xref: /openbmc/linux/net/mac80211/util.c (revision 36de991e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2005-2006, Devicescape Software, Inc.
5  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2013-2014  Intel Mobile Communications GmbH
8  * Copyright (C) 2015-2017	Intel Deutschland GmbH
9  * Copyright (C) 2018-2021 Intel Corporation
10  *
11  * utilities for mac80211
12  */
13 
14 #include <net/mac80211.h>
15 #include <linux/netdevice.h>
16 #include <linux/export.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/skbuff.h>
20 #include <linux/etherdevice.h>
21 #include <linux/if_arp.h>
22 #include <linux/bitmap.h>
23 #include <linux/crc32.h>
24 #include <net/net_namespace.h>
25 #include <net/cfg80211.h>
26 #include <net/rtnetlink.h>
27 
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
30 #include "rate.h"
31 #include "mesh.h"
32 #include "wme.h"
33 #include "led.h"
34 #include "wep.h"
35 
36 /* privid for wiphys to determine whether they belong to us or not */
37 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid;
38 
39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy)
40 {
41 	struct ieee80211_local *local;
42 
43 	local = wiphy_priv(wiphy);
44 	return &local->hw;
45 }
46 EXPORT_SYMBOL(wiphy_to_ieee80211_hw);
47 
48 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
49 			enum nl80211_iftype type)
50 {
51 	__le16 fc = hdr->frame_control;
52 
53 	if (ieee80211_is_data(fc)) {
54 		if (len < 24) /* drop incorrect hdr len (data) */
55 			return NULL;
56 
57 		if (ieee80211_has_a4(fc))
58 			return NULL;
59 		if (ieee80211_has_tods(fc))
60 			return hdr->addr1;
61 		if (ieee80211_has_fromds(fc))
62 			return hdr->addr2;
63 
64 		return hdr->addr3;
65 	}
66 
67 	if (ieee80211_is_s1g_beacon(fc)) {
68 		struct ieee80211_ext *ext = (void *) hdr;
69 
70 		return ext->u.s1g_beacon.sa;
71 	}
72 
73 	if (ieee80211_is_mgmt(fc)) {
74 		if (len < 24) /* drop incorrect hdr len (mgmt) */
75 			return NULL;
76 		return hdr->addr3;
77 	}
78 
79 	if (ieee80211_is_ctl(fc)) {
80 		if (ieee80211_is_pspoll(fc))
81 			return hdr->addr1;
82 
83 		if (ieee80211_is_back_req(fc)) {
84 			switch (type) {
85 			case NL80211_IFTYPE_STATION:
86 				return hdr->addr2;
87 			case NL80211_IFTYPE_AP:
88 			case NL80211_IFTYPE_AP_VLAN:
89 				return hdr->addr1;
90 			default:
91 				break; /* fall through to the return */
92 			}
93 		}
94 	}
95 
96 	return NULL;
97 }
98 EXPORT_SYMBOL(ieee80211_get_bssid);
99 
100 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx)
101 {
102 	struct sk_buff *skb;
103 	struct ieee80211_hdr *hdr;
104 
105 	skb_queue_walk(&tx->skbs, skb) {
106 		hdr = (struct ieee80211_hdr *) skb->data;
107 		hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
108 	}
109 }
110 
111 int ieee80211_frame_duration(enum nl80211_band band, size_t len,
112 			     int rate, int erp, int short_preamble,
113 			     int shift)
114 {
115 	int dur;
116 
117 	/* calculate duration (in microseconds, rounded up to next higher
118 	 * integer if it includes a fractional microsecond) to send frame of
119 	 * len bytes (does not include FCS) at the given rate. Duration will
120 	 * also include SIFS.
121 	 *
122 	 * rate is in 100 kbps, so divident is multiplied by 10 in the
123 	 * DIV_ROUND_UP() operations.
124 	 *
125 	 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and
126 	 * is assumed to be 0 otherwise.
127 	 */
128 
129 	if (band == NL80211_BAND_5GHZ || erp) {
130 		/*
131 		 * OFDM:
132 		 *
133 		 * N_DBPS = DATARATE x 4
134 		 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
135 		 *	(16 = SIGNAL time, 6 = tail bits)
136 		 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
137 		 *
138 		 * T_SYM = 4 usec
139 		 * 802.11a - 18.5.2: aSIFSTime = 16 usec
140 		 * 802.11g - 19.8.4: aSIFSTime = 10 usec +
141 		 *	signal ext = 6 usec
142 		 */
143 		dur = 16; /* SIFS + signal ext */
144 		dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */
145 		dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */
146 
147 		/* IEEE 802.11-2012 18.3.2.4: all values above are:
148 		 *  * times 4 for 5 MHz
149 		 *  * times 2 for 10 MHz
150 		 */
151 		dur *= 1 << shift;
152 
153 		/* rates should already consider the channel bandwidth,
154 		 * don't apply divisor again.
155 		 */
156 		dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
157 					4 * rate); /* T_SYM x N_SYM */
158 	} else {
159 		/*
160 		 * 802.11b or 802.11g with 802.11b compatibility:
161 		 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
162 		 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
163 		 *
164 		 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4
165 		 * aSIFSTime = 10 usec
166 		 * aPreambleLength = 144 usec or 72 usec with short preamble
167 		 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble
168 		 */
169 		dur = 10; /* aSIFSTime = 10 usec */
170 		dur += short_preamble ? (72 + 24) : (144 + 48);
171 
172 		dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
173 	}
174 
175 	return dur;
176 }
177 
178 /* Exported duration function for driver use */
179 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
180 					struct ieee80211_vif *vif,
181 					enum nl80211_band band,
182 					size_t frame_len,
183 					struct ieee80211_rate *rate)
184 {
185 	struct ieee80211_sub_if_data *sdata;
186 	u16 dur;
187 	int erp, shift = 0;
188 	bool short_preamble = false;
189 
190 	erp = 0;
191 	if (vif) {
192 		sdata = vif_to_sdata(vif);
193 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
194 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
195 			erp = rate->flags & IEEE80211_RATE_ERP_G;
196 		shift = ieee80211_vif_get_shift(vif);
197 	}
198 
199 	dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp,
200 				       short_preamble, shift);
201 
202 	return cpu_to_le16(dur);
203 }
204 EXPORT_SYMBOL(ieee80211_generic_frame_duration);
205 
206 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
207 			      struct ieee80211_vif *vif, size_t frame_len,
208 			      const struct ieee80211_tx_info *frame_txctl)
209 {
210 	struct ieee80211_local *local = hw_to_local(hw);
211 	struct ieee80211_rate *rate;
212 	struct ieee80211_sub_if_data *sdata;
213 	bool short_preamble;
214 	int erp, shift = 0, bitrate;
215 	u16 dur;
216 	struct ieee80211_supported_band *sband;
217 
218 	sband = local->hw.wiphy->bands[frame_txctl->band];
219 
220 	short_preamble = false;
221 
222 	rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
223 
224 	erp = 0;
225 	if (vif) {
226 		sdata = vif_to_sdata(vif);
227 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
228 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
229 			erp = rate->flags & IEEE80211_RATE_ERP_G;
230 		shift = ieee80211_vif_get_shift(vif);
231 	}
232 
233 	bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift);
234 
235 	/* CTS duration */
236 	dur = ieee80211_frame_duration(sband->band, 10, bitrate,
237 				       erp, short_preamble, shift);
238 	/* Data frame duration */
239 	dur += ieee80211_frame_duration(sband->band, frame_len, bitrate,
240 					erp, short_preamble, shift);
241 	/* ACK duration */
242 	dur += ieee80211_frame_duration(sband->band, 10, bitrate,
243 					erp, short_preamble, shift);
244 
245 	return cpu_to_le16(dur);
246 }
247 EXPORT_SYMBOL(ieee80211_rts_duration);
248 
249 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
250 				    struct ieee80211_vif *vif,
251 				    size_t frame_len,
252 				    const struct ieee80211_tx_info *frame_txctl)
253 {
254 	struct ieee80211_local *local = hw_to_local(hw);
255 	struct ieee80211_rate *rate;
256 	struct ieee80211_sub_if_data *sdata;
257 	bool short_preamble;
258 	int erp, shift = 0, bitrate;
259 	u16 dur;
260 	struct ieee80211_supported_band *sband;
261 
262 	sband = local->hw.wiphy->bands[frame_txctl->band];
263 
264 	short_preamble = false;
265 
266 	rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
267 	erp = 0;
268 	if (vif) {
269 		sdata = vif_to_sdata(vif);
270 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
271 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
272 			erp = rate->flags & IEEE80211_RATE_ERP_G;
273 		shift = ieee80211_vif_get_shift(vif);
274 	}
275 
276 	bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift);
277 
278 	/* Data frame duration */
279 	dur = ieee80211_frame_duration(sband->band, frame_len, bitrate,
280 				       erp, short_preamble, shift);
281 	if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) {
282 		/* ACK duration */
283 		dur += ieee80211_frame_duration(sband->band, 10, bitrate,
284 						erp, short_preamble, shift);
285 	}
286 
287 	return cpu_to_le16(dur);
288 }
289 EXPORT_SYMBOL(ieee80211_ctstoself_duration);
290 
291 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac)
292 {
293 	struct ieee80211_local *local = sdata->local;
294 	struct ieee80211_vif *vif = &sdata->vif;
295 	struct fq *fq = &local->fq;
296 	struct ps_data *ps = NULL;
297 	struct txq_info *txqi;
298 	struct sta_info *sta;
299 	int i;
300 
301 	local_bh_disable();
302 	spin_lock(&fq->lock);
303 
304 	if (sdata->vif.type == NL80211_IFTYPE_AP)
305 		ps = &sdata->bss->ps;
306 
307 	sdata->vif.txqs_stopped[ac] = false;
308 
309 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
310 		if (sdata != sta->sdata)
311 			continue;
312 
313 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
314 			struct ieee80211_txq *txq = sta->sta.txq[i];
315 
316 			if (!txq)
317 				continue;
318 
319 			txqi = to_txq_info(txq);
320 
321 			if (ac != txq->ac)
322 				continue;
323 
324 			if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX,
325 						&txqi->flags))
326 				continue;
327 
328 			spin_unlock(&fq->lock);
329 			drv_wake_tx_queue(local, txqi);
330 			spin_lock(&fq->lock);
331 		}
332 	}
333 
334 	if (!vif->txq)
335 		goto out;
336 
337 	txqi = to_txq_info(vif->txq);
338 
339 	if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, &txqi->flags) ||
340 	    (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac)
341 		goto out;
342 
343 	spin_unlock(&fq->lock);
344 
345 	drv_wake_tx_queue(local, txqi);
346 	local_bh_enable();
347 	return;
348 out:
349 	spin_unlock(&fq->lock);
350 	local_bh_enable();
351 }
352 
353 static void
354 __releases(&local->queue_stop_reason_lock)
355 __acquires(&local->queue_stop_reason_lock)
356 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags)
357 {
358 	struct ieee80211_sub_if_data *sdata;
359 	int n_acs = IEEE80211_NUM_ACS;
360 	int i;
361 
362 	rcu_read_lock();
363 
364 	if (local->hw.queues < IEEE80211_NUM_ACS)
365 		n_acs = 1;
366 
367 	for (i = 0; i < local->hw.queues; i++) {
368 		if (local->queue_stop_reasons[i])
369 			continue;
370 
371 		spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags);
372 		list_for_each_entry_rcu(sdata, &local->interfaces, list) {
373 			int ac;
374 
375 			for (ac = 0; ac < n_acs; ac++) {
376 				int ac_queue = sdata->vif.hw_queue[ac];
377 
378 				if (ac_queue == i ||
379 				    sdata->vif.cab_queue == i)
380 					__ieee80211_wake_txqs(sdata, ac);
381 			}
382 		}
383 		spin_lock_irqsave(&local->queue_stop_reason_lock, *flags);
384 	}
385 
386 	rcu_read_unlock();
387 }
388 
389 void ieee80211_wake_txqs(struct tasklet_struct *t)
390 {
391 	struct ieee80211_local *local = from_tasklet(local, t,
392 						     wake_txqs_tasklet);
393 	unsigned long flags;
394 
395 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
396 	_ieee80211_wake_txqs(local, &flags);
397 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
398 }
399 
400 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue)
401 {
402 	struct ieee80211_sub_if_data *sdata;
403 	int n_acs = IEEE80211_NUM_ACS;
404 
405 	if (local->ops->wake_tx_queue)
406 		return;
407 
408 	if (local->hw.queues < IEEE80211_NUM_ACS)
409 		n_acs = 1;
410 
411 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
412 		int ac;
413 
414 		if (!sdata->dev)
415 			continue;
416 
417 		if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE &&
418 		    local->queue_stop_reasons[sdata->vif.cab_queue] != 0)
419 			continue;
420 
421 		for (ac = 0; ac < n_acs; ac++) {
422 			int ac_queue = sdata->vif.hw_queue[ac];
423 
424 			if (ac_queue == queue ||
425 			    (sdata->vif.cab_queue == queue &&
426 			     local->queue_stop_reasons[ac_queue] == 0 &&
427 			     skb_queue_empty(&local->pending[ac_queue])))
428 				netif_wake_subqueue(sdata->dev, ac);
429 		}
430 	}
431 }
432 
433 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue,
434 				   enum queue_stop_reason reason,
435 				   bool refcounted,
436 				   unsigned long *flags)
437 {
438 	struct ieee80211_local *local = hw_to_local(hw);
439 
440 	trace_wake_queue(local, queue, reason);
441 
442 	if (WARN_ON(queue >= hw->queues))
443 		return;
444 
445 	if (!test_bit(reason, &local->queue_stop_reasons[queue]))
446 		return;
447 
448 	if (!refcounted) {
449 		local->q_stop_reasons[queue][reason] = 0;
450 	} else {
451 		local->q_stop_reasons[queue][reason]--;
452 		if (WARN_ON(local->q_stop_reasons[queue][reason] < 0))
453 			local->q_stop_reasons[queue][reason] = 0;
454 	}
455 
456 	if (local->q_stop_reasons[queue][reason] == 0)
457 		__clear_bit(reason, &local->queue_stop_reasons[queue]);
458 
459 	if (local->queue_stop_reasons[queue] != 0)
460 		/* someone still has this queue stopped */
461 		return;
462 
463 	if (skb_queue_empty(&local->pending[queue])) {
464 		rcu_read_lock();
465 		ieee80211_propagate_queue_wake(local, queue);
466 		rcu_read_unlock();
467 	} else
468 		tasklet_schedule(&local->tx_pending_tasklet);
469 
470 	/*
471 	 * Calling _ieee80211_wake_txqs here can be a problem because it may
472 	 * release queue_stop_reason_lock which has been taken by
473 	 * __ieee80211_wake_queue's caller. It is certainly not very nice to
474 	 * release someone's lock, but it is fine because all the callers of
475 	 * __ieee80211_wake_queue call it right before releasing the lock.
476 	 */
477 	if (local->ops->wake_tx_queue) {
478 		if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER)
479 			tasklet_schedule(&local->wake_txqs_tasklet);
480 		else
481 			_ieee80211_wake_txqs(local, flags);
482 	}
483 }
484 
485 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue,
486 				    enum queue_stop_reason reason,
487 				    bool refcounted)
488 {
489 	struct ieee80211_local *local = hw_to_local(hw);
490 	unsigned long flags;
491 
492 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
493 	__ieee80211_wake_queue(hw, queue, reason, refcounted, &flags);
494 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
495 }
496 
497 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
498 {
499 	ieee80211_wake_queue_by_reason(hw, queue,
500 				       IEEE80211_QUEUE_STOP_REASON_DRIVER,
501 				       false);
502 }
503 EXPORT_SYMBOL(ieee80211_wake_queue);
504 
505 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue,
506 				   enum queue_stop_reason reason,
507 				   bool refcounted)
508 {
509 	struct ieee80211_local *local = hw_to_local(hw);
510 	struct ieee80211_sub_if_data *sdata;
511 	int n_acs = IEEE80211_NUM_ACS;
512 
513 	trace_stop_queue(local, queue, reason);
514 
515 	if (WARN_ON(queue >= hw->queues))
516 		return;
517 
518 	if (!refcounted)
519 		local->q_stop_reasons[queue][reason] = 1;
520 	else
521 		local->q_stop_reasons[queue][reason]++;
522 
523 	if (__test_and_set_bit(reason, &local->queue_stop_reasons[queue]))
524 		return;
525 
526 	if (local->hw.queues < IEEE80211_NUM_ACS)
527 		n_acs = 1;
528 
529 	rcu_read_lock();
530 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
531 		int ac;
532 
533 		if (!sdata->dev)
534 			continue;
535 
536 		for (ac = 0; ac < n_acs; ac++) {
537 			if (sdata->vif.hw_queue[ac] == queue ||
538 			    sdata->vif.cab_queue == queue) {
539 				if (!local->ops->wake_tx_queue) {
540 					netif_stop_subqueue(sdata->dev, ac);
541 					continue;
542 				}
543 				spin_lock(&local->fq.lock);
544 				sdata->vif.txqs_stopped[ac] = true;
545 				spin_unlock(&local->fq.lock);
546 			}
547 		}
548 	}
549 	rcu_read_unlock();
550 }
551 
552 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue,
553 				    enum queue_stop_reason reason,
554 				    bool refcounted)
555 {
556 	struct ieee80211_local *local = hw_to_local(hw);
557 	unsigned long flags;
558 
559 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
560 	__ieee80211_stop_queue(hw, queue, reason, refcounted);
561 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
562 }
563 
564 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
565 {
566 	ieee80211_stop_queue_by_reason(hw, queue,
567 				       IEEE80211_QUEUE_STOP_REASON_DRIVER,
568 				       false);
569 }
570 EXPORT_SYMBOL(ieee80211_stop_queue);
571 
572 void ieee80211_add_pending_skb(struct ieee80211_local *local,
573 			       struct sk_buff *skb)
574 {
575 	struct ieee80211_hw *hw = &local->hw;
576 	unsigned long flags;
577 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
578 	int queue = info->hw_queue;
579 
580 	if (WARN_ON(!info->control.vif)) {
581 		ieee80211_free_txskb(&local->hw, skb);
582 		return;
583 	}
584 
585 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
586 	__ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
587 			       false);
588 	__skb_queue_tail(&local->pending[queue], skb);
589 	__ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
590 			       false, &flags);
591 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
592 }
593 
594 void ieee80211_add_pending_skbs(struct ieee80211_local *local,
595 				struct sk_buff_head *skbs)
596 {
597 	struct ieee80211_hw *hw = &local->hw;
598 	struct sk_buff *skb;
599 	unsigned long flags;
600 	int queue, i;
601 
602 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
603 	while ((skb = skb_dequeue(skbs))) {
604 		struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
605 
606 		if (WARN_ON(!info->control.vif)) {
607 			ieee80211_free_txskb(&local->hw, skb);
608 			continue;
609 		}
610 
611 		queue = info->hw_queue;
612 
613 		__ieee80211_stop_queue(hw, queue,
614 				IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
615 				false);
616 
617 		__skb_queue_tail(&local->pending[queue], skb);
618 	}
619 
620 	for (i = 0; i < hw->queues; i++)
621 		__ieee80211_wake_queue(hw, i,
622 			IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
623 			false, &flags);
624 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
625 }
626 
627 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw,
628 				     unsigned long queues,
629 				     enum queue_stop_reason reason,
630 				     bool refcounted)
631 {
632 	struct ieee80211_local *local = hw_to_local(hw);
633 	unsigned long flags;
634 	int i;
635 
636 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
637 
638 	for_each_set_bit(i, &queues, hw->queues)
639 		__ieee80211_stop_queue(hw, i, reason, refcounted);
640 
641 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
642 }
643 
644 void ieee80211_stop_queues(struct ieee80211_hw *hw)
645 {
646 	ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
647 					IEEE80211_QUEUE_STOP_REASON_DRIVER,
648 					false);
649 }
650 EXPORT_SYMBOL(ieee80211_stop_queues);
651 
652 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue)
653 {
654 	struct ieee80211_local *local = hw_to_local(hw);
655 	unsigned long flags;
656 	int ret;
657 
658 	if (WARN_ON(queue >= hw->queues))
659 		return true;
660 
661 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
662 	ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER,
663 		       &local->queue_stop_reasons[queue]);
664 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
665 	return ret;
666 }
667 EXPORT_SYMBOL(ieee80211_queue_stopped);
668 
669 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw,
670 				     unsigned long queues,
671 				     enum queue_stop_reason reason,
672 				     bool refcounted)
673 {
674 	struct ieee80211_local *local = hw_to_local(hw);
675 	unsigned long flags;
676 	int i;
677 
678 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
679 
680 	for_each_set_bit(i, &queues, hw->queues)
681 		__ieee80211_wake_queue(hw, i, reason, refcounted, &flags);
682 
683 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
684 }
685 
686 void ieee80211_wake_queues(struct ieee80211_hw *hw)
687 {
688 	ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
689 					IEEE80211_QUEUE_STOP_REASON_DRIVER,
690 					false);
691 }
692 EXPORT_SYMBOL(ieee80211_wake_queues);
693 
694 static unsigned int
695 ieee80211_get_vif_queues(struct ieee80211_local *local,
696 			 struct ieee80211_sub_if_data *sdata)
697 {
698 	unsigned int queues;
699 
700 	if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) {
701 		int ac;
702 
703 		queues = 0;
704 
705 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
706 			queues |= BIT(sdata->vif.hw_queue[ac]);
707 		if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE)
708 			queues |= BIT(sdata->vif.cab_queue);
709 	} else {
710 		/* all queues */
711 		queues = BIT(local->hw.queues) - 1;
712 	}
713 
714 	return queues;
715 }
716 
717 void __ieee80211_flush_queues(struct ieee80211_local *local,
718 			      struct ieee80211_sub_if_data *sdata,
719 			      unsigned int queues, bool drop)
720 {
721 	if (!local->ops->flush)
722 		return;
723 
724 	/*
725 	 * If no queue was set, or if the HW doesn't support
726 	 * IEEE80211_HW_QUEUE_CONTROL - flush all queues
727 	 */
728 	if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
729 		queues = ieee80211_get_vif_queues(local, sdata);
730 
731 	ieee80211_stop_queues_by_reason(&local->hw, queues,
732 					IEEE80211_QUEUE_STOP_REASON_FLUSH,
733 					false);
734 
735 	drv_flush(local, sdata, queues, drop);
736 
737 	ieee80211_wake_queues_by_reason(&local->hw, queues,
738 					IEEE80211_QUEUE_STOP_REASON_FLUSH,
739 					false);
740 }
741 
742 void ieee80211_flush_queues(struct ieee80211_local *local,
743 			    struct ieee80211_sub_if_data *sdata, bool drop)
744 {
745 	__ieee80211_flush_queues(local, sdata, 0, drop);
746 }
747 
748 void ieee80211_stop_vif_queues(struct ieee80211_local *local,
749 			       struct ieee80211_sub_if_data *sdata,
750 			       enum queue_stop_reason reason)
751 {
752 	ieee80211_stop_queues_by_reason(&local->hw,
753 					ieee80211_get_vif_queues(local, sdata),
754 					reason, true);
755 }
756 
757 void ieee80211_wake_vif_queues(struct ieee80211_local *local,
758 			       struct ieee80211_sub_if_data *sdata,
759 			       enum queue_stop_reason reason)
760 {
761 	ieee80211_wake_queues_by_reason(&local->hw,
762 					ieee80211_get_vif_queues(local, sdata),
763 					reason, true);
764 }
765 
766 static void __iterate_interfaces(struct ieee80211_local *local,
767 				 u32 iter_flags,
768 				 void (*iterator)(void *data, u8 *mac,
769 						  struct ieee80211_vif *vif),
770 				 void *data)
771 {
772 	struct ieee80211_sub_if_data *sdata;
773 	bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE;
774 
775 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
776 		switch (sdata->vif.type) {
777 		case NL80211_IFTYPE_MONITOR:
778 			if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE))
779 				continue;
780 			break;
781 		case NL80211_IFTYPE_AP_VLAN:
782 			continue;
783 		default:
784 			break;
785 		}
786 		if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
787 		    active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
788 			continue;
789 		if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) &&
790 		    !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
791 			continue;
792 		if (ieee80211_sdata_running(sdata) || !active_only)
793 			iterator(data, sdata->vif.addr,
794 				 &sdata->vif);
795 	}
796 
797 	sdata = rcu_dereference_check(local->monitor_sdata,
798 				      lockdep_is_held(&local->iflist_mtx) ||
799 				      lockdep_is_held(&local->hw.wiphy->mtx));
800 	if (sdata &&
801 	    (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only ||
802 	     sdata->flags & IEEE80211_SDATA_IN_DRIVER))
803 		iterator(data, sdata->vif.addr, &sdata->vif);
804 }
805 
806 void ieee80211_iterate_interfaces(
807 	struct ieee80211_hw *hw, u32 iter_flags,
808 	void (*iterator)(void *data, u8 *mac,
809 			 struct ieee80211_vif *vif),
810 	void *data)
811 {
812 	struct ieee80211_local *local = hw_to_local(hw);
813 
814 	mutex_lock(&local->iflist_mtx);
815 	__iterate_interfaces(local, iter_flags, iterator, data);
816 	mutex_unlock(&local->iflist_mtx);
817 }
818 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces);
819 
820 void ieee80211_iterate_active_interfaces_atomic(
821 	struct ieee80211_hw *hw, u32 iter_flags,
822 	void (*iterator)(void *data, u8 *mac,
823 			 struct ieee80211_vif *vif),
824 	void *data)
825 {
826 	struct ieee80211_local *local = hw_to_local(hw);
827 
828 	rcu_read_lock();
829 	__iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE,
830 			     iterator, data);
831 	rcu_read_unlock();
832 }
833 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic);
834 
835 void ieee80211_iterate_active_interfaces_mtx(
836 	struct ieee80211_hw *hw, u32 iter_flags,
837 	void (*iterator)(void *data, u8 *mac,
838 			 struct ieee80211_vif *vif),
839 	void *data)
840 {
841 	struct ieee80211_local *local = hw_to_local(hw);
842 
843 	lockdep_assert_wiphy(hw->wiphy);
844 
845 	__iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE,
846 			     iterator, data);
847 }
848 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx);
849 
850 static void __iterate_stations(struct ieee80211_local *local,
851 			       void (*iterator)(void *data,
852 						struct ieee80211_sta *sta),
853 			       void *data)
854 {
855 	struct sta_info *sta;
856 
857 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
858 		if (!sta->uploaded)
859 			continue;
860 
861 		iterator(data, &sta->sta);
862 	}
863 }
864 
865 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw,
866 			void (*iterator)(void *data,
867 					 struct ieee80211_sta *sta),
868 			void *data)
869 {
870 	struct ieee80211_local *local = hw_to_local(hw);
871 
872 	rcu_read_lock();
873 	__iterate_stations(local, iterator, data);
874 	rcu_read_unlock();
875 }
876 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic);
877 
878 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev)
879 {
880 	struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
881 
882 	if (!ieee80211_sdata_running(sdata) ||
883 	    !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
884 		return NULL;
885 	return &sdata->vif;
886 }
887 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif);
888 
889 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif)
890 {
891 	if (!vif)
892 		return NULL;
893 
894 	return &vif_to_sdata(vif)->wdev;
895 }
896 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev);
897 
898 /*
899  * Nothing should have been stuffed into the workqueue during
900  * the suspend->resume cycle. Since we can't check each caller
901  * of this function if we are already quiescing / suspended,
902  * check here and don't WARN since this can actually happen when
903  * the rx path (for example) is racing against __ieee80211_suspend
904  * and suspending / quiescing was set after the rx path checked
905  * them.
906  */
907 static bool ieee80211_can_queue_work(struct ieee80211_local *local)
908 {
909 	if (local->quiescing || (local->suspended && !local->resuming)) {
910 		pr_warn("queueing ieee80211 work while going to suspend\n");
911 		return false;
912 	}
913 
914 	return true;
915 }
916 
917 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work)
918 {
919 	struct ieee80211_local *local = hw_to_local(hw);
920 
921 	if (!ieee80211_can_queue_work(local))
922 		return;
923 
924 	queue_work(local->workqueue, work);
925 }
926 EXPORT_SYMBOL(ieee80211_queue_work);
927 
928 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
929 				  struct delayed_work *dwork,
930 				  unsigned long delay)
931 {
932 	struct ieee80211_local *local = hw_to_local(hw);
933 
934 	if (!ieee80211_can_queue_work(local))
935 		return;
936 
937 	queue_delayed_work(local->workqueue, dwork, delay);
938 }
939 EXPORT_SYMBOL(ieee80211_queue_delayed_work);
940 
941 static void ieee80211_parse_extension_element(u32 *crc,
942 					      const struct element *elem,
943 					      struct ieee802_11_elems *elems)
944 {
945 	const void *data = elem->data + 1;
946 	u8 len;
947 
948 	if (!elem->datalen)
949 		return;
950 
951 	len = elem->datalen - 1;
952 
953 	switch (elem->data[0]) {
954 	case WLAN_EID_EXT_HE_MU_EDCA:
955 		if (len >= sizeof(*elems->mu_edca_param_set)) {
956 			elems->mu_edca_param_set = data;
957 			if (crc)
958 				*crc = crc32_be(*crc, (void *)elem,
959 						elem->datalen + 2);
960 		}
961 		break;
962 	case WLAN_EID_EXT_HE_CAPABILITY:
963 		elems->he_cap = data;
964 		elems->he_cap_len = len;
965 		break;
966 	case WLAN_EID_EXT_HE_OPERATION:
967 		if (len >= sizeof(*elems->he_operation) &&
968 		    len >= ieee80211_he_oper_size(data) - 1) {
969 			if (crc)
970 				*crc = crc32_be(*crc, (void *)elem,
971 						elem->datalen + 2);
972 			elems->he_operation = data;
973 		}
974 		break;
975 	case WLAN_EID_EXT_UORA:
976 		if (len >= 1)
977 			elems->uora_element = data;
978 		break;
979 	case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME:
980 		if (len == 3)
981 			elems->max_channel_switch_time = data;
982 		break;
983 	case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION:
984 		if (len >= sizeof(*elems->mbssid_config_ie))
985 			elems->mbssid_config_ie = data;
986 		break;
987 	case WLAN_EID_EXT_HE_SPR:
988 		if (len >= sizeof(*elems->he_spr) &&
989 		    len >= ieee80211_he_spr_size(data))
990 			elems->he_spr = data;
991 		break;
992 	case WLAN_EID_EXT_HE_6GHZ_CAPA:
993 		if (len >= sizeof(*elems->he_6ghz_capa))
994 			elems->he_6ghz_capa = data;
995 		break;
996 	}
997 }
998 
999 static u32
1000 _ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action,
1001 			    struct ieee802_11_elems *elems,
1002 			    u64 filter, u32 crc,
1003 			    const struct element *check_inherit)
1004 {
1005 	const struct element *elem;
1006 	bool calc_crc = filter != 0;
1007 	DECLARE_BITMAP(seen_elems, 256);
1008 	const u8 *ie;
1009 
1010 	bitmap_zero(seen_elems, 256);
1011 
1012 	for_each_element(elem, start, len) {
1013 		bool elem_parse_failed;
1014 		u8 id = elem->id;
1015 		u8 elen = elem->datalen;
1016 		const u8 *pos = elem->data;
1017 
1018 		if (check_inherit &&
1019 		    !cfg80211_is_element_inherited(elem,
1020 						   check_inherit))
1021 			continue;
1022 
1023 		switch (id) {
1024 		case WLAN_EID_SSID:
1025 		case WLAN_EID_SUPP_RATES:
1026 		case WLAN_EID_FH_PARAMS:
1027 		case WLAN_EID_DS_PARAMS:
1028 		case WLAN_EID_CF_PARAMS:
1029 		case WLAN_EID_TIM:
1030 		case WLAN_EID_IBSS_PARAMS:
1031 		case WLAN_EID_CHALLENGE:
1032 		case WLAN_EID_RSN:
1033 		case WLAN_EID_ERP_INFO:
1034 		case WLAN_EID_EXT_SUPP_RATES:
1035 		case WLAN_EID_HT_CAPABILITY:
1036 		case WLAN_EID_HT_OPERATION:
1037 		case WLAN_EID_VHT_CAPABILITY:
1038 		case WLAN_EID_VHT_OPERATION:
1039 		case WLAN_EID_MESH_ID:
1040 		case WLAN_EID_MESH_CONFIG:
1041 		case WLAN_EID_PEER_MGMT:
1042 		case WLAN_EID_PREQ:
1043 		case WLAN_EID_PREP:
1044 		case WLAN_EID_PERR:
1045 		case WLAN_EID_RANN:
1046 		case WLAN_EID_CHANNEL_SWITCH:
1047 		case WLAN_EID_EXT_CHANSWITCH_ANN:
1048 		case WLAN_EID_COUNTRY:
1049 		case WLAN_EID_PWR_CONSTRAINT:
1050 		case WLAN_EID_TIMEOUT_INTERVAL:
1051 		case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
1052 		case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
1053 		case WLAN_EID_CHAN_SWITCH_PARAM:
1054 		case WLAN_EID_EXT_CAPABILITY:
1055 		case WLAN_EID_CHAN_SWITCH_TIMING:
1056 		case WLAN_EID_LINK_ID:
1057 		case WLAN_EID_BSS_MAX_IDLE_PERIOD:
1058 		case WLAN_EID_RSNX:
1059 		case WLAN_EID_S1G_BCN_COMPAT:
1060 		case WLAN_EID_S1G_CAPABILITIES:
1061 		case WLAN_EID_S1G_OPERATION:
1062 		case WLAN_EID_AID_RESPONSE:
1063 		case WLAN_EID_S1G_SHORT_BCN_INTERVAL:
1064 		/*
1065 		 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible
1066 		 * that if the content gets bigger it might be needed more than once
1067 		 */
1068 			if (test_bit(id, seen_elems)) {
1069 				elems->parse_error = true;
1070 				continue;
1071 			}
1072 			break;
1073 		}
1074 
1075 		if (calc_crc && id < 64 && (filter & (1ULL << id)))
1076 			crc = crc32_be(crc, pos - 2, elen + 2);
1077 
1078 		elem_parse_failed = false;
1079 
1080 		switch (id) {
1081 		case WLAN_EID_LINK_ID:
1082 			if (elen + 2 < sizeof(struct ieee80211_tdls_lnkie)) {
1083 				elem_parse_failed = true;
1084 				break;
1085 			}
1086 			elems->lnk_id = (void *)(pos - 2);
1087 			break;
1088 		case WLAN_EID_CHAN_SWITCH_TIMING:
1089 			if (elen < sizeof(struct ieee80211_ch_switch_timing)) {
1090 				elem_parse_failed = true;
1091 				break;
1092 			}
1093 			elems->ch_sw_timing = (void *)pos;
1094 			break;
1095 		case WLAN_EID_EXT_CAPABILITY:
1096 			elems->ext_capab = pos;
1097 			elems->ext_capab_len = elen;
1098 			break;
1099 		case WLAN_EID_SSID:
1100 			elems->ssid = pos;
1101 			elems->ssid_len = elen;
1102 			break;
1103 		case WLAN_EID_SUPP_RATES:
1104 			elems->supp_rates = pos;
1105 			elems->supp_rates_len = elen;
1106 			break;
1107 		case WLAN_EID_DS_PARAMS:
1108 			if (elen >= 1)
1109 				elems->ds_params = pos;
1110 			else
1111 				elem_parse_failed = true;
1112 			break;
1113 		case WLAN_EID_TIM:
1114 			if (elen >= sizeof(struct ieee80211_tim_ie)) {
1115 				elems->tim = (void *)pos;
1116 				elems->tim_len = elen;
1117 			} else
1118 				elem_parse_failed = true;
1119 			break;
1120 		case WLAN_EID_VENDOR_SPECIFIC:
1121 			if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
1122 			    pos[2] == 0xf2) {
1123 				/* Microsoft OUI (00:50:F2) */
1124 
1125 				if (calc_crc)
1126 					crc = crc32_be(crc, pos - 2, elen + 2);
1127 
1128 				if (elen >= 5 && pos[3] == 2) {
1129 					/* OUI Type 2 - WMM IE */
1130 					if (pos[4] == 0) {
1131 						elems->wmm_info = pos;
1132 						elems->wmm_info_len = elen;
1133 					} else if (pos[4] == 1) {
1134 						elems->wmm_param = pos;
1135 						elems->wmm_param_len = elen;
1136 					}
1137 				}
1138 			}
1139 			break;
1140 		case WLAN_EID_RSN:
1141 			elems->rsn = pos;
1142 			elems->rsn_len = elen;
1143 			break;
1144 		case WLAN_EID_ERP_INFO:
1145 			if (elen >= 1)
1146 				elems->erp_info = pos;
1147 			else
1148 				elem_parse_failed = true;
1149 			break;
1150 		case WLAN_EID_EXT_SUPP_RATES:
1151 			elems->ext_supp_rates = pos;
1152 			elems->ext_supp_rates_len = elen;
1153 			break;
1154 		case WLAN_EID_HT_CAPABILITY:
1155 			if (elen >= sizeof(struct ieee80211_ht_cap))
1156 				elems->ht_cap_elem = (void *)pos;
1157 			else
1158 				elem_parse_failed = true;
1159 			break;
1160 		case WLAN_EID_HT_OPERATION:
1161 			if (elen >= sizeof(struct ieee80211_ht_operation))
1162 				elems->ht_operation = (void *)pos;
1163 			else
1164 				elem_parse_failed = true;
1165 			break;
1166 		case WLAN_EID_VHT_CAPABILITY:
1167 			if (elen >= sizeof(struct ieee80211_vht_cap))
1168 				elems->vht_cap_elem = (void *)pos;
1169 			else
1170 				elem_parse_failed = true;
1171 			break;
1172 		case WLAN_EID_VHT_OPERATION:
1173 			if (elen >= sizeof(struct ieee80211_vht_operation)) {
1174 				elems->vht_operation = (void *)pos;
1175 				if (calc_crc)
1176 					crc = crc32_be(crc, pos - 2, elen + 2);
1177 				break;
1178 			}
1179 			elem_parse_failed = true;
1180 			break;
1181 		case WLAN_EID_OPMODE_NOTIF:
1182 			if (elen > 0) {
1183 				elems->opmode_notif = pos;
1184 				if (calc_crc)
1185 					crc = crc32_be(crc, pos - 2, elen + 2);
1186 				break;
1187 			}
1188 			elem_parse_failed = true;
1189 			break;
1190 		case WLAN_EID_MESH_ID:
1191 			elems->mesh_id = pos;
1192 			elems->mesh_id_len = elen;
1193 			break;
1194 		case WLAN_EID_MESH_CONFIG:
1195 			if (elen >= sizeof(struct ieee80211_meshconf_ie))
1196 				elems->mesh_config = (void *)pos;
1197 			else
1198 				elem_parse_failed = true;
1199 			break;
1200 		case WLAN_EID_PEER_MGMT:
1201 			elems->peering = pos;
1202 			elems->peering_len = elen;
1203 			break;
1204 		case WLAN_EID_MESH_AWAKE_WINDOW:
1205 			if (elen >= 2)
1206 				elems->awake_window = (void *)pos;
1207 			break;
1208 		case WLAN_EID_PREQ:
1209 			elems->preq = pos;
1210 			elems->preq_len = elen;
1211 			break;
1212 		case WLAN_EID_PREP:
1213 			elems->prep = pos;
1214 			elems->prep_len = elen;
1215 			break;
1216 		case WLAN_EID_PERR:
1217 			elems->perr = pos;
1218 			elems->perr_len = elen;
1219 			break;
1220 		case WLAN_EID_RANN:
1221 			if (elen >= sizeof(struct ieee80211_rann_ie))
1222 				elems->rann = (void *)pos;
1223 			else
1224 				elem_parse_failed = true;
1225 			break;
1226 		case WLAN_EID_CHANNEL_SWITCH:
1227 			if (elen != sizeof(struct ieee80211_channel_sw_ie)) {
1228 				elem_parse_failed = true;
1229 				break;
1230 			}
1231 			elems->ch_switch_ie = (void *)pos;
1232 			break;
1233 		case WLAN_EID_EXT_CHANSWITCH_ANN:
1234 			if (elen != sizeof(struct ieee80211_ext_chansw_ie)) {
1235 				elem_parse_failed = true;
1236 				break;
1237 			}
1238 			elems->ext_chansw_ie = (void *)pos;
1239 			break;
1240 		case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
1241 			if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) {
1242 				elem_parse_failed = true;
1243 				break;
1244 			}
1245 			elems->sec_chan_offs = (void *)pos;
1246 			break;
1247 		case WLAN_EID_CHAN_SWITCH_PARAM:
1248 			if (elen <
1249 			    sizeof(*elems->mesh_chansw_params_ie)) {
1250 				elem_parse_failed = true;
1251 				break;
1252 			}
1253 			elems->mesh_chansw_params_ie = (void *)pos;
1254 			break;
1255 		case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
1256 			if (!action ||
1257 			    elen < sizeof(*elems->wide_bw_chansw_ie)) {
1258 				elem_parse_failed = true;
1259 				break;
1260 			}
1261 			elems->wide_bw_chansw_ie = (void *)pos;
1262 			break;
1263 		case WLAN_EID_CHANNEL_SWITCH_WRAPPER:
1264 			if (action) {
1265 				elem_parse_failed = true;
1266 				break;
1267 			}
1268 			/*
1269 			 * This is a bit tricky, but as we only care about
1270 			 * the wide bandwidth channel switch element, so
1271 			 * just parse it out manually.
1272 			 */
1273 			ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH,
1274 					      pos, elen);
1275 			if (ie) {
1276 				if (ie[1] >= sizeof(*elems->wide_bw_chansw_ie))
1277 					elems->wide_bw_chansw_ie =
1278 						(void *)(ie + 2);
1279 				else
1280 					elem_parse_failed = true;
1281 			}
1282 			break;
1283 		case WLAN_EID_COUNTRY:
1284 			elems->country_elem = pos;
1285 			elems->country_elem_len = elen;
1286 			break;
1287 		case WLAN_EID_PWR_CONSTRAINT:
1288 			if (elen != 1) {
1289 				elem_parse_failed = true;
1290 				break;
1291 			}
1292 			elems->pwr_constr_elem = pos;
1293 			break;
1294 		case WLAN_EID_CISCO_VENDOR_SPECIFIC:
1295 			/* Lots of different options exist, but we only care
1296 			 * about the Dynamic Transmit Power Control element.
1297 			 * First check for the Cisco OUI, then for the DTPC
1298 			 * tag (0x00).
1299 			 */
1300 			if (elen < 4) {
1301 				elem_parse_failed = true;
1302 				break;
1303 			}
1304 
1305 			if (pos[0] != 0x00 || pos[1] != 0x40 ||
1306 			    pos[2] != 0x96 || pos[3] != 0x00)
1307 				break;
1308 
1309 			if (elen != 6) {
1310 				elem_parse_failed = true;
1311 				break;
1312 			}
1313 
1314 			if (calc_crc)
1315 				crc = crc32_be(crc, pos - 2, elen + 2);
1316 
1317 			elems->cisco_dtpc_elem = pos;
1318 			break;
1319 		case WLAN_EID_ADDBA_EXT:
1320 			if (elen < sizeof(struct ieee80211_addba_ext_ie)) {
1321 				elem_parse_failed = true;
1322 				break;
1323 			}
1324 			elems->addba_ext_ie = (void *)pos;
1325 			break;
1326 		case WLAN_EID_TIMEOUT_INTERVAL:
1327 			if (elen >= sizeof(struct ieee80211_timeout_interval_ie))
1328 				elems->timeout_int = (void *)pos;
1329 			else
1330 				elem_parse_failed = true;
1331 			break;
1332 		case WLAN_EID_BSS_MAX_IDLE_PERIOD:
1333 			if (elen >= sizeof(*elems->max_idle_period_ie))
1334 				elems->max_idle_period_ie = (void *)pos;
1335 			break;
1336 		case WLAN_EID_RSNX:
1337 			elems->rsnx = pos;
1338 			elems->rsnx_len = elen;
1339 			break;
1340 		case WLAN_EID_TX_POWER_ENVELOPE:
1341 			if (elen < 1 ||
1342 			    elen > sizeof(struct ieee80211_tx_pwr_env))
1343 				break;
1344 
1345 			if (elems->tx_pwr_env_num >= ARRAY_SIZE(elems->tx_pwr_env))
1346 				break;
1347 
1348 			elems->tx_pwr_env[elems->tx_pwr_env_num] = (void *)pos;
1349 			elems->tx_pwr_env_len[elems->tx_pwr_env_num] = elen;
1350 			elems->tx_pwr_env_num++;
1351 			break;
1352 		case WLAN_EID_EXTENSION:
1353 			ieee80211_parse_extension_element(calc_crc ?
1354 								&crc : NULL,
1355 							  elem, elems);
1356 			break;
1357 		case WLAN_EID_S1G_CAPABILITIES:
1358 			if (elen >= sizeof(*elems->s1g_capab))
1359 				elems->s1g_capab = (void *)pos;
1360 			else
1361 				elem_parse_failed = true;
1362 			break;
1363 		case WLAN_EID_S1G_OPERATION:
1364 			if (elen == sizeof(*elems->s1g_oper))
1365 				elems->s1g_oper = (void *)pos;
1366 			else
1367 				elem_parse_failed = true;
1368 			break;
1369 		case WLAN_EID_S1G_BCN_COMPAT:
1370 			if (elen == sizeof(*elems->s1g_bcn_compat))
1371 				elems->s1g_bcn_compat = (void *)pos;
1372 			else
1373 				elem_parse_failed = true;
1374 			break;
1375 		case WLAN_EID_AID_RESPONSE:
1376 			if (elen == sizeof(struct ieee80211_aid_response_ie))
1377 				elems->aid_resp = (void *)pos;
1378 			else
1379 				elem_parse_failed = true;
1380 			break;
1381 		default:
1382 			break;
1383 		}
1384 
1385 		if (elem_parse_failed)
1386 			elems->parse_error = true;
1387 		else
1388 			__set_bit(id, seen_elems);
1389 	}
1390 
1391 	if (!for_each_element_completed(elem, start, len))
1392 		elems->parse_error = true;
1393 
1394 	return crc;
1395 }
1396 
1397 static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len,
1398 					    struct ieee802_11_elems *elems,
1399 					    const u8 *transmitter_bssid,
1400 					    const u8 *bss_bssid,
1401 					    u8 *nontransmitted_profile)
1402 {
1403 	const struct element *elem, *sub;
1404 	size_t profile_len = 0;
1405 	bool found = false;
1406 
1407 	if (!bss_bssid || !transmitter_bssid)
1408 		return profile_len;
1409 
1410 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) {
1411 		if (elem->datalen < 2)
1412 			continue;
1413 
1414 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
1415 			u8 new_bssid[ETH_ALEN];
1416 			const u8 *index;
1417 
1418 			if (sub->id != 0 || sub->datalen < 4) {
1419 				/* not a valid BSS profile */
1420 				continue;
1421 			}
1422 
1423 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
1424 			    sub->data[1] != 2) {
1425 				/* The first element of the
1426 				 * Nontransmitted BSSID Profile is not
1427 				 * the Nontransmitted BSSID Capability
1428 				 * element.
1429 				 */
1430 				continue;
1431 			}
1432 
1433 			memset(nontransmitted_profile, 0, len);
1434 			profile_len = cfg80211_merge_profile(start, len,
1435 							     elem,
1436 							     sub,
1437 							     nontransmitted_profile,
1438 							     len);
1439 
1440 			/* found a Nontransmitted BSSID Profile */
1441 			index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX,
1442 						 nontransmitted_profile,
1443 						 profile_len);
1444 			if (!index || index[1] < 1 || index[2] == 0) {
1445 				/* Invalid MBSSID Index element */
1446 				continue;
1447 			}
1448 
1449 			cfg80211_gen_new_bssid(transmitter_bssid,
1450 					       elem->data[0],
1451 					       index[2],
1452 					       new_bssid);
1453 			if (ether_addr_equal(new_bssid, bss_bssid)) {
1454 				found = true;
1455 				elems->bssid_index_len = index[1];
1456 				elems->bssid_index = (void *)&index[2];
1457 				break;
1458 			}
1459 		}
1460 	}
1461 
1462 	return found ? profile_len : 0;
1463 }
1464 
1465 struct ieee802_11_elems *ieee802_11_parse_elems_crc(const u8 *start, size_t len,
1466 						    bool action, u64 filter,
1467 						    u32 crc,
1468 						    const u8 *transmitter_bssid,
1469 						    const u8 *bss_bssid)
1470 {
1471 	struct ieee802_11_elems *elems;
1472 	const struct element *non_inherit = NULL;
1473 	u8 *nontransmitted_profile;
1474 	int nontransmitted_profile_len = 0;
1475 
1476 	elems = kzalloc(sizeof(*elems), GFP_ATOMIC);
1477 	if (!elems)
1478 		return NULL;
1479 	elems->ie_start = start;
1480 	elems->total_len = len;
1481 
1482 	nontransmitted_profile = kmalloc(len, GFP_ATOMIC);
1483 	if (nontransmitted_profile) {
1484 		nontransmitted_profile_len =
1485 			ieee802_11_find_bssid_profile(start, len, elems,
1486 						      transmitter_bssid,
1487 						      bss_bssid,
1488 						      nontransmitted_profile);
1489 		non_inherit =
1490 			cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
1491 					       nontransmitted_profile,
1492 					       nontransmitted_profile_len);
1493 	}
1494 
1495 	crc = _ieee802_11_parse_elems_crc(start, len, action, elems, filter,
1496 					  crc, non_inherit);
1497 
1498 	/* Override with nontransmitted profile, if found */
1499 	if (nontransmitted_profile_len)
1500 		_ieee802_11_parse_elems_crc(nontransmitted_profile,
1501 					    nontransmitted_profile_len,
1502 					    action, elems, 0, 0, NULL);
1503 
1504 	if (elems->tim && !elems->parse_error) {
1505 		const struct ieee80211_tim_ie *tim_ie = elems->tim;
1506 
1507 		elems->dtim_period = tim_ie->dtim_period;
1508 		elems->dtim_count = tim_ie->dtim_count;
1509 	}
1510 
1511 	/* Override DTIM period and count if needed */
1512 	if (elems->bssid_index &&
1513 	    elems->bssid_index_len >=
1514 	    offsetofend(struct ieee80211_bssid_index, dtim_period))
1515 		elems->dtim_period = elems->bssid_index->dtim_period;
1516 
1517 	if (elems->bssid_index &&
1518 	    elems->bssid_index_len >=
1519 	    offsetofend(struct ieee80211_bssid_index, dtim_count))
1520 		elems->dtim_count = elems->bssid_index->dtim_count;
1521 
1522 	kfree(nontransmitted_profile);
1523 
1524 	elems->crc = crc;
1525 
1526 	return elems;
1527 }
1528 
1529 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata,
1530 					   struct ieee80211_tx_queue_params
1531 					   *qparam, int ac)
1532 {
1533 	struct ieee80211_chanctx_conf *chanctx_conf;
1534 	const struct ieee80211_reg_rule *rrule;
1535 	const struct ieee80211_wmm_ac *wmm_ac;
1536 	u16 center_freq = 0;
1537 
1538 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1539 	    sdata->vif.type != NL80211_IFTYPE_STATION)
1540 		return;
1541 
1542 	rcu_read_lock();
1543 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1544 	if (chanctx_conf)
1545 		center_freq = chanctx_conf->def.chan->center_freq;
1546 
1547 	if (!center_freq) {
1548 		rcu_read_unlock();
1549 		return;
1550 	}
1551 
1552 	rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq));
1553 
1554 	if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) {
1555 		rcu_read_unlock();
1556 		return;
1557 	}
1558 
1559 	if (sdata->vif.type == NL80211_IFTYPE_AP)
1560 		wmm_ac = &rrule->wmm_rule.ap[ac];
1561 	else
1562 		wmm_ac = &rrule->wmm_rule.client[ac];
1563 	qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min);
1564 	qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max);
1565 	qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn);
1566 	qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32);
1567 	rcu_read_unlock();
1568 }
1569 
1570 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata,
1571 			       bool bss_notify, bool enable_qos)
1572 {
1573 	struct ieee80211_local *local = sdata->local;
1574 	struct ieee80211_tx_queue_params qparam;
1575 	struct ieee80211_chanctx_conf *chanctx_conf;
1576 	int ac;
1577 	bool use_11b;
1578 	bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */
1579 	int aCWmin, aCWmax;
1580 
1581 	if (!local->ops->conf_tx)
1582 		return;
1583 
1584 	if (local->hw.queues < IEEE80211_NUM_ACS)
1585 		return;
1586 
1587 	memset(&qparam, 0, sizeof(qparam));
1588 
1589 	rcu_read_lock();
1590 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1591 	use_11b = (chanctx_conf &&
1592 		   chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) &&
1593 		 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE);
1594 	rcu_read_unlock();
1595 
1596 	is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB);
1597 
1598 	/* Set defaults according to 802.11-2007 Table 7-37 */
1599 	aCWmax = 1023;
1600 	if (use_11b)
1601 		aCWmin = 31;
1602 	else
1603 		aCWmin = 15;
1604 
1605 	/* Confiure old 802.11b/g medium access rules. */
1606 	qparam.cw_max = aCWmax;
1607 	qparam.cw_min = aCWmin;
1608 	qparam.txop = 0;
1609 	qparam.aifs = 2;
1610 
1611 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1612 		/* Update if QoS is enabled. */
1613 		if (enable_qos) {
1614 			switch (ac) {
1615 			case IEEE80211_AC_BK:
1616 				qparam.cw_max = aCWmax;
1617 				qparam.cw_min = aCWmin;
1618 				qparam.txop = 0;
1619 				if (is_ocb)
1620 					qparam.aifs = 9;
1621 				else
1622 					qparam.aifs = 7;
1623 				break;
1624 			/* never happens but let's not leave undefined */
1625 			default:
1626 			case IEEE80211_AC_BE:
1627 				qparam.cw_max = aCWmax;
1628 				qparam.cw_min = aCWmin;
1629 				qparam.txop = 0;
1630 				if (is_ocb)
1631 					qparam.aifs = 6;
1632 				else
1633 					qparam.aifs = 3;
1634 				break;
1635 			case IEEE80211_AC_VI:
1636 				qparam.cw_max = aCWmin;
1637 				qparam.cw_min = (aCWmin + 1) / 2 - 1;
1638 				if (is_ocb)
1639 					qparam.txop = 0;
1640 				else if (use_11b)
1641 					qparam.txop = 6016/32;
1642 				else
1643 					qparam.txop = 3008/32;
1644 
1645 				if (is_ocb)
1646 					qparam.aifs = 3;
1647 				else
1648 					qparam.aifs = 2;
1649 				break;
1650 			case IEEE80211_AC_VO:
1651 				qparam.cw_max = (aCWmin + 1) / 2 - 1;
1652 				qparam.cw_min = (aCWmin + 1) / 4 - 1;
1653 				if (is_ocb)
1654 					qparam.txop = 0;
1655 				else if (use_11b)
1656 					qparam.txop = 3264/32;
1657 				else
1658 					qparam.txop = 1504/32;
1659 				qparam.aifs = 2;
1660 				break;
1661 			}
1662 		}
1663 		ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac);
1664 
1665 		qparam.uapsd = false;
1666 
1667 		sdata->tx_conf[ac] = qparam;
1668 		drv_conf_tx(local, sdata, ac, &qparam);
1669 	}
1670 
1671 	if (sdata->vif.type != NL80211_IFTYPE_MONITOR &&
1672 	    sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE &&
1673 	    sdata->vif.type != NL80211_IFTYPE_NAN) {
1674 		sdata->vif.bss_conf.qos = enable_qos;
1675 		if (bss_notify)
1676 			ieee80211_bss_info_change_notify(sdata,
1677 							 BSS_CHANGED_QOS);
1678 	}
1679 }
1680 
1681 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata,
1682 			 u16 transaction, u16 auth_alg, u16 status,
1683 			 const u8 *extra, size_t extra_len, const u8 *da,
1684 			 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx,
1685 			 u32 tx_flags)
1686 {
1687 	struct ieee80211_local *local = sdata->local;
1688 	struct sk_buff *skb;
1689 	struct ieee80211_mgmt *mgmt;
1690 	int err;
1691 
1692 	/* 24 + 6 = header + auth_algo + auth_transaction + status_code */
1693 	skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN +
1694 			    24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN);
1695 	if (!skb)
1696 		return;
1697 
1698 	skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN);
1699 
1700 	mgmt = skb_put_zero(skb, 24 + 6);
1701 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1702 					  IEEE80211_STYPE_AUTH);
1703 	memcpy(mgmt->da, da, ETH_ALEN);
1704 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1705 	memcpy(mgmt->bssid, bssid, ETH_ALEN);
1706 	mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg);
1707 	mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
1708 	mgmt->u.auth.status_code = cpu_to_le16(status);
1709 	if (extra)
1710 		skb_put_data(skb, extra, extra_len);
1711 
1712 	if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) {
1713 		mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1714 		err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx);
1715 		if (WARN_ON(err)) {
1716 			kfree_skb(skb);
1717 			return;
1718 		}
1719 	}
1720 
1721 	IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT |
1722 					tx_flags;
1723 	ieee80211_tx_skb(sdata, skb);
1724 }
1725 
1726 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata,
1727 				    const u8 *da, const u8 *bssid,
1728 				    u16 stype, u16 reason,
1729 				    bool send_frame, u8 *frame_buf)
1730 {
1731 	struct ieee80211_local *local = sdata->local;
1732 	struct sk_buff *skb;
1733 	struct ieee80211_mgmt *mgmt = (void *)frame_buf;
1734 
1735 	/* build frame */
1736 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype);
1737 	mgmt->duration = 0; /* initialize only */
1738 	mgmt->seq_ctrl = 0; /* initialize only */
1739 	memcpy(mgmt->da, da, ETH_ALEN);
1740 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1741 	memcpy(mgmt->bssid, bssid, ETH_ALEN);
1742 	/* u.deauth.reason_code == u.disassoc.reason_code */
1743 	mgmt->u.deauth.reason_code = cpu_to_le16(reason);
1744 
1745 	if (send_frame) {
1746 		skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1747 				    IEEE80211_DEAUTH_FRAME_LEN);
1748 		if (!skb)
1749 			return;
1750 
1751 		skb_reserve(skb, local->hw.extra_tx_headroom);
1752 
1753 		/* copy in frame */
1754 		skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN);
1755 
1756 		if (sdata->vif.type != NL80211_IFTYPE_STATION ||
1757 		    !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED))
1758 			IEEE80211_SKB_CB(skb)->flags |=
1759 				IEEE80211_TX_INTFL_DONT_ENCRYPT;
1760 
1761 		ieee80211_tx_skb(sdata, skb);
1762 	}
1763 }
1764 
1765 static u8 *ieee80211_write_he_6ghz_cap(u8 *pos, __le16 cap, u8 *end)
1766 {
1767 	if ((end - pos) < 5)
1768 		return pos;
1769 
1770 	*pos++ = WLAN_EID_EXTENSION;
1771 	*pos++ = 1 + sizeof(cap);
1772 	*pos++ = WLAN_EID_EXT_HE_6GHZ_CAPA;
1773 	memcpy(pos, &cap, sizeof(cap));
1774 
1775 	return pos + 2;
1776 }
1777 
1778 static int ieee80211_build_preq_ies_band(struct ieee80211_sub_if_data *sdata,
1779 					 u8 *buffer, size_t buffer_len,
1780 					 const u8 *ie, size_t ie_len,
1781 					 enum nl80211_band band,
1782 					 u32 rate_mask,
1783 					 struct cfg80211_chan_def *chandef,
1784 					 size_t *offset, u32 flags)
1785 {
1786 	struct ieee80211_local *local = sdata->local;
1787 	struct ieee80211_supported_band *sband;
1788 	const struct ieee80211_sta_he_cap *he_cap;
1789 	u8 *pos = buffer, *end = buffer + buffer_len;
1790 	size_t noffset;
1791 	int supp_rates_len, i;
1792 	u8 rates[32];
1793 	int num_rates;
1794 	int ext_rates_len;
1795 	int shift;
1796 	u32 rate_flags;
1797 	bool have_80mhz = false;
1798 
1799 	*offset = 0;
1800 
1801 	sband = local->hw.wiphy->bands[band];
1802 	if (WARN_ON_ONCE(!sband))
1803 		return 0;
1804 
1805 	rate_flags = ieee80211_chandef_rate_flags(chandef);
1806 	shift = ieee80211_chandef_get_shift(chandef);
1807 
1808 	num_rates = 0;
1809 	for (i = 0; i < sband->n_bitrates; i++) {
1810 		if ((BIT(i) & rate_mask) == 0)
1811 			continue; /* skip rate */
1812 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
1813 			continue;
1814 
1815 		rates[num_rates++] =
1816 			(u8) DIV_ROUND_UP(sband->bitrates[i].bitrate,
1817 					  (1 << shift) * 5);
1818 	}
1819 
1820 	supp_rates_len = min_t(int, num_rates, 8);
1821 
1822 	if (end - pos < 2 + supp_rates_len)
1823 		goto out_err;
1824 	*pos++ = WLAN_EID_SUPP_RATES;
1825 	*pos++ = supp_rates_len;
1826 	memcpy(pos, rates, supp_rates_len);
1827 	pos += supp_rates_len;
1828 
1829 	/* insert "request information" if in custom IEs */
1830 	if (ie && ie_len) {
1831 		static const u8 before_extrates[] = {
1832 			WLAN_EID_SSID,
1833 			WLAN_EID_SUPP_RATES,
1834 			WLAN_EID_REQUEST,
1835 		};
1836 		noffset = ieee80211_ie_split(ie, ie_len,
1837 					     before_extrates,
1838 					     ARRAY_SIZE(before_extrates),
1839 					     *offset);
1840 		if (end - pos < noffset - *offset)
1841 			goto out_err;
1842 		memcpy(pos, ie + *offset, noffset - *offset);
1843 		pos += noffset - *offset;
1844 		*offset = noffset;
1845 	}
1846 
1847 	ext_rates_len = num_rates - supp_rates_len;
1848 	if (ext_rates_len > 0) {
1849 		if (end - pos < 2 + ext_rates_len)
1850 			goto out_err;
1851 		*pos++ = WLAN_EID_EXT_SUPP_RATES;
1852 		*pos++ = ext_rates_len;
1853 		memcpy(pos, rates + supp_rates_len, ext_rates_len);
1854 		pos += ext_rates_len;
1855 	}
1856 
1857 	if (chandef->chan && sband->band == NL80211_BAND_2GHZ) {
1858 		if (end - pos < 3)
1859 			goto out_err;
1860 		*pos++ = WLAN_EID_DS_PARAMS;
1861 		*pos++ = 1;
1862 		*pos++ = ieee80211_frequency_to_channel(
1863 				chandef->chan->center_freq);
1864 	}
1865 
1866 	if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT)
1867 		goto done;
1868 
1869 	/* insert custom IEs that go before HT */
1870 	if (ie && ie_len) {
1871 		static const u8 before_ht[] = {
1872 			/*
1873 			 * no need to list the ones split off already
1874 			 * (or generated here)
1875 			 */
1876 			WLAN_EID_DS_PARAMS,
1877 			WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
1878 		};
1879 		noffset = ieee80211_ie_split(ie, ie_len,
1880 					     before_ht, ARRAY_SIZE(before_ht),
1881 					     *offset);
1882 		if (end - pos < noffset - *offset)
1883 			goto out_err;
1884 		memcpy(pos, ie + *offset, noffset - *offset);
1885 		pos += noffset - *offset;
1886 		*offset = noffset;
1887 	}
1888 
1889 	if (sband->ht_cap.ht_supported) {
1890 		if (end - pos < 2 + sizeof(struct ieee80211_ht_cap))
1891 			goto out_err;
1892 		pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap,
1893 						sband->ht_cap.cap);
1894 	}
1895 
1896 	/* insert custom IEs that go before VHT */
1897 	if (ie && ie_len) {
1898 		static const u8 before_vht[] = {
1899 			/*
1900 			 * no need to list the ones split off already
1901 			 * (or generated here)
1902 			 */
1903 			WLAN_EID_BSS_COEX_2040,
1904 			WLAN_EID_EXT_CAPABILITY,
1905 			WLAN_EID_SSID_LIST,
1906 			WLAN_EID_CHANNEL_USAGE,
1907 			WLAN_EID_INTERWORKING,
1908 			WLAN_EID_MESH_ID,
1909 			/* 60 GHz (Multi-band, DMG, MMS) can't happen */
1910 		};
1911 		noffset = ieee80211_ie_split(ie, ie_len,
1912 					     before_vht, ARRAY_SIZE(before_vht),
1913 					     *offset);
1914 		if (end - pos < noffset - *offset)
1915 			goto out_err;
1916 		memcpy(pos, ie + *offset, noffset - *offset);
1917 		pos += noffset - *offset;
1918 		*offset = noffset;
1919 	}
1920 
1921 	/* Check if any channel in this sband supports at least 80 MHz */
1922 	for (i = 0; i < sband->n_channels; i++) {
1923 		if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED |
1924 						IEEE80211_CHAN_NO_80MHZ))
1925 			continue;
1926 
1927 		have_80mhz = true;
1928 		break;
1929 	}
1930 
1931 	if (sband->vht_cap.vht_supported && have_80mhz) {
1932 		if (end - pos < 2 + sizeof(struct ieee80211_vht_cap))
1933 			goto out_err;
1934 		pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap,
1935 						 sband->vht_cap.cap);
1936 	}
1937 
1938 	/* insert custom IEs that go before HE */
1939 	if (ie && ie_len) {
1940 		static const u8 before_he[] = {
1941 			/*
1942 			 * no need to list the ones split off before VHT
1943 			 * or generated here
1944 			 */
1945 			WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS,
1946 			WLAN_EID_AP_CSN,
1947 			/* TODO: add 11ah/11aj/11ak elements */
1948 		};
1949 		noffset = ieee80211_ie_split(ie, ie_len,
1950 					     before_he, ARRAY_SIZE(before_he),
1951 					     *offset);
1952 		if (end - pos < noffset - *offset)
1953 			goto out_err;
1954 		memcpy(pos, ie + *offset, noffset - *offset);
1955 		pos += noffset - *offset;
1956 		*offset = noffset;
1957 	}
1958 
1959 	he_cap = ieee80211_get_he_iftype_cap(sband,
1960 					     ieee80211_vif_type_p2p(&sdata->vif));
1961 	if (he_cap &&
1962 	    cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band),
1963 					 IEEE80211_CHAN_NO_HE)) {
1964 		pos = ieee80211_ie_build_he_cap(pos, he_cap, end);
1965 		if (!pos)
1966 			goto out_err;
1967 	}
1968 
1969 	if (cfg80211_any_usable_channels(local->hw.wiphy,
1970 					 BIT(NL80211_BAND_6GHZ),
1971 					 IEEE80211_CHAN_NO_HE)) {
1972 		struct ieee80211_supported_band *sband6;
1973 
1974 		sband6 = local->hw.wiphy->bands[NL80211_BAND_6GHZ];
1975 		he_cap = ieee80211_get_he_iftype_cap(sband6,
1976 				ieee80211_vif_type_p2p(&sdata->vif));
1977 
1978 		if (he_cap) {
1979 			enum nl80211_iftype iftype =
1980 				ieee80211_vif_type_p2p(&sdata->vif);
1981 			__le16 cap = ieee80211_get_he_6ghz_capa(sband, iftype);
1982 
1983 			pos = ieee80211_write_he_6ghz_cap(pos, cap, end);
1984 		}
1985 	}
1986 
1987 	/*
1988 	 * If adding more here, adjust code in main.c
1989 	 * that calculates local->scan_ies_len.
1990 	 */
1991 
1992 	return pos - buffer;
1993  out_err:
1994 	WARN_ONCE(1, "not enough space for preq IEs\n");
1995  done:
1996 	return pos - buffer;
1997 }
1998 
1999 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer,
2000 			     size_t buffer_len,
2001 			     struct ieee80211_scan_ies *ie_desc,
2002 			     const u8 *ie, size_t ie_len,
2003 			     u8 bands_used, u32 *rate_masks,
2004 			     struct cfg80211_chan_def *chandef,
2005 			     u32 flags)
2006 {
2007 	size_t pos = 0, old_pos = 0, custom_ie_offset = 0;
2008 	int i;
2009 
2010 	memset(ie_desc, 0, sizeof(*ie_desc));
2011 
2012 	for (i = 0; i < NUM_NL80211_BANDS; i++) {
2013 		if (bands_used & BIT(i)) {
2014 			pos += ieee80211_build_preq_ies_band(sdata,
2015 							     buffer + pos,
2016 							     buffer_len - pos,
2017 							     ie, ie_len, i,
2018 							     rate_masks[i],
2019 							     chandef,
2020 							     &custom_ie_offset,
2021 							     flags);
2022 			ie_desc->ies[i] = buffer + old_pos;
2023 			ie_desc->len[i] = pos - old_pos;
2024 			old_pos = pos;
2025 		}
2026 	}
2027 
2028 	/* add any remaining custom IEs */
2029 	if (ie && ie_len) {
2030 		if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset,
2031 			      "not enough space for preq custom IEs\n"))
2032 			return pos;
2033 		memcpy(buffer + pos, ie + custom_ie_offset,
2034 		       ie_len - custom_ie_offset);
2035 		ie_desc->common_ies = buffer + pos;
2036 		ie_desc->common_ie_len = ie_len - custom_ie_offset;
2037 		pos += ie_len - custom_ie_offset;
2038 	}
2039 
2040 	return pos;
2041 };
2042 
2043 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata,
2044 					  const u8 *src, const u8 *dst,
2045 					  u32 ratemask,
2046 					  struct ieee80211_channel *chan,
2047 					  const u8 *ssid, size_t ssid_len,
2048 					  const u8 *ie, size_t ie_len,
2049 					  u32 flags)
2050 {
2051 	struct ieee80211_local *local = sdata->local;
2052 	struct cfg80211_chan_def chandef;
2053 	struct sk_buff *skb;
2054 	struct ieee80211_mgmt *mgmt;
2055 	int ies_len;
2056 	u32 rate_masks[NUM_NL80211_BANDS] = {};
2057 	struct ieee80211_scan_ies dummy_ie_desc;
2058 
2059 	/*
2060 	 * Do not send DS Channel parameter for directed probe requests
2061 	 * in order to maximize the chance that we get a response.  Some
2062 	 * badly-behaved APs don't respond when this parameter is included.
2063 	 */
2064 	chandef.width = sdata->vif.bss_conf.chandef.width;
2065 	if (flags & IEEE80211_PROBE_FLAG_DIRECTED)
2066 		chandef.chan = NULL;
2067 	else
2068 		chandef.chan = chan;
2069 
2070 	skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len,
2071 				     local->scan_ies_len + ie_len);
2072 	if (!skb)
2073 		return NULL;
2074 
2075 	rate_masks[chan->band] = ratemask;
2076 	ies_len = ieee80211_build_preq_ies(sdata, skb_tail_pointer(skb),
2077 					   skb_tailroom(skb), &dummy_ie_desc,
2078 					   ie, ie_len, BIT(chan->band),
2079 					   rate_masks, &chandef, flags);
2080 	skb_put(skb, ies_len);
2081 
2082 	if (dst) {
2083 		mgmt = (struct ieee80211_mgmt *) skb->data;
2084 		memcpy(mgmt->da, dst, ETH_ALEN);
2085 		memcpy(mgmt->bssid, dst, ETH_ALEN);
2086 	}
2087 
2088 	IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
2089 
2090 	return skb;
2091 }
2092 
2093 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata,
2094 			    struct ieee802_11_elems *elems,
2095 			    enum nl80211_band band, u32 *basic_rates)
2096 {
2097 	struct ieee80211_supported_band *sband;
2098 	size_t num_rates;
2099 	u32 supp_rates, rate_flags;
2100 	int i, j, shift;
2101 
2102 	sband = sdata->local->hw.wiphy->bands[band];
2103 	if (WARN_ON(!sband))
2104 		return 1;
2105 
2106 	rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef);
2107 	shift = ieee80211_vif_get_shift(&sdata->vif);
2108 
2109 	num_rates = sband->n_bitrates;
2110 	supp_rates = 0;
2111 	for (i = 0; i < elems->supp_rates_len +
2112 		     elems->ext_supp_rates_len; i++) {
2113 		u8 rate = 0;
2114 		int own_rate;
2115 		bool is_basic;
2116 		if (i < elems->supp_rates_len)
2117 			rate = elems->supp_rates[i];
2118 		else if (elems->ext_supp_rates)
2119 			rate = elems->ext_supp_rates
2120 				[i - elems->supp_rates_len];
2121 		own_rate = 5 * (rate & 0x7f);
2122 		is_basic = !!(rate & 0x80);
2123 
2124 		if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY)
2125 			continue;
2126 
2127 		for (j = 0; j < num_rates; j++) {
2128 			int brate;
2129 			if ((rate_flags & sband->bitrates[j].flags)
2130 			    != rate_flags)
2131 				continue;
2132 
2133 			brate = DIV_ROUND_UP(sband->bitrates[j].bitrate,
2134 					     1 << shift);
2135 
2136 			if (brate == own_rate) {
2137 				supp_rates |= BIT(j);
2138 				if (basic_rates && is_basic)
2139 					*basic_rates |= BIT(j);
2140 			}
2141 		}
2142 	}
2143 	return supp_rates;
2144 }
2145 
2146 void ieee80211_stop_device(struct ieee80211_local *local)
2147 {
2148 	ieee80211_led_radio(local, false);
2149 	ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO);
2150 
2151 	cancel_work_sync(&local->reconfig_filter);
2152 
2153 	flush_workqueue(local->workqueue);
2154 	drv_stop(local);
2155 }
2156 
2157 static void ieee80211_flush_completed_scan(struct ieee80211_local *local,
2158 					   bool aborted)
2159 {
2160 	/* It's possible that we don't handle the scan completion in
2161 	 * time during suspend, so if it's still marked as completed
2162 	 * here, queue the work and flush it to clean things up.
2163 	 * Instead of calling the worker function directly here, we
2164 	 * really queue it to avoid potential races with other flows
2165 	 * scheduling the same work.
2166 	 */
2167 	if (test_bit(SCAN_COMPLETED, &local->scanning)) {
2168 		/* If coming from reconfiguration failure, abort the scan so
2169 		 * we don't attempt to continue a partial HW scan - which is
2170 		 * possible otherwise if (e.g.) the 2.4 GHz portion was the
2171 		 * completed scan, and a 5 GHz portion is still pending.
2172 		 */
2173 		if (aborted)
2174 			set_bit(SCAN_ABORTED, &local->scanning);
2175 		ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0);
2176 		flush_delayed_work(&local->scan_work);
2177 	}
2178 }
2179 
2180 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local)
2181 {
2182 	struct ieee80211_sub_if_data *sdata;
2183 	struct ieee80211_chanctx *ctx;
2184 
2185 	/*
2186 	 * We get here if during resume the device can't be restarted properly.
2187 	 * We might also get here if this happens during HW reset, which is a
2188 	 * slightly different situation and we need to drop all connections in
2189 	 * the latter case.
2190 	 *
2191 	 * Ask cfg80211 to turn off all interfaces, this will result in more
2192 	 * warnings but at least we'll then get into a clean stopped state.
2193 	 */
2194 
2195 	local->resuming = false;
2196 	local->suspended = false;
2197 	local->in_reconfig = false;
2198 
2199 	ieee80211_flush_completed_scan(local, true);
2200 
2201 	/* scheduled scan clearly can't be running any more, but tell
2202 	 * cfg80211 and clear local state
2203 	 */
2204 	ieee80211_sched_scan_end(local);
2205 
2206 	list_for_each_entry(sdata, &local->interfaces, list)
2207 		sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER;
2208 
2209 	/* Mark channel contexts as not being in the driver any more to avoid
2210 	 * removing them from the driver during the shutdown process...
2211 	 */
2212 	mutex_lock(&local->chanctx_mtx);
2213 	list_for_each_entry(ctx, &local->chanctx_list, list)
2214 		ctx->driver_present = false;
2215 	mutex_unlock(&local->chanctx_mtx);
2216 }
2217 
2218 static void ieee80211_assign_chanctx(struct ieee80211_local *local,
2219 				     struct ieee80211_sub_if_data *sdata)
2220 {
2221 	struct ieee80211_chanctx_conf *conf;
2222 	struct ieee80211_chanctx *ctx;
2223 
2224 	if (!local->use_chanctx)
2225 		return;
2226 
2227 	mutex_lock(&local->chanctx_mtx);
2228 	conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
2229 					 lockdep_is_held(&local->chanctx_mtx));
2230 	if (conf) {
2231 		ctx = container_of(conf, struct ieee80211_chanctx, conf);
2232 		drv_assign_vif_chanctx(local, sdata, ctx);
2233 	}
2234 	mutex_unlock(&local->chanctx_mtx);
2235 }
2236 
2237 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata)
2238 {
2239 	struct ieee80211_local *local = sdata->local;
2240 	struct sta_info *sta;
2241 
2242 	/* add STAs back */
2243 	mutex_lock(&local->sta_mtx);
2244 	list_for_each_entry(sta, &local->sta_list, list) {
2245 		enum ieee80211_sta_state state;
2246 
2247 		if (!sta->uploaded || sta->sdata != sdata)
2248 			continue;
2249 
2250 		for (state = IEEE80211_STA_NOTEXIST;
2251 		     state < sta->sta_state; state++)
2252 			WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
2253 					      state + 1));
2254 	}
2255 	mutex_unlock(&local->sta_mtx);
2256 }
2257 
2258 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata)
2259 {
2260 	struct cfg80211_nan_func *func, **funcs;
2261 	int res, id, i = 0;
2262 
2263 	res = drv_start_nan(sdata->local, sdata,
2264 			    &sdata->u.nan.conf);
2265 	if (WARN_ON(res))
2266 		return res;
2267 
2268 	funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1,
2269 			sizeof(*funcs),
2270 			GFP_KERNEL);
2271 	if (!funcs)
2272 		return -ENOMEM;
2273 
2274 	/* Add all the functions:
2275 	 * This is a little bit ugly. We need to call a potentially sleeping
2276 	 * callback for each NAN function, so we can't hold the spinlock.
2277 	 */
2278 	spin_lock_bh(&sdata->u.nan.func_lock);
2279 
2280 	idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id)
2281 		funcs[i++] = func;
2282 
2283 	spin_unlock_bh(&sdata->u.nan.func_lock);
2284 
2285 	for (i = 0; funcs[i]; i++) {
2286 		res = drv_add_nan_func(sdata->local, sdata, funcs[i]);
2287 		if (WARN_ON(res))
2288 			ieee80211_nan_func_terminated(&sdata->vif,
2289 						      funcs[i]->instance_id,
2290 						      NL80211_NAN_FUNC_TERM_REASON_ERROR,
2291 						      GFP_KERNEL);
2292 	}
2293 
2294 	kfree(funcs);
2295 
2296 	return 0;
2297 }
2298 
2299 int ieee80211_reconfig(struct ieee80211_local *local)
2300 {
2301 	struct ieee80211_hw *hw = &local->hw;
2302 	struct ieee80211_sub_if_data *sdata;
2303 	struct ieee80211_chanctx *ctx;
2304 	struct sta_info *sta;
2305 	int res, i;
2306 	bool reconfig_due_to_wowlan = false;
2307 	struct ieee80211_sub_if_data *sched_scan_sdata;
2308 	struct cfg80211_sched_scan_request *sched_scan_req;
2309 	bool sched_scan_stopped = false;
2310 	bool suspended = local->suspended;
2311 
2312 	/* nothing to do if HW shouldn't run */
2313 	if (!local->open_count)
2314 		goto wake_up;
2315 
2316 #ifdef CONFIG_PM
2317 	if (suspended)
2318 		local->resuming = true;
2319 
2320 	if (local->wowlan) {
2321 		/*
2322 		 * In the wowlan case, both mac80211 and the device
2323 		 * are functional when the resume op is called, so
2324 		 * clear local->suspended so the device could operate
2325 		 * normally (e.g. pass rx frames).
2326 		 */
2327 		local->suspended = false;
2328 		res = drv_resume(local);
2329 		local->wowlan = false;
2330 		if (res < 0) {
2331 			local->resuming = false;
2332 			return res;
2333 		}
2334 		if (res == 0)
2335 			goto wake_up;
2336 		WARN_ON(res > 1);
2337 		/*
2338 		 * res is 1, which means the driver requested
2339 		 * to go through a regular reset on wakeup.
2340 		 * restore local->suspended in this case.
2341 		 */
2342 		reconfig_due_to_wowlan = true;
2343 		local->suspended = true;
2344 	}
2345 #endif
2346 
2347 	/*
2348 	 * In case of hw_restart during suspend (without wowlan),
2349 	 * cancel restart work, as we are reconfiguring the device
2350 	 * anyway.
2351 	 * Note that restart_work is scheduled on a frozen workqueue,
2352 	 * so we can't deadlock in this case.
2353 	 */
2354 	if (suspended && local->in_reconfig && !reconfig_due_to_wowlan)
2355 		cancel_work_sync(&local->restart_work);
2356 
2357 	local->started = false;
2358 
2359 	/*
2360 	 * Upon resume hardware can sometimes be goofy due to
2361 	 * various platform / driver / bus issues, so restarting
2362 	 * the device may at times not work immediately. Propagate
2363 	 * the error.
2364 	 */
2365 	res = drv_start(local);
2366 	if (res) {
2367 		if (suspended)
2368 			WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n");
2369 		else
2370 			WARN(1, "Hardware became unavailable during restart.\n");
2371 		ieee80211_handle_reconfig_failure(local);
2372 		return res;
2373 	}
2374 
2375 	/* setup fragmentation threshold */
2376 	drv_set_frag_threshold(local, hw->wiphy->frag_threshold);
2377 
2378 	/* setup RTS threshold */
2379 	drv_set_rts_threshold(local, hw->wiphy->rts_threshold);
2380 
2381 	/* reset coverage class */
2382 	drv_set_coverage_class(local, hw->wiphy->coverage_class);
2383 
2384 	ieee80211_led_radio(local, true);
2385 	ieee80211_mod_tpt_led_trig(local,
2386 				   IEEE80211_TPT_LEDTRIG_FL_RADIO, 0);
2387 
2388 	/* add interfaces */
2389 	sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata);
2390 	if (sdata) {
2391 		/* in HW restart it exists already */
2392 		WARN_ON(local->resuming);
2393 		res = drv_add_interface(local, sdata);
2394 		if (WARN_ON(res)) {
2395 			RCU_INIT_POINTER(local->monitor_sdata, NULL);
2396 			synchronize_net();
2397 			kfree(sdata);
2398 		}
2399 	}
2400 
2401 	list_for_each_entry(sdata, &local->interfaces, list) {
2402 		if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2403 		    sdata->vif.type != NL80211_IFTYPE_MONITOR &&
2404 		    ieee80211_sdata_running(sdata)) {
2405 			res = drv_add_interface(local, sdata);
2406 			if (WARN_ON(res))
2407 				break;
2408 		}
2409 	}
2410 
2411 	/* If adding any of the interfaces failed above, roll back and
2412 	 * report failure.
2413 	 */
2414 	if (res) {
2415 		list_for_each_entry_continue_reverse(sdata, &local->interfaces,
2416 						     list)
2417 			if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2418 			    sdata->vif.type != NL80211_IFTYPE_MONITOR &&
2419 			    ieee80211_sdata_running(sdata))
2420 				drv_remove_interface(local, sdata);
2421 		ieee80211_handle_reconfig_failure(local);
2422 		return res;
2423 	}
2424 
2425 	/* add channel contexts */
2426 	if (local->use_chanctx) {
2427 		mutex_lock(&local->chanctx_mtx);
2428 		list_for_each_entry(ctx, &local->chanctx_list, list)
2429 			if (ctx->replace_state !=
2430 			    IEEE80211_CHANCTX_REPLACES_OTHER)
2431 				WARN_ON(drv_add_chanctx(local, ctx));
2432 		mutex_unlock(&local->chanctx_mtx);
2433 
2434 		sdata = wiphy_dereference(local->hw.wiphy,
2435 					  local->monitor_sdata);
2436 		if (sdata && ieee80211_sdata_running(sdata))
2437 			ieee80211_assign_chanctx(local, sdata);
2438 	}
2439 
2440 	/* reconfigure hardware */
2441 	ieee80211_hw_config(local, ~0);
2442 
2443 	ieee80211_configure_filter(local);
2444 
2445 	/* Finally also reconfigure all the BSS information */
2446 	list_for_each_entry(sdata, &local->interfaces, list) {
2447 		u32 changed;
2448 
2449 		if (!ieee80211_sdata_running(sdata))
2450 			continue;
2451 
2452 		ieee80211_assign_chanctx(local, sdata);
2453 
2454 		switch (sdata->vif.type) {
2455 		case NL80211_IFTYPE_AP_VLAN:
2456 		case NL80211_IFTYPE_MONITOR:
2457 			break;
2458 		case NL80211_IFTYPE_ADHOC:
2459 			if (sdata->vif.bss_conf.ibss_joined)
2460 				WARN_ON(drv_join_ibss(local, sdata));
2461 			fallthrough;
2462 		default:
2463 			ieee80211_reconfig_stations(sdata);
2464 			fallthrough;
2465 		case NL80211_IFTYPE_AP: /* AP stations are handled later */
2466 			for (i = 0; i < IEEE80211_NUM_ACS; i++)
2467 				drv_conf_tx(local, sdata, i,
2468 					    &sdata->tx_conf[i]);
2469 			break;
2470 		}
2471 
2472 		/* common change flags for all interface types */
2473 		changed = BSS_CHANGED_ERP_CTS_PROT |
2474 			  BSS_CHANGED_ERP_PREAMBLE |
2475 			  BSS_CHANGED_ERP_SLOT |
2476 			  BSS_CHANGED_HT |
2477 			  BSS_CHANGED_BASIC_RATES |
2478 			  BSS_CHANGED_BEACON_INT |
2479 			  BSS_CHANGED_BSSID |
2480 			  BSS_CHANGED_CQM |
2481 			  BSS_CHANGED_QOS |
2482 			  BSS_CHANGED_IDLE |
2483 			  BSS_CHANGED_TXPOWER |
2484 			  BSS_CHANGED_MCAST_RATE;
2485 
2486 		if (sdata->vif.mu_mimo_owner)
2487 			changed |= BSS_CHANGED_MU_GROUPS;
2488 
2489 		switch (sdata->vif.type) {
2490 		case NL80211_IFTYPE_STATION:
2491 			changed |= BSS_CHANGED_ASSOC |
2492 				   BSS_CHANGED_ARP_FILTER |
2493 				   BSS_CHANGED_PS;
2494 
2495 			/* Re-send beacon info report to the driver */
2496 			if (sdata->u.mgd.have_beacon)
2497 				changed |= BSS_CHANGED_BEACON_INFO;
2498 
2499 			if (sdata->vif.bss_conf.max_idle_period ||
2500 			    sdata->vif.bss_conf.protected_keep_alive)
2501 				changed |= BSS_CHANGED_KEEP_ALIVE;
2502 
2503 			sdata_lock(sdata);
2504 			ieee80211_bss_info_change_notify(sdata, changed);
2505 			sdata_unlock(sdata);
2506 			break;
2507 		case NL80211_IFTYPE_OCB:
2508 			changed |= BSS_CHANGED_OCB;
2509 			ieee80211_bss_info_change_notify(sdata, changed);
2510 			break;
2511 		case NL80211_IFTYPE_ADHOC:
2512 			changed |= BSS_CHANGED_IBSS;
2513 			fallthrough;
2514 		case NL80211_IFTYPE_AP:
2515 			changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS;
2516 
2517 			if (sdata->vif.bss_conf.ftm_responder == 1 &&
2518 			    wiphy_ext_feature_isset(sdata->local->hw.wiphy,
2519 					NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER))
2520 				changed |= BSS_CHANGED_FTM_RESPONDER;
2521 
2522 			if (sdata->vif.type == NL80211_IFTYPE_AP) {
2523 				changed |= BSS_CHANGED_AP_PROBE_RESP;
2524 
2525 				if (rcu_access_pointer(sdata->u.ap.beacon))
2526 					drv_start_ap(local, sdata);
2527 			}
2528 			fallthrough;
2529 		case NL80211_IFTYPE_MESH_POINT:
2530 			if (sdata->vif.bss_conf.enable_beacon) {
2531 				changed |= BSS_CHANGED_BEACON |
2532 					   BSS_CHANGED_BEACON_ENABLED;
2533 				ieee80211_bss_info_change_notify(sdata, changed);
2534 			}
2535 			break;
2536 		case NL80211_IFTYPE_NAN:
2537 			res = ieee80211_reconfig_nan(sdata);
2538 			if (res < 0) {
2539 				ieee80211_handle_reconfig_failure(local);
2540 				return res;
2541 			}
2542 			break;
2543 		case NL80211_IFTYPE_AP_VLAN:
2544 		case NL80211_IFTYPE_MONITOR:
2545 		case NL80211_IFTYPE_P2P_DEVICE:
2546 			/* nothing to do */
2547 			break;
2548 		case NL80211_IFTYPE_UNSPECIFIED:
2549 		case NUM_NL80211_IFTYPES:
2550 		case NL80211_IFTYPE_P2P_CLIENT:
2551 		case NL80211_IFTYPE_P2P_GO:
2552 		case NL80211_IFTYPE_WDS:
2553 			WARN_ON(1);
2554 			break;
2555 		}
2556 	}
2557 
2558 	ieee80211_recalc_ps(local);
2559 
2560 	/*
2561 	 * The sta might be in psm against the ap (e.g. because
2562 	 * this was the state before a hw restart), so we
2563 	 * explicitly send a null packet in order to make sure
2564 	 * it'll sync against the ap (and get out of psm).
2565 	 */
2566 	if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) {
2567 		list_for_each_entry(sdata, &local->interfaces, list) {
2568 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2569 				continue;
2570 			if (!sdata->u.mgd.associated)
2571 				continue;
2572 
2573 			ieee80211_send_nullfunc(local, sdata, false);
2574 		}
2575 	}
2576 
2577 	/* APs are now beaconing, add back stations */
2578 	mutex_lock(&local->sta_mtx);
2579 	list_for_each_entry(sta, &local->sta_list, list) {
2580 		enum ieee80211_sta_state state;
2581 
2582 		if (!sta->uploaded)
2583 			continue;
2584 
2585 		if (sta->sdata->vif.type != NL80211_IFTYPE_AP &&
2586 		    sta->sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
2587 			continue;
2588 
2589 		for (state = IEEE80211_STA_NOTEXIST;
2590 		     state < sta->sta_state; state++)
2591 			WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
2592 					      state + 1));
2593 	}
2594 	mutex_unlock(&local->sta_mtx);
2595 
2596 	/* add back keys */
2597 	list_for_each_entry(sdata, &local->interfaces, list)
2598 		ieee80211_reenable_keys(sdata);
2599 
2600 	/* Reconfigure sched scan if it was interrupted by FW restart */
2601 	mutex_lock(&local->mtx);
2602 	sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata,
2603 						lockdep_is_held(&local->mtx));
2604 	sched_scan_req = rcu_dereference_protected(local->sched_scan_req,
2605 						lockdep_is_held(&local->mtx));
2606 	if (sched_scan_sdata && sched_scan_req)
2607 		/*
2608 		 * Sched scan stopped, but we don't want to report it. Instead,
2609 		 * we're trying to reschedule. However, if more than one scan
2610 		 * plan was set, we cannot reschedule since we don't know which
2611 		 * scan plan was currently running (and some scan plans may have
2612 		 * already finished).
2613 		 */
2614 		if (sched_scan_req->n_scan_plans > 1 ||
2615 		    __ieee80211_request_sched_scan_start(sched_scan_sdata,
2616 							 sched_scan_req)) {
2617 			RCU_INIT_POINTER(local->sched_scan_sdata, NULL);
2618 			RCU_INIT_POINTER(local->sched_scan_req, NULL);
2619 			sched_scan_stopped = true;
2620 		}
2621 	mutex_unlock(&local->mtx);
2622 
2623 	if (sched_scan_stopped)
2624 		cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0);
2625 
2626  wake_up:
2627 
2628 	if (local->monitors == local->open_count && local->monitors > 0)
2629 		ieee80211_add_virtual_monitor(local);
2630 
2631 	/*
2632 	 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation
2633 	 * sessions can be established after a resume.
2634 	 *
2635 	 * Also tear down aggregation sessions since reconfiguring
2636 	 * them in a hardware restart scenario is not easily done
2637 	 * right now, and the hardware will have lost information
2638 	 * about the sessions, but we and the AP still think they
2639 	 * are active. This is really a workaround though.
2640 	 */
2641 	if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) {
2642 		mutex_lock(&local->sta_mtx);
2643 
2644 		list_for_each_entry(sta, &local->sta_list, list) {
2645 			if (!local->resuming)
2646 				ieee80211_sta_tear_down_BA_sessions(
2647 						sta, AGG_STOP_LOCAL_REQUEST);
2648 			clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
2649 		}
2650 
2651 		mutex_unlock(&local->sta_mtx);
2652 	}
2653 
2654 	/*
2655 	 * If this is for hw restart things are still running.
2656 	 * We may want to change that later, however.
2657 	 */
2658 	if (local->open_count && (!suspended || reconfig_due_to_wowlan))
2659 		drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART);
2660 
2661 	if (local->in_reconfig) {
2662 		local->in_reconfig = false;
2663 		barrier();
2664 
2665 		/* Restart deferred ROCs */
2666 		mutex_lock(&local->mtx);
2667 		ieee80211_start_next_roc(local);
2668 		mutex_unlock(&local->mtx);
2669 
2670 		/* Requeue all works */
2671 		list_for_each_entry(sdata, &local->interfaces, list)
2672 			ieee80211_queue_work(&local->hw, &sdata->work);
2673 	}
2674 
2675 	ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
2676 					IEEE80211_QUEUE_STOP_REASON_SUSPEND,
2677 					false);
2678 
2679 	if (!suspended)
2680 		return 0;
2681 
2682 #ifdef CONFIG_PM
2683 	/* first set suspended false, then resuming */
2684 	local->suspended = false;
2685 	mb();
2686 	local->resuming = false;
2687 
2688 	ieee80211_flush_completed_scan(local, false);
2689 
2690 	if (local->open_count && !reconfig_due_to_wowlan)
2691 		drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND);
2692 
2693 	list_for_each_entry(sdata, &local->interfaces, list) {
2694 		if (!ieee80211_sdata_running(sdata))
2695 			continue;
2696 		if (sdata->vif.type == NL80211_IFTYPE_STATION)
2697 			ieee80211_sta_restart(sdata);
2698 	}
2699 
2700 	mod_timer(&local->sta_cleanup, jiffies + 1);
2701 #else
2702 	WARN_ON(1);
2703 #endif
2704 
2705 	return 0;
2706 }
2707 
2708 void ieee80211_resume_disconnect(struct ieee80211_vif *vif)
2709 {
2710 	struct ieee80211_sub_if_data *sdata;
2711 	struct ieee80211_local *local;
2712 	struct ieee80211_key *key;
2713 
2714 	if (WARN_ON(!vif))
2715 		return;
2716 
2717 	sdata = vif_to_sdata(vif);
2718 	local = sdata->local;
2719 
2720 	if (WARN_ON(!local->resuming))
2721 		return;
2722 
2723 	if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2724 		return;
2725 
2726 	sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME;
2727 
2728 	mutex_lock(&local->key_mtx);
2729 	list_for_each_entry(key, &sdata->key_list, list)
2730 		key->flags |= KEY_FLAG_TAINTED;
2731 	mutex_unlock(&local->key_mtx);
2732 }
2733 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect);
2734 
2735 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata)
2736 {
2737 	struct ieee80211_local *local = sdata->local;
2738 	struct ieee80211_chanctx_conf *chanctx_conf;
2739 	struct ieee80211_chanctx *chanctx;
2740 
2741 	mutex_lock(&local->chanctx_mtx);
2742 
2743 	chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
2744 					lockdep_is_held(&local->chanctx_mtx));
2745 
2746 	/*
2747 	 * This function can be called from a work, thus it may be possible
2748 	 * that the chanctx_conf is removed (due to a disconnection, for
2749 	 * example).
2750 	 * So nothing should be done in such case.
2751 	 */
2752 	if (!chanctx_conf)
2753 		goto unlock;
2754 
2755 	chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf);
2756 	ieee80211_recalc_smps_chanctx(local, chanctx);
2757  unlock:
2758 	mutex_unlock(&local->chanctx_mtx);
2759 }
2760 
2761 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata)
2762 {
2763 	struct ieee80211_local *local = sdata->local;
2764 	struct ieee80211_chanctx_conf *chanctx_conf;
2765 	struct ieee80211_chanctx *chanctx;
2766 
2767 	mutex_lock(&local->chanctx_mtx);
2768 
2769 	chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
2770 					lockdep_is_held(&local->chanctx_mtx));
2771 
2772 	if (WARN_ON_ONCE(!chanctx_conf))
2773 		goto unlock;
2774 
2775 	chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf);
2776 	ieee80211_recalc_chanctx_min_def(local, chanctx);
2777  unlock:
2778 	mutex_unlock(&local->chanctx_mtx);
2779 }
2780 
2781 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset)
2782 {
2783 	size_t pos = offset;
2784 
2785 	while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC)
2786 		pos += 2 + ies[pos + 1];
2787 
2788 	return pos;
2789 }
2790 
2791 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata,
2792 					    int rssi_min_thold,
2793 					    int rssi_max_thold)
2794 {
2795 	trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold);
2796 
2797 	if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
2798 		return;
2799 
2800 	/*
2801 	 * Scale up threshold values before storing it, as the RSSI averaging
2802 	 * algorithm uses a scaled up value as well. Change this scaling
2803 	 * factor if the RSSI averaging algorithm changes.
2804 	 */
2805 	sdata->u.mgd.rssi_min_thold = rssi_min_thold*16;
2806 	sdata->u.mgd.rssi_max_thold = rssi_max_thold*16;
2807 }
2808 
2809 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif,
2810 				    int rssi_min_thold,
2811 				    int rssi_max_thold)
2812 {
2813 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
2814 
2815 	WARN_ON(rssi_min_thold == rssi_max_thold ||
2816 		rssi_min_thold > rssi_max_thold);
2817 
2818 	_ieee80211_enable_rssi_reports(sdata, rssi_min_thold,
2819 				       rssi_max_thold);
2820 }
2821 EXPORT_SYMBOL(ieee80211_enable_rssi_reports);
2822 
2823 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif)
2824 {
2825 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
2826 
2827 	_ieee80211_enable_rssi_reports(sdata, 0, 0);
2828 }
2829 EXPORT_SYMBOL(ieee80211_disable_rssi_reports);
2830 
2831 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
2832 			      u16 cap)
2833 {
2834 	__le16 tmp;
2835 
2836 	*pos++ = WLAN_EID_HT_CAPABILITY;
2837 	*pos++ = sizeof(struct ieee80211_ht_cap);
2838 	memset(pos, 0, sizeof(struct ieee80211_ht_cap));
2839 
2840 	/* capability flags */
2841 	tmp = cpu_to_le16(cap);
2842 	memcpy(pos, &tmp, sizeof(u16));
2843 	pos += sizeof(u16);
2844 
2845 	/* AMPDU parameters */
2846 	*pos++ = ht_cap->ampdu_factor |
2847 		 (ht_cap->ampdu_density <<
2848 			IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT);
2849 
2850 	/* MCS set */
2851 	memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs));
2852 	pos += sizeof(ht_cap->mcs);
2853 
2854 	/* extended capabilities */
2855 	pos += sizeof(__le16);
2856 
2857 	/* BF capabilities */
2858 	pos += sizeof(__le32);
2859 
2860 	/* antenna selection */
2861 	pos += sizeof(u8);
2862 
2863 	return pos;
2864 }
2865 
2866 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
2867 			       u32 cap)
2868 {
2869 	__le32 tmp;
2870 
2871 	*pos++ = WLAN_EID_VHT_CAPABILITY;
2872 	*pos++ = sizeof(struct ieee80211_vht_cap);
2873 	memset(pos, 0, sizeof(struct ieee80211_vht_cap));
2874 
2875 	/* capability flags */
2876 	tmp = cpu_to_le32(cap);
2877 	memcpy(pos, &tmp, sizeof(u32));
2878 	pos += sizeof(u32);
2879 
2880 	/* VHT MCS set */
2881 	memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs));
2882 	pos += sizeof(vht_cap->vht_mcs);
2883 
2884 	return pos;
2885 }
2886 
2887 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype)
2888 {
2889 	const struct ieee80211_sta_he_cap *he_cap;
2890 	struct ieee80211_supported_band *sband;
2891 	u8 n;
2892 
2893 	sband = ieee80211_get_sband(sdata);
2894 	if (!sband)
2895 		return 0;
2896 
2897 	he_cap = ieee80211_get_he_iftype_cap(sband, iftype);
2898 	if (!he_cap)
2899 		return 0;
2900 
2901 	n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem);
2902 	return 2 + 1 +
2903 	       sizeof(he_cap->he_cap_elem) + n +
2904 	       ieee80211_he_ppe_size(he_cap->ppe_thres[0],
2905 				     he_cap->he_cap_elem.phy_cap_info);
2906 }
2907 
2908 u8 *ieee80211_ie_build_he_cap(u8 *pos,
2909 			      const struct ieee80211_sta_he_cap *he_cap,
2910 			      u8 *end)
2911 {
2912 	u8 n;
2913 	u8 ie_len;
2914 	u8 *orig_pos = pos;
2915 
2916 	/* Make sure we have place for the IE */
2917 	/*
2918 	 * TODO: the 1 added is because this temporarily is under the EXTENSION
2919 	 * IE. Get rid of it when it moves.
2920 	 */
2921 	if (!he_cap)
2922 		return orig_pos;
2923 
2924 	n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem);
2925 	ie_len = 2 + 1 +
2926 		 sizeof(he_cap->he_cap_elem) + n +
2927 		 ieee80211_he_ppe_size(he_cap->ppe_thres[0],
2928 				       he_cap->he_cap_elem.phy_cap_info);
2929 
2930 	if ((end - pos) < ie_len)
2931 		return orig_pos;
2932 
2933 	*pos++ = WLAN_EID_EXTENSION;
2934 	pos++; /* We'll set the size later below */
2935 	*pos++ = WLAN_EID_EXT_HE_CAPABILITY;
2936 
2937 	/* Fixed data */
2938 	memcpy(pos, &he_cap->he_cap_elem, sizeof(he_cap->he_cap_elem));
2939 	pos += sizeof(he_cap->he_cap_elem);
2940 
2941 	memcpy(pos, &he_cap->he_mcs_nss_supp, n);
2942 	pos += n;
2943 
2944 	/* Check if PPE Threshold should be present */
2945 	if ((he_cap->he_cap_elem.phy_cap_info[6] &
2946 	     IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0)
2947 		goto end;
2948 
2949 	/*
2950 	 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm:
2951 	 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK)
2952 	 */
2953 	n = hweight8(he_cap->ppe_thres[0] &
2954 		     IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK);
2955 	n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >>
2956 		   IEEE80211_PPE_THRES_NSS_POS));
2957 
2958 	/*
2959 	 * Each pair is 6 bits, and we need to add the 7 "header" bits to the
2960 	 * total size.
2961 	 */
2962 	n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7;
2963 	n = DIV_ROUND_UP(n, 8);
2964 
2965 	/* Copy PPE Thresholds */
2966 	memcpy(pos, &he_cap->ppe_thres, n);
2967 	pos += n;
2968 
2969 end:
2970 	orig_pos[1] = (pos - orig_pos) - 2;
2971 	return pos;
2972 }
2973 
2974 void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata,
2975 				    struct sk_buff *skb)
2976 {
2977 	struct ieee80211_supported_band *sband;
2978 	const struct ieee80211_sband_iftype_data *iftd;
2979 	enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif);
2980 	u8 *pos;
2981 	u16 cap;
2982 
2983 	if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy,
2984 					  BIT(NL80211_BAND_6GHZ),
2985 					  IEEE80211_CHAN_NO_HE))
2986 		return;
2987 
2988 	sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ];
2989 
2990 	iftd = ieee80211_get_sband_iftype_data(sband, iftype);
2991 	if (!iftd)
2992 		return;
2993 
2994 	/* Check for device HE 6 GHz capability before adding element */
2995 	if (!iftd->he_6ghz_capa.capa)
2996 		return;
2997 
2998 	cap = le16_to_cpu(iftd->he_6ghz_capa.capa);
2999 	cap &= ~IEEE80211_HE_6GHZ_CAP_SM_PS;
3000 
3001 	switch (sdata->smps_mode) {
3002 	case IEEE80211_SMPS_AUTOMATIC:
3003 	case IEEE80211_SMPS_NUM_MODES:
3004 		WARN_ON(1);
3005 		fallthrough;
3006 	case IEEE80211_SMPS_OFF:
3007 		cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED,
3008 				       IEEE80211_HE_6GHZ_CAP_SM_PS);
3009 		break;
3010 	case IEEE80211_SMPS_STATIC:
3011 		cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC,
3012 				       IEEE80211_HE_6GHZ_CAP_SM_PS);
3013 		break;
3014 	case IEEE80211_SMPS_DYNAMIC:
3015 		cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC,
3016 				       IEEE80211_HE_6GHZ_CAP_SM_PS);
3017 		break;
3018 	}
3019 
3020 	pos = skb_put(skb, 2 + 1 + sizeof(cap));
3021 	ieee80211_write_he_6ghz_cap(pos, cpu_to_le16(cap),
3022 				    pos + 2 + 1 + sizeof(cap));
3023 }
3024 
3025 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
3026 			       const struct cfg80211_chan_def *chandef,
3027 			       u16 prot_mode, bool rifs_mode)
3028 {
3029 	struct ieee80211_ht_operation *ht_oper;
3030 	/* Build HT Information */
3031 	*pos++ = WLAN_EID_HT_OPERATION;
3032 	*pos++ = sizeof(struct ieee80211_ht_operation);
3033 	ht_oper = (struct ieee80211_ht_operation *)pos;
3034 	ht_oper->primary_chan = ieee80211_frequency_to_channel(
3035 					chandef->chan->center_freq);
3036 	switch (chandef->width) {
3037 	case NL80211_CHAN_WIDTH_160:
3038 	case NL80211_CHAN_WIDTH_80P80:
3039 	case NL80211_CHAN_WIDTH_80:
3040 	case NL80211_CHAN_WIDTH_40:
3041 		if (chandef->center_freq1 > chandef->chan->center_freq)
3042 			ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
3043 		else
3044 			ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
3045 		break;
3046 	default:
3047 		ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE;
3048 		break;
3049 	}
3050 	if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 &&
3051 	    chandef->width != NL80211_CHAN_WIDTH_20_NOHT &&
3052 	    chandef->width != NL80211_CHAN_WIDTH_20)
3053 		ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY;
3054 
3055 	if (rifs_mode)
3056 		ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE;
3057 
3058 	ht_oper->operation_mode = cpu_to_le16(prot_mode);
3059 	ht_oper->stbc_param = 0x0000;
3060 
3061 	/* It seems that Basic MCS set and Supported MCS set
3062 	   are identical for the first 10 bytes */
3063 	memset(&ht_oper->basic_set, 0, 16);
3064 	memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10);
3065 
3066 	return pos + sizeof(struct ieee80211_ht_operation);
3067 }
3068 
3069 void ieee80211_ie_build_wide_bw_cs(u8 *pos,
3070 				   const struct cfg80211_chan_def *chandef)
3071 {
3072 	*pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH;	/* EID */
3073 	*pos++ = 3;					/* IE length */
3074 	/* New channel width */
3075 	switch (chandef->width) {
3076 	case NL80211_CHAN_WIDTH_80:
3077 		*pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ;
3078 		break;
3079 	case NL80211_CHAN_WIDTH_160:
3080 		*pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ;
3081 		break;
3082 	case NL80211_CHAN_WIDTH_80P80:
3083 		*pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ;
3084 		break;
3085 	default:
3086 		*pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT;
3087 	}
3088 
3089 	/* new center frequency segment 0 */
3090 	*pos++ = ieee80211_frequency_to_channel(chandef->center_freq1);
3091 	/* new center frequency segment 1 */
3092 	if (chandef->center_freq2)
3093 		*pos++ = ieee80211_frequency_to_channel(chandef->center_freq2);
3094 	else
3095 		*pos++ = 0;
3096 }
3097 
3098 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
3099 				const struct cfg80211_chan_def *chandef)
3100 {
3101 	struct ieee80211_vht_operation *vht_oper;
3102 
3103 	*pos++ = WLAN_EID_VHT_OPERATION;
3104 	*pos++ = sizeof(struct ieee80211_vht_operation);
3105 	vht_oper = (struct ieee80211_vht_operation *)pos;
3106 	vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel(
3107 							chandef->center_freq1);
3108 	if (chandef->center_freq2)
3109 		vht_oper->center_freq_seg1_idx =
3110 			ieee80211_frequency_to_channel(chandef->center_freq2);
3111 	else
3112 		vht_oper->center_freq_seg1_idx = 0x00;
3113 
3114 	switch (chandef->width) {
3115 	case NL80211_CHAN_WIDTH_160:
3116 		/*
3117 		 * Convert 160 MHz channel width to new style as interop
3118 		 * workaround.
3119 		 */
3120 		vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
3121 		vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx;
3122 		if (chandef->chan->center_freq < chandef->center_freq1)
3123 			vht_oper->center_freq_seg0_idx -= 8;
3124 		else
3125 			vht_oper->center_freq_seg0_idx += 8;
3126 		break;
3127 	case NL80211_CHAN_WIDTH_80P80:
3128 		/*
3129 		 * Convert 80+80 MHz channel width to new style as interop
3130 		 * workaround.
3131 		 */
3132 		vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
3133 		break;
3134 	case NL80211_CHAN_WIDTH_80:
3135 		vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
3136 		break;
3137 	default:
3138 		vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT;
3139 		break;
3140 	}
3141 
3142 	/* don't require special VHT peer rates */
3143 	vht_oper->basic_mcs_set = cpu_to_le16(0xffff);
3144 
3145 	return pos + sizeof(struct ieee80211_vht_operation);
3146 }
3147 
3148 u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef)
3149 {
3150 	struct ieee80211_he_operation *he_oper;
3151 	struct ieee80211_he_6ghz_oper *he_6ghz_op;
3152 	u32 he_oper_params;
3153 	u8 ie_len = 1 + sizeof(struct ieee80211_he_operation);
3154 
3155 	if (chandef->chan->band == NL80211_BAND_6GHZ)
3156 		ie_len += sizeof(struct ieee80211_he_6ghz_oper);
3157 
3158 	*pos++ = WLAN_EID_EXTENSION;
3159 	*pos++ = ie_len;
3160 	*pos++ = WLAN_EID_EXT_HE_OPERATION;
3161 
3162 	he_oper_params = 0;
3163 	he_oper_params |= u32_encode_bits(1023, /* disabled */
3164 				IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK);
3165 	he_oper_params |= u32_encode_bits(1,
3166 				IEEE80211_HE_OPERATION_ER_SU_DISABLE);
3167 	he_oper_params |= u32_encode_bits(1,
3168 				IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED);
3169 	if (chandef->chan->band == NL80211_BAND_6GHZ)
3170 		he_oper_params |= u32_encode_bits(1,
3171 				IEEE80211_HE_OPERATION_6GHZ_OP_INFO);
3172 
3173 	he_oper = (struct ieee80211_he_operation *)pos;
3174 	he_oper->he_oper_params = cpu_to_le32(he_oper_params);
3175 
3176 	/* don't require special HE peer rates */
3177 	he_oper->he_mcs_nss_set = cpu_to_le16(0xffff);
3178 	pos += sizeof(struct ieee80211_he_operation);
3179 
3180 	if (chandef->chan->band != NL80211_BAND_6GHZ)
3181 		goto out;
3182 
3183 	/* TODO add VHT operational */
3184 	he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos;
3185 	he_6ghz_op->minrate = 6; /* 6 Mbps */
3186 	he_6ghz_op->primary =
3187 		ieee80211_frequency_to_channel(chandef->chan->center_freq);
3188 	he_6ghz_op->ccfs0 =
3189 		ieee80211_frequency_to_channel(chandef->center_freq1);
3190 	if (chandef->center_freq2)
3191 		he_6ghz_op->ccfs1 =
3192 			ieee80211_frequency_to_channel(chandef->center_freq2);
3193 	else
3194 		he_6ghz_op->ccfs1 = 0;
3195 
3196 	switch (chandef->width) {
3197 	case NL80211_CHAN_WIDTH_160:
3198 		/* Convert 160 MHz channel width to new style as interop
3199 		 * workaround.
3200 		 */
3201 		he_6ghz_op->control =
3202 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ;
3203 		he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0;
3204 		if (chandef->chan->center_freq < chandef->center_freq1)
3205 			he_6ghz_op->ccfs0 -= 8;
3206 		else
3207 			he_6ghz_op->ccfs0 += 8;
3208 		fallthrough;
3209 	case NL80211_CHAN_WIDTH_80P80:
3210 		he_6ghz_op->control =
3211 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ;
3212 		break;
3213 	case NL80211_CHAN_WIDTH_80:
3214 		he_6ghz_op->control =
3215 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ;
3216 		break;
3217 	case NL80211_CHAN_WIDTH_40:
3218 		he_6ghz_op->control =
3219 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ;
3220 		break;
3221 	default:
3222 		he_6ghz_op->control =
3223 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ;
3224 		break;
3225 	}
3226 
3227 	pos += sizeof(struct ieee80211_he_6ghz_oper);
3228 
3229 out:
3230 	return pos;
3231 }
3232 
3233 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper,
3234 			       struct cfg80211_chan_def *chandef)
3235 {
3236 	enum nl80211_channel_type channel_type;
3237 
3238 	if (!ht_oper)
3239 		return false;
3240 
3241 	switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) {
3242 	case IEEE80211_HT_PARAM_CHA_SEC_NONE:
3243 		channel_type = NL80211_CHAN_HT20;
3244 		break;
3245 	case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
3246 		channel_type = NL80211_CHAN_HT40PLUS;
3247 		break;
3248 	case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
3249 		channel_type = NL80211_CHAN_HT40MINUS;
3250 		break;
3251 	default:
3252 		channel_type = NL80211_CHAN_NO_HT;
3253 		return false;
3254 	}
3255 
3256 	cfg80211_chandef_create(chandef, chandef->chan, channel_type);
3257 	return true;
3258 }
3259 
3260 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info,
3261 				const struct ieee80211_vht_operation *oper,
3262 				const struct ieee80211_ht_operation *htop,
3263 				struct cfg80211_chan_def *chandef)
3264 {
3265 	struct cfg80211_chan_def new = *chandef;
3266 	int cf0, cf1;
3267 	int ccfs0, ccfs1, ccfs2;
3268 	int ccf0, ccf1;
3269 	u32 vht_cap;
3270 	bool support_80_80 = false;
3271 	bool support_160 = false;
3272 	u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info,
3273 					  IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
3274 	u8 supp_chwidth = u32_get_bits(vht_cap_info,
3275 				       IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
3276 
3277 	if (!oper || !htop)
3278 		return false;
3279 
3280 	vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap;
3281 	support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK |
3282 				  IEEE80211_VHT_CAP_EXT_NSS_BW_MASK));
3283 	support_80_80 = ((vht_cap &
3284 			 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) ||
3285 			(vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ &&
3286 			 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) ||
3287 			((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >>
3288 				    IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1));
3289 	ccfs0 = oper->center_freq_seg0_idx;
3290 	ccfs1 = oper->center_freq_seg1_idx;
3291 	ccfs2 = (le16_to_cpu(htop->operation_mode) &
3292 				IEEE80211_HT_OP_MODE_CCFS2_MASK)
3293 			>> IEEE80211_HT_OP_MODE_CCFS2_SHIFT;
3294 
3295 	ccf0 = ccfs0;
3296 
3297 	/* if not supported, parse as though we didn't understand it */
3298 	if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW))
3299 		ext_nss_bw_supp = 0;
3300 
3301 	/*
3302 	 * Cf. IEEE 802.11 Table 9-250
3303 	 *
3304 	 * We really just consider that because it's inefficient to connect
3305 	 * at a higher bandwidth than we'll actually be able to use.
3306 	 */
3307 	switch ((supp_chwidth << 4) | ext_nss_bw_supp) {
3308 	default:
3309 	case 0x00:
3310 		ccf1 = 0;
3311 		support_160 = false;
3312 		support_80_80 = false;
3313 		break;
3314 	case 0x01:
3315 		support_80_80 = false;
3316 		fallthrough;
3317 	case 0x02:
3318 	case 0x03:
3319 		ccf1 = ccfs2;
3320 		break;
3321 	case 0x10:
3322 		ccf1 = ccfs1;
3323 		break;
3324 	case 0x11:
3325 	case 0x12:
3326 		if (!ccfs1)
3327 			ccf1 = ccfs2;
3328 		else
3329 			ccf1 = ccfs1;
3330 		break;
3331 	case 0x13:
3332 	case 0x20:
3333 	case 0x23:
3334 		ccf1 = ccfs1;
3335 		break;
3336 	}
3337 
3338 	cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band);
3339 	cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band);
3340 
3341 	switch (oper->chan_width) {
3342 	case IEEE80211_VHT_CHANWIDTH_USE_HT:
3343 		/* just use HT information directly */
3344 		break;
3345 	case IEEE80211_VHT_CHANWIDTH_80MHZ:
3346 		new.width = NL80211_CHAN_WIDTH_80;
3347 		new.center_freq1 = cf0;
3348 		/* If needed, adjust based on the newer interop workaround. */
3349 		if (ccf1) {
3350 			unsigned int diff;
3351 
3352 			diff = abs(ccf1 - ccf0);
3353 			if ((diff == 8) && support_160) {
3354 				new.width = NL80211_CHAN_WIDTH_160;
3355 				new.center_freq1 = cf1;
3356 			} else if ((diff > 8) && support_80_80) {
3357 				new.width = NL80211_CHAN_WIDTH_80P80;
3358 				new.center_freq2 = cf1;
3359 			}
3360 		}
3361 		break;
3362 	case IEEE80211_VHT_CHANWIDTH_160MHZ:
3363 		/* deprecated encoding */
3364 		new.width = NL80211_CHAN_WIDTH_160;
3365 		new.center_freq1 = cf0;
3366 		break;
3367 	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
3368 		/* deprecated encoding */
3369 		new.width = NL80211_CHAN_WIDTH_80P80;
3370 		new.center_freq1 = cf0;
3371 		new.center_freq2 = cf1;
3372 		break;
3373 	default:
3374 		return false;
3375 	}
3376 
3377 	if (!cfg80211_chandef_valid(&new))
3378 		return false;
3379 
3380 	*chandef = new;
3381 	return true;
3382 }
3383 
3384 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata,
3385 				    const struct ieee80211_he_operation *he_oper,
3386 				    struct cfg80211_chan_def *chandef)
3387 {
3388 	struct ieee80211_local *local = sdata->local;
3389 	struct ieee80211_supported_band *sband;
3390 	enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif);
3391 	const struct ieee80211_sta_he_cap *he_cap;
3392 	struct cfg80211_chan_def he_chandef = *chandef;
3393 	const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
3394 	struct ieee80211_bss_conf *bss_conf = &sdata->vif.bss_conf;
3395 	bool support_80_80, support_160;
3396 	u8 he_phy_cap;
3397 	u32 freq;
3398 
3399 	if (chandef->chan->band != NL80211_BAND_6GHZ)
3400 		return true;
3401 
3402 	sband = local->hw.wiphy->bands[NL80211_BAND_6GHZ];
3403 
3404 	he_cap = ieee80211_get_he_iftype_cap(sband, iftype);
3405 	if (!he_cap) {
3406 		sdata_info(sdata, "Missing iftype sband data/HE cap");
3407 		return false;
3408 	}
3409 
3410 	he_phy_cap = he_cap->he_cap_elem.phy_cap_info[0];
3411 	support_160 =
3412 		he_phy_cap &
3413 		IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
3414 	support_80_80 =
3415 		he_phy_cap &
3416 		IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G;
3417 
3418 	if (!he_oper) {
3419 		sdata_info(sdata,
3420 			   "HE is not advertised on (on %d MHz), expect issues\n",
3421 			   chandef->chan->center_freq);
3422 		return false;
3423 	}
3424 
3425 	he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
3426 
3427 	if (!he_6ghz_oper) {
3428 		sdata_info(sdata,
3429 			   "HE 6GHz operation missing (on %d MHz), expect issues\n",
3430 			   chandef->chan->center_freq);
3431 		return false;
3432 	}
3433 
3434 	freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary,
3435 					      NL80211_BAND_6GHZ);
3436 	he_chandef.chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq);
3437 
3438 	switch (u8_get_bits(he_6ghz_oper->control,
3439 			    IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
3440 	case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
3441 		bss_conf->power_type = IEEE80211_REG_LPI_AP;
3442 		break;
3443 	case IEEE80211_6GHZ_CTRL_REG_SP_AP:
3444 		bss_conf->power_type = IEEE80211_REG_SP_AP;
3445 		break;
3446 	default:
3447 		bss_conf->power_type = IEEE80211_REG_UNSET_AP;
3448 		break;
3449 	}
3450 
3451 	switch (u8_get_bits(he_6ghz_oper->control,
3452 			    IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) {
3453 	case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ:
3454 		he_chandef.width = NL80211_CHAN_WIDTH_20;
3455 		break;
3456 	case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ:
3457 		he_chandef.width = NL80211_CHAN_WIDTH_40;
3458 		break;
3459 	case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ:
3460 		he_chandef.width = NL80211_CHAN_WIDTH_80;
3461 		break;
3462 	case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ:
3463 		he_chandef.width = NL80211_CHAN_WIDTH_80;
3464 		if (!he_6ghz_oper->ccfs1)
3465 			break;
3466 		if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) {
3467 			if (support_160)
3468 				he_chandef.width = NL80211_CHAN_WIDTH_160;
3469 		} else {
3470 			if (support_80_80)
3471 				he_chandef.width = NL80211_CHAN_WIDTH_80P80;
3472 		}
3473 		break;
3474 	}
3475 
3476 	if (he_chandef.width == NL80211_CHAN_WIDTH_160) {
3477 		he_chandef.center_freq1 =
3478 			ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1,
3479 						       NL80211_BAND_6GHZ);
3480 	} else {
3481 		he_chandef.center_freq1 =
3482 			ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0,
3483 						       NL80211_BAND_6GHZ);
3484 		if (support_80_80 || support_160)
3485 			he_chandef.center_freq2 =
3486 				ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1,
3487 							       NL80211_BAND_6GHZ);
3488 	}
3489 
3490 	if (!cfg80211_chandef_valid(&he_chandef)) {
3491 		sdata_info(sdata,
3492 			   "HE 6GHz operation resulted in invalid chandef: %d MHz/%d/%d MHz/%d MHz\n",
3493 			   he_chandef.chan ? he_chandef.chan->center_freq : 0,
3494 			   he_chandef.width,
3495 			   he_chandef.center_freq1,
3496 			   he_chandef.center_freq2);
3497 		return false;
3498 	}
3499 
3500 	*chandef = he_chandef;
3501 
3502 	return true;
3503 }
3504 
3505 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper,
3506 				struct cfg80211_chan_def *chandef)
3507 {
3508 	u32 oper_freq;
3509 
3510 	if (!oper)
3511 		return false;
3512 
3513 	switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) {
3514 	case IEEE80211_S1G_CHANWIDTH_1MHZ:
3515 		chandef->width = NL80211_CHAN_WIDTH_1;
3516 		break;
3517 	case IEEE80211_S1G_CHANWIDTH_2MHZ:
3518 		chandef->width = NL80211_CHAN_WIDTH_2;
3519 		break;
3520 	case IEEE80211_S1G_CHANWIDTH_4MHZ:
3521 		chandef->width = NL80211_CHAN_WIDTH_4;
3522 		break;
3523 	case IEEE80211_S1G_CHANWIDTH_8MHZ:
3524 		chandef->width = NL80211_CHAN_WIDTH_8;
3525 		break;
3526 	case IEEE80211_S1G_CHANWIDTH_16MHZ:
3527 		chandef->width = NL80211_CHAN_WIDTH_16;
3528 		break;
3529 	default:
3530 		return false;
3531 	}
3532 
3533 	oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch,
3534 						  NL80211_BAND_S1GHZ);
3535 	chandef->center_freq1 = KHZ_TO_MHZ(oper_freq);
3536 	chandef->freq1_offset = oper_freq % 1000;
3537 
3538 	return true;
3539 }
3540 
3541 int ieee80211_parse_bitrates(struct cfg80211_chan_def *chandef,
3542 			     const struct ieee80211_supported_band *sband,
3543 			     const u8 *srates, int srates_len, u32 *rates)
3544 {
3545 	u32 rate_flags = ieee80211_chandef_rate_flags(chandef);
3546 	int shift = ieee80211_chandef_get_shift(chandef);
3547 	struct ieee80211_rate *br;
3548 	int brate, rate, i, j, count = 0;
3549 
3550 	*rates = 0;
3551 
3552 	for (i = 0; i < srates_len; i++) {
3553 		rate = srates[i] & 0x7f;
3554 
3555 		for (j = 0; j < sband->n_bitrates; j++) {
3556 			br = &sband->bitrates[j];
3557 			if ((rate_flags & br->flags) != rate_flags)
3558 				continue;
3559 
3560 			brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5);
3561 			if (brate == rate) {
3562 				*rates |= BIT(j);
3563 				count++;
3564 				break;
3565 			}
3566 		}
3567 	}
3568 	return count;
3569 }
3570 
3571 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata,
3572 			    struct sk_buff *skb, bool need_basic,
3573 			    enum nl80211_band band)
3574 {
3575 	struct ieee80211_local *local = sdata->local;
3576 	struct ieee80211_supported_band *sband;
3577 	int rate, shift;
3578 	u8 i, rates, *pos;
3579 	u32 basic_rates = sdata->vif.bss_conf.basic_rates;
3580 	u32 rate_flags;
3581 
3582 	shift = ieee80211_vif_get_shift(&sdata->vif);
3583 	rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef);
3584 	sband = local->hw.wiphy->bands[band];
3585 	rates = 0;
3586 	for (i = 0; i < sband->n_bitrates; i++) {
3587 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
3588 			continue;
3589 		rates++;
3590 	}
3591 	if (rates > 8)
3592 		rates = 8;
3593 
3594 	if (skb_tailroom(skb) < rates + 2)
3595 		return -ENOMEM;
3596 
3597 	pos = skb_put(skb, rates + 2);
3598 	*pos++ = WLAN_EID_SUPP_RATES;
3599 	*pos++ = rates;
3600 	for (i = 0; i < rates; i++) {
3601 		u8 basic = 0;
3602 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
3603 			continue;
3604 
3605 		if (need_basic && basic_rates & BIT(i))
3606 			basic = 0x80;
3607 		rate = DIV_ROUND_UP(sband->bitrates[i].bitrate,
3608 				    5 * (1 << shift));
3609 		*pos++ = basic | (u8) rate;
3610 	}
3611 
3612 	return 0;
3613 }
3614 
3615 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata,
3616 				struct sk_buff *skb, bool need_basic,
3617 				enum nl80211_band band)
3618 {
3619 	struct ieee80211_local *local = sdata->local;
3620 	struct ieee80211_supported_band *sband;
3621 	int rate, shift;
3622 	u8 i, exrates, *pos;
3623 	u32 basic_rates = sdata->vif.bss_conf.basic_rates;
3624 	u32 rate_flags;
3625 
3626 	rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef);
3627 	shift = ieee80211_vif_get_shift(&sdata->vif);
3628 
3629 	sband = local->hw.wiphy->bands[band];
3630 	exrates = 0;
3631 	for (i = 0; i < sband->n_bitrates; i++) {
3632 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
3633 			continue;
3634 		exrates++;
3635 	}
3636 
3637 	if (exrates > 8)
3638 		exrates -= 8;
3639 	else
3640 		exrates = 0;
3641 
3642 	if (skb_tailroom(skb) < exrates + 2)
3643 		return -ENOMEM;
3644 
3645 	if (exrates) {
3646 		pos = skb_put(skb, exrates + 2);
3647 		*pos++ = WLAN_EID_EXT_SUPP_RATES;
3648 		*pos++ = exrates;
3649 		for (i = 8; i < sband->n_bitrates; i++) {
3650 			u8 basic = 0;
3651 			if ((rate_flags & sband->bitrates[i].flags)
3652 			    != rate_flags)
3653 				continue;
3654 			if (need_basic && basic_rates & BIT(i))
3655 				basic = 0x80;
3656 			rate = DIV_ROUND_UP(sband->bitrates[i].bitrate,
3657 					    5 * (1 << shift));
3658 			*pos++ = basic | (u8) rate;
3659 		}
3660 	}
3661 	return 0;
3662 }
3663 
3664 int ieee80211_ave_rssi(struct ieee80211_vif *vif)
3665 {
3666 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
3667 	struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
3668 
3669 	if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) {
3670 		/* non-managed type inferfaces */
3671 		return 0;
3672 	}
3673 	return -ewma_beacon_signal_read(&ifmgd->ave_beacon_signal);
3674 }
3675 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi);
3676 
3677 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs)
3678 {
3679 	if (!mcs)
3680 		return 1;
3681 
3682 	/* TODO: consider rx_highest */
3683 
3684 	if (mcs->rx_mask[3])
3685 		return 4;
3686 	if (mcs->rx_mask[2])
3687 		return 3;
3688 	if (mcs->rx_mask[1])
3689 		return 2;
3690 	return 1;
3691 }
3692 
3693 /**
3694  * ieee80211_calculate_rx_timestamp - calculate timestamp in frame
3695  * @local: mac80211 hw info struct
3696  * @status: RX status
3697  * @mpdu_len: total MPDU length (including FCS)
3698  * @mpdu_offset: offset into MPDU to calculate timestamp at
3699  *
3700  * This function calculates the RX timestamp at the given MPDU offset, taking
3701  * into account what the RX timestamp was. An offset of 0 will just normalize
3702  * the timestamp to TSF at beginning of MPDU reception.
3703  */
3704 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local,
3705 				     struct ieee80211_rx_status *status,
3706 				     unsigned int mpdu_len,
3707 				     unsigned int mpdu_offset)
3708 {
3709 	u64 ts = status->mactime;
3710 	struct rate_info ri;
3711 	u16 rate;
3712 	u8 n_ltf;
3713 
3714 	if (WARN_ON(!ieee80211_have_rx_timestamp(status)))
3715 		return 0;
3716 
3717 	memset(&ri, 0, sizeof(ri));
3718 
3719 	ri.bw = status->bw;
3720 
3721 	/* Fill cfg80211 rate info */
3722 	switch (status->encoding) {
3723 	case RX_ENC_HE:
3724 		ri.flags |= RATE_INFO_FLAGS_HE_MCS;
3725 		ri.mcs = status->rate_idx;
3726 		ri.nss = status->nss;
3727 		ri.he_ru_alloc = status->he_ru;
3728 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
3729 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
3730 
3731 		/*
3732 		 * See P802.11ax_D6.0, section 27.3.4 for
3733 		 * VHT PPDU format.
3734 		 */
3735 		if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
3736 			mpdu_offset += 2;
3737 			ts += 36;
3738 
3739 			/*
3740 			 * TODO:
3741 			 * For HE MU PPDU, add the HE-SIG-B.
3742 			 * For HE ER PPDU, add 8us for the HE-SIG-A.
3743 			 * For HE TB PPDU, add 4us for the HE-STF.
3744 			 * Add the HE-LTF durations - variable.
3745 			 */
3746 		}
3747 
3748 		break;
3749 	case RX_ENC_HT:
3750 		ri.mcs = status->rate_idx;
3751 		ri.flags |= RATE_INFO_FLAGS_MCS;
3752 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
3753 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
3754 
3755 		/*
3756 		 * See P802.11REVmd_D3.0, section 19.3.2 for
3757 		 * HT PPDU format.
3758 		 */
3759 		if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
3760 			mpdu_offset += 2;
3761 			if (status->enc_flags & RX_ENC_FLAG_HT_GF)
3762 				ts += 24;
3763 			else
3764 				ts += 32;
3765 
3766 			/*
3767 			 * Add Data HT-LTFs per streams
3768 			 * TODO: add Extension HT-LTFs, 4us per LTF
3769 			 */
3770 			n_ltf = ((ri.mcs >> 3) & 3) + 1;
3771 			n_ltf = n_ltf == 3 ? 4 : n_ltf;
3772 			ts += n_ltf * 4;
3773 		}
3774 
3775 		break;
3776 	case RX_ENC_VHT:
3777 		ri.flags |= RATE_INFO_FLAGS_VHT_MCS;
3778 		ri.mcs = status->rate_idx;
3779 		ri.nss = status->nss;
3780 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
3781 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
3782 
3783 		/*
3784 		 * See P802.11REVmd_D3.0, section 21.3.2 for
3785 		 * VHT PPDU format.
3786 		 */
3787 		if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
3788 			mpdu_offset += 2;
3789 			ts += 36;
3790 
3791 			/*
3792 			 * Add VHT-LTFs per streams
3793 			 */
3794 			n_ltf = (ri.nss != 1) && (ri.nss % 2) ?
3795 				ri.nss + 1 : ri.nss;
3796 			ts += 4 * n_ltf;
3797 		}
3798 
3799 		break;
3800 	default:
3801 		WARN_ON(1);
3802 		fallthrough;
3803 	case RX_ENC_LEGACY: {
3804 		struct ieee80211_supported_band *sband;
3805 		int shift = 0;
3806 		int bitrate;
3807 
3808 		switch (status->bw) {
3809 		case RATE_INFO_BW_10:
3810 			shift = 1;
3811 			break;
3812 		case RATE_INFO_BW_5:
3813 			shift = 2;
3814 			break;
3815 		}
3816 
3817 		sband = local->hw.wiphy->bands[status->band];
3818 		bitrate = sband->bitrates[status->rate_idx].bitrate;
3819 		ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift));
3820 
3821 		if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
3822 			if (status->band == NL80211_BAND_5GHZ) {
3823 				ts += 20 << shift;
3824 				mpdu_offset += 2;
3825 			} else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) {
3826 				ts += 96;
3827 			} else {
3828 				ts += 192;
3829 			}
3830 		}
3831 		break;
3832 		}
3833 	}
3834 
3835 	rate = cfg80211_calculate_bitrate(&ri);
3836 	if (WARN_ONCE(!rate,
3837 		      "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n",
3838 		      (unsigned long long)status->flag, status->rate_idx,
3839 		      status->nss))
3840 		return 0;
3841 
3842 	/* rewind from end of MPDU */
3843 	if (status->flag & RX_FLAG_MACTIME_END)
3844 		ts -= mpdu_len * 8 * 10 / rate;
3845 
3846 	ts += mpdu_offset * 8 * 10 / rate;
3847 
3848 	return ts;
3849 }
3850 
3851 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local)
3852 {
3853 	struct ieee80211_sub_if_data *sdata;
3854 	struct cfg80211_chan_def chandef;
3855 
3856 	/* for interface list, to avoid linking iflist_mtx and chanctx_mtx */
3857 	lockdep_assert_wiphy(local->hw.wiphy);
3858 
3859 	mutex_lock(&local->mtx);
3860 	list_for_each_entry(sdata, &local->interfaces, list) {
3861 		/* it might be waiting for the local->mtx, but then
3862 		 * by the time it gets it, sdata->wdev.cac_started
3863 		 * will no longer be true
3864 		 */
3865 		cancel_delayed_work(&sdata->dfs_cac_timer_work);
3866 
3867 		if (sdata->wdev.cac_started) {
3868 			chandef = sdata->vif.bss_conf.chandef;
3869 			ieee80211_vif_release_channel(sdata);
3870 			cfg80211_cac_event(sdata->dev,
3871 					   &chandef,
3872 					   NL80211_RADAR_CAC_ABORTED,
3873 					   GFP_KERNEL);
3874 		}
3875 	}
3876 	mutex_unlock(&local->mtx);
3877 }
3878 
3879 void ieee80211_dfs_radar_detected_work(struct work_struct *work)
3880 {
3881 	struct ieee80211_local *local =
3882 		container_of(work, struct ieee80211_local, radar_detected_work);
3883 	struct cfg80211_chan_def chandef = local->hw.conf.chandef;
3884 	struct ieee80211_chanctx *ctx;
3885 	int num_chanctx = 0;
3886 
3887 	mutex_lock(&local->chanctx_mtx);
3888 	list_for_each_entry(ctx, &local->chanctx_list, list) {
3889 		if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER)
3890 			continue;
3891 
3892 		num_chanctx++;
3893 		chandef = ctx->conf.def;
3894 	}
3895 	mutex_unlock(&local->chanctx_mtx);
3896 
3897 	wiphy_lock(local->hw.wiphy);
3898 	ieee80211_dfs_cac_cancel(local);
3899 	wiphy_unlock(local->hw.wiphy);
3900 
3901 	if (num_chanctx > 1)
3902 		/* XXX: multi-channel is not supported yet */
3903 		WARN_ON(1);
3904 	else
3905 		cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL);
3906 }
3907 
3908 void ieee80211_radar_detected(struct ieee80211_hw *hw)
3909 {
3910 	struct ieee80211_local *local = hw_to_local(hw);
3911 
3912 	trace_api_radar_detected(local);
3913 
3914 	schedule_work(&local->radar_detected_work);
3915 }
3916 EXPORT_SYMBOL(ieee80211_radar_detected);
3917 
3918 u32 ieee80211_chandef_downgrade(struct cfg80211_chan_def *c)
3919 {
3920 	u32 ret;
3921 	int tmp;
3922 
3923 	switch (c->width) {
3924 	case NL80211_CHAN_WIDTH_20:
3925 		c->width = NL80211_CHAN_WIDTH_20_NOHT;
3926 		ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT;
3927 		break;
3928 	case NL80211_CHAN_WIDTH_40:
3929 		c->width = NL80211_CHAN_WIDTH_20;
3930 		c->center_freq1 = c->chan->center_freq;
3931 		ret = IEEE80211_STA_DISABLE_40MHZ |
3932 		      IEEE80211_STA_DISABLE_VHT;
3933 		break;
3934 	case NL80211_CHAN_WIDTH_80:
3935 		tmp = (30 + c->chan->center_freq - c->center_freq1)/20;
3936 		/* n_P40 */
3937 		tmp /= 2;
3938 		/* freq_P40 */
3939 		c->center_freq1 = c->center_freq1 - 20 + 40 * tmp;
3940 		c->width = NL80211_CHAN_WIDTH_40;
3941 		ret = IEEE80211_STA_DISABLE_VHT;
3942 		break;
3943 	case NL80211_CHAN_WIDTH_80P80:
3944 		c->center_freq2 = 0;
3945 		c->width = NL80211_CHAN_WIDTH_80;
3946 		ret = IEEE80211_STA_DISABLE_80P80MHZ |
3947 		      IEEE80211_STA_DISABLE_160MHZ;
3948 		break;
3949 	case NL80211_CHAN_WIDTH_160:
3950 		/* n_P20 */
3951 		tmp = (70 + c->chan->center_freq - c->center_freq1)/20;
3952 		/* n_P80 */
3953 		tmp /= 4;
3954 		c->center_freq1 = c->center_freq1 - 40 + 80 * tmp;
3955 		c->width = NL80211_CHAN_WIDTH_80;
3956 		ret = IEEE80211_STA_DISABLE_80P80MHZ |
3957 		      IEEE80211_STA_DISABLE_160MHZ;
3958 		break;
3959 	default:
3960 	case NL80211_CHAN_WIDTH_20_NOHT:
3961 		WARN_ON_ONCE(1);
3962 		c->width = NL80211_CHAN_WIDTH_20_NOHT;
3963 		ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT;
3964 		break;
3965 	case NL80211_CHAN_WIDTH_1:
3966 	case NL80211_CHAN_WIDTH_2:
3967 	case NL80211_CHAN_WIDTH_4:
3968 	case NL80211_CHAN_WIDTH_8:
3969 	case NL80211_CHAN_WIDTH_16:
3970 	case NL80211_CHAN_WIDTH_5:
3971 	case NL80211_CHAN_WIDTH_10:
3972 		WARN_ON_ONCE(1);
3973 		/* keep c->width */
3974 		ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT;
3975 		break;
3976 	}
3977 
3978 	WARN_ON_ONCE(!cfg80211_chandef_valid(c));
3979 
3980 	return ret;
3981 }
3982 
3983 /*
3984  * Returns true if smps_mode_new is strictly more restrictive than
3985  * smps_mode_old.
3986  */
3987 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old,
3988 				   enum ieee80211_smps_mode smps_mode_new)
3989 {
3990 	if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC ||
3991 			 smps_mode_new == IEEE80211_SMPS_AUTOMATIC))
3992 		return false;
3993 
3994 	switch (smps_mode_old) {
3995 	case IEEE80211_SMPS_STATIC:
3996 		return false;
3997 	case IEEE80211_SMPS_DYNAMIC:
3998 		return smps_mode_new == IEEE80211_SMPS_STATIC;
3999 	case IEEE80211_SMPS_OFF:
4000 		return smps_mode_new != IEEE80211_SMPS_OFF;
4001 	default:
4002 		WARN_ON(1);
4003 	}
4004 
4005 	return false;
4006 }
4007 
4008 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata,
4009 			      struct cfg80211_csa_settings *csa_settings)
4010 {
4011 	struct sk_buff *skb;
4012 	struct ieee80211_mgmt *mgmt;
4013 	struct ieee80211_local *local = sdata->local;
4014 	int freq;
4015 	int hdr_len = offsetofend(struct ieee80211_mgmt,
4016 				  u.action.u.chan_switch);
4017 	u8 *pos;
4018 
4019 	if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
4020 	    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
4021 		return -EOPNOTSUPP;
4022 
4023 	skb = dev_alloc_skb(local->tx_headroom + hdr_len +
4024 			    5 + /* channel switch announcement element */
4025 			    3 + /* secondary channel offset element */
4026 			    5 + /* wide bandwidth channel switch announcement */
4027 			    8); /* mesh channel switch parameters element */
4028 	if (!skb)
4029 		return -ENOMEM;
4030 
4031 	skb_reserve(skb, local->tx_headroom);
4032 	mgmt = skb_put_zero(skb, hdr_len);
4033 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
4034 					  IEEE80211_STYPE_ACTION);
4035 
4036 	eth_broadcast_addr(mgmt->da);
4037 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
4038 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
4039 		memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN);
4040 	} else {
4041 		struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
4042 		memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN);
4043 	}
4044 	mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT;
4045 	mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH;
4046 	pos = skb_put(skb, 5);
4047 	*pos++ = WLAN_EID_CHANNEL_SWITCH;			/* EID */
4048 	*pos++ = 3;						/* IE length */
4049 	*pos++ = csa_settings->block_tx ? 1 : 0;		/* CSA mode */
4050 	freq = csa_settings->chandef.chan->center_freq;
4051 	*pos++ = ieee80211_frequency_to_channel(freq);		/* channel */
4052 	*pos++ = csa_settings->count;				/* count */
4053 
4054 	if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) {
4055 		enum nl80211_channel_type ch_type;
4056 
4057 		skb_put(skb, 3);
4058 		*pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET;	/* EID */
4059 		*pos++ = 1;					/* IE length */
4060 		ch_type = cfg80211_get_chandef_type(&csa_settings->chandef);
4061 		if (ch_type == NL80211_CHAN_HT40PLUS)
4062 			*pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
4063 		else
4064 			*pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
4065 	}
4066 
4067 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
4068 		struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
4069 
4070 		skb_put(skb, 8);
4071 		*pos++ = WLAN_EID_CHAN_SWITCH_PARAM;		/* EID */
4072 		*pos++ = 6;					/* IE length */
4073 		*pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL;	/* Mesh TTL */
4074 		*pos = 0x00;	/* Mesh Flag: Tx Restrict, Initiator, Reason */
4075 		*pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR;
4076 		*pos++ |= csa_settings->block_tx ?
4077 			  WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00;
4078 		put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */
4079 		pos += 2;
4080 		put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */
4081 		pos += 2;
4082 	}
4083 
4084 	if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 ||
4085 	    csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 ||
4086 	    csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) {
4087 		skb_put(skb, 5);
4088 		ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef);
4089 	}
4090 
4091 	ieee80211_tx_skb(sdata, skb);
4092 	return 0;
4093 }
4094 
4095 bool ieee80211_cs_valid(const struct ieee80211_cipher_scheme *cs)
4096 {
4097 	return !(cs == NULL || cs->cipher == 0 ||
4098 		 cs->hdr_len < cs->pn_len + cs->pn_off ||
4099 		 cs->hdr_len <= cs->key_idx_off ||
4100 		 cs->key_idx_shift > 7 ||
4101 		 cs->key_idx_mask == 0);
4102 }
4103 
4104 bool ieee80211_cs_list_valid(const struct ieee80211_cipher_scheme *cs, int n)
4105 {
4106 	int i;
4107 
4108 	/* Ensure we have enough iftype bitmap space for all iftype values */
4109 	WARN_ON((NUM_NL80211_IFTYPES / 8 + 1) > sizeof(cs[0].iftype));
4110 
4111 	for (i = 0; i < n; i++)
4112 		if (!ieee80211_cs_valid(&cs[i]))
4113 			return false;
4114 
4115 	return true;
4116 }
4117 
4118 const struct ieee80211_cipher_scheme *
4119 ieee80211_cs_get(struct ieee80211_local *local, u32 cipher,
4120 		 enum nl80211_iftype iftype)
4121 {
4122 	const struct ieee80211_cipher_scheme *l = local->hw.cipher_schemes;
4123 	int n = local->hw.n_cipher_schemes;
4124 	int i;
4125 	const struct ieee80211_cipher_scheme *cs = NULL;
4126 
4127 	for (i = 0; i < n; i++) {
4128 		if (l[i].cipher == cipher) {
4129 			cs = &l[i];
4130 			break;
4131 		}
4132 	}
4133 
4134 	if (!cs || !(cs->iftype & BIT(iftype)))
4135 		return NULL;
4136 
4137 	return cs;
4138 }
4139 
4140 int ieee80211_cs_headroom(struct ieee80211_local *local,
4141 			  struct cfg80211_crypto_settings *crypto,
4142 			  enum nl80211_iftype iftype)
4143 {
4144 	const struct ieee80211_cipher_scheme *cs;
4145 	int headroom = IEEE80211_ENCRYPT_HEADROOM;
4146 	int i;
4147 
4148 	for (i = 0; i < crypto->n_ciphers_pairwise; i++) {
4149 		cs = ieee80211_cs_get(local, crypto->ciphers_pairwise[i],
4150 				      iftype);
4151 
4152 		if (cs && headroom < cs->hdr_len)
4153 			headroom = cs->hdr_len;
4154 	}
4155 
4156 	cs = ieee80211_cs_get(local, crypto->cipher_group, iftype);
4157 	if (cs && headroom < cs->hdr_len)
4158 		headroom = cs->hdr_len;
4159 
4160 	return headroom;
4161 }
4162 
4163 static bool
4164 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i)
4165 {
4166 	s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1);
4167 	int skip;
4168 
4169 	if (end > 0)
4170 		return false;
4171 
4172 	/* One shot NOA  */
4173 	if (data->count[i] == 1)
4174 		return false;
4175 
4176 	if (data->desc[i].interval == 0)
4177 		return false;
4178 
4179 	/* End time is in the past, check for repetitions */
4180 	skip = DIV_ROUND_UP(-end, data->desc[i].interval);
4181 	if (data->count[i] < 255) {
4182 		if (data->count[i] <= skip) {
4183 			data->count[i] = 0;
4184 			return false;
4185 		}
4186 
4187 		data->count[i] -= skip;
4188 	}
4189 
4190 	data->desc[i].start += skip * data->desc[i].interval;
4191 
4192 	return true;
4193 }
4194 
4195 static bool
4196 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf,
4197 			     s32 *offset)
4198 {
4199 	bool ret = false;
4200 	int i;
4201 
4202 	for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
4203 		s32 cur;
4204 
4205 		if (!data->count[i])
4206 			continue;
4207 
4208 		if (ieee80211_extend_noa_desc(data, tsf + *offset, i))
4209 			ret = true;
4210 
4211 		cur = data->desc[i].start - tsf;
4212 		if (cur > *offset)
4213 			continue;
4214 
4215 		cur = data->desc[i].start + data->desc[i].duration - tsf;
4216 		if (cur > *offset)
4217 			*offset = cur;
4218 	}
4219 
4220 	return ret;
4221 }
4222 
4223 static u32
4224 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf)
4225 {
4226 	s32 offset = 0;
4227 	int tries = 0;
4228 	/*
4229 	 * arbitrary limit, used to avoid infinite loops when combined NoA
4230 	 * descriptors cover the full time period.
4231 	 */
4232 	int max_tries = 5;
4233 
4234 	ieee80211_extend_absent_time(data, tsf, &offset);
4235 	do {
4236 		if (!ieee80211_extend_absent_time(data, tsf, &offset))
4237 			break;
4238 
4239 		tries++;
4240 	} while (tries < max_tries);
4241 
4242 	return offset;
4243 }
4244 
4245 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf)
4246 {
4247 	u32 next_offset = BIT(31) - 1;
4248 	int i;
4249 
4250 	data->absent = 0;
4251 	data->has_next_tsf = false;
4252 	for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
4253 		s32 start;
4254 
4255 		if (!data->count[i])
4256 			continue;
4257 
4258 		ieee80211_extend_noa_desc(data, tsf, i);
4259 		start = data->desc[i].start - tsf;
4260 		if (start <= 0)
4261 			data->absent |= BIT(i);
4262 
4263 		if (next_offset > start)
4264 			next_offset = start;
4265 
4266 		data->has_next_tsf = true;
4267 	}
4268 
4269 	if (data->absent)
4270 		next_offset = ieee80211_get_noa_absent_time(data, tsf);
4271 
4272 	data->next_tsf = tsf + next_offset;
4273 }
4274 EXPORT_SYMBOL(ieee80211_update_p2p_noa);
4275 
4276 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr,
4277 			    struct ieee80211_noa_data *data, u32 tsf)
4278 {
4279 	int ret = 0;
4280 	int i;
4281 
4282 	memset(data, 0, sizeof(*data));
4283 
4284 	for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
4285 		const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i];
4286 
4287 		if (!desc->count || !desc->duration)
4288 			continue;
4289 
4290 		data->count[i] = desc->count;
4291 		data->desc[i].start = le32_to_cpu(desc->start_time);
4292 		data->desc[i].duration = le32_to_cpu(desc->duration);
4293 		data->desc[i].interval = le32_to_cpu(desc->interval);
4294 
4295 		if (data->count[i] > 1 &&
4296 		    data->desc[i].interval < data->desc[i].duration)
4297 			continue;
4298 
4299 		ieee80211_extend_noa_desc(data, tsf, i);
4300 		ret++;
4301 	}
4302 
4303 	if (ret)
4304 		ieee80211_update_p2p_noa(data, tsf);
4305 
4306 	return ret;
4307 }
4308 EXPORT_SYMBOL(ieee80211_parse_p2p_noa);
4309 
4310 void ieee80211_recalc_dtim(struct ieee80211_local *local,
4311 			   struct ieee80211_sub_if_data *sdata)
4312 {
4313 	u64 tsf = drv_get_tsf(local, sdata);
4314 	u64 dtim_count = 0;
4315 	u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024;
4316 	u8 dtim_period = sdata->vif.bss_conf.dtim_period;
4317 	struct ps_data *ps;
4318 	u8 bcns_from_dtim;
4319 
4320 	if (tsf == -1ULL || !beacon_int || !dtim_period)
4321 		return;
4322 
4323 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
4324 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
4325 		if (!sdata->bss)
4326 			return;
4327 
4328 		ps = &sdata->bss->ps;
4329 	} else if (ieee80211_vif_is_mesh(&sdata->vif)) {
4330 		ps = &sdata->u.mesh.ps;
4331 	} else {
4332 		return;
4333 	}
4334 
4335 	/*
4336 	 * actually finds last dtim_count, mac80211 will update in
4337 	 * __beacon_add_tim().
4338 	 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period
4339 	 */
4340 	do_div(tsf, beacon_int);
4341 	bcns_from_dtim = do_div(tsf, dtim_period);
4342 	/* just had a DTIM */
4343 	if (!bcns_from_dtim)
4344 		dtim_count = 0;
4345 	else
4346 		dtim_count = dtim_period - bcns_from_dtim;
4347 
4348 	ps->dtim_count = dtim_count;
4349 }
4350 
4351 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local,
4352 					 struct ieee80211_chanctx *ctx)
4353 {
4354 	struct ieee80211_sub_if_data *sdata;
4355 	u8 radar_detect = 0;
4356 
4357 	lockdep_assert_held(&local->chanctx_mtx);
4358 
4359 	if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED))
4360 		return 0;
4361 
4362 	list_for_each_entry(sdata, &ctx->reserved_vifs, reserved_chanctx_list)
4363 		if (sdata->reserved_radar_required)
4364 			radar_detect |= BIT(sdata->reserved_chandef.width);
4365 
4366 	/*
4367 	 * An in-place reservation context should not have any assigned vifs
4368 	 * until it replaces the other context.
4369 	 */
4370 	WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER &&
4371 		!list_empty(&ctx->assigned_vifs));
4372 
4373 	list_for_each_entry(sdata, &ctx->assigned_vifs, assigned_chanctx_list)
4374 		if (sdata->radar_required)
4375 			radar_detect |= BIT(sdata->vif.bss_conf.chandef.width);
4376 
4377 	return radar_detect;
4378 }
4379 
4380 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata,
4381 				 const struct cfg80211_chan_def *chandef,
4382 				 enum ieee80211_chanctx_mode chanmode,
4383 				 u8 radar_detect)
4384 {
4385 	struct ieee80211_local *local = sdata->local;
4386 	struct ieee80211_sub_if_data *sdata_iter;
4387 	enum nl80211_iftype iftype = sdata->wdev.iftype;
4388 	struct ieee80211_chanctx *ctx;
4389 	int total = 1;
4390 	struct iface_combination_params params = {
4391 		.radar_detect = radar_detect,
4392 	};
4393 
4394 	lockdep_assert_held(&local->chanctx_mtx);
4395 
4396 	if (WARN_ON(hweight32(radar_detect) > 1))
4397 		return -EINVAL;
4398 
4399 	if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED &&
4400 		    !chandef->chan))
4401 		return -EINVAL;
4402 
4403 	if (WARN_ON(iftype >= NUM_NL80211_IFTYPES))
4404 		return -EINVAL;
4405 
4406 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
4407 	    sdata->vif.type == NL80211_IFTYPE_MESH_POINT) {
4408 		/*
4409 		 * always passing this is harmless, since it'll be the
4410 		 * same value that cfg80211 finds if it finds the same
4411 		 * interface ... and that's always allowed
4412 		 */
4413 		params.new_beacon_int = sdata->vif.bss_conf.beacon_int;
4414 	}
4415 
4416 	/* Always allow software iftypes */
4417 	if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) {
4418 		if (radar_detect)
4419 			return -EINVAL;
4420 		return 0;
4421 	}
4422 
4423 	if (chandef)
4424 		params.num_different_channels = 1;
4425 
4426 	if (iftype != NL80211_IFTYPE_UNSPECIFIED)
4427 		params.iftype_num[iftype] = 1;
4428 
4429 	list_for_each_entry(ctx, &local->chanctx_list, list) {
4430 		if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)
4431 			continue;
4432 		params.radar_detect |=
4433 			ieee80211_chanctx_radar_detect(local, ctx);
4434 		if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) {
4435 			params.num_different_channels++;
4436 			continue;
4437 		}
4438 		if (chandef && chanmode == IEEE80211_CHANCTX_SHARED &&
4439 		    cfg80211_chandef_compatible(chandef,
4440 						&ctx->conf.def))
4441 			continue;
4442 		params.num_different_channels++;
4443 	}
4444 
4445 	list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) {
4446 		struct wireless_dev *wdev_iter;
4447 
4448 		wdev_iter = &sdata_iter->wdev;
4449 
4450 		if (sdata_iter == sdata ||
4451 		    !ieee80211_sdata_running(sdata_iter) ||
4452 		    cfg80211_iftype_allowed(local->hw.wiphy,
4453 					    wdev_iter->iftype, 0, 1))
4454 			continue;
4455 
4456 		params.iftype_num[wdev_iter->iftype]++;
4457 		total++;
4458 	}
4459 
4460 	if (total == 1 && !params.radar_detect)
4461 		return 0;
4462 
4463 	return cfg80211_check_combinations(local->hw.wiphy, &params);
4464 }
4465 
4466 static void
4467 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c,
4468 			 void *data)
4469 {
4470 	u32 *max_num_different_channels = data;
4471 
4472 	*max_num_different_channels = max(*max_num_different_channels,
4473 					  c->num_different_channels);
4474 }
4475 
4476 int ieee80211_max_num_channels(struct ieee80211_local *local)
4477 {
4478 	struct ieee80211_sub_if_data *sdata;
4479 	struct ieee80211_chanctx *ctx;
4480 	u32 max_num_different_channels = 1;
4481 	int err;
4482 	struct iface_combination_params params = {0};
4483 
4484 	lockdep_assert_held(&local->chanctx_mtx);
4485 
4486 	list_for_each_entry(ctx, &local->chanctx_list, list) {
4487 		if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)
4488 			continue;
4489 
4490 		params.num_different_channels++;
4491 
4492 		params.radar_detect |=
4493 			ieee80211_chanctx_radar_detect(local, ctx);
4494 	}
4495 
4496 	list_for_each_entry_rcu(sdata, &local->interfaces, list)
4497 		params.iftype_num[sdata->wdev.iftype]++;
4498 
4499 	err = cfg80211_iter_combinations(local->hw.wiphy, &params,
4500 					 ieee80211_iter_max_chans,
4501 					 &max_num_different_channels);
4502 	if (err < 0)
4503 		return err;
4504 
4505 	return max_num_different_channels;
4506 }
4507 
4508 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata,
4509 				struct ieee80211_sta_s1g_cap *caps,
4510 				struct sk_buff *skb)
4511 {
4512 	struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
4513 	struct ieee80211_s1g_cap s1g_capab;
4514 	u8 *pos;
4515 	int i;
4516 
4517 	if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
4518 		return;
4519 
4520 	if (!caps->s1g)
4521 		return;
4522 
4523 	memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap));
4524 	memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs));
4525 
4526 	/* override the capability info */
4527 	for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) {
4528 		u8 mask = ifmgd->s1g_capa_mask.capab_info[i];
4529 
4530 		s1g_capab.capab_info[i] &= ~mask;
4531 		s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask;
4532 	}
4533 
4534 	/* then MCS and NSS set */
4535 	for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) {
4536 		u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i];
4537 
4538 		s1g_capab.supp_mcs_nss[i] &= ~mask;
4539 		s1g_capab.supp_mcs_nss[i] |=
4540 			ifmgd->s1g_capa.supp_mcs_nss[i] & mask;
4541 	}
4542 
4543 	pos = skb_put(skb, 2 + sizeof(s1g_capab));
4544 	*pos++ = WLAN_EID_S1G_CAPABILITIES;
4545 	*pos++ = sizeof(s1g_capab);
4546 
4547 	memcpy(pos, &s1g_capab, sizeof(s1g_capab));
4548 }
4549 
4550 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata,
4551 				  struct sk_buff *skb)
4552 {
4553 	u8 *pos = skb_put(skb, 3);
4554 
4555 	*pos++ = WLAN_EID_AID_REQUEST;
4556 	*pos++ = 1;
4557 	*pos++ = 0;
4558 }
4559 
4560 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo)
4561 {
4562 	*buf++ = WLAN_EID_VENDOR_SPECIFIC;
4563 	*buf++ = 7; /* len */
4564 	*buf++ = 0x00; /* Microsoft OUI 00:50:F2 */
4565 	*buf++ = 0x50;
4566 	*buf++ = 0xf2;
4567 	*buf++ = 2; /* WME */
4568 	*buf++ = 0; /* WME info */
4569 	*buf++ = 1; /* WME ver */
4570 	*buf++ = qosinfo; /* U-APSD no in use */
4571 
4572 	return buf;
4573 }
4574 
4575 void ieee80211_txq_get_depth(struct ieee80211_txq *txq,
4576 			     unsigned long *frame_cnt,
4577 			     unsigned long *byte_cnt)
4578 {
4579 	struct txq_info *txqi = to_txq_info(txq);
4580 	u32 frag_cnt = 0, frag_bytes = 0;
4581 	struct sk_buff *skb;
4582 
4583 	skb_queue_walk(&txqi->frags, skb) {
4584 		frag_cnt++;
4585 		frag_bytes += skb->len;
4586 	}
4587 
4588 	if (frame_cnt)
4589 		*frame_cnt = txqi->tin.backlog_packets + frag_cnt;
4590 
4591 	if (byte_cnt)
4592 		*byte_cnt = txqi->tin.backlog_bytes + frag_bytes;
4593 }
4594 EXPORT_SYMBOL(ieee80211_txq_get_depth);
4595 
4596 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = {
4597 	IEEE80211_WMM_IE_STA_QOSINFO_AC_VO,
4598 	IEEE80211_WMM_IE_STA_QOSINFO_AC_VI,
4599 	IEEE80211_WMM_IE_STA_QOSINFO_AC_BE,
4600 	IEEE80211_WMM_IE_STA_QOSINFO_AC_BK
4601 };
4602 
4603 u16 ieee80211_encode_usf(int listen_interval)
4604 {
4605 	static const int listen_int_usf[] = { 1, 10, 1000, 10000 };
4606 	u16 ui, usf = 0;
4607 
4608 	/* find greatest USF */
4609 	while (usf < IEEE80211_MAX_USF) {
4610 		if (listen_interval % listen_int_usf[usf + 1])
4611 			break;
4612 		usf += 1;
4613 	}
4614 	ui = listen_interval / listen_int_usf[usf];
4615 
4616 	/* error if there is a remainder. Should've been checked by user */
4617 	WARN_ON_ONCE(ui > IEEE80211_MAX_UI);
4618 	listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) |
4619 			  FIELD_PREP(LISTEN_INT_UI, ui);
4620 
4621 	return (u16) listen_interval;
4622 }
4623