1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2021 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 28 #include "ieee80211_i.h" 29 #include "driver-ops.h" 30 #include "rate.h" 31 #include "mesh.h" 32 #include "wme.h" 33 #include "led.h" 34 #include "wep.h" 35 36 /* privid for wiphys to determine whether they belong to us or not */ 37 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 38 39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 40 { 41 struct ieee80211_local *local; 42 43 local = wiphy_priv(wiphy); 44 return &local->hw; 45 } 46 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 47 48 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 49 enum nl80211_iftype type) 50 { 51 __le16 fc = hdr->frame_control; 52 53 if (ieee80211_is_data(fc)) { 54 if (len < 24) /* drop incorrect hdr len (data) */ 55 return NULL; 56 57 if (ieee80211_has_a4(fc)) 58 return NULL; 59 if (ieee80211_has_tods(fc)) 60 return hdr->addr1; 61 if (ieee80211_has_fromds(fc)) 62 return hdr->addr2; 63 64 return hdr->addr3; 65 } 66 67 if (ieee80211_is_s1g_beacon(fc)) { 68 struct ieee80211_ext *ext = (void *) hdr; 69 70 return ext->u.s1g_beacon.sa; 71 } 72 73 if (ieee80211_is_mgmt(fc)) { 74 if (len < 24) /* drop incorrect hdr len (mgmt) */ 75 return NULL; 76 return hdr->addr3; 77 } 78 79 if (ieee80211_is_ctl(fc)) { 80 if (ieee80211_is_pspoll(fc)) 81 return hdr->addr1; 82 83 if (ieee80211_is_back_req(fc)) { 84 switch (type) { 85 case NL80211_IFTYPE_STATION: 86 return hdr->addr2; 87 case NL80211_IFTYPE_AP: 88 case NL80211_IFTYPE_AP_VLAN: 89 return hdr->addr1; 90 default: 91 break; /* fall through to the return */ 92 } 93 } 94 } 95 96 return NULL; 97 } 98 EXPORT_SYMBOL(ieee80211_get_bssid); 99 100 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 101 { 102 struct sk_buff *skb; 103 struct ieee80211_hdr *hdr; 104 105 skb_queue_walk(&tx->skbs, skb) { 106 hdr = (struct ieee80211_hdr *) skb->data; 107 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 108 } 109 } 110 111 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 112 int rate, int erp, int short_preamble, 113 int shift) 114 { 115 int dur; 116 117 /* calculate duration (in microseconds, rounded up to next higher 118 * integer if it includes a fractional microsecond) to send frame of 119 * len bytes (does not include FCS) at the given rate. Duration will 120 * also include SIFS. 121 * 122 * rate is in 100 kbps, so divident is multiplied by 10 in the 123 * DIV_ROUND_UP() operations. 124 * 125 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and 126 * is assumed to be 0 otherwise. 127 */ 128 129 if (band == NL80211_BAND_5GHZ || erp) { 130 /* 131 * OFDM: 132 * 133 * N_DBPS = DATARATE x 4 134 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 135 * (16 = SIGNAL time, 6 = tail bits) 136 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 137 * 138 * T_SYM = 4 usec 139 * 802.11a - 18.5.2: aSIFSTime = 16 usec 140 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 141 * signal ext = 6 usec 142 */ 143 dur = 16; /* SIFS + signal ext */ 144 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 145 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 146 147 /* IEEE 802.11-2012 18.3.2.4: all values above are: 148 * * times 4 for 5 MHz 149 * * times 2 for 10 MHz 150 */ 151 dur *= 1 << shift; 152 153 /* rates should already consider the channel bandwidth, 154 * don't apply divisor again. 155 */ 156 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 157 4 * rate); /* T_SYM x N_SYM */ 158 } else { 159 /* 160 * 802.11b or 802.11g with 802.11b compatibility: 161 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 162 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 163 * 164 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 165 * aSIFSTime = 10 usec 166 * aPreambleLength = 144 usec or 72 usec with short preamble 167 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 168 */ 169 dur = 10; /* aSIFSTime = 10 usec */ 170 dur += short_preamble ? (72 + 24) : (144 + 48); 171 172 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 173 } 174 175 return dur; 176 } 177 178 /* Exported duration function for driver use */ 179 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 180 struct ieee80211_vif *vif, 181 enum nl80211_band band, 182 size_t frame_len, 183 struct ieee80211_rate *rate) 184 { 185 struct ieee80211_sub_if_data *sdata; 186 u16 dur; 187 int erp, shift = 0; 188 bool short_preamble = false; 189 190 erp = 0; 191 if (vif) { 192 sdata = vif_to_sdata(vif); 193 short_preamble = sdata->vif.bss_conf.use_short_preamble; 194 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 195 erp = rate->flags & IEEE80211_RATE_ERP_G; 196 shift = ieee80211_vif_get_shift(vif); 197 } 198 199 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 200 short_preamble, shift); 201 202 return cpu_to_le16(dur); 203 } 204 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 205 206 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 207 struct ieee80211_vif *vif, size_t frame_len, 208 const struct ieee80211_tx_info *frame_txctl) 209 { 210 struct ieee80211_local *local = hw_to_local(hw); 211 struct ieee80211_rate *rate; 212 struct ieee80211_sub_if_data *sdata; 213 bool short_preamble; 214 int erp, shift = 0, bitrate; 215 u16 dur; 216 struct ieee80211_supported_band *sband; 217 218 sband = local->hw.wiphy->bands[frame_txctl->band]; 219 220 short_preamble = false; 221 222 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 223 224 erp = 0; 225 if (vif) { 226 sdata = vif_to_sdata(vif); 227 short_preamble = sdata->vif.bss_conf.use_short_preamble; 228 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 229 erp = rate->flags & IEEE80211_RATE_ERP_G; 230 shift = ieee80211_vif_get_shift(vif); 231 } 232 233 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 234 235 /* CTS duration */ 236 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 237 erp, short_preamble, shift); 238 /* Data frame duration */ 239 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 240 erp, short_preamble, shift); 241 /* ACK duration */ 242 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 243 erp, short_preamble, shift); 244 245 return cpu_to_le16(dur); 246 } 247 EXPORT_SYMBOL(ieee80211_rts_duration); 248 249 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 250 struct ieee80211_vif *vif, 251 size_t frame_len, 252 const struct ieee80211_tx_info *frame_txctl) 253 { 254 struct ieee80211_local *local = hw_to_local(hw); 255 struct ieee80211_rate *rate; 256 struct ieee80211_sub_if_data *sdata; 257 bool short_preamble; 258 int erp, shift = 0, bitrate; 259 u16 dur; 260 struct ieee80211_supported_band *sband; 261 262 sband = local->hw.wiphy->bands[frame_txctl->band]; 263 264 short_preamble = false; 265 266 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 267 erp = 0; 268 if (vif) { 269 sdata = vif_to_sdata(vif); 270 short_preamble = sdata->vif.bss_conf.use_short_preamble; 271 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 272 erp = rate->flags & IEEE80211_RATE_ERP_G; 273 shift = ieee80211_vif_get_shift(vif); 274 } 275 276 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 277 278 /* Data frame duration */ 279 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 280 erp, short_preamble, shift); 281 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 282 /* ACK duration */ 283 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 284 erp, short_preamble, shift); 285 } 286 287 return cpu_to_le16(dur); 288 } 289 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 290 291 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 292 { 293 struct ieee80211_local *local = sdata->local; 294 struct ieee80211_vif *vif = &sdata->vif; 295 struct fq *fq = &local->fq; 296 struct ps_data *ps = NULL; 297 struct txq_info *txqi; 298 struct sta_info *sta; 299 int i; 300 301 local_bh_disable(); 302 spin_lock(&fq->lock); 303 304 if (sdata->vif.type == NL80211_IFTYPE_AP) 305 ps = &sdata->bss->ps; 306 307 sdata->vif.txqs_stopped[ac] = false; 308 309 list_for_each_entry_rcu(sta, &local->sta_list, list) { 310 if (sdata != sta->sdata) 311 continue; 312 313 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 314 struct ieee80211_txq *txq = sta->sta.txq[i]; 315 316 if (!txq) 317 continue; 318 319 txqi = to_txq_info(txq); 320 321 if (ac != txq->ac) 322 continue; 323 324 if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, 325 &txqi->flags)) 326 continue; 327 328 spin_unlock(&fq->lock); 329 drv_wake_tx_queue(local, txqi); 330 spin_lock(&fq->lock); 331 } 332 } 333 334 if (!vif->txq) 335 goto out; 336 337 txqi = to_txq_info(vif->txq); 338 339 if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, &txqi->flags) || 340 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 341 goto out; 342 343 spin_unlock(&fq->lock); 344 345 drv_wake_tx_queue(local, txqi); 346 local_bh_enable(); 347 return; 348 out: 349 spin_unlock(&fq->lock); 350 local_bh_enable(); 351 } 352 353 static void 354 __releases(&local->queue_stop_reason_lock) 355 __acquires(&local->queue_stop_reason_lock) 356 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 357 { 358 struct ieee80211_sub_if_data *sdata; 359 int n_acs = IEEE80211_NUM_ACS; 360 int i; 361 362 rcu_read_lock(); 363 364 if (local->hw.queues < IEEE80211_NUM_ACS) 365 n_acs = 1; 366 367 for (i = 0; i < local->hw.queues; i++) { 368 if (local->queue_stop_reasons[i]) 369 continue; 370 371 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 372 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 373 int ac; 374 375 for (ac = 0; ac < n_acs; ac++) { 376 int ac_queue = sdata->vif.hw_queue[ac]; 377 378 if (ac_queue == i || 379 sdata->vif.cab_queue == i) 380 __ieee80211_wake_txqs(sdata, ac); 381 } 382 } 383 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 384 } 385 386 rcu_read_unlock(); 387 } 388 389 void ieee80211_wake_txqs(struct tasklet_struct *t) 390 { 391 struct ieee80211_local *local = from_tasklet(local, t, 392 wake_txqs_tasklet); 393 unsigned long flags; 394 395 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 396 _ieee80211_wake_txqs(local, &flags); 397 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 398 } 399 400 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue) 401 { 402 struct ieee80211_sub_if_data *sdata; 403 int n_acs = IEEE80211_NUM_ACS; 404 405 if (local->ops->wake_tx_queue) 406 return; 407 408 if (local->hw.queues < IEEE80211_NUM_ACS) 409 n_acs = 1; 410 411 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 412 int ac; 413 414 if (!sdata->dev) 415 continue; 416 417 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE && 418 local->queue_stop_reasons[sdata->vif.cab_queue] != 0) 419 continue; 420 421 for (ac = 0; ac < n_acs; ac++) { 422 int ac_queue = sdata->vif.hw_queue[ac]; 423 424 if (ac_queue == queue || 425 (sdata->vif.cab_queue == queue && 426 local->queue_stop_reasons[ac_queue] == 0 && 427 skb_queue_empty(&local->pending[ac_queue]))) 428 netif_wake_subqueue(sdata->dev, ac); 429 } 430 } 431 } 432 433 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 434 enum queue_stop_reason reason, 435 bool refcounted, 436 unsigned long *flags) 437 { 438 struct ieee80211_local *local = hw_to_local(hw); 439 440 trace_wake_queue(local, queue, reason); 441 442 if (WARN_ON(queue >= hw->queues)) 443 return; 444 445 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 446 return; 447 448 if (!refcounted) { 449 local->q_stop_reasons[queue][reason] = 0; 450 } else { 451 local->q_stop_reasons[queue][reason]--; 452 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 453 local->q_stop_reasons[queue][reason] = 0; 454 } 455 456 if (local->q_stop_reasons[queue][reason] == 0) 457 __clear_bit(reason, &local->queue_stop_reasons[queue]); 458 459 if (local->queue_stop_reasons[queue] != 0) 460 /* someone still has this queue stopped */ 461 return; 462 463 if (skb_queue_empty(&local->pending[queue])) { 464 rcu_read_lock(); 465 ieee80211_propagate_queue_wake(local, queue); 466 rcu_read_unlock(); 467 } else 468 tasklet_schedule(&local->tx_pending_tasklet); 469 470 /* 471 * Calling _ieee80211_wake_txqs here can be a problem because it may 472 * release queue_stop_reason_lock which has been taken by 473 * __ieee80211_wake_queue's caller. It is certainly not very nice to 474 * release someone's lock, but it is fine because all the callers of 475 * __ieee80211_wake_queue call it right before releasing the lock. 476 */ 477 if (local->ops->wake_tx_queue) { 478 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 479 tasklet_schedule(&local->wake_txqs_tasklet); 480 else 481 _ieee80211_wake_txqs(local, flags); 482 } 483 } 484 485 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 486 enum queue_stop_reason reason, 487 bool refcounted) 488 { 489 struct ieee80211_local *local = hw_to_local(hw); 490 unsigned long flags; 491 492 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 493 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 494 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 495 } 496 497 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 498 { 499 ieee80211_wake_queue_by_reason(hw, queue, 500 IEEE80211_QUEUE_STOP_REASON_DRIVER, 501 false); 502 } 503 EXPORT_SYMBOL(ieee80211_wake_queue); 504 505 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 506 enum queue_stop_reason reason, 507 bool refcounted) 508 { 509 struct ieee80211_local *local = hw_to_local(hw); 510 struct ieee80211_sub_if_data *sdata; 511 int n_acs = IEEE80211_NUM_ACS; 512 513 trace_stop_queue(local, queue, reason); 514 515 if (WARN_ON(queue >= hw->queues)) 516 return; 517 518 if (!refcounted) 519 local->q_stop_reasons[queue][reason] = 1; 520 else 521 local->q_stop_reasons[queue][reason]++; 522 523 if (__test_and_set_bit(reason, &local->queue_stop_reasons[queue])) 524 return; 525 526 if (local->hw.queues < IEEE80211_NUM_ACS) 527 n_acs = 1; 528 529 rcu_read_lock(); 530 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 531 int ac; 532 533 if (!sdata->dev) 534 continue; 535 536 for (ac = 0; ac < n_acs; ac++) { 537 if (sdata->vif.hw_queue[ac] == queue || 538 sdata->vif.cab_queue == queue) { 539 if (!local->ops->wake_tx_queue) { 540 netif_stop_subqueue(sdata->dev, ac); 541 continue; 542 } 543 spin_lock(&local->fq.lock); 544 sdata->vif.txqs_stopped[ac] = true; 545 spin_unlock(&local->fq.lock); 546 } 547 } 548 } 549 rcu_read_unlock(); 550 } 551 552 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 553 enum queue_stop_reason reason, 554 bool refcounted) 555 { 556 struct ieee80211_local *local = hw_to_local(hw); 557 unsigned long flags; 558 559 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 560 __ieee80211_stop_queue(hw, queue, reason, refcounted); 561 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 562 } 563 564 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 565 { 566 ieee80211_stop_queue_by_reason(hw, queue, 567 IEEE80211_QUEUE_STOP_REASON_DRIVER, 568 false); 569 } 570 EXPORT_SYMBOL(ieee80211_stop_queue); 571 572 void ieee80211_add_pending_skb(struct ieee80211_local *local, 573 struct sk_buff *skb) 574 { 575 struct ieee80211_hw *hw = &local->hw; 576 unsigned long flags; 577 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 578 int queue = info->hw_queue; 579 580 if (WARN_ON(!info->control.vif)) { 581 ieee80211_free_txskb(&local->hw, skb); 582 return; 583 } 584 585 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 586 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 587 false); 588 __skb_queue_tail(&local->pending[queue], skb); 589 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 590 false, &flags); 591 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 592 } 593 594 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 595 struct sk_buff_head *skbs) 596 { 597 struct ieee80211_hw *hw = &local->hw; 598 struct sk_buff *skb; 599 unsigned long flags; 600 int queue, i; 601 602 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 603 while ((skb = skb_dequeue(skbs))) { 604 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 605 606 if (WARN_ON(!info->control.vif)) { 607 ieee80211_free_txskb(&local->hw, skb); 608 continue; 609 } 610 611 queue = info->hw_queue; 612 613 __ieee80211_stop_queue(hw, queue, 614 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 615 false); 616 617 __skb_queue_tail(&local->pending[queue], skb); 618 } 619 620 for (i = 0; i < hw->queues; i++) 621 __ieee80211_wake_queue(hw, i, 622 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 623 false, &flags); 624 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 625 } 626 627 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 628 unsigned long queues, 629 enum queue_stop_reason reason, 630 bool refcounted) 631 { 632 struct ieee80211_local *local = hw_to_local(hw); 633 unsigned long flags; 634 int i; 635 636 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 637 638 for_each_set_bit(i, &queues, hw->queues) 639 __ieee80211_stop_queue(hw, i, reason, refcounted); 640 641 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 642 } 643 644 void ieee80211_stop_queues(struct ieee80211_hw *hw) 645 { 646 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 647 IEEE80211_QUEUE_STOP_REASON_DRIVER, 648 false); 649 } 650 EXPORT_SYMBOL(ieee80211_stop_queues); 651 652 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 653 { 654 struct ieee80211_local *local = hw_to_local(hw); 655 unsigned long flags; 656 int ret; 657 658 if (WARN_ON(queue >= hw->queues)) 659 return true; 660 661 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 662 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 663 &local->queue_stop_reasons[queue]); 664 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 665 return ret; 666 } 667 EXPORT_SYMBOL(ieee80211_queue_stopped); 668 669 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 670 unsigned long queues, 671 enum queue_stop_reason reason, 672 bool refcounted) 673 { 674 struct ieee80211_local *local = hw_to_local(hw); 675 unsigned long flags; 676 int i; 677 678 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 679 680 for_each_set_bit(i, &queues, hw->queues) 681 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 682 683 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 684 } 685 686 void ieee80211_wake_queues(struct ieee80211_hw *hw) 687 { 688 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 689 IEEE80211_QUEUE_STOP_REASON_DRIVER, 690 false); 691 } 692 EXPORT_SYMBOL(ieee80211_wake_queues); 693 694 static unsigned int 695 ieee80211_get_vif_queues(struct ieee80211_local *local, 696 struct ieee80211_sub_if_data *sdata) 697 { 698 unsigned int queues; 699 700 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 701 int ac; 702 703 queues = 0; 704 705 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 706 queues |= BIT(sdata->vif.hw_queue[ac]); 707 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 708 queues |= BIT(sdata->vif.cab_queue); 709 } else { 710 /* all queues */ 711 queues = BIT(local->hw.queues) - 1; 712 } 713 714 return queues; 715 } 716 717 void __ieee80211_flush_queues(struct ieee80211_local *local, 718 struct ieee80211_sub_if_data *sdata, 719 unsigned int queues, bool drop) 720 { 721 if (!local->ops->flush) 722 return; 723 724 /* 725 * If no queue was set, or if the HW doesn't support 726 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 727 */ 728 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 729 queues = ieee80211_get_vif_queues(local, sdata); 730 731 ieee80211_stop_queues_by_reason(&local->hw, queues, 732 IEEE80211_QUEUE_STOP_REASON_FLUSH, 733 false); 734 735 drv_flush(local, sdata, queues, drop); 736 737 ieee80211_wake_queues_by_reason(&local->hw, queues, 738 IEEE80211_QUEUE_STOP_REASON_FLUSH, 739 false); 740 } 741 742 void ieee80211_flush_queues(struct ieee80211_local *local, 743 struct ieee80211_sub_if_data *sdata, bool drop) 744 { 745 __ieee80211_flush_queues(local, sdata, 0, drop); 746 } 747 748 void ieee80211_stop_vif_queues(struct ieee80211_local *local, 749 struct ieee80211_sub_if_data *sdata, 750 enum queue_stop_reason reason) 751 { 752 ieee80211_stop_queues_by_reason(&local->hw, 753 ieee80211_get_vif_queues(local, sdata), 754 reason, true); 755 } 756 757 void ieee80211_wake_vif_queues(struct ieee80211_local *local, 758 struct ieee80211_sub_if_data *sdata, 759 enum queue_stop_reason reason) 760 { 761 ieee80211_wake_queues_by_reason(&local->hw, 762 ieee80211_get_vif_queues(local, sdata), 763 reason, true); 764 } 765 766 static void __iterate_interfaces(struct ieee80211_local *local, 767 u32 iter_flags, 768 void (*iterator)(void *data, u8 *mac, 769 struct ieee80211_vif *vif), 770 void *data) 771 { 772 struct ieee80211_sub_if_data *sdata; 773 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 774 775 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 776 switch (sdata->vif.type) { 777 case NL80211_IFTYPE_MONITOR: 778 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) 779 continue; 780 break; 781 case NL80211_IFTYPE_AP_VLAN: 782 continue; 783 default: 784 break; 785 } 786 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 787 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 788 continue; 789 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && 790 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 791 continue; 792 if (ieee80211_sdata_running(sdata) || !active_only) 793 iterator(data, sdata->vif.addr, 794 &sdata->vif); 795 } 796 797 sdata = rcu_dereference_check(local->monitor_sdata, 798 lockdep_is_held(&local->iflist_mtx) || 799 lockdep_is_held(&local->hw.wiphy->mtx)); 800 if (sdata && 801 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 802 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 803 iterator(data, sdata->vif.addr, &sdata->vif); 804 } 805 806 void ieee80211_iterate_interfaces( 807 struct ieee80211_hw *hw, u32 iter_flags, 808 void (*iterator)(void *data, u8 *mac, 809 struct ieee80211_vif *vif), 810 void *data) 811 { 812 struct ieee80211_local *local = hw_to_local(hw); 813 814 mutex_lock(&local->iflist_mtx); 815 __iterate_interfaces(local, iter_flags, iterator, data); 816 mutex_unlock(&local->iflist_mtx); 817 } 818 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 819 820 void ieee80211_iterate_active_interfaces_atomic( 821 struct ieee80211_hw *hw, u32 iter_flags, 822 void (*iterator)(void *data, u8 *mac, 823 struct ieee80211_vif *vif), 824 void *data) 825 { 826 struct ieee80211_local *local = hw_to_local(hw); 827 828 rcu_read_lock(); 829 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 830 iterator, data); 831 rcu_read_unlock(); 832 } 833 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 834 835 void ieee80211_iterate_active_interfaces_mtx( 836 struct ieee80211_hw *hw, u32 iter_flags, 837 void (*iterator)(void *data, u8 *mac, 838 struct ieee80211_vif *vif), 839 void *data) 840 { 841 struct ieee80211_local *local = hw_to_local(hw); 842 843 lockdep_assert_wiphy(hw->wiphy); 844 845 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 846 iterator, data); 847 } 848 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx); 849 850 static void __iterate_stations(struct ieee80211_local *local, 851 void (*iterator)(void *data, 852 struct ieee80211_sta *sta), 853 void *data) 854 { 855 struct sta_info *sta; 856 857 list_for_each_entry_rcu(sta, &local->sta_list, list) { 858 if (!sta->uploaded) 859 continue; 860 861 iterator(data, &sta->sta); 862 } 863 } 864 865 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 866 void (*iterator)(void *data, 867 struct ieee80211_sta *sta), 868 void *data) 869 { 870 struct ieee80211_local *local = hw_to_local(hw); 871 872 rcu_read_lock(); 873 __iterate_stations(local, iterator, data); 874 rcu_read_unlock(); 875 } 876 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 877 878 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 879 { 880 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 881 882 if (!ieee80211_sdata_running(sdata) || 883 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 884 return NULL; 885 return &sdata->vif; 886 } 887 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 888 889 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 890 { 891 if (!vif) 892 return NULL; 893 894 return &vif_to_sdata(vif)->wdev; 895 } 896 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 897 898 /* 899 * Nothing should have been stuffed into the workqueue during 900 * the suspend->resume cycle. Since we can't check each caller 901 * of this function if we are already quiescing / suspended, 902 * check here and don't WARN since this can actually happen when 903 * the rx path (for example) is racing against __ieee80211_suspend 904 * and suspending / quiescing was set after the rx path checked 905 * them. 906 */ 907 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 908 { 909 if (local->quiescing || (local->suspended && !local->resuming)) { 910 pr_warn("queueing ieee80211 work while going to suspend\n"); 911 return false; 912 } 913 914 return true; 915 } 916 917 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 918 { 919 struct ieee80211_local *local = hw_to_local(hw); 920 921 if (!ieee80211_can_queue_work(local)) 922 return; 923 924 queue_work(local->workqueue, work); 925 } 926 EXPORT_SYMBOL(ieee80211_queue_work); 927 928 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 929 struct delayed_work *dwork, 930 unsigned long delay) 931 { 932 struct ieee80211_local *local = hw_to_local(hw); 933 934 if (!ieee80211_can_queue_work(local)) 935 return; 936 937 queue_delayed_work(local->workqueue, dwork, delay); 938 } 939 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 940 941 static void ieee80211_parse_extension_element(u32 *crc, 942 const struct element *elem, 943 struct ieee802_11_elems *elems) 944 { 945 const void *data = elem->data + 1; 946 u8 len; 947 948 if (!elem->datalen) 949 return; 950 951 len = elem->datalen - 1; 952 953 switch (elem->data[0]) { 954 case WLAN_EID_EXT_HE_MU_EDCA: 955 if (len >= sizeof(*elems->mu_edca_param_set)) { 956 elems->mu_edca_param_set = data; 957 if (crc) 958 *crc = crc32_be(*crc, (void *)elem, 959 elem->datalen + 2); 960 } 961 break; 962 case WLAN_EID_EXT_HE_CAPABILITY: 963 elems->he_cap = data; 964 elems->he_cap_len = len; 965 break; 966 case WLAN_EID_EXT_HE_OPERATION: 967 if (len >= sizeof(*elems->he_operation) && 968 len >= ieee80211_he_oper_size(data) - 1) { 969 if (crc) 970 *crc = crc32_be(*crc, (void *)elem, 971 elem->datalen + 2); 972 elems->he_operation = data; 973 } 974 break; 975 case WLAN_EID_EXT_UORA: 976 if (len >= 1) 977 elems->uora_element = data; 978 break; 979 case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME: 980 if (len == 3) 981 elems->max_channel_switch_time = data; 982 break; 983 case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION: 984 if (len >= sizeof(*elems->mbssid_config_ie)) 985 elems->mbssid_config_ie = data; 986 break; 987 case WLAN_EID_EXT_HE_SPR: 988 if (len >= sizeof(*elems->he_spr) && 989 len >= ieee80211_he_spr_size(data)) 990 elems->he_spr = data; 991 break; 992 case WLAN_EID_EXT_HE_6GHZ_CAPA: 993 if (len >= sizeof(*elems->he_6ghz_capa)) 994 elems->he_6ghz_capa = data; 995 break; 996 } 997 } 998 999 static u32 1000 _ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, 1001 struct ieee802_11_elems *elems, 1002 u64 filter, u32 crc, 1003 const struct element *check_inherit) 1004 { 1005 const struct element *elem; 1006 bool calc_crc = filter != 0; 1007 DECLARE_BITMAP(seen_elems, 256); 1008 const u8 *ie; 1009 1010 bitmap_zero(seen_elems, 256); 1011 1012 for_each_element(elem, start, len) { 1013 bool elem_parse_failed; 1014 u8 id = elem->id; 1015 u8 elen = elem->datalen; 1016 const u8 *pos = elem->data; 1017 1018 if (check_inherit && 1019 !cfg80211_is_element_inherited(elem, 1020 check_inherit)) 1021 continue; 1022 1023 switch (id) { 1024 case WLAN_EID_SSID: 1025 case WLAN_EID_SUPP_RATES: 1026 case WLAN_EID_FH_PARAMS: 1027 case WLAN_EID_DS_PARAMS: 1028 case WLAN_EID_CF_PARAMS: 1029 case WLAN_EID_TIM: 1030 case WLAN_EID_IBSS_PARAMS: 1031 case WLAN_EID_CHALLENGE: 1032 case WLAN_EID_RSN: 1033 case WLAN_EID_ERP_INFO: 1034 case WLAN_EID_EXT_SUPP_RATES: 1035 case WLAN_EID_HT_CAPABILITY: 1036 case WLAN_EID_HT_OPERATION: 1037 case WLAN_EID_VHT_CAPABILITY: 1038 case WLAN_EID_VHT_OPERATION: 1039 case WLAN_EID_MESH_ID: 1040 case WLAN_EID_MESH_CONFIG: 1041 case WLAN_EID_PEER_MGMT: 1042 case WLAN_EID_PREQ: 1043 case WLAN_EID_PREP: 1044 case WLAN_EID_PERR: 1045 case WLAN_EID_RANN: 1046 case WLAN_EID_CHANNEL_SWITCH: 1047 case WLAN_EID_EXT_CHANSWITCH_ANN: 1048 case WLAN_EID_COUNTRY: 1049 case WLAN_EID_PWR_CONSTRAINT: 1050 case WLAN_EID_TIMEOUT_INTERVAL: 1051 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1052 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1053 case WLAN_EID_CHAN_SWITCH_PARAM: 1054 case WLAN_EID_EXT_CAPABILITY: 1055 case WLAN_EID_CHAN_SWITCH_TIMING: 1056 case WLAN_EID_LINK_ID: 1057 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1058 case WLAN_EID_RSNX: 1059 case WLAN_EID_S1G_BCN_COMPAT: 1060 case WLAN_EID_S1G_CAPABILITIES: 1061 case WLAN_EID_S1G_OPERATION: 1062 case WLAN_EID_AID_RESPONSE: 1063 case WLAN_EID_S1G_SHORT_BCN_INTERVAL: 1064 /* 1065 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible 1066 * that if the content gets bigger it might be needed more than once 1067 */ 1068 if (test_bit(id, seen_elems)) { 1069 elems->parse_error = true; 1070 continue; 1071 } 1072 break; 1073 } 1074 1075 if (calc_crc && id < 64 && (filter & (1ULL << id))) 1076 crc = crc32_be(crc, pos - 2, elen + 2); 1077 1078 elem_parse_failed = false; 1079 1080 switch (id) { 1081 case WLAN_EID_LINK_ID: 1082 if (elen + 2 < sizeof(struct ieee80211_tdls_lnkie)) { 1083 elem_parse_failed = true; 1084 break; 1085 } 1086 elems->lnk_id = (void *)(pos - 2); 1087 break; 1088 case WLAN_EID_CHAN_SWITCH_TIMING: 1089 if (elen < sizeof(struct ieee80211_ch_switch_timing)) { 1090 elem_parse_failed = true; 1091 break; 1092 } 1093 elems->ch_sw_timing = (void *)pos; 1094 break; 1095 case WLAN_EID_EXT_CAPABILITY: 1096 elems->ext_capab = pos; 1097 elems->ext_capab_len = elen; 1098 break; 1099 case WLAN_EID_SSID: 1100 elems->ssid = pos; 1101 elems->ssid_len = elen; 1102 break; 1103 case WLAN_EID_SUPP_RATES: 1104 elems->supp_rates = pos; 1105 elems->supp_rates_len = elen; 1106 break; 1107 case WLAN_EID_DS_PARAMS: 1108 if (elen >= 1) 1109 elems->ds_params = pos; 1110 else 1111 elem_parse_failed = true; 1112 break; 1113 case WLAN_EID_TIM: 1114 if (elen >= sizeof(struct ieee80211_tim_ie)) { 1115 elems->tim = (void *)pos; 1116 elems->tim_len = elen; 1117 } else 1118 elem_parse_failed = true; 1119 break; 1120 case WLAN_EID_VENDOR_SPECIFIC: 1121 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && 1122 pos[2] == 0xf2) { 1123 /* Microsoft OUI (00:50:F2) */ 1124 1125 if (calc_crc) 1126 crc = crc32_be(crc, pos - 2, elen + 2); 1127 1128 if (elen >= 5 && pos[3] == 2) { 1129 /* OUI Type 2 - WMM IE */ 1130 if (pos[4] == 0) { 1131 elems->wmm_info = pos; 1132 elems->wmm_info_len = elen; 1133 } else if (pos[4] == 1) { 1134 elems->wmm_param = pos; 1135 elems->wmm_param_len = elen; 1136 } 1137 } 1138 } 1139 break; 1140 case WLAN_EID_RSN: 1141 elems->rsn = pos; 1142 elems->rsn_len = elen; 1143 break; 1144 case WLAN_EID_ERP_INFO: 1145 if (elen >= 1) 1146 elems->erp_info = pos; 1147 else 1148 elem_parse_failed = true; 1149 break; 1150 case WLAN_EID_EXT_SUPP_RATES: 1151 elems->ext_supp_rates = pos; 1152 elems->ext_supp_rates_len = elen; 1153 break; 1154 case WLAN_EID_HT_CAPABILITY: 1155 if (elen >= sizeof(struct ieee80211_ht_cap)) 1156 elems->ht_cap_elem = (void *)pos; 1157 else 1158 elem_parse_failed = true; 1159 break; 1160 case WLAN_EID_HT_OPERATION: 1161 if (elen >= sizeof(struct ieee80211_ht_operation)) 1162 elems->ht_operation = (void *)pos; 1163 else 1164 elem_parse_failed = true; 1165 break; 1166 case WLAN_EID_VHT_CAPABILITY: 1167 if (elen >= sizeof(struct ieee80211_vht_cap)) 1168 elems->vht_cap_elem = (void *)pos; 1169 else 1170 elem_parse_failed = true; 1171 break; 1172 case WLAN_EID_VHT_OPERATION: 1173 if (elen >= sizeof(struct ieee80211_vht_operation)) { 1174 elems->vht_operation = (void *)pos; 1175 if (calc_crc) 1176 crc = crc32_be(crc, pos - 2, elen + 2); 1177 break; 1178 } 1179 elem_parse_failed = true; 1180 break; 1181 case WLAN_EID_OPMODE_NOTIF: 1182 if (elen > 0) { 1183 elems->opmode_notif = pos; 1184 if (calc_crc) 1185 crc = crc32_be(crc, pos - 2, elen + 2); 1186 break; 1187 } 1188 elem_parse_failed = true; 1189 break; 1190 case WLAN_EID_MESH_ID: 1191 elems->mesh_id = pos; 1192 elems->mesh_id_len = elen; 1193 break; 1194 case WLAN_EID_MESH_CONFIG: 1195 if (elen >= sizeof(struct ieee80211_meshconf_ie)) 1196 elems->mesh_config = (void *)pos; 1197 else 1198 elem_parse_failed = true; 1199 break; 1200 case WLAN_EID_PEER_MGMT: 1201 elems->peering = pos; 1202 elems->peering_len = elen; 1203 break; 1204 case WLAN_EID_MESH_AWAKE_WINDOW: 1205 if (elen >= 2) 1206 elems->awake_window = (void *)pos; 1207 break; 1208 case WLAN_EID_PREQ: 1209 elems->preq = pos; 1210 elems->preq_len = elen; 1211 break; 1212 case WLAN_EID_PREP: 1213 elems->prep = pos; 1214 elems->prep_len = elen; 1215 break; 1216 case WLAN_EID_PERR: 1217 elems->perr = pos; 1218 elems->perr_len = elen; 1219 break; 1220 case WLAN_EID_RANN: 1221 if (elen >= sizeof(struct ieee80211_rann_ie)) 1222 elems->rann = (void *)pos; 1223 else 1224 elem_parse_failed = true; 1225 break; 1226 case WLAN_EID_CHANNEL_SWITCH: 1227 if (elen != sizeof(struct ieee80211_channel_sw_ie)) { 1228 elem_parse_failed = true; 1229 break; 1230 } 1231 elems->ch_switch_ie = (void *)pos; 1232 break; 1233 case WLAN_EID_EXT_CHANSWITCH_ANN: 1234 if (elen != sizeof(struct ieee80211_ext_chansw_ie)) { 1235 elem_parse_failed = true; 1236 break; 1237 } 1238 elems->ext_chansw_ie = (void *)pos; 1239 break; 1240 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1241 if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) { 1242 elem_parse_failed = true; 1243 break; 1244 } 1245 elems->sec_chan_offs = (void *)pos; 1246 break; 1247 case WLAN_EID_CHAN_SWITCH_PARAM: 1248 if (elen < 1249 sizeof(*elems->mesh_chansw_params_ie)) { 1250 elem_parse_failed = true; 1251 break; 1252 } 1253 elems->mesh_chansw_params_ie = (void *)pos; 1254 break; 1255 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1256 if (!action || 1257 elen < sizeof(*elems->wide_bw_chansw_ie)) { 1258 elem_parse_failed = true; 1259 break; 1260 } 1261 elems->wide_bw_chansw_ie = (void *)pos; 1262 break; 1263 case WLAN_EID_CHANNEL_SWITCH_WRAPPER: 1264 if (action) { 1265 elem_parse_failed = true; 1266 break; 1267 } 1268 /* 1269 * This is a bit tricky, but as we only care about 1270 * the wide bandwidth channel switch element, so 1271 * just parse it out manually. 1272 */ 1273 ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH, 1274 pos, elen); 1275 if (ie) { 1276 if (ie[1] >= sizeof(*elems->wide_bw_chansw_ie)) 1277 elems->wide_bw_chansw_ie = 1278 (void *)(ie + 2); 1279 else 1280 elem_parse_failed = true; 1281 } 1282 break; 1283 case WLAN_EID_COUNTRY: 1284 elems->country_elem = pos; 1285 elems->country_elem_len = elen; 1286 break; 1287 case WLAN_EID_PWR_CONSTRAINT: 1288 if (elen != 1) { 1289 elem_parse_failed = true; 1290 break; 1291 } 1292 elems->pwr_constr_elem = pos; 1293 break; 1294 case WLAN_EID_CISCO_VENDOR_SPECIFIC: 1295 /* Lots of different options exist, but we only care 1296 * about the Dynamic Transmit Power Control element. 1297 * First check for the Cisco OUI, then for the DTPC 1298 * tag (0x00). 1299 */ 1300 if (elen < 4) { 1301 elem_parse_failed = true; 1302 break; 1303 } 1304 1305 if (pos[0] != 0x00 || pos[1] != 0x40 || 1306 pos[2] != 0x96 || pos[3] != 0x00) 1307 break; 1308 1309 if (elen != 6) { 1310 elem_parse_failed = true; 1311 break; 1312 } 1313 1314 if (calc_crc) 1315 crc = crc32_be(crc, pos - 2, elen + 2); 1316 1317 elems->cisco_dtpc_elem = pos; 1318 break; 1319 case WLAN_EID_ADDBA_EXT: 1320 if (elen < sizeof(struct ieee80211_addba_ext_ie)) { 1321 elem_parse_failed = true; 1322 break; 1323 } 1324 elems->addba_ext_ie = (void *)pos; 1325 break; 1326 case WLAN_EID_TIMEOUT_INTERVAL: 1327 if (elen >= sizeof(struct ieee80211_timeout_interval_ie)) 1328 elems->timeout_int = (void *)pos; 1329 else 1330 elem_parse_failed = true; 1331 break; 1332 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1333 if (elen >= sizeof(*elems->max_idle_period_ie)) 1334 elems->max_idle_period_ie = (void *)pos; 1335 break; 1336 case WLAN_EID_RSNX: 1337 elems->rsnx = pos; 1338 elems->rsnx_len = elen; 1339 break; 1340 case WLAN_EID_TX_POWER_ENVELOPE: 1341 if (elen < 1 || 1342 elen > sizeof(struct ieee80211_tx_pwr_env)) 1343 break; 1344 1345 if (elems->tx_pwr_env_num >= ARRAY_SIZE(elems->tx_pwr_env)) 1346 break; 1347 1348 elems->tx_pwr_env[elems->tx_pwr_env_num] = (void *)pos; 1349 elems->tx_pwr_env_len[elems->tx_pwr_env_num] = elen; 1350 elems->tx_pwr_env_num++; 1351 break; 1352 case WLAN_EID_EXTENSION: 1353 ieee80211_parse_extension_element(calc_crc ? 1354 &crc : NULL, 1355 elem, elems); 1356 break; 1357 case WLAN_EID_S1G_CAPABILITIES: 1358 if (elen >= sizeof(*elems->s1g_capab)) 1359 elems->s1g_capab = (void *)pos; 1360 else 1361 elem_parse_failed = true; 1362 break; 1363 case WLAN_EID_S1G_OPERATION: 1364 if (elen == sizeof(*elems->s1g_oper)) 1365 elems->s1g_oper = (void *)pos; 1366 else 1367 elem_parse_failed = true; 1368 break; 1369 case WLAN_EID_S1G_BCN_COMPAT: 1370 if (elen == sizeof(*elems->s1g_bcn_compat)) 1371 elems->s1g_bcn_compat = (void *)pos; 1372 else 1373 elem_parse_failed = true; 1374 break; 1375 case WLAN_EID_AID_RESPONSE: 1376 if (elen == sizeof(struct ieee80211_aid_response_ie)) 1377 elems->aid_resp = (void *)pos; 1378 else 1379 elem_parse_failed = true; 1380 break; 1381 default: 1382 break; 1383 } 1384 1385 if (elem_parse_failed) 1386 elems->parse_error = true; 1387 else 1388 __set_bit(id, seen_elems); 1389 } 1390 1391 if (!for_each_element_completed(elem, start, len)) 1392 elems->parse_error = true; 1393 1394 return crc; 1395 } 1396 1397 static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len, 1398 struct ieee802_11_elems *elems, 1399 const u8 *transmitter_bssid, 1400 const u8 *bss_bssid, 1401 u8 *nontransmitted_profile) 1402 { 1403 const struct element *elem, *sub; 1404 size_t profile_len = 0; 1405 bool found = false; 1406 1407 if (!bss_bssid || !transmitter_bssid) 1408 return profile_len; 1409 1410 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) { 1411 if (elem->datalen < 2) 1412 continue; 1413 1414 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 1415 u8 new_bssid[ETH_ALEN]; 1416 const u8 *index; 1417 1418 if (sub->id != 0 || sub->datalen < 4) { 1419 /* not a valid BSS profile */ 1420 continue; 1421 } 1422 1423 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 1424 sub->data[1] != 2) { 1425 /* The first element of the 1426 * Nontransmitted BSSID Profile is not 1427 * the Nontransmitted BSSID Capability 1428 * element. 1429 */ 1430 continue; 1431 } 1432 1433 memset(nontransmitted_profile, 0, len); 1434 profile_len = cfg80211_merge_profile(start, len, 1435 elem, 1436 sub, 1437 nontransmitted_profile, 1438 len); 1439 1440 /* found a Nontransmitted BSSID Profile */ 1441 index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, 1442 nontransmitted_profile, 1443 profile_len); 1444 if (!index || index[1] < 1 || index[2] == 0) { 1445 /* Invalid MBSSID Index element */ 1446 continue; 1447 } 1448 1449 cfg80211_gen_new_bssid(transmitter_bssid, 1450 elem->data[0], 1451 index[2], 1452 new_bssid); 1453 if (ether_addr_equal(new_bssid, bss_bssid)) { 1454 found = true; 1455 elems->bssid_index_len = index[1]; 1456 elems->bssid_index = (void *)&index[2]; 1457 break; 1458 } 1459 } 1460 } 1461 1462 return found ? profile_len : 0; 1463 } 1464 1465 struct ieee802_11_elems *ieee802_11_parse_elems_crc(const u8 *start, size_t len, 1466 bool action, u64 filter, 1467 u32 crc, 1468 const u8 *transmitter_bssid, 1469 const u8 *bss_bssid) 1470 { 1471 struct ieee802_11_elems *elems; 1472 const struct element *non_inherit = NULL; 1473 u8 *nontransmitted_profile; 1474 int nontransmitted_profile_len = 0; 1475 1476 elems = kzalloc(sizeof(*elems), GFP_ATOMIC); 1477 if (!elems) 1478 return NULL; 1479 elems->ie_start = start; 1480 elems->total_len = len; 1481 1482 nontransmitted_profile = kmalloc(len, GFP_ATOMIC); 1483 if (nontransmitted_profile) { 1484 nontransmitted_profile_len = 1485 ieee802_11_find_bssid_profile(start, len, elems, 1486 transmitter_bssid, 1487 bss_bssid, 1488 nontransmitted_profile); 1489 non_inherit = 1490 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 1491 nontransmitted_profile, 1492 nontransmitted_profile_len); 1493 } 1494 1495 crc = _ieee802_11_parse_elems_crc(start, len, action, elems, filter, 1496 crc, non_inherit); 1497 1498 /* Override with nontransmitted profile, if found */ 1499 if (nontransmitted_profile_len) 1500 _ieee802_11_parse_elems_crc(nontransmitted_profile, 1501 nontransmitted_profile_len, 1502 action, elems, 0, 0, NULL); 1503 1504 if (elems->tim && !elems->parse_error) { 1505 const struct ieee80211_tim_ie *tim_ie = elems->tim; 1506 1507 elems->dtim_period = tim_ie->dtim_period; 1508 elems->dtim_count = tim_ie->dtim_count; 1509 } 1510 1511 /* Override DTIM period and count if needed */ 1512 if (elems->bssid_index && 1513 elems->bssid_index_len >= 1514 offsetofend(struct ieee80211_bssid_index, dtim_period)) 1515 elems->dtim_period = elems->bssid_index->dtim_period; 1516 1517 if (elems->bssid_index && 1518 elems->bssid_index_len >= 1519 offsetofend(struct ieee80211_bssid_index, dtim_count)) 1520 elems->dtim_count = elems->bssid_index->dtim_count; 1521 1522 kfree(nontransmitted_profile); 1523 1524 elems->crc = crc; 1525 1526 return elems; 1527 } 1528 1529 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 1530 struct ieee80211_tx_queue_params 1531 *qparam, int ac) 1532 { 1533 struct ieee80211_chanctx_conf *chanctx_conf; 1534 const struct ieee80211_reg_rule *rrule; 1535 const struct ieee80211_wmm_ac *wmm_ac; 1536 u16 center_freq = 0; 1537 1538 if (sdata->vif.type != NL80211_IFTYPE_AP && 1539 sdata->vif.type != NL80211_IFTYPE_STATION) 1540 return; 1541 1542 rcu_read_lock(); 1543 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1544 if (chanctx_conf) 1545 center_freq = chanctx_conf->def.chan->center_freq; 1546 1547 if (!center_freq) { 1548 rcu_read_unlock(); 1549 return; 1550 } 1551 1552 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 1553 1554 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 1555 rcu_read_unlock(); 1556 return; 1557 } 1558 1559 if (sdata->vif.type == NL80211_IFTYPE_AP) 1560 wmm_ac = &rrule->wmm_rule.ap[ac]; 1561 else 1562 wmm_ac = &rrule->wmm_rule.client[ac]; 1563 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 1564 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 1565 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 1566 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 1567 rcu_read_unlock(); 1568 } 1569 1570 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata, 1571 bool bss_notify, bool enable_qos) 1572 { 1573 struct ieee80211_local *local = sdata->local; 1574 struct ieee80211_tx_queue_params qparam; 1575 struct ieee80211_chanctx_conf *chanctx_conf; 1576 int ac; 1577 bool use_11b; 1578 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 1579 int aCWmin, aCWmax; 1580 1581 if (!local->ops->conf_tx) 1582 return; 1583 1584 if (local->hw.queues < IEEE80211_NUM_ACS) 1585 return; 1586 1587 memset(&qparam, 0, sizeof(qparam)); 1588 1589 rcu_read_lock(); 1590 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1591 use_11b = (chanctx_conf && 1592 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 1593 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE); 1594 rcu_read_unlock(); 1595 1596 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 1597 1598 /* Set defaults according to 802.11-2007 Table 7-37 */ 1599 aCWmax = 1023; 1600 if (use_11b) 1601 aCWmin = 31; 1602 else 1603 aCWmin = 15; 1604 1605 /* Confiure old 802.11b/g medium access rules. */ 1606 qparam.cw_max = aCWmax; 1607 qparam.cw_min = aCWmin; 1608 qparam.txop = 0; 1609 qparam.aifs = 2; 1610 1611 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1612 /* Update if QoS is enabled. */ 1613 if (enable_qos) { 1614 switch (ac) { 1615 case IEEE80211_AC_BK: 1616 qparam.cw_max = aCWmax; 1617 qparam.cw_min = aCWmin; 1618 qparam.txop = 0; 1619 if (is_ocb) 1620 qparam.aifs = 9; 1621 else 1622 qparam.aifs = 7; 1623 break; 1624 /* never happens but let's not leave undefined */ 1625 default: 1626 case IEEE80211_AC_BE: 1627 qparam.cw_max = aCWmax; 1628 qparam.cw_min = aCWmin; 1629 qparam.txop = 0; 1630 if (is_ocb) 1631 qparam.aifs = 6; 1632 else 1633 qparam.aifs = 3; 1634 break; 1635 case IEEE80211_AC_VI: 1636 qparam.cw_max = aCWmin; 1637 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1638 if (is_ocb) 1639 qparam.txop = 0; 1640 else if (use_11b) 1641 qparam.txop = 6016/32; 1642 else 1643 qparam.txop = 3008/32; 1644 1645 if (is_ocb) 1646 qparam.aifs = 3; 1647 else 1648 qparam.aifs = 2; 1649 break; 1650 case IEEE80211_AC_VO: 1651 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1652 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1653 if (is_ocb) 1654 qparam.txop = 0; 1655 else if (use_11b) 1656 qparam.txop = 3264/32; 1657 else 1658 qparam.txop = 1504/32; 1659 qparam.aifs = 2; 1660 break; 1661 } 1662 } 1663 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1664 1665 qparam.uapsd = false; 1666 1667 sdata->tx_conf[ac] = qparam; 1668 drv_conf_tx(local, sdata, ac, &qparam); 1669 } 1670 1671 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1672 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1673 sdata->vif.type != NL80211_IFTYPE_NAN) { 1674 sdata->vif.bss_conf.qos = enable_qos; 1675 if (bss_notify) 1676 ieee80211_bss_info_change_notify(sdata, 1677 BSS_CHANGED_QOS); 1678 } 1679 } 1680 1681 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1682 u16 transaction, u16 auth_alg, u16 status, 1683 const u8 *extra, size_t extra_len, const u8 *da, 1684 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1685 u32 tx_flags) 1686 { 1687 struct ieee80211_local *local = sdata->local; 1688 struct sk_buff *skb; 1689 struct ieee80211_mgmt *mgmt; 1690 int err; 1691 1692 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1693 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1694 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN); 1695 if (!skb) 1696 return; 1697 1698 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1699 1700 mgmt = skb_put_zero(skb, 24 + 6); 1701 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1702 IEEE80211_STYPE_AUTH); 1703 memcpy(mgmt->da, da, ETH_ALEN); 1704 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1705 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1706 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1707 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1708 mgmt->u.auth.status_code = cpu_to_le16(status); 1709 if (extra) 1710 skb_put_data(skb, extra, extra_len); 1711 1712 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1713 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1714 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1715 if (WARN_ON(err)) { 1716 kfree_skb(skb); 1717 return; 1718 } 1719 } 1720 1721 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1722 tx_flags; 1723 ieee80211_tx_skb(sdata, skb); 1724 } 1725 1726 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1727 const u8 *da, const u8 *bssid, 1728 u16 stype, u16 reason, 1729 bool send_frame, u8 *frame_buf) 1730 { 1731 struct ieee80211_local *local = sdata->local; 1732 struct sk_buff *skb; 1733 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1734 1735 /* build frame */ 1736 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1737 mgmt->duration = 0; /* initialize only */ 1738 mgmt->seq_ctrl = 0; /* initialize only */ 1739 memcpy(mgmt->da, da, ETH_ALEN); 1740 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1741 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1742 /* u.deauth.reason_code == u.disassoc.reason_code */ 1743 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1744 1745 if (send_frame) { 1746 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1747 IEEE80211_DEAUTH_FRAME_LEN); 1748 if (!skb) 1749 return; 1750 1751 skb_reserve(skb, local->hw.extra_tx_headroom); 1752 1753 /* copy in frame */ 1754 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1755 1756 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1757 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1758 IEEE80211_SKB_CB(skb)->flags |= 1759 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1760 1761 ieee80211_tx_skb(sdata, skb); 1762 } 1763 } 1764 1765 static u8 *ieee80211_write_he_6ghz_cap(u8 *pos, __le16 cap, u8 *end) 1766 { 1767 if ((end - pos) < 5) 1768 return pos; 1769 1770 *pos++ = WLAN_EID_EXTENSION; 1771 *pos++ = 1 + sizeof(cap); 1772 *pos++ = WLAN_EID_EXT_HE_6GHZ_CAPA; 1773 memcpy(pos, &cap, sizeof(cap)); 1774 1775 return pos + 2; 1776 } 1777 1778 static int ieee80211_build_preq_ies_band(struct ieee80211_sub_if_data *sdata, 1779 u8 *buffer, size_t buffer_len, 1780 const u8 *ie, size_t ie_len, 1781 enum nl80211_band band, 1782 u32 rate_mask, 1783 struct cfg80211_chan_def *chandef, 1784 size_t *offset, u32 flags) 1785 { 1786 struct ieee80211_local *local = sdata->local; 1787 struct ieee80211_supported_band *sband; 1788 const struct ieee80211_sta_he_cap *he_cap; 1789 u8 *pos = buffer, *end = buffer + buffer_len; 1790 size_t noffset; 1791 int supp_rates_len, i; 1792 u8 rates[32]; 1793 int num_rates; 1794 int ext_rates_len; 1795 int shift; 1796 u32 rate_flags; 1797 bool have_80mhz = false; 1798 1799 *offset = 0; 1800 1801 sband = local->hw.wiphy->bands[band]; 1802 if (WARN_ON_ONCE(!sband)) 1803 return 0; 1804 1805 rate_flags = ieee80211_chandef_rate_flags(chandef); 1806 shift = ieee80211_chandef_get_shift(chandef); 1807 1808 num_rates = 0; 1809 for (i = 0; i < sband->n_bitrates; i++) { 1810 if ((BIT(i) & rate_mask) == 0) 1811 continue; /* skip rate */ 1812 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 1813 continue; 1814 1815 rates[num_rates++] = 1816 (u8) DIV_ROUND_UP(sband->bitrates[i].bitrate, 1817 (1 << shift) * 5); 1818 } 1819 1820 supp_rates_len = min_t(int, num_rates, 8); 1821 1822 if (end - pos < 2 + supp_rates_len) 1823 goto out_err; 1824 *pos++ = WLAN_EID_SUPP_RATES; 1825 *pos++ = supp_rates_len; 1826 memcpy(pos, rates, supp_rates_len); 1827 pos += supp_rates_len; 1828 1829 /* insert "request information" if in custom IEs */ 1830 if (ie && ie_len) { 1831 static const u8 before_extrates[] = { 1832 WLAN_EID_SSID, 1833 WLAN_EID_SUPP_RATES, 1834 WLAN_EID_REQUEST, 1835 }; 1836 noffset = ieee80211_ie_split(ie, ie_len, 1837 before_extrates, 1838 ARRAY_SIZE(before_extrates), 1839 *offset); 1840 if (end - pos < noffset - *offset) 1841 goto out_err; 1842 memcpy(pos, ie + *offset, noffset - *offset); 1843 pos += noffset - *offset; 1844 *offset = noffset; 1845 } 1846 1847 ext_rates_len = num_rates - supp_rates_len; 1848 if (ext_rates_len > 0) { 1849 if (end - pos < 2 + ext_rates_len) 1850 goto out_err; 1851 *pos++ = WLAN_EID_EXT_SUPP_RATES; 1852 *pos++ = ext_rates_len; 1853 memcpy(pos, rates + supp_rates_len, ext_rates_len); 1854 pos += ext_rates_len; 1855 } 1856 1857 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 1858 if (end - pos < 3) 1859 goto out_err; 1860 *pos++ = WLAN_EID_DS_PARAMS; 1861 *pos++ = 1; 1862 *pos++ = ieee80211_frequency_to_channel( 1863 chandef->chan->center_freq); 1864 } 1865 1866 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 1867 goto done; 1868 1869 /* insert custom IEs that go before HT */ 1870 if (ie && ie_len) { 1871 static const u8 before_ht[] = { 1872 /* 1873 * no need to list the ones split off already 1874 * (or generated here) 1875 */ 1876 WLAN_EID_DS_PARAMS, 1877 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1878 }; 1879 noffset = ieee80211_ie_split(ie, ie_len, 1880 before_ht, ARRAY_SIZE(before_ht), 1881 *offset); 1882 if (end - pos < noffset - *offset) 1883 goto out_err; 1884 memcpy(pos, ie + *offset, noffset - *offset); 1885 pos += noffset - *offset; 1886 *offset = noffset; 1887 } 1888 1889 if (sband->ht_cap.ht_supported) { 1890 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap)) 1891 goto out_err; 1892 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 1893 sband->ht_cap.cap); 1894 } 1895 1896 /* insert custom IEs that go before VHT */ 1897 if (ie && ie_len) { 1898 static const u8 before_vht[] = { 1899 /* 1900 * no need to list the ones split off already 1901 * (or generated here) 1902 */ 1903 WLAN_EID_BSS_COEX_2040, 1904 WLAN_EID_EXT_CAPABILITY, 1905 WLAN_EID_SSID_LIST, 1906 WLAN_EID_CHANNEL_USAGE, 1907 WLAN_EID_INTERWORKING, 1908 WLAN_EID_MESH_ID, 1909 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 1910 }; 1911 noffset = ieee80211_ie_split(ie, ie_len, 1912 before_vht, ARRAY_SIZE(before_vht), 1913 *offset); 1914 if (end - pos < noffset - *offset) 1915 goto out_err; 1916 memcpy(pos, ie + *offset, noffset - *offset); 1917 pos += noffset - *offset; 1918 *offset = noffset; 1919 } 1920 1921 /* Check if any channel in this sband supports at least 80 MHz */ 1922 for (i = 0; i < sband->n_channels; i++) { 1923 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 1924 IEEE80211_CHAN_NO_80MHZ)) 1925 continue; 1926 1927 have_80mhz = true; 1928 break; 1929 } 1930 1931 if (sband->vht_cap.vht_supported && have_80mhz) { 1932 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap)) 1933 goto out_err; 1934 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 1935 sband->vht_cap.cap); 1936 } 1937 1938 /* insert custom IEs that go before HE */ 1939 if (ie && ie_len) { 1940 static const u8 before_he[] = { 1941 /* 1942 * no need to list the ones split off before VHT 1943 * or generated here 1944 */ 1945 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 1946 WLAN_EID_AP_CSN, 1947 /* TODO: add 11ah/11aj/11ak elements */ 1948 }; 1949 noffset = ieee80211_ie_split(ie, ie_len, 1950 before_he, ARRAY_SIZE(before_he), 1951 *offset); 1952 if (end - pos < noffset - *offset) 1953 goto out_err; 1954 memcpy(pos, ie + *offset, noffset - *offset); 1955 pos += noffset - *offset; 1956 *offset = noffset; 1957 } 1958 1959 he_cap = ieee80211_get_he_iftype_cap(sband, 1960 ieee80211_vif_type_p2p(&sdata->vif)); 1961 if (he_cap && 1962 cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 1963 IEEE80211_CHAN_NO_HE)) { 1964 pos = ieee80211_ie_build_he_cap(pos, he_cap, end); 1965 if (!pos) 1966 goto out_err; 1967 } 1968 1969 if (cfg80211_any_usable_channels(local->hw.wiphy, 1970 BIT(NL80211_BAND_6GHZ), 1971 IEEE80211_CHAN_NO_HE)) { 1972 struct ieee80211_supported_band *sband6; 1973 1974 sband6 = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 1975 he_cap = ieee80211_get_he_iftype_cap(sband6, 1976 ieee80211_vif_type_p2p(&sdata->vif)); 1977 1978 if (he_cap) { 1979 enum nl80211_iftype iftype = 1980 ieee80211_vif_type_p2p(&sdata->vif); 1981 __le16 cap = ieee80211_get_he_6ghz_capa(sband, iftype); 1982 1983 pos = ieee80211_write_he_6ghz_cap(pos, cap, end); 1984 } 1985 } 1986 1987 /* 1988 * If adding more here, adjust code in main.c 1989 * that calculates local->scan_ies_len. 1990 */ 1991 1992 return pos - buffer; 1993 out_err: 1994 WARN_ONCE(1, "not enough space for preq IEs\n"); 1995 done: 1996 return pos - buffer; 1997 } 1998 1999 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 2000 size_t buffer_len, 2001 struct ieee80211_scan_ies *ie_desc, 2002 const u8 *ie, size_t ie_len, 2003 u8 bands_used, u32 *rate_masks, 2004 struct cfg80211_chan_def *chandef, 2005 u32 flags) 2006 { 2007 size_t pos = 0, old_pos = 0, custom_ie_offset = 0; 2008 int i; 2009 2010 memset(ie_desc, 0, sizeof(*ie_desc)); 2011 2012 for (i = 0; i < NUM_NL80211_BANDS; i++) { 2013 if (bands_used & BIT(i)) { 2014 pos += ieee80211_build_preq_ies_band(sdata, 2015 buffer + pos, 2016 buffer_len - pos, 2017 ie, ie_len, i, 2018 rate_masks[i], 2019 chandef, 2020 &custom_ie_offset, 2021 flags); 2022 ie_desc->ies[i] = buffer + old_pos; 2023 ie_desc->len[i] = pos - old_pos; 2024 old_pos = pos; 2025 } 2026 } 2027 2028 /* add any remaining custom IEs */ 2029 if (ie && ie_len) { 2030 if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset, 2031 "not enough space for preq custom IEs\n")) 2032 return pos; 2033 memcpy(buffer + pos, ie + custom_ie_offset, 2034 ie_len - custom_ie_offset); 2035 ie_desc->common_ies = buffer + pos; 2036 ie_desc->common_ie_len = ie_len - custom_ie_offset; 2037 pos += ie_len - custom_ie_offset; 2038 } 2039 2040 return pos; 2041 }; 2042 2043 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 2044 const u8 *src, const u8 *dst, 2045 u32 ratemask, 2046 struct ieee80211_channel *chan, 2047 const u8 *ssid, size_t ssid_len, 2048 const u8 *ie, size_t ie_len, 2049 u32 flags) 2050 { 2051 struct ieee80211_local *local = sdata->local; 2052 struct cfg80211_chan_def chandef; 2053 struct sk_buff *skb; 2054 struct ieee80211_mgmt *mgmt; 2055 int ies_len; 2056 u32 rate_masks[NUM_NL80211_BANDS] = {}; 2057 struct ieee80211_scan_ies dummy_ie_desc; 2058 2059 /* 2060 * Do not send DS Channel parameter for directed probe requests 2061 * in order to maximize the chance that we get a response. Some 2062 * badly-behaved APs don't respond when this parameter is included. 2063 */ 2064 chandef.width = sdata->vif.bss_conf.chandef.width; 2065 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 2066 chandef.chan = NULL; 2067 else 2068 chandef.chan = chan; 2069 2070 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 2071 local->scan_ies_len + ie_len); 2072 if (!skb) 2073 return NULL; 2074 2075 rate_masks[chan->band] = ratemask; 2076 ies_len = ieee80211_build_preq_ies(sdata, skb_tail_pointer(skb), 2077 skb_tailroom(skb), &dummy_ie_desc, 2078 ie, ie_len, BIT(chan->band), 2079 rate_masks, &chandef, flags); 2080 skb_put(skb, ies_len); 2081 2082 if (dst) { 2083 mgmt = (struct ieee80211_mgmt *) skb->data; 2084 memcpy(mgmt->da, dst, ETH_ALEN); 2085 memcpy(mgmt->bssid, dst, ETH_ALEN); 2086 } 2087 2088 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 2089 2090 return skb; 2091 } 2092 2093 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 2094 struct ieee802_11_elems *elems, 2095 enum nl80211_band band, u32 *basic_rates) 2096 { 2097 struct ieee80211_supported_band *sband; 2098 size_t num_rates; 2099 u32 supp_rates, rate_flags; 2100 int i, j, shift; 2101 2102 sband = sdata->local->hw.wiphy->bands[band]; 2103 if (WARN_ON(!sband)) 2104 return 1; 2105 2106 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 2107 shift = ieee80211_vif_get_shift(&sdata->vif); 2108 2109 num_rates = sband->n_bitrates; 2110 supp_rates = 0; 2111 for (i = 0; i < elems->supp_rates_len + 2112 elems->ext_supp_rates_len; i++) { 2113 u8 rate = 0; 2114 int own_rate; 2115 bool is_basic; 2116 if (i < elems->supp_rates_len) 2117 rate = elems->supp_rates[i]; 2118 else if (elems->ext_supp_rates) 2119 rate = elems->ext_supp_rates 2120 [i - elems->supp_rates_len]; 2121 own_rate = 5 * (rate & 0x7f); 2122 is_basic = !!(rate & 0x80); 2123 2124 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 2125 continue; 2126 2127 for (j = 0; j < num_rates; j++) { 2128 int brate; 2129 if ((rate_flags & sband->bitrates[j].flags) 2130 != rate_flags) 2131 continue; 2132 2133 brate = DIV_ROUND_UP(sband->bitrates[j].bitrate, 2134 1 << shift); 2135 2136 if (brate == own_rate) { 2137 supp_rates |= BIT(j); 2138 if (basic_rates && is_basic) 2139 *basic_rates |= BIT(j); 2140 } 2141 } 2142 } 2143 return supp_rates; 2144 } 2145 2146 void ieee80211_stop_device(struct ieee80211_local *local) 2147 { 2148 ieee80211_led_radio(local, false); 2149 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 2150 2151 cancel_work_sync(&local->reconfig_filter); 2152 2153 flush_workqueue(local->workqueue); 2154 drv_stop(local); 2155 } 2156 2157 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 2158 bool aborted) 2159 { 2160 /* It's possible that we don't handle the scan completion in 2161 * time during suspend, so if it's still marked as completed 2162 * here, queue the work and flush it to clean things up. 2163 * Instead of calling the worker function directly here, we 2164 * really queue it to avoid potential races with other flows 2165 * scheduling the same work. 2166 */ 2167 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 2168 /* If coming from reconfiguration failure, abort the scan so 2169 * we don't attempt to continue a partial HW scan - which is 2170 * possible otherwise if (e.g.) the 2.4 GHz portion was the 2171 * completed scan, and a 5 GHz portion is still pending. 2172 */ 2173 if (aborted) 2174 set_bit(SCAN_ABORTED, &local->scanning); 2175 ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0); 2176 flush_delayed_work(&local->scan_work); 2177 } 2178 } 2179 2180 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 2181 { 2182 struct ieee80211_sub_if_data *sdata; 2183 struct ieee80211_chanctx *ctx; 2184 2185 /* 2186 * We get here if during resume the device can't be restarted properly. 2187 * We might also get here if this happens during HW reset, which is a 2188 * slightly different situation and we need to drop all connections in 2189 * the latter case. 2190 * 2191 * Ask cfg80211 to turn off all interfaces, this will result in more 2192 * warnings but at least we'll then get into a clean stopped state. 2193 */ 2194 2195 local->resuming = false; 2196 local->suspended = false; 2197 local->in_reconfig = false; 2198 2199 ieee80211_flush_completed_scan(local, true); 2200 2201 /* scheduled scan clearly can't be running any more, but tell 2202 * cfg80211 and clear local state 2203 */ 2204 ieee80211_sched_scan_end(local); 2205 2206 list_for_each_entry(sdata, &local->interfaces, list) 2207 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 2208 2209 /* Mark channel contexts as not being in the driver any more to avoid 2210 * removing them from the driver during the shutdown process... 2211 */ 2212 mutex_lock(&local->chanctx_mtx); 2213 list_for_each_entry(ctx, &local->chanctx_list, list) 2214 ctx->driver_present = false; 2215 mutex_unlock(&local->chanctx_mtx); 2216 } 2217 2218 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 2219 struct ieee80211_sub_if_data *sdata) 2220 { 2221 struct ieee80211_chanctx_conf *conf; 2222 struct ieee80211_chanctx *ctx; 2223 2224 if (!local->use_chanctx) 2225 return; 2226 2227 mutex_lock(&local->chanctx_mtx); 2228 conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2229 lockdep_is_held(&local->chanctx_mtx)); 2230 if (conf) { 2231 ctx = container_of(conf, struct ieee80211_chanctx, conf); 2232 drv_assign_vif_chanctx(local, sdata, ctx); 2233 } 2234 mutex_unlock(&local->chanctx_mtx); 2235 } 2236 2237 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 2238 { 2239 struct ieee80211_local *local = sdata->local; 2240 struct sta_info *sta; 2241 2242 /* add STAs back */ 2243 mutex_lock(&local->sta_mtx); 2244 list_for_each_entry(sta, &local->sta_list, list) { 2245 enum ieee80211_sta_state state; 2246 2247 if (!sta->uploaded || sta->sdata != sdata) 2248 continue; 2249 2250 for (state = IEEE80211_STA_NOTEXIST; 2251 state < sta->sta_state; state++) 2252 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2253 state + 1)); 2254 } 2255 mutex_unlock(&local->sta_mtx); 2256 } 2257 2258 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 2259 { 2260 struct cfg80211_nan_func *func, **funcs; 2261 int res, id, i = 0; 2262 2263 res = drv_start_nan(sdata->local, sdata, 2264 &sdata->u.nan.conf); 2265 if (WARN_ON(res)) 2266 return res; 2267 2268 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 2269 sizeof(*funcs), 2270 GFP_KERNEL); 2271 if (!funcs) 2272 return -ENOMEM; 2273 2274 /* Add all the functions: 2275 * This is a little bit ugly. We need to call a potentially sleeping 2276 * callback for each NAN function, so we can't hold the spinlock. 2277 */ 2278 spin_lock_bh(&sdata->u.nan.func_lock); 2279 2280 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 2281 funcs[i++] = func; 2282 2283 spin_unlock_bh(&sdata->u.nan.func_lock); 2284 2285 for (i = 0; funcs[i]; i++) { 2286 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 2287 if (WARN_ON(res)) 2288 ieee80211_nan_func_terminated(&sdata->vif, 2289 funcs[i]->instance_id, 2290 NL80211_NAN_FUNC_TERM_REASON_ERROR, 2291 GFP_KERNEL); 2292 } 2293 2294 kfree(funcs); 2295 2296 return 0; 2297 } 2298 2299 int ieee80211_reconfig(struct ieee80211_local *local) 2300 { 2301 struct ieee80211_hw *hw = &local->hw; 2302 struct ieee80211_sub_if_data *sdata; 2303 struct ieee80211_chanctx *ctx; 2304 struct sta_info *sta; 2305 int res, i; 2306 bool reconfig_due_to_wowlan = false; 2307 struct ieee80211_sub_if_data *sched_scan_sdata; 2308 struct cfg80211_sched_scan_request *sched_scan_req; 2309 bool sched_scan_stopped = false; 2310 bool suspended = local->suspended; 2311 2312 /* nothing to do if HW shouldn't run */ 2313 if (!local->open_count) 2314 goto wake_up; 2315 2316 #ifdef CONFIG_PM 2317 if (suspended) 2318 local->resuming = true; 2319 2320 if (local->wowlan) { 2321 /* 2322 * In the wowlan case, both mac80211 and the device 2323 * are functional when the resume op is called, so 2324 * clear local->suspended so the device could operate 2325 * normally (e.g. pass rx frames). 2326 */ 2327 local->suspended = false; 2328 res = drv_resume(local); 2329 local->wowlan = false; 2330 if (res < 0) { 2331 local->resuming = false; 2332 return res; 2333 } 2334 if (res == 0) 2335 goto wake_up; 2336 WARN_ON(res > 1); 2337 /* 2338 * res is 1, which means the driver requested 2339 * to go through a regular reset on wakeup. 2340 * restore local->suspended in this case. 2341 */ 2342 reconfig_due_to_wowlan = true; 2343 local->suspended = true; 2344 } 2345 #endif 2346 2347 /* 2348 * In case of hw_restart during suspend (without wowlan), 2349 * cancel restart work, as we are reconfiguring the device 2350 * anyway. 2351 * Note that restart_work is scheduled on a frozen workqueue, 2352 * so we can't deadlock in this case. 2353 */ 2354 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 2355 cancel_work_sync(&local->restart_work); 2356 2357 local->started = false; 2358 2359 /* 2360 * Upon resume hardware can sometimes be goofy due to 2361 * various platform / driver / bus issues, so restarting 2362 * the device may at times not work immediately. Propagate 2363 * the error. 2364 */ 2365 res = drv_start(local); 2366 if (res) { 2367 if (suspended) 2368 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 2369 else 2370 WARN(1, "Hardware became unavailable during restart.\n"); 2371 ieee80211_handle_reconfig_failure(local); 2372 return res; 2373 } 2374 2375 /* setup fragmentation threshold */ 2376 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 2377 2378 /* setup RTS threshold */ 2379 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 2380 2381 /* reset coverage class */ 2382 drv_set_coverage_class(local, hw->wiphy->coverage_class); 2383 2384 ieee80211_led_radio(local, true); 2385 ieee80211_mod_tpt_led_trig(local, 2386 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 2387 2388 /* add interfaces */ 2389 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 2390 if (sdata) { 2391 /* in HW restart it exists already */ 2392 WARN_ON(local->resuming); 2393 res = drv_add_interface(local, sdata); 2394 if (WARN_ON(res)) { 2395 RCU_INIT_POINTER(local->monitor_sdata, NULL); 2396 synchronize_net(); 2397 kfree(sdata); 2398 } 2399 } 2400 2401 list_for_each_entry(sdata, &local->interfaces, list) { 2402 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2403 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2404 ieee80211_sdata_running(sdata)) { 2405 res = drv_add_interface(local, sdata); 2406 if (WARN_ON(res)) 2407 break; 2408 } 2409 } 2410 2411 /* If adding any of the interfaces failed above, roll back and 2412 * report failure. 2413 */ 2414 if (res) { 2415 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 2416 list) 2417 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2418 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2419 ieee80211_sdata_running(sdata)) 2420 drv_remove_interface(local, sdata); 2421 ieee80211_handle_reconfig_failure(local); 2422 return res; 2423 } 2424 2425 /* add channel contexts */ 2426 if (local->use_chanctx) { 2427 mutex_lock(&local->chanctx_mtx); 2428 list_for_each_entry(ctx, &local->chanctx_list, list) 2429 if (ctx->replace_state != 2430 IEEE80211_CHANCTX_REPLACES_OTHER) 2431 WARN_ON(drv_add_chanctx(local, ctx)); 2432 mutex_unlock(&local->chanctx_mtx); 2433 2434 sdata = wiphy_dereference(local->hw.wiphy, 2435 local->monitor_sdata); 2436 if (sdata && ieee80211_sdata_running(sdata)) 2437 ieee80211_assign_chanctx(local, sdata); 2438 } 2439 2440 /* reconfigure hardware */ 2441 ieee80211_hw_config(local, ~0); 2442 2443 ieee80211_configure_filter(local); 2444 2445 /* Finally also reconfigure all the BSS information */ 2446 list_for_each_entry(sdata, &local->interfaces, list) { 2447 u32 changed; 2448 2449 if (!ieee80211_sdata_running(sdata)) 2450 continue; 2451 2452 ieee80211_assign_chanctx(local, sdata); 2453 2454 switch (sdata->vif.type) { 2455 case NL80211_IFTYPE_AP_VLAN: 2456 case NL80211_IFTYPE_MONITOR: 2457 break; 2458 case NL80211_IFTYPE_ADHOC: 2459 if (sdata->vif.bss_conf.ibss_joined) 2460 WARN_ON(drv_join_ibss(local, sdata)); 2461 fallthrough; 2462 default: 2463 ieee80211_reconfig_stations(sdata); 2464 fallthrough; 2465 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 2466 for (i = 0; i < IEEE80211_NUM_ACS; i++) 2467 drv_conf_tx(local, sdata, i, 2468 &sdata->tx_conf[i]); 2469 break; 2470 } 2471 2472 /* common change flags for all interface types */ 2473 changed = BSS_CHANGED_ERP_CTS_PROT | 2474 BSS_CHANGED_ERP_PREAMBLE | 2475 BSS_CHANGED_ERP_SLOT | 2476 BSS_CHANGED_HT | 2477 BSS_CHANGED_BASIC_RATES | 2478 BSS_CHANGED_BEACON_INT | 2479 BSS_CHANGED_BSSID | 2480 BSS_CHANGED_CQM | 2481 BSS_CHANGED_QOS | 2482 BSS_CHANGED_IDLE | 2483 BSS_CHANGED_TXPOWER | 2484 BSS_CHANGED_MCAST_RATE; 2485 2486 if (sdata->vif.mu_mimo_owner) 2487 changed |= BSS_CHANGED_MU_GROUPS; 2488 2489 switch (sdata->vif.type) { 2490 case NL80211_IFTYPE_STATION: 2491 changed |= BSS_CHANGED_ASSOC | 2492 BSS_CHANGED_ARP_FILTER | 2493 BSS_CHANGED_PS; 2494 2495 /* Re-send beacon info report to the driver */ 2496 if (sdata->u.mgd.have_beacon) 2497 changed |= BSS_CHANGED_BEACON_INFO; 2498 2499 if (sdata->vif.bss_conf.max_idle_period || 2500 sdata->vif.bss_conf.protected_keep_alive) 2501 changed |= BSS_CHANGED_KEEP_ALIVE; 2502 2503 sdata_lock(sdata); 2504 ieee80211_bss_info_change_notify(sdata, changed); 2505 sdata_unlock(sdata); 2506 break; 2507 case NL80211_IFTYPE_OCB: 2508 changed |= BSS_CHANGED_OCB; 2509 ieee80211_bss_info_change_notify(sdata, changed); 2510 break; 2511 case NL80211_IFTYPE_ADHOC: 2512 changed |= BSS_CHANGED_IBSS; 2513 fallthrough; 2514 case NL80211_IFTYPE_AP: 2515 changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS; 2516 2517 if (sdata->vif.bss_conf.ftm_responder == 1 && 2518 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2519 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2520 changed |= BSS_CHANGED_FTM_RESPONDER; 2521 2522 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2523 changed |= BSS_CHANGED_AP_PROBE_RESP; 2524 2525 if (rcu_access_pointer(sdata->u.ap.beacon)) 2526 drv_start_ap(local, sdata); 2527 } 2528 fallthrough; 2529 case NL80211_IFTYPE_MESH_POINT: 2530 if (sdata->vif.bss_conf.enable_beacon) { 2531 changed |= BSS_CHANGED_BEACON | 2532 BSS_CHANGED_BEACON_ENABLED; 2533 ieee80211_bss_info_change_notify(sdata, changed); 2534 } 2535 break; 2536 case NL80211_IFTYPE_NAN: 2537 res = ieee80211_reconfig_nan(sdata); 2538 if (res < 0) { 2539 ieee80211_handle_reconfig_failure(local); 2540 return res; 2541 } 2542 break; 2543 case NL80211_IFTYPE_AP_VLAN: 2544 case NL80211_IFTYPE_MONITOR: 2545 case NL80211_IFTYPE_P2P_DEVICE: 2546 /* nothing to do */ 2547 break; 2548 case NL80211_IFTYPE_UNSPECIFIED: 2549 case NUM_NL80211_IFTYPES: 2550 case NL80211_IFTYPE_P2P_CLIENT: 2551 case NL80211_IFTYPE_P2P_GO: 2552 case NL80211_IFTYPE_WDS: 2553 WARN_ON(1); 2554 break; 2555 } 2556 } 2557 2558 ieee80211_recalc_ps(local); 2559 2560 /* 2561 * The sta might be in psm against the ap (e.g. because 2562 * this was the state before a hw restart), so we 2563 * explicitly send a null packet in order to make sure 2564 * it'll sync against the ap (and get out of psm). 2565 */ 2566 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2567 list_for_each_entry(sdata, &local->interfaces, list) { 2568 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2569 continue; 2570 if (!sdata->u.mgd.associated) 2571 continue; 2572 2573 ieee80211_send_nullfunc(local, sdata, false); 2574 } 2575 } 2576 2577 /* APs are now beaconing, add back stations */ 2578 mutex_lock(&local->sta_mtx); 2579 list_for_each_entry(sta, &local->sta_list, list) { 2580 enum ieee80211_sta_state state; 2581 2582 if (!sta->uploaded) 2583 continue; 2584 2585 if (sta->sdata->vif.type != NL80211_IFTYPE_AP && 2586 sta->sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 2587 continue; 2588 2589 for (state = IEEE80211_STA_NOTEXIST; 2590 state < sta->sta_state; state++) 2591 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2592 state + 1)); 2593 } 2594 mutex_unlock(&local->sta_mtx); 2595 2596 /* add back keys */ 2597 list_for_each_entry(sdata, &local->interfaces, list) 2598 ieee80211_reenable_keys(sdata); 2599 2600 /* Reconfigure sched scan if it was interrupted by FW restart */ 2601 mutex_lock(&local->mtx); 2602 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2603 lockdep_is_held(&local->mtx)); 2604 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2605 lockdep_is_held(&local->mtx)); 2606 if (sched_scan_sdata && sched_scan_req) 2607 /* 2608 * Sched scan stopped, but we don't want to report it. Instead, 2609 * we're trying to reschedule. However, if more than one scan 2610 * plan was set, we cannot reschedule since we don't know which 2611 * scan plan was currently running (and some scan plans may have 2612 * already finished). 2613 */ 2614 if (sched_scan_req->n_scan_plans > 1 || 2615 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2616 sched_scan_req)) { 2617 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2618 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2619 sched_scan_stopped = true; 2620 } 2621 mutex_unlock(&local->mtx); 2622 2623 if (sched_scan_stopped) 2624 cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0); 2625 2626 wake_up: 2627 2628 if (local->monitors == local->open_count && local->monitors > 0) 2629 ieee80211_add_virtual_monitor(local); 2630 2631 /* 2632 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2633 * sessions can be established after a resume. 2634 * 2635 * Also tear down aggregation sessions since reconfiguring 2636 * them in a hardware restart scenario is not easily done 2637 * right now, and the hardware will have lost information 2638 * about the sessions, but we and the AP still think they 2639 * are active. This is really a workaround though. 2640 */ 2641 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2642 mutex_lock(&local->sta_mtx); 2643 2644 list_for_each_entry(sta, &local->sta_list, list) { 2645 if (!local->resuming) 2646 ieee80211_sta_tear_down_BA_sessions( 2647 sta, AGG_STOP_LOCAL_REQUEST); 2648 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2649 } 2650 2651 mutex_unlock(&local->sta_mtx); 2652 } 2653 2654 /* 2655 * If this is for hw restart things are still running. 2656 * We may want to change that later, however. 2657 */ 2658 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2659 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2660 2661 if (local->in_reconfig) { 2662 local->in_reconfig = false; 2663 barrier(); 2664 2665 /* Restart deferred ROCs */ 2666 mutex_lock(&local->mtx); 2667 ieee80211_start_next_roc(local); 2668 mutex_unlock(&local->mtx); 2669 2670 /* Requeue all works */ 2671 list_for_each_entry(sdata, &local->interfaces, list) 2672 ieee80211_queue_work(&local->hw, &sdata->work); 2673 } 2674 2675 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2676 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2677 false); 2678 2679 if (!suspended) 2680 return 0; 2681 2682 #ifdef CONFIG_PM 2683 /* first set suspended false, then resuming */ 2684 local->suspended = false; 2685 mb(); 2686 local->resuming = false; 2687 2688 ieee80211_flush_completed_scan(local, false); 2689 2690 if (local->open_count && !reconfig_due_to_wowlan) 2691 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2692 2693 list_for_each_entry(sdata, &local->interfaces, list) { 2694 if (!ieee80211_sdata_running(sdata)) 2695 continue; 2696 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2697 ieee80211_sta_restart(sdata); 2698 } 2699 2700 mod_timer(&local->sta_cleanup, jiffies + 1); 2701 #else 2702 WARN_ON(1); 2703 #endif 2704 2705 return 0; 2706 } 2707 2708 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 2709 { 2710 struct ieee80211_sub_if_data *sdata; 2711 struct ieee80211_local *local; 2712 struct ieee80211_key *key; 2713 2714 if (WARN_ON(!vif)) 2715 return; 2716 2717 sdata = vif_to_sdata(vif); 2718 local = sdata->local; 2719 2720 if (WARN_ON(!local->resuming)) 2721 return; 2722 2723 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2724 return; 2725 2726 sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME; 2727 2728 mutex_lock(&local->key_mtx); 2729 list_for_each_entry(key, &sdata->key_list, list) 2730 key->flags |= KEY_FLAG_TAINTED; 2731 mutex_unlock(&local->key_mtx); 2732 } 2733 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 2734 2735 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata) 2736 { 2737 struct ieee80211_local *local = sdata->local; 2738 struct ieee80211_chanctx_conf *chanctx_conf; 2739 struct ieee80211_chanctx *chanctx; 2740 2741 mutex_lock(&local->chanctx_mtx); 2742 2743 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2744 lockdep_is_held(&local->chanctx_mtx)); 2745 2746 /* 2747 * This function can be called from a work, thus it may be possible 2748 * that the chanctx_conf is removed (due to a disconnection, for 2749 * example). 2750 * So nothing should be done in such case. 2751 */ 2752 if (!chanctx_conf) 2753 goto unlock; 2754 2755 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2756 ieee80211_recalc_smps_chanctx(local, chanctx); 2757 unlock: 2758 mutex_unlock(&local->chanctx_mtx); 2759 } 2760 2761 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata) 2762 { 2763 struct ieee80211_local *local = sdata->local; 2764 struct ieee80211_chanctx_conf *chanctx_conf; 2765 struct ieee80211_chanctx *chanctx; 2766 2767 mutex_lock(&local->chanctx_mtx); 2768 2769 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2770 lockdep_is_held(&local->chanctx_mtx)); 2771 2772 if (WARN_ON_ONCE(!chanctx_conf)) 2773 goto unlock; 2774 2775 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2776 ieee80211_recalc_chanctx_min_def(local, chanctx); 2777 unlock: 2778 mutex_unlock(&local->chanctx_mtx); 2779 } 2780 2781 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 2782 { 2783 size_t pos = offset; 2784 2785 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 2786 pos += 2 + ies[pos + 1]; 2787 2788 return pos; 2789 } 2790 2791 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata, 2792 int rssi_min_thold, 2793 int rssi_max_thold) 2794 { 2795 trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold); 2796 2797 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 2798 return; 2799 2800 /* 2801 * Scale up threshold values before storing it, as the RSSI averaging 2802 * algorithm uses a scaled up value as well. Change this scaling 2803 * factor if the RSSI averaging algorithm changes. 2804 */ 2805 sdata->u.mgd.rssi_min_thold = rssi_min_thold*16; 2806 sdata->u.mgd.rssi_max_thold = rssi_max_thold*16; 2807 } 2808 2809 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif, 2810 int rssi_min_thold, 2811 int rssi_max_thold) 2812 { 2813 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2814 2815 WARN_ON(rssi_min_thold == rssi_max_thold || 2816 rssi_min_thold > rssi_max_thold); 2817 2818 _ieee80211_enable_rssi_reports(sdata, rssi_min_thold, 2819 rssi_max_thold); 2820 } 2821 EXPORT_SYMBOL(ieee80211_enable_rssi_reports); 2822 2823 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif) 2824 { 2825 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2826 2827 _ieee80211_enable_rssi_reports(sdata, 0, 0); 2828 } 2829 EXPORT_SYMBOL(ieee80211_disable_rssi_reports); 2830 2831 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2832 u16 cap) 2833 { 2834 __le16 tmp; 2835 2836 *pos++ = WLAN_EID_HT_CAPABILITY; 2837 *pos++ = sizeof(struct ieee80211_ht_cap); 2838 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 2839 2840 /* capability flags */ 2841 tmp = cpu_to_le16(cap); 2842 memcpy(pos, &tmp, sizeof(u16)); 2843 pos += sizeof(u16); 2844 2845 /* AMPDU parameters */ 2846 *pos++ = ht_cap->ampdu_factor | 2847 (ht_cap->ampdu_density << 2848 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 2849 2850 /* MCS set */ 2851 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 2852 pos += sizeof(ht_cap->mcs); 2853 2854 /* extended capabilities */ 2855 pos += sizeof(__le16); 2856 2857 /* BF capabilities */ 2858 pos += sizeof(__le32); 2859 2860 /* antenna selection */ 2861 pos += sizeof(u8); 2862 2863 return pos; 2864 } 2865 2866 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2867 u32 cap) 2868 { 2869 __le32 tmp; 2870 2871 *pos++ = WLAN_EID_VHT_CAPABILITY; 2872 *pos++ = sizeof(struct ieee80211_vht_cap); 2873 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 2874 2875 /* capability flags */ 2876 tmp = cpu_to_le32(cap); 2877 memcpy(pos, &tmp, sizeof(u32)); 2878 pos += sizeof(u32); 2879 2880 /* VHT MCS set */ 2881 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 2882 pos += sizeof(vht_cap->vht_mcs); 2883 2884 return pos; 2885 } 2886 2887 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 2888 { 2889 const struct ieee80211_sta_he_cap *he_cap; 2890 struct ieee80211_supported_band *sband; 2891 u8 n; 2892 2893 sband = ieee80211_get_sband(sdata); 2894 if (!sband) 2895 return 0; 2896 2897 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 2898 if (!he_cap) 2899 return 0; 2900 2901 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2902 return 2 + 1 + 2903 sizeof(he_cap->he_cap_elem) + n + 2904 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2905 he_cap->he_cap_elem.phy_cap_info); 2906 } 2907 2908 u8 *ieee80211_ie_build_he_cap(u8 *pos, 2909 const struct ieee80211_sta_he_cap *he_cap, 2910 u8 *end) 2911 { 2912 u8 n; 2913 u8 ie_len; 2914 u8 *orig_pos = pos; 2915 2916 /* Make sure we have place for the IE */ 2917 /* 2918 * TODO: the 1 added is because this temporarily is under the EXTENSION 2919 * IE. Get rid of it when it moves. 2920 */ 2921 if (!he_cap) 2922 return orig_pos; 2923 2924 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2925 ie_len = 2 + 1 + 2926 sizeof(he_cap->he_cap_elem) + n + 2927 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2928 he_cap->he_cap_elem.phy_cap_info); 2929 2930 if ((end - pos) < ie_len) 2931 return orig_pos; 2932 2933 *pos++ = WLAN_EID_EXTENSION; 2934 pos++; /* We'll set the size later below */ 2935 *pos++ = WLAN_EID_EXT_HE_CAPABILITY; 2936 2937 /* Fixed data */ 2938 memcpy(pos, &he_cap->he_cap_elem, sizeof(he_cap->he_cap_elem)); 2939 pos += sizeof(he_cap->he_cap_elem); 2940 2941 memcpy(pos, &he_cap->he_mcs_nss_supp, n); 2942 pos += n; 2943 2944 /* Check if PPE Threshold should be present */ 2945 if ((he_cap->he_cap_elem.phy_cap_info[6] & 2946 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 2947 goto end; 2948 2949 /* 2950 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 2951 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 2952 */ 2953 n = hweight8(he_cap->ppe_thres[0] & 2954 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 2955 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 2956 IEEE80211_PPE_THRES_NSS_POS)); 2957 2958 /* 2959 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 2960 * total size. 2961 */ 2962 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 2963 n = DIV_ROUND_UP(n, 8); 2964 2965 /* Copy PPE Thresholds */ 2966 memcpy(pos, &he_cap->ppe_thres, n); 2967 pos += n; 2968 2969 end: 2970 orig_pos[1] = (pos - orig_pos) - 2; 2971 return pos; 2972 } 2973 2974 void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata, 2975 struct sk_buff *skb) 2976 { 2977 struct ieee80211_supported_band *sband; 2978 const struct ieee80211_sband_iftype_data *iftd; 2979 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 2980 u8 *pos; 2981 u16 cap; 2982 2983 if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy, 2984 BIT(NL80211_BAND_6GHZ), 2985 IEEE80211_CHAN_NO_HE)) 2986 return; 2987 2988 sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 2989 2990 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 2991 if (!iftd) 2992 return; 2993 2994 /* Check for device HE 6 GHz capability before adding element */ 2995 if (!iftd->he_6ghz_capa.capa) 2996 return; 2997 2998 cap = le16_to_cpu(iftd->he_6ghz_capa.capa); 2999 cap &= ~IEEE80211_HE_6GHZ_CAP_SM_PS; 3000 3001 switch (sdata->smps_mode) { 3002 case IEEE80211_SMPS_AUTOMATIC: 3003 case IEEE80211_SMPS_NUM_MODES: 3004 WARN_ON(1); 3005 fallthrough; 3006 case IEEE80211_SMPS_OFF: 3007 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 3008 IEEE80211_HE_6GHZ_CAP_SM_PS); 3009 break; 3010 case IEEE80211_SMPS_STATIC: 3011 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 3012 IEEE80211_HE_6GHZ_CAP_SM_PS); 3013 break; 3014 case IEEE80211_SMPS_DYNAMIC: 3015 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 3016 IEEE80211_HE_6GHZ_CAP_SM_PS); 3017 break; 3018 } 3019 3020 pos = skb_put(skb, 2 + 1 + sizeof(cap)); 3021 ieee80211_write_he_6ghz_cap(pos, cpu_to_le16(cap), 3022 pos + 2 + 1 + sizeof(cap)); 3023 } 3024 3025 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 3026 const struct cfg80211_chan_def *chandef, 3027 u16 prot_mode, bool rifs_mode) 3028 { 3029 struct ieee80211_ht_operation *ht_oper; 3030 /* Build HT Information */ 3031 *pos++ = WLAN_EID_HT_OPERATION; 3032 *pos++ = sizeof(struct ieee80211_ht_operation); 3033 ht_oper = (struct ieee80211_ht_operation *)pos; 3034 ht_oper->primary_chan = ieee80211_frequency_to_channel( 3035 chandef->chan->center_freq); 3036 switch (chandef->width) { 3037 case NL80211_CHAN_WIDTH_160: 3038 case NL80211_CHAN_WIDTH_80P80: 3039 case NL80211_CHAN_WIDTH_80: 3040 case NL80211_CHAN_WIDTH_40: 3041 if (chandef->center_freq1 > chandef->chan->center_freq) 3042 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3043 else 3044 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3045 break; 3046 default: 3047 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 3048 break; 3049 } 3050 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 3051 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 3052 chandef->width != NL80211_CHAN_WIDTH_20) 3053 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 3054 3055 if (rifs_mode) 3056 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 3057 3058 ht_oper->operation_mode = cpu_to_le16(prot_mode); 3059 ht_oper->stbc_param = 0x0000; 3060 3061 /* It seems that Basic MCS set and Supported MCS set 3062 are identical for the first 10 bytes */ 3063 memset(&ht_oper->basic_set, 0, 16); 3064 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 3065 3066 return pos + sizeof(struct ieee80211_ht_operation); 3067 } 3068 3069 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 3070 const struct cfg80211_chan_def *chandef) 3071 { 3072 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 3073 *pos++ = 3; /* IE length */ 3074 /* New channel width */ 3075 switch (chandef->width) { 3076 case NL80211_CHAN_WIDTH_80: 3077 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 3078 break; 3079 case NL80211_CHAN_WIDTH_160: 3080 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 3081 break; 3082 case NL80211_CHAN_WIDTH_80P80: 3083 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 3084 break; 3085 default: 3086 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 3087 } 3088 3089 /* new center frequency segment 0 */ 3090 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 3091 /* new center frequency segment 1 */ 3092 if (chandef->center_freq2) 3093 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 3094 else 3095 *pos++ = 0; 3096 } 3097 3098 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 3099 const struct cfg80211_chan_def *chandef) 3100 { 3101 struct ieee80211_vht_operation *vht_oper; 3102 3103 *pos++ = WLAN_EID_VHT_OPERATION; 3104 *pos++ = sizeof(struct ieee80211_vht_operation); 3105 vht_oper = (struct ieee80211_vht_operation *)pos; 3106 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 3107 chandef->center_freq1); 3108 if (chandef->center_freq2) 3109 vht_oper->center_freq_seg1_idx = 3110 ieee80211_frequency_to_channel(chandef->center_freq2); 3111 else 3112 vht_oper->center_freq_seg1_idx = 0x00; 3113 3114 switch (chandef->width) { 3115 case NL80211_CHAN_WIDTH_160: 3116 /* 3117 * Convert 160 MHz channel width to new style as interop 3118 * workaround. 3119 */ 3120 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3121 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 3122 if (chandef->chan->center_freq < chandef->center_freq1) 3123 vht_oper->center_freq_seg0_idx -= 8; 3124 else 3125 vht_oper->center_freq_seg0_idx += 8; 3126 break; 3127 case NL80211_CHAN_WIDTH_80P80: 3128 /* 3129 * Convert 80+80 MHz channel width to new style as interop 3130 * workaround. 3131 */ 3132 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3133 break; 3134 case NL80211_CHAN_WIDTH_80: 3135 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3136 break; 3137 default: 3138 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 3139 break; 3140 } 3141 3142 /* don't require special VHT peer rates */ 3143 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 3144 3145 return pos + sizeof(struct ieee80211_vht_operation); 3146 } 3147 3148 u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef) 3149 { 3150 struct ieee80211_he_operation *he_oper; 3151 struct ieee80211_he_6ghz_oper *he_6ghz_op; 3152 u32 he_oper_params; 3153 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 3154 3155 if (chandef->chan->band == NL80211_BAND_6GHZ) 3156 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 3157 3158 *pos++ = WLAN_EID_EXTENSION; 3159 *pos++ = ie_len; 3160 *pos++ = WLAN_EID_EXT_HE_OPERATION; 3161 3162 he_oper_params = 0; 3163 he_oper_params |= u32_encode_bits(1023, /* disabled */ 3164 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 3165 he_oper_params |= u32_encode_bits(1, 3166 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 3167 he_oper_params |= u32_encode_bits(1, 3168 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 3169 if (chandef->chan->band == NL80211_BAND_6GHZ) 3170 he_oper_params |= u32_encode_bits(1, 3171 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 3172 3173 he_oper = (struct ieee80211_he_operation *)pos; 3174 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 3175 3176 /* don't require special HE peer rates */ 3177 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 3178 pos += sizeof(struct ieee80211_he_operation); 3179 3180 if (chandef->chan->band != NL80211_BAND_6GHZ) 3181 goto out; 3182 3183 /* TODO add VHT operational */ 3184 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 3185 he_6ghz_op->minrate = 6; /* 6 Mbps */ 3186 he_6ghz_op->primary = 3187 ieee80211_frequency_to_channel(chandef->chan->center_freq); 3188 he_6ghz_op->ccfs0 = 3189 ieee80211_frequency_to_channel(chandef->center_freq1); 3190 if (chandef->center_freq2) 3191 he_6ghz_op->ccfs1 = 3192 ieee80211_frequency_to_channel(chandef->center_freq2); 3193 else 3194 he_6ghz_op->ccfs1 = 0; 3195 3196 switch (chandef->width) { 3197 case NL80211_CHAN_WIDTH_160: 3198 /* Convert 160 MHz channel width to new style as interop 3199 * workaround. 3200 */ 3201 he_6ghz_op->control = 3202 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3203 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 3204 if (chandef->chan->center_freq < chandef->center_freq1) 3205 he_6ghz_op->ccfs0 -= 8; 3206 else 3207 he_6ghz_op->ccfs0 += 8; 3208 fallthrough; 3209 case NL80211_CHAN_WIDTH_80P80: 3210 he_6ghz_op->control = 3211 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3212 break; 3213 case NL80211_CHAN_WIDTH_80: 3214 he_6ghz_op->control = 3215 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 3216 break; 3217 case NL80211_CHAN_WIDTH_40: 3218 he_6ghz_op->control = 3219 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 3220 break; 3221 default: 3222 he_6ghz_op->control = 3223 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 3224 break; 3225 } 3226 3227 pos += sizeof(struct ieee80211_he_6ghz_oper); 3228 3229 out: 3230 return pos; 3231 } 3232 3233 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 3234 struct cfg80211_chan_def *chandef) 3235 { 3236 enum nl80211_channel_type channel_type; 3237 3238 if (!ht_oper) 3239 return false; 3240 3241 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 3242 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 3243 channel_type = NL80211_CHAN_HT20; 3244 break; 3245 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 3246 channel_type = NL80211_CHAN_HT40PLUS; 3247 break; 3248 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 3249 channel_type = NL80211_CHAN_HT40MINUS; 3250 break; 3251 default: 3252 channel_type = NL80211_CHAN_NO_HT; 3253 return false; 3254 } 3255 3256 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 3257 return true; 3258 } 3259 3260 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 3261 const struct ieee80211_vht_operation *oper, 3262 const struct ieee80211_ht_operation *htop, 3263 struct cfg80211_chan_def *chandef) 3264 { 3265 struct cfg80211_chan_def new = *chandef; 3266 int cf0, cf1; 3267 int ccfs0, ccfs1, ccfs2; 3268 int ccf0, ccf1; 3269 u32 vht_cap; 3270 bool support_80_80 = false; 3271 bool support_160 = false; 3272 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 3273 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 3274 u8 supp_chwidth = u32_get_bits(vht_cap_info, 3275 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 3276 3277 if (!oper || !htop) 3278 return false; 3279 3280 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 3281 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 3282 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 3283 support_80_80 = ((vht_cap & 3284 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 3285 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 3286 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 3287 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 3288 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 3289 ccfs0 = oper->center_freq_seg0_idx; 3290 ccfs1 = oper->center_freq_seg1_idx; 3291 ccfs2 = (le16_to_cpu(htop->operation_mode) & 3292 IEEE80211_HT_OP_MODE_CCFS2_MASK) 3293 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 3294 3295 ccf0 = ccfs0; 3296 3297 /* if not supported, parse as though we didn't understand it */ 3298 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 3299 ext_nss_bw_supp = 0; 3300 3301 /* 3302 * Cf. IEEE 802.11 Table 9-250 3303 * 3304 * We really just consider that because it's inefficient to connect 3305 * at a higher bandwidth than we'll actually be able to use. 3306 */ 3307 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 3308 default: 3309 case 0x00: 3310 ccf1 = 0; 3311 support_160 = false; 3312 support_80_80 = false; 3313 break; 3314 case 0x01: 3315 support_80_80 = false; 3316 fallthrough; 3317 case 0x02: 3318 case 0x03: 3319 ccf1 = ccfs2; 3320 break; 3321 case 0x10: 3322 ccf1 = ccfs1; 3323 break; 3324 case 0x11: 3325 case 0x12: 3326 if (!ccfs1) 3327 ccf1 = ccfs2; 3328 else 3329 ccf1 = ccfs1; 3330 break; 3331 case 0x13: 3332 case 0x20: 3333 case 0x23: 3334 ccf1 = ccfs1; 3335 break; 3336 } 3337 3338 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3339 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3340 3341 switch (oper->chan_width) { 3342 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3343 /* just use HT information directly */ 3344 break; 3345 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3346 new.width = NL80211_CHAN_WIDTH_80; 3347 new.center_freq1 = cf0; 3348 /* If needed, adjust based on the newer interop workaround. */ 3349 if (ccf1) { 3350 unsigned int diff; 3351 3352 diff = abs(ccf1 - ccf0); 3353 if ((diff == 8) && support_160) { 3354 new.width = NL80211_CHAN_WIDTH_160; 3355 new.center_freq1 = cf1; 3356 } else if ((diff > 8) && support_80_80) { 3357 new.width = NL80211_CHAN_WIDTH_80P80; 3358 new.center_freq2 = cf1; 3359 } 3360 } 3361 break; 3362 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3363 /* deprecated encoding */ 3364 new.width = NL80211_CHAN_WIDTH_160; 3365 new.center_freq1 = cf0; 3366 break; 3367 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3368 /* deprecated encoding */ 3369 new.width = NL80211_CHAN_WIDTH_80P80; 3370 new.center_freq1 = cf0; 3371 new.center_freq2 = cf1; 3372 break; 3373 default: 3374 return false; 3375 } 3376 3377 if (!cfg80211_chandef_valid(&new)) 3378 return false; 3379 3380 *chandef = new; 3381 return true; 3382 } 3383 3384 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata, 3385 const struct ieee80211_he_operation *he_oper, 3386 struct cfg80211_chan_def *chandef) 3387 { 3388 struct ieee80211_local *local = sdata->local; 3389 struct ieee80211_supported_band *sband; 3390 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3391 const struct ieee80211_sta_he_cap *he_cap; 3392 struct cfg80211_chan_def he_chandef = *chandef; 3393 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3394 struct ieee80211_bss_conf *bss_conf = &sdata->vif.bss_conf; 3395 bool support_80_80, support_160; 3396 u8 he_phy_cap; 3397 u32 freq; 3398 3399 if (chandef->chan->band != NL80211_BAND_6GHZ) 3400 return true; 3401 3402 sband = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3403 3404 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 3405 if (!he_cap) { 3406 sdata_info(sdata, "Missing iftype sband data/HE cap"); 3407 return false; 3408 } 3409 3410 he_phy_cap = he_cap->he_cap_elem.phy_cap_info[0]; 3411 support_160 = 3412 he_phy_cap & 3413 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 3414 support_80_80 = 3415 he_phy_cap & 3416 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 3417 3418 if (!he_oper) { 3419 sdata_info(sdata, 3420 "HE is not advertised on (on %d MHz), expect issues\n", 3421 chandef->chan->center_freq); 3422 return false; 3423 } 3424 3425 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3426 3427 if (!he_6ghz_oper) { 3428 sdata_info(sdata, 3429 "HE 6GHz operation missing (on %d MHz), expect issues\n", 3430 chandef->chan->center_freq); 3431 return false; 3432 } 3433 3434 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3435 NL80211_BAND_6GHZ); 3436 he_chandef.chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq); 3437 3438 switch (u8_get_bits(he_6ghz_oper->control, 3439 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) { 3440 case IEEE80211_6GHZ_CTRL_REG_LPI_AP: 3441 bss_conf->power_type = IEEE80211_REG_LPI_AP; 3442 break; 3443 case IEEE80211_6GHZ_CTRL_REG_SP_AP: 3444 bss_conf->power_type = IEEE80211_REG_SP_AP; 3445 break; 3446 default: 3447 bss_conf->power_type = IEEE80211_REG_UNSET_AP; 3448 break; 3449 } 3450 3451 switch (u8_get_bits(he_6ghz_oper->control, 3452 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3453 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3454 he_chandef.width = NL80211_CHAN_WIDTH_20; 3455 break; 3456 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3457 he_chandef.width = NL80211_CHAN_WIDTH_40; 3458 break; 3459 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3460 he_chandef.width = NL80211_CHAN_WIDTH_80; 3461 break; 3462 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3463 he_chandef.width = NL80211_CHAN_WIDTH_80; 3464 if (!he_6ghz_oper->ccfs1) 3465 break; 3466 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) { 3467 if (support_160) 3468 he_chandef.width = NL80211_CHAN_WIDTH_160; 3469 } else { 3470 if (support_80_80) 3471 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3472 } 3473 break; 3474 } 3475 3476 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3477 he_chandef.center_freq1 = 3478 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3479 NL80211_BAND_6GHZ); 3480 } else { 3481 he_chandef.center_freq1 = 3482 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3483 NL80211_BAND_6GHZ); 3484 if (support_80_80 || support_160) 3485 he_chandef.center_freq2 = 3486 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3487 NL80211_BAND_6GHZ); 3488 } 3489 3490 if (!cfg80211_chandef_valid(&he_chandef)) { 3491 sdata_info(sdata, 3492 "HE 6GHz operation resulted in invalid chandef: %d MHz/%d/%d MHz/%d MHz\n", 3493 he_chandef.chan ? he_chandef.chan->center_freq : 0, 3494 he_chandef.width, 3495 he_chandef.center_freq1, 3496 he_chandef.center_freq2); 3497 return false; 3498 } 3499 3500 *chandef = he_chandef; 3501 3502 return true; 3503 } 3504 3505 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, 3506 struct cfg80211_chan_def *chandef) 3507 { 3508 u32 oper_freq; 3509 3510 if (!oper) 3511 return false; 3512 3513 switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { 3514 case IEEE80211_S1G_CHANWIDTH_1MHZ: 3515 chandef->width = NL80211_CHAN_WIDTH_1; 3516 break; 3517 case IEEE80211_S1G_CHANWIDTH_2MHZ: 3518 chandef->width = NL80211_CHAN_WIDTH_2; 3519 break; 3520 case IEEE80211_S1G_CHANWIDTH_4MHZ: 3521 chandef->width = NL80211_CHAN_WIDTH_4; 3522 break; 3523 case IEEE80211_S1G_CHANWIDTH_8MHZ: 3524 chandef->width = NL80211_CHAN_WIDTH_8; 3525 break; 3526 case IEEE80211_S1G_CHANWIDTH_16MHZ: 3527 chandef->width = NL80211_CHAN_WIDTH_16; 3528 break; 3529 default: 3530 return false; 3531 } 3532 3533 oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch, 3534 NL80211_BAND_S1GHZ); 3535 chandef->center_freq1 = KHZ_TO_MHZ(oper_freq); 3536 chandef->freq1_offset = oper_freq % 1000; 3537 3538 return true; 3539 } 3540 3541 int ieee80211_parse_bitrates(struct cfg80211_chan_def *chandef, 3542 const struct ieee80211_supported_band *sband, 3543 const u8 *srates, int srates_len, u32 *rates) 3544 { 3545 u32 rate_flags = ieee80211_chandef_rate_flags(chandef); 3546 int shift = ieee80211_chandef_get_shift(chandef); 3547 struct ieee80211_rate *br; 3548 int brate, rate, i, j, count = 0; 3549 3550 *rates = 0; 3551 3552 for (i = 0; i < srates_len; i++) { 3553 rate = srates[i] & 0x7f; 3554 3555 for (j = 0; j < sband->n_bitrates; j++) { 3556 br = &sband->bitrates[j]; 3557 if ((rate_flags & br->flags) != rate_flags) 3558 continue; 3559 3560 brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5); 3561 if (brate == rate) { 3562 *rates |= BIT(j); 3563 count++; 3564 break; 3565 } 3566 } 3567 } 3568 return count; 3569 } 3570 3571 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, 3572 struct sk_buff *skb, bool need_basic, 3573 enum nl80211_band band) 3574 { 3575 struct ieee80211_local *local = sdata->local; 3576 struct ieee80211_supported_band *sband; 3577 int rate, shift; 3578 u8 i, rates, *pos; 3579 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3580 u32 rate_flags; 3581 3582 shift = ieee80211_vif_get_shift(&sdata->vif); 3583 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3584 sband = local->hw.wiphy->bands[band]; 3585 rates = 0; 3586 for (i = 0; i < sband->n_bitrates; i++) { 3587 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3588 continue; 3589 rates++; 3590 } 3591 if (rates > 8) 3592 rates = 8; 3593 3594 if (skb_tailroom(skb) < rates + 2) 3595 return -ENOMEM; 3596 3597 pos = skb_put(skb, rates + 2); 3598 *pos++ = WLAN_EID_SUPP_RATES; 3599 *pos++ = rates; 3600 for (i = 0; i < rates; i++) { 3601 u8 basic = 0; 3602 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3603 continue; 3604 3605 if (need_basic && basic_rates & BIT(i)) 3606 basic = 0x80; 3607 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3608 5 * (1 << shift)); 3609 *pos++ = basic | (u8) rate; 3610 } 3611 3612 return 0; 3613 } 3614 3615 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, 3616 struct sk_buff *skb, bool need_basic, 3617 enum nl80211_band band) 3618 { 3619 struct ieee80211_local *local = sdata->local; 3620 struct ieee80211_supported_band *sband; 3621 int rate, shift; 3622 u8 i, exrates, *pos; 3623 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3624 u32 rate_flags; 3625 3626 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3627 shift = ieee80211_vif_get_shift(&sdata->vif); 3628 3629 sband = local->hw.wiphy->bands[band]; 3630 exrates = 0; 3631 for (i = 0; i < sband->n_bitrates; i++) { 3632 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3633 continue; 3634 exrates++; 3635 } 3636 3637 if (exrates > 8) 3638 exrates -= 8; 3639 else 3640 exrates = 0; 3641 3642 if (skb_tailroom(skb) < exrates + 2) 3643 return -ENOMEM; 3644 3645 if (exrates) { 3646 pos = skb_put(skb, exrates + 2); 3647 *pos++ = WLAN_EID_EXT_SUPP_RATES; 3648 *pos++ = exrates; 3649 for (i = 8; i < sband->n_bitrates; i++) { 3650 u8 basic = 0; 3651 if ((rate_flags & sband->bitrates[i].flags) 3652 != rate_flags) 3653 continue; 3654 if (need_basic && basic_rates & BIT(i)) 3655 basic = 0x80; 3656 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3657 5 * (1 << shift)); 3658 *pos++ = basic | (u8) rate; 3659 } 3660 } 3661 return 0; 3662 } 3663 3664 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 3665 { 3666 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 3667 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 3668 3669 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) { 3670 /* non-managed type inferfaces */ 3671 return 0; 3672 } 3673 return -ewma_beacon_signal_read(&ifmgd->ave_beacon_signal); 3674 } 3675 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 3676 3677 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 3678 { 3679 if (!mcs) 3680 return 1; 3681 3682 /* TODO: consider rx_highest */ 3683 3684 if (mcs->rx_mask[3]) 3685 return 4; 3686 if (mcs->rx_mask[2]) 3687 return 3; 3688 if (mcs->rx_mask[1]) 3689 return 2; 3690 return 1; 3691 } 3692 3693 /** 3694 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 3695 * @local: mac80211 hw info struct 3696 * @status: RX status 3697 * @mpdu_len: total MPDU length (including FCS) 3698 * @mpdu_offset: offset into MPDU to calculate timestamp at 3699 * 3700 * This function calculates the RX timestamp at the given MPDU offset, taking 3701 * into account what the RX timestamp was. An offset of 0 will just normalize 3702 * the timestamp to TSF at beginning of MPDU reception. 3703 */ 3704 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 3705 struct ieee80211_rx_status *status, 3706 unsigned int mpdu_len, 3707 unsigned int mpdu_offset) 3708 { 3709 u64 ts = status->mactime; 3710 struct rate_info ri; 3711 u16 rate; 3712 u8 n_ltf; 3713 3714 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 3715 return 0; 3716 3717 memset(&ri, 0, sizeof(ri)); 3718 3719 ri.bw = status->bw; 3720 3721 /* Fill cfg80211 rate info */ 3722 switch (status->encoding) { 3723 case RX_ENC_HE: 3724 ri.flags |= RATE_INFO_FLAGS_HE_MCS; 3725 ri.mcs = status->rate_idx; 3726 ri.nss = status->nss; 3727 ri.he_ru_alloc = status->he_ru; 3728 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3729 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3730 3731 /* 3732 * See P802.11ax_D6.0, section 27.3.4 for 3733 * VHT PPDU format. 3734 */ 3735 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3736 mpdu_offset += 2; 3737 ts += 36; 3738 3739 /* 3740 * TODO: 3741 * For HE MU PPDU, add the HE-SIG-B. 3742 * For HE ER PPDU, add 8us for the HE-SIG-A. 3743 * For HE TB PPDU, add 4us for the HE-STF. 3744 * Add the HE-LTF durations - variable. 3745 */ 3746 } 3747 3748 break; 3749 case RX_ENC_HT: 3750 ri.mcs = status->rate_idx; 3751 ri.flags |= RATE_INFO_FLAGS_MCS; 3752 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3753 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3754 3755 /* 3756 * See P802.11REVmd_D3.0, section 19.3.2 for 3757 * HT PPDU format. 3758 */ 3759 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3760 mpdu_offset += 2; 3761 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 3762 ts += 24; 3763 else 3764 ts += 32; 3765 3766 /* 3767 * Add Data HT-LTFs per streams 3768 * TODO: add Extension HT-LTFs, 4us per LTF 3769 */ 3770 n_ltf = ((ri.mcs >> 3) & 3) + 1; 3771 n_ltf = n_ltf == 3 ? 4 : n_ltf; 3772 ts += n_ltf * 4; 3773 } 3774 3775 break; 3776 case RX_ENC_VHT: 3777 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 3778 ri.mcs = status->rate_idx; 3779 ri.nss = status->nss; 3780 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3781 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3782 3783 /* 3784 * See P802.11REVmd_D3.0, section 21.3.2 for 3785 * VHT PPDU format. 3786 */ 3787 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3788 mpdu_offset += 2; 3789 ts += 36; 3790 3791 /* 3792 * Add VHT-LTFs per streams 3793 */ 3794 n_ltf = (ri.nss != 1) && (ri.nss % 2) ? 3795 ri.nss + 1 : ri.nss; 3796 ts += 4 * n_ltf; 3797 } 3798 3799 break; 3800 default: 3801 WARN_ON(1); 3802 fallthrough; 3803 case RX_ENC_LEGACY: { 3804 struct ieee80211_supported_band *sband; 3805 int shift = 0; 3806 int bitrate; 3807 3808 switch (status->bw) { 3809 case RATE_INFO_BW_10: 3810 shift = 1; 3811 break; 3812 case RATE_INFO_BW_5: 3813 shift = 2; 3814 break; 3815 } 3816 3817 sband = local->hw.wiphy->bands[status->band]; 3818 bitrate = sband->bitrates[status->rate_idx].bitrate; 3819 ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift)); 3820 3821 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3822 if (status->band == NL80211_BAND_5GHZ) { 3823 ts += 20 << shift; 3824 mpdu_offset += 2; 3825 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 3826 ts += 96; 3827 } else { 3828 ts += 192; 3829 } 3830 } 3831 break; 3832 } 3833 } 3834 3835 rate = cfg80211_calculate_bitrate(&ri); 3836 if (WARN_ONCE(!rate, 3837 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 3838 (unsigned long long)status->flag, status->rate_idx, 3839 status->nss)) 3840 return 0; 3841 3842 /* rewind from end of MPDU */ 3843 if (status->flag & RX_FLAG_MACTIME_END) 3844 ts -= mpdu_len * 8 * 10 / rate; 3845 3846 ts += mpdu_offset * 8 * 10 / rate; 3847 3848 return ts; 3849 } 3850 3851 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) 3852 { 3853 struct ieee80211_sub_if_data *sdata; 3854 struct cfg80211_chan_def chandef; 3855 3856 /* for interface list, to avoid linking iflist_mtx and chanctx_mtx */ 3857 lockdep_assert_wiphy(local->hw.wiphy); 3858 3859 mutex_lock(&local->mtx); 3860 list_for_each_entry(sdata, &local->interfaces, list) { 3861 /* it might be waiting for the local->mtx, but then 3862 * by the time it gets it, sdata->wdev.cac_started 3863 * will no longer be true 3864 */ 3865 cancel_delayed_work(&sdata->dfs_cac_timer_work); 3866 3867 if (sdata->wdev.cac_started) { 3868 chandef = sdata->vif.bss_conf.chandef; 3869 ieee80211_vif_release_channel(sdata); 3870 cfg80211_cac_event(sdata->dev, 3871 &chandef, 3872 NL80211_RADAR_CAC_ABORTED, 3873 GFP_KERNEL); 3874 } 3875 } 3876 mutex_unlock(&local->mtx); 3877 } 3878 3879 void ieee80211_dfs_radar_detected_work(struct work_struct *work) 3880 { 3881 struct ieee80211_local *local = 3882 container_of(work, struct ieee80211_local, radar_detected_work); 3883 struct cfg80211_chan_def chandef = local->hw.conf.chandef; 3884 struct ieee80211_chanctx *ctx; 3885 int num_chanctx = 0; 3886 3887 mutex_lock(&local->chanctx_mtx); 3888 list_for_each_entry(ctx, &local->chanctx_list, list) { 3889 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 3890 continue; 3891 3892 num_chanctx++; 3893 chandef = ctx->conf.def; 3894 } 3895 mutex_unlock(&local->chanctx_mtx); 3896 3897 wiphy_lock(local->hw.wiphy); 3898 ieee80211_dfs_cac_cancel(local); 3899 wiphy_unlock(local->hw.wiphy); 3900 3901 if (num_chanctx > 1) 3902 /* XXX: multi-channel is not supported yet */ 3903 WARN_ON(1); 3904 else 3905 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 3906 } 3907 3908 void ieee80211_radar_detected(struct ieee80211_hw *hw) 3909 { 3910 struct ieee80211_local *local = hw_to_local(hw); 3911 3912 trace_api_radar_detected(local); 3913 3914 schedule_work(&local->radar_detected_work); 3915 } 3916 EXPORT_SYMBOL(ieee80211_radar_detected); 3917 3918 u32 ieee80211_chandef_downgrade(struct cfg80211_chan_def *c) 3919 { 3920 u32 ret; 3921 int tmp; 3922 3923 switch (c->width) { 3924 case NL80211_CHAN_WIDTH_20: 3925 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3926 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3927 break; 3928 case NL80211_CHAN_WIDTH_40: 3929 c->width = NL80211_CHAN_WIDTH_20; 3930 c->center_freq1 = c->chan->center_freq; 3931 ret = IEEE80211_STA_DISABLE_40MHZ | 3932 IEEE80211_STA_DISABLE_VHT; 3933 break; 3934 case NL80211_CHAN_WIDTH_80: 3935 tmp = (30 + c->chan->center_freq - c->center_freq1)/20; 3936 /* n_P40 */ 3937 tmp /= 2; 3938 /* freq_P40 */ 3939 c->center_freq1 = c->center_freq1 - 20 + 40 * tmp; 3940 c->width = NL80211_CHAN_WIDTH_40; 3941 ret = IEEE80211_STA_DISABLE_VHT; 3942 break; 3943 case NL80211_CHAN_WIDTH_80P80: 3944 c->center_freq2 = 0; 3945 c->width = NL80211_CHAN_WIDTH_80; 3946 ret = IEEE80211_STA_DISABLE_80P80MHZ | 3947 IEEE80211_STA_DISABLE_160MHZ; 3948 break; 3949 case NL80211_CHAN_WIDTH_160: 3950 /* n_P20 */ 3951 tmp = (70 + c->chan->center_freq - c->center_freq1)/20; 3952 /* n_P80 */ 3953 tmp /= 4; 3954 c->center_freq1 = c->center_freq1 - 40 + 80 * tmp; 3955 c->width = NL80211_CHAN_WIDTH_80; 3956 ret = IEEE80211_STA_DISABLE_80P80MHZ | 3957 IEEE80211_STA_DISABLE_160MHZ; 3958 break; 3959 default: 3960 case NL80211_CHAN_WIDTH_20_NOHT: 3961 WARN_ON_ONCE(1); 3962 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3963 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3964 break; 3965 case NL80211_CHAN_WIDTH_1: 3966 case NL80211_CHAN_WIDTH_2: 3967 case NL80211_CHAN_WIDTH_4: 3968 case NL80211_CHAN_WIDTH_8: 3969 case NL80211_CHAN_WIDTH_16: 3970 case NL80211_CHAN_WIDTH_5: 3971 case NL80211_CHAN_WIDTH_10: 3972 WARN_ON_ONCE(1); 3973 /* keep c->width */ 3974 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3975 break; 3976 } 3977 3978 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 3979 3980 return ret; 3981 } 3982 3983 /* 3984 * Returns true if smps_mode_new is strictly more restrictive than 3985 * smps_mode_old. 3986 */ 3987 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 3988 enum ieee80211_smps_mode smps_mode_new) 3989 { 3990 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 3991 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 3992 return false; 3993 3994 switch (smps_mode_old) { 3995 case IEEE80211_SMPS_STATIC: 3996 return false; 3997 case IEEE80211_SMPS_DYNAMIC: 3998 return smps_mode_new == IEEE80211_SMPS_STATIC; 3999 case IEEE80211_SMPS_OFF: 4000 return smps_mode_new != IEEE80211_SMPS_OFF; 4001 default: 4002 WARN_ON(1); 4003 } 4004 4005 return false; 4006 } 4007 4008 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 4009 struct cfg80211_csa_settings *csa_settings) 4010 { 4011 struct sk_buff *skb; 4012 struct ieee80211_mgmt *mgmt; 4013 struct ieee80211_local *local = sdata->local; 4014 int freq; 4015 int hdr_len = offsetofend(struct ieee80211_mgmt, 4016 u.action.u.chan_switch); 4017 u8 *pos; 4018 4019 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 4020 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 4021 return -EOPNOTSUPP; 4022 4023 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 4024 5 + /* channel switch announcement element */ 4025 3 + /* secondary channel offset element */ 4026 5 + /* wide bandwidth channel switch announcement */ 4027 8); /* mesh channel switch parameters element */ 4028 if (!skb) 4029 return -ENOMEM; 4030 4031 skb_reserve(skb, local->tx_headroom); 4032 mgmt = skb_put_zero(skb, hdr_len); 4033 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 4034 IEEE80211_STYPE_ACTION); 4035 4036 eth_broadcast_addr(mgmt->da); 4037 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 4038 if (ieee80211_vif_is_mesh(&sdata->vif)) { 4039 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 4040 } else { 4041 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 4042 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 4043 } 4044 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 4045 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 4046 pos = skb_put(skb, 5); 4047 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 4048 *pos++ = 3; /* IE length */ 4049 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 4050 freq = csa_settings->chandef.chan->center_freq; 4051 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 4052 *pos++ = csa_settings->count; /* count */ 4053 4054 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 4055 enum nl80211_channel_type ch_type; 4056 4057 skb_put(skb, 3); 4058 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 4059 *pos++ = 1; /* IE length */ 4060 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 4061 if (ch_type == NL80211_CHAN_HT40PLUS) 4062 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 4063 else 4064 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 4065 } 4066 4067 if (ieee80211_vif_is_mesh(&sdata->vif)) { 4068 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 4069 4070 skb_put(skb, 8); 4071 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 4072 *pos++ = 6; /* IE length */ 4073 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 4074 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 4075 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 4076 *pos++ |= csa_settings->block_tx ? 4077 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 4078 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 4079 pos += 2; 4080 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 4081 pos += 2; 4082 } 4083 4084 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 4085 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 4086 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 4087 skb_put(skb, 5); 4088 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 4089 } 4090 4091 ieee80211_tx_skb(sdata, skb); 4092 return 0; 4093 } 4094 4095 bool ieee80211_cs_valid(const struct ieee80211_cipher_scheme *cs) 4096 { 4097 return !(cs == NULL || cs->cipher == 0 || 4098 cs->hdr_len < cs->pn_len + cs->pn_off || 4099 cs->hdr_len <= cs->key_idx_off || 4100 cs->key_idx_shift > 7 || 4101 cs->key_idx_mask == 0); 4102 } 4103 4104 bool ieee80211_cs_list_valid(const struct ieee80211_cipher_scheme *cs, int n) 4105 { 4106 int i; 4107 4108 /* Ensure we have enough iftype bitmap space for all iftype values */ 4109 WARN_ON((NUM_NL80211_IFTYPES / 8 + 1) > sizeof(cs[0].iftype)); 4110 4111 for (i = 0; i < n; i++) 4112 if (!ieee80211_cs_valid(&cs[i])) 4113 return false; 4114 4115 return true; 4116 } 4117 4118 const struct ieee80211_cipher_scheme * 4119 ieee80211_cs_get(struct ieee80211_local *local, u32 cipher, 4120 enum nl80211_iftype iftype) 4121 { 4122 const struct ieee80211_cipher_scheme *l = local->hw.cipher_schemes; 4123 int n = local->hw.n_cipher_schemes; 4124 int i; 4125 const struct ieee80211_cipher_scheme *cs = NULL; 4126 4127 for (i = 0; i < n; i++) { 4128 if (l[i].cipher == cipher) { 4129 cs = &l[i]; 4130 break; 4131 } 4132 } 4133 4134 if (!cs || !(cs->iftype & BIT(iftype))) 4135 return NULL; 4136 4137 return cs; 4138 } 4139 4140 int ieee80211_cs_headroom(struct ieee80211_local *local, 4141 struct cfg80211_crypto_settings *crypto, 4142 enum nl80211_iftype iftype) 4143 { 4144 const struct ieee80211_cipher_scheme *cs; 4145 int headroom = IEEE80211_ENCRYPT_HEADROOM; 4146 int i; 4147 4148 for (i = 0; i < crypto->n_ciphers_pairwise; i++) { 4149 cs = ieee80211_cs_get(local, crypto->ciphers_pairwise[i], 4150 iftype); 4151 4152 if (cs && headroom < cs->hdr_len) 4153 headroom = cs->hdr_len; 4154 } 4155 4156 cs = ieee80211_cs_get(local, crypto->cipher_group, iftype); 4157 if (cs && headroom < cs->hdr_len) 4158 headroom = cs->hdr_len; 4159 4160 return headroom; 4161 } 4162 4163 static bool 4164 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 4165 { 4166 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 4167 int skip; 4168 4169 if (end > 0) 4170 return false; 4171 4172 /* One shot NOA */ 4173 if (data->count[i] == 1) 4174 return false; 4175 4176 if (data->desc[i].interval == 0) 4177 return false; 4178 4179 /* End time is in the past, check for repetitions */ 4180 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 4181 if (data->count[i] < 255) { 4182 if (data->count[i] <= skip) { 4183 data->count[i] = 0; 4184 return false; 4185 } 4186 4187 data->count[i] -= skip; 4188 } 4189 4190 data->desc[i].start += skip * data->desc[i].interval; 4191 4192 return true; 4193 } 4194 4195 static bool 4196 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 4197 s32 *offset) 4198 { 4199 bool ret = false; 4200 int i; 4201 4202 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4203 s32 cur; 4204 4205 if (!data->count[i]) 4206 continue; 4207 4208 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 4209 ret = true; 4210 4211 cur = data->desc[i].start - tsf; 4212 if (cur > *offset) 4213 continue; 4214 4215 cur = data->desc[i].start + data->desc[i].duration - tsf; 4216 if (cur > *offset) 4217 *offset = cur; 4218 } 4219 4220 return ret; 4221 } 4222 4223 static u32 4224 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 4225 { 4226 s32 offset = 0; 4227 int tries = 0; 4228 /* 4229 * arbitrary limit, used to avoid infinite loops when combined NoA 4230 * descriptors cover the full time period. 4231 */ 4232 int max_tries = 5; 4233 4234 ieee80211_extend_absent_time(data, tsf, &offset); 4235 do { 4236 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 4237 break; 4238 4239 tries++; 4240 } while (tries < max_tries); 4241 4242 return offset; 4243 } 4244 4245 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 4246 { 4247 u32 next_offset = BIT(31) - 1; 4248 int i; 4249 4250 data->absent = 0; 4251 data->has_next_tsf = false; 4252 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4253 s32 start; 4254 4255 if (!data->count[i]) 4256 continue; 4257 4258 ieee80211_extend_noa_desc(data, tsf, i); 4259 start = data->desc[i].start - tsf; 4260 if (start <= 0) 4261 data->absent |= BIT(i); 4262 4263 if (next_offset > start) 4264 next_offset = start; 4265 4266 data->has_next_tsf = true; 4267 } 4268 4269 if (data->absent) 4270 next_offset = ieee80211_get_noa_absent_time(data, tsf); 4271 4272 data->next_tsf = tsf + next_offset; 4273 } 4274 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 4275 4276 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 4277 struct ieee80211_noa_data *data, u32 tsf) 4278 { 4279 int ret = 0; 4280 int i; 4281 4282 memset(data, 0, sizeof(*data)); 4283 4284 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4285 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 4286 4287 if (!desc->count || !desc->duration) 4288 continue; 4289 4290 data->count[i] = desc->count; 4291 data->desc[i].start = le32_to_cpu(desc->start_time); 4292 data->desc[i].duration = le32_to_cpu(desc->duration); 4293 data->desc[i].interval = le32_to_cpu(desc->interval); 4294 4295 if (data->count[i] > 1 && 4296 data->desc[i].interval < data->desc[i].duration) 4297 continue; 4298 4299 ieee80211_extend_noa_desc(data, tsf, i); 4300 ret++; 4301 } 4302 4303 if (ret) 4304 ieee80211_update_p2p_noa(data, tsf); 4305 4306 return ret; 4307 } 4308 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 4309 4310 void ieee80211_recalc_dtim(struct ieee80211_local *local, 4311 struct ieee80211_sub_if_data *sdata) 4312 { 4313 u64 tsf = drv_get_tsf(local, sdata); 4314 u64 dtim_count = 0; 4315 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 4316 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 4317 struct ps_data *ps; 4318 u8 bcns_from_dtim; 4319 4320 if (tsf == -1ULL || !beacon_int || !dtim_period) 4321 return; 4322 4323 if (sdata->vif.type == NL80211_IFTYPE_AP || 4324 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 4325 if (!sdata->bss) 4326 return; 4327 4328 ps = &sdata->bss->ps; 4329 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 4330 ps = &sdata->u.mesh.ps; 4331 } else { 4332 return; 4333 } 4334 4335 /* 4336 * actually finds last dtim_count, mac80211 will update in 4337 * __beacon_add_tim(). 4338 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 4339 */ 4340 do_div(tsf, beacon_int); 4341 bcns_from_dtim = do_div(tsf, dtim_period); 4342 /* just had a DTIM */ 4343 if (!bcns_from_dtim) 4344 dtim_count = 0; 4345 else 4346 dtim_count = dtim_period - bcns_from_dtim; 4347 4348 ps->dtim_count = dtim_count; 4349 } 4350 4351 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 4352 struct ieee80211_chanctx *ctx) 4353 { 4354 struct ieee80211_sub_if_data *sdata; 4355 u8 radar_detect = 0; 4356 4357 lockdep_assert_held(&local->chanctx_mtx); 4358 4359 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 4360 return 0; 4361 4362 list_for_each_entry(sdata, &ctx->reserved_vifs, reserved_chanctx_list) 4363 if (sdata->reserved_radar_required) 4364 radar_detect |= BIT(sdata->reserved_chandef.width); 4365 4366 /* 4367 * An in-place reservation context should not have any assigned vifs 4368 * until it replaces the other context. 4369 */ 4370 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 4371 !list_empty(&ctx->assigned_vifs)); 4372 4373 list_for_each_entry(sdata, &ctx->assigned_vifs, assigned_chanctx_list) 4374 if (sdata->radar_required) 4375 radar_detect |= BIT(sdata->vif.bss_conf.chandef.width); 4376 4377 return radar_detect; 4378 } 4379 4380 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 4381 const struct cfg80211_chan_def *chandef, 4382 enum ieee80211_chanctx_mode chanmode, 4383 u8 radar_detect) 4384 { 4385 struct ieee80211_local *local = sdata->local; 4386 struct ieee80211_sub_if_data *sdata_iter; 4387 enum nl80211_iftype iftype = sdata->wdev.iftype; 4388 struct ieee80211_chanctx *ctx; 4389 int total = 1; 4390 struct iface_combination_params params = { 4391 .radar_detect = radar_detect, 4392 }; 4393 4394 lockdep_assert_held(&local->chanctx_mtx); 4395 4396 if (WARN_ON(hweight32(radar_detect) > 1)) 4397 return -EINVAL; 4398 4399 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4400 !chandef->chan)) 4401 return -EINVAL; 4402 4403 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 4404 return -EINVAL; 4405 4406 if (sdata->vif.type == NL80211_IFTYPE_AP || 4407 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 4408 /* 4409 * always passing this is harmless, since it'll be the 4410 * same value that cfg80211 finds if it finds the same 4411 * interface ... and that's always allowed 4412 */ 4413 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 4414 } 4415 4416 /* Always allow software iftypes */ 4417 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 4418 if (radar_detect) 4419 return -EINVAL; 4420 return 0; 4421 } 4422 4423 if (chandef) 4424 params.num_different_channels = 1; 4425 4426 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 4427 params.iftype_num[iftype] = 1; 4428 4429 list_for_each_entry(ctx, &local->chanctx_list, list) { 4430 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4431 continue; 4432 params.radar_detect |= 4433 ieee80211_chanctx_radar_detect(local, ctx); 4434 if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) { 4435 params.num_different_channels++; 4436 continue; 4437 } 4438 if (chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4439 cfg80211_chandef_compatible(chandef, 4440 &ctx->conf.def)) 4441 continue; 4442 params.num_different_channels++; 4443 } 4444 4445 list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) { 4446 struct wireless_dev *wdev_iter; 4447 4448 wdev_iter = &sdata_iter->wdev; 4449 4450 if (sdata_iter == sdata || 4451 !ieee80211_sdata_running(sdata_iter) || 4452 cfg80211_iftype_allowed(local->hw.wiphy, 4453 wdev_iter->iftype, 0, 1)) 4454 continue; 4455 4456 params.iftype_num[wdev_iter->iftype]++; 4457 total++; 4458 } 4459 4460 if (total == 1 && !params.radar_detect) 4461 return 0; 4462 4463 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4464 } 4465 4466 static void 4467 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4468 void *data) 4469 { 4470 u32 *max_num_different_channels = data; 4471 4472 *max_num_different_channels = max(*max_num_different_channels, 4473 c->num_different_channels); 4474 } 4475 4476 int ieee80211_max_num_channels(struct ieee80211_local *local) 4477 { 4478 struct ieee80211_sub_if_data *sdata; 4479 struct ieee80211_chanctx *ctx; 4480 u32 max_num_different_channels = 1; 4481 int err; 4482 struct iface_combination_params params = {0}; 4483 4484 lockdep_assert_held(&local->chanctx_mtx); 4485 4486 list_for_each_entry(ctx, &local->chanctx_list, list) { 4487 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4488 continue; 4489 4490 params.num_different_channels++; 4491 4492 params.radar_detect |= 4493 ieee80211_chanctx_radar_detect(local, ctx); 4494 } 4495 4496 list_for_each_entry_rcu(sdata, &local->interfaces, list) 4497 params.iftype_num[sdata->wdev.iftype]++; 4498 4499 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4500 ieee80211_iter_max_chans, 4501 &max_num_different_channels); 4502 if (err < 0) 4503 return err; 4504 4505 return max_num_different_channels; 4506 } 4507 4508 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, 4509 struct ieee80211_sta_s1g_cap *caps, 4510 struct sk_buff *skb) 4511 { 4512 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 4513 struct ieee80211_s1g_cap s1g_capab; 4514 u8 *pos; 4515 int i; 4516 4517 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 4518 return; 4519 4520 if (!caps->s1g) 4521 return; 4522 4523 memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); 4524 memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); 4525 4526 /* override the capability info */ 4527 for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { 4528 u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; 4529 4530 s1g_capab.capab_info[i] &= ~mask; 4531 s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; 4532 } 4533 4534 /* then MCS and NSS set */ 4535 for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { 4536 u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; 4537 4538 s1g_capab.supp_mcs_nss[i] &= ~mask; 4539 s1g_capab.supp_mcs_nss[i] |= 4540 ifmgd->s1g_capa.supp_mcs_nss[i] & mask; 4541 } 4542 4543 pos = skb_put(skb, 2 + sizeof(s1g_capab)); 4544 *pos++ = WLAN_EID_S1G_CAPABILITIES; 4545 *pos++ = sizeof(s1g_capab); 4546 4547 memcpy(pos, &s1g_capab, sizeof(s1g_capab)); 4548 } 4549 4550 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, 4551 struct sk_buff *skb) 4552 { 4553 u8 *pos = skb_put(skb, 3); 4554 4555 *pos++ = WLAN_EID_AID_REQUEST; 4556 *pos++ = 1; 4557 *pos++ = 0; 4558 } 4559 4560 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 4561 { 4562 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 4563 *buf++ = 7; /* len */ 4564 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 4565 *buf++ = 0x50; 4566 *buf++ = 0xf2; 4567 *buf++ = 2; /* WME */ 4568 *buf++ = 0; /* WME info */ 4569 *buf++ = 1; /* WME ver */ 4570 *buf++ = qosinfo; /* U-APSD no in use */ 4571 4572 return buf; 4573 } 4574 4575 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 4576 unsigned long *frame_cnt, 4577 unsigned long *byte_cnt) 4578 { 4579 struct txq_info *txqi = to_txq_info(txq); 4580 u32 frag_cnt = 0, frag_bytes = 0; 4581 struct sk_buff *skb; 4582 4583 skb_queue_walk(&txqi->frags, skb) { 4584 frag_cnt++; 4585 frag_bytes += skb->len; 4586 } 4587 4588 if (frame_cnt) 4589 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 4590 4591 if (byte_cnt) 4592 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 4593 } 4594 EXPORT_SYMBOL(ieee80211_txq_get_depth); 4595 4596 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 4597 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 4598 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 4599 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 4600 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 4601 }; 4602 4603 u16 ieee80211_encode_usf(int listen_interval) 4604 { 4605 static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; 4606 u16 ui, usf = 0; 4607 4608 /* find greatest USF */ 4609 while (usf < IEEE80211_MAX_USF) { 4610 if (listen_interval % listen_int_usf[usf + 1]) 4611 break; 4612 usf += 1; 4613 } 4614 ui = listen_interval / listen_int_usf[usf]; 4615 4616 /* error if there is a remainder. Should've been checked by user */ 4617 WARN_ON_ONCE(ui > IEEE80211_MAX_UI); 4618 listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | 4619 FIELD_PREP(LISTEN_INT_UI, ui); 4620 4621 return (u16) listen_interval; 4622 } 4623