1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright (C) 2015-2016 Intel Deutschland GmbH 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * utilities for mac80211 14 */ 15 16 #include <net/mac80211.h> 17 #include <linux/netdevice.h> 18 #include <linux/export.h> 19 #include <linux/types.h> 20 #include <linux/slab.h> 21 #include <linux/skbuff.h> 22 #include <linux/etherdevice.h> 23 #include <linux/if_arp.h> 24 #include <linux/bitmap.h> 25 #include <linux/crc32.h> 26 #include <net/net_namespace.h> 27 #include <net/cfg80211.h> 28 #include <net/rtnetlink.h> 29 30 #include "ieee80211_i.h" 31 #include "driver-ops.h" 32 #include "rate.h" 33 #include "mesh.h" 34 #include "wme.h" 35 #include "led.h" 36 #include "wep.h" 37 38 /* privid for wiphys to determine whether they belong to us or not */ 39 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 40 41 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 42 { 43 struct ieee80211_local *local; 44 BUG_ON(!wiphy); 45 46 local = wiphy_priv(wiphy); 47 return &local->hw; 48 } 49 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 50 51 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 52 { 53 struct sk_buff *skb; 54 struct ieee80211_hdr *hdr; 55 56 skb_queue_walk(&tx->skbs, skb) { 57 hdr = (struct ieee80211_hdr *) skb->data; 58 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 59 } 60 } 61 62 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 63 int rate, int erp, int short_preamble, 64 int shift) 65 { 66 int dur; 67 68 /* calculate duration (in microseconds, rounded up to next higher 69 * integer if it includes a fractional microsecond) to send frame of 70 * len bytes (does not include FCS) at the given rate. Duration will 71 * also include SIFS. 72 * 73 * rate is in 100 kbps, so divident is multiplied by 10 in the 74 * DIV_ROUND_UP() operations. 75 * 76 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and 77 * is assumed to be 0 otherwise. 78 */ 79 80 if (band == NL80211_BAND_5GHZ || erp) { 81 /* 82 * OFDM: 83 * 84 * N_DBPS = DATARATE x 4 85 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 86 * (16 = SIGNAL time, 6 = tail bits) 87 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 88 * 89 * T_SYM = 4 usec 90 * 802.11a - 18.5.2: aSIFSTime = 16 usec 91 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 92 * signal ext = 6 usec 93 */ 94 dur = 16; /* SIFS + signal ext */ 95 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 96 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 97 98 /* IEEE 802.11-2012 18.3.2.4: all values above are: 99 * * times 4 for 5 MHz 100 * * times 2 for 10 MHz 101 */ 102 dur *= 1 << shift; 103 104 /* rates should already consider the channel bandwidth, 105 * don't apply divisor again. 106 */ 107 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 108 4 * rate); /* T_SYM x N_SYM */ 109 } else { 110 /* 111 * 802.11b or 802.11g with 802.11b compatibility: 112 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 113 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 114 * 115 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 116 * aSIFSTime = 10 usec 117 * aPreambleLength = 144 usec or 72 usec with short preamble 118 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 119 */ 120 dur = 10; /* aSIFSTime = 10 usec */ 121 dur += short_preamble ? (72 + 24) : (144 + 48); 122 123 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 124 } 125 126 return dur; 127 } 128 129 /* Exported duration function for driver use */ 130 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 131 struct ieee80211_vif *vif, 132 enum nl80211_band band, 133 size_t frame_len, 134 struct ieee80211_rate *rate) 135 { 136 struct ieee80211_sub_if_data *sdata; 137 u16 dur; 138 int erp, shift = 0; 139 bool short_preamble = false; 140 141 erp = 0; 142 if (vif) { 143 sdata = vif_to_sdata(vif); 144 short_preamble = sdata->vif.bss_conf.use_short_preamble; 145 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 146 erp = rate->flags & IEEE80211_RATE_ERP_G; 147 shift = ieee80211_vif_get_shift(vif); 148 } 149 150 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 151 short_preamble, shift); 152 153 return cpu_to_le16(dur); 154 } 155 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 156 157 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 158 struct ieee80211_vif *vif, size_t frame_len, 159 const struct ieee80211_tx_info *frame_txctl) 160 { 161 struct ieee80211_local *local = hw_to_local(hw); 162 struct ieee80211_rate *rate; 163 struct ieee80211_sub_if_data *sdata; 164 bool short_preamble; 165 int erp, shift = 0, bitrate; 166 u16 dur; 167 struct ieee80211_supported_band *sband; 168 169 sband = local->hw.wiphy->bands[frame_txctl->band]; 170 171 short_preamble = false; 172 173 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 174 175 erp = 0; 176 if (vif) { 177 sdata = vif_to_sdata(vif); 178 short_preamble = sdata->vif.bss_conf.use_short_preamble; 179 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 180 erp = rate->flags & IEEE80211_RATE_ERP_G; 181 shift = ieee80211_vif_get_shift(vif); 182 } 183 184 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 185 186 /* CTS duration */ 187 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 188 erp, short_preamble, shift); 189 /* Data frame duration */ 190 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 191 erp, short_preamble, shift); 192 /* ACK duration */ 193 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 194 erp, short_preamble, shift); 195 196 return cpu_to_le16(dur); 197 } 198 EXPORT_SYMBOL(ieee80211_rts_duration); 199 200 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 201 struct ieee80211_vif *vif, 202 size_t frame_len, 203 const struct ieee80211_tx_info *frame_txctl) 204 { 205 struct ieee80211_local *local = hw_to_local(hw); 206 struct ieee80211_rate *rate; 207 struct ieee80211_sub_if_data *sdata; 208 bool short_preamble; 209 int erp, shift = 0, bitrate; 210 u16 dur; 211 struct ieee80211_supported_band *sband; 212 213 sband = local->hw.wiphy->bands[frame_txctl->band]; 214 215 short_preamble = false; 216 217 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 218 erp = 0; 219 if (vif) { 220 sdata = vif_to_sdata(vif); 221 short_preamble = sdata->vif.bss_conf.use_short_preamble; 222 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 223 erp = rate->flags & IEEE80211_RATE_ERP_G; 224 shift = ieee80211_vif_get_shift(vif); 225 } 226 227 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 228 229 /* Data frame duration */ 230 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 231 erp, short_preamble, shift); 232 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 233 /* ACK duration */ 234 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 235 erp, short_preamble, shift); 236 } 237 238 return cpu_to_le16(dur); 239 } 240 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 241 242 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue) 243 { 244 struct ieee80211_sub_if_data *sdata; 245 int n_acs = IEEE80211_NUM_ACS; 246 247 if (local->ops->wake_tx_queue) 248 return; 249 250 if (local->hw.queues < IEEE80211_NUM_ACS) 251 n_acs = 1; 252 253 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 254 int ac; 255 256 if (!sdata->dev) 257 continue; 258 259 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE && 260 local->queue_stop_reasons[sdata->vif.cab_queue] != 0) 261 continue; 262 263 for (ac = 0; ac < n_acs; ac++) { 264 int ac_queue = sdata->vif.hw_queue[ac]; 265 266 if (ac_queue == queue || 267 (sdata->vif.cab_queue == queue && 268 local->queue_stop_reasons[ac_queue] == 0 && 269 skb_queue_empty(&local->pending[ac_queue]))) 270 netif_wake_subqueue(sdata->dev, ac); 271 } 272 } 273 } 274 275 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 276 enum queue_stop_reason reason, 277 bool refcounted) 278 { 279 struct ieee80211_local *local = hw_to_local(hw); 280 281 trace_wake_queue(local, queue, reason); 282 283 if (WARN_ON(queue >= hw->queues)) 284 return; 285 286 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 287 return; 288 289 if (!refcounted) { 290 local->q_stop_reasons[queue][reason] = 0; 291 } else { 292 local->q_stop_reasons[queue][reason]--; 293 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 294 local->q_stop_reasons[queue][reason] = 0; 295 } 296 297 if (local->q_stop_reasons[queue][reason] == 0) 298 __clear_bit(reason, &local->queue_stop_reasons[queue]); 299 300 if (local->queue_stop_reasons[queue] != 0) 301 /* someone still has this queue stopped */ 302 return; 303 304 if (skb_queue_empty(&local->pending[queue])) { 305 rcu_read_lock(); 306 ieee80211_propagate_queue_wake(local, queue); 307 rcu_read_unlock(); 308 } else 309 tasklet_schedule(&local->tx_pending_tasklet); 310 } 311 312 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 313 enum queue_stop_reason reason, 314 bool refcounted) 315 { 316 struct ieee80211_local *local = hw_to_local(hw); 317 unsigned long flags; 318 319 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 320 __ieee80211_wake_queue(hw, queue, reason, refcounted); 321 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 322 } 323 324 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 325 { 326 ieee80211_wake_queue_by_reason(hw, queue, 327 IEEE80211_QUEUE_STOP_REASON_DRIVER, 328 false); 329 } 330 EXPORT_SYMBOL(ieee80211_wake_queue); 331 332 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 333 enum queue_stop_reason reason, 334 bool refcounted) 335 { 336 struct ieee80211_local *local = hw_to_local(hw); 337 struct ieee80211_sub_if_data *sdata; 338 int n_acs = IEEE80211_NUM_ACS; 339 340 trace_stop_queue(local, queue, reason); 341 342 if (WARN_ON(queue >= hw->queues)) 343 return; 344 345 if (!refcounted) 346 local->q_stop_reasons[queue][reason] = 1; 347 else 348 local->q_stop_reasons[queue][reason]++; 349 350 if (__test_and_set_bit(reason, &local->queue_stop_reasons[queue])) 351 return; 352 353 if (local->ops->wake_tx_queue) 354 return; 355 356 if (local->hw.queues < IEEE80211_NUM_ACS) 357 n_acs = 1; 358 359 rcu_read_lock(); 360 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 361 int ac; 362 363 if (!sdata->dev) 364 continue; 365 366 for (ac = 0; ac < n_acs; ac++) { 367 if (sdata->vif.hw_queue[ac] == queue || 368 sdata->vif.cab_queue == queue) 369 netif_stop_subqueue(sdata->dev, ac); 370 } 371 } 372 rcu_read_unlock(); 373 } 374 375 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 376 enum queue_stop_reason reason, 377 bool refcounted) 378 { 379 struct ieee80211_local *local = hw_to_local(hw); 380 unsigned long flags; 381 382 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 383 __ieee80211_stop_queue(hw, queue, reason, refcounted); 384 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 385 } 386 387 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 388 { 389 ieee80211_stop_queue_by_reason(hw, queue, 390 IEEE80211_QUEUE_STOP_REASON_DRIVER, 391 false); 392 } 393 EXPORT_SYMBOL(ieee80211_stop_queue); 394 395 void ieee80211_add_pending_skb(struct ieee80211_local *local, 396 struct sk_buff *skb) 397 { 398 struct ieee80211_hw *hw = &local->hw; 399 unsigned long flags; 400 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 401 int queue = info->hw_queue; 402 403 if (WARN_ON(!info->control.vif)) { 404 ieee80211_free_txskb(&local->hw, skb); 405 return; 406 } 407 408 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 409 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 410 false); 411 __skb_queue_tail(&local->pending[queue], skb); 412 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 413 false); 414 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 415 } 416 417 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 418 struct sk_buff_head *skbs) 419 { 420 struct ieee80211_hw *hw = &local->hw; 421 struct sk_buff *skb; 422 unsigned long flags; 423 int queue, i; 424 425 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 426 while ((skb = skb_dequeue(skbs))) { 427 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 428 429 if (WARN_ON(!info->control.vif)) { 430 ieee80211_free_txskb(&local->hw, skb); 431 continue; 432 } 433 434 queue = info->hw_queue; 435 436 __ieee80211_stop_queue(hw, queue, 437 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 438 false); 439 440 __skb_queue_tail(&local->pending[queue], skb); 441 } 442 443 for (i = 0; i < hw->queues; i++) 444 __ieee80211_wake_queue(hw, i, 445 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 446 false); 447 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 448 } 449 450 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 451 unsigned long queues, 452 enum queue_stop_reason reason, 453 bool refcounted) 454 { 455 struct ieee80211_local *local = hw_to_local(hw); 456 unsigned long flags; 457 int i; 458 459 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 460 461 for_each_set_bit(i, &queues, hw->queues) 462 __ieee80211_stop_queue(hw, i, reason, refcounted); 463 464 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 465 } 466 467 void ieee80211_stop_queues(struct ieee80211_hw *hw) 468 { 469 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 470 IEEE80211_QUEUE_STOP_REASON_DRIVER, 471 false); 472 } 473 EXPORT_SYMBOL(ieee80211_stop_queues); 474 475 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 476 { 477 struct ieee80211_local *local = hw_to_local(hw); 478 unsigned long flags; 479 int ret; 480 481 if (WARN_ON(queue >= hw->queues)) 482 return true; 483 484 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 485 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 486 &local->queue_stop_reasons[queue]); 487 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 488 return ret; 489 } 490 EXPORT_SYMBOL(ieee80211_queue_stopped); 491 492 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 493 unsigned long queues, 494 enum queue_stop_reason reason, 495 bool refcounted) 496 { 497 struct ieee80211_local *local = hw_to_local(hw); 498 unsigned long flags; 499 int i; 500 501 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 502 503 for_each_set_bit(i, &queues, hw->queues) 504 __ieee80211_wake_queue(hw, i, reason, refcounted); 505 506 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 507 } 508 509 void ieee80211_wake_queues(struct ieee80211_hw *hw) 510 { 511 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 512 IEEE80211_QUEUE_STOP_REASON_DRIVER, 513 false); 514 } 515 EXPORT_SYMBOL(ieee80211_wake_queues); 516 517 static unsigned int 518 ieee80211_get_vif_queues(struct ieee80211_local *local, 519 struct ieee80211_sub_if_data *sdata) 520 { 521 unsigned int queues; 522 523 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 524 int ac; 525 526 queues = 0; 527 528 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 529 queues |= BIT(sdata->vif.hw_queue[ac]); 530 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 531 queues |= BIT(sdata->vif.cab_queue); 532 } else { 533 /* all queues */ 534 queues = BIT(local->hw.queues) - 1; 535 } 536 537 return queues; 538 } 539 540 void __ieee80211_flush_queues(struct ieee80211_local *local, 541 struct ieee80211_sub_if_data *sdata, 542 unsigned int queues, bool drop) 543 { 544 if (!local->ops->flush) 545 return; 546 547 /* 548 * If no queue was set, or if the HW doesn't support 549 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 550 */ 551 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 552 queues = ieee80211_get_vif_queues(local, sdata); 553 554 ieee80211_stop_queues_by_reason(&local->hw, queues, 555 IEEE80211_QUEUE_STOP_REASON_FLUSH, 556 false); 557 558 drv_flush(local, sdata, queues, drop); 559 560 ieee80211_wake_queues_by_reason(&local->hw, queues, 561 IEEE80211_QUEUE_STOP_REASON_FLUSH, 562 false); 563 } 564 565 void ieee80211_flush_queues(struct ieee80211_local *local, 566 struct ieee80211_sub_if_data *sdata, bool drop) 567 { 568 __ieee80211_flush_queues(local, sdata, 0, drop); 569 } 570 571 void ieee80211_stop_vif_queues(struct ieee80211_local *local, 572 struct ieee80211_sub_if_data *sdata, 573 enum queue_stop_reason reason) 574 { 575 ieee80211_stop_queues_by_reason(&local->hw, 576 ieee80211_get_vif_queues(local, sdata), 577 reason, true); 578 } 579 580 void ieee80211_wake_vif_queues(struct ieee80211_local *local, 581 struct ieee80211_sub_if_data *sdata, 582 enum queue_stop_reason reason) 583 { 584 ieee80211_wake_queues_by_reason(&local->hw, 585 ieee80211_get_vif_queues(local, sdata), 586 reason, true); 587 } 588 589 static void __iterate_interfaces(struct ieee80211_local *local, 590 u32 iter_flags, 591 void (*iterator)(void *data, u8 *mac, 592 struct ieee80211_vif *vif), 593 void *data) 594 { 595 struct ieee80211_sub_if_data *sdata; 596 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 597 598 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 599 switch (sdata->vif.type) { 600 case NL80211_IFTYPE_MONITOR: 601 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) 602 continue; 603 break; 604 case NL80211_IFTYPE_AP_VLAN: 605 continue; 606 default: 607 break; 608 } 609 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 610 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 611 continue; 612 if (ieee80211_sdata_running(sdata) || !active_only) 613 iterator(data, sdata->vif.addr, 614 &sdata->vif); 615 } 616 617 sdata = rcu_dereference_check(local->monitor_sdata, 618 lockdep_is_held(&local->iflist_mtx) || 619 lockdep_rtnl_is_held()); 620 if (sdata && 621 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 622 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 623 iterator(data, sdata->vif.addr, &sdata->vif); 624 } 625 626 void ieee80211_iterate_interfaces( 627 struct ieee80211_hw *hw, u32 iter_flags, 628 void (*iterator)(void *data, u8 *mac, 629 struct ieee80211_vif *vif), 630 void *data) 631 { 632 struct ieee80211_local *local = hw_to_local(hw); 633 634 mutex_lock(&local->iflist_mtx); 635 __iterate_interfaces(local, iter_flags, iterator, data); 636 mutex_unlock(&local->iflist_mtx); 637 } 638 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 639 640 void ieee80211_iterate_active_interfaces_atomic( 641 struct ieee80211_hw *hw, u32 iter_flags, 642 void (*iterator)(void *data, u8 *mac, 643 struct ieee80211_vif *vif), 644 void *data) 645 { 646 struct ieee80211_local *local = hw_to_local(hw); 647 648 rcu_read_lock(); 649 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 650 iterator, data); 651 rcu_read_unlock(); 652 } 653 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 654 655 void ieee80211_iterate_active_interfaces_rtnl( 656 struct ieee80211_hw *hw, u32 iter_flags, 657 void (*iterator)(void *data, u8 *mac, 658 struct ieee80211_vif *vif), 659 void *data) 660 { 661 struct ieee80211_local *local = hw_to_local(hw); 662 663 ASSERT_RTNL(); 664 665 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 666 iterator, data); 667 } 668 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_rtnl); 669 670 static void __iterate_stations(struct ieee80211_local *local, 671 void (*iterator)(void *data, 672 struct ieee80211_sta *sta), 673 void *data) 674 { 675 struct sta_info *sta; 676 677 list_for_each_entry_rcu(sta, &local->sta_list, list) { 678 if (!sta->uploaded) 679 continue; 680 681 iterator(data, &sta->sta); 682 } 683 } 684 685 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 686 void (*iterator)(void *data, 687 struct ieee80211_sta *sta), 688 void *data) 689 { 690 struct ieee80211_local *local = hw_to_local(hw); 691 692 rcu_read_lock(); 693 __iterate_stations(local, iterator, data); 694 rcu_read_unlock(); 695 } 696 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 697 698 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 699 { 700 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 701 702 if (!ieee80211_sdata_running(sdata) || 703 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 704 return NULL; 705 return &sdata->vif; 706 } 707 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 708 709 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 710 { 711 struct ieee80211_sub_if_data *sdata; 712 713 if (!vif) 714 return NULL; 715 716 sdata = vif_to_sdata(vif); 717 718 if (!ieee80211_sdata_running(sdata) || 719 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 720 return NULL; 721 722 return &sdata->wdev; 723 } 724 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 725 726 /* 727 * Nothing should have been stuffed into the workqueue during 728 * the suspend->resume cycle. Since we can't check each caller 729 * of this function if we are already quiescing / suspended, 730 * check here and don't WARN since this can actually happen when 731 * the rx path (for example) is racing against __ieee80211_suspend 732 * and suspending / quiescing was set after the rx path checked 733 * them. 734 */ 735 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 736 { 737 if (local->quiescing || (local->suspended && !local->resuming)) { 738 pr_warn("queueing ieee80211 work while going to suspend\n"); 739 return false; 740 } 741 742 return true; 743 } 744 745 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 746 { 747 struct ieee80211_local *local = hw_to_local(hw); 748 749 if (!ieee80211_can_queue_work(local)) 750 return; 751 752 queue_work(local->workqueue, work); 753 } 754 EXPORT_SYMBOL(ieee80211_queue_work); 755 756 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 757 struct delayed_work *dwork, 758 unsigned long delay) 759 { 760 struct ieee80211_local *local = hw_to_local(hw); 761 762 if (!ieee80211_can_queue_work(local)) 763 return; 764 765 queue_delayed_work(local->workqueue, dwork, delay); 766 } 767 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 768 769 u32 ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, 770 struct ieee802_11_elems *elems, 771 u64 filter, u32 crc) 772 { 773 size_t left = len; 774 const u8 *pos = start; 775 bool calc_crc = filter != 0; 776 DECLARE_BITMAP(seen_elems, 256); 777 const u8 *ie; 778 779 bitmap_zero(seen_elems, 256); 780 memset(elems, 0, sizeof(*elems)); 781 elems->ie_start = start; 782 elems->total_len = len; 783 784 while (left >= 2) { 785 u8 id, elen; 786 bool elem_parse_failed; 787 788 id = *pos++; 789 elen = *pos++; 790 left -= 2; 791 792 if (elen > left) { 793 elems->parse_error = true; 794 break; 795 } 796 797 switch (id) { 798 case WLAN_EID_SSID: 799 case WLAN_EID_SUPP_RATES: 800 case WLAN_EID_FH_PARAMS: 801 case WLAN_EID_DS_PARAMS: 802 case WLAN_EID_CF_PARAMS: 803 case WLAN_EID_TIM: 804 case WLAN_EID_IBSS_PARAMS: 805 case WLAN_EID_CHALLENGE: 806 case WLAN_EID_RSN: 807 case WLAN_EID_ERP_INFO: 808 case WLAN_EID_EXT_SUPP_RATES: 809 case WLAN_EID_HT_CAPABILITY: 810 case WLAN_EID_HT_OPERATION: 811 case WLAN_EID_VHT_CAPABILITY: 812 case WLAN_EID_VHT_OPERATION: 813 case WLAN_EID_MESH_ID: 814 case WLAN_EID_MESH_CONFIG: 815 case WLAN_EID_PEER_MGMT: 816 case WLAN_EID_PREQ: 817 case WLAN_EID_PREP: 818 case WLAN_EID_PERR: 819 case WLAN_EID_RANN: 820 case WLAN_EID_CHANNEL_SWITCH: 821 case WLAN_EID_EXT_CHANSWITCH_ANN: 822 case WLAN_EID_COUNTRY: 823 case WLAN_EID_PWR_CONSTRAINT: 824 case WLAN_EID_TIMEOUT_INTERVAL: 825 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 826 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 827 case WLAN_EID_CHAN_SWITCH_PARAM: 828 case WLAN_EID_EXT_CAPABILITY: 829 case WLAN_EID_CHAN_SWITCH_TIMING: 830 case WLAN_EID_LINK_ID: 831 /* 832 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible 833 * that if the content gets bigger it might be needed more than once 834 */ 835 if (test_bit(id, seen_elems)) { 836 elems->parse_error = true; 837 left -= elen; 838 pos += elen; 839 continue; 840 } 841 break; 842 } 843 844 if (calc_crc && id < 64 && (filter & (1ULL << id))) 845 crc = crc32_be(crc, pos - 2, elen + 2); 846 847 elem_parse_failed = false; 848 849 switch (id) { 850 case WLAN_EID_LINK_ID: 851 if (elen + 2 != sizeof(struct ieee80211_tdls_lnkie)) { 852 elem_parse_failed = true; 853 break; 854 } 855 elems->lnk_id = (void *)(pos - 2); 856 break; 857 case WLAN_EID_CHAN_SWITCH_TIMING: 858 if (elen != sizeof(struct ieee80211_ch_switch_timing)) { 859 elem_parse_failed = true; 860 break; 861 } 862 elems->ch_sw_timing = (void *)pos; 863 break; 864 case WLAN_EID_EXT_CAPABILITY: 865 elems->ext_capab = pos; 866 elems->ext_capab_len = elen; 867 break; 868 case WLAN_EID_SSID: 869 elems->ssid = pos; 870 elems->ssid_len = elen; 871 break; 872 case WLAN_EID_SUPP_RATES: 873 elems->supp_rates = pos; 874 elems->supp_rates_len = elen; 875 break; 876 case WLAN_EID_DS_PARAMS: 877 if (elen >= 1) 878 elems->ds_params = pos; 879 else 880 elem_parse_failed = true; 881 break; 882 case WLAN_EID_TIM: 883 if (elen >= sizeof(struct ieee80211_tim_ie)) { 884 elems->tim = (void *)pos; 885 elems->tim_len = elen; 886 } else 887 elem_parse_failed = true; 888 break; 889 case WLAN_EID_CHALLENGE: 890 elems->challenge = pos; 891 elems->challenge_len = elen; 892 break; 893 case WLAN_EID_VENDOR_SPECIFIC: 894 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && 895 pos[2] == 0xf2) { 896 /* Microsoft OUI (00:50:F2) */ 897 898 if (calc_crc) 899 crc = crc32_be(crc, pos - 2, elen + 2); 900 901 if (elen >= 5 && pos[3] == 2) { 902 /* OUI Type 2 - WMM IE */ 903 if (pos[4] == 0) { 904 elems->wmm_info = pos; 905 elems->wmm_info_len = elen; 906 } else if (pos[4] == 1) { 907 elems->wmm_param = pos; 908 elems->wmm_param_len = elen; 909 } 910 } 911 } 912 break; 913 case WLAN_EID_RSN: 914 elems->rsn = pos; 915 elems->rsn_len = elen; 916 break; 917 case WLAN_EID_ERP_INFO: 918 if (elen >= 1) 919 elems->erp_info = pos; 920 else 921 elem_parse_failed = true; 922 break; 923 case WLAN_EID_EXT_SUPP_RATES: 924 elems->ext_supp_rates = pos; 925 elems->ext_supp_rates_len = elen; 926 break; 927 case WLAN_EID_HT_CAPABILITY: 928 if (elen >= sizeof(struct ieee80211_ht_cap)) 929 elems->ht_cap_elem = (void *)pos; 930 else 931 elem_parse_failed = true; 932 break; 933 case WLAN_EID_HT_OPERATION: 934 if (elen >= sizeof(struct ieee80211_ht_operation)) 935 elems->ht_operation = (void *)pos; 936 else 937 elem_parse_failed = true; 938 break; 939 case WLAN_EID_VHT_CAPABILITY: 940 if (elen >= sizeof(struct ieee80211_vht_cap)) 941 elems->vht_cap_elem = (void *)pos; 942 else 943 elem_parse_failed = true; 944 break; 945 case WLAN_EID_VHT_OPERATION: 946 if (elen >= sizeof(struct ieee80211_vht_operation)) 947 elems->vht_operation = (void *)pos; 948 else 949 elem_parse_failed = true; 950 break; 951 case WLAN_EID_OPMODE_NOTIF: 952 if (elen > 0) 953 elems->opmode_notif = pos; 954 else 955 elem_parse_failed = true; 956 break; 957 case WLAN_EID_MESH_ID: 958 elems->mesh_id = pos; 959 elems->mesh_id_len = elen; 960 break; 961 case WLAN_EID_MESH_CONFIG: 962 if (elen >= sizeof(struct ieee80211_meshconf_ie)) 963 elems->mesh_config = (void *)pos; 964 else 965 elem_parse_failed = true; 966 break; 967 case WLAN_EID_PEER_MGMT: 968 elems->peering = pos; 969 elems->peering_len = elen; 970 break; 971 case WLAN_EID_MESH_AWAKE_WINDOW: 972 if (elen >= 2) 973 elems->awake_window = (void *)pos; 974 break; 975 case WLAN_EID_PREQ: 976 elems->preq = pos; 977 elems->preq_len = elen; 978 break; 979 case WLAN_EID_PREP: 980 elems->prep = pos; 981 elems->prep_len = elen; 982 break; 983 case WLAN_EID_PERR: 984 elems->perr = pos; 985 elems->perr_len = elen; 986 break; 987 case WLAN_EID_RANN: 988 if (elen >= sizeof(struct ieee80211_rann_ie)) 989 elems->rann = (void *)pos; 990 else 991 elem_parse_failed = true; 992 break; 993 case WLAN_EID_CHANNEL_SWITCH: 994 if (elen != sizeof(struct ieee80211_channel_sw_ie)) { 995 elem_parse_failed = true; 996 break; 997 } 998 elems->ch_switch_ie = (void *)pos; 999 break; 1000 case WLAN_EID_EXT_CHANSWITCH_ANN: 1001 if (elen != sizeof(struct ieee80211_ext_chansw_ie)) { 1002 elem_parse_failed = true; 1003 break; 1004 } 1005 elems->ext_chansw_ie = (void *)pos; 1006 break; 1007 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1008 if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) { 1009 elem_parse_failed = true; 1010 break; 1011 } 1012 elems->sec_chan_offs = (void *)pos; 1013 break; 1014 case WLAN_EID_CHAN_SWITCH_PARAM: 1015 if (elen != 1016 sizeof(*elems->mesh_chansw_params_ie)) { 1017 elem_parse_failed = true; 1018 break; 1019 } 1020 elems->mesh_chansw_params_ie = (void *)pos; 1021 break; 1022 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1023 if (!action || 1024 elen != sizeof(*elems->wide_bw_chansw_ie)) { 1025 elem_parse_failed = true; 1026 break; 1027 } 1028 elems->wide_bw_chansw_ie = (void *)pos; 1029 break; 1030 case WLAN_EID_CHANNEL_SWITCH_WRAPPER: 1031 if (action) { 1032 elem_parse_failed = true; 1033 break; 1034 } 1035 /* 1036 * This is a bit tricky, but as we only care about 1037 * the wide bandwidth channel switch element, so 1038 * just parse it out manually. 1039 */ 1040 ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH, 1041 pos, elen); 1042 if (ie) { 1043 if (ie[1] == sizeof(*elems->wide_bw_chansw_ie)) 1044 elems->wide_bw_chansw_ie = 1045 (void *)(ie + 2); 1046 else 1047 elem_parse_failed = true; 1048 } 1049 break; 1050 case WLAN_EID_COUNTRY: 1051 elems->country_elem = pos; 1052 elems->country_elem_len = elen; 1053 break; 1054 case WLAN_EID_PWR_CONSTRAINT: 1055 if (elen != 1) { 1056 elem_parse_failed = true; 1057 break; 1058 } 1059 elems->pwr_constr_elem = pos; 1060 break; 1061 case WLAN_EID_CISCO_VENDOR_SPECIFIC: 1062 /* Lots of different options exist, but we only care 1063 * about the Dynamic Transmit Power Control element. 1064 * First check for the Cisco OUI, then for the DTPC 1065 * tag (0x00). 1066 */ 1067 if (elen < 4) { 1068 elem_parse_failed = true; 1069 break; 1070 } 1071 1072 if (pos[0] != 0x00 || pos[1] != 0x40 || 1073 pos[2] != 0x96 || pos[3] != 0x00) 1074 break; 1075 1076 if (elen != 6) { 1077 elem_parse_failed = true; 1078 break; 1079 } 1080 1081 if (calc_crc) 1082 crc = crc32_be(crc, pos - 2, elen + 2); 1083 1084 elems->cisco_dtpc_elem = pos; 1085 break; 1086 case WLAN_EID_TIMEOUT_INTERVAL: 1087 if (elen >= sizeof(struct ieee80211_timeout_interval_ie)) 1088 elems->timeout_int = (void *)pos; 1089 else 1090 elem_parse_failed = true; 1091 break; 1092 default: 1093 break; 1094 } 1095 1096 if (elem_parse_failed) 1097 elems->parse_error = true; 1098 else 1099 __set_bit(id, seen_elems); 1100 1101 left -= elen; 1102 pos += elen; 1103 } 1104 1105 if (left != 0) 1106 elems->parse_error = true; 1107 1108 return crc; 1109 } 1110 1111 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata, 1112 bool bss_notify, bool enable_qos) 1113 { 1114 struct ieee80211_local *local = sdata->local; 1115 struct ieee80211_tx_queue_params qparam; 1116 struct ieee80211_chanctx_conf *chanctx_conf; 1117 int ac; 1118 bool use_11b; 1119 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 1120 int aCWmin, aCWmax; 1121 1122 if (!local->ops->conf_tx) 1123 return; 1124 1125 if (local->hw.queues < IEEE80211_NUM_ACS) 1126 return; 1127 1128 memset(&qparam, 0, sizeof(qparam)); 1129 1130 rcu_read_lock(); 1131 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1132 use_11b = (chanctx_conf && 1133 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 1134 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE); 1135 rcu_read_unlock(); 1136 1137 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 1138 1139 /* Set defaults according to 802.11-2007 Table 7-37 */ 1140 aCWmax = 1023; 1141 if (use_11b) 1142 aCWmin = 31; 1143 else 1144 aCWmin = 15; 1145 1146 /* Confiure old 802.11b/g medium access rules. */ 1147 qparam.cw_max = aCWmax; 1148 qparam.cw_min = aCWmin; 1149 qparam.txop = 0; 1150 qparam.aifs = 2; 1151 1152 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1153 /* Update if QoS is enabled. */ 1154 if (enable_qos) { 1155 switch (ac) { 1156 case IEEE80211_AC_BK: 1157 qparam.cw_max = aCWmax; 1158 qparam.cw_min = aCWmin; 1159 qparam.txop = 0; 1160 if (is_ocb) 1161 qparam.aifs = 9; 1162 else 1163 qparam.aifs = 7; 1164 break; 1165 /* never happens but let's not leave undefined */ 1166 default: 1167 case IEEE80211_AC_BE: 1168 qparam.cw_max = aCWmax; 1169 qparam.cw_min = aCWmin; 1170 qparam.txop = 0; 1171 if (is_ocb) 1172 qparam.aifs = 6; 1173 else 1174 qparam.aifs = 3; 1175 break; 1176 case IEEE80211_AC_VI: 1177 qparam.cw_max = aCWmin; 1178 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1179 if (is_ocb) 1180 qparam.txop = 0; 1181 else if (use_11b) 1182 qparam.txop = 6016/32; 1183 else 1184 qparam.txop = 3008/32; 1185 1186 if (is_ocb) 1187 qparam.aifs = 3; 1188 else 1189 qparam.aifs = 2; 1190 break; 1191 case IEEE80211_AC_VO: 1192 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1193 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1194 if (is_ocb) 1195 qparam.txop = 0; 1196 else if (use_11b) 1197 qparam.txop = 3264/32; 1198 else 1199 qparam.txop = 1504/32; 1200 qparam.aifs = 2; 1201 break; 1202 } 1203 } 1204 1205 qparam.uapsd = false; 1206 1207 sdata->tx_conf[ac] = qparam; 1208 drv_conf_tx(local, sdata, ac, &qparam); 1209 } 1210 1211 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1212 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1213 sdata->vif.type != NL80211_IFTYPE_NAN) { 1214 sdata->vif.bss_conf.qos = enable_qos; 1215 if (bss_notify) 1216 ieee80211_bss_info_change_notify(sdata, 1217 BSS_CHANGED_QOS); 1218 } 1219 } 1220 1221 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1222 u16 transaction, u16 auth_alg, u16 status, 1223 const u8 *extra, size_t extra_len, const u8 *da, 1224 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1225 u32 tx_flags) 1226 { 1227 struct ieee80211_local *local = sdata->local; 1228 struct sk_buff *skb; 1229 struct ieee80211_mgmt *mgmt; 1230 int err; 1231 1232 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1233 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1234 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN); 1235 if (!skb) 1236 return; 1237 1238 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1239 1240 mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6); 1241 memset(mgmt, 0, 24 + 6); 1242 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1243 IEEE80211_STYPE_AUTH); 1244 memcpy(mgmt->da, da, ETH_ALEN); 1245 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1246 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1247 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1248 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1249 mgmt->u.auth.status_code = cpu_to_le16(status); 1250 if (extra) 1251 memcpy(skb_put(skb, extra_len), extra, extra_len); 1252 1253 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1254 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1255 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1256 WARN_ON(err); 1257 } 1258 1259 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1260 tx_flags; 1261 ieee80211_tx_skb(sdata, skb); 1262 } 1263 1264 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1265 const u8 *bssid, u16 stype, u16 reason, 1266 bool send_frame, u8 *frame_buf) 1267 { 1268 struct ieee80211_local *local = sdata->local; 1269 struct sk_buff *skb; 1270 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1271 1272 /* build frame */ 1273 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1274 mgmt->duration = 0; /* initialize only */ 1275 mgmt->seq_ctrl = 0; /* initialize only */ 1276 memcpy(mgmt->da, bssid, ETH_ALEN); 1277 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1278 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1279 /* u.deauth.reason_code == u.disassoc.reason_code */ 1280 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1281 1282 if (send_frame) { 1283 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1284 IEEE80211_DEAUTH_FRAME_LEN); 1285 if (!skb) 1286 return; 1287 1288 skb_reserve(skb, local->hw.extra_tx_headroom); 1289 1290 /* copy in frame */ 1291 memcpy(skb_put(skb, IEEE80211_DEAUTH_FRAME_LEN), 1292 mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1293 1294 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1295 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1296 IEEE80211_SKB_CB(skb)->flags |= 1297 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1298 1299 ieee80211_tx_skb(sdata, skb); 1300 } 1301 } 1302 1303 static int ieee80211_build_preq_ies_band(struct ieee80211_local *local, 1304 u8 *buffer, size_t buffer_len, 1305 const u8 *ie, size_t ie_len, 1306 enum nl80211_band band, 1307 u32 rate_mask, 1308 struct cfg80211_chan_def *chandef, 1309 size_t *offset) 1310 { 1311 struct ieee80211_supported_band *sband; 1312 u8 *pos = buffer, *end = buffer + buffer_len; 1313 size_t noffset; 1314 int supp_rates_len, i; 1315 u8 rates[32]; 1316 int num_rates; 1317 int ext_rates_len; 1318 int shift; 1319 u32 rate_flags; 1320 bool have_80mhz = false; 1321 1322 *offset = 0; 1323 1324 sband = local->hw.wiphy->bands[band]; 1325 if (WARN_ON_ONCE(!sband)) 1326 return 0; 1327 1328 rate_flags = ieee80211_chandef_rate_flags(chandef); 1329 shift = ieee80211_chandef_get_shift(chandef); 1330 1331 num_rates = 0; 1332 for (i = 0; i < sband->n_bitrates; i++) { 1333 if ((BIT(i) & rate_mask) == 0) 1334 continue; /* skip rate */ 1335 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 1336 continue; 1337 1338 rates[num_rates++] = 1339 (u8) DIV_ROUND_UP(sband->bitrates[i].bitrate, 1340 (1 << shift) * 5); 1341 } 1342 1343 supp_rates_len = min_t(int, num_rates, 8); 1344 1345 if (end - pos < 2 + supp_rates_len) 1346 goto out_err; 1347 *pos++ = WLAN_EID_SUPP_RATES; 1348 *pos++ = supp_rates_len; 1349 memcpy(pos, rates, supp_rates_len); 1350 pos += supp_rates_len; 1351 1352 /* insert "request information" if in custom IEs */ 1353 if (ie && ie_len) { 1354 static const u8 before_extrates[] = { 1355 WLAN_EID_SSID, 1356 WLAN_EID_SUPP_RATES, 1357 WLAN_EID_REQUEST, 1358 }; 1359 noffset = ieee80211_ie_split(ie, ie_len, 1360 before_extrates, 1361 ARRAY_SIZE(before_extrates), 1362 *offset); 1363 if (end - pos < noffset - *offset) 1364 goto out_err; 1365 memcpy(pos, ie + *offset, noffset - *offset); 1366 pos += noffset - *offset; 1367 *offset = noffset; 1368 } 1369 1370 ext_rates_len = num_rates - supp_rates_len; 1371 if (ext_rates_len > 0) { 1372 if (end - pos < 2 + ext_rates_len) 1373 goto out_err; 1374 *pos++ = WLAN_EID_EXT_SUPP_RATES; 1375 *pos++ = ext_rates_len; 1376 memcpy(pos, rates + supp_rates_len, ext_rates_len); 1377 pos += ext_rates_len; 1378 } 1379 1380 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 1381 if (end - pos < 3) 1382 goto out_err; 1383 *pos++ = WLAN_EID_DS_PARAMS; 1384 *pos++ = 1; 1385 *pos++ = ieee80211_frequency_to_channel( 1386 chandef->chan->center_freq); 1387 } 1388 1389 /* insert custom IEs that go before HT */ 1390 if (ie && ie_len) { 1391 static const u8 before_ht[] = { 1392 WLAN_EID_SSID, 1393 WLAN_EID_SUPP_RATES, 1394 WLAN_EID_REQUEST, 1395 WLAN_EID_EXT_SUPP_RATES, 1396 WLAN_EID_DS_PARAMS, 1397 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1398 }; 1399 noffset = ieee80211_ie_split(ie, ie_len, 1400 before_ht, ARRAY_SIZE(before_ht), 1401 *offset); 1402 if (end - pos < noffset - *offset) 1403 goto out_err; 1404 memcpy(pos, ie + *offset, noffset - *offset); 1405 pos += noffset - *offset; 1406 *offset = noffset; 1407 } 1408 1409 if (sband->ht_cap.ht_supported) { 1410 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap)) 1411 goto out_err; 1412 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 1413 sband->ht_cap.cap); 1414 } 1415 1416 /* 1417 * If adding more here, adjust code in main.c 1418 * that calculates local->scan_ies_len. 1419 */ 1420 1421 /* insert custom IEs that go before VHT */ 1422 if (ie && ie_len) { 1423 static const u8 before_vht[] = { 1424 WLAN_EID_SSID, 1425 WLAN_EID_SUPP_RATES, 1426 WLAN_EID_REQUEST, 1427 WLAN_EID_EXT_SUPP_RATES, 1428 WLAN_EID_DS_PARAMS, 1429 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1430 WLAN_EID_HT_CAPABILITY, 1431 WLAN_EID_BSS_COEX_2040, 1432 WLAN_EID_EXT_CAPABILITY, 1433 WLAN_EID_SSID_LIST, 1434 WLAN_EID_CHANNEL_USAGE, 1435 WLAN_EID_INTERWORKING, 1436 /* mesh ID can't happen here */ 1437 /* 60 GHz can't happen here right now */ 1438 }; 1439 noffset = ieee80211_ie_split(ie, ie_len, 1440 before_vht, ARRAY_SIZE(before_vht), 1441 *offset); 1442 if (end - pos < noffset - *offset) 1443 goto out_err; 1444 memcpy(pos, ie + *offset, noffset - *offset); 1445 pos += noffset - *offset; 1446 *offset = noffset; 1447 } 1448 1449 /* Check if any channel in this sband supports at least 80 MHz */ 1450 for (i = 0; i < sband->n_channels; i++) { 1451 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 1452 IEEE80211_CHAN_NO_80MHZ)) 1453 continue; 1454 1455 have_80mhz = true; 1456 break; 1457 } 1458 1459 if (sband->vht_cap.vht_supported && have_80mhz) { 1460 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap)) 1461 goto out_err; 1462 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 1463 sband->vht_cap.cap); 1464 } 1465 1466 return pos - buffer; 1467 out_err: 1468 WARN_ONCE(1, "not enough space for preq IEs\n"); 1469 return pos - buffer; 1470 } 1471 1472 int ieee80211_build_preq_ies(struct ieee80211_local *local, u8 *buffer, 1473 size_t buffer_len, 1474 struct ieee80211_scan_ies *ie_desc, 1475 const u8 *ie, size_t ie_len, 1476 u8 bands_used, u32 *rate_masks, 1477 struct cfg80211_chan_def *chandef) 1478 { 1479 size_t pos = 0, old_pos = 0, custom_ie_offset = 0; 1480 int i; 1481 1482 memset(ie_desc, 0, sizeof(*ie_desc)); 1483 1484 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1485 if (bands_used & BIT(i)) { 1486 pos += ieee80211_build_preq_ies_band(local, 1487 buffer + pos, 1488 buffer_len - pos, 1489 ie, ie_len, i, 1490 rate_masks[i], 1491 chandef, 1492 &custom_ie_offset); 1493 ie_desc->ies[i] = buffer + old_pos; 1494 ie_desc->len[i] = pos - old_pos; 1495 old_pos = pos; 1496 } 1497 } 1498 1499 /* add any remaining custom IEs */ 1500 if (ie && ie_len) { 1501 if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset, 1502 "not enough space for preq custom IEs\n")) 1503 return pos; 1504 memcpy(buffer + pos, ie + custom_ie_offset, 1505 ie_len - custom_ie_offset); 1506 ie_desc->common_ies = buffer + pos; 1507 ie_desc->common_ie_len = ie_len - custom_ie_offset; 1508 pos += ie_len - custom_ie_offset; 1509 } 1510 1511 return pos; 1512 }; 1513 1514 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 1515 const u8 *src, const u8 *dst, 1516 u32 ratemask, 1517 struct ieee80211_channel *chan, 1518 const u8 *ssid, size_t ssid_len, 1519 const u8 *ie, size_t ie_len, 1520 bool directed) 1521 { 1522 struct ieee80211_local *local = sdata->local; 1523 struct cfg80211_chan_def chandef; 1524 struct sk_buff *skb; 1525 struct ieee80211_mgmt *mgmt; 1526 int ies_len; 1527 u32 rate_masks[NUM_NL80211_BANDS] = {}; 1528 struct ieee80211_scan_ies dummy_ie_desc; 1529 1530 /* 1531 * Do not send DS Channel parameter for directed probe requests 1532 * in order to maximize the chance that we get a response. Some 1533 * badly-behaved APs don't respond when this parameter is included. 1534 */ 1535 chandef.width = sdata->vif.bss_conf.chandef.width; 1536 if (directed) 1537 chandef.chan = NULL; 1538 else 1539 chandef.chan = chan; 1540 1541 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 1542 100 + ie_len); 1543 if (!skb) 1544 return NULL; 1545 1546 rate_masks[chan->band] = ratemask; 1547 ies_len = ieee80211_build_preq_ies(local, skb_tail_pointer(skb), 1548 skb_tailroom(skb), &dummy_ie_desc, 1549 ie, ie_len, BIT(chan->band), 1550 rate_masks, &chandef); 1551 skb_put(skb, ies_len); 1552 1553 if (dst) { 1554 mgmt = (struct ieee80211_mgmt *) skb->data; 1555 memcpy(mgmt->da, dst, ETH_ALEN); 1556 memcpy(mgmt->bssid, dst, ETH_ALEN); 1557 } 1558 1559 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 1560 1561 return skb; 1562 } 1563 1564 void ieee80211_send_probe_req(struct ieee80211_sub_if_data *sdata, 1565 const u8 *src, const u8 *dst, 1566 const u8 *ssid, size_t ssid_len, 1567 const u8 *ie, size_t ie_len, 1568 u32 ratemask, bool directed, u32 tx_flags, 1569 struct ieee80211_channel *channel, bool scan) 1570 { 1571 struct sk_buff *skb; 1572 1573 skb = ieee80211_build_probe_req(sdata, src, dst, ratemask, channel, 1574 ssid, ssid_len, 1575 ie, ie_len, directed); 1576 if (skb) { 1577 IEEE80211_SKB_CB(skb)->flags |= tx_flags; 1578 if (scan) 1579 ieee80211_tx_skb_tid_band(sdata, skb, 7, channel->band); 1580 else 1581 ieee80211_tx_skb(sdata, skb); 1582 } 1583 } 1584 1585 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 1586 struct ieee802_11_elems *elems, 1587 enum nl80211_band band, u32 *basic_rates) 1588 { 1589 struct ieee80211_supported_band *sband; 1590 size_t num_rates; 1591 u32 supp_rates, rate_flags; 1592 int i, j, shift; 1593 sband = sdata->local->hw.wiphy->bands[band]; 1594 1595 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 1596 shift = ieee80211_vif_get_shift(&sdata->vif); 1597 1598 if (WARN_ON(!sband)) 1599 return 1; 1600 1601 num_rates = sband->n_bitrates; 1602 supp_rates = 0; 1603 for (i = 0; i < elems->supp_rates_len + 1604 elems->ext_supp_rates_len; i++) { 1605 u8 rate = 0; 1606 int own_rate; 1607 bool is_basic; 1608 if (i < elems->supp_rates_len) 1609 rate = elems->supp_rates[i]; 1610 else if (elems->ext_supp_rates) 1611 rate = elems->ext_supp_rates 1612 [i - elems->supp_rates_len]; 1613 own_rate = 5 * (rate & 0x7f); 1614 is_basic = !!(rate & 0x80); 1615 1616 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 1617 continue; 1618 1619 for (j = 0; j < num_rates; j++) { 1620 int brate; 1621 if ((rate_flags & sband->bitrates[j].flags) 1622 != rate_flags) 1623 continue; 1624 1625 brate = DIV_ROUND_UP(sband->bitrates[j].bitrate, 1626 1 << shift); 1627 1628 if (brate == own_rate) { 1629 supp_rates |= BIT(j); 1630 if (basic_rates && is_basic) 1631 *basic_rates |= BIT(j); 1632 } 1633 } 1634 } 1635 return supp_rates; 1636 } 1637 1638 void ieee80211_stop_device(struct ieee80211_local *local) 1639 { 1640 ieee80211_led_radio(local, false); 1641 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 1642 1643 cancel_work_sync(&local->reconfig_filter); 1644 1645 flush_workqueue(local->workqueue); 1646 drv_stop(local); 1647 } 1648 1649 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 1650 bool aborted) 1651 { 1652 /* It's possible that we don't handle the scan completion in 1653 * time during suspend, so if it's still marked as completed 1654 * here, queue the work and flush it to clean things up. 1655 * Instead of calling the worker function directly here, we 1656 * really queue it to avoid potential races with other flows 1657 * scheduling the same work. 1658 */ 1659 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 1660 /* If coming from reconfiguration failure, abort the scan so 1661 * we don't attempt to continue a partial HW scan - which is 1662 * possible otherwise if (e.g.) the 2.4 GHz portion was the 1663 * completed scan, and a 5 GHz portion is still pending. 1664 */ 1665 if (aborted) 1666 set_bit(SCAN_ABORTED, &local->scanning); 1667 ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0); 1668 flush_delayed_work(&local->scan_work); 1669 } 1670 } 1671 1672 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 1673 { 1674 struct ieee80211_sub_if_data *sdata; 1675 struct ieee80211_chanctx *ctx; 1676 1677 /* 1678 * We get here if during resume the device can't be restarted properly. 1679 * We might also get here if this happens during HW reset, which is a 1680 * slightly different situation and we need to drop all connections in 1681 * the latter case. 1682 * 1683 * Ask cfg80211 to turn off all interfaces, this will result in more 1684 * warnings but at least we'll then get into a clean stopped state. 1685 */ 1686 1687 local->resuming = false; 1688 local->suspended = false; 1689 local->in_reconfig = false; 1690 1691 ieee80211_flush_completed_scan(local, true); 1692 1693 /* scheduled scan clearly can't be running any more, but tell 1694 * cfg80211 and clear local state 1695 */ 1696 ieee80211_sched_scan_end(local); 1697 1698 list_for_each_entry(sdata, &local->interfaces, list) 1699 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 1700 1701 /* Mark channel contexts as not being in the driver any more to avoid 1702 * removing them from the driver during the shutdown process... 1703 */ 1704 mutex_lock(&local->chanctx_mtx); 1705 list_for_each_entry(ctx, &local->chanctx_list, list) 1706 ctx->driver_present = false; 1707 mutex_unlock(&local->chanctx_mtx); 1708 1709 cfg80211_shutdown_all_interfaces(local->hw.wiphy); 1710 } 1711 1712 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 1713 struct ieee80211_sub_if_data *sdata) 1714 { 1715 struct ieee80211_chanctx_conf *conf; 1716 struct ieee80211_chanctx *ctx; 1717 1718 if (!local->use_chanctx) 1719 return; 1720 1721 mutex_lock(&local->chanctx_mtx); 1722 conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 1723 lockdep_is_held(&local->chanctx_mtx)); 1724 if (conf) { 1725 ctx = container_of(conf, struct ieee80211_chanctx, conf); 1726 drv_assign_vif_chanctx(local, sdata, ctx); 1727 } 1728 mutex_unlock(&local->chanctx_mtx); 1729 } 1730 1731 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 1732 { 1733 struct ieee80211_local *local = sdata->local; 1734 struct sta_info *sta; 1735 1736 /* add STAs back */ 1737 mutex_lock(&local->sta_mtx); 1738 list_for_each_entry(sta, &local->sta_list, list) { 1739 enum ieee80211_sta_state state; 1740 1741 if (!sta->uploaded || sta->sdata != sdata) 1742 continue; 1743 1744 for (state = IEEE80211_STA_NOTEXIST; 1745 state < sta->sta_state; state++) 1746 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 1747 state + 1)); 1748 } 1749 mutex_unlock(&local->sta_mtx); 1750 } 1751 1752 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 1753 { 1754 struct cfg80211_nan_func *func, **funcs; 1755 int res, id, i = 0; 1756 1757 res = drv_start_nan(sdata->local, sdata, 1758 &sdata->u.nan.conf); 1759 if (WARN_ON(res)) 1760 return res; 1761 1762 funcs = kzalloc((sdata->local->hw.max_nan_de_entries + 1) * 1763 sizeof(*funcs), GFP_KERNEL); 1764 if (!funcs) 1765 return -ENOMEM; 1766 1767 /* Add all the functions: 1768 * This is a little bit ugly. We need to call a potentially sleeping 1769 * callback for each NAN function, so we can't hold the spinlock. 1770 */ 1771 spin_lock_bh(&sdata->u.nan.func_lock); 1772 1773 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 1774 funcs[i++] = func; 1775 1776 spin_unlock_bh(&sdata->u.nan.func_lock); 1777 1778 for (i = 0; funcs[i]; i++) { 1779 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 1780 if (WARN_ON(res)) 1781 ieee80211_nan_func_terminated(&sdata->vif, 1782 funcs[i]->instance_id, 1783 NL80211_NAN_FUNC_TERM_REASON_ERROR, 1784 GFP_KERNEL); 1785 } 1786 1787 kfree(funcs); 1788 1789 return 0; 1790 } 1791 1792 int ieee80211_reconfig(struct ieee80211_local *local) 1793 { 1794 struct ieee80211_hw *hw = &local->hw; 1795 struct ieee80211_sub_if_data *sdata; 1796 struct ieee80211_chanctx *ctx; 1797 struct sta_info *sta; 1798 int res, i; 1799 bool reconfig_due_to_wowlan = false; 1800 struct ieee80211_sub_if_data *sched_scan_sdata; 1801 struct cfg80211_sched_scan_request *sched_scan_req; 1802 bool sched_scan_stopped = false; 1803 bool suspended = local->suspended; 1804 1805 /* nothing to do if HW shouldn't run */ 1806 if (!local->open_count) 1807 goto wake_up; 1808 1809 #ifdef CONFIG_PM 1810 if (suspended) 1811 local->resuming = true; 1812 1813 if (local->wowlan) { 1814 /* 1815 * In the wowlan case, both mac80211 and the device 1816 * are functional when the resume op is called, so 1817 * clear local->suspended so the device could operate 1818 * normally (e.g. pass rx frames). 1819 */ 1820 local->suspended = false; 1821 res = drv_resume(local); 1822 local->wowlan = false; 1823 if (res < 0) { 1824 local->resuming = false; 1825 return res; 1826 } 1827 if (res == 0) 1828 goto wake_up; 1829 WARN_ON(res > 1); 1830 /* 1831 * res is 1, which means the driver requested 1832 * to go through a regular reset on wakeup. 1833 * restore local->suspended in this case. 1834 */ 1835 reconfig_due_to_wowlan = true; 1836 local->suspended = true; 1837 } 1838 #endif 1839 1840 /* 1841 * In case of hw_restart during suspend (without wowlan), 1842 * cancel restart work, as we are reconfiguring the device 1843 * anyway. 1844 * Note that restart_work is scheduled on a frozen workqueue, 1845 * so we can't deadlock in this case. 1846 */ 1847 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 1848 cancel_work_sync(&local->restart_work); 1849 1850 local->started = false; 1851 1852 /* 1853 * Upon resume hardware can sometimes be goofy due to 1854 * various platform / driver / bus issues, so restarting 1855 * the device may at times not work immediately. Propagate 1856 * the error. 1857 */ 1858 res = drv_start(local); 1859 if (res) { 1860 if (suspended) 1861 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 1862 else 1863 WARN(1, "Hardware became unavailable during restart.\n"); 1864 ieee80211_handle_reconfig_failure(local); 1865 return res; 1866 } 1867 1868 /* setup fragmentation threshold */ 1869 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 1870 1871 /* setup RTS threshold */ 1872 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 1873 1874 /* reset coverage class */ 1875 drv_set_coverage_class(local, hw->wiphy->coverage_class); 1876 1877 ieee80211_led_radio(local, true); 1878 ieee80211_mod_tpt_led_trig(local, 1879 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 1880 1881 /* add interfaces */ 1882 sdata = rtnl_dereference(local->monitor_sdata); 1883 if (sdata) { 1884 /* in HW restart it exists already */ 1885 WARN_ON(local->resuming); 1886 res = drv_add_interface(local, sdata); 1887 if (WARN_ON(res)) { 1888 RCU_INIT_POINTER(local->monitor_sdata, NULL); 1889 synchronize_net(); 1890 kfree(sdata); 1891 } 1892 } 1893 1894 list_for_each_entry(sdata, &local->interfaces, list) { 1895 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1896 sdata->vif.type != NL80211_IFTYPE_MONITOR && 1897 ieee80211_sdata_running(sdata)) { 1898 res = drv_add_interface(local, sdata); 1899 if (WARN_ON(res)) 1900 break; 1901 } 1902 } 1903 1904 /* If adding any of the interfaces failed above, roll back and 1905 * report failure. 1906 */ 1907 if (res) { 1908 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 1909 list) 1910 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1911 sdata->vif.type != NL80211_IFTYPE_MONITOR && 1912 ieee80211_sdata_running(sdata)) 1913 drv_remove_interface(local, sdata); 1914 ieee80211_handle_reconfig_failure(local); 1915 return res; 1916 } 1917 1918 /* add channel contexts */ 1919 if (local->use_chanctx) { 1920 mutex_lock(&local->chanctx_mtx); 1921 list_for_each_entry(ctx, &local->chanctx_list, list) 1922 if (ctx->replace_state != 1923 IEEE80211_CHANCTX_REPLACES_OTHER) 1924 WARN_ON(drv_add_chanctx(local, ctx)); 1925 mutex_unlock(&local->chanctx_mtx); 1926 1927 sdata = rtnl_dereference(local->monitor_sdata); 1928 if (sdata && ieee80211_sdata_running(sdata)) 1929 ieee80211_assign_chanctx(local, sdata); 1930 } 1931 1932 /* reconfigure hardware */ 1933 ieee80211_hw_config(local, ~0); 1934 1935 ieee80211_configure_filter(local); 1936 1937 /* Finally also reconfigure all the BSS information */ 1938 list_for_each_entry(sdata, &local->interfaces, list) { 1939 u32 changed; 1940 1941 if (!ieee80211_sdata_running(sdata)) 1942 continue; 1943 1944 ieee80211_assign_chanctx(local, sdata); 1945 1946 switch (sdata->vif.type) { 1947 case NL80211_IFTYPE_AP_VLAN: 1948 case NL80211_IFTYPE_MONITOR: 1949 break; 1950 default: 1951 ieee80211_reconfig_stations(sdata); 1952 /* fall through */ 1953 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 1954 for (i = 0; i < IEEE80211_NUM_ACS; i++) 1955 drv_conf_tx(local, sdata, i, 1956 &sdata->tx_conf[i]); 1957 break; 1958 } 1959 1960 /* common change flags for all interface types */ 1961 changed = BSS_CHANGED_ERP_CTS_PROT | 1962 BSS_CHANGED_ERP_PREAMBLE | 1963 BSS_CHANGED_ERP_SLOT | 1964 BSS_CHANGED_HT | 1965 BSS_CHANGED_BASIC_RATES | 1966 BSS_CHANGED_BEACON_INT | 1967 BSS_CHANGED_BSSID | 1968 BSS_CHANGED_CQM | 1969 BSS_CHANGED_QOS | 1970 BSS_CHANGED_IDLE | 1971 BSS_CHANGED_TXPOWER; 1972 1973 if (sdata->vif.mu_mimo_owner) 1974 changed |= BSS_CHANGED_MU_GROUPS; 1975 1976 switch (sdata->vif.type) { 1977 case NL80211_IFTYPE_STATION: 1978 changed |= BSS_CHANGED_ASSOC | 1979 BSS_CHANGED_ARP_FILTER | 1980 BSS_CHANGED_PS; 1981 1982 /* Re-send beacon info report to the driver */ 1983 if (sdata->u.mgd.have_beacon) 1984 changed |= BSS_CHANGED_BEACON_INFO; 1985 1986 sdata_lock(sdata); 1987 ieee80211_bss_info_change_notify(sdata, changed); 1988 sdata_unlock(sdata); 1989 break; 1990 case NL80211_IFTYPE_OCB: 1991 changed |= BSS_CHANGED_OCB; 1992 ieee80211_bss_info_change_notify(sdata, changed); 1993 break; 1994 case NL80211_IFTYPE_ADHOC: 1995 changed |= BSS_CHANGED_IBSS; 1996 /* fall through */ 1997 case NL80211_IFTYPE_AP: 1998 changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS; 1999 2000 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2001 changed |= BSS_CHANGED_AP_PROBE_RESP; 2002 2003 if (rcu_access_pointer(sdata->u.ap.beacon)) 2004 drv_start_ap(local, sdata); 2005 } 2006 2007 /* fall through */ 2008 case NL80211_IFTYPE_MESH_POINT: 2009 if (sdata->vif.bss_conf.enable_beacon) { 2010 changed |= BSS_CHANGED_BEACON | 2011 BSS_CHANGED_BEACON_ENABLED; 2012 ieee80211_bss_info_change_notify(sdata, changed); 2013 } 2014 break; 2015 case NL80211_IFTYPE_NAN: 2016 res = ieee80211_reconfig_nan(sdata); 2017 if (res < 0) { 2018 ieee80211_handle_reconfig_failure(local); 2019 return res; 2020 } 2021 break; 2022 case NL80211_IFTYPE_WDS: 2023 case NL80211_IFTYPE_AP_VLAN: 2024 case NL80211_IFTYPE_MONITOR: 2025 case NL80211_IFTYPE_P2P_DEVICE: 2026 /* nothing to do */ 2027 break; 2028 case NL80211_IFTYPE_UNSPECIFIED: 2029 case NUM_NL80211_IFTYPES: 2030 case NL80211_IFTYPE_P2P_CLIENT: 2031 case NL80211_IFTYPE_P2P_GO: 2032 WARN_ON(1); 2033 break; 2034 } 2035 } 2036 2037 ieee80211_recalc_ps(local); 2038 2039 /* 2040 * The sta might be in psm against the ap (e.g. because 2041 * this was the state before a hw restart), so we 2042 * explicitly send a null packet in order to make sure 2043 * it'll sync against the ap (and get out of psm). 2044 */ 2045 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2046 list_for_each_entry(sdata, &local->interfaces, list) { 2047 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2048 continue; 2049 if (!sdata->u.mgd.associated) 2050 continue; 2051 2052 ieee80211_send_nullfunc(local, sdata, false); 2053 } 2054 } 2055 2056 /* APs are now beaconing, add back stations */ 2057 mutex_lock(&local->sta_mtx); 2058 list_for_each_entry(sta, &local->sta_list, list) { 2059 enum ieee80211_sta_state state; 2060 2061 if (!sta->uploaded) 2062 continue; 2063 2064 if (sta->sdata->vif.type != NL80211_IFTYPE_AP) 2065 continue; 2066 2067 for (state = IEEE80211_STA_NOTEXIST; 2068 state < sta->sta_state; state++) 2069 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2070 state + 1)); 2071 } 2072 mutex_unlock(&local->sta_mtx); 2073 2074 /* add back keys */ 2075 list_for_each_entry(sdata, &local->interfaces, list) 2076 ieee80211_reset_crypto_tx_tailroom(sdata); 2077 2078 list_for_each_entry(sdata, &local->interfaces, list) 2079 if (ieee80211_sdata_running(sdata)) 2080 ieee80211_enable_keys(sdata); 2081 2082 /* Reconfigure sched scan if it was interrupted by FW restart */ 2083 mutex_lock(&local->mtx); 2084 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2085 lockdep_is_held(&local->mtx)); 2086 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2087 lockdep_is_held(&local->mtx)); 2088 if (sched_scan_sdata && sched_scan_req) 2089 /* 2090 * Sched scan stopped, but we don't want to report it. Instead, 2091 * we're trying to reschedule. However, if more than one scan 2092 * plan was set, we cannot reschedule since we don't know which 2093 * scan plan was currently running (and some scan plans may have 2094 * already finished). 2095 */ 2096 if (sched_scan_req->n_scan_plans > 1 || 2097 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2098 sched_scan_req)) { 2099 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2100 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2101 sched_scan_stopped = true; 2102 } 2103 mutex_unlock(&local->mtx); 2104 2105 if (sched_scan_stopped) 2106 cfg80211_sched_scan_stopped_rtnl(local->hw.wiphy); 2107 2108 wake_up: 2109 if (local->in_reconfig) { 2110 local->in_reconfig = false; 2111 barrier(); 2112 2113 /* Restart deferred ROCs */ 2114 mutex_lock(&local->mtx); 2115 ieee80211_start_next_roc(local); 2116 mutex_unlock(&local->mtx); 2117 } 2118 2119 if (local->monitors == local->open_count && local->monitors > 0) 2120 ieee80211_add_virtual_monitor(local); 2121 2122 /* 2123 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2124 * sessions can be established after a resume. 2125 * 2126 * Also tear down aggregation sessions since reconfiguring 2127 * them in a hardware restart scenario is not easily done 2128 * right now, and the hardware will have lost information 2129 * about the sessions, but we and the AP still think they 2130 * are active. This is really a workaround though. 2131 */ 2132 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2133 mutex_lock(&local->sta_mtx); 2134 2135 list_for_each_entry(sta, &local->sta_list, list) { 2136 if (!local->resuming) 2137 ieee80211_sta_tear_down_BA_sessions( 2138 sta, AGG_STOP_LOCAL_REQUEST); 2139 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2140 } 2141 2142 mutex_unlock(&local->sta_mtx); 2143 } 2144 2145 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2146 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2147 false); 2148 2149 /* 2150 * If this is for hw restart things are still running. 2151 * We may want to change that later, however. 2152 */ 2153 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2154 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2155 2156 if (!suspended) 2157 return 0; 2158 2159 #ifdef CONFIG_PM 2160 /* first set suspended false, then resuming */ 2161 local->suspended = false; 2162 mb(); 2163 local->resuming = false; 2164 2165 ieee80211_flush_completed_scan(local, false); 2166 2167 if (local->open_count && !reconfig_due_to_wowlan) 2168 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2169 2170 list_for_each_entry(sdata, &local->interfaces, list) { 2171 if (!ieee80211_sdata_running(sdata)) 2172 continue; 2173 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2174 ieee80211_sta_restart(sdata); 2175 } 2176 2177 mod_timer(&local->sta_cleanup, jiffies + 1); 2178 #else 2179 WARN_ON(1); 2180 #endif 2181 2182 return 0; 2183 } 2184 2185 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 2186 { 2187 struct ieee80211_sub_if_data *sdata; 2188 struct ieee80211_local *local; 2189 struct ieee80211_key *key; 2190 2191 if (WARN_ON(!vif)) 2192 return; 2193 2194 sdata = vif_to_sdata(vif); 2195 local = sdata->local; 2196 2197 if (WARN_ON(!local->resuming)) 2198 return; 2199 2200 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2201 return; 2202 2203 sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME; 2204 2205 mutex_lock(&local->key_mtx); 2206 list_for_each_entry(key, &sdata->key_list, list) 2207 key->flags |= KEY_FLAG_TAINTED; 2208 mutex_unlock(&local->key_mtx); 2209 } 2210 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 2211 2212 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata) 2213 { 2214 struct ieee80211_local *local = sdata->local; 2215 struct ieee80211_chanctx_conf *chanctx_conf; 2216 struct ieee80211_chanctx *chanctx; 2217 2218 mutex_lock(&local->chanctx_mtx); 2219 2220 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2221 lockdep_is_held(&local->chanctx_mtx)); 2222 2223 /* 2224 * This function can be called from a work, thus it may be possible 2225 * that the chanctx_conf is removed (due to a disconnection, for 2226 * example). 2227 * So nothing should be done in such case. 2228 */ 2229 if (!chanctx_conf) 2230 goto unlock; 2231 2232 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2233 ieee80211_recalc_smps_chanctx(local, chanctx); 2234 unlock: 2235 mutex_unlock(&local->chanctx_mtx); 2236 } 2237 2238 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata) 2239 { 2240 struct ieee80211_local *local = sdata->local; 2241 struct ieee80211_chanctx_conf *chanctx_conf; 2242 struct ieee80211_chanctx *chanctx; 2243 2244 mutex_lock(&local->chanctx_mtx); 2245 2246 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2247 lockdep_is_held(&local->chanctx_mtx)); 2248 2249 if (WARN_ON_ONCE(!chanctx_conf)) 2250 goto unlock; 2251 2252 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2253 ieee80211_recalc_chanctx_min_def(local, chanctx); 2254 unlock: 2255 mutex_unlock(&local->chanctx_mtx); 2256 } 2257 2258 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 2259 { 2260 size_t pos = offset; 2261 2262 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 2263 pos += 2 + ies[pos + 1]; 2264 2265 return pos; 2266 } 2267 2268 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata, 2269 int rssi_min_thold, 2270 int rssi_max_thold) 2271 { 2272 trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold); 2273 2274 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 2275 return; 2276 2277 /* 2278 * Scale up threshold values before storing it, as the RSSI averaging 2279 * algorithm uses a scaled up value as well. Change this scaling 2280 * factor if the RSSI averaging algorithm changes. 2281 */ 2282 sdata->u.mgd.rssi_min_thold = rssi_min_thold*16; 2283 sdata->u.mgd.rssi_max_thold = rssi_max_thold*16; 2284 } 2285 2286 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif, 2287 int rssi_min_thold, 2288 int rssi_max_thold) 2289 { 2290 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2291 2292 WARN_ON(rssi_min_thold == rssi_max_thold || 2293 rssi_min_thold > rssi_max_thold); 2294 2295 _ieee80211_enable_rssi_reports(sdata, rssi_min_thold, 2296 rssi_max_thold); 2297 } 2298 EXPORT_SYMBOL(ieee80211_enable_rssi_reports); 2299 2300 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif) 2301 { 2302 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2303 2304 _ieee80211_enable_rssi_reports(sdata, 0, 0); 2305 } 2306 EXPORT_SYMBOL(ieee80211_disable_rssi_reports); 2307 2308 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2309 u16 cap) 2310 { 2311 __le16 tmp; 2312 2313 *pos++ = WLAN_EID_HT_CAPABILITY; 2314 *pos++ = sizeof(struct ieee80211_ht_cap); 2315 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 2316 2317 /* capability flags */ 2318 tmp = cpu_to_le16(cap); 2319 memcpy(pos, &tmp, sizeof(u16)); 2320 pos += sizeof(u16); 2321 2322 /* AMPDU parameters */ 2323 *pos++ = ht_cap->ampdu_factor | 2324 (ht_cap->ampdu_density << 2325 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 2326 2327 /* MCS set */ 2328 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 2329 pos += sizeof(ht_cap->mcs); 2330 2331 /* extended capabilities */ 2332 pos += sizeof(__le16); 2333 2334 /* BF capabilities */ 2335 pos += sizeof(__le32); 2336 2337 /* antenna selection */ 2338 pos += sizeof(u8); 2339 2340 return pos; 2341 } 2342 2343 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2344 u32 cap) 2345 { 2346 __le32 tmp; 2347 2348 *pos++ = WLAN_EID_VHT_CAPABILITY; 2349 *pos++ = sizeof(struct ieee80211_vht_cap); 2350 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 2351 2352 /* capability flags */ 2353 tmp = cpu_to_le32(cap); 2354 memcpy(pos, &tmp, sizeof(u32)); 2355 pos += sizeof(u32); 2356 2357 /* VHT MCS set */ 2358 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 2359 pos += sizeof(vht_cap->vht_mcs); 2360 2361 return pos; 2362 } 2363 2364 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2365 const struct cfg80211_chan_def *chandef, 2366 u16 prot_mode, bool rifs_mode) 2367 { 2368 struct ieee80211_ht_operation *ht_oper; 2369 /* Build HT Information */ 2370 *pos++ = WLAN_EID_HT_OPERATION; 2371 *pos++ = sizeof(struct ieee80211_ht_operation); 2372 ht_oper = (struct ieee80211_ht_operation *)pos; 2373 ht_oper->primary_chan = ieee80211_frequency_to_channel( 2374 chandef->chan->center_freq); 2375 switch (chandef->width) { 2376 case NL80211_CHAN_WIDTH_160: 2377 case NL80211_CHAN_WIDTH_80P80: 2378 case NL80211_CHAN_WIDTH_80: 2379 case NL80211_CHAN_WIDTH_40: 2380 if (chandef->center_freq1 > chandef->chan->center_freq) 2381 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 2382 else 2383 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 2384 break; 2385 default: 2386 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 2387 break; 2388 } 2389 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 2390 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 2391 chandef->width != NL80211_CHAN_WIDTH_20) 2392 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 2393 2394 if (rifs_mode) 2395 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 2396 2397 ht_oper->operation_mode = cpu_to_le16(prot_mode); 2398 ht_oper->stbc_param = 0x0000; 2399 2400 /* It seems that Basic MCS set and Supported MCS set 2401 are identical for the first 10 bytes */ 2402 memset(&ht_oper->basic_set, 0, 16); 2403 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 2404 2405 return pos + sizeof(struct ieee80211_ht_operation); 2406 } 2407 2408 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2409 const struct cfg80211_chan_def *chandef) 2410 { 2411 struct ieee80211_vht_operation *vht_oper; 2412 2413 *pos++ = WLAN_EID_VHT_OPERATION; 2414 *pos++ = sizeof(struct ieee80211_vht_operation); 2415 vht_oper = (struct ieee80211_vht_operation *)pos; 2416 vht_oper->center_freq_seg1_idx = ieee80211_frequency_to_channel( 2417 chandef->center_freq1); 2418 if (chandef->center_freq2) 2419 vht_oper->center_freq_seg2_idx = 2420 ieee80211_frequency_to_channel(chandef->center_freq2); 2421 else 2422 vht_oper->center_freq_seg2_idx = 0x00; 2423 2424 switch (chandef->width) { 2425 case NL80211_CHAN_WIDTH_160: 2426 /* 2427 * Convert 160 MHz channel width to new style as interop 2428 * workaround. 2429 */ 2430 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2431 vht_oper->center_freq_seg2_idx = vht_oper->center_freq_seg1_idx; 2432 if (chandef->chan->center_freq < chandef->center_freq1) 2433 vht_oper->center_freq_seg1_idx -= 8; 2434 else 2435 vht_oper->center_freq_seg1_idx += 8; 2436 break; 2437 case NL80211_CHAN_WIDTH_80P80: 2438 /* 2439 * Convert 80+80 MHz channel width to new style as interop 2440 * workaround. 2441 */ 2442 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2443 break; 2444 case NL80211_CHAN_WIDTH_80: 2445 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2446 break; 2447 default: 2448 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 2449 break; 2450 } 2451 2452 /* don't require special VHT peer rates */ 2453 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 2454 2455 return pos + sizeof(struct ieee80211_vht_operation); 2456 } 2457 2458 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 2459 struct cfg80211_chan_def *chandef) 2460 { 2461 enum nl80211_channel_type channel_type; 2462 2463 if (!ht_oper) 2464 return false; 2465 2466 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 2467 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 2468 channel_type = NL80211_CHAN_HT20; 2469 break; 2470 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 2471 channel_type = NL80211_CHAN_HT40PLUS; 2472 break; 2473 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 2474 channel_type = NL80211_CHAN_HT40MINUS; 2475 break; 2476 default: 2477 channel_type = NL80211_CHAN_NO_HT; 2478 return false; 2479 } 2480 2481 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 2482 return true; 2483 } 2484 2485 bool ieee80211_chandef_vht_oper(const struct ieee80211_vht_operation *oper, 2486 struct cfg80211_chan_def *chandef) 2487 { 2488 struct cfg80211_chan_def new = *chandef; 2489 int cf1, cf2; 2490 2491 if (!oper) 2492 return false; 2493 2494 cf1 = ieee80211_channel_to_frequency(oper->center_freq_seg1_idx, 2495 chandef->chan->band); 2496 cf2 = ieee80211_channel_to_frequency(oper->center_freq_seg2_idx, 2497 chandef->chan->band); 2498 2499 switch (oper->chan_width) { 2500 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2501 break; 2502 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2503 new.width = NL80211_CHAN_WIDTH_80; 2504 new.center_freq1 = cf1; 2505 /* If needed, adjust based on the newer interop workaround. */ 2506 if (oper->center_freq_seg2_idx) { 2507 unsigned int diff; 2508 2509 diff = abs(oper->center_freq_seg2_idx - 2510 oper->center_freq_seg1_idx); 2511 if (diff == 8) { 2512 new.width = NL80211_CHAN_WIDTH_160; 2513 new.center_freq1 = cf2; 2514 } else if (diff > 8) { 2515 new.width = NL80211_CHAN_WIDTH_80P80; 2516 new.center_freq2 = cf2; 2517 } 2518 } 2519 break; 2520 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2521 new.width = NL80211_CHAN_WIDTH_160; 2522 new.center_freq1 = cf1; 2523 break; 2524 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2525 new.width = NL80211_CHAN_WIDTH_80P80; 2526 new.center_freq1 = cf1; 2527 new.center_freq2 = cf2; 2528 break; 2529 default: 2530 return false; 2531 } 2532 2533 if (!cfg80211_chandef_valid(&new)) 2534 return false; 2535 2536 *chandef = new; 2537 return true; 2538 } 2539 2540 int ieee80211_parse_bitrates(struct cfg80211_chan_def *chandef, 2541 const struct ieee80211_supported_band *sband, 2542 const u8 *srates, int srates_len, u32 *rates) 2543 { 2544 u32 rate_flags = ieee80211_chandef_rate_flags(chandef); 2545 int shift = ieee80211_chandef_get_shift(chandef); 2546 struct ieee80211_rate *br; 2547 int brate, rate, i, j, count = 0; 2548 2549 *rates = 0; 2550 2551 for (i = 0; i < srates_len; i++) { 2552 rate = srates[i] & 0x7f; 2553 2554 for (j = 0; j < sband->n_bitrates; j++) { 2555 br = &sband->bitrates[j]; 2556 if ((rate_flags & br->flags) != rate_flags) 2557 continue; 2558 2559 brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5); 2560 if (brate == rate) { 2561 *rates |= BIT(j); 2562 count++; 2563 break; 2564 } 2565 } 2566 } 2567 return count; 2568 } 2569 2570 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, 2571 struct sk_buff *skb, bool need_basic, 2572 enum nl80211_band band) 2573 { 2574 struct ieee80211_local *local = sdata->local; 2575 struct ieee80211_supported_band *sband; 2576 int rate, shift; 2577 u8 i, rates, *pos; 2578 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 2579 u32 rate_flags; 2580 2581 shift = ieee80211_vif_get_shift(&sdata->vif); 2582 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 2583 sband = local->hw.wiphy->bands[band]; 2584 rates = 0; 2585 for (i = 0; i < sband->n_bitrates; i++) { 2586 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 2587 continue; 2588 rates++; 2589 } 2590 if (rates > 8) 2591 rates = 8; 2592 2593 if (skb_tailroom(skb) < rates + 2) 2594 return -ENOMEM; 2595 2596 pos = skb_put(skb, rates + 2); 2597 *pos++ = WLAN_EID_SUPP_RATES; 2598 *pos++ = rates; 2599 for (i = 0; i < rates; i++) { 2600 u8 basic = 0; 2601 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 2602 continue; 2603 2604 if (need_basic && basic_rates & BIT(i)) 2605 basic = 0x80; 2606 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 2607 5 * (1 << shift)); 2608 *pos++ = basic | (u8) rate; 2609 } 2610 2611 return 0; 2612 } 2613 2614 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, 2615 struct sk_buff *skb, bool need_basic, 2616 enum nl80211_band band) 2617 { 2618 struct ieee80211_local *local = sdata->local; 2619 struct ieee80211_supported_band *sband; 2620 int rate, shift; 2621 u8 i, exrates, *pos; 2622 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 2623 u32 rate_flags; 2624 2625 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 2626 shift = ieee80211_vif_get_shift(&sdata->vif); 2627 2628 sband = local->hw.wiphy->bands[band]; 2629 exrates = 0; 2630 for (i = 0; i < sband->n_bitrates; i++) { 2631 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 2632 continue; 2633 exrates++; 2634 } 2635 2636 if (exrates > 8) 2637 exrates -= 8; 2638 else 2639 exrates = 0; 2640 2641 if (skb_tailroom(skb) < exrates + 2) 2642 return -ENOMEM; 2643 2644 if (exrates) { 2645 pos = skb_put(skb, exrates + 2); 2646 *pos++ = WLAN_EID_EXT_SUPP_RATES; 2647 *pos++ = exrates; 2648 for (i = 8; i < sband->n_bitrates; i++) { 2649 u8 basic = 0; 2650 if ((rate_flags & sband->bitrates[i].flags) 2651 != rate_flags) 2652 continue; 2653 if (need_basic && basic_rates & BIT(i)) 2654 basic = 0x80; 2655 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 2656 5 * (1 << shift)); 2657 *pos++ = basic | (u8) rate; 2658 } 2659 } 2660 return 0; 2661 } 2662 2663 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 2664 { 2665 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2666 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 2667 2668 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) { 2669 /* non-managed type inferfaces */ 2670 return 0; 2671 } 2672 return -ewma_beacon_signal_read(&ifmgd->ave_beacon_signal); 2673 } 2674 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 2675 2676 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 2677 { 2678 if (!mcs) 2679 return 1; 2680 2681 /* TODO: consider rx_highest */ 2682 2683 if (mcs->rx_mask[3]) 2684 return 4; 2685 if (mcs->rx_mask[2]) 2686 return 3; 2687 if (mcs->rx_mask[1]) 2688 return 2; 2689 return 1; 2690 } 2691 2692 /** 2693 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 2694 * @local: mac80211 hw info struct 2695 * @status: RX status 2696 * @mpdu_len: total MPDU length (including FCS) 2697 * @mpdu_offset: offset into MPDU to calculate timestamp at 2698 * 2699 * This function calculates the RX timestamp at the given MPDU offset, taking 2700 * into account what the RX timestamp was. An offset of 0 will just normalize 2701 * the timestamp to TSF at beginning of MPDU reception. 2702 */ 2703 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 2704 struct ieee80211_rx_status *status, 2705 unsigned int mpdu_len, 2706 unsigned int mpdu_offset) 2707 { 2708 u64 ts = status->mactime; 2709 struct rate_info ri; 2710 u16 rate; 2711 2712 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 2713 return 0; 2714 2715 memset(&ri, 0, sizeof(ri)); 2716 2717 /* Fill cfg80211 rate info */ 2718 if (status->flag & RX_FLAG_HT) { 2719 ri.mcs = status->rate_idx; 2720 ri.flags |= RATE_INFO_FLAGS_MCS; 2721 if (status->flag & RX_FLAG_40MHZ) 2722 ri.bw = RATE_INFO_BW_40; 2723 else 2724 ri.bw = RATE_INFO_BW_20; 2725 if (status->flag & RX_FLAG_SHORT_GI) 2726 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 2727 } else if (status->flag & RX_FLAG_VHT) { 2728 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 2729 ri.mcs = status->rate_idx; 2730 ri.nss = status->vht_nss; 2731 if (status->flag & RX_FLAG_40MHZ) 2732 ri.bw = RATE_INFO_BW_40; 2733 else if (status->vht_flag & RX_VHT_FLAG_80MHZ) 2734 ri.bw = RATE_INFO_BW_80; 2735 else if (status->vht_flag & RX_VHT_FLAG_160MHZ) 2736 ri.bw = RATE_INFO_BW_160; 2737 else 2738 ri.bw = RATE_INFO_BW_20; 2739 if (status->flag & RX_FLAG_SHORT_GI) 2740 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 2741 } else { 2742 struct ieee80211_supported_band *sband; 2743 int shift = 0; 2744 int bitrate; 2745 2746 if (status->flag & RX_FLAG_10MHZ) { 2747 shift = 1; 2748 ri.bw = RATE_INFO_BW_10; 2749 } else if (status->flag & RX_FLAG_5MHZ) { 2750 shift = 2; 2751 ri.bw = RATE_INFO_BW_5; 2752 } else { 2753 ri.bw = RATE_INFO_BW_20; 2754 } 2755 2756 sband = local->hw.wiphy->bands[status->band]; 2757 bitrate = sband->bitrates[status->rate_idx].bitrate; 2758 ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift)); 2759 2760 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 2761 /* TODO: handle HT/VHT preambles */ 2762 if (status->band == NL80211_BAND_5GHZ) { 2763 ts += 20 << shift; 2764 mpdu_offset += 2; 2765 } else if (status->flag & RX_FLAG_SHORTPRE) { 2766 ts += 96; 2767 } else { 2768 ts += 192; 2769 } 2770 } 2771 } 2772 2773 rate = cfg80211_calculate_bitrate(&ri); 2774 if (WARN_ONCE(!rate, 2775 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 2776 (unsigned long long)status->flag, status->rate_idx, 2777 status->vht_nss)) 2778 return 0; 2779 2780 /* rewind from end of MPDU */ 2781 if (status->flag & RX_FLAG_MACTIME_END) 2782 ts -= mpdu_len * 8 * 10 / rate; 2783 2784 ts += mpdu_offset * 8 * 10 / rate; 2785 2786 return ts; 2787 } 2788 2789 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) 2790 { 2791 struct ieee80211_sub_if_data *sdata; 2792 struct cfg80211_chan_def chandef; 2793 2794 mutex_lock(&local->mtx); 2795 mutex_lock(&local->iflist_mtx); 2796 list_for_each_entry(sdata, &local->interfaces, list) { 2797 /* it might be waiting for the local->mtx, but then 2798 * by the time it gets it, sdata->wdev.cac_started 2799 * will no longer be true 2800 */ 2801 cancel_delayed_work(&sdata->dfs_cac_timer_work); 2802 2803 if (sdata->wdev.cac_started) { 2804 chandef = sdata->vif.bss_conf.chandef; 2805 ieee80211_vif_release_channel(sdata); 2806 cfg80211_cac_event(sdata->dev, 2807 &chandef, 2808 NL80211_RADAR_CAC_ABORTED, 2809 GFP_KERNEL); 2810 } 2811 } 2812 mutex_unlock(&local->iflist_mtx); 2813 mutex_unlock(&local->mtx); 2814 } 2815 2816 void ieee80211_dfs_radar_detected_work(struct work_struct *work) 2817 { 2818 struct ieee80211_local *local = 2819 container_of(work, struct ieee80211_local, radar_detected_work); 2820 struct cfg80211_chan_def chandef = local->hw.conf.chandef; 2821 struct ieee80211_chanctx *ctx; 2822 int num_chanctx = 0; 2823 2824 mutex_lock(&local->chanctx_mtx); 2825 list_for_each_entry(ctx, &local->chanctx_list, list) { 2826 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 2827 continue; 2828 2829 num_chanctx++; 2830 chandef = ctx->conf.def; 2831 } 2832 mutex_unlock(&local->chanctx_mtx); 2833 2834 ieee80211_dfs_cac_cancel(local); 2835 2836 if (num_chanctx > 1) 2837 /* XXX: multi-channel is not supported yet */ 2838 WARN_ON(1); 2839 else 2840 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 2841 } 2842 2843 void ieee80211_radar_detected(struct ieee80211_hw *hw) 2844 { 2845 struct ieee80211_local *local = hw_to_local(hw); 2846 2847 trace_api_radar_detected(local); 2848 2849 ieee80211_queue_work(hw, &local->radar_detected_work); 2850 } 2851 EXPORT_SYMBOL(ieee80211_radar_detected); 2852 2853 u32 ieee80211_chandef_downgrade(struct cfg80211_chan_def *c) 2854 { 2855 u32 ret; 2856 int tmp; 2857 2858 switch (c->width) { 2859 case NL80211_CHAN_WIDTH_20: 2860 c->width = NL80211_CHAN_WIDTH_20_NOHT; 2861 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 2862 break; 2863 case NL80211_CHAN_WIDTH_40: 2864 c->width = NL80211_CHAN_WIDTH_20; 2865 c->center_freq1 = c->chan->center_freq; 2866 ret = IEEE80211_STA_DISABLE_40MHZ | 2867 IEEE80211_STA_DISABLE_VHT; 2868 break; 2869 case NL80211_CHAN_WIDTH_80: 2870 tmp = (30 + c->chan->center_freq - c->center_freq1)/20; 2871 /* n_P40 */ 2872 tmp /= 2; 2873 /* freq_P40 */ 2874 c->center_freq1 = c->center_freq1 - 20 + 40 * tmp; 2875 c->width = NL80211_CHAN_WIDTH_40; 2876 ret = IEEE80211_STA_DISABLE_VHT; 2877 break; 2878 case NL80211_CHAN_WIDTH_80P80: 2879 c->center_freq2 = 0; 2880 c->width = NL80211_CHAN_WIDTH_80; 2881 ret = IEEE80211_STA_DISABLE_80P80MHZ | 2882 IEEE80211_STA_DISABLE_160MHZ; 2883 break; 2884 case NL80211_CHAN_WIDTH_160: 2885 /* n_P20 */ 2886 tmp = (70 + c->chan->center_freq - c->center_freq1)/20; 2887 /* n_P80 */ 2888 tmp /= 4; 2889 c->center_freq1 = c->center_freq1 - 40 + 80 * tmp; 2890 c->width = NL80211_CHAN_WIDTH_80; 2891 ret = IEEE80211_STA_DISABLE_80P80MHZ | 2892 IEEE80211_STA_DISABLE_160MHZ; 2893 break; 2894 default: 2895 case NL80211_CHAN_WIDTH_20_NOHT: 2896 WARN_ON_ONCE(1); 2897 c->width = NL80211_CHAN_WIDTH_20_NOHT; 2898 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 2899 break; 2900 case NL80211_CHAN_WIDTH_5: 2901 case NL80211_CHAN_WIDTH_10: 2902 WARN_ON_ONCE(1); 2903 /* keep c->width */ 2904 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 2905 break; 2906 } 2907 2908 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 2909 2910 return ret; 2911 } 2912 2913 /* 2914 * Returns true if smps_mode_new is strictly more restrictive than 2915 * smps_mode_old. 2916 */ 2917 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 2918 enum ieee80211_smps_mode smps_mode_new) 2919 { 2920 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 2921 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 2922 return false; 2923 2924 switch (smps_mode_old) { 2925 case IEEE80211_SMPS_STATIC: 2926 return false; 2927 case IEEE80211_SMPS_DYNAMIC: 2928 return smps_mode_new == IEEE80211_SMPS_STATIC; 2929 case IEEE80211_SMPS_OFF: 2930 return smps_mode_new != IEEE80211_SMPS_OFF; 2931 default: 2932 WARN_ON(1); 2933 } 2934 2935 return false; 2936 } 2937 2938 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 2939 struct cfg80211_csa_settings *csa_settings) 2940 { 2941 struct sk_buff *skb; 2942 struct ieee80211_mgmt *mgmt; 2943 struct ieee80211_local *local = sdata->local; 2944 int freq; 2945 int hdr_len = offsetof(struct ieee80211_mgmt, u.action.u.chan_switch) + 2946 sizeof(mgmt->u.action.u.chan_switch); 2947 u8 *pos; 2948 2949 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 2950 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2951 return -EOPNOTSUPP; 2952 2953 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 2954 5 + /* channel switch announcement element */ 2955 3 + /* secondary channel offset element */ 2956 8); /* mesh channel switch parameters element */ 2957 if (!skb) 2958 return -ENOMEM; 2959 2960 skb_reserve(skb, local->tx_headroom); 2961 mgmt = (struct ieee80211_mgmt *)skb_put(skb, hdr_len); 2962 memset(mgmt, 0, hdr_len); 2963 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2964 IEEE80211_STYPE_ACTION); 2965 2966 eth_broadcast_addr(mgmt->da); 2967 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 2968 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2969 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 2970 } else { 2971 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 2972 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 2973 } 2974 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 2975 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 2976 pos = skb_put(skb, 5); 2977 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 2978 *pos++ = 3; /* IE length */ 2979 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 2980 freq = csa_settings->chandef.chan->center_freq; 2981 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 2982 *pos++ = csa_settings->count; /* count */ 2983 2984 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 2985 enum nl80211_channel_type ch_type; 2986 2987 skb_put(skb, 3); 2988 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 2989 *pos++ = 1; /* IE length */ 2990 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 2991 if (ch_type == NL80211_CHAN_HT40PLUS) 2992 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 2993 else 2994 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 2995 } 2996 2997 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2998 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2999 3000 skb_put(skb, 8); 3001 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 3002 *pos++ = 6; /* IE length */ 3003 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 3004 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 3005 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 3006 *pos++ |= csa_settings->block_tx ? 3007 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 3008 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 3009 pos += 2; 3010 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 3011 pos += 2; 3012 } 3013 3014 ieee80211_tx_skb(sdata, skb); 3015 return 0; 3016 } 3017 3018 bool ieee80211_cs_valid(const struct ieee80211_cipher_scheme *cs) 3019 { 3020 return !(cs == NULL || cs->cipher == 0 || 3021 cs->hdr_len < cs->pn_len + cs->pn_off || 3022 cs->hdr_len <= cs->key_idx_off || 3023 cs->key_idx_shift > 7 || 3024 cs->key_idx_mask == 0); 3025 } 3026 3027 bool ieee80211_cs_list_valid(const struct ieee80211_cipher_scheme *cs, int n) 3028 { 3029 int i; 3030 3031 /* Ensure we have enough iftype bitmap space for all iftype values */ 3032 WARN_ON((NUM_NL80211_IFTYPES / 8 + 1) > sizeof(cs[0].iftype)); 3033 3034 for (i = 0; i < n; i++) 3035 if (!ieee80211_cs_valid(&cs[i])) 3036 return false; 3037 3038 return true; 3039 } 3040 3041 const struct ieee80211_cipher_scheme * 3042 ieee80211_cs_get(struct ieee80211_local *local, u32 cipher, 3043 enum nl80211_iftype iftype) 3044 { 3045 const struct ieee80211_cipher_scheme *l = local->hw.cipher_schemes; 3046 int n = local->hw.n_cipher_schemes; 3047 int i; 3048 const struct ieee80211_cipher_scheme *cs = NULL; 3049 3050 for (i = 0; i < n; i++) { 3051 if (l[i].cipher == cipher) { 3052 cs = &l[i]; 3053 break; 3054 } 3055 } 3056 3057 if (!cs || !(cs->iftype & BIT(iftype))) 3058 return NULL; 3059 3060 return cs; 3061 } 3062 3063 int ieee80211_cs_headroom(struct ieee80211_local *local, 3064 struct cfg80211_crypto_settings *crypto, 3065 enum nl80211_iftype iftype) 3066 { 3067 const struct ieee80211_cipher_scheme *cs; 3068 int headroom = IEEE80211_ENCRYPT_HEADROOM; 3069 int i; 3070 3071 for (i = 0; i < crypto->n_ciphers_pairwise; i++) { 3072 cs = ieee80211_cs_get(local, crypto->ciphers_pairwise[i], 3073 iftype); 3074 3075 if (cs && headroom < cs->hdr_len) 3076 headroom = cs->hdr_len; 3077 } 3078 3079 cs = ieee80211_cs_get(local, crypto->cipher_group, iftype); 3080 if (cs && headroom < cs->hdr_len) 3081 headroom = cs->hdr_len; 3082 3083 return headroom; 3084 } 3085 3086 static bool 3087 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 3088 { 3089 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 3090 int skip; 3091 3092 if (end > 0) 3093 return false; 3094 3095 /* One shot NOA */ 3096 if (data->count[i] == 1) 3097 return false; 3098 3099 if (data->desc[i].interval == 0) 3100 return false; 3101 3102 /* End time is in the past, check for repetitions */ 3103 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 3104 if (data->count[i] < 255) { 3105 if (data->count[i] <= skip) { 3106 data->count[i] = 0; 3107 return false; 3108 } 3109 3110 data->count[i] -= skip; 3111 } 3112 3113 data->desc[i].start += skip * data->desc[i].interval; 3114 3115 return true; 3116 } 3117 3118 static bool 3119 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 3120 s32 *offset) 3121 { 3122 bool ret = false; 3123 int i; 3124 3125 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3126 s32 cur; 3127 3128 if (!data->count[i]) 3129 continue; 3130 3131 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 3132 ret = true; 3133 3134 cur = data->desc[i].start - tsf; 3135 if (cur > *offset) 3136 continue; 3137 3138 cur = data->desc[i].start + data->desc[i].duration - tsf; 3139 if (cur > *offset) 3140 *offset = cur; 3141 } 3142 3143 return ret; 3144 } 3145 3146 static u32 3147 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 3148 { 3149 s32 offset = 0; 3150 int tries = 0; 3151 /* 3152 * arbitrary limit, used to avoid infinite loops when combined NoA 3153 * descriptors cover the full time period. 3154 */ 3155 int max_tries = 5; 3156 3157 ieee80211_extend_absent_time(data, tsf, &offset); 3158 do { 3159 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 3160 break; 3161 3162 tries++; 3163 } while (tries < max_tries); 3164 3165 return offset; 3166 } 3167 3168 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 3169 { 3170 u32 next_offset = BIT(31) - 1; 3171 int i; 3172 3173 data->absent = 0; 3174 data->has_next_tsf = false; 3175 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3176 s32 start; 3177 3178 if (!data->count[i]) 3179 continue; 3180 3181 ieee80211_extend_noa_desc(data, tsf, i); 3182 start = data->desc[i].start - tsf; 3183 if (start <= 0) 3184 data->absent |= BIT(i); 3185 3186 if (next_offset > start) 3187 next_offset = start; 3188 3189 data->has_next_tsf = true; 3190 } 3191 3192 if (data->absent) 3193 next_offset = ieee80211_get_noa_absent_time(data, tsf); 3194 3195 data->next_tsf = tsf + next_offset; 3196 } 3197 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 3198 3199 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 3200 struct ieee80211_noa_data *data, u32 tsf) 3201 { 3202 int ret = 0; 3203 int i; 3204 3205 memset(data, 0, sizeof(*data)); 3206 3207 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3208 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 3209 3210 if (!desc->count || !desc->duration) 3211 continue; 3212 3213 data->count[i] = desc->count; 3214 data->desc[i].start = le32_to_cpu(desc->start_time); 3215 data->desc[i].duration = le32_to_cpu(desc->duration); 3216 data->desc[i].interval = le32_to_cpu(desc->interval); 3217 3218 if (data->count[i] > 1 && 3219 data->desc[i].interval < data->desc[i].duration) 3220 continue; 3221 3222 ieee80211_extend_noa_desc(data, tsf, i); 3223 ret++; 3224 } 3225 3226 if (ret) 3227 ieee80211_update_p2p_noa(data, tsf); 3228 3229 return ret; 3230 } 3231 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 3232 3233 void ieee80211_recalc_dtim(struct ieee80211_local *local, 3234 struct ieee80211_sub_if_data *sdata) 3235 { 3236 u64 tsf = drv_get_tsf(local, sdata); 3237 u64 dtim_count = 0; 3238 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 3239 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 3240 struct ps_data *ps; 3241 u8 bcns_from_dtim; 3242 3243 if (tsf == -1ULL || !beacon_int || !dtim_period) 3244 return; 3245 3246 if (sdata->vif.type == NL80211_IFTYPE_AP || 3247 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 3248 if (!sdata->bss) 3249 return; 3250 3251 ps = &sdata->bss->ps; 3252 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 3253 ps = &sdata->u.mesh.ps; 3254 } else { 3255 return; 3256 } 3257 3258 /* 3259 * actually finds last dtim_count, mac80211 will update in 3260 * __beacon_add_tim(). 3261 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 3262 */ 3263 do_div(tsf, beacon_int); 3264 bcns_from_dtim = do_div(tsf, dtim_period); 3265 /* just had a DTIM */ 3266 if (!bcns_from_dtim) 3267 dtim_count = 0; 3268 else 3269 dtim_count = dtim_period - bcns_from_dtim; 3270 3271 ps->dtim_count = dtim_count; 3272 } 3273 3274 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 3275 struct ieee80211_chanctx *ctx) 3276 { 3277 struct ieee80211_sub_if_data *sdata; 3278 u8 radar_detect = 0; 3279 3280 lockdep_assert_held(&local->chanctx_mtx); 3281 3282 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 3283 return 0; 3284 3285 list_for_each_entry(sdata, &ctx->reserved_vifs, reserved_chanctx_list) 3286 if (sdata->reserved_radar_required) 3287 radar_detect |= BIT(sdata->reserved_chandef.width); 3288 3289 /* 3290 * An in-place reservation context should not have any assigned vifs 3291 * until it replaces the other context. 3292 */ 3293 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 3294 !list_empty(&ctx->assigned_vifs)); 3295 3296 list_for_each_entry(sdata, &ctx->assigned_vifs, assigned_chanctx_list) 3297 if (sdata->radar_required) 3298 radar_detect |= BIT(sdata->vif.bss_conf.chandef.width); 3299 3300 return radar_detect; 3301 } 3302 3303 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 3304 const struct cfg80211_chan_def *chandef, 3305 enum ieee80211_chanctx_mode chanmode, 3306 u8 radar_detect) 3307 { 3308 struct ieee80211_local *local = sdata->local; 3309 struct ieee80211_sub_if_data *sdata_iter; 3310 enum nl80211_iftype iftype = sdata->wdev.iftype; 3311 struct ieee80211_chanctx *ctx; 3312 int total = 1; 3313 struct iface_combination_params params = { 3314 .radar_detect = radar_detect, 3315 }; 3316 3317 lockdep_assert_held(&local->chanctx_mtx); 3318 3319 if (WARN_ON(hweight32(radar_detect) > 1)) 3320 return -EINVAL; 3321 3322 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 3323 !chandef->chan)) 3324 return -EINVAL; 3325 3326 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 3327 return -EINVAL; 3328 3329 if (sdata->vif.type == NL80211_IFTYPE_AP || 3330 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 3331 /* 3332 * always passing this is harmless, since it'll be the 3333 * same value that cfg80211 finds if it finds the same 3334 * interface ... and that's always allowed 3335 */ 3336 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 3337 } 3338 3339 /* Always allow software iftypes */ 3340 if (local->hw.wiphy->software_iftypes & BIT(iftype)) { 3341 if (radar_detect) 3342 return -EINVAL; 3343 return 0; 3344 } 3345 3346 if (chandef) 3347 params.num_different_channels = 1; 3348 3349 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 3350 params.iftype_num[iftype] = 1; 3351 3352 list_for_each_entry(ctx, &local->chanctx_list, list) { 3353 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 3354 continue; 3355 params.radar_detect |= 3356 ieee80211_chanctx_radar_detect(local, ctx); 3357 if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) { 3358 params.num_different_channels++; 3359 continue; 3360 } 3361 if (chandef && chanmode == IEEE80211_CHANCTX_SHARED && 3362 cfg80211_chandef_compatible(chandef, 3363 &ctx->conf.def)) 3364 continue; 3365 params.num_different_channels++; 3366 } 3367 3368 list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) { 3369 struct wireless_dev *wdev_iter; 3370 3371 wdev_iter = &sdata_iter->wdev; 3372 3373 if (sdata_iter == sdata || 3374 !ieee80211_sdata_running(sdata_iter) || 3375 local->hw.wiphy->software_iftypes & BIT(wdev_iter->iftype)) 3376 continue; 3377 3378 params.iftype_num[wdev_iter->iftype]++; 3379 total++; 3380 } 3381 3382 if (total == 1 && !params.radar_detect) 3383 return 0; 3384 3385 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 3386 } 3387 3388 static void 3389 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 3390 void *data) 3391 { 3392 u32 *max_num_different_channels = data; 3393 3394 *max_num_different_channels = max(*max_num_different_channels, 3395 c->num_different_channels); 3396 } 3397 3398 int ieee80211_max_num_channels(struct ieee80211_local *local) 3399 { 3400 struct ieee80211_sub_if_data *sdata; 3401 struct ieee80211_chanctx *ctx; 3402 u32 max_num_different_channels = 1; 3403 int err; 3404 struct iface_combination_params params = {0}; 3405 3406 lockdep_assert_held(&local->chanctx_mtx); 3407 3408 list_for_each_entry(ctx, &local->chanctx_list, list) { 3409 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 3410 continue; 3411 3412 params.num_different_channels++; 3413 3414 params.radar_detect |= 3415 ieee80211_chanctx_radar_detect(local, ctx); 3416 } 3417 3418 list_for_each_entry_rcu(sdata, &local->interfaces, list) 3419 params.iftype_num[sdata->wdev.iftype]++; 3420 3421 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 3422 ieee80211_iter_max_chans, 3423 &max_num_different_channels); 3424 if (err < 0) 3425 return err; 3426 3427 return max_num_different_channels; 3428 } 3429 3430 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 3431 { 3432 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 3433 *buf++ = 7; /* len */ 3434 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 3435 *buf++ = 0x50; 3436 *buf++ = 0xf2; 3437 *buf++ = 2; /* WME */ 3438 *buf++ = 0; /* WME info */ 3439 *buf++ = 1; /* WME ver */ 3440 *buf++ = qosinfo; /* U-APSD no in use */ 3441 3442 return buf; 3443 } 3444 3445 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 3446 unsigned long *frame_cnt, 3447 unsigned long *byte_cnt) 3448 { 3449 struct txq_info *txqi = to_txq_info(txq); 3450 u32 frag_cnt = 0, frag_bytes = 0; 3451 struct sk_buff *skb; 3452 3453 skb_queue_walk(&txqi->frags, skb) { 3454 frag_cnt++; 3455 frag_bytes += skb->len; 3456 } 3457 3458 if (frame_cnt) 3459 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 3460 3461 if (byte_cnt) 3462 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 3463 } 3464 EXPORT_SYMBOL(ieee80211_txq_get_depth); 3465 3466 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 3467 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 3468 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 3469 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 3470 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 3471 }; 3472