1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2020 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 28 #include "ieee80211_i.h" 29 #include "driver-ops.h" 30 #include "rate.h" 31 #include "mesh.h" 32 #include "wme.h" 33 #include "led.h" 34 #include "wep.h" 35 36 /* privid for wiphys to determine whether they belong to us or not */ 37 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 38 39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 40 { 41 struct ieee80211_local *local; 42 43 local = wiphy_priv(wiphy); 44 return &local->hw; 45 } 46 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 47 48 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 49 enum nl80211_iftype type) 50 { 51 __le16 fc = hdr->frame_control; 52 53 if (ieee80211_is_data(fc)) { 54 if (len < 24) /* drop incorrect hdr len (data) */ 55 return NULL; 56 57 if (ieee80211_has_a4(fc)) 58 return NULL; 59 if (ieee80211_has_tods(fc)) 60 return hdr->addr1; 61 if (ieee80211_has_fromds(fc)) 62 return hdr->addr2; 63 64 return hdr->addr3; 65 } 66 67 if (ieee80211_is_s1g_beacon(fc)) { 68 struct ieee80211_ext *ext = (void *) hdr; 69 70 return ext->u.s1g_beacon.sa; 71 } 72 73 if (ieee80211_is_mgmt(fc)) { 74 if (len < 24) /* drop incorrect hdr len (mgmt) */ 75 return NULL; 76 return hdr->addr3; 77 } 78 79 if (ieee80211_is_ctl(fc)) { 80 if (ieee80211_is_pspoll(fc)) 81 return hdr->addr1; 82 83 if (ieee80211_is_back_req(fc)) { 84 switch (type) { 85 case NL80211_IFTYPE_STATION: 86 return hdr->addr2; 87 case NL80211_IFTYPE_AP: 88 case NL80211_IFTYPE_AP_VLAN: 89 return hdr->addr1; 90 default: 91 break; /* fall through to the return */ 92 } 93 } 94 } 95 96 return NULL; 97 } 98 EXPORT_SYMBOL(ieee80211_get_bssid); 99 100 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 101 { 102 struct sk_buff *skb; 103 struct ieee80211_hdr *hdr; 104 105 skb_queue_walk(&tx->skbs, skb) { 106 hdr = (struct ieee80211_hdr *) skb->data; 107 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 108 } 109 } 110 111 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 112 int rate, int erp, int short_preamble, 113 int shift) 114 { 115 int dur; 116 117 /* calculate duration (in microseconds, rounded up to next higher 118 * integer if it includes a fractional microsecond) to send frame of 119 * len bytes (does not include FCS) at the given rate. Duration will 120 * also include SIFS. 121 * 122 * rate is in 100 kbps, so divident is multiplied by 10 in the 123 * DIV_ROUND_UP() operations. 124 * 125 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and 126 * is assumed to be 0 otherwise. 127 */ 128 129 if (band == NL80211_BAND_5GHZ || erp) { 130 /* 131 * OFDM: 132 * 133 * N_DBPS = DATARATE x 4 134 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 135 * (16 = SIGNAL time, 6 = tail bits) 136 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 137 * 138 * T_SYM = 4 usec 139 * 802.11a - 18.5.2: aSIFSTime = 16 usec 140 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 141 * signal ext = 6 usec 142 */ 143 dur = 16; /* SIFS + signal ext */ 144 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 145 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 146 147 /* IEEE 802.11-2012 18.3.2.4: all values above are: 148 * * times 4 for 5 MHz 149 * * times 2 for 10 MHz 150 */ 151 dur *= 1 << shift; 152 153 /* rates should already consider the channel bandwidth, 154 * don't apply divisor again. 155 */ 156 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 157 4 * rate); /* T_SYM x N_SYM */ 158 } else { 159 /* 160 * 802.11b or 802.11g with 802.11b compatibility: 161 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 162 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 163 * 164 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 165 * aSIFSTime = 10 usec 166 * aPreambleLength = 144 usec or 72 usec with short preamble 167 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 168 */ 169 dur = 10; /* aSIFSTime = 10 usec */ 170 dur += short_preamble ? (72 + 24) : (144 + 48); 171 172 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 173 } 174 175 return dur; 176 } 177 178 /* Exported duration function for driver use */ 179 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 180 struct ieee80211_vif *vif, 181 enum nl80211_band band, 182 size_t frame_len, 183 struct ieee80211_rate *rate) 184 { 185 struct ieee80211_sub_if_data *sdata; 186 u16 dur; 187 int erp, shift = 0; 188 bool short_preamble = false; 189 190 erp = 0; 191 if (vif) { 192 sdata = vif_to_sdata(vif); 193 short_preamble = sdata->vif.bss_conf.use_short_preamble; 194 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 195 erp = rate->flags & IEEE80211_RATE_ERP_G; 196 shift = ieee80211_vif_get_shift(vif); 197 } 198 199 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 200 short_preamble, shift); 201 202 return cpu_to_le16(dur); 203 } 204 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 205 206 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 207 struct ieee80211_vif *vif, size_t frame_len, 208 const struct ieee80211_tx_info *frame_txctl) 209 { 210 struct ieee80211_local *local = hw_to_local(hw); 211 struct ieee80211_rate *rate; 212 struct ieee80211_sub_if_data *sdata; 213 bool short_preamble; 214 int erp, shift = 0, bitrate; 215 u16 dur; 216 struct ieee80211_supported_band *sband; 217 218 sband = local->hw.wiphy->bands[frame_txctl->band]; 219 220 short_preamble = false; 221 222 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 223 224 erp = 0; 225 if (vif) { 226 sdata = vif_to_sdata(vif); 227 short_preamble = sdata->vif.bss_conf.use_short_preamble; 228 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 229 erp = rate->flags & IEEE80211_RATE_ERP_G; 230 shift = ieee80211_vif_get_shift(vif); 231 } 232 233 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 234 235 /* CTS duration */ 236 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 237 erp, short_preamble, shift); 238 /* Data frame duration */ 239 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 240 erp, short_preamble, shift); 241 /* ACK duration */ 242 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 243 erp, short_preamble, shift); 244 245 return cpu_to_le16(dur); 246 } 247 EXPORT_SYMBOL(ieee80211_rts_duration); 248 249 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 250 struct ieee80211_vif *vif, 251 size_t frame_len, 252 const struct ieee80211_tx_info *frame_txctl) 253 { 254 struct ieee80211_local *local = hw_to_local(hw); 255 struct ieee80211_rate *rate; 256 struct ieee80211_sub_if_data *sdata; 257 bool short_preamble; 258 int erp, shift = 0, bitrate; 259 u16 dur; 260 struct ieee80211_supported_band *sband; 261 262 sband = local->hw.wiphy->bands[frame_txctl->band]; 263 264 short_preamble = false; 265 266 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 267 erp = 0; 268 if (vif) { 269 sdata = vif_to_sdata(vif); 270 short_preamble = sdata->vif.bss_conf.use_short_preamble; 271 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 272 erp = rate->flags & IEEE80211_RATE_ERP_G; 273 shift = ieee80211_vif_get_shift(vif); 274 } 275 276 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 277 278 /* Data frame duration */ 279 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 280 erp, short_preamble, shift); 281 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 282 /* ACK duration */ 283 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 284 erp, short_preamble, shift); 285 } 286 287 return cpu_to_le16(dur); 288 } 289 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 290 291 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 292 { 293 struct ieee80211_local *local = sdata->local; 294 struct ieee80211_vif *vif = &sdata->vif; 295 struct fq *fq = &local->fq; 296 struct ps_data *ps = NULL; 297 struct txq_info *txqi; 298 struct sta_info *sta; 299 int i; 300 301 local_bh_disable(); 302 spin_lock(&fq->lock); 303 304 if (sdata->vif.type == NL80211_IFTYPE_AP) 305 ps = &sdata->bss->ps; 306 307 sdata->vif.txqs_stopped[ac] = false; 308 309 list_for_each_entry_rcu(sta, &local->sta_list, list) { 310 if (sdata != sta->sdata) 311 continue; 312 313 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 314 struct ieee80211_txq *txq = sta->sta.txq[i]; 315 316 if (!txq) 317 continue; 318 319 txqi = to_txq_info(txq); 320 321 if (ac != txq->ac) 322 continue; 323 324 if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, 325 &txqi->flags)) 326 continue; 327 328 spin_unlock(&fq->lock); 329 drv_wake_tx_queue(local, txqi); 330 spin_lock(&fq->lock); 331 } 332 } 333 334 if (!vif->txq) 335 goto out; 336 337 txqi = to_txq_info(vif->txq); 338 339 if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, &txqi->flags) || 340 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 341 goto out; 342 343 spin_unlock(&fq->lock); 344 345 drv_wake_tx_queue(local, txqi); 346 local_bh_enable(); 347 return; 348 out: 349 spin_unlock(&fq->lock); 350 local_bh_enable(); 351 } 352 353 static void 354 __releases(&local->queue_stop_reason_lock) 355 __acquires(&local->queue_stop_reason_lock) 356 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 357 { 358 struct ieee80211_sub_if_data *sdata; 359 int n_acs = IEEE80211_NUM_ACS; 360 int i; 361 362 rcu_read_lock(); 363 364 if (local->hw.queues < IEEE80211_NUM_ACS) 365 n_acs = 1; 366 367 for (i = 0; i < local->hw.queues; i++) { 368 if (local->queue_stop_reasons[i]) 369 continue; 370 371 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 372 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 373 int ac; 374 375 for (ac = 0; ac < n_acs; ac++) { 376 int ac_queue = sdata->vif.hw_queue[ac]; 377 378 if (ac_queue == i || 379 sdata->vif.cab_queue == i) 380 __ieee80211_wake_txqs(sdata, ac); 381 } 382 } 383 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 384 } 385 386 rcu_read_unlock(); 387 } 388 389 void ieee80211_wake_txqs(struct tasklet_struct *t) 390 { 391 struct ieee80211_local *local = from_tasklet(local, t, 392 wake_txqs_tasklet); 393 unsigned long flags; 394 395 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 396 _ieee80211_wake_txqs(local, &flags); 397 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 398 } 399 400 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue) 401 { 402 struct ieee80211_sub_if_data *sdata; 403 int n_acs = IEEE80211_NUM_ACS; 404 405 if (local->ops->wake_tx_queue) 406 return; 407 408 if (local->hw.queues < IEEE80211_NUM_ACS) 409 n_acs = 1; 410 411 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 412 int ac; 413 414 if (!sdata->dev) 415 continue; 416 417 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE && 418 local->queue_stop_reasons[sdata->vif.cab_queue] != 0) 419 continue; 420 421 for (ac = 0; ac < n_acs; ac++) { 422 int ac_queue = sdata->vif.hw_queue[ac]; 423 424 if (ac_queue == queue || 425 (sdata->vif.cab_queue == queue && 426 local->queue_stop_reasons[ac_queue] == 0 && 427 skb_queue_empty(&local->pending[ac_queue]))) 428 netif_wake_subqueue(sdata->dev, ac); 429 } 430 } 431 } 432 433 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 434 enum queue_stop_reason reason, 435 bool refcounted, 436 unsigned long *flags) 437 { 438 struct ieee80211_local *local = hw_to_local(hw); 439 440 trace_wake_queue(local, queue, reason); 441 442 if (WARN_ON(queue >= hw->queues)) 443 return; 444 445 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 446 return; 447 448 if (!refcounted) { 449 local->q_stop_reasons[queue][reason] = 0; 450 } else { 451 local->q_stop_reasons[queue][reason]--; 452 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 453 local->q_stop_reasons[queue][reason] = 0; 454 } 455 456 if (local->q_stop_reasons[queue][reason] == 0) 457 __clear_bit(reason, &local->queue_stop_reasons[queue]); 458 459 if (local->queue_stop_reasons[queue] != 0) 460 /* someone still has this queue stopped */ 461 return; 462 463 if (skb_queue_empty(&local->pending[queue])) { 464 rcu_read_lock(); 465 ieee80211_propagate_queue_wake(local, queue); 466 rcu_read_unlock(); 467 } else 468 tasklet_schedule(&local->tx_pending_tasklet); 469 470 /* 471 * Calling _ieee80211_wake_txqs here can be a problem because it may 472 * release queue_stop_reason_lock which has been taken by 473 * __ieee80211_wake_queue's caller. It is certainly not very nice to 474 * release someone's lock, but it is fine because all the callers of 475 * __ieee80211_wake_queue call it right before releasing the lock. 476 */ 477 if (local->ops->wake_tx_queue) { 478 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 479 tasklet_schedule(&local->wake_txqs_tasklet); 480 else 481 _ieee80211_wake_txqs(local, flags); 482 } 483 } 484 485 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 486 enum queue_stop_reason reason, 487 bool refcounted) 488 { 489 struct ieee80211_local *local = hw_to_local(hw); 490 unsigned long flags; 491 492 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 493 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 494 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 495 } 496 497 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 498 { 499 ieee80211_wake_queue_by_reason(hw, queue, 500 IEEE80211_QUEUE_STOP_REASON_DRIVER, 501 false); 502 } 503 EXPORT_SYMBOL(ieee80211_wake_queue); 504 505 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 506 enum queue_stop_reason reason, 507 bool refcounted) 508 { 509 struct ieee80211_local *local = hw_to_local(hw); 510 struct ieee80211_sub_if_data *sdata; 511 int n_acs = IEEE80211_NUM_ACS; 512 513 trace_stop_queue(local, queue, reason); 514 515 if (WARN_ON(queue >= hw->queues)) 516 return; 517 518 if (!refcounted) 519 local->q_stop_reasons[queue][reason] = 1; 520 else 521 local->q_stop_reasons[queue][reason]++; 522 523 if (__test_and_set_bit(reason, &local->queue_stop_reasons[queue])) 524 return; 525 526 if (local->hw.queues < IEEE80211_NUM_ACS) 527 n_acs = 1; 528 529 rcu_read_lock(); 530 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 531 int ac; 532 533 if (!sdata->dev) 534 continue; 535 536 for (ac = 0; ac < n_acs; ac++) { 537 if (sdata->vif.hw_queue[ac] == queue || 538 sdata->vif.cab_queue == queue) { 539 if (!local->ops->wake_tx_queue) { 540 netif_stop_subqueue(sdata->dev, ac); 541 continue; 542 } 543 spin_lock(&local->fq.lock); 544 sdata->vif.txqs_stopped[ac] = true; 545 spin_unlock(&local->fq.lock); 546 } 547 } 548 } 549 rcu_read_unlock(); 550 } 551 552 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 553 enum queue_stop_reason reason, 554 bool refcounted) 555 { 556 struct ieee80211_local *local = hw_to_local(hw); 557 unsigned long flags; 558 559 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 560 __ieee80211_stop_queue(hw, queue, reason, refcounted); 561 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 562 } 563 564 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 565 { 566 ieee80211_stop_queue_by_reason(hw, queue, 567 IEEE80211_QUEUE_STOP_REASON_DRIVER, 568 false); 569 } 570 EXPORT_SYMBOL(ieee80211_stop_queue); 571 572 void ieee80211_add_pending_skb(struct ieee80211_local *local, 573 struct sk_buff *skb) 574 { 575 struct ieee80211_hw *hw = &local->hw; 576 unsigned long flags; 577 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 578 int queue = info->hw_queue; 579 580 if (WARN_ON(!info->control.vif)) { 581 ieee80211_free_txskb(&local->hw, skb); 582 return; 583 } 584 585 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 586 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 587 false); 588 __skb_queue_tail(&local->pending[queue], skb); 589 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 590 false, &flags); 591 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 592 } 593 594 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 595 struct sk_buff_head *skbs) 596 { 597 struct ieee80211_hw *hw = &local->hw; 598 struct sk_buff *skb; 599 unsigned long flags; 600 int queue, i; 601 602 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 603 while ((skb = skb_dequeue(skbs))) { 604 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 605 606 if (WARN_ON(!info->control.vif)) { 607 ieee80211_free_txskb(&local->hw, skb); 608 continue; 609 } 610 611 queue = info->hw_queue; 612 613 __ieee80211_stop_queue(hw, queue, 614 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 615 false); 616 617 __skb_queue_tail(&local->pending[queue], skb); 618 } 619 620 for (i = 0; i < hw->queues; i++) 621 __ieee80211_wake_queue(hw, i, 622 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 623 false, &flags); 624 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 625 } 626 627 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 628 unsigned long queues, 629 enum queue_stop_reason reason, 630 bool refcounted) 631 { 632 struct ieee80211_local *local = hw_to_local(hw); 633 unsigned long flags; 634 int i; 635 636 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 637 638 for_each_set_bit(i, &queues, hw->queues) 639 __ieee80211_stop_queue(hw, i, reason, refcounted); 640 641 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 642 } 643 644 void ieee80211_stop_queues(struct ieee80211_hw *hw) 645 { 646 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 647 IEEE80211_QUEUE_STOP_REASON_DRIVER, 648 false); 649 } 650 EXPORT_SYMBOL(ieee80211_stop_queues); 651 652 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 653 { 654 struct ieee80211_local *local = hw_to_local(hw); 655 unsigned long flags; 656 int ret; 657 658 if (WARN_ON(queue >= hw->queues)) 659 return true; 660 661 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 662 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 663 &local->queue_stop_reasons[queue]); 664 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 665 return ret; 666 } 667 EXPORT_SYMBOL(ieee80211_queue_stopped); 668 669 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 670 unsigned long queues, 671 enum queue_stop_reason reason, 672 bool refcounted) 673 { 674 struct ieee80211_local *local = hw_to_local(hw); 675 unsigned long flags; 676 int i; 677 678 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 679 680 for_each_set_bit(i, &queues, hw->queues) 681 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 682 683 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 684 } 685 686 void ieee80211_wake_queues(struct ieee80211_hw *hw) 687 { 688 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 689 IEEE80211_QUEUE_STOP_REASON_DRIVER, 690 false); 691 } 692 EXPORT_SYMBOL(ieee80211_wake_queues); 693 694 static unsigned int 695 ieee80211_get_vif_queues(struct ieee80211_local *local, 696 struct ieee80211_sub_if_data *sdata) 697 { 698 unsigned int queues; 699 700 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 701 int ac; 702 703 queues = 0; 704 705 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 706 queues |= BIT(sdata->vif.hw_queue[ac]); 707 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 708 queues |= BIT(sdata->vif.cab_queue); 709 } else { 710 /* all queues */ 711 queues = BIT(local->hw.queues) - 1; 712 } 713 714 return queues; 715 } 716 717 void __ieee80211_flush_queues(struct ieee80211_local *local, 718 struct ieee80211_sub_if_data *sdata, 719 unsigned int queues, bool drop) 720 { 721 if (!local->ops->flush) 722 return; 723 724 /* 725 * If no queue was set, or if the HW doesn't support 726 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 727 */ 728 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 729 queues = ieee80211_get_vif_queues(local, sdata); 730 731 ieee80211_stop_queues_by_reason(&local->hw, queues, 732 IEEE80211_QUEUE_STOP_REASON_FLUSH, 733 false); 734 735 drv_flush(local, sdata, queues, drop); 736 737 ieee80211_wake_queues_by_reason(&local->hw, queues, 738 IEEE80211_QUEUE_STOP_REASON_FLUSH, 739 false); 740 } 741 742 void ieee80211_flush_queues(struct ieee80211_local *local, 743 struct ieee80211_sub_if_data *sdata, bool drop) 744 { 745 __ieee80211_flush_queues(local, sdata, 0, drop); 746 } 747 748 void ieee80211_stop_vif_queues(struct ieee80211_local *local, 749 struct ieee80211_sub_if_data *sdata, 750 enum queue_stop_reason reason) 751 { 752 ieee80211_stop_queues_by_reason(&local->hw, 753 ieee80211_get_vif_queues(local, sdata), 754 reason, true); 755 } 756 757 void ieee80211_wake_vif_queues(struct ieee80211_local *local, 758 struct ieee80211_sub_if_data *sdata, 759 enum queue_stop_reason reason) 760 { 761 ieee80211_wake_queues_by_reason(&local->hw, 762 ieee80211_get_vif_queues(local, sdata), 763 reason, true); 764 } 765 766 static void __iterate_interfaces(struct ieee80211_local *local, 767 u32 iter_flags, 768 void (*iterator)(void *data, u8 *mac, 769 struct ieee80211_vif *vif), 770 void *data) 771 { 772 struct ieee80211_sub_if_data *sdata; 773 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 774 775 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 776 switch (sdata->vif.type) { 777 case NL80211_IFTYPE_MONITOR: 778 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) 779 continue; 780 break; 781 case NL80211_IFTYPE_AP_VLAN: 782 continue; 783 default: 784 break; 785 } 786 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 787 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 788 continue; 789 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && 790 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 791 continue; 792 if (ieee80211_sdata_running(sdata) || !active_only) 793 iterator(data, sdata->vif.addr, 794 &sdata->vif); 795 } 796 797 sdata = rcu_dereference_check(local->monitor_sdata, 798 lockdep_is_held(&local->iflist_mtx) || 799 lockdep_rtnl_is_held()); 800 if (sdata && 801 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 802 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 803 iterator(data, sdata->vif.addr, &sdata->vif); 804 } 805 806 void ieee80211_iterate_interfaces( 807 struct ieee80211_hw *hw, u32 iter_flags, 808 void (*iterator)(void *data, u8 *mac, 809 struct ieee80211_vif *vif), 810 void *data) 811 { 812 struct ieee80211_local *local = hw_to_local(hw); 813 814 mutex_lock(&local->iflist_mtx); 815 __iterate_interfaces(local, iter_flags, iterator, data); 816 mutex_unlock(&local->iflist_mtx); 817 } 818 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 819 820 void ieee80211_iterate_active_interfaces_atomic( 821 struct ieee80211_hw *hw, u32 iter_flags, 822 void (*iterator)(void *data, u8 *mac, 823 struct ieee80211_vif *vif), 824 void *data) 825 { 826 struct ieee80211_local *local = hw_to_local(hw); 827 828 rcu_read_lock(); 829 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 830 iterator, data); 831 rcu_read_unlock(); 832 } 833 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 834 835 void ieee80211_iterate_active_interfaces_rtnl( 836 struct ieee80211_hw *hw, u32 iter_flags, 837 void (*iterator)(void *data, u8 *mac, 838 struct ieee80211_vif *vif), 839 void *data) 840 { 841 struct ieee80211_local *local = hw_to_local(hw); 842 843 ASSERT_RTNL(); 844 845 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 846 iterator, data); 847 } 848 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_rtnl); 849 850 static void __iterate_stations(struct ieee80211_local *local, 851 void (*iterator)(void *data, 852 struct ieee80211_sta *sta), 853 void *data) 854 { 855 struct sta_info *sta; 856 857 list_for_each_entry_rcu(sta, &local->sta_list, list) { 858 if (!sta->uploaded) 859 continue; 860 861 iterator(data, &sta->sta); 862 } 863 } 864 865 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 866 void (*iterator)(void *data, 867 struct ieee80211_sta *sta), 868 void *data) 869 { 870 struct ieee80211_local *local = hw_to_local(hw); 871 872 rcu_read_lock(); 873 __iterate_stations(local, iterator, data); 874 rcu_read_unlock(); 875 } 876 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 877 878 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 879 { 880 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 881 882 if (!ieee80211_sdata_running(sdata) || 883 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 884 return NULL; 885 return &sdata->vif; 886 } 887 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 888 889 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 890 { 891 struct ieee80211_sub_if_data *sdata; 892 893 if (!vif) 894 return NULL; 895 896 sdata = vif_to_sdata(vif); 897 898 if (!ieee80211_sdata_running(sdata) || 899 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 900 return NULL; 901 902 return &sdata->wdev; 903 } 904 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 905 906 /* 907 * Nothing should have been stuffed into the workqueue during 908 * the suspend->resume cycle. Since we can't check each caller 909 * of this function if we are already quiescing / suspended, 910 * check here and don't WARN since this can actually happen when 911 * the rx path (for example) is racing against __ieee80211_suspend 912 * and suspending / quiescing was set after the rx path checked 913 * them. 914 */ 915 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 916 { 917 if (local->quiescing || (local->suspended && !local->resuming)) { 918 pr_warn("queueing ieee80211 work while going to suspend\n"); 919 return false; 920 } 921 922 return true; 923 } 924 925 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 926 { 927 struct ieee80211_local *local = hw_to_local(hw); 928 929 if (!ieee80211_can_queue_work(local)) 930 return; 931 932 queue_work(local->workqueue, work); 933 } 934 EXPORT_SYMBOL(ieee80211_queue_work); 935 936 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 937 struct delayed_work *dwork, 938 unsigned long delay) 939 { 940 struct ieee80211_local *local = hw_to_local(hw); 941 942 if (!ieee80211_can_queue_work(local)) 943 return; 944 945 queue_delayed_work(local->workqueue, dwork, delay); 946 } 947 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 948 949 static void ieee80211_parse_extension_element(u32 *crc, 950 const struct element *elem, 951 struct ieee802_11_elems *elems) 952 { 953 const void *data = elem->data + 1; 954 u8 len = elem->datalen - 1; 955 956 switch (elem->data[0]) { 957 case WLAN_EID_EXT_HE_MU_EDCA: 958 if (len == sizeof(*elems->mu_edca_param_set)) { 959 elems->mu_edca_param_set = data; 960 if (crc) 961 *crc = crc32_be(*crc, (void *)elem, 962 elem->datalen + 2); 963 } 964 break; 965 case WLAN_EID_EXT_HE_CAPABILITY: 966 elems->he_cap = data; 967 elems->he_cap_len = len; 968 break; 969 case WLAN_EID_EXT_HE_OPERATION: 970 if (len >= sizeof(*elems->he_operation) && 971 len == ieee80211_he_oper_size(data) - 1) { 972 if (crc) 973 *crc = crc32_be(*crc, (void *)elem, 974 elem->datalen + 2); 975 elems->he_operation = data; 976 } 977 break; 978 case WLAN_EID_EXT_UORA: 979 if (len == 1) 980 elems->uora_element = data; 981 break; 982 case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME: 983 if (len == 3) 984 elems->max_channel_switch_time = data; 985 break; 986 case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION: 987 if (len == sizeof(*elems->mbssid_config_ie)) 988 elems->mbssid_config_ie = data; 989 break; 990 case WLAN_EID_EXT_HE_SPR: 991 if (len >= sizeof(*elems->he_spr) && 992 len >= ieee80211_he_spr_size(data)) 993 elems->he_spr = data; 994 break; 995 case WLAN_EID_EXT_HE_6GHZ_CAPA: 996 if (len == sizeof(*elems->he_6ghz_capa)) 997 elems->he_6ghz_capa = data; 998 break; 999 } 1000 } 1001 1002 static u32 1003 _ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, 1004 struct ieee802_11_elems *elems, 1005 u64 filter, u32 crc, 1006 const struct element *check_inherit) 1007 { 1008 const struct element *elem; 1009 bool calc_crc = filter != 0; 1010 DECLARE_BITMAP(seen_elems, 256); 1011 const u8 *ie; 1012 1013 bitmap_zero(seen_elems, 256); 1014 1015 for_each_element(elem, start, len) { 1016 bool elem_parse_failed; 1017 u8 id = elem->id; 1018 u8 elen = elem->datalen; 1019 const u8 *pos = elem->data; 1020 1021 if (check_inherit && 1022 !cfg80211_is_element_inherited(elem, 1023 check_inherit)) 1024 continue; 1025 1026 switch (id) { 1027 case WLAN_EID_SSID: 1028 case WLAN_EID_SUPP_RATES: 1029 case WLAN_EID_FH_PARAMS: 1030 case WLAN_EID_DS_PARAMS: 1031 case WLAN_EID_CF_PARAMS: 1032 case WLAN_EID_TIM: 1033 case WLAN_EID_IBSS_PARAMS: 1034 case WLAN_EID_CHALLENGE: 1035 case WLAN_EID_RSN: 1036 case WLAN_EID_ERP_INFO: 1037 case WLAN_EID_EXT_SUPP_RATES: 1038 case WLAN_EID_HT_CAPABILITY: 1039 case WLAN_EID_HT_OPERATION: 1040 case WLAN_EID_VHT_CAPABILITY: 1041 case WLAN_EID_VHT_OPERATION: 1042 case WLAN_EID_MESH_ID: 1043 case WLAN_EID_MESH_CONFIG: 1044 case WLAN_EID_PEER_MGMT: 1045 case WLAN_EID_PREQ: 1046 case WLAN_EID_PREP: 1047 case WLAN_EID_PERR: 1048 case WLAN_EID_RANN: 1049 case WLAN_EID_CHANNEL_SWITCH: 1050 case WLAN_EID_EXT_CHANSWITCH_ANN: 1051 case WLAN_EID_COUNTRY: 1052 case WLAN_EID_PWR_CONSTRAINT: 1053 case WLAN_EID_TIMEOUT_INTERVAL: 1054 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1055 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1056 case WLAN_EID_CHAN_SWITCH_PARAM: 1057 case WLAN_EID_EXT_CAPABILITY: 1058 case WLAN_EID_CHAN_SWITCH_TIMING: 1059 case WLAN_EID_LINK_ID: 1060 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1061 case WLAN_EID_RSNX: 1062 case WLAN_EID_S1G_BCN_COMPAT: 1063 case WLAN_EID_S1G_CAPABILITIES: 1064 case WLAN_EID_S1G_OPERATION: 1065 case WLAN_EID_AID_RESPONSE: 1066 case WLAN_EID_S1G_SHORT_BCN_INTERVAL: 1067 /* 1068 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible 1069 * that if the content gets bigger it might be needed more than once 1070 */ 1071 if (test_bit(id, seen_elems)) { 1072 elems->parse_error = true; 1073 continue; 1074 } 1075 break; 1076 } 1077 1078 if (calc_crc && id < 64 && (filter & (1ULL << id))) 1079 crc = crc32_be(crc, pos - 2, elen + 2); 1080 1081 elem_parse_failed = false; 1082 1083 switch (id) { 1084 case WLAN_EID_LINK_ID: 1085 if (elen + 2 != sizeof(struct ieee80211_tdls_lnkie)) { 1086 elem_parse_failed = true; 1087 break; 1088 } 1089 elems->lnk_id = (void *)(pos - 2); 1090 break; 1091 case WLAN_EID_CHAN_SWITCH_TIMING: 1092 if (elen != sizeof(struct ieee80211_ch_switch_timing)) { 1093 elem_parse_failed = true; 1094 break; 1095 } 1096 elems->ch_sw_timing = (void *)pos; 1097 break; 1098 case WLAN_EID_EXT_CAPABILITY: 1099 elems->ext_capab = pos; 1100 elems->ext_capab_len = elen; 1101 break; 1102 case WLAN_EID_SSID: 1103 elems->ssid = pos; 1104 elems->ssid_len = elen; 1105 break; 1106 case WLAN_EID_SUPP_RATES: 1107 elems->supp_rates = pos; 1108 elems->supp_rates_len = elen; 1109 break; 1110 case WLAN_EID_DS_PARAMS: 1111 if (elen >= 1) 1112 elems->ds_params = pos; 1113 else 1114 elem_parse_failed = true; 1115 break; 1116 case WLAN_EID_TIM: 1117 if (elen >= sizeof(struct ieee80211_tim_ie)) { 1118 elems->tim = (void *)pos; 1119 elems->tim_len = elen; 1120 } else 1121 elem_parse_failed = true; 1122 break; 1123 case WLAN_EID_CHALLENGE: 1124 elems->challenge = pos; 1125 elems->challenge_len = elen; 1126 break; 1127 case WLAN_EID_VENDOR_SPECIFIC: 1128 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && 1129 pos[2] == 0xf2) { 1130 /* Microsoft OUI (00:50:F2) */ 1131 1132 if (calc_crc) 1133 crc = crc32_be(crc, pos - 2, elen + 2); 1134 1135 if (elen >= 5 && pos[3] == 2) { 1136 /* OUI Type 2 - WMM IE */ 1137 if (pos[4] == 0) { 1138 elems->wmm_info = pos; 1139 elems->wmm_info_len = elen; 1140 } else if (pos[4] == 1) { 1141 elems->wmm_param = pos; 1142 elems->wmm_param_len = elen; 1143 } 1144 } 1145 } 1146 break; 1147 case WLAN_EID_RSN: 1148 elems->rsn = pos; 1149 elems->rsn_len = elen; 1150 break; 1151 case WLAN_EID_ERP_INFO: 1152 if (elen >= 1) 1153 elems->erp_info = pos; 1154 else 1155 elem_parse_failed = true; 1156 break; 1157 case WLAN_EID_EXT_SUPP_RATES: 1158 elems->ext_supp_rates = pos; 1159 elems->ext_supp_rates_len = elen; 1160 break; 1161 case WLAN_EID_HT_CAPABILITY: 1162 if (elen >= sizeof(struct ieee80211_ht_cap)) 1163 elems->ht_cap_elem = (void *)pos; 1164 else 1165 elem_parse_failed = true; 1166 break; 1167 case WLAN_EID_HT_OPERATION: 1168 if (elen >= sizeof(struct ieee80211_ht_operation)) 1169 elems->ht_operation = (void *)pos; 1170 else 1171 elem_parse_failed = true; 1172 break; 1173 case WLAN_EID_VHT_CAPABILITY: 1174 if (elen >= sizeof(struct ieee80211_vht_cap)) 1175 elems->vht_cap_elem = (void *)pos; 1176 else 1177 elem_parse_failed = true; 1178 break; 1179 case WLAN_EID_VHT_OPERATION: 1180 if (elen >= sizeof(struct ieee80211_vht_operation)) { 1181 elems->vht_operation = (void *)pos; 1182 if (calc_crc) 1183 crc = crc32_be(crc, pos - 2, elen + 2); 1184 break; 1185 } 1186 elem_parse_failed = true; 1187 break; 1188 case WLAN_EID_OPMODE_NOTIF: 1189 if (elen > 0) { 1190 elems->opmode_notif = pos; 1191 if (calc_crc) 1192 crc = crc32_be(crc, pos - 2, elen + 2); 1193 break; 1194 } 1195 elem_parse_failed = true; 1196 break; 1197 case WLAN_EID_MESH_ID: 1198 elems->mesh_id = pos; 1199 elems->mesh_id_len = elen; 1200 break; 1201 case WLAN_EID_MESH_CONFIG: 1202 if (elen >= sizeof(struct ieee80211_meshconf_ie)) 1203 elems->mesh_config = (void *)pos; 1204 else 1205 elem_parse_failed = true; 1206 break; 1207 case WLAN_EID_PEER_MGMT: 1208 elems->peering = pos; 1209 elems->peering_len = elen; 1210 break; 1211 case WLAN_EID_MESH_AWAKE_WINDOW: 1212 if (elen >= 2) 1213 elems->awake_window = (void *)pos; 1214 break; 1215 case WLAN_EID_PREQ: 1216 elems->preq = pos; 1217 elems->preq_len = elen; 1218 break; 1219 case WLAN_EID_PREP: 1220 elems->prep = pos; 1221 elems->prep_len = elen; 1222 break; 1223 case WLAN_EID_PERR: 1224 elems->perr = pos; 1225 elems->perr_len = elen; 1226 break; 1227 case WLAN_EID_RANN: 1228 if (elen >= sizeof(struct ieee80211_rann_ie)) 1229 elems->rann = (void *)pos; 1230 else 1231 elem_parse_failed = true; 1232 break; 1233 case WLAN_EID_CHANNEL_SWITCH: 1234 if (elen != sizeof(struct ieee80211_channel_sw_ie)) { 1235 elem_parse_failed = true; 1236 break; 1237 } 1238 elems->ch_switch_ie = (void *)pos; 1239 break; 1240 case WLAN_EID_EXT_CHANSWITCH_ANN: 1241 if (elen != sizeof(struct ieee80211_ext_chansw_ie)) { 1242 elem_parse_failed = true; 1243 break; 1244 } 1245 elems->ext_chansw_ie = (void *)pos; 1246 break; 1247 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1248 if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) { 1249 elem_parse_failed = true; 1250 break; 1251 } 1252 elems->sec_chan_offs = (void *)pos; 1253 break; 1254 case WLAN_EID_CHAN_SWITCH_PARAM: 1255 if (elen != 1256 sizeof(*elems->mesh_chansw_params_ie)) { 1257 elem_parse_failed = true; 1258 break; 1259 } 1260 elems->mesh_chansw_params_ie = (void *)pos; 1261 break; 1262 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1263 if (!action || 1264 elen != sizeof(*elems->wide_bw_chansw_ie)) { 1265 elem_parse_failed = true; 1266 break; 1267 } 1268 elems->wide_bw_chansw_ie = (void *)pos; 1269 break; 1270 case WLAN_EID_CHANNEL_SWITCH_WRAPPER: 1271 if (action) { 1272 elem_parse_failed = true; 1273 break; 1274 } 1275 /* 1276 * This is a bit tricky, but as we only care about 1277 * the wide bandwidth channel switch element, so 1278 * just parse it out manually. 1279 */ 1280 ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH, 1281 pos, elen); 1282 if (ie) { 1283 if (ie[1] == sizeof(*elems->wide_bw_chansw_ie)) 1284 elems->wide_bw_chansw_ie = 1285 (void *)(ie + 2); 1286 else 1287 elem_parse_failed = true; 1288 } 1289 break; 1290 case WLAN_EID_COUNTRY: 1291 elems->country_elem = pos; 1292 elems->country_elem_len = elen; 1293 break; 1294 case WLAN_EID_PWR_CONSTRAINT: 1295 if (elen != 1) { 1296 elem_parse_failed = true; 1297 break; 1298 } 1299 elems->pwr_constr_elem = pos; 1300 break; 1301 case WLAN_EID_CISCO_VENDOR_SPECIFIC: 1302 /* Lots of different options exist, but we only care 1303 * about the Dynamic Transmit Power Control element. 1304 * First check for the Cisco OUI, then for the DTPC 1305 * tag (0x00). 1306 */ 1307 if (elen < 4) { 1308 elem_parse_failed = true; 1309 break; 1310 } 1311 1312 if (pos[0] != 0x00 || pos[1] != 0x40 || 1313 pos[2] != 0x96 || pos[3] != 0x00) 1314 break; 1315 1316 if (elen != 6) { 1317 elem_parse_failed = true; 1318 break; 1319 } 1320 1321 if (calc_crc) 1322 crc = crc32_be(crc, pos - 2, elen + 2); 1323 1324 elems->cisco_dtpc_elem = pos; 1325 break; 1326 case WLAN_EID_ADDBA_EXT: 1327 if (elen != sizeof(struct ieee80211_addba_ext_ie)) { 1328 elem_parse_failed = true; 1329 break; 1330 } 1331 elems->addba_ext_ie = (void *)pos; 1332 break; 1333 case WLAN_EID_TIMEOUT_INTERVAL: 1334 if (elen >= sizeof(struct ieee80211_timeout_interval_ie)) 1335 elems->timeout_int = (void *)pos; 1336 else 1337 elem_parse_failed = true; 1338 break; 1339 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1340 if (elen >= sizeof(*elems->max_idle_period_ie)) 1341 elems->max_idle_period_ie = (void *)pos; 1342 break; 1343 case WLAN_EID_RSNX: 1344 elems->rsnx = pos; 1345 elems->rsnx_len = elen; 1346 break; 1347 case WLAN_EID_EXTENSION: 1348 ieee80211_parse_extension_element(calc_crc ? 1349 &crc : NULL, 1350 elem, elems); 1351 break; 1352 case WLAN_EID_S1G_CAPABILITIES: 1353 if (elen == sizeof(*elems->s1g_capab)) 1354 elems->s1g_capab = (void *)pos; 1355 else 1356 elem_parse_failed = true; 1357 break; 1358 case WLAN_EID_S1G_OPERATION: 1359 if (elen == sizeof(*elems->s1g_oper)) 1360 elems->s1g_oper = (void *)pos; 1361 else 1362 elem_parse_failed = true; 1363 break; 1364 case WLAN_EID_S1G_BCN_COMPAT: 1365 if (elen == sizeof(*elems->s1g_bcn_compat)) 1366 elems->s1g_bcn_compat = (void *)pos; 1367 else 1368 elem_parse_failed = true; 1369 break; 1370 case WLAN_EID_AID_RESPONSE: 1371 if (elen == sizeof(struct ieee80211_aid_response_ie)) 1372 elems->aid_resp = (void *)pos; 1373 else 1374 elem_parse_failed = true; 1375 break; 1376 default: 1377 break; 1378 } 1379 1380 if (elem_parse_failed) 1381 elems->parse_error = true; 1382 else 1383 __set_bit(id, seen_elems); 1384 } 1385 1386 if (!for_each_element_completed(elem, start, len)) 1387 elems->parse_error = true; 1388 1389 return crc; 1390 } 1391 1392 static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len, 1393 struct ieee802_11_elems *elems, 1394 u8 *transmitter_bssid, 1395 u8 *bss_bssid, 1396 u8 *nontransmitted_profile) 1397 { 1398 const struct element *elem, *sub; 1399 size_t profile_len = 0; 1400 bool found = false; 1401 1402 if (!bss_bssid || !transmitter_bssid) 1403 return profile_len; 1404 1405 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) { 1406 if (elem->datalen < 2) 1407 continue; 1408 1409 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 1410 u8 new_bssid[ETH_ALEN]; 1411 const u8 *index; 1412 1413 if (sub->id != 0 || sub->datalen < 4) { 1414 /* not a valid BSS profile */ 1415 continue; 1416 } 1417 1418 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 1419 sub->data[1] != 2) { 1420 /* The first element of the 1421 * Nontransmitted BSSID Profile is not 1422 * the Nontransmitted BSSID Capability 1423 * element. 1424 */ 1425 continue; 1426 } 1427 1428 memset(nontransmitted_profile, 0, len); 1429 profile_len = cfg80211_merge_profile(start, len, 1430 elem, 1431 sub, 1432 nontransmitted_profile, 1433 len); 1434 1435 /* found a Nontransmitted BSSID Profile */ 1436 index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, 1437 nontransmitted_profile, 1438 profile_len); 1439 if (!index || index[1] < 1 || index[2] == 0) { 1440 /* Invalid MBSSID Index element */ 1441 continue; 1442 } 1443 1444 cfg80211_gen_new_bssid(transmitter_bssid, 1445 elem->data[0], 1446 index[2], 1447 new_bssid); 1448 if (ether_addr_equal(new_bssid, bss_bssid)) { 1449 found = true; 1450 elems->bssid_index_len = index[1]; 1451 elems->bssid_index = (void *)&index[2]; 1452 break; 1453 } 1454 } 1455 } 1456 1457 return found ? profile_len : 0; 1458 } 1459 1460 u32 ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, 1461 struct ieee802_11_elems *elems, 1462 u64 filter, u32 crc, u8 *transmitter_bssid, 1463 u8 *bss_bssid) 1464 { 1465 const struct element *non_inherit = NULL; 1466 u8 *nontransmitted_profile; 1467 int nontransmitted_profile_len = 0; 1468 1469 memset(elems, 0, sizeof(*elems)); 1470 elems->ie_start = start; 1471 elems->total_len = len; 1472 1473 nontransmitted_profile = kmalloc(len, GFP_ATOMIC); 1474 if (nontransmitted_profile) { 1475 nontransmitted_profile_len = 1476 ieee802_11_find_bssid_profile(start, len, elems, 1477 transmitter_bssid, 1478 bss_bssid, 1479 nontransmitted_profile); 1480 non_inherit = 1481 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 1482 nontransmitted_profile, 1483 nontransmitted_profile_len); 1484 } 1485 1486 crc = _ieee802_11_parse_elems_crc(start, len, action, elems, filter, 1487 crc, non_inherit); 1488 1489 /* Override with nontransmitted profile, if found */ 1490 if (nontransmitted_profile_len) 1491 _ieee802_11_parse_elems_crc(nontransmitted_profile, 1492 nontransmitted_profile_len, 1493 action, elems, 0, 0, NULL); 1494 1495 if (elems->tim && !elems->parse_error) { 1496 const struct ieee80211_tim_ie *tim_ie = elems->tim; 1497 1498 elems->dtim_period = tim_ie->dtim_period; 1499 elems->dtim_count = tim_ie->dtim_count; 1500 } 1501 1502 /* Override DTIM period and count if needed */ 1503 if (elems->bssid_index && 1504 elems->bssid_index_len >= 1505 offsetofend(struct ieee80211_bssid_index, dtim_period)) 1506 elems->dtim_period = elems->bssid_index->dtim_period; 1507 1508 if (elems->bssid_index && 1509 elems->bssid_index_len >= 1510 offsetofend(struct ieee80211_bssid_index, dtim_count)) 1511 elems->dtim_count = elems->bssid_index->dtim_count; 1512 1513 kfree(nontransmitted_profile); 1514 1515 return crc; 1516 } 1517 1518 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 1519 struct ieee80211_tx_queue_params 1520 *qparam, int ac) 1521 { 1522 struct ieee80211_chanctx_conf *chanctx_conf; 1523 const struct ieee80211_reg_rule *rrule; 1524 const struct ieee80211_wmm_ac *wmm_ac; 1525 u16 center_freq = 0; 1526 1527 if (sdata->vif.type != NL80211_IFTYPE_AP && 1528 sdata->vif.type != NL80211_IFTYPE_STATION) 1529 return; 1530 1531 rcu_read_lock(); 1532 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1533 if (chanctx_conf) 1534 center_freq = chanctx_conf->def.chan->center_freq; 1535 1536 if (!center_freq) { 1537 rcu_read_unlock(); 1538 return; 1539 } 1540 1541 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 1542 1543 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 1544 rcu_read_unlock(); 1545 return; 1546 } 1547 1548 if (sdata->vif.type == NL80211_IFTYPE_AP) 1549 wmm_ac = &rrule->wmm_rule.ap[ac]; 1550 else 1551 wmm_ac = &rrule->wmm_rule.client[ac]; 1552 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 1553 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 1554 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 1555 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 1556 rcu_read_unlock(); 1557 } 1558 1559 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata, 1560 bool bss_notify, bool enable_qos) 1561 { 1562 struct ieee80211_local *local = sdata->local; 1563 struct ieee80211_tx_queue_params qparam; 1564 struct ieee80211_chanctx_conf *chanctx_conf; 1565 int ac; 1566 bool use_11b; 1567 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 1568 int aCWmin, aCWmax; 1569 1570 if (!local->ops->conf_tx) 1571 return; 1572 1573 if (local->hw.queues < IEEE80211_NUM_ACS) 1574 return; 1575 1576 memset(&qparam, 0, sizeof(qparam)); 1577 1578 rcu_read_lock(); 1579 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1580 use_11b = (chanctx_conf && 1581 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 1582 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE); 1583 rcu_read_unlock(); 1584 1585 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 1586 1587 /* Set defaults according to 802.11-2007 Table 7-37 */ 1588 aCWmax = 1023; 1589 if (use_11b) 1590 aCWmin = 31; 1591 else 1592 aCWmin = 15; 1593 1594 /* Confiure old 802.11b/g medium access rules. */ 1595 qparam.cw_max = aCWmax; 1596 qparam.cw_min = aCWmin; 1597 qparam.txop = 0; 1598 qparam.aifs = 2; 1599 1600 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1601 /* Update if QoS is enabled. */ 1602 if (enable_qos) { 1603 switch (ac) { 1604 case IEEE80211_AC_BK: 1605 qparam.cw_max = aCWmax; 1606 qparam.cw_min = aCWmin; 1607 qparam.txop = 0; 1608 if (is_ocb) 1609 qparam.aifs = 9; 1610 else 1611 qparam.aifs = 7; 1612 break; 1613 /* never happens but let's not leave undefined */ 1614 default: 1615 case IEEE80211_AC_BE: 1616 qparam.cw_max = aCWmax; 1617 qparam.cw_min = aCWmin; 1618 qparam.txop = 0; 1619 if (is_ocb) 1620 qparam.aifs = 6; 1621 else 1622 qparam.aifs = 3; 1623 break; 1624 case IEEE80211_AC_VI: 1625 qparam.cw_max = aCWmin; 1626 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1627 if (is_ocb) 1628 qparam.txop = 0; 1629 else if (use_11b) 1630 qparam.txop = 6016/32; 1631 else 1632 qparam.txop = 3008/32; 1633 1634 if (is_ocb) 1635 qparam.aifs = 3; 1636 else 1637 qparam.aifs = 2; 1638 break; 1639 case IEEE80211_AC_VO: 1640 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1641 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1642 if (is_ocb) 1643 qparam.txop = 0; 1644 else if (use_11b) 1645 qparam.txop = 3264/32; 1646 else 1647 qparam.txop = 1504/32; 1648 qparam.aifs = 2; 1649 break; 1650 } 1651 } 1652 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1653 1654 qparam.uapsd = false; 1655 1656 sdata->tx_conf[ac] = qparam; 1657 drv_conf_tx(local, sdata, ac, &qparam); 1658 } 1659 1660 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1661 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1662 sdata->vif.type != NL80211_IFTYPE_NAN) { 1663 sdata->vif.bss_conf.qos = enable_qos; 1664 if (bss_notify) 1665 ieee80211_bss_info_change_notify(sdata, 1666 BSS_CHANGED_QOS); 1667 } 1668 } 1669 1670 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1671 u16 transaction, u16 auth_alg, u16 status, 1672 const u8 *extra, size_t extra_len, const u8 *da, 1673 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1674 u32 tx_flags) 1675 { 1676 struct ieee80211_local *local = sdata->local; 1677 struct sk_buff *skb; 1678 struct ieee80211_mgmt *mgmt; 1679 int err; 1680 1681 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1682 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1683 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN); 1684 if (!skb) 1685 return; 1686 1687 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1688 1689 mgmt = skb_put_zero(skb, 24 + 6); 1690 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1691 IEEE80211_STYPE_AUTH); 1692 memcpy(mgmt->da, da, ETH_ALEN); 1693 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1694 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1695 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1696 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1697 mgmt->u.auth.status_code = cpu_to_le16(status); 1698 if (extra) 1699 skb_put_data(skb, extra, extra_len); 1700 1701 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1702 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1703 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1704 WARN_ON(err); 1705 } 1706 1707 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1708 tx_flags; 1709 ieee80211_tx_skb(sdata, skb); 1710 } 1711 1712 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1713 const u8 *da, const u8 *bssid, 1714 u16 stype, u16 reason, 1715 bool send_frame, u8 *frame_buf) 1716 { 1717 struct ieee80211_local *local = sdata->local; 1718 struct sk_buff *skb; 1719 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1720 1721 /* build frame */ 1722 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1723 mgmt->duration = 0; /* initialize only */ 1724 mgmt->seq_ctrl = 0; /* initialize only */ 1725 memcpy(mgmt->da, da, ETH_ALEN); 1726 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1727 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1728 /* u.deauth.reason_code == u.disassoc.reason_code */ 1729 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1730 1731 if (send_frame) { 1732 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1733 IEEE80211_DEAUTH_FRAME_LEN); 1734 if (!skb) 1735 return; 1736 1737 skb_reserve(skb, local->hw.extra_tx_headroom); 1738 1739 /* copy in frame */ 1740 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1741 1742 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1743 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1744 IEEE80211_SKB_CB(skb)->flags |= 1745 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1746 1747 ieee80211_tx_skb(sdata, skb); 1748 } 1749 } 1750 1751 static u8 *ieee80211_write_he_6ghz_cap(u8 *pos, __le16 cap, u8 *end) 1752 { 1753 if ((end - pos) < 5) 1754 return pos; 1755 1756 *pos++ = WLAN_EID_EXTENSION; 1757 *pos++ = 1 + sizeof(cap); 1758 *pos++ = WLAN_EID_EXT_HE_6GHZ_CAPA; 1759 memcpy(pos, &cap, sizeof(cap)); 1760 1761 return pos + 2; 1762 } 1763 1764 static int ieee80211_build_preq_ies_band(struct ieee80211_sub_if_data *sdata, 1765 u8 *buffer, size_t buffer_len, 1766 const u8 *ie, size_t ie_len, 1767 enum nl80211_band band, 1768 u32 rate_mask, 1769 struct cfg80211_chan_def *chandef, 1770 size_t *offset, u32 flags) 1771 { 1772 struct ieee80211_local *local = sdata->local; 1773 struct ieee80211_supported_band *sband; 1774 const struct ieee80211_sta_he_cap *he_cap; 1775 u8 *pos = buffer, *end = buffer + buffer_len; 1776 size_t noffset; 1777 int supp_rates_len, i; 1778 u8 rates[32]; 1779 int num_rates; 1780 int ext_rates_len; 1781 int shift; 1782 u32 rate_flags; 1783 bool have_80mhz = false; 1784 1785 *offset = 0; 1786 1787 sband = local->hw.wiphy->bands[band]; 1788 if (WARN_ON_ONCE(!sband)) 1789 return 0; 1790 1791 rate_flags = ieee80211_chandef_rate_flags(chandef); 1792 shift = ieee80211_chandef_get_shift(chandef); 1793 1794 num_rates = 0; 1795 for (i = 0; i < sband->n_bitrates; i++) { 1796 if ((BIT(i) & rate_mask) == 0) 1797 continue; /* skip rate */ 1798 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 1799 continue; 1800 1801 rates[num_rates++] = 1802 (u8) DIV_ROUND_UP(sband->bitrates[i].bitrate, 1803 (1 << shift) * 5); 1804 } 1805 1806 supp_rates_len = min_t(int, num_rates, 8); 1807 1808 if (end - pos < 2 + supp_rates_len) 1809 goto out_err; 1810 *pos++ = WLAN_EID_SUPP_RATES; 1811 *pos++ = supp_rates_len; 1812 memcpy(pos, rates, supp_rates_len); 1813 pos += supp_rates_len; 1814 1815 /* insert "request information" if in custom IEs */ 1816 if (ie && ie_len) { 1817 static const u8 before_extrates[] = { 1818 WLAN_EID_SSID, 1819 WLAN_EID_SUPP_RATES, 1820 WLAN_EID_REQUEST, 1821 }; 1822 noffset = ieee80211_ie_split(ie, ie_len, 1823 before_extrates, 1824 ARRAY_SIZE(before_extrates), 1825 *offset); 1826 if (end - pos < noffset - *offset) 1827 goto out_err; 1828 memcpy(pos, ie + *offset, noffset - *offset); 1829 pos += noffset - *offset; 1830 *offset = noffset; 1831 } 1832 1833 ext_rates_len = num_rates - supp_rates_len; 1834 if (ext_rates_len > 0) { 1835 if (end - pos < 2 + ext_rates_len) 1836 goto out_err; 1837 *pos++ = WLAN_EID_EXT_SUPP_RATES; 1838 *pos++ = ext_rates_len; 1839 memcpy(pos, rates + supp_rates_len, ext_rates_len); 1840 pos += ext_rates_len; 1841 } 1842 1843 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 1844 if (end - pos < 3) 1845 goto out_err; 1846 *pos++ = WLAN_EID_DS_PARAMS; 1847 *pos++ = 1; 1848 *pos++ = ieee80211_frequency_to_channel( 1849 chandef->chan->center_freq); 1850 } 1851 1852 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 1853 goto done; 1854 1855 /* insert custom IEs that go before HT */ 1856 if (ie && ie_len) { 1857 static const u8 before_ht[] = { 1858 /* 1859 * no need to list the ones split off already 1860 * (or generated here) 1861 */ 1862 WLAN_EID_DS_PARAMS, 1863 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1864 }; 1865 noffset = ieee80211_ie_split(ie, ie_len, 1866 before_ht, ARRAY_SIZE(before_ht), 1867 *offset); 1868 if (end - pos < noffset - *offset) 1869 goto out_err; 1870 memcpy(pos, ie + *offset, noffset - *offset); 1871 pos += noffset - *offset; 1872 *offset = noffset; 1873 } 1874 1875 if (sband->ht_cap.ht_supported) { 1876 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap)) 1877 goto out_err; 1878 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 1879 sband->ht_cap.cap); 1880 } 1881 1882 /* insert custom IEs that go before VHT */ 1883 if (ie && ie_len) { 1884 static const u8 before_vht[] = { 1885 /* 1886 * no need to list the ones split off already 1887 * (or generated here) 1888 */ 1889 WLAN_EID_BSS_COEX_2040, 1890 WLAN_EID_EXT_CAPABILITY, 1891 WLAN_EID_SSID_LIST, 1892 WLAN_EID_CHANNEL_USAGE, 1893 WLAN_EID_INTERWORKING, 1894 WLAN_EID_MESH_ID, 1895 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 1896 }; 1897 noffset = ieee80211_ie_split(ie, ie_len, 1898 before_vht, ARRAY_SIZE(before_vht), 1899 *offset); 1900 if (end - pos < noffset - *offset) 1901 goto out_err; 1902 memcpy(pos, ie + *offset, noffset - *offset); 1903 pos += noffset - *offset; 1904 *offset = noffset; 1905 } 1906 1907 /* Check if any channel in this sband supports at least 80 MHz */ 1908 for (i = 0; i < sband->n_channels; i++) { 1909 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 1910 IEEE80211_CHAN_NO_80MHZ)) 1911 continue; 1912 1913 have_80mhz = true; 1914 break; 1915 } 1916 1917 if (sband->vht_cap.vht_supported && have_80mhz) { 1918 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap)) 1919 goto out_err; 1920 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 1921 sband->vht_cap.cap); 1922 } 1923 1924 /* insert custom IEs that go before HE */ 1925 if (ie && ie_len) { 1926 static const u8 before_he[] = { 1927 /* 1928 * no need to list the ones split off before VHT 1929 * or generated here 1930 */ 1931 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 1932 WLAN_EID_AP_CSN, 1933 /* TODO: add 11ah/11aj/11ak elements */ 1934 }; 1935 noffset = ieee80211_ie_split(ie, ie_len, 1936 before_he, ARRAY_SIZE(before_he), 1937 *offset); 1938 if (end - pos < noffset - *offset) 1939 goto out_err; 1940 memcpy(pos, ie + *offset, noffset - *offset); 1941 pos += noffset - *offset; 1942 *offset = noffset; 1943 } 1944 1945 he_cap = ieee80211_get_he_sta_cap(sband); 1946 if (he_cap) { 1947 pos = ieee80211_ie_build_he_cap(pos, he_cap, end); 1948 if (!pos) 1949 goto out_err; 1950 1951 if (sband->band == NL80211_BAND_6GHZ) { 1952 enum nl80211_iftype iftype = 1953 ieee80211_vif_type_p2p(&sdata->vif); 1954 __le16 cap = ieee80211_get_he_6ghz_capa(sband, iftype); 1955 1956 pos = ieee80211_write_he_6ghz_cap(pos, cap, end); 1957 } 1958 } 1959 1960 /* 1961 * If adding more here, adjust code in main.c 1962 * that calculates local->scan_ies_len. 1963 */ 1964 1965 return pos - buffer; 1966 out_err: 1967 WARN_ONCE(1, "not enough space for preq IEs\n"); 1968 done: 1969 return pos - buffer; 1970 } 1971 1972 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 1973 size_t buffer_len, 1974 struct ieee80211_scan_ies *ie_desc, 1975 const u8 *ie, size_t ie_len, 1976 u8 bands_used, u32 *rate_masks, 1977 struct cfg80211_chan_def *chandef, 1978 u32 flags) 1979 { 1980 size_t pos = 0, old_pos = 0, custom_ie_offset = 0; 1981 int i; 1982 1983 memset(ie_desc, 0, sizeof(*ie_desc)); 1984 1985 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1986 if (bands_used & BIT(i)) { 1987 pos += ieee80211_build_preq_ies_band(sdata, 1988 buffer + pos, 1989 buffer_len - pos, 1990 ie, ie_len, i, 1991 rate_masks[i], 1992 chandef, 1993 &custom_ie_offset, 1994 flags); 1995 ie_desc->ies[i] = buffer + old_pos; 1996 ie_desc->len[i] = pos - old_pos; 1997 old_pos = pos; 1998 } 1999 } 2000 2001 /* add any remaining custom IEs */ 2002 if (ie && ie_len) { 2003 if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset, 2004 "not enough space for preq custom IEs\n")) 2005 return pos; 2006 memcpy(buffer + pos, ie + custom_ie_offset, 2007 ie_len - custom_ie_offset); 2008 ie_desc->common_ies = buffer + pos; 2009 ie_desc->common_ie_len = ie_len - custom_ie_offset; 2010 pos += ie_len - custom_ie_offset; 2011 } 2012 2013 return pos; 2014 }; 2015 2016 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 2017 const u8 *src, const u8 *dst, 2018 u32 ratemask, 2019 struct ieee80211_channel *chan, 2020 const u8 *ssid, size_t ssid_len, 2021 const u8 *ie, size_t ie_len, 2022 u32 flags) 2023 { 2024 struct ieee80211_local *local = sdata->local; 2025 struct cfg80211_chan_def chandef; 2026 struct sk_buff *skb; 2027 struct ieee80211_mgmt *mgmt; 2028 int ies_len; 2029 u32 rate_masks[NUM_NL80211_BANDS] = {}; 2030 struct ieee80211_scan_ies dummy_ie_desc; 2031 2032 /* 2033 * Do not send DS Channel parameter for directed probe requests 2034 * in order to maximize the chance that we get a response. Some 2035 * badly-behaved APs don't respond when this parameter is included. 2036 */ 2037 chandef.width = sdata->vif.bss_conf.chandef.width; 2038 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 2039 chandef.chan = NULL; 2040 else 2041 chandef.chan = chan; 2042 2043 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 2044 100 + ie_len); 2045 if (!skb) 2046 return NULL; 2047 2048 rate_masks[chan->band] = ratemask; 2049 ies_len = ieee80211_build_preq_ies(sdata, skb_tail_pointer(skb), 2050 skb_tailroom(skb), &dummy_ie_desc, 2051 ie, ie_len, BIT(chan->band), 2052 rate_masks, &chandef, flags); 2053 skb_put(skb, ies_len); 2054 2055 if (dst) { 2056 mgmt = (struct ieee80211_mgmt *) skb->data; 2057 memcpy(mgmt->da, dst, ETH_ALEN); 2058 memcpy(mgmt->bssid, dst, ETH_ALEN); 2059 } 2060 2061 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 2062 2063 return skb; 2064 } 2065 2066 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 2067 struct ieee802_11_elems *elems, 2068 enum nl80211_band band, u32 *basic_rates) 2069 { 2070 struct ieee80211_supported_band *sband; 2071 size_t num_rates; 2072 u32 supp_rates, rate_flags; 2073 int i, j, shift; 2074 2075 sband = sdata->local->hw.wiphy->bands[band]; 2076 if (WARN_ON(!sband)) 2077 return 1; 2078 2079 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 2080 shift = ieee80211_vif_get_shift(&sdata->vif); 2081 2082 num_rates = sband->n_bitrates; 2083 supp_rates = 0; 2084 for (i = 0; i < elems->supp_rates_len + 2085 elems->ext_supp_rates_len; i++) { 2086 u8 rate = 0; 2087 int own_rate; 2088 bool is_basic; 2089 if (i < elems->supp_rates_len) 2090 rate = elems->supp_rates[i]; 2091 else if (elems->ext_supp_rates) 2092 rate = elems->ext_supp_rates 2093 [i - elems->supp_rates_len]; 2094 own_rate = 5 * (rate & 0x7f); 2095 is_basic = !!(rate & 0x80); 2096 2097 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 2098 continue; 2099 2100 for (j = 0; j < num_rates; j++) { 2101 int brate; 2102 if ((rate_flags & sband->bitrates[j].flags) 2103 != rate_flags) 2104 continue; 2105 2106 brate = DIV_ROUND_UP(sband->bitrates[j].bitrate, 2107 1 << shift); 2108 2109 if (brate == own_rate) { 2110 supp_rates |= BIT(j); 2111 if (basic_rates && is_basic) 2112 *basic_rates |= BIT(j); 2113 } 2114 } 2115 } 2116 return supp_rates; 2117 } 2118 2119 void ieee80211_stop_device(struct ieee80211_local *local) 2120 { 2121 ieee80211_led_radio(local, false); 2122 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 2123 2124 cancel_work_sync(&local->reconfig_filter); 2125 2126 flush_workqueue(local->workqueue); 2127 drv_stop(local); 2128 } 2129 2130 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 2131 bool aborted) 2132 { 2133 /* It's possible that we don't handle the scan completion in 2134 * time during suspend, so if it's still marked as completed 2135 * here, queue the work and flush it to clean things up. 2136 * Instead of calling the worker function directly here, we 2137 * really queue it to avoid potential races with other flows 2138 * scheduling the same work. 2139 */ 2140 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 2141 /* If coming from reconfiguration failure, abort the scan so 2142 * we don't attempt to continue a partial HW scan - which is 2143 * possible otherwise if (e.g.) the 2.4 GHz portion was the 2144 * completed scan, and a 5 GHz portion is still pending. 2145 */ 2146 if (aborted) 2147 set_bit(SCAN_ABORTED, &local->scanning); 2148 ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0); 2149 flush_delayed_work(&local->scan_work); 2150 } 2151 } 2152 2153 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 2154 { 2155 struct ieee80211_sub_if_data *sdata; 2156 struct ieee80211_chanctx *ctx; 2157 2158 /* 2159 * We get here if during resume the device can't be restarted properly. 2160 * We might also get here if this happens during HW reset, which is a 2161 * slightly different situation and we need to drop all connections in 2162 * the latter case. 2163 * 2164 * Ask cfg80211 to turn off all interfaces, this will result in more 2165 * warnings but at least we'll then get into a clean stopped state. 2166 */ 2167 2168 local->resuming = false; 2169 local->suspended = false; 2170 local->in_reconfig = false; 2171 2172 ieee80211_flush_completed_scan(local, true); 2173 2174 /* scheduled scan clearly can't be running any more, but tell 2175 * cfg80211 and clear local state 2176 */ 2177 ieee80211_sched_scan_end(local); 2178 2179 list_for_each_entry(sdata, &local->interfaces, list) 2180 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 2181 2182 /* Mark channel contexts as not being in the driver any more to avoid 2183 * removing them from the driver during the shutdown process... 2184 */ 2185 mutex_lock(&local->chanctx_mtx); 2186 list_for_each_entry(ctx, &local->chanctx_list, list) 2187 ctx->driver_present = false; 2188 mutex_unlock(&local->chanctx_mtx); 2189 2190 cfg80211_shutdown_all_interfaces(local->hw.wiphy); 2191 } 2192 2193 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 2194 struct ieee80211_sub_if_data *sdata) 2195 { 2196 struct ieee80211_chanctx_conf *conf; 2197 struct ieee80211_chanctx *ctx; 2198 2199 if (!local->use_chanctx) 2200 return; 2201 2202 mutex_lock(&local->chanctx_mtx); 2203 conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2204 lockdep_is_held(&local->chanctx_mtx)); 2205 if (conf) { 2206 ctx = container_of(conf, struct ieee80211_chanctx, conf); 2207 drv_assign_vif_chanctx(local, sdata, ctx); 2208 } 2209 mutex_unlock(&local->chanctx_mtx); 2210 } 2211 2212 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 2213 { 2214 struct ieee80211_local *local = sdata->local; 2215 struct sta_info *sta; 2216 2217 /* add STAs back */ 2218 mutex_lock(&local->sta_mtx); 2219 list_for_each_entry(sta, &local->sta_list, list) { 2220 enum ieee80211_sta_state state; 2221 2222 if (!sta->uploaded || sta->sdata != sdata) 2223 continue; 2224 2225 for (state = IEEE80211_STA_NOTEXIST; 2226 state < sta->sta_state; state++) 2227 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2228 state + 1)); 2229 } 2230 mutex_unlock(&local->sta_mtx); 2231 } 2232 2233 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 2234 { 2235 struct cfg80211_nan_func *func, **funcs; 2236 int res, id, i = 0; 2237 2238 res = drv_start_nan(sdata->local, sdata, 2239 &sdata->u.nan.conf); 2240 if (WARN_ON(res)) 2241 return res; 2242 2243 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 2244 sizeof(*funcs), 2245 GFP_KERNEL); 2246 if (!funcs) 2247 return -ENOMEM; 2248 2249 /* Add all the functions: 2250 * This is a little bit ugly. We need to call a potentially sleeping 2251 * callback for each NAN function, so we can't hold the spinlock. 2252 */ 2253 spin_lock_bh(&sdata->u.nan.func_lock); 2254 2255 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 2256 funcs[i++] = func; 2257 2258 spin_unlock_bh(&sdata->u.nan.func_lock); 2259 2260 for (i = 0; funcs[i]; i++) { 2261 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 2262 if (WARN_ON(res)) 2263 ieee80211_nan_func_terminated(&sdata->vif, 2264 funcs[i]->instance_id, 2265 NL80211_NAN_FUNC_TERM_REASON_ERROR, 2266 GFP_KERNEL); 2267 } 2268 2269 kfree(funcs); 2270 2271 return 0; 2272 } 2273 2274 int ieee80211_reconfig(struct ieee80211_local *local) 2275 { 2276 struct ieee80211_hw *hw = &local->hw; 2277 struct ieee80211_sub_if_data *sdata; 2278 struct ieee80211_chanctx *ctx; 2279 struct sta_info *sta; 2280 int res, i; 2281 bool reconfig_due_to_wowlan = false; 2282 struct ieee80211_sub_if_data *sched_scan_sdata; 2283 struct cfg80211_sched_scan_request *sched_scan_req; 2284 bool sched_scan_stopped = false; 2285 bool suspended = local->suspended; 2286 2287 /* nothing to do if HW shouldn't run */ 2288 if (!local->open_count) 2289 goto wake_up; 2290 2291 #ifdef CONFIG_PM 2292 if (suspended) 2293 local->resuming = true; 2294 2295 if (local->wowlan) { 2296 /* 2297 * In the wowlan case, both mac80211 and the device 2298 * are functional when the resume op is called, so 2299 * clear local->suspended so the device could operate 2300 * normally (e.g. pass rx frames). 2301 */ 2302 local->suspended = false; 2303 res = drv_resume(local); 2304 local->wowlan = false; 2305 if (res < 0) { 2306 local->resuming = false; 2307 return res; 2308 } 2309 if (res == 0) 2310 goto wake_up; 2311 WARN_ON(res > 1); 2312 /* 2313 * res is 1, which means the driver requested 2314 * to go through a regular reset on wakeup. 2315 * restore local->suspended in this case. 2316 */ 2317 reconfig_due_to_wowlan = true; 2318 local->suspended = true; 2319 } 2320 #endif 2321 2322 /* 2323 * In case of hw_restart during suspend (without wowlan), 2324 * cancel restart work, as we are reconfiguring the device 2325 * anyway. 2326 * Note that restart_work is scheduled on a frozen workqueue, 2327 * so we can't deadlock in this case. 2328 */ 2329 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 2330 cancel_work_sync(&local->restart_work); 2331 2332 local->started = false; 2333 2334 /* 2335 * Upon resume hardware can sometimes be goofy due to 2336 * various platform / driver / bus issues, so restarting 2337 * the device may at times not work immediately. Propagate 2338 * the error. 2339 */ 2340 res = drv_start(local); 2341 if (res) { 2342 if (suspended) 2343 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 2344 else 2345 WARN(1, "Hardware became unavailable during restart.\n"); 2346 ieee80211_handle_reconfig_failure(local); 2347 return res; 2348 } 2349 2350 /* setup fragmentation threshold */ 2351 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 2352 2353 /* setup RTS threshold */ 2354 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 2355 2356 /* reset coverage class */ 2357 drv_set_coverage_class(local, hw->wiphy->coverage_class); 2358 2359 ieee80211_led_radio(local, true); 2360 ieee80211_mod_tpt_led_trig(local, 2361 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 2362 2363 /* add interfaces */ 2364 sdata = rtnl_dereference(local->monitor_sdata); 2365 if (sdata) { 2366 /* in HW restart it exists already */ 2367 WARN_ON(local->resuming); 2368 res = drv_add_interface(local, sdata); 2369 if (WARN_ON(res)) { 2370 RCU_INIT_POINTER(local->monitor_sdata, NULL); 2371 synchronize_net(); 2372 kfree(sdata); 2373 } 2374 } 2375 2376 list_for_each_entry(sdata, &local->interfaces, list) { 2377 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2378 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2379 ieee80211_sdata_running(sdata)) { 2380 res = drv_add_interface(local, sdata); 2381 if (WARN_ON(res)) 2382 break; 2383 } 2384 } 2385 2386 /* If adding any of the interfaces failed above, roll back and 2387 * report failure. 2388 */ 2389 if (res) { 2390 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 2391 list) 2392 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2393 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2394 ieee80211_sdata_running(sdata)) 2395 drv_remove_interface(local, sdata); 2396 ieee80211_handle_reconfig_failure(local); 2397 return res; 2398 } 2399 2400 /* add channel contexts */ 2401 if (local->use_chanctx) { 2402 mutex_lock(&local->chanctx_mtx); 2403 list_for_each_entry(ctx, &local->chanctx_list, list) 2404 if (ctx->replace_state != 2405 IEEE80211_CHANCTX_REPLACES_OTHER) 2406 WARN_ON(drv_add_chanctx(local, ctx)); 2407 mutex_unlock(&local->chanctx_mtx); 2408 2409 sdata = rtnl_dereference(local->monitor_sdata); 2410 if (sdata && ieee80211_sdata_running(sdata)) 2411 ieee80211_assign_chanctx(local, sdata); 2412 } 2413 2414 /* reconfigure hardware */ 2415 ieee80211_hw_config(local, ~0); 2416 2417 ieee80211_configure_filter(local); 2418 2419 /* Finally also reconfigure all the BSS information */ 2420 list_for_each_entry(sdata, &local->interfaces, list) { 2421 u32 changed; 2422 2423 if (!ieee80211_sdata_running(sdata)) 2424 continue; 2425 2426 ieee80211_assign_chanctx(local, sdata); 2427 2428 switch (sdata->vif.type) { 2429 case NL80211_IFTYPE_AP_VLAN: 2430 case NL80211_IFTYPE_MONITOR: 2431 break; 2432 case NL80211_IFTYPE_ADHOC: 2433 if (sdata->vif.bss_conf.ibss_joined) 2434 WARN_ON(drv_join_ibss(local, sdata)); 2435 fallthrough; 2436 default: 2437 ieee80211_reconfig_stations(sdata); 2438 fallthrough; 2439 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 2440 for (i = 0; i < IEEE80211_NUM_ACS; i++) 2441 drv_conf_tx(local, sdata, i, 2442 &sdata->tx_conf[i]); 2443 break; 2444 } 2445 2446 /* common change flags for all interface types */ 2447 changed = BSS_CHANGED_ERP_CTS_PROT | 2448 BSS_CHANGED_ERP_PREAMBLE | 2449 BSS_CHANGED_ERP_SLOT | 2450 BSS_CHANGED_HT | 2451 BSS_CHANGED_BASIC_RATES | 2452 BSS_CHANGED_BEACON_INT | 2453 BSS_CHANGED_BSSID | 2454 BSS_CHANGED_CQM | 2455 BSS_CHANGED_QOS | 2456 BSS_CHANGED_IDLE | 2457 BSS_CHANGED_TXPOWER | 2458 BSS_CHANGED_MCAST_RATE; 2459 2460 if (sdata->vif.mu_mimo_owner) 2461 changed |= BSS_CHANGED_MU_GROUPS; 2462 2463 switch (sdata->vif.type) { 2464 case NL80211_IFTYPE_STATION: 2465 changed |= BSS_CHANGED_ASSOC | 2466 BSS_CHANGED_ARP_FILTER | 2467 BSS_CHANGED_PS; 2468 2469 /* Re-send beacon info report to the driver */ 2470 if (sdata->u.mgd.have_beacon) 2471 changed |= BSS_CHANGED_BEACON_INFO; 2472 2473 if (sdata->vif.bss_conf.max_idle_period || 2474 sdata->vif.bss_conf.protected_keep_alive) 2475 changed |= BSS_CHANGED_KEEP_ALIVE; 2476 2477 sdata_lock(sdata); 2478 ieee80211_bss_info_change_notify(sdata, changed); 2479 sdata_unlock(sdata); 2480 break; 2481 case NL80211_IFTYPE_OCB: 2482 changed |= BSS_CHANGED_OCB; 2483 ieee80211_bss_info_change_notify(sdata, changed); 2484 break; 2485 case NL80211_IFTYPE_ADHOC: 2486 changed |= BSS_CHANGED_IBSS; 2487 fallthrough; 2488 case NL80211_IFTYPE_AP: 2489 changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS; 2490 2491 if (sdata->vif.bss_conf.ftm_responder == 1 && 2492 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2493 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2494 changed |= BSS_CHANGED_FTM_RESPONDER; 2495 2496 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2497 changed |= BSS_CHANGED_AP_PROBE_RESP; 2498 2499 if (rcu_access_pointer(sdata->u.ap.beacon)) 2500 drv_start_ap(local, sdata); 2501 } 2502 fallthrough; 2503 case NL80211_IFTYPE_MESH_POINT: 2504 if (sdata->vif.bss_conf.enable_beacon) { 2505 changed |= BSS_CHANGED_BEACON | 2506 BSS_CHANGED_BEACON_ENABLED; 2507 ieee80211_bss_info_change_notify(sdata, changed); 2508 } 2509 break; 2510 case NL80211_IFTYPE_NAN: 2511 res = ieee80211_reconfig_nan(sdata); 2512 if (res < 0) { 2513 ieee80211_handle_reconfig_failure(local); 2514 return res; 2515 } 2516 break; 2517 case NL80211_IFTYPE_AP_VLAN: 2518 case NL80211_IFTYPE_MONITOR: 2519 case NL80211_IFTYPE_P2P_DEVICE: 2520 /* nothing to do */ 2521 break; 2522 case NL80211_IFTYPE_UNSPECIFIED: 2523 case NUM_NL80211_IFTYPES: 2524 case NL80211_IFTYPE_P2P_CLIENT: 2525 case NL80211_IFTYPE_P2P_GO: 2526 case NL80211_IFTYPE_WDS: 2527 WARN_ON(1); 2528 break; 2529 } 2530 } 2531 2532 ieee80211_recalc_ps(local); 2533 2534 /* 2535 * The sta might be in psm against the ap (e.g. because 2536 * this was the state before a hw restart), so we 2537 * explicitly send a null packet in order to make sure 2538 * it'll sync against the ap (and get out of psm). 2539 */ 2540 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2541 list_for_each_entry(sdata, &local->interfaces, list) { 2542 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2543 continue; 2544 if (!sdata->u.mgd.associated) 2545 continue; 2546 2547 ieee80211_send_nullfunc(local, sdata, false); 2548 } 2549 } 2550 2551 /* APs are now beaconing, add back stations */ 2552 mutex_lock(&local->sta_mtx); 2553 list_for_each_entry(sta, &local->sta_list, list) { 2554 enum ieee80211_sta_state state; 2555 2556 if (!sta->uploaded) 2557 continue; 2558 2559 if (sta->sdata->vif.type != NL80211_IFTYPE_AP && 2560 sta->sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 2561 continue; 2562 2563 for (state = IEEE80211_STA_NOTEXIST; 2564 state < sta->sta_state; state++) 2565 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2566 state + 1)); 2567 } 2568 mutex_unlock(&local->sta_mtx); 2569 2570 /* add back keys */ 2571 list_for_each_entry(sdata, &local->interfaces, list) 2572 ieee80211_reenable_keys(sdata); 2573 2574 /* Reconfigure sched scan if it was interrupted by FW restart */ 2575 mutex_lock(&local->mtx); 2576 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2577 lockdep_is_held(&local->mtx)); 2578 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2579 lockdep_is_held(&local->mtx)); 2580 if (sched_scan_sdata && sched_scan_req) 2581 /* 2582 * Sched scan stopped, but we don't want to report it. Instead, 2583 * we're trying to reschedule. However, if more than one scan 2584 * plan was set, we cannot reschedule since we don't know which 2585 * scan plan was currently running (and some scan plans may have 2586 * already finished). 2587 */ 2588 if (sched_scan_req->n_scan_plans > 1 || 2589 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2590 sched_scan_req)) { 2591 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2592 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2593 sched_scan_stopped = true; 2594 } 2595 mutex_unlock(&local->mtx); 2596 2597 if (sched_scan_stopped) 2598 cfg80211_sched_scan_stopped_rtnl(local->hw.wiphy, 0); 2599 2600 wake_up: 2601 2602 if (local->monitors == local->open_count && local->monitors > 0) 2603 ieee80211_add_virtual_monitor(local); 2604 2605 /* 2606 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2607 * sessions can be established after a resume. 2608 * 2609 * Also tear down aggregation sessions since reconfiguring 2610 * them in a hardware restart scenario is not easily done 2611 * right now, and the hardware will have lost information 2612 * about the sessions, but we and the AP still think they 2613 * are active. This is really a workaround though. 2614 */ 2615 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2616 mutex_lock(&local->sta_mtx); 2617 2618 list_for_each_entry(sta, &local->sta_list, list) { 2619 if (!local->resuming) 2620 ieee80211_sta_tear_down_BA_sessions( 2621 sta, AGG_STOP_LOCAL_REQUEST); 2622 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2623 } 2624 2625 mutex_unlock(&local->sta_mtx); 2626 } 2627 2628 if (local->in_reconfig) { 2629 local->in_reconfig = false; 2630 barrier(); 2631 2632 /* Restart deferred ROCs */ 2633 mutex_lock(&local->mtx); 2634 ieee80211_start_next_roc(local); 2635 mutex_unlock(&local->mtx); 2636 2637 /* Requeue all works */ 2638 list_for_each_entry(sdata, &local->interfaces, list) 2639 ieee80211_queue_work(&local->hw, &sdata->work); 2640 } 2641 2642 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2643 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2644 false); 2645 2646 /* 2647 * If this is for hw restart things are still running. 2648 * We may want to change that later, however. 2649 */ 2650 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2651 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2652 2653 if (!suspended) 2654 return 0; 2655 2656 #ifdef CONFIG_PM 2657 /* first set suspended false, then resuming */ 2658 local->suspended = false; 2659 mb(); 2660 local->resuming = false; 2661 2662 ieee80211_flush_completed_scan(local, false); 2663 2664 if (local->open_count && !reconfig_due_to_wowlan) 2665 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2666 2667 list_for_each_entry(sdata, &local->interfaces, list) { 2668 if (!ieee80211_sdata_running(sdata)) 2669 continue; 2670 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2671 ieee80211_sta_restart(sdata); 2672 } 2673 2674 mod_timer(&local->sta_cleanup, jiffies + 1); 2675 #else 2676 WARN_ON(1); 2677 #endif 2678 2679 return 0; 2680 } 2681 2682 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 2683 { 2684 struct ieee80211_sub_if_data *sdata; 2685 struct ieee80211_local *local; 2686 struct ieee80211_key *key; 2687 2688 if (WARN_ON(!vif)) 2689 return; 2690 2691 sdata = vif_to_sdata(vif); 2692 local = sdata->local; 2693 2694 if (WARN_ON(!local->resuming)) 2695 return; 2696 2697 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2698 return; 2699 2700 sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME; 2701 2702 mutex_lock(&local->key_mtx); 2703 list_for_each_entry(key, &sdata->key_list, list) 2704 key->flags |= KEY_FLAG_TAINTED; 2705 mutex_unlock(&local->key_mtx); 2706 } 2707 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 2708 2709 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata) 2710 { 2711 struct ieee80211_local *local = sdata->local; 2712 struct ieee80211_chanctx_conf *chanctx_conf; 2713 struct ieee80211_chanctx *chanctx; 2714 2715 mutex_lock(&local->chanctx_mtx); 2716 2717 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2718 lockdep_is_held(&local->chanctx_mtx)); 2719 2720 /* 2721 * This function can be called from a work, thus it may be possible 2722 * that the chanctx_conf is removed (due to a disconnection, for 2723 * example). 2724 * So nothing should be done in such case. 2725 */ 2726 if (!chanctx_conf) 2727 goto unlock; 2728 2729 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2730 ieee80211_recalc_smps_chanctx(local, chanctx); 2731 unlock: 2732 mutex_unlock(&local->chanctx_mtx); 2733 } 2734 2735 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata) 2736 { 2737 struct ieee80211_local *local = sdata->local; 2738 struct ieee80211_chanctx_conf *chanctx_conf; 2739 struct ieee80211_chanctx *chanctx; 2740 2741 mutex_lock(&local->chanctx_mtx); 2742 2743 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2744 lockdep_is_held(&local->chanctx_mtx)); 2745 2746 if (WARN_ON_ONCE(!chanctx_conf)) 2747 goto unlock; 2748 2749 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2750 ieee80211_recalc_chanctx_min_def(local, chanctx); 2751 unlock: 2752 mutex_unlock(&local->chanctx_mtx); 2753 } 2754 2755 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 2756 { 2757 size_t pos = offset; 2758 2759 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 2760 pos += 2 + ies[pos + 1]; 2761 2762 return pos; 2763 } 2764 2765 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata, 2766 int rssi_min_thold, 2767 int rssi_max_thold) 2768 { 2769 trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold); 2770 2771 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 2772 return; 2773 2774 /* 2775 * Scale up threshold values before storing it, as the RSSI averaging 2776 * algorithm uses a scaled up value as well. Change this scaling 2777 * factor if the RSSI averaging algorithm changes. 2778 */ 2779 sdata->u.mgd.rssi_min_thold = rssi_min_thold*16; 2780 sdata->u.mgd.rssi_max_thold = rssi_max_thold*16; 2781 } 2782 2783 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif, 2784 int rssi_min_thold, 2785 int rssi_max_thold) 2786 { 2787 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2788 2789 WARN_ON(rssi_min_thold == rssi_max_thold || 2790 rssi_min_thold > rssi_max_thold); 2791 2792 _ieee80211_enable_rssi_reports(sdata, rssi_min_thold, 2793 rssi_max_thold); 2794 } 2795 EXPORT_SYMBOL(ieee80211_enable_rssi_reports); 2796 2797 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif) 2798 { 2799 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2800 2801 _ieee80211_enable_rssi_reports(sdata, 0, 0); 2802 } 2803 EXPORT_SYMBOL(ieee80211_disable_rssi_reports); 2804 2805 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2806 u16 cap) 2807 { 2808 __le16 tmp; 2809 2810 *pos++ = WLAN_EID_HT_CAPABILITY; 2811 *pos++ = sizeof(struct ieee80211_ht_cap); 2812 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 2813 2814 /* capability flags */ 2815 tmp = cpu_to_le16(cap); 2816 memcpy(pos, &tmp, sizeof(u16)); 2817 pos += sizeof(u16); 2818 2819 /* AMPDU parameters */ 2820 *pos++ = ht_cap->ampdu_factor | 2821 (ht_cap->ampdu_density << 2822 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 2823 2824 /* MCS set */ 2825 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 2826 pos += sizeof(ht_cap->mcs); 2827 2828 /* extended capabilities */ 2829 pos += sizeof(__le16); 2830 2831 /* BF capabilities */ 2832 pos += sizeof(__le32); 2833 2834 /* antenna selection */ 2835 pos += sizeof(u8); 2836 2837 return pos; 2838 } 2839 2840 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2841 u32 cap) 2842 { 2843 __le32 tmp; 2844 2845 *pos++ = WLAN_EID_VHT_CAPABILITY; 2846 *pos++ = sizeof(struct ieee80211_vht_cap); 2847 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 2848 2849 /* capability flags */ 2850 tmp = cpu_to_le32(cap); 2851 memcpy(pos, &tmp, sizeof(u32)); 2852 pos += sizeof(u32); 2853 2854 /* VHT MCS set */ 2855 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 2856 pos += sizeof(vht_cap->vht_mcs); 2857 2858 return pos; 2859 } 2860 2861 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 2862 { 2863 const struct ieee80211_sta_he_cap *he_cap; 2864 struct ieee80211_supported_band *sband; 2865 u8 n; 2866 2867 sband = ieee80211_get_sband(sdata); 2868 if (!sband) 2869 return 0; 2870 2871 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 2872 if (!he_cap) 2873 return 0; 2874 2875 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2876 return 2 + 1 + 2877 sizeof(he_cap->he_cap_elem) + n + 2878 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2879 he_cap->he_cap_elem.phy_cap_info); 2880 } 2881 2882 u8 *ieee80211_ie_build_he_cap(u8 *pos, 2883 const struct ieee80211_sta_he_cap *he_cap, 2884 u8 *end) 2885 { 2886 u8 n; 2887 u8 ie_len; 2888 u8 *orig_pos = pos; 2889 2890 /* Make sure we have place for the IE */ 2891 /* 2892 * TODO: the 1 added is because this temporarily is under the EXTENSION 2893 * IE. Get rid of it when it moves. 2894 */ 2895 if (!he_cap) 2896 return orig_pos; 2897 2898 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2899 ie_len = 2 + 1 + 2900 sizeof(he_cap->he_cap_elem) + n + 2901 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2902 he_cap->he_cap_elem.phy_cap_info); 2903 2904 if ((end - pos) < ie_len) 2905 return orig_pos; 2906 2907 *pos++ = WLAN_EID_EXTENSION; 2908 pos++; /* We'll set the size later below */ 2909 *pos++ = WLAN_EID_EXT_HE_CAPABILITY; 2910 2911 /* Fixed data */ 2912 memcpy(pos, &he_cap->he_cap_elem, sizeof(he_cap->he_cap_elem)); 2913 pos += sizeof(he_cap->he_cap_elem); 2914 2915 memcpy(pos, &he_cap->he_mcs_nss_supp, n); 2916 pos += n; 2917 2918 /* Check if PPE Threshold should be present */ 2919 if ((he_cap->he_cap_elem.phy_cap_info[6] & 2920 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 2921 goto end; 2922 2923 /* 2924 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 2925 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 2926 */ 2927 n = hweight8(he_cap->ppe_thres[0] & 2928 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 2929 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 2930 IEEE80211_PPE_THRES_NSS_POS)); 2931 2932 /* 2933 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 2934 * total size. 2935 */ 2936 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 2937 n = DIV_ROUND_UP(n, 8); 2938 2939 /* Copy PPE Thresholds */ 2940 memcpy(pos, &he_cap->ppe_thres, n); 2941 pos += n; 2942 2943 end: 2944 orig_pos[1] = (pos - orig_pos) - 2; 2945 return pos; 2946 } 2947 2948 void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata, 2949 struct sk_buff *skb) 2950 { 2951 struct ieee80211_supported_band *sband; 2952 const struct ieee80211_sband_iftype_data *iftd; 2953 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 2954 u8 *pos; 2955 u16 cap; 2956 2957 sband = ieee80211_get_sband(sdata); 2958 if (!sband) 2959 return; 2960 2961 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 2962 if (WARN_ON(!iftd)) 2963 return; 2964 2965 /* Check for device HE 6 GHz capability before adding element */ 2966 if (!iftd->he_6ghz_capa.capa) 2967 return; 2968 2969 cap = le16_to_cpu(iftd->he_6ghz_capa.capa); 2970 cap &= ~IEEE80211_HE_6GHZ_CAP_SM_PS; 2971 2972 switch (sdata->smps_mode) { 2973 case IEEE80211_SMPS_AUTOMATIC: 2974 case IEEE80211_SMPS_NUM_MODES: 2975 WARN_ON(1); 2976 fallthrough; 2977 case IEEE80211_SMPS_OFF: 2978 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 2979 IEEE80211_HE_6GHZ_CAP_SM_PS); 2980 break; 2981 case IEEE80211_SMPS_STATIC: 2982 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 2983 IEEE80211_HE_6GHZ_CAP_SM_PS); 2984 break; 2985 case IEEE80211_SMPS_DYNAMIC: 2986 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 2987 IEEE80211_HE_6GHZ_CAP_SM_PS); 2988 break; 2989 } 2990 2991 pos = skb_put(skb, 2 + 1 + sizeof(cap)); 2992 ieee80211_write_he_6ghz_cap(pos, cpu_to_le16(cap), 2993 pos + 2 + 1 + sizeof(cap)); 2994 } 2995 2996 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2997 const struct cfg80211_chan_def *chandef, 2998 u16 prot_mode, bool rifs_mode) 2999 { 3000 struct ieee80211_ht_operation *ht_oper; 3001 /* Build HT Information */ 3002 *pos++ = WLAN_EID_HT_OPERATION; 3003 *pos++ = sizeof(struct ieee80211_ht_operation); 3004 ht_oper = (struct ieee80211_ht_operation *)pos; 3005 ht_oper->primary_chan = ieee80211_frequency_to_channel( 3006 chandef->chan->center_freq); 3007 switch (chandef->width) { 3008 case NL80211_CHAN_WIDTH_160: 3009 case NL80211_CHAN_WIDTH_80P80: 3010 case NL80211_CHAN_WIDTH_80: 3011 case NL80211_CHAN_WIDTH_40: 3012 if (chandef->center_freq1 > chandef->chan->center_freq) 3013 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3014 else 3015 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3016 break; 3017 default: 3018 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 3019 break; 3020 } 3021 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 3022 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 3023 chandef->width != NL80211_CHAN_WIDTH_20) 3024 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 3025 3026 if (rifs_mode) 3027 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 3028 3029 ht_oper->operation_mode = cpu_to_le16(prot_mode); 3030 ht_oper->stbc_param = 0x0000; 3031 3032 /* It seems that Basic MCS set and Supported MCS set 3033 are identical for the first 10 bytes */ 3034 memset(&ht_oper->basic_set, 0, 16); 3035 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 3036 3037 return pos + sizeof(struct ieee80211_ht_operation); 3038 } 3039 3040 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 3041 const struct cfg80211_chan_def *chandef) 3042 { 3043 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 3044 *pos++ = 3; /* IE length */ 3045 /* New channel width */ 3046 switch (chandef->width) { 3047 case NL80211_CHAN_WIDTH_80: 3048 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 3049 break; 3050 case NL80211_CHAN_WIDTH_160: 3051 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 3052 break; 3053 case NL80211_CHAN_WIDTH_80P80: 3054 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 3055 break; 3056 default: 3057 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 3058 } 3059 3060 /* new center frequency segment 0 */ 3061 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 3062 /* new center frequency segment 1 */ 3063 if (chandef->center_freq2) 3064 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 3065 else 3066 *pos++ = 0; 3067 } 3068 3069 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 3070 const struct cfg80211_chan_def *chandef) 3071 { 3072 struct ieee80211_vht_operation *vht_oper; 3073 3074 *pos++ = WLAN_EID_VHT_OPERATION; 3075 *pos++ = sizeof(struct ieee80211_vht_operation); 3076 vht_oper = (struct ieee80211_vht_operation *)pos; 3077 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 3078 chandef->center_freq1); 3079 if (chandef->center_freq2) 3080 vht_oper->center_freq_seg1_idx = 3081 ieee80211_frequency_to_channel(chandef->center_freq2); 3082 else 3083 vht_oper->center_freq_seg1_idx = 0x00; 3084 3085 switch (chandef->width) { 3086 case NL80211_CHAN_WIDTH_160: 3087 /* 3088 * Convert 160 MHz channel width to new style as interop 3089 * workaround. 3090 */ 3091 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3092 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 3093 if (chandef->chan->center_freq < chandef->center_freq1) 3094 vht_oper->center_freq_seg0_idx -= 8; 3095 else 3096 vht_oper->center_freq_seg0_idx += 8; 3097 break; 3098 case NL80211_CHAN_WIDTH_80P80: 3099 /* 3100 * Convert 80+80 MHz channel width to new style as interop 3101 * workaround. 3102 */ 3103 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3104 break; 3105 case NL80211_CHAN_WIDTH_80: 3106 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3107 break; 3108 default: 3109 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 3110 break; 3111 } 3112 3113 /* don't require special VHT peer rates */ 3114 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 3115 3116 return pos + sizeof(struct ieee80211_vht_operation); 3117 } 3118 3119 u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef) 3120 { 3121 struct ieee80211_he_operation *he_oper; 3122 struct ieee80211_he_6ghz_oper *he_6ghz_op; 3123 u32 he_oper_params; 3124 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 3125 3126 if (chandef->chan->band == NL80211_BAND_6GHZ) 3127 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 3128 3129 *pos++ = WLAN_EID_EXTENSION; 3130 *pos++ = ie_len; 3131 *pos++ = WLAN_EID_EXT_HE_OPERATION; 3132 3133 he_oper_params = 0; 3134 he_oper_params |= u32_encode_bits(1023, /* disabled */ 3135 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 3136 he_oper_params |= u32_encode_bits(1, 3137 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 3138 he_oper_params |= u32_encode_bits(1, 3139 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 3140 if (chandef->chan->band == NL80211_BAND_6GHZ) 3141 he_oper_params |= u32_encode_bits(1, 3142 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 3143 3144 he_oper = (struct ieee80211_he_operation *)pos; 3145 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 3146 3147 /* don't require special HE peer rates */ 3148 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 3149 pos += sizeof(struct ieee80211_he_operation); 3150 3151 if (chandef->chan->band != NL80211_BAND_6GHZ) 3152 goto out; 3153 3154 /* TODO add VHT operational */ 3155 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 3156 he_6ghz_op->minrate = 6; /* 6 Mbps */ 3157 he_6ghz_op->primary = 3158 ieee80211_frequency_to_channel(chandef->chan->center_freq); 3159 he_6ghz_op->ccfs0 = 3160 ieee80211_frequency_to_channel(chandef->center_freq1); 3161 if (chandef->center_freq2) 3162 he_6ghz_op->ccfs1 = 3163 ieee80211_frequency_to_channel(chandef->center_freq2); 3164 else 3165 he_6ghz_op->ccfs1 = 0; 3166 3167 switch (chandef->width) { 3168 case NL80211_CHAN_WIDTH_160: 3169 /* Convert 160 MHz channel width to new style as interop 3170 * workaround. 3171 */ 3172 he_6ghz_op->control = 3173 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3174 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 3175 if (chandef->chan->center_freq < chandef->center_freq1) 3176 he_6ghz_op->ccfs0 -= 8; 3177 else 3178 he_6ghz_op->ccfs0 += 8; 3179 fallthrough; 3180 case NL80211_CHAN_WIDTH_80P80: 3181 he_6ghz_op->control = 3182 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3183 break; 3184 case NL80211_CHAN_WIDTH_80: 3185 he_6ghz_op->control = 3186 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 3187 break; 3188 case NL80211_CHAN_WIDTH_40: 3189 he_6ghz_op->control = 3190 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 3191 break; 3192 default: 3193 he_6ghz_op->control = 3194 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 3195 break; 3196 } 3197 3198 pos += sizeof(struct ieee80211_he_6ghz_oper); 3199 3200 out: 3201 return pos; 3202 } 3203 3204 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 3205 struct cfg80211_chan_def *chandef) 3206 { 3207 enum nl80211_channel_type channel_type; 3208 3209 if (!ht_oper) 3210 return false; 3211 3212 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 3213 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 3214 channel_type = NL80211_CHAN_HT20; 3215 break; 3216 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 3217 channel_type = NL80211_CHAN_HT40PLUS; 3218 break; 3219 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 3220 channel_type = NL80211_CHAN_HT40MINUS; 3221 break; 3222 default: 3223 channel_type = NL80211_CHAN_NO_HT; 3224 return false; 3225 } 3226 3227 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 3228 return true; 3229 } 3230 3231 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 3232 const struct ieee80211_vht_operation *oper, 3233 const struct ieee80211_ht_operation *htop, 3234 struct cfg80211_chan_def *chandef) 3235 { 3236 struct cfg80211_chan_def new = *chandef; 3237 int cf0, cf1; 3238 int ccfs0, ccfs1, ccfs2; 3239 int ccf0, ccf1; 3240 u32 vht_cap; 3241 bool support_80_80 = false; 3242 bool support_160 = false; 3243 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 3244 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 3245 u8 supp_chwidth = u32_get_bits(vht_cap_info, 3246 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 3247 3248 if (!oper || !htop) 3249 return false; 3250 3251 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 3252 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 3253 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 3254 support_80_80 = ((vht_cap & 3255 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 3256 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 3257 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 3258 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 3259 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 3260 ccfs0 = oper->center_freq_seg0_idx; 3261 ccfs1 = oper->center_freq_seg1_idx; 3262 ccfs2 = (le16_to_cpu(htop->operation_mode) & 3263 IEEE80211_HT_OP_MODE_CCFS2_MASK) 3264 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 3265 3266 ccf0 = ccfs0; 3267 3268 /* if not supported, parse as though we didn't understand it */ 3269 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 3270 ext_nss_bw_supp = 0; 3271 3272 /* 3273 * Cf. IEEE 802.11 Table 9-250 3274 * 3275 * We really just consider that because it's inefficient to connect 3276 * at a higher bandwidth than we'll actually be able to use. 3277 */ 3278 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 3279 default: 3280 case 0x00: 3281 ccf1 = 0; 3282 support_160 = false; 3283 support_80_80 = false; 3284 break; 3285 case 0x01: 3286 support_80_80 = false; 3287 fallthrough; 3288 case 0x02: 3289 case 0x03: 3290 ccf1 = ccfs2; 3291 break; 3292 case 0x10: 3293 ccf1 = ccfs1; 3294 break; 3295 case 0x11: 3296 case 0x12: 3297 if (!ccfs1) 3298 ccf1 = ccfs2; 3299 else 3300 ccf1 = ccfs1; 3301 break; 3302 case 0x13: 3303 case 0x20: 3304 case 0x23: 3305 ccf1 = ccfs1; 3306 break; 3307 } 3308 3309 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3310 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3311 3312 switch (oper->chan_width) { 3313 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3314 /* just use HT information directly */ 3315 break; 3316 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3317 new.width = NL80211_CHAN_WIDTH_80; 3318 new.center_freq1 = cf0; 3319 /* If needed, adjust based on the newer interop workaround. */ 3320 if (ccf1) { 3321 unsigned int diff; 3322 3323 diff = abs(ccf1 - ccf0); 3324 if ((diff == 8) && support_160) { 3325 new.width = NL80211_CHAN_WIDTH_160; 3326 new.center_freq1 = cf1; 3327 } else if ((diff > 8) && support_80_80) { 3328 new.width = NL80211_CHAN_WIDTH_80P80; 3329 new.center_freq2 = cf1; 3330 } 3331 } 3332 break; 3333 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3334 /* deprecated encoding */ 3335 new.width = NL80211_CHAN_WIDTH_160; 3336 new.center_freq1 = cf0; 3337 break; 3338 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3339 /* deprecated encoding */ 3340 new.width = NL80211_CHAN_WIDTH_80P80; 3341 new.center_freq1 = cf0; 3342 new.center_freq2 = cf1; 3343 break; 3344 default: 3345 return false; 3346 } 3347 3348 if (!cfg80211_chandef_valid(&new)) 3349 return false; 3350 3351 *chandef = new; 3352 return true; 3353 } 3354 3355 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata, 3356 const struct ieee80211_he_operation *he_oper, 3357 struct cfg80211_chan_def *chandef) 3358 { 3359 struct ieee80211_local *local = sdata->local; 3360 struct ieee80211_supported_band *sband; 3361 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3362 const struct ieee80211_sta_he_cap *he_cap; 3363 struct cfg80211_chan_def he_chandef = *chandef; 3364 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3365 bool support_80_80, support_160; 3366 u8 he_phy_cap; 3367 u32 freq; 3368 3369 if (chandef->chan->band != NL80211_BAND_6GHZ) 3370 return true; 3371 3372 sband = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3373 3374 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 3375 if (!he_cap) { 3376 sdata_info(sdata, "Missing iftype sband data/HE cap"); 3377 return false; 3378 } 3379 3380 he_phy_cap = he_cap->he_cap_elem.phy_cap_info[0]; 3381 support_160 = 3382 he_phy_cap & 3383 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 3384 support_80_80 = 3385 he_phy_cap & 3386 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 3387 3388 if (!he_oper) { 3389 sdata_info(sdata, 3390 "HE is not advertised on (on %d MHz), expect issues\n", 3391 chandef->chan->center_freq); 3392 return false; 3393 } 3394 3395 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3396 3397 if (!he_6ghz_oper) { 3398 sdata_info(sdata, 3399 "HE 6GHz operation missing (on %d MHz), expect issues\n", 3400 chandef->chan->center_freq); 3401 return false; 3402 } 3403 3404 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3405 NL80211_BAND_6GHZ); 3406 he_chandef.chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq); 3407 3408 switch (u8_get_bits(he_6ghz_oper->control, 3409 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3410 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3411 he_chandef.width = NL80211_CHAN_WIDTH_20; 3412 break; 3413 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3414 he_chandef.width = NL80211_CHAN_WIDTH_40; 3415 break; 3416 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3417 he_chandef.width = NL80211_CHAN_WIDTH_80; 3418 break; 3419 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3420 he_chandef.width = NL80211_CHAN_WIDTH_80; 3421 if (!he_6ghz_oper->ccfs1) 3422 break; 3423 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) { 3424 if (support_160) 3425 he_chandef.width = NL80211_CHAN_WIDTH_160; 3426 } else { 3427 if (support_80_80) 3428 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3429 } 3430 break; 3431 } 3432 3433 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3434 he_chandef.center_freq1 = 3435 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3436 NL80211_BAND_6GHZ); 3437 } else { 3438 he_chandef.center_freq1 = 3439 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3440 NL80211_BAND_6GHZ); 3441 if (support_80_80 || support_160) 3442 he_chandef.center_freq2 = 3443 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3444 NL80211_BAND_6GHZ); 3445 } 3446 3447 if (!cfg80211_chandef_valid(&he_chandef)) { 3448 sdata_info(sdata, 3449 "HE 6GHz operation resulted in invalid chandef: %d MHz/%d/%d MHz/%d MHz\n", 3450 he_chandef.chan ? he_chandef.chan->center_freq : 0, 3451 he_chandef.width, 3452 he_chandef.center_freq1, 3453 he_chandef.center_freq2); 3454 return false; 3455 } 3456 3457 *chandef = he_chandef; 3458 3459 return true; 3460 } 3461 3462 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, 3463 struct cfg80211_chan_def *chandef) 3464 { 3465 u32 oper_freq; 3466 3467 if (!oper) 3468 return false; 3469 3470 switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { 3471 case IEEE80211_S1G_CHANWIDTH_1MHZ: 3472 chandef->width = NL80211_CHAN_WIDTH_1; 3473 break; 3474 case IEEE80211_S1G_CHANWIDTH_2MHZ: 3475 chandef->width = NL80211_CHAN_WIDTH_2; 3476 break; 3477 case IEEE80211_S1G_CHANWIDTH_4MHZ: 3478 chandef->width = NL80211_CHAN_WIDTH_4; 3479 break; 3480 case IEEE80211_S1G_CHANWIDTH_8MHZ: 3481 chandef->width = NL80211_CHAN_WIDTH_8; 3482 break; 3483 case IEEE80211_S1G_CHANWIDTH_16MHZ: 3484 chandef->width = NL80211_CHAN_WIDTH_16; 3485 break; 3486 default: 3487 return false; 3488 } 3489 3490 oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch, 3491 NL80211_BAND_S1GHZ); 3492 chandef->center_freq1 = KHZ_TO_MHZ(oper_freq); 3493 chandef->freq1_offset = oper_freq % 1000; 3494 3495 return true; 3496 } 3497 3498 int ieee80211_parse_bitrates(struct cfg80211_chan_def *chandef, 3499 const struct ieee80211_supported_band *sband, 3500 const u8 *srates, int srates_len, u32 *rates) 3501 { 3502 u32 rate_flags = ieee80211_chandef_rate_flags(chandef); 3503 int shift = ieee80211_chandef_get_shift(chandef); 3504 struct ieee80211_rate *br; 3505 int brate, rate, i, j, count = 0; 3506 3507 *rates = 0; 3508 3509 for (i = 0; i < srates_len; i++) { 3510 rate = srates[i] & 0x7f; 3511 3512 for (j = 0; j < sband->n_bitrates; j++) { 3513 br = &sband->bitrates[j]; 3514 if ((rate_flags & br->flags) != rate_flags) 3515 continue; 3516 3517 brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5); 3518 if (brate == rate) { 3519 *rates |= BIT(j); 3520 count++; 3521 break; 3522 } 3523 } 3524 } 3525 return count; 3526 } 3527 3528 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, 3529 struct sk_buff *skb, bool need_basic, 3530 enum nl80211_band band) 3531 { 3532 struct ieee80211_local *local = sdata->local; 3533 struct ieee80211_supported_band *sband; 3534 int rate, shift; 3535 u8 i, rates, *pos; 3536 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3537 u32 rate_flags; 3538 3539 shift = ieee80211_vif_get_shift(&sdata->vif); 3540 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3541 sband = local->hw.wiphy->bands[band]; 3542 rates = 0; 3543 for (i = 0; i < sband->n_bitrates; i++) { 3544 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3545 continue; 3546 rates++; 3547 } 3548 if (rates > 8) 3549 rates = 8; 3550 3551 if (skb_tailroom(skb) < rates + 2) 3552 return -ENOMEM; 3553 3554 pos = skb_put(skb, rates + 2); 3555 *pos++ = WLAN_EID_SUPP_RATES; 3556 *pos++ = rates; 3557 for (i = 0; i < rates; i++) { 3558 u8 basic = 0; 3559 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3560 continue; 3561 3562 if (need_basic && basic_rates & BIT(i)) 3563 basic = 0x80; 3564 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3565 5 * (1 << shift)); 3566 *pos++ = basic | (u8) rate; 3567 } 3568 3569 return 0; 3570 } 3571 3572 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, 3573 struct sk_buff *skb, bool need_basic, 3574 enum nl80211_band band) 3575 { 3576 struct ieee80211_local *local = sdata->local; 3577 struct ieee80211_supported_band *sband; 3578 int rate, shift; 3579 u8 i, exrates, *pos; 3580 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3581 u32 rate_flags; 3582 3583 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3584 shift = ieee80211_vif_get_shift(&sdata->vif); 3585 3586 sband = local->hw.wiphy->bands[band]; 3587 exrates = 0; 3588 for (i = 0; i < sband->n_bitrates; i++) { 3589 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3590 continue; 3591 exrates++; 3592 } 3593 3594 if (exrates > 8) 3595 exrates -= 8; 3596 else 3597 exrates = 0; 3598 3599 if (skb_tailroom(skb) < exrates + 2) 3600 return -ENOMEM; 3601 3602 if (exrates) { 3603 pos = skb_put(skb, exrates + 2); 3604 *pos++ = WLAN_EID_EXT_SUPP_RATES; 3605 *pos++ = exrates; 3606 for (i = 8; i < sband->n_bitrates; i++) { 3607 u8 basic = 0; 3608 if ((rate_flags & sband->bitrates[i].flags) 3609 != rate_flags) 3610 continue; 3611 if (need_basic && basic_rates & BIT(i)) 3612 basic = 0x80; 3613 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3614 5 * (1 << shift)); 3615 *pos++ = basic | (u8) rate; 3616 } 3617 } 3618 return 0; 3619 } 3620 3621 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 3622 { 3623 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 3624 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 3625 3626 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) { 3627 /* non-managed type inferfaces */ 3628 return 0; 3629 } 3630 return -ewma_beacon_signal_read(&ifmgd->ave_beacon_signal); 3631 } 3632 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 3633 3634 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 3635 { 3636 if (!mcs) 3637 return 1; 3638 3639 /* TODO: consider rx_highest */ 3640 3641 if (mcs->rx_mask[3]) 3642 return 4; 3643 if (mcs->rx_mask[2]) 3644 return 3; 3645 if (mcs->rx_mask[1]) 3646 return 2; 3647 return 1; 3648 } 3649 3650 /** 3651 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 3652 * @local: mac80211 hw info struct 3653 * @status: RX status 3654 * @mpdu_len: total MPDU length (including FCS) 3655 * @mpdu_offset: offset into MPDU to calculate timestamp at 3656 * 3657 * This function calculates the RX timestamp at the given MPDU offset, taking 3658 * into account what the RX timestamp was. An offset of 0 will just normalize 3659 * the timestamp to TSF at beginning of MPDU reception. 3660 */ 3661 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 3662 struct ieee80211_rx_status *status, 3663 unsigned int mpdu_len, 3664 unsigned int mpdu_offset) 3665 { 3666 u64 ts = status->mactime; 3667 struct rate_info ri; 3668 u16 rate; 3669 u8 n_ltf; 3670 3671 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 3672 return 0; 3673 3674 memset(&ri, 0, sizeof(ri)); 3675 3676 ri.bw = status->bw; 3677 3678 /* Fill cfg80211 rate info */ 3679 switch (status->encoding) { 3680 case RX_ENC_HE: 3681 ri.flags |= RATE_INFO_FLAGS_HE_MCS; 3682 ri.mcs = status->rate_idx; 3683 ri.nss = status->nss; 3684 ri.he_ru_alloc = status->he_ru; 3685 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3686 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3687 3688 /* 3689 * See P802.11ax_D6.0, section 27.3.4 for 3690 * VHT PPDU format. 3691 */ 3692 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3693 mpdu_offset += 2; 3694 ts += 36; 3695 3696 /* 3697 * TODO: 3698 * For HE MU PPDU, add the HE-SIG-B. 3699 * For HE ER PPDU, add 8us for the HE-SIG-A. 3700 * For HE TB PPDU, add 4us for the HE-STF. 3701 * Add the HE-LTF durations - variable. 3702 */ 3703 } 3704 3705 break; 3706 case RX_ENC_HT: 3707 ri.mcs = status->rate_idx; 3708 ri.flags |= RATE_INFO_FLAGS_MCS; 3709 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3710 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3711 3712 /* 3713 * See P802.11REVmd_D3.0, section 19.3.2 for 3714 * HT PPDU format. 3715 */ 3716 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3717 mpdu_offset += 2; 3718 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 3719 ts += 24; 3720 else 3721 ts += 32; 3722 3723 /* 3724 * Add Data HT-LTFs per streams 3725 * TODO: add Extension HT-LTFs, 4us per LTF 3726 */ 3727 n_ltf = ((ri.mcs >> 3) & 3) + 1; 3728 n_ltf = n_ltf == 3 ? 4 : n_ltf; 3729 ts += n_ltf * 4; 3730 } 3731 3732 break; 3733 case RX_ENC_VHT: 3734 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 3735 ri.mcs = status->rate_idx; 3736 ri.nss = status->nss; 3737 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3738 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3739 3740 /* 3741 * See P802.11REVmd_D3.0, section 21.3.2 for 3742 * VHT PPDU format. 3743 */ 3744 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3745 mpdu_offset += 2; 3746 ts += 36; 3747 3748 /* 3749 * Add VHT-LTFs per streams 3750 */ 3751 n_ltf = (ri.nss != 1) && (ri.nss % 2) ? 3752 ri.nss + 1 : ri.nss; 3753 ts += 4 * n_ltf; 3754 } 3755 3756 break; 3757 default: 3758 WARN_ON(1); 3759 fallthrough; 3760 case RX_ENC_LEGACY: { 3761 struct ieee80211_supported_band *sband; 3762 int shift = 0; 3763 int bitrate; 3764 3765 switch (status->bw) { 3766 case RATE_INFO_BW_10: 3767 shift = 1; 3768 break; 3769 case RATE_INFO_BW_5: 3770 shift = 2; 3771 break; 3772 } 3773 3774 sband = local->hw.wiphy->bands[status->band]; 3775 bitrate = sband->bitrates[status->rate_idx].bitrate; 3776 ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift)); 3777 3778 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3779 if (status->band == NL80211_BAND_5GHZ) { 3780 ts += 20 << shift; 3781 mpdu_offset += 2; 3782 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 3783 ts += 96; 3784 } else { 3785 ts += 192; 3786 } 3787 } 3788 break; 3789 } 3790 } 3791 3792 rate = cfg80211_calculate_bitrate(&ri); 3793 if (WARN_ONCE(!rate, 3794 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 3795 (unsigned long long)status->flag, status->rate_idx, 3796 status->nss)) 3797 return 0; 3798 3799 /* rewind from end of MPDU */ 3800 if (status->flag & RX_FLAG_MACTIME_END) 3801 ts -= mpdu_len * 8 * 10 / rate; 3802 3803 ts += mpdu_offset * 8 * 10 / rate; 3804 3805 return ts; 3806 } 3807 3808 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) 3809 { 3810 struct ieee80211_sub_if_data *sdata; 3811 struct cfg80211_chan_def chandef; 3812 3813 /* for interface list, to avoid linking iflist_mtx and chanctx_mtx */ 3814 ASSERT_RTNL(); 3815 3816 mutex_lock(&local->mtx); 3817 list_for_each_entry(sdata, &local->interfaces, list) { 3818 /* it might be waiting for the local->mtx, but then 3819 * by the time it gets it, sdata->wdev.cac_started 3820 * will no longer be true 3821 */ 3822 cancel_delayed_work(&sdata->dfs_cac_timer_work); 3823 3824 if (sdata->wdev.cac_started) { 3825 chandef = sdata->vif.bss_conf.chandef; 3826 ieee80211_vif_release_channel(sdata); 3827 cfg80211_cac_event(sdata->dev, 3828 &chandef, 3829 NL80211_RADAR_CAC_ABORTED, 3830 GFP_KERNEL); 3831 } 3832 } 3833 mutex_unlock(&local->mtx); 3834 } 3835 3836 void ieee80211_dfs_radar_detected_work(struct work_struct *work) 3837 { 3838 struct ieee80211_local *local = 3839 container_of(work, struct ieee80211_local, radar_detected_work); 3840 struct cfg80211_chan_def chandef = local->hw.conf.chandef; 3841 struct ieee80211_chanctx *ctx; 3842 int num_chanctx = 0; 3843 3844 mutex_lock(&local->chanctx_mtx); 3845 list_for_each_entry(ctx, &local->chanctx_list, list) { 3846 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 3847 continue; 3848 3849 num_chanctx++; 3850 chandef = ctx->conf.def; 3851 } 3852 mutex_unlock(&local->chanctx_mtx); 3853 3854 rtnl_lock(); 3855 ieee80211_dfs_cac_cancel(local); 3856 rtnl_unlock(); 3857 3858 if (num_chanctx > 1) 3859 /* XXX: multi-channel is not supported yet */ 3860 WARN_ON(1); 3861 else 3862 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 3863 } 3864 3865 void ieee80211_radar_detected(struct ieee80211_hw *hw) 3866 { 3867 struct ieee80211_local *local = hw_to_local(hw); 3868 3869 trace_api_radar_detected(local); 3870 3871 schedule_work(&local->radar_detected_work); 3872 } 3873 EXPORT_SYMBOL(ieee80211_radar_detected); 3874 3875 u32 ieee80211_chandef_downgrade(struct cfg80211_chan_def *c) 3876 { 3877 u32 ret; 3878 int tmp; 3879 3880 switch (c->width) { 3881 case NL80211_CHAN_WIDTH_20: 3882 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3883 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3884 break; 3885 case NL80211_CHAN_WIDTH_40: 3886 c->width = NL80211_CHAN_WIDTH_20; 3887 c->center_freq1 = c->chan->center_freq; 3888 ret = IEEE80211_STA_DISABLE_40MHZ | 3889 IEEE80211_STA_DISABLE_VHT; 3890 break; 3891 case NL80211_CHAN_WIDTH_80: 3892 tmp = (30 + c->chan->center_freq - c->center_freq1)/20; 3893 /* n_P40 */ 3894 tmp /= 2; 3895 /* freq_P40 */ 3896 c->center_freq1 = c->center_freq1 - 20 + 40 * tmp; 3897 c->width = NL80211_CHAN_WIDTH_40; 3898 ret = IEEE80211_STA_DISABLE_VHT; 3899 break; 3900 case NL80211_CHAN_WIDTH_80P80: 3901 c->center_freq2 = 0; 3902 c->width = NL80211_CHAN_WIDTH_80; 3903 ret = IEEE80211_STA_DISABLE_80P80MHZ | 3904 IEEE80211_STA_DISABLE_160MHZ; 3905 break; 3906 case NL80211_CHAN_WIDTH_160: 3907 /* n_P20 */ 3908 tmp = (70 + c->chan->center_freq - c->center_freq1)/20; 3909 /* n_P80 */ 3910 tmp /= 4; 3911 c->center_freq1 = c->center_freq1 - 40 + 80 * tmp; 3912 c->width = NL80211_CHAN_WIDTH_80; 3913 ret = IEEE80211_STA_DISABLE_80P80MHZ | 3914 IEEE80211_STA_DISABLE_160MHZ; 3915 break; 3916 default: 3917 case NL80211_CHAN_WIDTH_20_NOHT: 3918 WARN_ON_ONCE(1); 3919 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3920 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3921 break; 3922 case NL80211_CHAN_WIDTH_1: 3923 case NL80211_CHAN_WIDTH_2: 3924 case NL80211_CHAN_WIDTH_4: 3925 case NL80211_CHAN_WIDTH_8: 3926 case NL80211_CHAN_WIDTH_16: 3927 case NL80211_CHAN_WIDTH_5: 3928 case NL80211_CHAN_WIDTH_10: 3929 WARN_ON_ONCE(1); 3930 /* keep c->width */ 3931 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3932 break; 3933 } 3934 3935 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 3936 3937 return ret; 3938 } 3939 3940 /* 3941 * Returns true if smps_mode_new is strictly more restrictive than 3942 * smps_mode_old. 3943 */ 3944 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 3945 enum ieee80211_smps_mode smps_mode_new) 3946 { 3947 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 3948 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 3949 return false; 3950 3951 switch (smps_mode_old) { 3952 case IEEE80211_SMPS_STATIC: 3953 return false; 3954 case IEEE80211_SMPS_DYNAMIC: 3955 return smps_mode_new == IEEE80211_SMPS_STATIC; 3956 case IEEE80211_SMPS_OFF: 3957 return smps_mode_new != IEEE80211_SMPS_OFF; 3958 default: 3959 WARN_ON(1); 3960 } 3961 3962 return false; 3963 } 3964 3965 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 3966 struct cfg80211_csa_settings *csa_settings) 3967 { 3968 struct sk_buff *skb; 3969 struct ieee80211_mgmt *mgmt; 3970 struct ieee80211_local *local = sdata->local; 3971 int freq; 3972 int hdr_len = offsetofend(struct ieee80211_mgmt, 3973 u.action.u.chan_switch); 3974 u8 *pos; 3975 3976 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3977 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3978 return -EOPNOTSUPP; 3979 3980 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 3981 5 + /* channel switch announcement element */ 3982 3 + /* secondary channel offset element */ 3983 5 + /* wide bandwidth channel switch announcement */ 3984 8); /* mesh channel switch parameters element */ 3985 if (!skb) 3986 return -ENOMEM; 3987 3988 skb_reserve(skb, local->tx_headroom); 3989 mgmt = skb_put_zero(skb, hdr_len); 3990 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3991 IEEE80211_STYPE_ACTION); 3992 3993 eth_broadcast_addr(mgmt->da); 3994 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 3995 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3996 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 3997 } else { 3998 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 3999 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 4000 } 4001 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 4002 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 4003 pos = skb_put(skb, 5); 4004 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 4005 *pos++ = 3; /* IE length */ 4006 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 4007 freq = csa_settings->chandef.chan->center_freq; 4008 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 4009 *pos++ = csa_settings->count; /* count */ 4010 4011 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 4012 enum nl80211_channel_type ch_type; 4013 4014 skb_put(skb, 3); 4015 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 4016 *pos++ = 1; /* IE length */ 4017 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 4018 if (ch_type == NL80211_CHAN_HT40PLUS) 4019 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 4020 else 4021 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 4022 } 4023 4024 if (ieee80211_vif_is_mesh(&sdata->vif)) { 4025 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 4026 4027 skb_put(skb, 8); 4028 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 4029 *pos++ = 6; /* IE length */ 4030 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 4031 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 4032 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 4033 *pos++ |= csa_settings->block_tx ? 4034 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 4035 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 4036 pos += 2; 4037 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 4038 pos += 2; 4039 } 4040 4041 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 4042 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 4043 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 4044 skb_put(skb, 5); 4045 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 4046 } 4047 4048 ieee80211_tx_skb(sdata, skb); 4049 return 0; 4050 } 4051 4052 bool ieee80211_cs_valid(const struct ieee80211_cipher_scheme *cs) 4053 { 4054 return !(cs == NULL || cs->cipher == 0 || 4055 cs->hdr_len < cs->pn_len + cs->pn_off || 4056 cs->hdr_len <= cs->key_idx_off || 4057 cs->key_idx_shift > 7 || 4058 cs->key_idx_mask == 0); 4059 } 4060 4061 bool ieee80211_cs_list_valid(const struct ieee80211_cipher_scheme *cs, int n) 4062 { 4063 int i; 4064 4065 /* Ensure we have enough iftype bitmap space for all iftype values */ 4066 WARN_ON((NUM_NL80211_IFTYPES / 8 + 1) > sizeof(cs[0].iftype)); 4067 4068 for (i = 0; i < n; i++) 4069 if (!ieee80211_cs_valid(&cs[i])) 4070 return false; 4071 4072 return true; 4073 } 4074 4075 const struct ieee80211_cipher_scheme * 4076 ieee80211_cs_get(struct ieee80211_local *local, u32 cipher, 4077 enum nl80211_iftype iftype) 4078 { 4079 const struct ieee80211_cipher_scheme *l = local->hw.cipher_schemes; 4080 int n = local->hw.n_cipher_schemes; 4081 int i; 4082 const struct ieee80211_cipher_scheme *cs = NULL; 4083 4084 for (i = 0; i < n; i++) { 4085 if (l[i].cipher == cipher) { 4086 cs = &l[i]; 4087 break; 4088 } 4089 } 4090 4091 if (!cs || !(cs->iftype & BIT(iftype))) 4092 return NULL; 4093 4094 return cs; 4095 } 4096 4097 int ieee80211_cs_headroom(struct ieee80211_local *local, 4098 struct cfg80211_crypto_settings *crypto, 4099 enum nl80211_iftype iftype) 4100 { 4101 const struct ieee80211_cipher_scheme *cs; 4102 int headroom = IEEE80211_ENCRYPT_HEADROOM; 4103 int i; 4104 4105 for (i = 0; i < crypto->n_ciphers_pairwise; i++) { 4106 cs = ieee80211_cs_get(local, crypto->ciphers_pairwise[i], 4107 iftype); 4108 4109 if (cs && headroom < cs->hdr_len) 4110 headroom = cs->hdr_len; 4111 } 4112 4113 cs = ieee80211_cs_get(local, crypto->cipher_group, iftype); 4114 if (cs && headroom < cs->hdr_len) 4115 headroom = cs->hdr_len; 4116 4117 return headroom; 4118 } 4119 4120 static bool 4121 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 4122 { 4123 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 4124 int skip; 4125 4126 if (end > 0) 4127 return false; 4128 4129 /* One shot NOA */ 4130 if (data->count[i] == 1) 4131 return false; 4132 4133 if (data->desc[i].interval == 0) 4134 return false; 4135 4136 /* End time is in the past, check for repetitions */ 4137 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 4138 if (data->count[i] < 255) { 4139 if (data->count[i] <= skip) { 4140 data->count[i] = 0; 4141 return false; 4142 } 4143 4144 data->count[i] -= skip; 4145 } 4146 4147 data->desc[i].start += skip * data->desc[i].interval; 4148 4149 return true; 4150 } 4151 4152 static bool 4153 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 4154 s32 *offset) 4155 { 4156 bool ret = false; 4157 int i; 4158 4159 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4160 s32 cur; 4161 4162 if (!data->count[i]) 4163 continue; 4164 4165 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 4166 ret = true; 4167 4168 cur = data->desc[i].start - tsf; 4169 if (cur > *offset) 4170 continue; 4171 4172 cur = data->desc[i].start + data->desc[i].duration - tsf; 4173 if (cur > *offset) 4174 *offset = cur; 4175 } 4176 4177 return ret; 4178 } 4179 4180 static u32 4181 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 4182 { 4183 s32 offset = 0; 4184 int tries = 0; 4185 /* 4186 * arbitrary limit, used to avoid infinite loops when combined NoA 4187 * descriptors cover the full time period. 4188 */ 4189 int max_tries = 5; 4190 4191 ieee80211_extend_absent_time(data, tsf, &offset); 4192 do { 4193 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 4194 break; 4195 4196 tries++; 4197 } while (tries < max_tries); 4198 4199 return offset; 4200 } 4201 4202 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 4203 { 4204 u32 next_offset = BIT(31) - 1; 4205 int i; 4206 4207 data->absent = 0; 4208 data->has_next_tsf = false; 4209 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4210 s32 start; 4211 4212 if (!data->count[i]) 4213 continue; 4214 4215 ieee80211_extend_noa_desc(data, tsf, i); 4216 start = data->desc[i].start - tsf; 4217 if (start <= 0) 4218 data->absent |= BIT(i); 4219 4220 if (next_offset > start) 4221 next_offset = start; 4222 4223 data->has_next_tsf = true; 4224 } 4225 4226 if (data->absent) 4227 next_offset = ieee80211_get_noa_absent_time(data, tsf); 4228 4229 data->next_tsf = tsf + next_offset; 4230 } 4231 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 4232 4233 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 4234 struct ieee80211_noa_data *data, u32 tsf) 4235 { 4236 int ret = 0; 4237 int i; 4238 4239 memset(data, 0, sizeof(*data)); 4240 4241 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4242 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 4243 4244 if (!desc->count || !desc->duration) 4245 continue; 4246 4247 data->count[i] = desc->count; 4248 data->desc[i].start = le32_to_cpu(desc->start_time); 4249 data->desc[i].duration = le32_to_cpu(desc->duration); 4250 data->desc[i].interval = le32_to_cpu(desc->interval); 4251 4252 if (data->count[i] > 1 && 4253 data->desc[i].interval < data->desc[i].duration) 4254 continue; 4255 4256 ieee80211_extend_noa_desc(data, tsf, i); 4257 ret++; 4258 } 4259 4260 if (ret) 4261 ieee80211_update_p2p_noa(data, tsf); 4262 4263 return ret; 4264 } 4265 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 4266 4267 void ieee80211_recalc_dtim(struct ieee80211_local *local, 4268 struct ieee80211_sub_if_data *sdata) 4269 { 4270 u64 tsf = drv_get_tsf(local, sdata); 4271 u64 dtim_count = 0; 4272 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 4273 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 4274 struct ps_data *ps; 4275 u8 bcns_from_dtim; 4276 4277 if (tsf == -1ULL || !beacon_int || !dtim_period) 4278 return; 4279 4280 if (sdata->vif.type == NL80211_IFTYPE_AP || 4281 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 4282 if (!sdata->bss) 4283 return; 4284 4285 ps = &sdata->bss->ps; 4286 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 4287 ps = &sdata->u.mesh.ps; 4288 } else { 4289 return; 4290 } 4291 4292 /* 4293 * actually finds last dtim_count, mac80211 will update in 4294 * __beacon_add_tim(). 4295 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 4296 */ 4297 do_div(tsf, beacon_int); 4298 bcns_from_dtim = do_div(tsf, dtim_period); 4299 /* just had a DTIM */ 4300 if (!bcns_from_dtim) 4301 dtim_count = 0; 4302 else 4303 dtim_count = dtim_period - bcns_from_dtim; 4304 4305 ps->dtim_count = dtim_count; 4306 } 4307 4308 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 4309 struct ieee80211_chanctx *ctx) 4310 { 4311 struct ieee80211_sub_if_data *sdata; 4312 u8 radar_detect = 0; 4313 4314 lockdep_assert_held(&local->chanctx_mtx); 4315 4316 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 4317 return 0; 4318 4319 list_for_each_entry(sdata, &ctx->reserved_vifs, reserved_chanctx_list) 4320 if (sdata->reserved_radar_required) 4321 radar_detect |= BIT(sdata->reserved_chandef.width); 4322 4323 /* 4324 * An in-place reservation context should not have any assigned vifs 4325 * until it replaces the other context. 4326 */ 4327 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 4328 !list_empty(&ctx->assigned_vifs)); 4329 4330 list_for_each_entry(sdata, &ctx->assigned_vifs, assigned_chanctx_list) 4331 if (sdata->radar_required) 4332 radar_detect |= BIT(sdata->vif.bss_conf.chandef.width); 4333 4334 return radar_detect; 4335 } 4336 4337 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 4338 const struct cfg80211_chan_def *chandef, 4339 enum ieee80211_chanctx_mode chanmode, 4340 u8 radar_detect) 4341 { 4342 struct ieee80211_local *local = sdata->local; 4343 struct ieee80211_sub_if_data *sdata_iter; 4344 enum nl80211_iftype iftype = sdata->wdev.iftype; 4345 struct ieee80211_chanctx *ctx; 4346 int total = 1; 4347 struct iface_combination_params params = { 4348 .radar_detect = radar_detect, 4349 }; 4350 4351 lockdep_assert_held(&local->chanctx_mtx); 4352 4353 if (WARN_ON(hweight32(radar_detect) > 1)) 4354 return -EINVAL; 4355 4356 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4357 !chandef->chan)) 4358 return -EINVAL; 4359 4360 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 4361 return -EINVAL; 4362 4363 if (sdata->vif.type == NL80211_IFTYPE_AP || 4364 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 4365 /* 4366 * always passing this is harmless, since it'll be the 4367 * same value that cfg80211 finds if it finds the same 4368 * interface ... and that's always allowed 4369 */ 4370 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 4371 } 4372 4373 /* Always allow software iftypes */ 4374 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 4375 if (radar_detect) 4376 return -EINVAL; 4377 return 0; 4378 } 4379 4380 if (chandef) 4381 params.num_different_channels = 1; 4382 4383 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 4384 params.iftype_num[iftype] = 1; 4385 4386 list_for_each_entry(ctx, &local->chanctx_list, list) { 4387 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4388 continue; 4389 params.radar_detect |= 4390 ieee80211_chanctx_radar_detect(local, ctx); 4391 if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) { 4392 params.num_different_channels++; 4393 continue; 4394 } 4395 if (chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4396 cfg80211_chandef_compatible(chandef, 4397 &ctx->conf.def)) 4398 continue; 4399 params.num_different_channels++; 4400 } 4401 4402 list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) { 4403 struct wireless_dev *wdev_iter; 4404 4405 wdev_iter = &sdata_iter->wdev; 4406 4407 if (sdata_iter == sdata || 4408 !ieee80211_sdata_running(sdata_iter) || 4409 cfg80211_iftype_allowed(local->hw.wiphy, 4410 wdev_iter->iftype, 0, 1)) 4411 continue; 4412 4413 params.iftype_num[wdev_iter->iftype]++; 4414 total++; 4415 } 4416 4417 if (total == 1 && !params.radar_detect) 4418 return 0; 4419 4420 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4421 } 4422 4423 static void 4424 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4425 void *data) 4426 { 4427 u32 *max_num_different_channels = data; 4428 4429 *max_num_different_channels = max(*max_num_different_channels, 4430 c->num_different_channels); 4431 } 4432 4433 int ieee80211_max_num_channels(struct ieee80211_local *local) 4434 { 4435 struct ieee80211_sub_if_data *sdata; 4436 struct ieee80211_chanctx *ctx; 4437 u32 max_num_different_channels = 1; 4438 int err; 4439 struct iface_combination_params params = {0}; 4440 4441 lockdep_assert_held(&local->chanctx_mtx); 4442 4443 list_for_each_entry(ctx, &local->chanctx_list, list) { 4444 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4445 continue; 4446 4447 params.num_different_channels++; 4448 4449 params.radar_detect |= 4450 ieee80211_chanctx_radar_detect(local, ctx); 4451 } 4452 4453 list_for_each_entry_rcu(sdata, &local->interfaces, list) 4454 params.iftype_num[sdata->wdev.iftype]++; 4455 4456 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4457 ieee80211_iter_max_chans, 4458 &max_num_different_channels); 4459 if (err < 0) 4460 return err; 4461 4462 return max_num_different_channels; 4463 } 4464 4465 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, 4466 struct ieee80211_sta_s1g_cap *caps, 4467 struct sk_buff *skb) 4468 { 4469 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 4470 struct ieee80211_s1g_cap s1g_capab; 4471 u8 *pos; 4472 int i; 4473 4474 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 4475 return; 4476 4477 if (!caps->s1g) 4478 return; 4479 4480 memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); 4481 memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); 4482 4483 /* override the capability info */ 4484 for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { 4485 u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; 4486 4487 s1g_capab.capab_info[i] &= ~mask; 4488 s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; 4489 } 4490 4491 /* then MCS and NSS set */ 4492 for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { 4493 u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; 4494 4495 s1g_capab.supp_mcs_nss[i] &= ~mask; 4496 s1g_capab.supp_mcs_nss[i] |= 4497 ifmgd->s1g_capa.supp_mcs_nss[i] & mask; 4498 } 4499 4500 pos = skb_put(skb, 2 + sizeof(s1g_capab)); 4501 *pos++ = WLAN_EID_S1G_CAPABILITIES; 4502 *pos++ = sizeof(s1g_capab); 4503 4504 memcpy(pos, &s1g_capab, sizeof(s1g_capab)); 4505 } 4506 4507 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, 4508 struct sk_buff *skb) 4509 { 4510 u8 *pos = skb_put(skb, 3); 4511 4512 *pos++ = WLAN_EID_AID_REQUEST; 4513 *pos++ = 1; 4514 *pos++ = 0; 4515 } 4516 4517 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 4518 { 4519 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 4520 *buf++ = 7; /* len */ 4521 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 4522 *buf++ = 0x50; 4523 *buf++ = 0xf2; 4524 *buf++ = 2; /* WME */ 4525 *buf++ = 0; /* WME info */ 4526 *buf++ = 1; /* WME ver */ 4527 *buf++ = qosinfo; /* U-APSD no in use */ 4528 4529 return buf; 4530 } 4531 4532 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 4533 unsigned long *frame_cnt, 4534 unsigned long *byte_cnt) 4535 { 4536 struct txq_info *txqi = to_txq_info(txq); 4537 u32 frag_cnt = 0, frag_bytes = 0; 4538 struct sk_buff *skb; 4539 4540 skb_queue_walk(&txqi->frags, skb) { 4541 frag_cnt++; 4542 frag_bytes += skb->len; 4543 } 4544 4545 if (frame_cnt) 4546 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 4547 4548 if (byte_cnt) 4549 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 4550 } 4551 EXPORT_SYMBOL(ieee80211_txq_get_depth); 4552 4553 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 4554 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 4555 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 4556 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 4557 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 4558 }; 4559 4560 u16 ieee80211_encode_usf(int listen_interval) 4561 { 4562 static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; 4563 u16 ui, usf = 0; 4564 4565 /* find greatest USF */ 4566 while (usf < IEEE80211_MAX_USF) { 4567 if (listen_interval % listen_int_usf[usf + 1]) 4568 break; 4569 usf += 1; 4570 } 4571 ui = listen_interval / listen_int_usf[usf]; 4572 4573 /* error if there is a remainder. Should've been checked by user */ 4574 WARN_ON_ONCE(ui > IEEE80211_MAX_UI); 4575 listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | 4576 FIELD_PREP(LISTEN_INT_UI, ui); 4577 4578 return (u16) listen_interval; 4579 } 4580