_parse_failed = true; 1272 break; 1273 } 1274 /* 1275 * This is a bit tricky, but as we only care about 1276 * the wide bandwidth channel switch element, so 1277 * just parse it out manually. 1278 */ 1279 ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH, 1280 pos, elen); 1281 if (ie) { 1282 if (ie[1] == sizeof(*elems->wide_bw_chansw_ie)) 1283 elems->wide_bw_chansw_ie = 1284 (void *)(ie + 2); 1285 else 1286 elem_parse_failed = true; 1287 } 1288 break; 1289 case WLAN_EID_COUNTRY: 1290 elems->country_elem = pos; 1291 elems->country_elem_len = elen; 1292 break; 1293 case WLAN_EID_PWR_CONSTRAINT: 1294 if (elen != 1) { 1295 elem_parse_failed = true; 1296 break; 1297 } 1298 elems->pwr_constr_elem = pos; 1299 break; 1300 case WLAN_EID_CISCO_VENDOR_SPECIFIC: 1301 /* Lots of different options exist, but we only care 1302 * about the Dynamic Transmit Power Control element. 1303 * First check for the Cisco OUI, then for the DTPC 1304 * tag (0x00). 1305 */ 1306 if (elen < 4) { 1307 elem_parse_failed = true; 1308 break; 1309 } 1310 1311 if (pos[0] != 0x00 || pos[1] != 0x40 || 1312 pos[2] != 0x96 || pos[3] != 0x00) 1313 break; 1314 1315 if (elen != 6) { 1316 elem_parse_failed = true; 1317 break; 1318 } 1319 1320 if (calc_crc) 1321 crc = crc32_be(crc, pos - 2, elen + 2); 1322 1323 elems->cisco_dtpc_elem = pos; 1324 break; 1325 case WLAN_EID_ADDBA_EXT: 1326 if (elen != sizeof(struct ieee80211_addba_ext_ie)) { 1327 elem_parse_failed = true; 1328 break; 1329 } 1330 elems->addba_ext_ie = (void *)pos; 1331 break; 1332 case WLAN_EID_TIMEOUT_INTERVAL: 1333 if (elen >= sizeof(struct ieee80211_timeout_interval_ie)) 1334 elems->timeout_int = (void *)pos; 1335 else 1336 elem_parse_failed = true; 1337 break; 1338 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1339 if (elen >= sizeof(*elems->max_idle_period_ie)) 1340 elems->max_idle_period_ie = (void *)pos; 1341 break; 1342 case WLAN_EID_RSNX: 1343 elems->rsnx = pos; 1344 elems->rsnx_len = elen; 1345 break; 1346 case WLAN_EID_EXTENSION: 1347 ieee80211_parse_extension_element(calc_crc ? 1348 &crc : NULL, 1349 elem, elems); 1350 break; 1351 case WLAN_EID_S1G_CAPABILITIES: 1352 if (elen == sizeof(*elems->s1g_capab)) 1353 elems->s1g_capab = (void *)pos; 1354 else 1355 elem_parse_failed = true; 1356 break; 1357 case WLAN_EID_S1G_OPERATION: 1358 if (elen == sizeof(*elems->s1g_oper)) 1359 elems->s1g_oper = (void *)pos; 1360 else 1361 elem_parse_failed = true; 1362 break; 1363 case WLAN_EID_S1G_BCN_COMPAT: 1364 if (elen == sizeof(*elems->s1g_bcn_compat)) 1365 elems->s1g_bcn_compat = (void *)pos; 1366 else 1367 elem_parse_failed = true; 1368 break; 1369 case WLAN_EID_AID_RESPONSE: 1370 if (elen == sizeof(struct ieee80211_aid_response_ie)) 1371 elems->aid_resp = (void *)pos; 1372 else 1373 elem_parse_failed = true; 1374 break; 1375 default: 1376 break; 1377 } 1378 1379 if (elem_parse_failed) 1380 elems->parse_error = true; 1381 else 1382 __set_bit(id, seen_elems); 1383 } 1384 1385 if (!for_each_element_completed(elem, start, len)) 1386 elems->parse_error = true; 1387 1388 return crc; 1389 } 1390 1391 static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len, 1392 struct ieee802_11_elems *elems, 1393 u8 *transmitter_bssid, 1394 u8 *bss_bssid, 1395 u8 *nontransmitted_profile) 1396 { 1397 const struct element *elem, *sub; 1398 size_t profile_len = 0; 1399 bool found = false; 1400 1401 if (!bss_bssid || !transmitter_bssid) 1402 return profile_len; 1403 1404 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) { 1405 if (elem->datalen < 2) 1406 continue; 1407 1408 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 1409 u8 new_bssid[ETH_ALEN]; 1410 const u8 *index; 1411 1412 if (sub->id != 0 || sub->datalen < 4) { 1413 /* not a valid BSS profile */ 1414 continue; 1415 } 1416 1417 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 1418 sub->data[1] != 2) { 1419 /* The first element of the 1420 * Nontransmitted BSSID Profile is not 1421 * the Nontransmitted BSSID Capability 1422 * element. 1423 */ 1424 continue; 1425 } 1426 1427 memset(nontransmitted_profile, 0, len); 1428 profile_len = cfg80211_merge_profile(start, len, 1429 elem, 1430 sub, 1431 nontransmitted_profile, 1432 len); 1433 1434 /* found a Nontransmitted BSSID Profile */ 1435 index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, 1436 nontransmitted_profile, 1437 profile_len); 1438 if (!index || index[1] < 1 || index[2] == 0) { 1439 /* Invalid MBSSID Index element */ 1440 continue; 1441 } 1442 1443 cfg80211_gen_new_bssid(transmitter_bssid, 1444 elem->data[0], 1445 index[2], 1446 new_bssid); 1447 if (ether_addr_equal(new_bssid, bss_bssid)) { 1448 found = true; 1449 elems->bssid_index_len = index[1]; 1450 elems->bssid_index = (void *)&index[2]; 1451 break; 1452 } 1453 } 1454 } 1455 1456 return found ? profile_len : 0; 1457 } 1458 1459 u32 ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, 1460 struct ieee802_11_elems *elems, 1461 u64 filter, u32 crc, u8 *transmitter_bssid, 1462 u8 *bss_bssid) 1463 { 1464 const struct element *non_inherit = NULL; 1465 u8 *nontransmitted_profile; 1466 int nontransmitted_profile_len = 0; 1467 1468 memset(elems, 0, sizeof(*elems)); 1469 elems->ie_start = start; 1470 elems->total_len = len; 1471 1472 nontransmitted_profile = kmalloc(len, GFP_ATOMIC); 1473 if (nontransmitted_profile) { 1474 nontransmitted_profile_len = 1475 ieee802_11_find_bssid_profile(start, len, elems, 1476 transmitter_bssid, 1477 bss_bssid, 1478 nontransmitted_profile); 1479 non_inherit = 1480 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 1481 nontransmitted_profile, 1482 nontransmitted_profile_len); 1483 } 1484 1485 crc = _ieee802_11_parse_elems_crc(start, len, action, elems, filter, 1486 crc, non_inherit); 1487 1488 /* Override with nontransmitted profile, if found */ 1489 if (nontransmitted_profile_len) 1490 _ieee802_11_parse_elems_crc(nontransmitted_profile, 1491 nontransmitted_profile_len, 1492 action, elems, 0, 0, NULL); 1493 1494 if (elems->tim && !elems->parse_error) { 1495 const struct ieee80211_tim_ie *tim_ie = elems->tim; 1496 1497 elems->dtim_period = tim_ie->dtim_period; 1498 elems->dtim_count = tim_ie->dtim_count; 1499 } 1500 1501 /* Override DTIM period and count if needed */ 1502 if (elems->bssid_index && 1503 elems->bssid_index_len >= 1504 offsetofend(struct ieee80211_bssid_index, dtim_period)) 1505 elems->dtim_period = elems->bssid_index->dtim_period; 1506 1507 if (elems->bssid_index && 1508 elems->bssid_index_len >= 1509 offsetofend(struct ieee80211_bssid_index, dtim_count)) 1510 elems->dtim_count = elems->bssid_index->dtim_count; 1511 1512 kfree(nontransmitted_profile); 1513 1514 return crc; 1515 } 1516 1517 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 1518 struct ieee80211_tx_queue_params 1519 *qparam, int ac) 1520 { 1521 struct ieee80211_chanctx_conf *chanctx_conf; 1522 const struct ieee80211_reg_rule *rrule; 1523 const struct ieee80211_wmm_ac *wmm_ac; 1524 u16 center_freq = 0; 1525 1526 if (sdata->vif.type != NL80211_IFTYPE_AP && 1527 sdata->vif.type != NL80211_IFTYPE_STATION) 1528 return; 1529 1530 rcu_read_lock(); 1531 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1532 if (chanctx_conf) 1533 center_freq = chanctx_conf->def.chan->center_freq; 1534 1535 if (!center_freq) { 1536 rcu_read_unlock(); 1537 return; 1538 } 1539 1540 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 1541 1542 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 1543 rcu_read_unlock(); 1544 return; 1545 } 1546 1547 if (sdata->vif.type == NL80211_IFTYPE_AP) 1548 wmm_ac = &rrule->wmm_rule.ap[ac]; 1549 else 1550 wmm_ac = &rrule->wmm_rule.client[ac]; 1551 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 1552 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 1553 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 1554 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 1555 rcu_read_unlock(); 1556 } 1557 1558 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata, 1559 bool bss_notify, bool enable_qos) 1560 { 1561 struct ieee80211_local *local = sdata->local; 1562 struct ieee80211_tx_queue_params qparam; 1563 struct ieee80211_chanctx_conf *chanctx_conf; 1564 int ac; 1565 bool use_11b; 1566 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 1567 int aCWmin, aCWmax; 1568 1569 if (!local->ops->conf_tx) 1570 return; 1571 1572 if (local->hw.queues < IEEE80211_NUM_ACS) 1573 return; 1574 1575 memset(&qparam, 0, sizeof(qparam)); 1576 1577 rcu_read_lock(); 1578 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1579 use_11b = (chanctx_conf && 1580 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 1581 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE); 1582 rcu_read_unlock(); 1583 1584 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 1585 1586 /* Set defaults according to 802.11-2007 Table 7-37 */ 1587 aCWmax = 1023; 1588 if (use_11b) 1589 aCWmin = 31; 1590 else 1591 aCWmin = 15; 1592 1593 /* Confiure old 802.11b/g medium access rules. */ 1594 qparam.cw_max = aCWmax; 1595 qparam.cw_min = aCWmin; 1596 qparam.txop = 0; 1597 qparam.aifs = 2; 1598 1599 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1600 /* Update if QoS is enabled. */ 1601 if (enable_qos) { 1602 switch (ac) { 1603 case IEEE80211_AC_BK: 1604 qparam.cw_max = aCWmax; 1605 qparam.cw_min = aCWmin; 1606 qparam.txop = 0; 1607 if (is_ocb) 1608 qparam.aifs = 9; 1609 else 1610 qparam.aifs = 7; 1611 break; 1612 /* never happens but let's not leave undefined */ 1613 default: 1614 case IEEE80211_AC_BE: 1615 qparam.cw_max = aCWmax; 1616 qparam.cw_min = aCWmin; 1617 qparam.txop = 0; 1618 if (is_ocb) 1619 qparam.aifs = 6; 1620 else 1621 qparam.aifs = 3; 1622 break; 1623 case IEEE80211_AC_VI: 1624 qparam.cw_max = aCWmin; 1625 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1626 if (is_ocb) 1627 qparam.txop = 0; 1628 else if (use_11b) 1629 qparam.txop = 6016/32; 1630 else 1631 qparam.txop = 3008/32; 1632 1633 if (is_ocb) 1634 qparam.aifs = 3; 1635 else 1636 qparam.aifs = 2; 1637 break; 1638 case IEEE80211_AC_VO: 1639 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1640 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1641 if (is_ocb) 1642 qparam.txop = 0; 1643 else if (use_11b) 1644 qparam.txop = 3264/32; 1645 else 1646 qparam.txop = 1504/32; 1647 qparam.aifs = 2; 1648 break; 1649 } 1650 } 1651 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1652 1653 qparam.uapsd = false; 1654 1655 sdata->tx_conf[ac] = qparam; 1656 drv_conf_tx(local, sdata, ac, &qparam); 1657 } 1658 1659 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1660 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1661 sdata->vif.type != NL80211_IFTYPE_NAN) { 1662 sdata->vif.bss_conf.qos = enable_qos; 1663 if (bss_notify) 1664 ieee80211_bss_info_change_notify(sdata, 1665 BSS_CHANGED_QOS); 1666 } 1667 } 1668 1669 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1670 u16 transaction, u16 auth_alg, u16 status, 1671 const u8 *extra, size_t extra_len, const u8 *da, 1672 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1673 u32 tx_flags) 1674 { 1675 struct ieee80211_local *local = sdata->local; 1676 struct sk_buff *skb; 1677 struct ieee80211_mgmt *mgmt; 1678 int err; 1679 1680 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1681 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1682 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN); 1683 if (!skb) 1684 return; 1685 1686 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1687 1688 mgmt = skb_put_zero(skb, 24 + 6); 1689 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1690 IEEE80211_STYPE_AUTH); 1691 memcpy(mgmt->da, da, ETH_ALEN); 1692 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1693 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1694 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1695 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1696 mgmt->u.auth.status_code = cpu_to_le16(status); 1697 if (extra) 1698 skb_put_data(skb, extra, extra_len); 1699 1700 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1701 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1702 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1703 WARN_ON(err); 1704 } 1705 1706 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1707 tx_flags; 1708 ieee80211_tx_skb(sdata, skb); 1709 } 1710 1711 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1712 const u8 *da, const u8 *bssid, 1713 u16 stype, u16 reason, 1714 bool send_frame, u8 *frame_buf) 1715 { 1716 struct ieee80211_local *local = sdata->local; 1717 struct sk_buff *skb; 1718 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1719 1720 /* build frame */ 1721 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1722 mgmt->duration = 0; /* initialize only */ 1723 mgmt->seq_ctrl = 0; /* initialize only */ 1724 memcpy(mgmt->da, da, ETH_ALEN); 1725 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1726 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1727 /* u.deauth.reason_code == u.disassoc.reason_code */ 1728 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1729 1730 if (send_frame) { 1731 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1732 IEEE80211_DEAUTH_FRAME_LEN); 1733 if (!skb) 1734 return; 1735 1736 skb_reserve(skb, local->hw.extra_tx_headroom); 1737 1738 /* copy in frame */ 1739 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1740 1741 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1742 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1743 IEEE80211_SKB_CB(skb)->flags |= 1744 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1745 1746 ieee80211_tx_skb(sdata, skb); 1747 } 1748 } 1749 1750 static u8 *ieee80211_write_he_6ghz_cap(u8 *pos, __le16 cap, u8 *end) 1751 { 1752 if ((end - pos) < 5) 1753 return pos; 1754 1755 *pos++ = WLAN_EID_EXTENSION; 1756 *pos++ = 1 + sizeof(cap); 1757 *pos++ = WLAN_EID_EXT_HE_6GHZ_CAPA; 1758 memcpy(pos, &cap, sizeof(cap)); 1759 1760 return pos + 2; 1761 } 1762 1763 static int ieee80211_build_preq_ies_band(struct ieee80211_sub_if_data *sdata, 1764 u8 *buffer, size_t buffer_len, 1765 const u8 *ie, size_t ie_len, 1766 enum nl80211_band band, 1767 u32 rate_mask, 1768 struct cfg80211_chan_def *chandef, 1769 size_t *offset, u32 flags) 1770 { 1771 struct ieee80211_local *local = sdata->local; 1772 struct ieee80211_supported_band *sband; 1773 const struct ieee80211_sta_he_cap *he_cap; 1774 u8 *pos = buffer, *end = buffer + buffer_len; 1775 size_t noffset; 1776 int supp_rates_len, i; 1777 u8 rates[32]; 1778 int num_rates; 1779 int ext_rates_len; 1780 int shift; 1781 u32 rate_flags; 1782 bool have_80mhz = false; 1783 1784 *offset = 0; 1785 1786 sband = local->hw.wiphy->bands[band]; 1787 if (WARN_ON_ONCE(!sband)) 1788 return 0; 1789 1790 rate_flags = ieee80211_chandef_rate_flags(chandef); 1791 shift = ieee80211_chandef_get_shift(chandef); 1792 1793 num_rates = 0; 1794 for (i = 0; i < sband->n_bitrates; i++) { 1795 if ((BIT(i) & rate_mask) == 0) 1796 continue; /* skip rate */ 1797 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 1798 continue; 1799 1800 rates[num_rates++] = 1801 (u8) DIV_ROUND_UP(sband->bitrates[i].bitrate, 1802 (1 << shift) * 5); 1803 } 1804 1805 supp_rates_len = min_t(int, num_rates, 8); 1806 1807 if (end - pos < 2 + supp_rates_len) 1808 goto out_err; 1809 *pos++ = WLAN_EID_SUPP_RATES; 1810 *pos++ = supp_rates_len; 1811 memcpy(pos, rates, supp_rates_len); 1812 pos += supp_rates_len; 1813 1814 /* insert "request information" if in custom IEs */ 1815 if (ie && ie_len) { 1816 static const u8 before_extrates[] = { 1817 WLAN_EID_SSID, 1818 WLAN_EID_SUPP_RATES, 1819 WLAN_EID_REQUEST, 1820 }; 1821 noffset = ieee80211_ie_split(ie, ie_len, 1822 before_extrates, 1823 ARRAY_SIZE(before_extrates), 1824 *offset); 1825 if (end - pos < noffset - *offset) 1826 goto out_err; 1827 memcpy(pos, ie + *offset, noffset - *offset); 1828 pos += noffset - *offset; 1829 *offset = noffset; 1830 } 1831 1832 ext_rates_len = num_rates - supp_rates_len; 1833 if (ext_rates_len > 0) { 1834 if (end - pos < 2 + ext_rates_len) 1835 goto out_err; 1836 *pos++ = WLAN_EID_EXT_SUPP_RATES; 1837 *pos++ = ext_rates_len; 1838 memcpy(pos, rates + supp_rates_len, ext_rates_len); 1839 pos += ext_rates_len; 1840 } 1841 1842 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 1843 if (end - pos < 3) 1844 goto out_err; 1845 *pos++ = WLAN_EID_DS_PARAMS; 1846 *pos++ = 1; 1847 *pos++ = ieee80211_frequency_to_channel( 1848 chandef->chan->center_freq); 1849 } 1850 1851 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 1852 goto done; 1853 1854 /* insert custom IEs that go before HT */ 1855 if (ie && ie_len) { 1856 static const u8 before_ht[] = { 1857 /* 1858 * no need to list the ones split off already 1859 * (or generated here) 1860 */ 1861 WLAN_EID_DS_PARAMS, 1862 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1863 }; 1864 noffset = ieee80211_ie_split(ie, ie_len, 1865 before_ht, ARRAY_SIZE(before_ht), 1866 *offset); 1867 if (end - pos < noffset - *offset) 1868 goto out_err; 1869 memcpy(pos, ie + *offset, noffset - *offset); 1870 pos += noffset - *offset; 1871 *offset = noffset; 1872 } 1873 1874 if (sband->ht_cap.ht_supported) { 1875 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap)) 1876 goto out_err; 1877 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 1878 sband->ht_cap.cap); 1879 } 1880 1881 /* insert custom IEs that go before VHT */ 1882 if (ie && ie_len) { 1883 static const u8 before_vht[] = { 1884 /* 1885 * no need to list the ones split off already 1886 * (or generated here) 1887 */ 1888 WLAN_EID_BSS_COEX_2040, 1889 WLAN_EID_EXT_CAPABILITY, 1890 WLAN_EID_SSID_LIST, 1891 WLAN_EID_CHANNEL_USAGE, 1892 WLAN_EID_INTERWORKING, 1893 WLAN_EID_MESH_ID, 1894 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 1895 }; 1896 noffset = ieee80211_ie_split(ie, ie_len, 1897 before_vht, ARRAY_SIZE(before_vht), 1898 *offset); 1899 if (end - pos < noffset - *offset) 1900 goto out_err; 1901 memcpy(pos, ie + *offset, noffset - *offset); 1902 pos += noffset - *offset; 1903 *offset = noffset; 1904 } 1905 1906 /* Check if any channel in this sband supports at least 80 MHz */ 1907 for (i = 0; i < sband->n_channels; i++) { 1908 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 1909 IEEE80211_CHAN_NO_80MHZ)) 1910 continue; 1911 1912 have_80mhz = true; 1913 break; 1914 } 1915 1916 if (sband->vht_cap.vht_supported && have_80mhz) { 1917 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap)) 1918 goto out_err; 1919 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 1920 sband->vht_cap.cap); 1921 } 1922 1923 /* insert custom IEs that go before HE */ 1924 if (ie && ie_len) { 1925 static const u8 before_he[] = { 1926 /* 1927 * no need to list the ones split off before VHT 1928 * or generated here 1929 */ 1930 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 1931 WLAN_EID_AP_CSN, 1932 /* TODO: add 11ah/11aj/11ak elements */ 1933 }; 1934 noffset = ieee80211_ie_split(ie, ie_len, 1935 before_he, ARRAY_SIZE(before_he), 1936 *offset); 1937 if (end - pos < noffset - *offset) 1938 goto out_err; 1939 memcpy(pos, ie + *offset, noffset - *offset); 1940 pos += noffset - *offset; 1941 *offset = noffset; 1942 } 1943 1944 he_cap = ieee80211_get_he_sta_cap(sband); 1945 if (he_cap) { 1946 pos = ieee80211_ie_build_he_cap(pos, he_cap, end); 1947 if (!pos) 1948 goto out_err; 1949 1950 if (sband->band == NL80211_BAND_6GHZ) { 1951 enum nl80211_iftype iftype = 1952 ieee80211_vif_type_p2p(&sdata->vif); 1953 __le16 cap = ieee80211_get_he_6ghz_capa(sband, iftype); 1954 1955 pos = ieee80211_write_he_6ghz_cap(pos, cap, end); 1956 } 1957 } 1958 1959 /* 1960 * If adding more here, adjust code in main.c 1961 * that calculates local->scan_ies_len. 1962 */ 1963 1964 return pos - buffer; 1965 out_err: 1966 WARN_ONCE(1, "not enough space for preq IEs\n"); 1967 done: 1968 return pos - buffer; 1969 } 1970 1971 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 1972 size_t buffer_len, 1973 struct ieee80211_scan_ies *ie_desc, 1974 const u8 *ie, size_t ie_len, 1975 u8 bands_used, u32 *rate_masks, 1976 struct cfg80211_chan_def *chandef, 1977 u32 flags) 1978 { 1979 size_t pos = 0, old_pos = 0, custom_ie_offset = 0; 1980 int i; 1981 1982 memset(ie_desc, 0, sizeof(*ie_desc)); 1983 1984 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1985 if (bands_used & BIT(i)) { 1986 pos += ieee80211_build_preq_ies_band(sdata, 1987 buffer + pos, 1988 buffer_len - pos, 1989 ie, ie_len, i, 1990 rate_masks[i], 1991 chandef, 1992 &custom_ie_offset, 1993 flags); 1994 ie_desc->ies[i] = buffer + old_pos; 1995 ie_desc->len[i] = pos - old_pos; 1996 old_pos = pos; 1997 } 1998 } 1999 2000 /* add any remaining custom IEs */ 2001 if (ie && ie_len) { 2002 if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset, 2003 "not enough space for preq custom IEs\n")) 2004 return pos; 2005 memcpy(buffer + pos, ie + custom_ie_offset, 2006 ie_len - custom_ie_offset); 2007 ie_desc->common_ies = buffer + pos; 2008 ie_desc->common_ie_len = ie_len - custom_ie_offset; 2009 pos += ie_len - custom_ie_offset; 2010 } 2011 2012 return pos; 2013 }; 2014 2015 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 2016 const u8 *src, const u8 *dst, 2017 u32 ratemask, 2018 struct ieee80211_channel *chan, 2019 const u8 *ssid, size_t ssid_len, 2020 const u8 *ie, size_t ie_len, 2021 u32 flags) 2022 { 2023 struct ieee80211_local *local = sdata->local; 2024 struct cfg80211_chan_def chandef; 2025 struct sk_buff *skb; 2026 struct ieee80211_mgmt *mgmt; 2027 int ies_len; 2028 u32 rate_masks[NUM_NL80211_BANDS] = {}; 2029 struct ieee80211_scan_ies dummy_ie_desc; 2030 2031 /* 2032 * Do not send DS Channel parameter for directed probe requests 2033 * in order to maximize the chance that we get a response. Some 2034 * badly-behaved APs don't respond when this parameter is included. 2035 */ 2036 chandef.width = sdata->vif.bss_conf.chandef.width; 2037 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 2038 chandef.chan = NULL; 2039 else 2040 chandef.chan = chan; 2041 2042 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 2043 100 + ie_len); 2044 if (!skb) 2045 return NULL; 2046 2047 rate_masks[chan->band] = ratemask; 2048 ies_len = ieee80211_build_preq_ies(sdata, skb_tail_pointer(skb), 2049 skb_tailroom(skb), &dummy_ie_desc, 2050 ie, ie_len, BIT(chan->band), 2051 rate_masks, &chandef, flags); 2052 skb_put(skb, ies_len); 2053 2054 if (dst) { 2055 mgmt = (struct ieee80211_mgmt *) skb->data; 2056 memcpy(mgmt->da, dst, ETH_ALEN); 2057 memcpy(mgmt->bssid, dst, ETH_ALEN); 2058 } 2059 2060 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 2061 2062 return skb; 2063 } 2064 2065 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 2066 struct ieee802_11_elems *elems, 2067 enum nl80211_band band, u32 *basic_rates) 2068 { 2069 struct ieee80211_supported_band *sband; 2070 size_t num_rates; 2071 u32 supp_rates, rate_flags; 2072 int i, j, shift; 2073 2074 sband = sdata->local->hw.wiphy->bands[band]; 2075 if (WARN_ON(!sband)) 2076 return 1; 2077 2078 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 2079 shift = ieee80211_vif_get_shift(&sdata->vif); 2080 2081 num_rates = sband->n_bitrates; 2082 supp_rates = 0; 2083 for (i = 0; i < elems->supp_rates_len + 2084 elems->ext_supp_rates_len; i++) { 2085 u8 rate = 0; 2086 int own_rate; 2087 bool is_basic; 2088 if (i < elems->supp_rates_len) 2089 rate = elems->supp_rates[i]; 2090 else if (elems->ext_supp_rates) 2091 rate = elems->ext_supp_rates 2092 [i - elems->supp_rates_len]; 2093 own_rate = 5 * (rate & 0x7f); 2094 is_basic = !!(rate & 0x80); 2095 2096 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 2097 continue; 2098 2099 for (j = 0; j < num_rates; j++) { 2100 int brate; 2101 if ((rate_flags & sband->bitrates[j].flags) 2102 != rate_flags) 2103 continue; 2104 2105 brate = DIV_ROUND_UP(sband->bitrates[j].bitrate, 2106 1 << shift); 2107 2108 if (brate == own_rate) { 2109 supp_rates |= BIT(j); 2110 if (basic_rates && is_basic) 2111 *basic_rates |= BIT(j); 2112 } 2113 } 2114 } 2115 return supp_rates; 2116 } 2117 2118 void ieee80211_stop_device(struct ieee80211_local *local) 2119 { 2120 ieee80211_led_radio(local, false); 2121 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 2122 2123 cancel_work_sync(&local->reconfig_filter); 2124 2125 flush_workqueue(local->workqueue); 2126 drv_stop(local); 2127 } 2128 2129 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 2130 bool aborted) 2131 { 2132 /* It's possible that we don't handle the scan completion in 2133 * time during suspend, so if it's still marked as completed 2134 * here, queue the work and flush it to clean things up. 2135 * Instead of calling the worker function directly here, we 2136 * really queue it to avoid potential races with other flows 2137 * scheduling the same work. 2138 */ 2139 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 2140 /* If coming from reconfiguration failure, abort the scan so 2141 * we don't attempt to continue a partial HW scan - which is 2142 * possible otherwise if (e.g.) the 2.4 GHz portion was the 2143 * completed scan, and a 5 GHz portion is still pending. 2144 */ 2145 if (aborted) 2146 set_bit(SCAN_ABORTED, &local->scanning); 2147 ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0); 2148 flush_delayed_work(&local->scan_work); 2149 } 2150 } 2151 2152 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 2153 { 2154 struct ieee80211_sub_if_data *sdata; 2155 struct ieee80211_chanctx *ctx; 2156 2157 /* 2158 * We get here if during resume the device can't be restarted properly. 2159 * We might also get here if this happens during HW reset, which is a 2160 * slightly different situation and we need to drop all connections in 2161 * the latter case. 2162 * 2163 * Ask cfg80211 to turn off all interfaces, this will result in more 2164 * warnings but at least we'll then get into a clean stopped state. 2165 */ 2166 2167 local->resuming = false; 2168 local->suspended = false; 2169 local->in_reconfig = false; 2170 2171 ieee80211_flush_completed_scan(local, true); 2172 2173 /* scheduled scan clearly can't be running any more, but tell 2174 * cfg80211 and clear local state 2175 */ 2176 ieee80211_sched_scan_end(local); 2177 2178 list_for_each_entry(sdata, &local->interfaces, list) 2179 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 2180 2181 /* Mark channel contexts as not being in the driver any more to avoid 2182 * removing them from the driver during the shutdown process... 2183 */ 2184 mutex_lock(&local->chanctx_mtx); 2185 list_for_each_entry(ctx, &local->chanctx_list, list) 2186 ctx->driver_present = false; 2187 mutex_unlock(&local->chanctx_mtx); 2188 2189 cfg80211_shutdown_all_interfaces(local->hw.wiphy); 2190 } 2191 2192 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 2193 struct ieee80211_sub_if_data *sdata) 2194 { 2195 struct ieee80211_chanctx_conf *conf; 2196 struct ieee80211_chanctx *ctx; 2197 2198 if (!local->use_chanctx) 2199 return; 2200 2201 mutex_lock(&local->chanctx_mtx); 2202 conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2203 lockdep_is_held(&local->chanctx_mtx)); 2204 if (conf) { 2205 ctx = container_of(conf, struct ieee80211_chanctx, conf); 2206 drv_assign_vif_chanctx(local, sdata, ctx); 2207 } 2208 mutex_unlock(&local->chanctx_mtx); 2209 } 2210 2211 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 2212 { 2213 struct ieee80211_local *local = sdata->local; 2214 struct sta_info *sta; 2215 2216 /* add STAs back */ 2217 mutex_lock(&local->sta_mtx); 2218 list_for_each_entry(sta, &local->sta_list, list) { 2219 enum ieee80211_sta_state state; 2220 2221 if (!sta->uploaded || sta->sdata != sdata) 2222 continue; 2223 2224 for (state = IEEE80211_STA_NOTEXIST; 2225 state < sta->sta_state; state++) 2226 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2227 state + 1)); 2228 } 2229 mutex_unlock(&local->sta_mtx); 2230 } 2231 2232 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 2233 { 2234 struct cfg80211_nan_func *func, **funcs; 2235 int res, id, i = 0; 2236 2237 res = drv_start_nan(sdata->local, sdata, 2238 &sdata->u.nan.conf); 2239 if (WARN_ON(res)) 2240 return res; 2241 2242 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 2243 sizeof(*funcs), 2244 GFP_KERNEL); 2245 if (!funcs) 2246 return -ENOMEM; 2247 2248 /* Add all the functions: 2249 * This is a little bit ugly. We need to call a potentially sleeping 2250 * callback for each NAN function, so we can't hold the spinlock. 2251 */ 2252 spin_lock_bh(&sdata->u.nan.func_lock); 2253 2254 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 2255 funcs[i++] = func; 2256 2257 spin_unlock_bh(&sdata->u.nan.func_lock); 2258 2259 for (i = 0; funcs[i]; i++) { 2260 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 2261 if (WARN_ON(res)) 2262 ieee80211_nan_func_terminated(&sdata->vif, 2263 funcs[i]->instance_id, 2264 NL80211_NAN_FUNC_TERM_REASON_ERROR, 2265 GFP_KERNEL); 2266 } 2267 2268 kfree(funcs); 2269 2270 return 0; 2271 } 2272 2273 int ieee80211_reconfig(struct ieee80211_local *local) 2274 { 2275 struct ieee80211_hw *hw = &local->hw; 2276 struct ieee80211_sub_if_data *sdata; 2277 struct ieee80211_chanctx *ctx; 2278 struct sta_info *sta; 2279 int res, i; 2280 bool reconfig_due_to_wowlan = false; 2281 struct ieee80211_sub_if_data *sched_scan_sdata; 2282 struct cfg80211_sched_scan_request *sched_scan_req; 2283 bool sched_scan_stopped = false; 2284 bool suspended = local->suspended; 2285 2286 /* nothing to do if HW shouldn't run */ 2287 if (!local->open_count) 2288 goto wake_up; 2289 2290 #ifdef CONFIG_PM 2291 if (suspended) 2292 local->resuming = true; 2293 2294 if (local->wowlan) { 2295 /* 2296 * In the wowlan case, both mac80211 and the device 2297 * are functional when the resume op is called, so 2298 * clear local->suspended so the device could operate 2299 * normally (e.g. pass rx frames). 2300 */ 2301 local->suspended = false; 2302 res = drv_resume(local); 2303 local->wowlan = false; 2304 if (res < 0) { 2305 local->resuming = false; 2306 return res; 2307 } 2308 if (res == 0) 2309 goto wake_up; 2310 WARN_ON(res > 1); 2311 /* 2312 * res is 1, which means the driver requested 2313 * to go through a regular reset on wakeup. 2314 * restore local->suspended in this case. 2315 */ 2316 reconfig_due_to_wowlan = true; 2317 local->suspended = true; 2318 } 2319 #endif 2320 2321 /* 2322 * In case of hw_restart during suspend (without wowlan), 2323 * cancel restart work, as we are reconfiguring the device 2324 * anyway. 2325 * Note that restart_work is scheduled on a frozen workqueue, 2326 * so we can't deadlock in this case. 2327 */ 2328 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 2329 cancel_work_sync(&local->restart_work); 2330 2331 local->started = false; 2332 2333 /* 2334 * Upon resume hardware can sometimes be goofy due to 2335 * various platform / driver / bus issues, so restarting 2336 * the device may at times not work immediately. Propagate 2337 * the error. 2338 */ 2339 res = drv_start(local); 2340 if (res) { 2341 if (suspended) 2342 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 2343 else 2344 WARN(1, "Hardware became unavailable during restart.\n"); 2345 ieee80211_handle_reconfig_failure(local); 2346 return res; 2347 } 2348 2349 /* setup fragmentation threshold */ 2350 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 2351 2352 /* setup RTS threshold */ 2353 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 2354 2355 /* reset coverage class */ 2356 drv_set_coverage_class(local, hw->wiphy->coverage_class); 2357 2358 ieee80211_led_radio(local, true); 2359 ieee80211_mod_tpt_led_trig(local, 2360 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 2361 2362 /* add interfaces */ 2363 sdata = rtnl_dereference(local->monitor_sdata); 2364 if (sdata) { 2365 /* in HW restart it exists already */ 2366 WARN_ON(local->resuming); 2367 res = drv_add_interface(local, sdata); 2368 if (WARN_ON(res)) { 2369 RCU_INIT_POINTER(local->monitor_sdata, NULL); 2370 synchronize_net(); 2371 kfree(sdata); 2372 } 2373 } 2374 2375 list_for_each_entry(sdata, &local->interfaces, list) { 2376 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2377 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2378 ieee80211_sdata_running(sdata)) { 2379 res = drv_add_interface(local, sdata); 2380 if (WARN_ON(res)) 2381 break; 2382 } 2383 } 2384 2385 /* If adding any of the interfaces failed above, roll back and 2386 * report failure. 2387 */ 2388 if (res) { 2389 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 2390 list) 2391 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2392 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2393 ieee80211_sdata_running(sdata)) 2394 drv_remove_interface(local, sdata); 2395 ieee80211_handle_reconfig_failure(local); 2396 return res; 2397 } 2398 2399 /* add channel contexts */ 2400 if (local->use_chanctx) { 2401 mutex_lock(&local->chanctx_mtx); 2402 list_for_each_entry(ctx, &local->chanctx_list, list) 2403 if (ctx->replace_state != 2404 IEEE80211_CHANCTX_REPLACES_OTHER) 2405 WARN_ON(drv_add_chanctx(local, ctx)); 2406 mutex_unlock(&local->chanctx_mtx); 2407 2408 sdata = rtnl_dereference(local->monitor_sdata); 2409 if (sdata && ieee80211_sdata_running(sdata)) 2410 ieee80211_assign_chanctx(local, sdata); 2411 } 2412 2413 /* reconfigure hardware */ 2414 ieee80211_hw_config(local, ~0); 2415 2416 ieee80211_configure_filter(local); 2417 2418 /* Finally also reconfigure all the BSS information */ 2419 list_for_each_entry(sdata, &local->interfaces, list) { 2420 u32 changed; 2421 2422 if (!ieee80211_sdata_running(sdata)) 2423 continue; 2424 2425 ieee80211_assign_chanctx(local, sdata); 2426 2427 switch (sdata->vif.type) { 2428 case NL80211_IFTYPE_AP_VLAN: 2429 case NL80211_IFTYPE_MONITOR: 2430 break; 2431 case NL80211_IFTYPE_ADHOC: 2432 if (sdata->vif.bss_conf.ibss_joined) 2433 WARN_ON(drv_join_ibss(local, sdata)); 2434 fallthrough; 2435 default: 2436 ieee80211_reconfig_stations(sdata); 2437 fallthrough; 2438 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 2439 for (i = 0; i < IEEE80211_NUM_ACS; i++) 2440 drv_conf_tx(local, sdata, i, 2441 &sdata->tx_conf[i]); 2442 break; 2443 } 2444 2445 /* common change flags for all interface types */ 2446 changed = BSS_CHANGED_ERP_CTS_PROT | 2447 BSS_CHANGED_ERP_PREAMBLE | 2448 BSS_CHANGED_ERP_SLOT | 2449 BSS_CHANGED_HT | 2450 BSS_CHANGED_BASIC_RATES | 2451 BSS_CHANGED_BEACON_INT | 2452 BSS_CHANGED_BSSID | 2453 BSS_CHANGED_CQM | 2454 BSS_CHANGED_QOS | 2455 BSS_CHANGED_IDLE | 2456 BSS_CHANGED_TXPOWER | 2457 BSS_CHANGED_MCAST_RATE; 2458 2459 if (sdata->vif.mu_mimo_owner) 2460 changed |= BSS_CHANGED_MU_GROUPS; 2461 2462 switch (sdata->vif.type) { 2463 case NL80211_IFTYPE_STATION: 2464 changed |= BSS_CHANGED_ASSOC | 2465 BSS_CHANGED_ARP_FILTER | 2466 BSS_CHANGED_PS; 2467 2468 /* Re-send beacon info report to the driver */ 2469 if (sdata->u.mgd.have_beacon) 2470 changed |= BSS_CHANGED_BEACON_INFO; 2471 2472 if (sdata->vif.bss_conf.max_idle_period || 2473 sdata->vif.bss_conf.protected_keep_alive) 2474 changed |= BSS_CHANGED_KEEP_ALIVE; 2475 2476 sdata_lock(sdata); 2477 ieee80211_bss_info_change_notify(sdata, changed); 2478 sdata_unlock(sdata); 2479 break; 2480 case NL80211_IFTYPE_OCB: 2481 changed |= BSS_CHANGED_OCB; 2482 ieee80211_bss_info_change_notify(sdata, changed); 2483 break; 2484 case NL80211_IFTYPE_ADHOC: 2485 changed |= BSS_CHANGED_IBSS; 2486 fallthrough; 2487 case NL80211_IFTYPE_AP: 2488 changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS; 2489 2490 if (sdata->vif.bss_conf.ftm_responder == 1 && 2491 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2492 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2493 changed |= BSS_CHANGED_FTM_RESPONDER; 2494 2495 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2496 changed |= BSS_CHANGED_AP_PROBE_RESP; 2497 2498 if (rcu_access_pointer(sdata->u.ap.beacon)) 2499 drv_start_ap(local, sdata); 2500 } 2501 fallthrough; 2502 case NL80211_IFTYPE_MESH_POINT: 2503 if (sdata->vif.bss_conf.enable_beacon) { 2504 changed |= BSS_CHANGED_BEACON | 2505 BSS_CHANGED_BEACON_ENABLED; 2506 ieee80211_bss_info_change_notify(sdata, changed); 2507 } 2508 break; 2509 case NL80211_IFTYPE_NAN: 2510 res = ieee80211_reconfig_nan(sdata); 2511 if (res < 0) { 2512 ieee80211_handle_reconfig_failure(local); 2513 return res; 2514 } 2515 break; 2516 case NL80211_IFTYPE_WDS: 2517 case NL80211_IFTYPE_AP_VLAN: 2518 case NL80211_IFTYPE_MONITOR: 2519 case NL80211_IFTYPE_P2P_DEVICE: 2520 /* nothing to do */ 2521 break; 2522 case NL80211_IFTYPE_UNSPECIFIED: 2523 case NUM_NL80211_IFTYPES: 2524 case NL80211_IFTYPE_P2P_CLIENT: 2525 case NL80211_IFTYPE_P2P_GO: 2526 WARN_ON(1); 2527 break; 2528 } 2529 } 2530 2531 ieee80211_recalc_ps(local); 2532 2533 /* 2534 * The sta might be in psm against the ap (e.g. because 2535 * this was the state before a hw restart), so we 2536 * explicitly send a null packet in order to make sure 2537 * it'll sync against the ap (and get out of psm). 2538 */ 2539 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2540 list_for_each_entry(sdata, &local->interfaces, list) { 2541 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2542 continue; 2543 if (!sdata->u.mgd.associated) 2544 continue; 2545 2546 ieee80211_send_nullfunc(local, sdata, false); 2547 } 2548 } 2549 2550 /* APs are now beaconing, add back stations */ 2551 mutex_lock(&local->sta_mtx); 2552 list_for_each_entry(sta, &local->sta_list, list) { 2553 enum ieee80211_sta_state state; 2554 2555 if (!sta->uploaded) 2556 continue; 2557 2558 if (sta->sdata->vif.type != NL80211_IFTYPE_AP && 2559 sta->sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 2560 continue; 2561 2562 for (state = IEEE80211_STA_NOTEXIST; 2563 state < sta->sta_state; state++) 2564 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2565 state + 1)); 2566 } 2567 mutex_unlock(&local->sta_mtx); 2568 2569 /* add back keys */ 2570 list_for_each_entry(sdata, &local->interfaces, list) 2571 ieee80211_reenable_keys(sdata); 2572 2573 /* Reconfigure sched scan if it was interrupted by FW restart */ 2574 mutex_lock(&local->mtx); 2575 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2576 lockdep_is_held(&local->mtx)); 2577 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2578 lockdep_is_held(&local->mtx)); 2579 if (sched_scan_sdata && sched_scan_req) 2580 /* 2581 * Sched scan stopped, but we don't want to report it. Instead, 2582 * we're trying to reschedule. However, if more than one scan 2583 * plan was set, we cannot reschedule since we don't know which 2584 * scan plan was currently running (and some scan plans may have 2585 * already finished). 2586 */ 2587 if (sched_scan_req->n_scan_plans > 1 || 2588 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2589 sched_scan_req)) { 2590 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2591 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2592 sched_scan_stopped = true; 2593 } 2594 mutex_unlock(&local->mtx); 2595 2596 if (sched_scan_stopped) 2597 cfg80211_sched_scan_stopped_rtnl(local->hw.wiphy, 0); 2598 2599 wake_up: 2600 2601 if (local->monitors == local->open_count && local->monitors > 0) 2602 ieee80211_add_virtual_monitor(local); 2603 2604 /* 2605 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2606 * sessions can be established after a resume. 2607 * 2608 * Also tear down aggregation sessions since reconfiguring 2609 * them in a hardware restart scenario is not easily done 2610 * right now, and the hardware will have lost information 2611 * about the sessions, but we and the AP still think they 2612 * are active. This is really a workaround though. 2613 */ 2614 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2615 mutex_lock(&local->sta_mtx); 2616 2617 list_for_each_entry(sta, &local->sta_list, list) { 2618 if (!local->resuming) 2619 ieee80211_sta_tear_down_BA_sessions( 2620 sta, AGG_STOP_LOCAL_REQUEST); 2621 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2622 } 2623 2624 mutex_unlock(&local->sta_mtx); 2625 } 2626 2627 if (local->in_reconfig) { 2628 local->in_reconfig = false; 2629 barrier(); 2630 2631 /* Restart deferred ROCs */ 2632 mutex_lock(&local->mtx); 2633 ieee80211_start_next_roc(local); 2634 mutex_unlock(&local->mtx); 2635 2636 /* Requeue all works */ 2637 list_for_each_entry(sdata, &local->interfaces, list) 2638 ieee80211_queue_work(&local->hw, &sdata->work); 2639 } 2640 2641 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2642 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2643 false); 2644 2645 /* 2646 * If this is for hw restart things are still running. 2647 * We may want to change that later, however. 2648 */ 2649 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2650 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2651 2652 if (!suspended) 2653 return 0; 2654 2655 #ifdef CONFIG_PM 2656 /* first set suspended false, then resuming */ 2657 local->suspended = false; 2658 mb(); 2659 local->resuming = false; 2660 2661 ieee80211_flush_completed_scan(local, false); 2662 2663 if (local->open_count && !reconfig_due_to_wowlan) 2664 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2665 2666 list_for_each_entry(sdata, &local->interfaces, list) { 2667 if (!ieee80211_sdata_running(sdata)) 2668 continue; 2669 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2670 ieee80211_sta_restart(sdata); 2671 } 2672 2673 mod_timer(&local->sta_cleanup, jiffies + 1); 2674 #else 2675 WARN_ON(1); 2676 #endif 2677 2678 return 0; 2679 } 2680 2681 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 2682 { 2683 struct ieee80211_sub_if_data *sdata; 2684 struct ieee80211_local *local; 2685 struct ieee80211_key *key; 2686 2687 if (WARN_ON(!vif)) 2688 return; 2689 2690 sdata = vif_to_sdata(vif); 2691 local = sdata->local; 2692 2693 if (WARN_ON(!local->resuming)) 2694 return; 2695 2696 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2697 return; 2698 2699 sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME; 2700 2701 mutex_lock(&local->key_mtx); 2702 list_for_each_entry(key, &sdata->key_list, list) 2703 key->flags |= KEY_FLAG_TAINTED; 2704 mutex_unlock(&local->key_mtx); 2705 } 2706 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 2707 2708 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata) 2709 { 2710 struct ieee80211_local *local = sdata->local; 2711 struct ieee80211_chanctx_conf *chanctx_conf; 2712 struct ieee80211_chanctx *chanctx; 2713 2714 mutex_lock(&local->chanctx_mtx); 2715 2716 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2717 lockdep_is_held(&local->chanctx_mtx)); 2718 2719 /* 2720 * This function can be called from a work, thus it may be possible 2721 * that the chanctx_conf is removed (due to a disconnection, for 2722 * example). 2723 * So nothing should be done in such case. 2724 */ 2725 if (!chanctx_conf) 2726 goto unlock; 2727 2728 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2729 ieee80211_recalc_smps_chanctx(local, chanctx); 2730 unlock: 2731 mutex_unlock(&local->chanctx_mtx); 2732 } 2733 2734 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata) 2735 { 2736 struct ieee80211_local *local = sdata->local; 2737 struct ieee80211_chanctx_conf *chanctx_conf; 2738 struct ieee80211_chanctx *chanctx; 2739 2740 mutex_lock(&local->chanctx_mtx); 2741 2742 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2743 lockdep_is_held(&local->chanctx_mtx)); 2744 2745 if (WARN_ON_ONCE(!chanctx_conf)) 2746 goto unlock; 2747 2748 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2749 ieee80211_recalc_chanctx_min_def(local, chanctx); 2750 unlock: 2751 mutex_unlock(&local->chanctx_mtx); 2752 } 2753 2754 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 2755 { 2756 size_t pos = offset; 2757 2758 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 2759 pos += 2 + ies[pos + 1]; 2760 2761 return pos; 2762 } 2763 2764 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata, 2765 int rssi_min_thold, 2766 int rssi_max_thold) 2767 { 2768 trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold); 2769 2770 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 2771 return; 2772 2773 /* 2774 * Scale up threshold values before storing it, as the RSSI averaging 2775 * algorithm uses a scaled up value as well. Change this scaling 2776 * factor if the RSSI averaging algorithm changes. 2777 */ 2778 sdata->u.mgd.rssi_min_thold = rssi_min_thold*16; 2779 sdata->u.mgd.rssi_max_thold = rssi_max_thold*16; 2780 } 2781 2782 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif, 2783 int rssi_min_thold, 2784 int rssi_max_thold) 2785 { 2786 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2787 2788 WARN_ON(rssi_min_thold == rssi_max_thold || 2789 rssi_min_thold > rssi_max_thold); 2790 2791 _ieee80211_enable_rssi_reports(sdata, rssi_min_thold, 2792 rssi_max_thold); 2793 } 2794 EXPORT_SYMBOL(ieee80211_enable_rssi_reports); 2795 2796 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif) 2797 { 2798 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2799 2800 _ieee80211_enable_rssi_reports(sdata, 0, 0); 2801 } 2802 EXPORT_SYMBOL(ieee80211_disable_rssi_reports); 2803 2804 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2805 u16 cap) 2806 { 2807 __le16 tmp; 2808 2809 *pos++ = WLAN_EID_HT_CAPABILITY; 2810 *pos++ = sizeof(struct ieee80211_ht_cap); 2811 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 2812 2813 /* capability flags */ 2814 tmp = cpu_to_le16(cap); 2815 memcpy(pos, &tmp, sizeof(u16)); 2816 pos += sizeof(u16); 2817 2818 /* AMPDU parameters */ 2819 *pos++ = ht_cap->ampdu_factor | 2820 (ht_cap->ampdu_density << 2821 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 2822 2823 /* MCS set */ 2824 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 2825 pos += sizeof(ht_cap->mcs); 2826 2827 /* extended capabilities */ 2828 pos += sizeof(__le16); 2829 2830 /* BF capabilities */ 2831 pos += sizeof(__le32); 2832 2833 /* antenna selection */ 2834 pos += sizeof(u8); 2835 2836 return pos; 2837 } 2838 2839 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2840 u32 cap) 2841 { 2842 __le32 tmp; 2843 2844 *pos++ = WLAN_EID_VHT_CAPABILITY; 2845 *pos++ = sizeof(struct ieee80211_vht_cap); 2846 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 2847 2848 /* capability flags */ 2849 tmp = cpu_to_le32(cap); 2850 memcpy(pos, &tmp, sizeof(u32)); 2851 pos += sizeof(u32); 2852 2853 /* VHT MCS set */ 2854 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 2855 pos += sizeof(vht_cap->vht_mcs); 2856 2857 return pos; 2858 } 2859 2860 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 2861 { 2862 const struct ieee80211_sta_he_cap *he_cap; 2863 struct ieee80211_supported_band *sband; 2864 u8 n; 2865 2866 sband = ieee80211_get_sband(sdata); 2867 if (!sband) 2868 return 0; 2869 2870 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 2871 if (!he_cap) 2872 return 0; 2873 2874 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2875 return 2 + 1 + 2876 sizeof(he_cap->he_cap_elem) + n + 2877 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2878 he_cap->he_cap_elem.phy_cap_info); 2879 } 2880 2881 u8 *ieee80211_ie_build_he_cap(u8 *pos, 2882 const struct ieee80211_sta_he_cap *he_cap, 2883 u8 *end) 2884 { 2885 u8 n; 2886 u8 ie_len; 2887 u8 *orig_pos = pos; 2888 2889 /* Make sure we have place for the IE */ 2890 /* 2891 * TODO: the 1 added is because this temporarily is under the EXTENSION 2892 * IE. Get rid of it when it moves. 2893 */ 2894 if (!he_cap) 2895 return orig_pos; 2896 2897 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2898 ie_len = 2 + 1 + 2899 sizeof(he_cap->he_cap_elem) + n + 2900 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2901 he_cap->he_cap_elem.phy_cap_info); 2902 2903 if ((end - pos) < ie_len) 2904 return orig_pos; 2905 2906 *pos++ = WLAN_EID_EXTENSION; 2907 pos++; /* We'll set the size later below */ 2908 *pos++ = WLAN_EID_EXT_HE_CAPABILITY; 2909 2910 /* Fixed data */ 2911 memcpy(pos, &he_cap->he_cap_elem, sizeof(he_cap->he_cap_elem)); 2912 pos += sizeof(he_cap->he_cap_elem); 2913 2914 memcpy(pos, &he_cap->he_mcs_nss_supp, n); 2915 pos += n; 2916 2917 /* Check if PPE Threshold should be present */ 2918 if ((he_cap->he_cap_elem.phy_cap_info[6] & 2919 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 2920 goto end; 2921 2922 /* 2923 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 2924 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 2925 */ 2926 n = hweight8(he_cap->ppe_thres[0] & 2927 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 2928 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 2929 IEEE80211_PPE_THRES_NSS_POS)); 2930 2931 /* 2932 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 2933 * total size. 2934 */ 2935 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 2936 n = DIV_ROUND_UP(n, 8); 2937 2938 /* Copy PPE Thresholds */ 2939 memcpy(pos, &he_cap->ppe_thres, n); 2940 pos += n; 2941 2942 end: 2943 orig_pos[1] = (pos - orig_pos) - 2; 2944 return pos; 2945 } 2946 2947 void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata, 2948 struct sk_buff *skb) 2949 { 2950 struct ieee80211_supported_band *sband; 2951 const struct ieee80211_sband_iftype_data *iftd; 2952 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 2953 u8 *pos; 2954 u16 cap; 2955 2956 sband = ieee80211_get_sband(sdata); 2957 if (!sband) 2958 return; 2959 2960 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 2961 if (WARN_ON(!iftd)) 2962 return; 2963 2964 /* Check for device HE 6 GHz capability before adding element */ 2965 if (!iftd->he_6ghz_capa.capa) 2966 return; 2967 2968 cap = le16_to_cpu(iftd->he_6ghz_capa.capa); 2969 cap &= ~IEEE80211_HE_6GHZ_CAP_SM_PS; 2970 2971 switch (sdata->smps_mode) { 2972 case IEEE80211_SMPS_AUTOMATIC: 2973 case IEEE80211_SMPS_NUM_MODES: 2974 WARN_ON(1); 2975 fallthrough; 2976 case IEEE80211_SMPS_OFF: 2977 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 2978 IEEE80211_HE_6GHZ_CAP_SM_PS); 2979 break; 2980 case IEEE80211_SMPS_STATIC: 2981 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 2982 IEEE80211_HE_6GHZ_CAP_SM_PS); 2983 break; 2984 case IEEE80211_SMPS_DYNAMIC: 2985 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 2986 IEEE80211_HE_6GHZ_CAP_SM_PS); 2987 break; 2988 } 2989 2990 pos = skb_put(skb, 2 + 1 + sizeof(cap)); 2991 ieee80211_write_he_6ghz_cap(pos, cpu_to_le16(cap), 2992 pos + 2 + 1 + sizeof(cap)); 2993 } 2994 2995 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2996 const struct cfg80211_chan_def *chandef, 2997 u16 prot_mode, bool rifs_mode) 2998 { 2999 struct ieee80211_ht_operation *ht_oper; 3000 /* Build HT Information */ 3001 *pos++ = WLAN_EID_HT_OPERATION; 3002 *pos++ = sizeof(struct ieee80211_ht_operation); 3003 ht_oper = (struct ieee80211_ht_operation *)pos; 3004 ht_oper->primary_chan = ieee80211_frequency_to_channel( 3005 chandef->chan->center_freq); 3006 switch (chandef->width) { 3007 case NL80211_CHAN_WIDTH_160: 3008 case NL80211_CHAN_WIDTH_80P80: 3009 case NL80211_CHAN_WIDTH_80: 3010 case NL80211_CHAN_WIDTH_40: 3011 if (chandef->center_freq1 > chandef->chan->center_freq) 3012 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3013 else 3014 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3015 break; 3016 default: 3017 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 3018 break; 3019 } 3020 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 3021 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 3022 chandef->width != NL80211_CHAN_WIDTH_20) 3023 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 3024 3025 if (rifs_mode) 3026 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 3027 3028 ht_oper->operation_mode = cpu_to_le16(prot_mode); 3029 ht_oper->stbc_param = 0x0000; 3030 3031 /* It seems that Basic MCS set and Supported MCS set 3032 are identical for the first 10 bytes */ 3033 memset(&ht_oper->basic_set, 0, 16); 3034 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 3035 3036 return pos + sizeof(struct ieee80211_ht_operation); 3037 } 3038 3039 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 3040 const struct cfg80211_chan_def *chandef) 3041 { 3042 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 3043 *pos++ = 3; /* IE length */ 3044 /* New channel width */ 3045 switch (chandef->width) { 3046 case NL80211_CHAN_WIDTH_80: 3047 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 3048 break; 3049 case NL80211_CHAN_WIDTH_160: 3050 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 3051 break; 3052 case NL80211_CHAN_WIDTH_80P80: 3053 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 3054 break; 3055 default: 3056 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 3057 } 3058 3059 /* new center frequency segment 0 */ 3060 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 3061 /* new center frequency segment 1 */ 3062 if (chandef->center_freq2) 3063 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 3064 else 3065 *pos++ = 0; 3066 } 3067 3068 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 3069 const struct cfg80211_chan_def *chandef) 3070 { 3071 struct ieee80211_vht_operation *vht_oper; 3072 3073 *pos++ = WLAN_EID_VHT_OPERATION; 3074 *pos++ = sizeof(struct ieee80211_vht_operation); 3075 vht_oper = (struct ieee80211_vht_operation *)pos; 3076 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 3077 chandef->center_freq1); 3078 if (chandef->center_freq2) 3079 vht_oper->center_freq_seg1_idx = 3080 ieee80211_frequency_to_channel(chandef->center_freq2); 3081 else 3082 vht_oper->center_freq_seg1_idx = 0x00; 3083 3084 switch (chandef->width) { 3085 case NL80211_CHAN_WIDTH_160: 3086 /* 3087 * Convert 160 MHz channel width to new style as interop 3088 * workaround. 3089 */ 3090 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3091 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 3092 if (chandef->chan->center_freq < chandef->center_freq1) 3093 vht_oper->center_freq_seg0_idx -= 8; 3094 else 3095 vht_oper->center_freq_seg0_idx += 8; 3096 break; 3097 case NL80211_CHAN_WIDTH_80P80: 3098 /* 3099 * Convert 80+80 MHz channel width to new style as interop 3100 * workaround. 3101 */ 3102 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3103 break; 3104 case NL80211_CHAN_WIDTH_80: 3105 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3106 break; 3107 default: 3108 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 3109 break; 3110 } 3111 3112 /* don't require special VHT peer rates */ 3113 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 3114 3115 return pos + sizeof(struct ieee80211_vht_operation); 3116 } 3117 3118 u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef) 3119 { 3120 struct ieee80211_he_operation *he_oper; 3121 struct ieee80211_he_6ghz_oper *he_6ghz_op; 3122 u32 he_oper_params; 3123 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 3124 3125 if (chandef->chan->band == NL80211_BAND_6GHZ) 3126 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 3127 3128 *pos++ = WLAN_EID_EXTENSION; 3129 *pos++ = ie_len; 3130 *pos++ = WLAN_EID_EXT_HE_OPERATION; 3131 3132 he_oper_params = 0; 3133 he_oper_params |= u32_encode_bits(1023, /* disabled */ 3134 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 3135 he_oper_params |= u32_encode_bits(1, 3136 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 3137 he_oper_params |= u32_encode_bits(1, 3138 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 3139 if (chandef->chan->band == NL80211_BAND_6GHZ) 3140 he_oper_params |= u32_encode_bits(1, 3141 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 3142 3143 he_oper = (struct ieee80211_he_operation *)pos; 3144 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 3145 3146 /* don't require special HE peer rates */ 3147 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 3148 pos += sizeof(struct ieee80211_he_operation); 3149 3150 if (chandef->chan->band != NL80211_BAND_6GHZ) 3151 goto out; 3152 3153 /* TODO add VHT operational */ 3154 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 3155 he_6ghz_op->minrate = 6; /* 6 Mbps */ 3156 he_6ghz_op->primary = 3157 ieee80211_frequency_to_channel(chandef->chan->center_freq); 3158 he_6ghz_op->ccfs0 = 3159 ieee80211_frequency_to_channel(chandef->center_freq1); 3160 if (chandef->center_freq2) 3161 he_6ghz_op->ccfs1 = 3162 ieee80211_frequency_to_channel(chandef->center_freq2); 3163 else 3164 he_6ghz_op->ccfs1 = 0; 3165 3166 switch (chandef->width) { 3167 case NL80211_CHAN_WIDTH_160: 3168 /* Convert 160 MHz channel width to new style as interop 3169 * workaround. 3170 */ 3171 he_6ghz_op->control = 3172 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3173 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 3174 if (chandef->chan->center_freq < chandef->center_freq1) 3175 he_6ghz_op->ccfs0 -= 8; 3176 else 3177 he_6ghz_op->ccfs0 += 8; 3178 fallthrough; 3179 case NL80211_CHAN_WIDTH_80P80: 3180 he_6ghz_op->control = 3181 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3182 break; 3183 case NL80211_CHAN_WIDTH_80: 3184 he_6ghz_op->control = 3185 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 3186 break; 3187 case NL80211_CHAN_WIDTH_40: 3188 he_6ghz_op->control = 3189 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 3190 break; 3191 default: 3192 he_6ghz_op->control = 3193 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 3194 break; 3195 } 3196 3197 pos += sizeof(struct ieee80211_he_6ghz_oper); 3198 3199 out: 3200 return pos; 3201 } 3202 3203 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 3204 struct cfg80211_chan_def *chandef) 3205 { 3206 enum nl80211_channel_type channel_type; 3207 3208 if (!ht_oper) 3209 return false; 3210 3211 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 3212 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 3213 channel_type = NL80211_CHAN_HT20; 3214 break; 3215 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 3216 channel_type = NL80211_CHAN_HT40PLUS; 3217 break; 3218 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 3219 channel_type = NL80211_CHAN_HT40MINUS; 3220 break; 3221 default: 3222 channel_type = NL80211_CHAN_NO_HT; 3223 return false; 3224 } 3225 3226 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 3227 return true; 3228 } 3229 3230 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 3231 const struct ieee80211_vht_operation *oper, 3232 const struct ieee80211_ht_operation *htop, 3233 struct cfg80211_chan_def *chandef) 3234 { 3235 struct cfg80211_chan_def new = *chandef; 3236 int cf0, cf1; 3237 int ccfs0, ccfs1, ccfs2; 3238 int ccf0, ccf1; 3239 u32 vht_cap; 3240 bool support_80_80 = false; 3241 bool support_160 = false; 3242 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 3243 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 3244 u8 supp_chwidth = u32_get_bits(vht_cap_info, 3245 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 3246 3247 if (!oper || !htop) 3248 return false; 3249 3250 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 3251 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 3252 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 3253 support_80_80 = ((vht_cap & 3254 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 3255 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 3256 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 3257 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 3258 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 3259 ccfs0 = oper->center_freq_seg0_idx; 3260 ccfs1 = oper->center_freq_seg1_idx; 3261 ccfs2 = (le16_to_cpu(htop->operation_mode) & 3262 IEEE80211_HT_OP_MODE_CCFS2_MASK) 3263 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 3264 3265 ccf0 = ccfs0; 3266 3267 /* if not supported, parse as though we didn't understand it */ 3268 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 3269 ext_nss_bw_supp = 0; 3270 3271 /* 3272 * Cf. IEEE 802.11 Table 9-250 3273 * 3274 * We really just consider that because it's inefficient to connect 3275 * at a higher bandwidth than we'll actually be able to use. 3276 */ 3277 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 3278 default: 3279 case 0x00: 3280 ccf1 = 0; 3281 support_160 = false; 3282 support_80_80 = false; 3283 break; 3284 case 0x01: 3285 support_80_80 = false; 3286 fallthrough; 3287 case 0x02: 3288 case 0x03: 3289 ccf1 = ccfs2; 3290 break; 3291 case 0x10: 3292 ccf1 = ccfs1; 3293 break; 3294 case 0x11: 3295 case 0x12: 3296 if (!ccfs1) 3297 ccf1 = ccfs2; 3298 else 3299 ccf1 = ccfs1; 3300 break; 3301 case 0x13: 3302 case 0x20: 3303 case 0x23: 3304 ccf1 = ccfs1; 3305 break; 3306 } 3307 3308 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3309 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3310 3311 switch (oper->chan_width) { 3312 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3313 /* just use HT information directly */ 3314 break; 3315 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3316 new.width = NL80211_CHAN_WIDTH_80; 3317 new.center_freq1 = cf0; 3318 /* If needed, adjust based on the newer interop workaround. */ 3319 if (ccf1) { 3320 unsigned int diff; 3321 3322 diff = abs(ccf1 - ccf0); 3323 if ((diff == 8) && support_160) { 3324 new.width = NL80211_CHAN_WIDTH_160; 3325 new.center_freq1 = cf1; 3326 } else if ((diff > 8) && support_80_80) { 3327 new.width = NL80211_CHAN_WIDTH_80P80; 3328 new.center_freq2 = cf1; 3329 } 3330 } 3331 break; 3332 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3333 /* deprecated encoding */ 3334 new.width = NL80211_CHAN_WIDTH_160; 3335 new.center_freq1 = cf0; 3336 break; 3337 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3338 /* deprecated encoding */ 3339 new.width = NL80211_CHAN_WIDTH_80P80; 3340 new.center_freq1 = cf0; 3341 new.center_freq2 = cf1; 3342 break; 3343 default: 3344 return false; 3345 } 3346 3347 if (!cfg80211_chandef_valid(&new)) 3348 return false; 3349 3350 *chandef = new; 3351 return true; 3352 } 3353 3354 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata, 3355 const struct ieee80211_he_operation *he_oper, 3356 struct cfg80211_chan_def *chandef) 3357 { 3358 struct ieee80211_local *local = sdata->local; 3359 struct ieee80211_supported_band *sband; 3360 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3361 const struct ieee80211_sta_he_cap *he_cap; 3362 struct cfg80211_chan_def he_chandef = *chandef; 3363 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3364 bool support_80_80, support_160; 3365 u8 he_phy_cap; 3366 u32 freq; 3367 3368 if (chandef->chan->band != NL80211_BAND_6GHZ) 3369 return true; 3370 3371 sband = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3372 3373 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 3374 if (!he_cap) { 3375 sdata_info(sdata, "Missing iftype sband data/HE cap"); 3376 return false; 3377 } 3378 3379 he_phy_cap = he_cap->he_cap_elem.phy_cap_info[0]; 3380 support_160 = 3381 he_phy_cap & 3382 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 3383 support_80_80 = 3384 he_phy_cap & 3385 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 3386 3387 if (!he_oper) { 3388 sdata_info(sdata, 3389 "HE is not advertised on (on %d MHz), expect issues\n", 3390 chandef->chan->center_freq); 3391 return false; 3392 } 3393 3394 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3395 3396 if (!he_6ghz_oper) { 3397 sdata_info(sdata, 3398 "HE 6GHz operation missing (on %d MHz), expect issues\n", 3399 chandef->chan->center_freq); 3400 return false; 3401 } 3402 3403 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3404 NL80211_BAND_6GHZ); 3405 he_chandef.chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq); 3406 3407 switch (u8_get_bits(he_6ghz_oper->control, 3408 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3409 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3410 he_chandef.width = NL80211_CHAN_WIDTH_20; 3411 break; 3412 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3413 he_chandef.width = NL80211_CHAN_WIDTH_40; 3414 break; 3415 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3416 he_chandef.width = NL80211_CHAN_WIDTH_80; 3417 break; 3418 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3419 he_chandef.width = NL80211_CHAN_WIDTH_80; 3420 if (!he_6ghz_oper->ccfs1) 3421 break; 3422 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) { 3423 if (support_160) 3424 he_chandef.width = NL80211_CHAN_WIDTH_160; 3425 } else { 3426 if (support_80_80) 3427 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3428 } 3429 break; 3430 } 3431 3432 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3433 he_chandef.center_freq1 = 3434 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3435 NL80211_BAND_6GHZ); 3436 } else { 3437 he_chandef.center_freq1 = 3438 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3439 NL80211_BAND_6GHZ); 3440 if (support_80_80 || support_160) 3441 he_chandef.center_freq2 = 3442 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3443 NL80211_BAND_6GHZ); 3444 } 3445 3446 if (!cfg80211_chandef_valid(&he_chandef)) { 3447 sdata_info(sdata, 3448 "HE 6GHz operation resulted in invalid chandef: %d MHz/%d/%d MHz/%d MHz\n", 3449 he_chandef.chan ? he_chandef.chan->center_freq : 0, 3450 he_chandef.width, 3451 he_chandef.center_freq1, 3452 he_chandef.center_freq2); 3453 return false; 3454 } 3455 3456 *chandef = he_chandef; 3457 3458 return false; 3459 } 3460 3461 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, 3462 struct cfg80211_chan_def *chandef) 3463 { 3464 u32 oper_freq; 3465 3466 if (!oper) 3467 return false; 3468 3469 switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { 3470 case IEEE80211_S1G_CHANWIDTH_1MHZ: 3471 chandef->width = NL80211_CHAN_WIDTH_1; 3472 break; 3473 case IEEE80211_S1G_CHANWIDTH_2MHZ: 3474 chandef->width = NL80211_CHAN_WIDTH_2; 3475 break; 3476 case IEEE80211_S1G_CHANWIDTH_4MHZ: 3477 chandef->width = NL80211_CHAN_WIDTH_4; 3478 break; 3479 case IEEE80211_S1G_CHANWIDTH_8MHZ: 3480 chandef->width = NL80211_CHAN_WIDTH_8; 3481 break; 3482 case IEEE80211_S1G_CHANWIDTH_16MHZ: 3483 chandef->width = NL80211_CHAN_WIDTH_16; 3484 break; 3485 default: 3486 return false; 3487 } 3488 3489 oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch, 3490 NL80211_BAND_S1GHZ); 3491 chandef->center_freq1 = KHZ_TO_MHZ(oper_freq); 3492 chandef->freq1_offset = oper_freq % 1000; 3493 3494 return true; 3495 } 3496 3497 int ieee80211_parse_bitrates(struct cfg80211_chan_def *chandef, 3498 const struct ieee80211_supported_band *sband, 3499 const u8 *srates, int srates_len, u32 *rates) 3500 { 3501 u32 rate_flags = ieee80211_chandef_rate_flags(chandef); 3502 int shift = ieee80211_chandef_get_shift(chandef); 3503 struct ieee80211_rate *br; 3504 int brate, rate, i, j, count = 0; 3505 3506 *rates = 0; 3507 3508 for (i = 0; i < srates_len; i++) { 3509 rate = srates[i] & 0x7f; 3510 3511 for (j = 0; j < sband->n_bitrates; j++) { 3512 br = &sband->bitrates[j]; 3513 if ((rate_flags & br->flags) != rate_flags) 3514 continue; 3515 3516 brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5); 3517 if (brate == rate) { 3518 *rates |= BIT(j); 3519 count++; 3520 break; 3521 } 3522 } 3523 } 3524 return count; 3525 } 3526 3527 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, 3528 struct sk_buff *skb, bool need_basic, 3529 enum nl80211_band band) 3530 { 3531 struct ieee80211_local *local = sdata->local; 3532 struct ieee80211_supported_band *sband; 3533 int rate, shift; 3534 u8 i, rates, *pos; 3535 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3536 u32 rate_flags; 3537 3538 shift = ieee80211_vif_get_shift(&sdata->vif); 3539 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3540 sband = local->hw.wiphy->bands[band]; 3541 rates = 0; 3542 for (i = 0; i < sband->n_bitrates; i++) { 3543 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3544 continue; 3545 rates++; 3546 } 3547 if (rates > 8) 3548 rates = 8; 3549 3550 if (skb_tailroom(skb) < rates + 2) 3551 return -ENOMEM; 3552 3553 pos = skb_put(skb, rates + 2); 3554 *pos++ = WLAN_EID_SUPP_RATES; 3555 *pos++ = rates; 3556 for (i = 0; i < rates; i++) { 3557 u8 basic = 0; 3558 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3559 continue; 3560 3561 if (need_basic && basic_rates & BIT(i)) 3562 basic = 0x80; 3563 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3564 5 * (1 << shift)); 3565 *pos++ = basic | (u8) rate; 3566 } 3567 3568 return 0; 3569 } 3570 3571 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, 3572 struct sk_buff *skb, bool need_basic, 3573 enum nl80211_band band) 3574 { 3575 struct ieee80211_local *local = sdata->local; 3576 struct ieee80211_supported_band *sband; 3577 int rate, shift; 3578 u8 i, exrates, *pos; 3579 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3580 u32 rate_flags; 3581 3582 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3583 shift = ieee80211_vif_get_shift(&sdata->vif); 3584 3585 sband = local->hw.wiphy->bands[band]; 3586 exrates = 0; 3587 for (i = 0; i < sband->n_bitrates; i++) { 3588 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3589 continue; 3590 exrates++; 3591 } 3592 3593 if (exrates > 8) 3594 exrates -= 8; 3595 else 3596 exrates = 0; 3597 3598 if (skb_tailroom(skb) < exrates + 2) 3599 return -ENOMEM; 3600 3601 if (exrates) { 3602 pos = skb_put(skb, exrates + 2); 3603 *pos++ = WLAN_EID_EXT_SUPP_RATES; 3604 *pos++ = exrates; 3605 for (i = 8; i < sband->n_bitrates; i++) { 3606 u8 basic = 0; 3607 if ((rate_flags & sband->bitrates[i].flags) 3608 != rate_flags) 3609 continue; 3610 if (need_basic && basic_rates & BIT(i)) 3611 basic = 0x80; 3612 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3613 5 * (1 << shift)); 3614 *pos++ = basic | (u8) rate; 3615 } 3616 } 3617 return 0; 3618 } 3619 3620 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 3621 { 3622 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 3623 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 3624 3625 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) { 3626 /* non-managed type inferfaces */ 3627 return 0; 3628 } 3629 return -ewma_beacon_signal_read(&ifmgd->ave_beacon_signal); 3630 } 3631 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 3632 3633 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 3634 { 3635 if (!mcs) 3636 return 1; 3637 3638 /* TODO: consider rx_highest */ 3639 3640 if (mcs->rx_mask[3]) 3641 return 4; 3642 if (mcs->rx_mask[2]) 3643 return 3; 3644 if (mcs->rx_mask[1]) 3645 return 2; 3646 return 1; 3647 } 3648 3649 /** 3650 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 3651 * @local: mac80211 hw info struct 3652 * @status: RX status 3653 * @mpdu_len: total MPDU length (including FCS) 3654 * @mpdu_offset: offset into MPDU to calculate timestamp at 3655 * 3656 * This function calculates the RX timestamp at the given MPDU offset, taking 3657 * into account what the RX timestamp was. An offset of 0 will just normalize 3658 * the timestamp to TSF at beginning of MPDU reception. 3659 */ 3660 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 3661 struct ieee80211_rx_status *status, 3662 unsigned int mpdu_len, 3663 unsigned int mpdu_offset) 3664 { 3665 u64 ts = status->mactime; 3666 struct rate_info ri; 3667 u16 rate; 3668 3669 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 3670 return 0; 3671 3672 memset(&ri, 0, sizeof(ri)); 3673 3674 ri.bw = status->bw; 3675 3676 /* Fill cfg80211 rate info */ 3677 switch (status->encoding) { 3678 case RX_ENC_HT: 3679 ri.mcs = status->rate_idx; 3680 ri.flags |= RATE_INFO_FLAGS_MCS; 3681 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3682 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3683 break; 3684 case RX_ENC_VHT: 3685 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 3686 ri.mcs = status->rate_idx; 3687 ri.nss = status->nss; 3688 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3689 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3690 break; 3691 default: 3692 WARN_ON(1); 3693 fallthrough; 3694 case RX_ENC_LEGACY: { 3695 struct ieee80211_supported_band *sband; 3696 int shift = 0; 3697 int bitrate; 3698 3699 switch (status->bw) { 3700 case RATE_INFO_BW_10: 3701 shift = 1; 3702 break; 3703 case RATE_INFO_BW_5: 3704 shift = 2; 3705 break; 3706 } 3707 3708 sband = local->hw.wiphy->bands[status->band]; 3709 bitrate = sband->bitrates[status->rate_idx].bitrate; 3710 ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift)); 3711 3712 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3713 /* TODO: handle HT/VHT preambles */ 3714 if (status->band == NL80211_BAND_5GHZ) { 3715 ts += 20 << shift; 3716 mpdu_offset += 2; 3717 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 3718 ts += 96; 3719 } else { 3720 ts += 192; 3721 } 3722 } 3723 break; 3724 } 3725 } 3726 3727 rate = cfg80211_calculate_bitrate(&ri); 3728 if (WARN_ONCE(!rate, 3729 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 3730 (unsigned long long)status->flag, status->rate_idx, 3731 status->nss)) 3732 return 0; 3733 3734 /* rewind from end of MPDU */ 3735 if (status->flag & RX_FLAG_MACTIME_END) 3736 ts -= mpdu_len * 8 * 10 / rate; 3737 3738 ts += mpdu_offset * 8 * 10 / rate; 3739 3740 return ts; 3741 } 3742 3743 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) 3744 { 3745 struct ieee80211_sub_if_data *sdata; 3746 struct cfg80211_chan_def chandef; 3747 3748 /* for interface list, to avoid linking iflist_mtx and chanctx_mtx */ 3749 ASSERT_RTNL(); 3750 3751 mutex_lock(&local->mtx); 3752 list_for_each_entry(sdata, &local->interfaces, list) { 3753 /* it might be waiting for the local->mtx, but then 3754 * by the time it gets it, sdata->wdev.cac_started 3755 * will no longer be true 3756 */ 3757 cancel_delayed_work(&sdata->dfs_cac_timer_work); 3758 3759 if (sdata->wdev.cac_started) { 3760 chandef = sdata->vif.bss_conf.chandef; 3761 ieee80211_vif_release_channel(sdata); 3762 cfg80211_cac_event(sdata->dev, 3763 &chandef, 3764 NL80211_RADAR_CAC_ABORTED, 3765 GFP_KERNEL); 3766 } 3767 } 3768 mutex_unlock(&local->mtx); 3769 } 3770 3771 void ieee80211_dfs_radar_detected_work(struct work_struct *work) 3772 { 3773 struct ieee80211_local *local = 3774 container_of(work, struct ieee80211_local, radar_detected_work); 3775 struct cfg80211_chan_def chandef = local->hw.conf.chandef; 3776 struct ieee80211_chanctx *ctx; 3777 int num_chanctx = 0; 3778 3779 mutex_lock(&local->chanctx_mtx); 3780 list_for_each_entry(ctx, &local->chanctx_list, list) { 3781 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 3782 continue; 3783 3784 num_chanctx++; 3785 chandef = ctx->conf.def; 3786 } 3787 mutex_unlock(&local->chanctx_mtx); 3788 3789 rtnl_lock(); 3790 ieee80211_dfs_cac_cancel(local); 3791 rtnl_unlock(); 3792 3793 if (num_chanctx > 1) 3794 /* XXX: multi-channel is not supported yet */ 3795 WARN_ON(1); 3796 else 3797 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 3798 } 3799 3800 void ieee80211_radar_detected(struct ieee80211_hw *hw) 3801 { 3802 struct ieee80211_local *local = hw_to_local(hw); 3803 3804 trace_api_radar_detected(local); 3805 3806 schedule_work(&local->radar_detected_work); 3807 } 3808 EXPORT_SYMBOL(ieee80211_radar_detected); 3809 3810 u32 ieee80211_chandef_downgrade(struct cfg80211_chan_def *c) 3811 { 3812 u32 ret; 3813 int tmp; 3814 3815 switch (c->width) { 3816 case NL80211_CHAN_WIDTH_20: 3817 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3818 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3819 break; 3820 case NL80211_CHAN_WIDTH_40: 3821 c->width = NL80211_CHAN_WIDTH_20; 3822 c->center_freq1 = c->chan->center_freq; 3823 ret = IEEE80211_STA_DISABLE_40MHZ | 3824 IEEE80211_STA_DISABLE_VHT; 3825 break; 3826 case NL80211_CHAN_WIDTH_80: 3827 tmp = (30 + c->chan->center_freq - c->center_freq1)/20; 3828 /* n_P40 */ 3829 tmp /= 2; 3830 /* freq_P40 */ 3831 c->center_freq1 = c->center_freq1 - 20 + 40 * tmp; 3832 c->width = NL80211_CHAN_WIDTH_40; 3833 ret = IEEE80211_STA_DISABLE_VHT; 3834 break; 3835 case NL80211_CHAN_WIDTH_80P80: 3836 c->center_freq2 = 0; 3837 c->width = NL80211_CHAN_WIDTH_80; 3838 ret = IEEE80211_STA_DISABLE_80P80MHZ | 3839 IEEE80211_STA_DISABLE_160MHZ; 3840 break; 3841 case NL80211_CHAN_WIDTH_160: 3842 /* n_P20 */ 3843 tmp = (70 + c->chan->center_freq - c->center_freq1)/20; 3844 /* n_P80 */ 3845 tmp /= 4; 3846 c->center_freq1 = c->center_freq1 - 40 + 80 * tmp; 3847 c->width = NL80211_CHAN_WIDTH_80; 3848 ret = IEEE80211_STA_DISABLE_80P80MHZ | 3849 IEEE80211_STA_DISABLE_160MHZ; 3850 break; 3851 default: 3852 case NL80211_CHAN_WIDTH_20_NOHT: 3853 WARN_ON_ONCE(1); 3854 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3855 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3856 break; 3857 case NL80211_CHAN_WIDTH_1: 3858 case NL80211_CHAN_WIDTH_2: 3859 case NL80211_CHAN_WIDTH_4: 3860 case NL80211_CHAN_WIDTH_8: 3861 case NL80211_CHAN_WIDTH_16: 3862 case NL80211_CHAN_WIDTH_5: 3863 case NL80211_CHAN_WIDTH_10: 3864 WARN_ON_ONCE(1); 3865 /* keep c->width */ 3866 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3867 break; 3868 } 3869 3870 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 3871 3872 return ret; 3873 } 3874 3875 /* 3876 * Returns true if smps_mode_new is strictly more restrictive than 3877 * smps_mode_old. 3878 */ 3879 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 3880 enum ieee80211_smps_mode smps_mode_new) 3881 { 3882 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 3883 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 3884 return false; 3885 3886 switch (smps_mode_old) { 3887 case IEEE80211_SMPS_STATIC: 3888 return false; 3889 case IEEE80211_SMPS_DYNAMIC: 3890 return smps_mode_new == IEEE80211_SMPS_STATIC; 3891 case IEEE80211_SMPS_OFF: 3892 return smps_mode_new != IEEE80211_SMPS_OFF; 3893 default: 3894 WARN_ON(1); 3895 } 3896 3897 return false; 3898 } 3899 3900 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 3901 struct cfg80211_csa_settings *csa_settings) 3902 { 3903 struct sk_buff *skb; 3904 struct ieee80211_mgmt *mgmt; 3905 struct ieee80211_local *local = sdata->local; 3906 int freq; 3907 int hdr_len = offsetofend(struct ieee80211_mgmt, 3908 u.action.u.chan_switch); 3909 u8 *pos; 3910 3911 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3912 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3913 return -EOPNOTSUPP; 3914 3915 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 3916 5 + /* channel switch announcement element */ 3917 3 + /* secondary channel offset element */ 3918 5 + /* wide bandwidth channel switch announcement */ 3919 8); /* mesh channel switch parameters element */ 3920 if (!skb) 3921 return -ENOMEM; 3922 3923 skb_reserve(skb, local->tx_headroom); 3924 mgmt = skb_put_zero(skb, hdr_len); 3925 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3926 IEEE80211_STYPE_ACTION); 3927 3928 eth_broadcast_addr(mgmt->da); 3929 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 3930 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3931 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 3932 } else { 3933 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 3934 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 3935 } 3936 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 3937 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 3938 pos = skb_put(skb, 5); 3939 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 3940 *pos++ = 3; /* IE length */ 3941 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 3942 freq = csa_settings->chandef.chan->center_freq; 3943 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 3944 *pos++ = csa_settings->count; /* count */ 3945 3946 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 3947 enum nl80211_channel_type ch_type; 3948 3949 skb_put(skb, 3); 3950 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 3951 *pos++ = 1; /* IE length */ 3952 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 3953 if (ch_type == NL80211_CHAN_HT40PLUS) 3954 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3955 else 3956 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3957 } 3958 3959 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3960 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 3961 3962 skb_put(skb, 8); 3963 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 3964 *pos++ = 6; /* IE length */ 3965 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 3966 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 3967 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 3968 *pos++ |= csa_settings->block_tx ? 3969 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 3970 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 3971 pos += 2; 3972 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 3973 pos += 2; 3974 } 3975 3976 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 3977 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 3978 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 3979 skb_put(skb, 5); 3980 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 3981 } 3982 3983 ieee80211_tx_skb(sdata, skb); 3984 return 0; 3985 } 3986 3987 bool ieee80211_cs_valid(const struct ieee80211_cipher_scheme *cs) 3988 { 3989 return !(cs == NULL || cs->cipher == 0 || 3990 cs->hdr_len < cs->pn_len + cs->pn_off || 3991 cs->hdr_len <= cs->key_idx_off || 3992 cs->key_idx_shift > 7 || 3993 cs->key_idx_mask == 0); 3994 } 3995 3996 bool ieee80211_cs_list_valid(const struct ieee80211_cipher_scheme *cs, int n) 3997 { 3998 int i; 3999 4000 /* Ensure we have enough iftype bitmap space for all iftype values */ 4001 WARN_ON((NUM_NL80211_IFTYPES / 8 + 1) > sizeof(cs[0].iftype)); 4002 4003 for (i = 0; i < n; i++) 4004 if (!ieee80211_cs_valid(&cs[i])) 4005 return false; 4006 4007 return true; 4008 } 4009 4010 const struct ieee80211_cipher_scheme * 4011 ieee80211_cs_get(struct ieee80211_local *local, u32 cipher, 4012 enum nl80211_iftype iftype) 4013 { 4014 const struct ieee80211_cipher_scheme *l = local->hw.cipher_schemes; 4015 int n = local->hw.n_cipher_schemes; 4016 int i; 4017 const struct ieee80211_cipher_scheme *cs = NULL; 4018 4019 for (i = 0; i < n; i++) { 4020 if (l[i].cipher == cipher) { 4021 cs = &l[i]; 4022 break; 4023 } 4024 } 4025 4026 if (!cs || !(cs->iftype & BIT(iftype))) 4027 return NULL; 4028 4029 return cs; 4030 } 4031 4032 int ieee80211_cs_headroom(struct ieee80211_local *local, 4033 struct cfg80211_crypto_settings *crypto, 4034 enum nl80211_iftype iftype) 4035 { 4036 const struct ieee80211_cipher_scheme *cs; 4037 int headroom = IEEE80211_ENCRYPT_HEADROOM; 4038 int i; 4039 4040 for (i = 0; i < crypto->n_ciphers_pairwise; i++) { 4041 cs = ieee80211_cs_get(local, crypto->ciphers_pairwise[i], 4042 iftype); 4043 4044 if (cs && headroom < cs->hdr_len) 4045 headroom = cs->hdr_len; 4046 } 4047 4048 cs = ieee80211_cs_get(local, crypto->cipher_group, iftype); 4049 if (cs && headroom < cs->hdr_len) 4050 headroom = cs->hdr_len; 4051 4052 return headroom; 4053 } 4054 4055 static bool 4056 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 4057 { 4058 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 4059 int skip; 4060 4061 if (end > 0) 4062 return false; 4063 4064 /* One shot NOA */ 4065 if (data->count[i] == 1) 4066 return false; 4067 4068 if (data->desc[i].interval == 0) 4069 return false; 4070 4071 /* End time is in the past, check for repetitions */ 4072 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 4073 if (data->count[i] < 255) { 4074 if (data->count[i] <= skip) { 4075 data->count[i] = 0; 4076 return false; 4077 } 4078 4079 data->count[i] -= skip; 4080 } 4081 4082 data->desc[i].start += skip * data->desc[i].interval; 4083 4084 return true; 4085 } 4086 4087 static bool 4088 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 4089 s32 *offset) 4090 { 4091 bool ret = false; 4092 int i; 4093 4094 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4095 s32 cur; 4096 4097 if (!data->count[i]) 4098 continue; 4099 4100 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 4101 ret = true; 4102 4103 cur = data->desc[i].start - tsf; 4104 if (cur > *offset) 4105 continue; 4106 4107 cur = data->desc[i].start + data->desc[i].duration - tsf; 4108 if (cur > *offset) 4109 *offset = cur; 4110 } 4111 4112 return ret; 4113 } 4114 4115 static u32 4116 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 4117 { 4118 s32 offset = 0; 4119 int tries = 0; 4120 /* 4121 * arbitrary limit, used to avoid infinite loops when combined NoA 4122 * descriptors cover the full time period. 4123 */ 4124 int max_tries = 5; 4125 4126 ieee80211_extend_absent_time(data, tsf, &offset); 4127 do { 4128 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 4129 break; 4130 4131 tries++; 4132 } while (tries < max_tries); 4133 4134 return offset; 4135 } 4136 4137 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 4138 { 4139 u32 next_offset = BIT(31) - 1; 4140 int i; 4141 4142 data->absent = 0; 4143 data->has_next_tsf = false; 4144 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4145 s32 start; 4146 4147 if (!data->count[i]) 4148 continue; 4149 4150 ieee80211_extend_noa_desc(data, tsf, i); 4151 start = data->desc[i].start - tsf; 4152 if (start <= 0) 4153 data->absent |= BIT(i); 4154 4155 if (next_offset > start) 4156 next_offset = start; 4157 4158 data->has_next_tsf = true; 4159 } 4160 4161 if (data->absent) 4162 next_offset = ieee80211_get_noa_absent_time(data, tsf); 4163 4164 data->next_tsf = tsf + next_offset; 4165 } 4166 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 4167 4168 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 4169 struct ieee80211_noa_data *data, u32 tsf) 4170 { 4171 int ret = 0; 4172 int i; 4173 4174 memset(data, 0, sizeof(*data)); 4175 4176 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4177 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 4178 4179 if (!desc->count || !desc->duration) 4180 continue; 4181 4182 data->count[i] = desc->count; 4183 data->desc[i].start = le32_to_cpu(desc->start_time); 4184 data->desc[i].duration = le32_to_cpu(desc->duration); 4185 data->desc[i].interval = le32_to_cpu(desc->interval); 4186 4187 if (data->count[i] > 1 && 4188 data->desc[i].interval < data->desc[i].duration) 4189 continue; 4190 4191 ieee80211_extend_noa_desc(data, tsf, i); 4192 ret++; 4193 } 4194 4195 if (ret) 4196 ieee80211_update_p2p_noa(data, tsf); 4197 4198 return ret; 4199 } 4200 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 4201 4202 void ieee80211_recalc_dtim(struct ieee80211_local *local, 4203 struct ieee80211_sub_if_data *sdata) 4204 { 4205 u64 tsf = drv_get_tsf(local, sdata); 4206 u64 dtim_count = 0; 4207 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 4208 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 4209 struct ps_data *ps; 4210 u8 bcns_from_dtim; 4211 4212 if (tsf == -1ULL || !beacon_int || !dtim_period) 4213 return; 4214 4215 if (sdata->vif.type == NL80211_IFTYPE_AP || 4216 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 4217 if (!sdata->bss) 4218 return; 4219 4220 ps = &sdata->bss->ps; 4221 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 4222 ps = &sdata->u.mesh.ps; 4223 } else { 4224 return; 4225 } 4226 4227 /* 4228 * actually finds last dtim_count, mac80211 will update in 4229 * __beacon_add_tim(). 4230 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 4231 */ 4232 do_div(tsf, beacon_int); 4233 bcns_from_dtim = do_div(tsf, dtim_period); 4234 /* just had a DTIM */ 4235 if (!bcns_from_dtim) 4236 dtim_count = 0; 4237 else 4238 dtim_count = dtim_period - bcns_from_dtim; 4239 4240 ps->dtim_count = dtim_count; 4241 } 4242 4243 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 4244 struct ieee80211_chanctx *ctx) 4245 { 4246 struct ieee80211_sub_if_data *sdata; 4247 u8 radar_detect = 0; 4248 4249 lockdep_assert_held(&local->chanctx_mtx); 4250 4251 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 4252 return 0; 4253 4254 list_for_each_entry(sdata, &ctx->reserved_vifs, reserved_chanctx_list) 4255 if (sdata->reserved_radar_required) 4256 radar_detect |= BIT(sdata->reserved_chandef.width); 4257 4258 /* 4259 * An in-place reservation context should not have any assigned vifs 4260 * until it replaces the other context. 4261 */ 4262 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 4263 !list_empty(&ctx->assigned_vifs)); 4264 4265 list_for_each_entry(sdata, &ctx->assigned_vifs, assigned_chanctx_list) 4266 if (sdata->radar_required) 4267 radar_detect |= BIT(sdata->vif.bss_conf.chandef.width); 4268 4269 return radar_detect; 4270 } 4271 4272 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 4273 const struct cfg80211_chan_def *chandef, 4274 enum ieee80211_chanctx_mode chanmode, 4275 u8 radar_detect) 4276 { 4277 struct ieee80211_local *local = sdata->local; 4278 struct ieee80211_sub_if_data *sdata_iter; 4279 enum nl80211_iftype iftype = sdata->wdev.iftype; 4280 struct ieee80211_chanctx *ctx; 4281 int total = 1; 4282 struct iface_combination_params params = { 4283 .radar_detect = radar_detect, 4284 }; 4285 4286 lockdep_assert_held(&local->chanctx_mtx); 4287 4288 if (WARN_ON(hweight32(radar_detect) > 1)) 4289 return -EINVAL; 4290 4291 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4292 !chandef->chan)) 4293 return -EINVAL; 4294 4295 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 4296 return -EINVAL; 4297 4298 if (sdata->vif.type == NL80211_IFTYPE_AP || 4299 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 4300 /* 4301 * always passing this is harmless, since it'll be the 4302 * same value that cfg80211 finds if it finds the same 4303 * interface ... and that's always allowed 4304 */ 4305 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 4306 } 4307 4308 /* Always allow software iftypes */ 4309 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 4310 if (radar_detect) 4311 return -EINVAL; 4312 return 0; 4313 } 4314 4315 if (chandef) 4316 params.num_different_channels = 1; 4317 4318 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 4319 params.iftype_num[iftype] = 1; 4320 4321 list_for_each_entry(ctx, &local->chanctx_list, list) { 4322 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4323 continue; 4324 params.radar_detect |= 4325 ieee80211_chanctx_radar_detect(local, ctx); 4326 if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) { 4327 params.num_different_channels++; 4328 continue; 4329 } 4330 if (chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4331 cfg80211_chandef_compatible(chandef, 4332 &ctx->conf.def)) 4333 continue; 4334 params.num_different_channels++; 4335 } 4336 4337 list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) { 4338 struct wireless_dev *wdev_iter; 4339 4340 wdev_iter = &sdata_iter->wdev; 4341 4342 if (sdata_iter == sdata || 4343 !ieee80211_sdata_running(sdata_iter) || 4344 cfg80211_iftype_allowed(local->hw.wiphy, 4345 wdev_iter->iftype, 0, 1)) 4346 continue; 4347 4348 params.iftype_num[wdev_iter->iftype]++; 4349 total++; 4350 } 4351 4352 if (total == 1 && !params.radar_detect) 4353 return 0; 4354 4355 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4356 } 4357 4358 static void 4359 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4360 void *data) 4361 { 4362 u32 *max_num_different_channels = data; 4363 4364 *max_num_different_channels = max(*max_num_different_channels, 4365 c->num_different_channels); 4366 } 4367 4368 int ieee80211_max_num_channels(struct ieee80211_local *local) 4369 { 4370 struct ieee80211_sub_if_data *sdata; 4371 struct ieee80211_chanctx *ctx; 4372 u32 max_num_different_channels = 1; 4373 int err; 4374 struct iface_combination_params params = {0}; 4375 4376 lockdep_assert_held(&local->chanctx_mtx); 4377 4378 list_for_each_entry(ctx, &local->chanctx_list, list) { 4379 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4380 continue; 4381 4382 params.num_different_channels++; 4383 4384 params.radar_detect |= 4385 ieee80211_chanctx_radar_detect(local, ctx); 4386 } 4387 4388 list_for_each_entry_rcu(sdata, &local->interfaces, list) 4389 params.iftype_num[sdata->wdev.iftype]++; 4390 4391 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4392 ieee80211_iter_max_chans, 4393 &max_num_different_channels); 4394 if (err < 0) 4395 return err; 4396 4397 return max_num_different_channels; 4398 } 4399 4400 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, 4401 struct ieee80211_sta_s1g_cap *caps, 4402 struct sk_buff *skb) 4403 { 4404 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 4405 struct ieee80211_s1g_cap s1g_capab; 4406 u8 *pos; 4407 int i; 4408 4409 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 4410 return; 4411 4412 if (!caps->s1g) 4413 return; 4414 4415 memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); 4416 memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); 4417 4418 /* override the capability info */ 4419 for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { 4420 u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; 4421 4422 s1g_capab.capab_info[i] &= ~mask; 4423 s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; 4424 } 4425 4426 /* then MCS and NSS set */ 4427 for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { 4428 u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; 4429 4430 s1g_capab.supp_mcs_nss[i] &= ~mask; 4431 s1g_capab.supp_mcs_nss[i] |= 4432 ifmgd->s1g_capa.supp_mcs_nss[i] & mask; 4433 } 4434 4435 pos = skb_put(skb, 2 + sizeof(s1g_capab)); 4436 *pos++ = WLAN_EID_S1G_CAPABILITIES; 4437 *pos++ = sizeof(s1g_capab); 4438 4439 memcpy(pos, &s1g_capab, sizeof(s1g_capab)); 4440 } 4441 4442 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, 4443 struct sk_buff *skb) 4444 { 4445 u8 *pos = skb_put(skb, 3); 4446 4447 *pos++ = WLAN_EID_AID_REQUEST; 4448 *pos++ = 1; 4449 *pos++ = 0; 4450 } 4451 4452 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 4453 { 4454 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 4455 *buf++ = 7; /* len */ 4456 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 4457 *buf++ = 0x50; 4458 *buf++ = 0xf2; 4459 *buf++ = 2; /* WME */ 4460 *buf++ = 0; /* WME info */ 4461 *buf++ = 1; /* WME ver */ 4462 *buf++ = qosinfo; /* U-APSD no in use */ 4463 4464 return buf; 4465 } 4466 4467 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 4468 unsigned long *frame_cnt, 4469 unsigned long *byte_cnt) 4470 { 4471 struct txq_info *txqi = to_txq_info(txq); 4472 u32 frag_cnt = 0, frag_bytes = 0; 4473 struct sk_buff *skb; 4474 4475 skb_queue_walk(&txqi->frags, skb) { 4476 frag_cnt++; 4477 frag_bytes += skb->len; 4478 } 4479 4480 if (frame_cnt) 4481 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 4482 4483 if (byte_cnt) 4484 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 4485 } 4486 EXPORT_SYMBOL(ieee80211_txq_get_depth); 4487 4488 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 4489 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 4490 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 4491 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 4492 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 4493 }; 4494 4495 u16 ieee80211_encode_usf(int listen_interval) 4496 { 4497 static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; 4498 u16 ui, usf = 0; 4499 4500 /* find greatest USF */ 4501 while (usf < IEEE80211_MAX_USF) { 4502 if (listen_interval % listen_int_usf[usf + 1]) 4503 break; 4504 usf += 1; 4505 } 4506 ui = listen_interval / listen_int_usf[usf]; 4507 4508 /* error if there is a remainder. Should've been checked by user */ 4509 WARN_ON_ONCE(ui > IEEE80211_MAX_UI); 4510 listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | 4511 FIELD_PREP(LISTEN_INT_UI, ui); 4512 4513 return (u16) listen_interval; 4514 } 4515