1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2023 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 28 #include "ieee80211_i.h" 29 #include "driver-ops.h" 30 #include "rate.h" 31 #include "mesh.h" 32 #include "wme.h" 33 #include "led.h" 34 #include "wep.h" 35 36 /* privid for wiphys to determine whether they belong to us or not */ 37 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 38 39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 40 { 41 struct ieee80211_local *local; 42 43 local = wiphy_priv(wiphy); 44 return &local->hw; 45 } 46 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 47 48 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 49 enum nl80211_iftype type) 50 { 51 __le16 fc = hdr->frame_control; 52 53 if (ieee80211_is_data(fc)) { 54 if (len < 24) /* drop incorrect hdr len (data) */ 55 return NULL; 56 57 if (ieee80211_has_a4(fc)) 58 return NULL; 59 if (ieee80211_has_tods(fc)) 60 return hdr->addr1; 61 if (ieee80211_has_fromds(fc)) 62 return hdr->addr2; 63 64 return hdr->addr3; 65 } 66 67 if (ieee80211_is_s1g_beacon(fc)) { 68 struct ieee80211_ext *ext = (void *) hdr; 69 70 return ext->u.s1g_beacon.sa; 71 } 72 73 if (ieee80211_is_mgmt(fc)) { 74 if (len < 24) /* drop incorrect hdr len (mgmt) */ 75 return NULL; 76 return hdr->addr3; 77 } 78 79 if (ieee80211_is_ctl(fc)) { 80 if (ieee80211_is_pspoll(fc)) 81 return hdr->addr1; 82 83 if (ieee80211_is_back_req(fc)) { 84 switch (type) { 85 case NL80211_IFTYPE_STATION: 86 return hdr->addr2; 87 case NL80211_IFTYPE_AP: 88 case NL80211_IFTYPE_AP_VLAN: 89 return hdr->addr1; 90 default: 91 break; /* fall through to the return */ 92 } 93 } 94 } 95 96 return NULL; 97 } 98 EXPORT_SYMBOL(ieee80211_get_bssid); 99 100 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 101 { 102 struct sk_buff *skb; 103 struct ieee80211_hdr *hdr; 104 105 skb_queue_walk(&tx->skbs, skb) { 106 hdr = (struct ieee80211_hdr *) skb->data; 107 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 108 } 109 } 110 111 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 112 int rate, int erp, int short_preamble, 113 int shift) 114 { 115 int dur; 116 117 /* calculate duration (in microseconds, rounded up to next higher 118 * integer if it includes a fractional microsecond) to send frame of 119 * len bytes (does not include FCS) at the given rate. Duration will 120 * also include SIFS. 121 * 122 * rate is in 100 kbps, so divident is multiplied by 10 in the 123 * DIV_ROUND_UP() operations. 124 * 125 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and 126 * is assumed to be 0 otherwise. 127 */ 128 129 if (band == NL80211_BAND_5GHZ || erp) { 130 /* 131 * OFDM: 132 * 133 * N_DBPS = DATARATE x 4 134 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 135 * (16 = SIGNAL time, 6 = tail bits) 136 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 137 * 138 * T_SYM = 4 usec 139 * 802.11a - 18.5.2: aSIFSTime = 16 usec 140 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 141 * signal ext = 6 usec 142 */ 143 dur = 16; /* SIFS + signal ext */ 144 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 145 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 146 147 /* IEEE 802.11-2012 18.3.2.4: all values above are: 148 * * times 4 for 5 MHz 149 * * times 2 for 10 MHz 150 */ 151 dur *= 1 << shift; 152 153 /* rates should already consider the channel bandwidth, 154 * don't apply divisor again. 155 */ 156 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 157 4 * rate); /* T_SYM x N_SYM */ 158 } else { 159 /* 160 * 802.11b or 802.11g with 802.11b compatibility: 161 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 162 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 163 * 164 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 165 * aSIFSTime = 10 usec 166 * aPreambleLength = 144 usec or 72 usec with short preamble 167 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 168 */ 169 dur = 10; /* aSIFSTime = 10 usec */ 170 dur += short_preamble ? (72 + 24) : (144 + 48); 171 172 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 173 } 174 175 return dur; 176 } 177 178 /* Exported duration function for driver use */ 179 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 180 struct ieee80211_vif *vif, 181 enum nl80211_band band, 182 size_t frame_len, 183 struct ieee80211_rate *rate) 184 { 185 struct ieee80211_sub_if_data *sdata; 186 u16 dur; 187 int erp, shift = 0; 188 bool short_preamble = false; 189 190 erp = 0; 191 if (vif) { 192 sdata = vif_to_sdata(vif); 193 short_preamble = sdata->vif.bss_conf.use_short_preamble; 194 if (sdata->deflink.operating_11g_mode) 195 erp = rate->flags & IEEE80211_RATE_ERP_G; 196 shift = ieee80211_vif_get_shift(vif); 197 } 198 199 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 200 short_preamble, shift); 201 202 return cpu_to_le16(dur); 203 } 204 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 205 206 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 207 struct ieee80211_vif *vif, size_t frame_len, 208 const struct ieee80211_tx_info *frame_txctl) 209 { 210 struct ieee80211_local *local = hw_to_local(hw); 211 struct ieee80211_rate *rate; 212 struct ieee80211_sub_if_data *sdata; 213 bool short_preamble; 214 int erp, shift = 0, bitrate; 215 u16 dur; 216 struct ieee80211_supported_band *sband; 217 218 sband = local->hw.wiphy->bands[frame_txctl->band]; 219 220 short_preamble = false; 221 222 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 223 224 erp = 0; 225 if (vif) { 226 sdata = vif_to_sdata(vif); 227 short_preamble = sdata->vif.bss_conf.use_short_preamble; 228 if (sdata->deflink.operating_11g_mode) 229 erp = rate->flags & IEEE80211_RATE_ERP_G; 230 shift = ieee80211_vif_get_shift(vif); 231 } 232 233 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 234 235 /* CTS duration */ 236 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 237 erp, short_preamble, shift); 238 /* Data frame duration */ 239 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 240 erp, short_preamble, shift); 241 /* ACK duration */ 242 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 243 erp, short_preamble, shift); 244 245 return cpu_to_le16(dur); 246 } 247 EXPORT_SYMBOL(ieee80211_rts_duration); 248 249 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 250 struct ieee80211_vif *vif, 251 size_t frame_len, 252 const struct ieee80211_tx_info *frame_txctl) 253 { 254 struct ieee80211_local *local = hw_to_local(hw); 255 struct ieee80211_rate *rate; 256 struct ieee80211_sub_if_data *sdata; 257 bool short_preamble; 258 int erp, shift = 0, bitrate; 259 u16 dur; 260 struct ieee80211_supported_band *sband; 261 262 sband = local->hw.wiphy->bands[frame_txctl->band]; 263 264 short_preamble = false; 265 266 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 267 erp = 0; 268 if (vif) { 269 sdata = vif_to_sdata(vif); 270 short_preamble = sdata->vif.bss_conf.use_short_preamble; 271 if (sdata->deflink.operating_11g_mode) 272 erp = rate->flags & IEEE80211_RATE_ERP_G; 273 shift = ieee80211_vif_get_shift(vif); 274 } 275 276 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 277 278 /* Data frame duration */ 279 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 280 erp, short_preamble, shift); 281 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 282 /* ACK duration */ 283 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 284 erp, short_preamble, shift); 285 } 286 287 return cpu_to_le16(dur); 288 } 289 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 290 291 static void wake_tx_push_queue(struct ieee80211_local *local, 292 struct ieee80211_sub_if_data *sdata, 293 struct ieee80211_txq *queue) 294 { 295 struct ieee80211_tx_control control = { 296 .sta = queue->sta, 297 }; 298 struct sk_buff *skb; 299 300 while (1) { 301 skb = ieee80211_tx_dequeue(&local->hw, queue); 302 if (!skb) 303 break; 304 305 drv_tx(local, &control, skb); 306 } 307 } 308 309 /* wake_tx_queue handler for driver not implementing a custom one*/ 310 void ieee80211_handle_wake_tx_queue(struct ieee80211_hw *hw, 311 struct ieee80211_txq *txq) 312 { 313 struct ieee80211_local *local = hw_to_local(hw); 314 struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif); 315 struct ieee80211_txq *queue; 316 317 spin_lock(&local->handle_wake_tx_queue_lock); 318 319 /* Use ieee80211_next_txq() for airtime fairness accounting */ 320 ieee80211_txq_schedule_start(hw, txq->ac); 321 while ((queue = ieee80211_next_txq(hw, txq->ac))) { 322 wake_tx_push_queue(local, sdata, queue); 323 ieee80211_return_txq(hw, queue, false); 324 } 325 ieee80211_txq_schedule_end(hw, txq->ac); 326 spin_unlock(&local->handle_wake_tx_queue_lock); 327 } 328 EXPORT_SYMBOL(ieee80211_handle_wake_tx_queue); 329 330 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 331 { 332 struct ieee80211_local *local = sdata->local; 333 struct ieee80211_vif *vif = &sdata->vif; 334 struct fq *fq = &local->fq; 335 struct ps_data *ps = NULL; 336 struct txq_info *txqi; 337 struct sta_info *sta; 338 int i; 339 340 local_bh_disable(); 341 spin_lock(&fq->lock); 342 343 if (!test_bit(SDATA_STATE_RUNNING, &sdata->state)) 344 goto out; 345 346 if (sdata->vif.type == NL80211_IFTYPE_AP) 347 ps = &sdata->bss->ps; 348 349 list_for_each_entry_rcu(sta, &local->sta_list, list) { 350 if (sdata != sta->sdata) 351 continue; 352 353 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 354 struct ieee80211_txq *txq = sta->sta.txq[i]; 355 356 if (!txq) 357 continue; 358 359 txqi = to_txq_info(txq); 360 361 if (ac != txq->ac) 362 continue; 363 364 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, 365 &txqi->flags)) 366 continue; 367 368 spin_unlock(&fq->lock); 369 drv_wake_tx_queue(local, txqi); 370 spin_lock(&fq->lock); 371 } 372 } 373 374 if (!vif->txq) 375 goto out; 376 377 txqi = to_txq_info(vif->txq); 378 379 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, &txqi->flags) || 380 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 381 goto out; 382 383 spin_unlock(&fq->lock); 384 385 drv_wake_tx_queue(local, txqi); 386 local_bh_enable(); 387 return; 388 out: 389 spin_unlock(&fq->lock); 390 local_bh_enable(); 391 } 392 393 static void 394 __releases(&local->queue_stop_reason_lock) 395 __acquires(&local->queue_stop_reason_lock) 396 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 397 { 398 struct ieee80211_sub_if_data *sdata; 399 int n_acs = IEEE80211_NUM_ACS; 400 int i; 401 402 rcu_read_lock(); 403 404 if (local->hw.queues < IEEE80211_NUM_ACS) 405 n_acs = 1; 406 407 for (i = 0; i < local->hw.queues; i++) { 408 if (local->queue_stop_reasons[i]) 409 continue; 410 411 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 412 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 413 int ac; 414 415 for (ac = 0; ac < n_acs; ac++) { 416 int ac_queue = sdata->vif.hw_queue[ac]; 417 418 if (ac_queue == i || 419 sdata->vif.cab_queue == i) 420 __ieee80211_wake_txqs(sdata, ac); 421 } 422 } 423 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 424 } 425 426 rcu_read_unlock(); 427 } 428 429 void ieee80211_wake_txqs(struct tasklet_struct *t) 430 { 431 struct ieee80211_local *local = from_tasklet(local, t, 432 wake_txqs_tasklet); 433 unsigned long flags; 434 435 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 436 _ieee80211_wake_txqs(local, &flags); 437 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 438 } 439 440 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 441 enum queue_stop_reason reason, 442 bool refcounted, 443 unsigned long *flags) 444 { 445 struct ieee80211_local *local = hw_to_local(hw); 446 447 trace_wake_queue(local, queue, reason); 448 449 if (WARN_ON(queue >= hw->queues)) 450 return; 451 452 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 453 return; 454 455 if (!refcounted) { 456 local->q_stop_reasons[queue][reason] = 0; 457 } else { 458 local->q_stop_reasons[queue][reason]--; 459 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 460 local->q_stop_reasons[queue][reason] = 0; 461 } 462 463 if (local->q_stop_reasons[queue][reason] == 0) 464 __clear_bit(reason, &local->queue_stop_reasons[queue]); 465 466 if (local->queue_stop_reasons[queue] != 0) 467 /* someone still has this queue stopped */ 468 return; 469 470 if (!skb_queue_empty(&local->pending[queue])) 471 tasklet_schedule(&local->tx_pending_tasklet); 472 473 /* 474 * Calling _ieee80211_wake_txqs here can be a problem because it may 475 * release queue_stop_reason_lock which has been taken by 476 * __ieee80211_wake_queue's caller. It is certainly not very nice to 477 * release someone's lock, but it is fine because all the callers of 478 * __ieee80211_wake_queue call it right before releasing the lock. 479 */ 480 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 481 tasklet_schedule(&local->wake_txqs_tasklet); 482 else 483 _ieee80211_wake_txqs(local, flags); 484 } 485 486 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 487 enum queue_stop_reason reason, 488 bool refcounted) 489 { 490 struct ieee80211_local *local = hw_to_local(hw); 491 unsigned long flags; 492 493 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 494 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 495 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 496 } 497 498 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 499 { 500 ieee80211_wake_queue_by_reason(hw, queue, 501 IEEE80211_QUEUE_STOP_REASON_DRIVER, 502 false); 503 } 504 EXPORT_SYMBOL(ieee80211_wake_queue); 505 506 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 507 enum queue_stop_reason reason, 508 bool refcounted) 509 { 510 struct ieee80211_local *local = hw_to_local(hw); 511 512 trace_stop_queue(local, queue, reason); 513 514 if (WARN_ON(queue >= hw->queues)) 515 return; 516 517 if (!refcounted) 518 local->q_stop_reasons[queue][reason] = 1; 519 else 520 local->q_stop_reasons[queue][reason]++; 521 522 set_bit(reason, &local->queue_stop_reasons[queue]); 523 } 524 525 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 526 enum queue_stop_reason reason, 527 bool refcounted) 528 { 529 struct ieee80211_local *local = hw_to_local(hw); 530 unsigned long flags; 531 532 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 533 __ieee80211_stop_queue(hw, queue, reason, refcounted); 534 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 535 } 536 537 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 538 { 539 ieee80211_stop_queue_by_reason(hw, queue, 540 IEEE80211_QUEUE_STOP_REASON_DRIVER, 541 false); 542 } 543 EXPORT_SYMBOL(ieee80211_stop_queue); 544 545 void ieee80211_add_pending_skb(struct ieee80211_local *local, 546 struct sk_buff *skb) 547 { 548 struct ieee80211_hw *hw = &local->hw; 549 unsigned long flags; 550 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 551 int queue = info->hw_queue; 552 553 if (WARN_ON(!info->control.vif)) { 554 ieee80211_free_txskb(&local->hw, skb); 555 return; 556 } 557 558 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 559 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 560 false); 561 __skb_queue_tail(&local->pending[queue], skb); 562 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 563 false, &flags); 564 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 565 } 566 567 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 568 struct sk_buff_head *skbs) 569 { 570 struct ieee80211_hw *hw = &local->hw; 571 struct sk_buff *skb; 572 unsigned long flags; 573 int queue, i; 574 575 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 576 while ((skb = skb_dequeue(skbs))) { 577 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 578 579 if (WARN_ON(!info->control.vif)) { 580 ieee80211_free_txskb(&local->hw, skb); 581 continue; 582 } 583 584 queue = info->hw_queue; 585 586 __ieee80211_stop_queue(hw, queue, 587 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 588 false); 589 590 __skb_queue_tail(&local->pending[queue], skb); 591 } 592 593 for (i = 0; i < hw->queues; i++) 594 __ieee80211_wake_queue(hw, i, 595 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 596 false, &flags); 597 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 598 } 599 600 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 601 unsigned long queues, 602 enum queue_stop_reason reason, 603 bool refcounted) 604 { 605 struct ieee80211_local *local = hw_to_local(hw); 606 unsigned long flags; 607 int i; 608 609 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 610 611 for_each_set_bit(i, &queues, hw->queues) 612 __ieee80211_stop_queue(hw, i, reason, refcounted); 613 614 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 615 } 616 617 void ieee80211_stop_queues(struct ieee80211_hw *hw) 618 { 619 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 620 IEEE80211_QUEUE_STOP_REASON_DRIVER, 621 false); 622 } 623 EXPORT_SYMBOL(ieee80211_stop_queues); 624 625 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 626 { 627 struct ieee80211_local *local = hw_to_local(hw); 628 unsigned long flags; 629 int ret; 630 631 if (WARN_ON(queue >= hw->queues)) 632 return true; 633 634 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 635 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 636 &local->queue_stop_reasons[queue]); 637 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 638 return ret; 639 } 640 EXPORT_SYMBOL(ieee80211_queue_stopped); 641 642 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 643 unsigned long queues, 644 enum queue_stop_reason reason, 645 bool refcounted) 646 { 647 struct ieee80211_local *local = hw_to_local(hw); 648 unsigned long flags; 649 int i; 650 651 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 652 653 for_each_set_bit(i, &queues, hw->queues) 654 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 655 656 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 657 } 658 659 void ieee80211_wake_queues(struct ieee80211_hw *hw) 660 { 661 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 662 IEEE80211_QUEUE_STOP_REASON_DRIVER, 663 false); 664 } 665 EXPORT_SYMBOL(ieee80211_wake_queues); 666 667 static unsigned int 668 ieee80211_get_vif_queues(struct ieee80211_local *local, 669 struct ieee80211_sub_if_data *sdata) 670 { 671 unsigned int queues; 672 673 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 674 int ac; 675 676 queues = 0; 677 678 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 679 queues |= BIT(sdata->vif.hw_queue[ac]); 680 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 681 queues |= BIT(sdata->vif.cab_queue); 682 } else { 683 /* all queues */ 684 queues = BIT(local->hw.queues) - 1; 685 } 686 687 return queues; 688 } 689 690 void __ieee80211_flush_queues(struct ieee80211_local *local, 691 struct ieee80211_sub_if_data *sdata, 692 unsigned int queues, bool drop) 693 { 694 if (!local->ops->flush) 695 return; 696 697 /* 698 * If no queue was set, or if the HW doesn't support 699 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 700 */ 701 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 702 queues = ieee80211_get_vif_queues(local, sdata); 703 704 ieee80211_stop_queues_by_reason(&local->hw, queues, 705 IEEE80211_QUEUE_STOP_REASON_FLUSH, 706 false); 707 708 drv_flush(local, sdata, queues, drop); 709 710 ieee80211_wake_queues_by_reason(&local->hw, queues, 711 IEEE80211_QUEUE_STOP_REASON_FLUSH, 712 false); 713 } 714 715 void ieee80211_flush_queues(struct ieee80211_local *local, 716 struct ieee80211_sub_if_data *sdata, bool drop) 717 { 718 __ieee80211_flush_queues(local, sdata, 0, drop); 719 } 720 721 void ieee80211_stop_vif_queues(struct ieee80211_local *local, 722 struct ieee80211_sub_if_data *sdata, 723 enum queue_stop_reason reason) 724 { 725 ieee80211_stop_queues_by_reason(&local->hw, 726 ieee80211_get_vif_queues(local, sdata), 727 reason, true); 728 } 729 730 void ieee80211_wake_vif_queues(struct ieee80211_local *local, 731 struct ieee80211_sub_if_data *sdata, 732 enum queue_stop_reason reason) 733 { 734 ieee80211_wake_queues_by_reason(&local->hw, 735 ieee80211_get_vif_queues(local, sdata), 736 reason, true); 737 } 738 739 static void __iterate_interfaces(struct ieee80211_local *local, 740 u32 iter_flags, 741 void (*iterator)(void *data, u8 *mac, 742 struct ieee80211_vif *vif), 743 void *data) 744 { 745 struct ieee80211_sub_if_data *sdata; 746 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 747 748 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 749 switch (sdata->vif.type) { 750 case NL80211_IFTYPE_MONITOR: 751 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) 752 continue; 753 break; 754 case NL80211_IFTYPE_AP_VLAN: 755 continue; 756 default: 757 break; 758 } 759 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 760 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 761 continue; 762 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && 763 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 764 continue; 765 if (ieee80211_sdata_running(sdata) || !active_only) 766 iterator(data, sdata->vif.addr, 767 &sdata->vif); 768 } 769 770 sdata = rcu_dereference_check(local->monitor_sdata, 771 lockdep_is_held(&local->iflist_mtx) || 772 lockdep_is_held(&local->hw.wiphy->mtx)); 773 if (sdata && 774 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 775 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 776 iterator(data, sdata->vif.addr, &sdata->vif); 777 } 778 779 void ieee80211_iterate_interfaces( 780 struct ieee80211_hw *hw, u32 iter_flags, 781 void (*iterator)(void *data, u8 *mac, 782 struct ieee80211_vif *vif), 783 void *data) 784 { 785 struct ieee80211_local *local = hw_to_local(hw); 786 787 mutex_lock(&local->iflist_mtx); 788 __iterate_interfaces(local, iter_flags, iterator, data); 789 mutex_unlock(&local->iflist_mtx); 790 } 791 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 792 793 void ieee80211_iterate_active_interfaces_atomic( 794 struct ieee80211_hw *hw, u32 iter_flags, 795 void (*iterator)(void *data, u8 *mac, 796 struct ieee80211_vif *vif), 797 void *data) 798 { 799 struct ieee80211_local *local = hw_to_local(hw); 800 801 rcu_read_lock(); 802 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 803 iterator, data); 804 rcu_read_unlock(); 805 } 806 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 807 808 void ieee80211_iterate_active_interfaces_mtx( 809 struct ieee80211_hw *hw, u32 iter_flags, 810 void (*iterator)(void *data, u8 *mac, 811 struct ieee80211_vif *vif), 812 void *data) 813 { 814 struct ieee80211_local *local = hw_to_local(hw); 815 816 lockdep_assert_wiphy(hw->wiphy); 817 818 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 819 iterator, data); 820 } 821 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx); 822 823 static void __iterate_stations(struct ieee80211_local *local, 824 void (*iterator)(void *data, 825 struct ieee80211_sta *sta), 826 void *data) 827 { 828 struct sta_info *sta; 829 830 list_for_each_entry_rcu(sta, &local->sta_list, list) { 831 if (!sta->uploaded) 832 continue; 833 834 iterator(data, &sta->sta); 835 } 836 } 837 838 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 839 void (*iterator)(void *data, 840 struct ieee80211_sta *sta), 841 void *data) 842 { 843 struct ieee80211_local *local = hw_to_local(hw); 844 845 rcu_read_lock(); 846 __iterate_stations(local, iterator, data); 847 rcu_read_unlock(); 848 } 849 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 850 851 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 852 { 853 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 854 855 if (!ieee80211_sdata_running(sdata) || 856 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 857 return NULL; 858 return &sdata->vif; 859 } 860 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 861 862 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 863 { 864 if (!vif) 865 return NULL; 866 867 return &vif_to_sdata(vif)->wdev; 868 } 869 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 870 871 /* 872 * Nothing should have been stuffed into the workqueue during 873 * the suspend->resume cycle. Since we can't check each caller 874 * of this function if we are already quiescing / suspended, 875 * check here and don't WARN since this can actually happen when 876 * the rx path (for example) is racing against __ieee80211_suspend 877 * and suspending / quiescing was set after the rx path checked 878 * them. 879 */ 880 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 881 { 882 if (local->quiescing || (local->suspended && !local->resuming)) { 883 pr_warn("queueing ieee80211 work while going to suspend\n"); 884 return false; 885 } 886 887 return true; 888 } 889 890 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 891 { 892 struct ieee80211_local *local = hw_to_local(hw); 893 894 if (!ieee80211_can_queue_work(local)) 895 return; 896 897 queue_work(local->workqueue, work); 898 } 899 EXPORT_SYMBOL(ieee80211_queue_work); 900 901 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 902 struct delayed_work *dwork, 903 unsigned long delay) 904 { 905 struct ieee80211_local *local = hw_to_local(hw); 906 907 if (!ieee80211_can_queue_work(local)) 908 return; 909 910 queue_delayed_work(local->workqueue, dwork, delay); 911 } 912 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 913 914 static void 915 ieee80211_parse_extension_element(u32 *crc, 916 const struct element *elem, 917 struct ieee802_11_elems *elems, 918 struct ieee80211_elems_parse_params *params) 919 { 920 const void *data = elem->data + 1; 921 bool calc_crc = false; 922 u8 len; 923 924 if (!elem->datalen) 925 return; 926 927 len = elem->datalen - 1; 928 929 switch (elem->data[0]) { 930 case WLAN_EID_EXT_HE_MU_EDCA: 931 calc_crc = true; 932 if (len >= sizeof(*elems->mu_edca_param_set)) 933 elems->mu_edca_param_set = data; 934 break; 935 case WLAN_EID_EXT_HE_CAPABILITY: 936 if (ieee80211_he_capa_size_ok(data, len)) { 937 elems->he_cap = data; 938 elems->he_cap_len = len; 939 } 940 break; 941 case WLAN_EID_EXT_HE_OPERATION: 942 calc_crc = true; 943 if (len >= sizeof(*elems->he_operation) && 944 len >= ieee80211_he_oper_size(data) - 1) 945 elems->he_operation = data; 946 break; 947 case WLAN_EID_EXT_UORA: 948 if (len >= 1) 949 elems->uora_element = data; 950 break; 951 case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME: 952 if (len == 3) 953 elems->max_channel_switch_time = data; 954 break; 955 case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION: 956 if (len >= sizeof(*elems->mbssid_config_ie)) 957 elems->mbssid_config_ie = data; 958 break; 959 case WLAN_EID_EXT_HE_SPR: 960 if (len >= sizeof(*elems->he_spr) && 961 len >= ieee80211_he_spr_size(data)) 962 elems->he_spr = data; 963 break; 964 case WLAN_EID_EXT_HE_6GHZ_CAPA: 965 if (len >= sizeof(*elems->he_6ghz_capa)) 966 elems->he_6ghz_capa = data; 967 break; 968 case WLAN_EID_EXT_EHT_CAPABILITY: 969 if (ieee80211_eht_capa_size_ok(elems->he_cap, 970 data, len, 971 params->from_ap)) { 972 elems->eht_cap = data; 973 elems->eht_cap_len = len; 974 } 975 break; 976 case WLAN_EID_EXT_EHT_OPERATION: 977 if (ieee80211_eht_oper_size_ok(data, len)) 978 elems->eht_operation = data; 979 calc_crc = true; 980 break; 981 case WLAN_EID_EXT_EHT_MULTI_LINK: 982 calc_crc = true; 983 984 if (ieee80211_mle_size_ok(data, len)) { 985 const struct ieee80211_multi_link_elem *mle = 986 (void *)data; 987 988 switch (le16_get_bits(mle->control, 989 IEEE80211_ML_CONTROL_TYPE)) { 990 case IEEE80211_ML_CONTROL_TYPE_BASIC: 991 elems->ml_basic_elem = (void *)elem; 992 elems->ml_basic = data; 993 elems->ml_basic_len = len; 994 break; 995 case IEEE80211_ML_CONTROL_TYPE_RECONF: 996 elems->ml_reconf_elem = (void *)elem; 997 elems->ml_reconf = data; 998 elems->ml_reconf_len = len; 999 break; 1000 default: 1001 break; 1002 } 1003 } 1004 break; 1005 } 1006 1007 if (crc && calc_crc) 1008 *crc = crc32_be(*crc, (void *)elem, elem->datalen + 2); 1009 } 1010 1011 static u32 1012 _ieee802_11_parse_elems_full(struct ieee80211_elems_parse_params *params, 1013 struct ieee802_11_elems *elems, 1014 const struct element *check_inherit) 1015 { 1016 const struct element *elem; 1017 bool calc_crc = params->filter != 0; 1018 DECLARE_BITMAP(seen_elems, 256); 1019 u32 crc = params->crc; 1020 const u8 *ie; 1021 1022 bitmap_zero(seen_elems, 256); 1023 1024 for_each_element(elem, params->start, params->len) { 1025 bool elem_parse_failed; 1026 u8 id = elem->id; 1027 u8 elen = elem->datalen; 1028 const u8 *pos = elem->data; 1029 1030 if (check_inherit && 1031 !cfg80211_is_element_inherited(elem, 1032 check_inherit)) 1033 continue; 1034 1035 switch (id) { 1036 case WLAN_EID_SSID: 1037 case WLAN_EID_SUPP_RATES: 1038 case WLAN_EID_FH_PARAMS: 1039 case WLAN_EID_DS_PARAMS: 1040 case WLAN_EID_CF_PARAMS: 1041 case WLAN_EID_TIM: 1042 case WLAN_EID_IBSS_PARAMS: 1043 case WLAN_EID_CHALLENGE: 1044 case WLAN_EID_RSN: 1045 case WLAN_EID_ERP_INFO: 1046 case WLAN_EID_EXT_SUPP_RATES: 1047 case WLAN_EID_HT_CAPABILITY: 1048 case WLAN_EID_HT_OPERATION: 1049 case WLAN_EID_VHT_CAPABILITY: 1050 case WLAN_EID_VHT_OPERATION: 1051 case WLAN_EID_MESH_ID: 1052 case WLAN_EID_MESH_CONFIG: 1053 case WLAN_EID_PEER_MGMT: 1054 case WLAN_EID_PREQ: 1055 case WLAN_EID_PREP: 1056 case WLAN_EID_PERR: 1057 case WLAN_EID_RANN: 1058 case WLAN_EID_CHANNEL_SWITCH: 1059 case WLAN_EID_EXT_CHANSWITCH_ANN: 1060 case WLAN_EID_COUNTRY: 1061 case WLAN_EID_PWR_CONSTRAINT: 1062 case WLAN_EID_TIMEOUT_INTERVAL: 1063 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1064 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1065 case WLAN_EID_CHAN_SWITCH_PARAM: 1066 case WLAN_EID_EXT_CAPABILITY: 1067 case WLAN_EID_CHAN_SWITCH_TIMING: 1068 case WLAN_EID_LINK_ID: 1069 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1070 case WLAN_EID_RSNX: 1071 case WLAN_EID_S1G_BCN_COMPAT: 1072 case WLAN_EID_S1G_CAPABILITIES: 1073 case WLAN_EID_S1G_OPERATION: 1074 case WLAN_EID_AID_RESPONSE: 1075 case WLAN_EID_S1G_SHORT_BCN_INTERVAL: 1076 /* 1077 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible 1078 * that if the content gets bigger it might be needed more than once 1079 */ 1080 if (test_bit(id, seen_elems)) { 1081 elems->parse_error = true; 1082 continue; 1083 } 1084 break; 1085 } 1086 1087 if (calc_crc && id < 64 && (params->filter & (1ULL << id))) 1088 crc = crc32_be(crc, pos - 2, elen + 2); 1089 1090 elem_parse_failed = false; 1091 1092 switch (id) { 1093 case WLAN_EID_LINK_ID: 1094 if (elen + 2 < sizeof(struct ieee80211_tdls_lnkie)) { 1095 elem_parse_failed = true; 1096 break; 1097 } 1098 elems->lnk_id = (void *)(pos - 2); 1099 break; 1100 case WLAN_EID_CHAN_SWITCH_TIMING: 1101 if (elen < sizeof(struct ieee80211_ch_switch_timing)) { 1102 elem_parse_failed = true; 1103 break; 1104 } 1105 elems->ch_sw_timing = (void *)pos; 1106 break; 1107 case WLAN_EID_EXT_CAPABILITY: 1108 elems->ext_capab = pos; 1109 elems->ext_capab_len = elen; 1110 break; 1111 case WLAN_EID_SSID: 1112 elems->ssid = pos; 1113 elems->ssid_len = elen; 1114 break; 1115 case WLAN_EID_SUPP_RATES: 1116 elems->supp_rates = pos; 1117 elems->supp_rates_len = elen; 1118 break; 1119 case WLAN_EID_DS_PARAMS: 1120 if (elen >= 1) 1121 elems->ds_params = pos; 1122 else 1123 elem_parse_failed = true; 1124 break; 1125 case WLAN_EID_TIM: 1126 if (elen >= sizeof(struct ieee80211_tim_ie)) { 1127 elems->tim = (void *)pos; 1128 elems->tim_len = elen; 1129 } else 1130 elem_parse_failed = true; 1131 break; 1132 case WLAN_EID_VENDOR_SPECIFIC: 1133 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && 1134 pos[2] == 0xf2) { 1135 /* Microsoft OUI (00:50:F2) */ 1136 1137 if (calc_crc) 1138 crc = crc32_be(crc, pos - 2, elen + 2); 1139 1140 if (elen >= 5 && pos[3] == 2) { 1141 /* OUI Type 2 - WMM IE */ 1142 if (pos[4] == 0) { 1143 elems->wmm_info = pos; 1144 elems->wmm_info_len = elen; 1145 } else if (pos[4] == 1) { 1146 elems->wmm_param = pos; 1147 elems->wmm_param_len = elen; 1148 } 1149 } 1150 } 1151 break; 1152 case WLAN_EID_RSN: 1153 elems->rsn = pos; 1154 elems->rsn_len = elen; 1155 break; 1156 case WLAN_EID_ERP_INFO: 1157 if (elen >= 1) 1158 elems->erp_info = pos; 1159 else 1160 elem_parse_failed = true; 1161 break; 1162 case WLAN_EID_EXT_SUPP_RATES: 1163 elems->ext_supp_rates = pos; 1164 elems->ext_supp_rates_len = elen; 1165 break; 1166 case WLAN_EID_HT_CAPABILITY: 1167 if (elen >= sizeof(struct ieee80211_ht_cap)) 1168 elems->ht_cap_elem = (void *)pos; 1169 else 1170 elem_parse_failed = true; 1171 break; 1172 case WLAN_EID_HT_OPERATION: 1173 if (elen >= sizeof(struct ieee80211_ht_operation)) 1174 elems->ht_operation = (void *)pos; 1175 else 1176 elem_parse_failed = true; 1177 break; 1178 case WLAN_EID_VHT_CAPABILITY: 1179 if (elen >= sizeof(struct ieee80211_vht_cap)) 1180 elems->vht_cap_elem = (void *)pos; 1181 else 1182 elem_parse_failed = true; 1183 break; 1184 case WLAN_EID_VHT_OPERATION: 1185 if (elen >= sizeof(struct ieee80211_vht_operation)) { 1186 elems->vht_operation = (void *)pos; 1187 if (calc_crc) 1188 crc = crc32_be(crc, pos - 2, elen + 2); 1189 break; 1190 } 1191 elem_parse_failed = true; 1192 break; 1193 case WLAN_EID_OPMODE_NOTIF: 1194 if (elen > 0) { 1195 elems->opmode_notif = pos; 1196 if (calc_crc) 1197 crc = crc32_be(crc, pos - 2, elen + 2); 1198 break; 1199 } 1200 elem_parse_failed = true; 1201 break; 1202 case WLAN_EID_MESH_ID: 1203 elems->mesh_id = pos; 1204 elems->mesh_id_len = elen; 1205 break; 1206 case WLAN_EID_MESH_CONFIG: 1207 if (elen >= sizeof(struct ieee80211_meshconf_ie)) 1208 elems->mesh_config = (void *)pos; 1209 else 1210 elem_parse_failed = true; 1211 break; 1212 case WLAN_EID_PEER_MGMT: 1213 elems->peering = pos; 1214 elems->peering_len = elen; 1215 break; 1216 case WLAN_EID_MESH_AWAKE_WINDOW: 1217 if (elen >= 2) 1218 elems->awake_window = (void *)pos; 1219 break; 1220 case WLAN_EID_PREQ: 1221 elems->preq = pos; 1222 elems->preq_len = elen; 1223 break; 1224 case WLAN_EID_PREP: 1225 elems->prep = pos; 1226 elems->prep_len = elen; 1227 break; 1228 case WLAN_EID_PERR: 1229 elems->perr = pos; 1230 elems->perr_len = elen; 1231 break; 1232 case WLAN_EID_RANN: 1233 if (elen >= sizeof(struct ieee80211_rann_ie)) 1234 elems->rann = (void *)pos; 1235 else 1236 elem_parse_failed = true; 1237 break; 1238 case WLAN_EID_CHANNEL_SWITCH: 1239 if (elen != sizeof(struct ieee80211_channel_sw_ie)) { 1240 elem_parse_failed = true; 1241 break; 1242 } 1243 elems->ch_switch_ie = (void *)pos; 1244 break; 1245 case WLAN_EID_EXT_CHANSWITCH_ANN: 1246 if (elen != sizeof(struct ieee80211_ext_chansw_ie)) { 1247 elem_parse_failed = true; 1248 break; 1249 } 1250 elems->ext_chansw_ie = (void *)pos; 1251 break; 1252 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1253 if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) { 1254 elem_parse_failed = true; 1255 break; 1256 } 1257 elems->sec_chan_offs = (void *)pos; 1258 break; 1259 case WLAN_EID_CHAN_SWITCH_PARAM: 1260 if (elen < 1261 sizeof(*elems->mesh_chansw_params_ie)) { 1262 elem_parse_failed = true; 1263 break; 1264 } 1265 elems->mesh_chansw_params_ie = (void *)pos; 1266 break; 1267 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1268 if (!params->action || 1269 elen < sizeof(*elems->wide_bw_chansw_ie)) { 1270 elem_parse_failed = true; 1271 break; 1272 } 1273 elems->wide_bw_chansw_ie = (void *)pos; 1274 break; 1275 case WLAN_EID_CHANNEL_SWITCH_WRAPPER: 1276 if (params->action) { 1277 elem_parse_failed = true; 1278 break; 1279 } 1280 /* 1281 * This is a bit tricky, but as we only care about 1282 * the wide bandwidth channel switch element, so 1283 * just parse it out manually. 1284 */ 1285 ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH, 1286 pos, elen); 1287 if (ie) { 1288 if (ie[1] >= sizeof(*elems->wide_bw_chansw_ie)) 1289 elems->wide_bw_chansw_ie = 1290 (void *)(ie + 2); 1291 else 1292 elem_parse_failed = true; 1293 } 1294 break; 1295 case WLAN_EID_COUNTRY: 1296 elems->country_elem = pos; 1297 elems->country_elem_len = elen; 1298 break; 1299 case WLAN_EID_PWR_CONSTRAINT: 1300 if (elen != 1) { 1301 elem_parse_failed = true; 1302 break; 1303 } 1304 elems->pwr_constr_elem = pos; 1305 break; 1306 case WLAN_EID_CISCO_VENDOR_SPECIFIC: 1307 /* Lots of different options exist, but we only care 1308 * about the Dynamic Transmit Power Control element. 1309 * First check for the Cisco OUI, then for the DTPC 1310 * tag (0x00). 1311 */ 1312 if (elen < 4) { 1313 elem_parse_failed = true; 1314 break; 1315 } 1316 1317 if (pos[0] != 0x00 || pos[1] != 0x40 || 1318 pos[2] != 0x96 || pos[3] != 0x00) 1319 break; 1320 1321 if (elen != 6) { 1322 elem_parse_failed = true; 1323 break; 1324 } 1325 1326 if (calc_crc) 1327 crc = crc32_be(crc, pos - 2, elen + 2); 1328 1329 elems->cisco_dtpc_elem = pos; 1330 break; 1331 case WLAN_EID_ADDBA_EXT: 1332 if (elen < sizeof(struct ieee80211_addba_ext_ie)) { 1333 elem_parse_failed = true; 1334 break; 1335 } 1336 elems->addba_ext_ie = (void *)pos; 1337 break; 1338 case WLAN_EID_TIMEOUT_INTERVAL: 1339 if (elen >= sizeof(struct ieee80211_timeout_interval_ie)) 1340 elems->timeout_int = (void *)pos; 1341 else 1342 elem_parse_failed = true; 1343 break; 1344 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1345 if (elen >= sizeof(*elems->max_idle_period_ie)) 1346 elems->max_idle_period_ie = (void *)pos; 1347 break; 1348 case WLAN_EID_RSNX: 1349 elems->rsnx = pos; 1350 elems->rsnx_len = elen; 1351 break; 1352 case WLAN_EID_TX_POWER_ENVELOPE: 1353 if (elen < 1 || 1354 elen > sizeof(struct ieee80211_tx_pwr_env)) 1355 break; 1356 1357 if (elems->tx_pwr_env_num >= ARRAY_SIZE(elems->tx_pwr_env)) 1358 break; 1359 1360 elems->tx_pwr_env[elems->tx_pwr_env_num] = (void *)pos; 1361 elems->tx_pwr_env_len[elems->tx_pwr_env_num] = elen; 1362 elems->tx_pwr_env_num++; 1363 break; 1364 case WLAN_EID_EXTENSION: 1365 ieee80211_parse_extension_element(calc_crc ? 1366 &crc : NULL, 1367 elem, elems, params); 1368 break; 1369 case WLAN_EID_S1G_CAPABILITIES: 1370 if (elen >= sizeof(*elems->s1g_capab)) 1371 elems->s1g_capab = (void *)pos; 1372 else 1373 elem_parse_failed = true; 1374 break; 1375 case WLAN_EID_S1G_OPERATION: 1376 if (elen == sizeof(*elems->s1g_oper)) 1377 elems->s1g_oper = (void *)pos; 1378 else 1379 elem_parse_failed = true; 1380 break; 1381 case WLAN_EID_S1G_BCN_COMPAT: 1382 if (elen == sizeof(*elems->s1g_bcn_compat)) 1383 elems->s1g_bcn_compat = (void *)pos; 1384 else 1385 elem_parse_failed = true; 1386 break; 1387 case WLAN_EID_AID_RESPONSE: 1388 if (elen == sizeof(struct ieee80211_aid_response_ie)) 1389 elems->aid_resp = (void *)pos; 1390 else 1391 elem_parse_failed = true; 1392 break; 1393 default: 1394 break; 1395 } 1396 1397 if (elem_parse_failed) 1398 elems->parse_error = true; 1399 else 1400 __set_bit(id, seen_elems); 1401 } 1402 1403 if (!for_each_element_completed(elem, params->start, params->len)) 1404 elems->parse_error = true; 1405 1406 return crc; 1407 } 1408 1409 static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len, 1410 struct ieee802_11_elems *elems, 1411 struct cfg80211_bss *bss, 1412 u8 *nontransmitted_profile) 1413 { 1414 const struct element *elem, *sub; 1415 size_t profile_len = 0; 1416 bool found = false; 1417 1418 if (!bss || !bss->transmitted_bss) 1419 return profile_len; 1420 1421 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) { 1422 if (elem->datalen < 2) 1423 continue; 1424 if (elem->data[0] < 1 || elem->data[0] > 8) 1425 continue; 1426 1427 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 1428 u8 new_bssid[ETH_ALEN]; 1429 const u8 *index; 1430 1431 if (sub->id != 0 || sub->datalen < 4) { 1432 /* not a valid BSS profile */ 1433 continue; 1434 } 1435 1436 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 1437 sub->data[1] != 2) { 1438 /* The first element of the 1439 * Nontransmitted BSSID Profile is not 1440 * the Nontransmitted BSSID Capability 1441 * element. 1442 */ 1443 continue; 1444 } 1445 1446 memset(nontransmitted_profile, 0, len); 1447 profile_len = cfg80211_merge_profile(start, len, 1448 elem, 1449 sub, 1450 nontransmitted_profile, 1451 len); 1452 1453 /* found a Nontransmitted BSSID Profile */ 1454 index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, 1455 nontransmitted_profile, 1456 profile_len); 1457 if (!index || index[1] < 1 || index[2] == 0) { 1458 /* Invalid MBSSID Index element */ 1459 continue; 1460 } 1461 1462 cfg80211_gen_new_bssid(bss->transmitted_bss->bssid, 1463 elem->data[0], 1464 index[2], 1465 new_bssid); 1466 if (ether_addr_equal(new_bssid, bss->bssid)) { 1467 found = true; 1468 elems->bssid_index_len = index[1]; 1469 elems->bssid_index = (void *)&index[2]; 1470 break; 1471 } 1472 } 1473 } 1474 1475 return found ? profile_len : 0; 1476 } 1477 1478 static void ieee80211_mle_get_sta_prof(struct ieee802_11_elems *elems, 1479 u8 link_id) 1480 { 1481 const struct ieee80211_multi_link_elem *ml = elems->ml_basic; 1482 ssize_t ml_len = elems->ml_basic_len; 1483 const struct element *sub; 1484 1485 if (!ml || !ml_len) 1486 return; 1487 1488 if (le16_get_bits(ml->control, IEEE80211_ML_CONTROL_TYPE) != 1489 IEEE80211_ML_CONTROL_TYPE_BASIC) 1490 return; 1491 1492 for_each_mle_subelement(sub, (u8 *)ml, ml_len) { 1493 struct ieee80211_mle_per_sta_profile *prof = (void *)sub->data; 1494 ssize_t sta_prof_len; 1495 u16 control; 1496 1497 if (sub->id != IEEE80211_MLE_SUBELEM_PER_STA_PROFILE) 1498 continue; 1499 1500 if (!ieee80211_mle_basic_sta_prof_size_ok(sub->data, 1501 sub->datalen)) 1502 return; 1503 1504 control = le16_to_cpu(prof->control); 1505 1506 if (link_id != u16_get_bits(control, 1507 IEEE80211_MLE_STA_CONTROL_LINK_ID)) 1508 continue; 1509 1510 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE)) 1511 return; 1512 1513 /* the sub element can be fragmented */ 1514 sta_prof_len = 1515 cfg80211_defragment_element(sub, 1516 (u8 *)ml, ml_len, 1517 elems->scratch_pos, 1518 elems->scratch + 1519 elems->scratch_len - 1520 elems->scratch_pos, 1521 IEEE80211_MLE_SUBELEM_FRAGMENT); 1522 1523 if (sta_prof_len < 0) 1524 return; 1525 1526 elems->prof = (void *)elems->scratch_pos; 1527 elems->sta_prof_len = sta_prof_len; 1528 elems->scratch_pos += sta_prof_len; 1529 1530 return; 1531 } 1532 } 1533 1534 static void ieee80211_mle_parse_link(struct ieee802_11_elems *elems, 1535 struct ieee80211_elems_parse_params *params) 1536 { 1537 struct ieee80211_mle_per_sta_profile *prof; 1538 struct ieee80211_elems_parse_params sub = { 1539 .action = params->action, 1540 .from_ap = params->from_ap, 1541 .link_id = -1, 1542 }; 1543 ssize_t ml_len = elems->ml_basic_len; 1544 const struct element *non_inherit = NULL; 1545 const u8 *end; 1546 1547 if (params->link_id == -1) 1548 return; 1549 1550 ml_len = cfg80211_defragment_element(elems->ml_basic_elem, 1551 elems->ie_start, 1552 elems->total_len, 1553 elems->scratch_pos, 1554 elems->scratch + 1555 elems->scratch_len - 1556 elems->scratch_pos, 1557 WLAN_EID_FRAGMENT); 1558 1559 if (ml_len < 0) 1560 return; 1561 1562 elems->ml_basic = (const void *)elems->scratch_pos; 1563 elems->ml_basic_len = ml_len; 1564 1565 ieee80211_mle_get_sta_prof(elems, params->link_id); 1566 prof = elems->prof; 1567 1568 if (!prof) 1569 return; 1570 1571 /* check if we have the 4 bytes for the fixed part in assoc response */ 1572 if (elems->sta_prof_len < sizeof(*prof) + prof->sta_info_len - 1 + 4) { 1573 elems->prof = NULL; 1574 elems->sta_prof_len = 0; 1575 return; 1576 } 1577 1578 /* 1579 * Skip the capability information and the status code that are expected 1580 * as part of the station profile in association response frames. Note 1581 * the -1 is because the 'sta_info_len' is accounted to as part of the 1582 * per-STA profile, but not part of the 'u8 variable[]' portion. 1583 */ 1584 sub.start = prof->variable + prof->sta_info_len - 1 + 4; 1585 end = (const u8 *)prof + elems->sta_prof_len; 1586 sub.len = end - sub.start; 1587 1588 non_inherit = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 1589 sub.start, sub.len); 1590 _ieee802_11_parse_elems_full(&sub, elems, non_inherit); 1591 } 1592 1593 struct ieee802_11_elems * 1594 ieee802_11_parse_elems_full(struct ieee80211_elems_parse_params *params) 1595 { 1596 struct ieee802_11_elems *elems; 1597 const struct element *non_inherit = NULL; 1598 u8 *nontransmitted_profile; 1599 int nontransmitted_profile_len = 0; 1600 size_t scratch_len = 3 * params->len; 1601 1602 elems = kzalloc(sizeof(*elems) + scratch_len, GFP_ATOMIC); 1603 if (!elems) 1604 return NULL; 1605 elems->ie_start = params->start; 1606 elems->total_len = params->len; 1607 elems->scratch_len = scratch_len; 1608 elems->scratch_pos = elems->scratch; 1609 1610 nontransmitted_profile = elems->scratch_pos; 1611 nontransmitted_profile_len = 1612 ieee802_11_find_bssid_profile(params->start, params->len, 1613 elems, params->bss, 1614 nontransmitted_profile); 1615 elems->scratch_pos += nontransmitted_profile_len; 1616 elems->scratch_len -= nontransmitted_profile_len; 1617 non_inherit = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 1618 nontransmitted_profile, 1619 nontransmitted_profile_len); 1620 1621 elems->crc = _ieee802_11_parse_elems_full(params, elems, non_inherit); 1622 1623 /* Override with nontransmitted profile, if found */ 1624 if (nontransmitted_profile_len) { 1625 struct ieee80211_elems_parse_params sub = { 1626 .start = nontransmitted_profile, 1627 .len = nontransmitted_profile_len, 1628 .action = params->action, 1629 .link_id = params->link_id, 1630 }; 1631 1632 _ieee802_11_parse_elems_full(&sub, elems, NULL); 1633 } 1634 1635 ieee80211_mle_parse_link(elems, params); 1636 1637 if (elems->tim && !elems->parse_error) { 1638 const struct ieee80211_tim_ie *tim_ie = elems->tim; 1639 1640 elems->dtim_period = tim_ie->dtim_period; 1641 elems->dtim_count = tim_ie->dtim_count; 1642 } 1643 1644 /* Override DTIM period and count if needed */ 1645 if (elems->bssid_index && 1646 elems->bssid_index_len >= 1647 offsetofend(struct ieee80211_bssid_index, dtim_period)) 1648 elems->dtim_period = elems->bssid_index->dtim_period; 1649 1650 if (elems->bssid_index && 1651 elems->bssid_index_len >= 1652 offsetofend(struct ieee80211_bssid_index, dtim_count)) 1653 elems->dtim_count = elems->bssid_index->dtim_count; 1654 1655 return elems; 1656 } 1657 1658 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 1659 struct ieee80211_tx_queue_params 1660 *qparam, int ac) 1661 { 1662 struct ieee80211_chanctx_conf *chanctx_conf; 1663 const struct ieee80211_reg_rule *rrule; 1664 const struct ieee80211_wmm_ac *wmm_ac; 1665 u16 center_freq = 0; 1666 1667 if (sdata->vif.type != NL80211_IFTYPE_AP && 1668 sdata->vif.type != NL80211_IFTYPE_STATION) 1669 return; 1670 1671 rcu_read_lock(); 1672 chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); 1673 if (chanctx_conf) 1674 center_freq = chanctx_conf->def.chan->center_freq; 1675 1676 if (!center_freq) { 1677 rcu_read_unlock(); 1678 return; 1679 } 1680 1681 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 1682 1683 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 1684 rcu_read_unlock(); 1685 return; 1686 } 1687 1688 if (sdata->vif.type == NL80211_IFTYPE_AP) 1689 wmm_ac = &rrule->wmm_rule.ap[ac]; 1690 else 1691 wmm_ac = &rrule->wmm_rule.client[ac]; 1692 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 1693 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 1694 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 1695 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 1696 rcu_read_unlock(); 1697 } 1698 1699 void ieee80211_set_wmm_default(struct ieee80211_link_data *link, 1700 bool bss_notify, bool enable_qos) 1701 { 1702 struct ieee80211_sub_if_data *sdata = link->sdata; 1703 struct ieee80211_local *local = sdata->local; 1704 struct ieee80211_tx_queue_params qparam; 1705 struct ieee80211_chanctx_conf *chanctx_conf; 1706 int ac; 1707 bool use_11b; 1708 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 1709 int aCWmin, aCWmax; 1710 1711 if (!local->ops->conf_tx) 1712 return; 1713 1714 if (local->hw.queues < IEEE80211_NUM_ACS) 1715 return; 1716 1717 memset(&qparam, 0, sizeof(qparam)); 1718 1719 rcu_read_lock(); 1720 chanctx_conf = rcu_dereference(link->conf->chanctx_conf); 1721 use_11b = (chanctx_conf && 1722 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 1723 !link->operating_11g_mode; 1724 rcu_read_unlock(); 1725 1726 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 1727 1728 /* Set defaults according to 802.11-2007 Table 7-37 */ 1729 aCWmax = 1023; 1730 if (use_11b) 1731 aCWmin = 31; 1732 else 1733 aCWmin = 15; 1734 1735 /* Confiure old 802.11b/g medium access rules. */ 1736 qparam.cw_max = aCWmax; 1737 qparam.cw_min = aCWmin; 1738 qparam.txop = 0; 1739 qparam.aifs = 2; 1740 1741 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1742 /* Update if QoS is enabled. */ 1743 if (enable_qos) { 1744 switch (ac) { 1745 case IEEE80211_AC_BK: 1746 qparam.cw_max = aCWmax; 1747 qparam.cw_min = aCWmin; 1748 qparam.txop = 0; 1749 if (is_ocb) 1750 qparam.aifs = 9; 1751 else 1752 qparam.aifs = 7; 1753 break; 1754 /* never happens but let's not leave undefined */ 1755 default: 1756 case IEEE80211_AC_BE: 1757 qparam.cw_max = aCWmax; 1758 qparam.cw_min = aCWmin; 1759 qparam.txop = 0; 1760 if (is_ocb) 1761 qparam.aifs = 6; 1762 else 1763 qparam.aifs = 3; 1764 break; 1765 case IEEE80211_AC_VI: 1766 qparam.cw_max = aCWmin; 1767 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1768 if (is_ocb) 1769 qparam.txop = 0; 1770 else if (use_11b) 1771 qparam.txop = 6016/32; 1772 else 1773 qparam.txop = 3008/32; 1774 1775 if (is_ocb) 1776 qparam.aifs = 3; 1777 else 1778 qparam.aifs = 2; 1779 break; 1780 case IEEE80211_AC_VO: 1781 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1782 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1783 if (is_ocb) 1784 qparam.txop = 0; 1785 else if (use_11b) 1786 qparam.txop = 3264/32; 1787 else 1788 qparam.txop = 1504/32; 1789 qparam.aifs = 2; 1790 break; 1791 } 1792 } 1793 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1794 1795 qparam.uapsd = false; 1796 1797 link->tx_conf[ac] = qparam; 1798 drv_conf_tx(local, link, ac, &qparam); 1799 } 1800 1801 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1802 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1803 sdata->vif.type != NL80211_IFTYPE_NAN) { 1804 link->conf->qos = enable_qos; 1805 if (bss_notify) 1806 ieee80211_link_info_change_notify(sdata, link, 1807 BSS_CHANGED_QOS); 1808 } 1809 } 1810 1811 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1812 u16 transaction, u16 auth_alg, u16 status, 1813 const u8 *extra, size_t extra_len, const u8 *da, 1814 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1815 u32 tx_flags) 1816 { 1817 struct ieee80211_local *local = sdata->local; 1818 struct sk_buff *skb; 1819 struct ieee80211_mgmt *mgmt; 1820 bool multi_link = ieee80211_vif_is_mld(&sdata->vif); 1821 struct { 1822 u8 id; 1823 u8 len; 1824 u8 ext_id; 1825 struct ieee80211_multi_link_elem ml; 1826 struct ieee80211_mle_basic_common_info basic; 1827 } __packed mle = { 1828 .id = WLAN_EID_EXTENSION, 1829 .len = sizeof(mle) - 2, 1830 .ext_id = WLAN_EID_EXT_EHT_MULTI_LINK, 1831 .ml.control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_BASIC), 1832 .basic.len = sizeof(mle.basic), 1833 }; 1834 int err; 1835 1836 memcpy(mle.basic.mld_mac_addr, sdata->vif.addr, ETH_ALEN); 1837 1838 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1839 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1840 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN + 1841 multi_link * sizeof(mle)); 1842 if (!skb) 1843 return; 1844 1845 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1846 1847 mgmt = skb_put_zero(skb, 24 + 6); 1848 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1849 IEEE80211_STYPE_AUTH); 1850 memcpy(mgmt->da, da, ETH_ALEN); 1851 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1852 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1853 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1854 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1855 mgmt->u.auth.status_code = cpu_to_le16(status); 1856 if (extra) 1857 skb_put_data(skb, extra, extra_len); 1858 if (multi_link) 1859 skb_put_data(skb, &mle, sizeof(mle)); 1860 1861 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1862 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1863 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1864 if (WARN_ON(err)) { 1865 kfree_skb(skb); 1866 return; 1867 } 1868 } 1869 1870 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1871 tx_flags; 1872 ieee80211_tx_skb(sdata, skb); 1873 } 1874 1875 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1876 const u8 *da, const u8 *bssid, 1877 u16 stype, u16 reason, 1878 bool send_frame, u8 *frame_buf) 1879 { 1880 struct ieee80211_local *local = sdata->local; 1881 struct sk_buff *skb; 1882 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1883 1884 /* build frame */ 1885 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1886 mgmt->duration = 0; /* initialize only */ 1887 mgmt->seq_ctrl = 0; /* initialize only */ 1888 memcpy(mgmt->da, da, ETH_ALEN); 1889 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1890 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1891 /* u.deauth.reason_code == u.disassoc.reason_code */ 1892 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1893 1894 if (send_frame) { 1895 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1896 IEEE80211_DEAUTH_FRAME_LEN); 1897 if (!skb) 1898 return; 1899 1900 skb_reserve(skb, local->hw.extra_tx_headroom); 1901 1902 /* copy in frame */ 1903 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1904 1905 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1906 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1907 IEEE80211_SKB_CB(skb)->flags |= 1908 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1909 1910 ieee80211_tx_skb(sdata, skb); 1911 } 1912 } 1913 1914 u8 *ieee80211_write_he_6ghz_cap(u8 *pos, __le16 cap, u8 *end) 1915 { 1916 if ((end - pos) < 5) 1917 return pos; 1918 1919 *pos++ = WLAN_EID_EXTENSION; 1920 *pos++ = 1 + sizeof(cap); 1921 *pos++ = WLAN_EID_EXT_HE_6GHZ_CAPA; 1922 memcpy(pos, &cap, sizeof(cap)); 1923 1924 return pos + 2; 1925 } 1926 1927 static int ieee80211_build_preq_ies_band(struct ieee80211_sub_if_data *sdata, 1928 u8 *buffer, size_t buffer_len, 1929 const u8 *ie, size_t ie_len, 1930 enum nl80211_band band, 1931 u32 rate_mask, 1932 struct cfg80211_chan_def *chandef, 1933 size_t *offset, u32 flags) 1934 { 1935 struct ieee80211_local *local = sdata->local; 1936 struct ieee80211_supported_band *sband; 1937 const struct ieee80211_sta_he_cap *he_cap; 1938 const struct ieee80211_sta_eht_cap *eht_cap; 1939 u8 *pos = buffer, *end = buffer + buffer_len; 1940 size_t noffset; 1941 int supp_rates_len, i; 1942 u8 rates[32]; 1943 int num_rates; 1944 int ext_rates_len; 1945 int shift; 1946 u32 rate_flags; 1947 bool have_80mhz = false; 1948 1949 *offset = 0; 1950 1951 sband = local->hw.wiphy->bands[band]; 1952 if (WARN_ON_ONCE(!sband)) 1953 return 0; 1954 1955 rate_flags = ieee80211_chandef_rate_flags(chandef); 1956 shift = ieee80211_chandef_get_shift(chandef); 1957 1958 /* For direct scan add S1G IE and consider its override bits */ 1959 if (band == NL80211_BAND_S1GHZ) { 1960 if (end - pos < 2 + sizeof(struct ieee80211_s1g_cap)) 1961 goto out_err; 1962 pos = ieee80211_ie_build_s1g_cap(pos, &sband->s1g_cap); 1963 goto done; 1964 } 1965 1966 num_rates = 0; 1967 for (i = 0; i < sband->n_bitrates; i++) { 1968 if ((BIT(i) & rate_mask) == 0) 1969 continue; /* skip rate */ 1970 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 1971 continue; 1972 1973 rates[num_rates++] = 1974 (u8) DIV_ROUND_UP(sband->bitrates[i].bitrate, 1975 (1 << shift) * 5); 1976 } 1977 1978 supp_rates_len = min_t(int, num_rates, 8); 1979 1980 if (end - pos < 2 + supp_rates_len) 1981 goto out_err; 1982 *pos++ = WLAN_EID_SUPP_RATES; 1983 *pos++ = supp_rates_len; 1984 memcpy(pos, rates, supp_rates_len); 1985 pos += supp_rates_len; 1986 1987 /* insert "request information" if in custom IEs */ 1988 if (ie && ie_len) { 1989 static const u8 before_extrates[] = { 1990 WLAN_EID_SSID, 1991 WLAN_EID_SUPP_RATES, 1992 WLAN_EID_REQUEST, 1993 }; 1994 noffset = ieee80211_ie_split(ie, ie_len, 1995 before_extrates, 1996 ARRAY_SIZE(before_extrates), 1997 *offset); 1998 if (end - pos < noffset - *offset) 1999 goto out_err; 2000 memcpy(pos, ie + *offset, noffset - *offset); 2001 pos += noffset - *offset; 2002 *offset = noffset; 2003 } 2004 2005 ext_rates_len = num_rates - supp_rates_len; 2006 if (ext_rates_len > 0) { 2007 if (end - pos < 2 + ext_rates_len) 2008 goto out_err; 2009 *pos++ = WLAN_EID_EXT_SUPP_RATES; 2010 *pos++ = ext_rates_len; 2011 memcpy(pos, rates + supp_rates_len, ext_rates_len); 2012 pos += ext_rates_len; 2013 } 2014 2015 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 2016 if (end - pos < 3) 2017 goto out_err; 2018 *pos++ = WLAN_EID_DS_PARAMS; 2019 *pos++ = 1; 2020 *pos++ = ieee80211_frequency_to_channel( 2021 chandef->chan->center_freq); 2022 } 2023 2024 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 2025 goto done; 2026 2027 /* insert custom IEs that go before HT */ 2028 if (ie && ie_len) { 2029 static const u8 before_ht[] = { 2030 /* 2031 * no need to list the ones split off already 2032 * (or generated here) 2033 */ 2034 WLAN_EID_DS_PARAMS, 2035 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 2036 }; 2037 noffset = ieee80211_ie_split(ie, ie_len, 2038 before_ht, ARRAY_SIZE(before_ht), 2039 *offset); 2040 if (end - pos < noffset - *offset) 2041 goto out_err; 2042 memcpy(pos, ie + *offset, noffset - *offset); 2043 pos += noffset - *offset; 2044 *offset = noffset; 2045 } 2046 2047 if (sband->ht_cap.ht_supported) { 2048 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap)) 2049 goto out_err; 2050 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 2051 sband->ht_cap.cap); 2052 } 2053 2054 /* insert custom IEs that go before VHT */ 2055 if (ie && ie_len) { 2056 static const u8 before_vht[] = { 2057 /* 2058 * no need to list the ones split off already 2059 * (or generated here) 2060 */ 2061 WLAN_EID_BSS_COEX_2040, 2062 WLAN_EID_EXT_CAPABILITY, 2063 WLAN_EID_SSID_LIST, 2064 WLAN_EID_CHANNEL_USAGE, 2065 WLAN_EID_INTERWORKING, 2066 WLAN_EID_MESH_ID, 2067 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 2068 }; 2069 noffset = ieee80211_ie_split(ie, ie_len, 2070 before_vht, ARRAY_SIZE(before_vht), 2071 *offset); 2072 if (end - pos < noffset - *offset) 2073 goto out_err; 2074 memcpy(pos, ie + *offset, noffset - *offset); 2075 pos += noffset - *offset; 2076 *offset = noffset; 2077 } 2078 2079 /* Check if any channel in this sband supports at least 80 MHz */ 2080 for (i = 0; i < sband->n_channels; i++) { 2081 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 2082 IEEE80211_CHAN_NO_80MHZ)) 2083 continue; 2084 2085 have_80mhz = true; 2086 break; 2087 } 2088 2089 if (sband->vht_cap.vht_supported && have_80mhz) { 2090 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap)) 2091 goto out_err; 2092 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 2093 sband->vht_cap.cap); 2094 } 2095 2096 /* insert custom IEs that go before HE */ 2097 if (ie && ie_len) { 2098 static const u8 before_he[] = { 2099 /* 2100 * no need to list the ones split off before VHT 2101 * or generated here 2102 */ 2103 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 2104 WLAN_EID_AP_CSN, 2105 /* TODO: add 11ah/11aj/11ak elements */ 2106 }; 2107 noffset = ieee80211_ie_split(ie, ie_len, 2108 before_he, ARRAY_SIZE(before_he), 2109 *offset); 2110 if (end - pos < noffset - *offset) 2111 goto out_err; 2112 memcpy(pos, ie + *offset, noffset - *offset); 2113 pos += noffset - *offset; 2114 *offset = noffset; 2115 } 2116 2117 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 2118 if (he_cap && 2119 cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 2120 IEEE80211_CHAN_NO_HE)) { 2121 pos = ieee80211_ie_build_he_cap(0, pos, he_cap, end); 2122 if (!pos) 2123 goto out_err; 2124 } 2125 2126 eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); 2127 2128 if (eht_cap && 2129 cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 2130 IEEE80211_CHAN_NO_HE | 2131 IEEE80211_CHAN_NO_EHT)) { 2132 pos = ieee80211_ie_build_eht_cap(pos, he_cap, eht_cap, end, 2133 sdata->vif.type == NL80211_IFTYPE_AP); 2134 if (!pos) 2135 goto out_err; 2136 } 2137 2138 if (cfg80211_any_usable_channels(local->hw.wiphy, 2139 BIT(NL80211_BAND_6GHZ), 2140 IEEE80211_CHAN_NO_HE)) { 2141 struct ieee80211_supported_band *sband6; 2142 2143 sband6 = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 2144 he_cap = ieee80211_get_he_iftype_cap_vif(sband6, &sdata->vif); 2145 2146 if (he_cap) { 2147 enum nl80211_iftype iftype = 2148 ieee80211_vif_type_p2p(&sdata->vif); 2149 __le16 cap = ieee80211_get_he_6ghz_capa(sband6, iftype); 2150 2151 pos = ieee80211_write_he_6ghz_cap(pos, cap, end); 2152 } 2153 } 2154 2155 /* 2156 * If adding more here, adjust code in main.c 2157 * that calculates local->scan_ies_len. 2158 */ 2159 2160 return pos - buffer; 2161 out_err: 2162 WARN_ONCE(1, "not enough space for preq IEs\n"); 2163 done: 2164 return pos - buffer; 2165 } 2166 2167 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 2168 size_t buffer_len, 2169 struct ieee80211_scan_ies *ie_desc, 2170 const u8 *ie, size_t ie_len, 2171 u8 bands_used, u32 *rate_masks, 2172 struct cfg80211_chan_def *chandef, 2173 u32 flags) 2174 { 2175 size_t pos = 0, old_pos = 0, custom_ie_offset = 0; 2176 int i; 2177 2178 memset(ie_desc, 0, sizeof(*ie_desc)); 2179 2180 for (i = 0; i < NUM_NL80211_BANDS; i++) { 2181 if (bands_used & BIT(i)) { 2182 pos += ieee80211_build_preq_ies_band(sdata, 2183 buffer + pos, 2184 buffer_len - pos, 2185 ie, ie_len, i, 2186 rate_masks[i], 2187 chandef, 2188 &custom_ie_offset, 2189 flags); 2190 ie_desc->ies[i] = buffer + old_pos; 2191 ie_desc->len[i] = pos - old_pos; 2192 old_pos = pos; 2193 } 2194 } 2195 2196 /* add any remaining custom IEs */ 2197 if (ie && ie_len) { 2198 if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset, 2199 "not enough space for preq custom IEs\n")) 2200 return pos; 2201 memcpy(buffer + pos, ie + custom_ie_offset, 2202 ie_len - custom_ie_offset); 2203 ie_desc->common_ies = buffer + pos; 2204 ie_desc->common_ie_len = ie_len - custom_ie_offset; 2205 pos += ie_len - custom_ie_offset; 2206 } 2207 2208 return pos; 2209 }; 2210 2211 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 2212 const u8 *src, const u8 *dst, 2213 u32 ratemask, 2214 struct ieee80211_channel *chan, 2215 const u8 *ssid, size_t ssid_len, 2216 const u8 *ie, size_t ie_len, 2217 u32 flags) 2218 { 2219 struct ieee80211_local *local = sdata->local; 2220 struct cfg80211_chan_def chandef; 2221 struct sk_buff *skb; 2222 struct ieee80211_mgmt *mgmt; 2223 int ies_len; 2224 u32 rate_masks[NUM_NL80211_BANDS] = {}; 2225 struct ieee80211_scan_ies dummy_ie_desc; 2226 2227 /* 2228 * Do not send DS Channel parameter for directed probe requests 2229 * in order to maximize the chance that we get a response. Some 2230 * badly-behaved APs don't respond when this parameter is included. 2231 */ 2232 chandef.width = sdata->vif.bss_conf.chandef.width; 2233 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 2234 chandef.chan = NULL; 2235 else 2236 chandef.chan = chan; 2237 2238 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 2239 local->scan_ies_len + ie_len); 2240 if (!skb) 2241 return NULL; 2242 2243 rate_masks[chan->band] = ratemask; 2244 ies_len = ieee80211_build_preq_ies(sdata, skb_tail_pointer(skb), 2245 skb_tailroom(skb), &dummy_ie_desc, 2246 ie, ie_len, BIT(chan->band), 2247 rate_masks, &chandef, flags); 2248 skb_put(skb, ies_len); 2249 2250 if (dst) { 2251 mgmt = (struct ieee80211_mgmt *) skb->data; 2252 memcpy(mgmt->da, dst, ETH_ALEN); 2253 memcpy(mgmt->bssid, dst, ETH_ALEN); 2254 } 2255 2256 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 2257 2258 return skb; 2259 } 2260 2261 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 2262 struct ieee802_11_elems *elems, 2263 enum nl80211_band band, u32 *basic_rates) 2264 { 2265 struct ieee80211_supported_band *sband; 2266 size_t num_rates; 2267 u32 supp_rates, rate_flags; 2268 int i, j, shift; 2269 2270 sband = sdata->local->hw.wiphy->bands[band]; 2271 if (WARN_ON(!sband)) 2272 return 1; 2273 2274 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 2275 shift = ieee80211_vif_get_shift(&sdata->vif); 2276 2277 num_rates = sband->n_bitrates; 2278 supp_rates = 0; 2279 for (i = 0; i < elems->supp_rates_len + 2280 elems->ext_supp_rates_len; i++) { 2281 u8 rate = 0; 2282 int own_rate; 2283 bool is_basic; 2284 if (i < elems->supp_rates_len) 2285 rate = elems->supp_rates[i]; 2286 else if (elems->ext_supp_rates) 2287 rate = elems->ext_supp_rates 2288 [i - elems->supp_rates_len]; 2289 own_rate = 5 * (rate & 0x7f); 2290 is_basic = !!(rate & 0x80); 2291 2292 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 2293 continue; 2294 2295 for (j = 0; j < num_rates; j++) { 2296 int brate; 2297 if ((rate_flags & sband->bitrates[j].flags) 2298 != rate_flags) 2299 continue; 2300 2301 brate = DIV_ROUND_UP(sband->bitrates[j].bitrate, 2302 1 << shift); 2303 2304 if (brate == own_rate) { 2305 supp_rates |= BIT(j); 2306 if (basic_rates && is_basic) 2307 *basic_rates |= BIT(j); 2308 } 2309 } 2310 } 2311 return supp_rates; 2312 } 2313 2314 void ieee80211_stop_device(struct ieee80211_local *local) 2315 { 2316 local_bh_disable(); 2317 ieee80211_handle_queued_frames(local); 2318 local_bh_enable(); 2319 2320 ieee80211_led_radio(local, false); 2321 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 2322 2323 cancel_work_sync(&local->reconfig_filter); 2324 2325 flush_workqueue(local->workqueue); 2326 drv_stop(local); 2327 } 2328 2329 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 2330 bool aborted) 2331 { 2332 /* It's possible that we don't handle the scan completion in 2333 * time during suspend, so if it's still marked as completed 2334 * here, queue the work and flush it to clean things up. 2335 * Instead of calling the worker function directly here, we 2336 * really queue it to avoid potential races with other flows 2337 * scheduling the same work. 2338 */ 2339 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 2340 /* If coming from reconfiguration failure, abort the scan so 2341 * we don't attempt to continue a partial HW scan - which is 2342 * possible otherwise if (e.g.) the 2.4 GHz portion was the 2343 * completed scan, and a 5 GHz portion is still pending. 2344 */ 2345 if (aborted) 2346 set_bit(SCAN_ABORTED, &local->scanning); 2347 wiphy_delayed_work_queue(local->hw.wiphy, &local->scan_work, 0); 2348 wiphy_delayed_work_flush(local->hw.wiphy, &local->scan_work); 2349 } 2350 } 2351 2352 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 2353 { 2354 struct ieee80211_sub_if_data *sdata; 2355 struct ieee80211_chanctx *ctx; 2356 2357 /* 2358 * We get here if during resume the device can't be restarted properly. 2359 * We might also get here if this happens during HW reset, which is a 2360 * slightly different situation and we need to drop all connections in 2361 * the latter case. 2362 * 2363 * Ask cfg80211 to turn off all interfaces, this will result in more 2364 * warnings but at least we'll then get into a clean stopped state. 2365 */ 2366 2367 local->resuming = false; 2368 local->suspended = false; 2369 local->in_reconfig = false; 2370 local->reconfig_failure = true; 2371 2372 ieee80211_flush_completed_scan(local, true); 2373 2374 /* scheduled scan clearly can't be running any more, but tell 2375 * cfg80211 and clear local state 2376 */ 2377 ieee80211_sched_scan_end(local); 2378 2379 list_for_each_entry(sdata, &local->interfaces, list) 2380 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 2381 2382 /* Mark channel contexts as not being in the driver any more to avoid 2383 * removing them from the driver during the shutdown process... 2384 */ 2385 mutex_lock(&local->chanctx_mtx); 2386 list_for_each_entry(ctx, &local->chanctx_list, list) 2387 ctx->driver_present = false; 2388 mutex_unlock(&local->chanctx_mtx); 2389 } 2390 2391 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 2392 struct ieee80211_sub_if_data *sdata, 2393 struct ieee80211_link_data *link) 2394 { 2395 struct ieee80211_chanctx_conf *conf; 2396 struct ieee80211_chanctx *ctx; 2397 2398 if (!local->use_chanctx) 2399 return; 2400 2401 mutex_lock(&local->chanctx_mtx); 2402 conf = rcu_dereference_protected(link->conf->chanctx_conf, 2403 lockdep_is_held(&local->chanctx_mtx)); 2404 if (conf) { 2405 ctx = container_of(conf, struct ieee80211_chanctx, conf); 2406 drv_assign_vif_chanctx(local, sdata, link->conf, ctx); 2407 } 2408 mutex_unlock(&local->chanctx_mtx); 2409 } 2410 2411 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 2412 { 2413 struct ieee80211_local *local = sdata->local; 2414 struct sta_info *sta; 2415 2416 /* add STAs back */ 2417 mutex_lock(&local->sta_mtx); 2418 list_for_each_entry(sta, &local->sta_list, list) { 2419 enum ieee80211_sta_state state; 2420 2421 if (!sta->uploaded || sta->sdata != sdata) 2422 continue; 2423 2424 for (state = IEEE80211_STA_NOTEXIST; 2425 state < sta->sta_state; state++) 2426 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2427 state + 1)); 2428 } 2429 mutex_unlock(&local->sta_mtx); 2430 } 2431 2432 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 2433 { 2434 struct cfg80211_nan_func *func, **funcs; 2435 int res, id, i = 0; 2436 2437 res = drv_start_nan(sdata->local, sdata, 2438 &sdata->u.nan.conf); 2439 if (WARN_ON(res)) 2440 return res; 2441 2442 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 2443 sizeof(*funcs), 2444 GFP_KERNEL); 2445 if (!funcs) 2446 return -ENOMEM; 2447 2448 /* Add all the functions: 2449 * This is a little bit ugly. We need to call a potentially sleeping 2450 * callback for each NAN function, so we can't hold the spinlock. 2451 */ 2452 spin_lock_bh(&sdata->u.nan.func_lock); 2453 2454 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 2455 funcs[i++] = func; 2456 2457 spin_unlock_bh(&sdata->u.nan.func_lock); 2458 2459 for (i = 0; funcs[i]; i++) { 2460 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 2461 if (WARN_ON(res)) 2462 ieee80211_nan_func_terminated(&sdata->vif, 2463 funcs[i]->instance_id, 2464 NL80211_NAN_FUNC_TERM_REASON_ERROR, 2465 GFP_KERNEL); 2466 } 2467 2468 kfree(funcs); 2469 2470 return 0; 2471 } 2472 2473 static void ieee80211_reconfig_ap_links(struct ieee80211_local *local, 2474 struct ieee80211_sub_if_data *sdata, 2475 u64 changed) 2476 { 2477 int link_id; 2478 2479 for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { 2480 struct ieee80211_link_data *link; 2481 2482 if (!(sdata->vif.active_links & BIT(link_id))) 2483 continue; 2484 2485 link = sdata_dereference(sdata->link[link_id], sdata); 2486 if (!link) 2487 continue; 2488 2489 if (rcu_access_pointer(link->u.ap.beacon)) 2490 drv_start_ap(local, sdata, link->conf); 2491 2492 if (!link->conf->enable_beacon) 2493 continue; 2494 2495 changed |= BSS_CHANGED_BEACON | 2496 BSS_CHANGED_BEACON_ENABLED; 2497 2498 ieee80211_link_info_change_notify(sdata, link, changed); 2499 } 2500 } 2501 2502 int ieee80211_reconfig(struct ieee80211_local *local) 2503 { 2504 struct ieee80211_hw *hw = &local->hw; 2505 struct ieee80211_sub_if_data *sdata; 2506 struct ieee80211_chanctx *ctx; 2507 struct sta_info *sta; 2508 int res, i; 2509 bool reconfig_due_to_wowlan = false; 2510 struct ieee80211_sub_if_data *sched_scan_sdata; 2511 struct cfg80211_sched_scan_request *sched_scan_req; 2512 bool sched_scan_stopped = false; 2513 bool suspended = local->suspended; 2514 bool in_reconfig = false; 2515 2516 /* nothing to do if HW shouldn't run */ 2517 if (!local->open_count) 2518 goto wake_up; 2519 2520 #ifdef CONFIG_PM 2521 if (suspended) 2522 local->resuming = true; 2523 2524 if (local->wowlan) { 2525 /* 2526 * In the wowlan case, both mac80211 and the device 2527 * are functional when the resume op is called, so 2528 * clear local->suspended so the device could operate 2529 * normally (e.g. pass rx frames). 2530 */ 2531 local->suspended = false; 2532 res = drv_resume(local); 2533 local->wowlan = false; 2534 if (res < 0) { 2535 local->resuming = false; 2536 return res; 2537 } 2538 if (res == 0) 2539 goto wake_up; 2540 WARN_ON(res > 1); 2541 /* 2542 * res is 1, which means the driver requested 2543 * to go through a regular reset on wakeup. 2544 * restore local->suspended in this case. 2545 */ 2546 reconfig_due_to_wowlan = true; 2547 local->suspended = true; 2548 } 2549 #endif 2550 2551 /* 2552 * In case of hw_restart during suspend (without wowlan), 2553 * cancel restart work, as we are reconfiguring the device 2554 * anyway. 2555 * Note that restart_work is scheduled on a frozen workqueue, 2556 * so we can't deadlock in this case. 2557 */ 2558 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 2559 cancel_work_sync(&local->restart_work); 2560 2561 local->started = false; 2562 2563 /* 2564 * Upon resume hardware can sometimes be goofy due to 2565 * various platform / driver / bus issues, so restarting 2566 * the device may at times not work immediately. Propagate 2567 * the error. 2568 */ 2569 res = drv_start(local); 2570 if (res) { 2571 if (suspended) 2572 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 2573 else 2574 WARN(1, "Hardware became unavailable during restart.\n"); 2575 ieee80211_handle_reconfig_failure(local); 2576 return res; 2577 } 2578 2579 /* setup fragmentation threshold */ 2580 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 2581 2582 /* setup RTS threshold */ 2583 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 2584 2585 /* reset coverage class */ 2586 drv_set_coverage_class(local, hw->wiphy->coverage_class); 2587 2588 ieee80211_led_radio(local, true); 2589 ieee80211_mod_tpt_led_trig(local, 2590 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 2591 2592 /* add interfaces */ 2593 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 2594 if (sdata) { 2595 /* in HW restart it exists already */ 2596 WARN_ON(local->resuming); 2597 res = drv_add_interface(local, sdata); 2598 if (WARN_ON(res)) { 2599 RCU_INIT_POINTER(local->monitor_sdata, NULL); 2600 synchronize_net(); 2601 kfree(sdata); 2602 } 2603 } 2604 2605 list_for_each_entry(sdata, &local->interfaces, list) { 2606 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2607 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2608 ieee80211_sdata_running(sdata)) { 2609 res = drv_add_interface(local, sdata); 2610 if (WARN_ON(res)) 2611 break; 2612 } 2613 } 2614 2615 /* If adding any of the interfaces failed above, roll back and 2616 * report failure. 2617 */ 2618 if (res) { 2619 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 2620 list) 2621 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2622 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2623 ieee80211_sdata_running(sdata)) 2624 drv_remove_interface(local, sdata); 2625 ieee80211_handle_reconfig_failure(local); 2626 return res; 2627 } 2628 2629 /* add channel contexts */ 2630 if (local->use_chanctx) { 2631 mutex_lock(&local->chanctx_mtx); 2632 list_for_each_entry(ctx, &local->chanctx_list, list) 2633 if (ctx->replace_state != 2634 IEEE80211_CHANCTX_REPLACES_OTHER) 2635 WARN_ON(drv_add_chanctx(local, ctx)); 2636 mutex_unlock(&local->chanctx_mtx); 2637 2638 sdata = wiphy_dereference(local->hw.wiphy, 2639 local->monitor_sdata); 2640 if (sdata && ieee80211_sdata_running(sdata)) 2641 ieee80211_assign_chanctx(local, sdata, &sdata->deflink); 2642 } 2643 2644 /* reconfigure hardware */ 2645 ieee80211_hw_config(local, ~0); 2646 2647 ieee80211_configure_filter(local); 2648 2649 /* Finally also reconfigure all the BSS information */ 2650 list_for_each_entry(sdata, &local->interfaces, list) { 2651 /* common change flags for all interface types - link only */ 2652 u64 changed = BSS_CHANGED_ERP_CTS_PROT | 2653 BSS_CHANGED_ERP_PREAMBLE | 2654 BSS_CHANGED_ERP_SLOT | 2655 BSS_CHANGED_HT | 2656 BSS_CHANGED_BASIC_RATES | 2657 BSS_CHANGED_BEACON_INT | 2658 BSS_CHANGED_BSSID | 2659 BSS_CHANGED_CQM | 2660 BSS_CHANGED_QOS | 2661 BSS_CHANGED_TXPOWER | 2662 BSS_CHANGED_MCAST_RATE; 2663 struct ieee80211_link_data *link = NULL; 2664 unsigned int link_id; 2665 u32 active_links = 0; 2666 2667 if (!ieee80211_sdata_running(sdata)) 2668 continue; 2669 2670 sdata_lock(sdata); 2671 if (ieee80211_vif_is_mld(&sdata->vif)) { 2672 struct ieee80211_bss_conf *old[IEEE80211_MLD_MAX_NUM_LINKS] = { 2673 [0] = &sdata->vif.bss_conf, 2674 }; 2675 2676 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 2677 /* start with a single active link */ 2678 active_links = sdata->vif.active_links; 2679 link_id = ffs(active_links) - 1; 2680 sdata->vif.active_links = BIT(link_id); 2681 } 2682 2683 drv_change_vif_links(local, sdata, 0, 2684 sdata->vif.active_links, 2685 old); 2686 } 2687 2688 for (link_id = 0; 2689 link_id < ARRAY_SIZE(sdata->vif.link_conf); 2690 link_id++) { 2691 if (ieee80211_vif_is_mld(&sdata->vif) && 2692 !(sdata->vif.active_links & BIT(link_id))) 2693 continue; 2694 2695 link = sdata_dereference(sdata->link[link_id], sdata); 2696 if (!link) 2697 continue; 2698 2699 ieee80211_assign_chanctx(local, sdata, link); 2700 } 2701 2702 switch (sdata->vif.type) { 2703 case NL80211_IFTYPE_AP_VLAN: 2704 case NL80211_IFTYPE_MONITOR: 2705 break; 2706 case NL80211_IFTYPE_ADHOC: 2707 if (sdata->vif.cfg.ibss_joined) 2708 WARN_ON(drv_join_ibss(local, sdata)); 2709 fallthrough; 2710 default: 2711 ieee80211_reconfig_stations(sdata); 2712 fallthrough; 2713 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 2714 for (i = 0; i < IEEE80211_NUM_ACS; i++) 2715 drv_conf_tx(local, &sdata->deflink, i, 2716 &sdata->deflink.tx_conf[i]); 2717 break; 2718 } 2719 2720 if (sdata->vif.bss_conf.mu_mimo_owner) 2721 changed |= BSS_CHANGED_MU_GROUPS; 2722 2723 if (!ieee80211_vif_is_mld(&sdata->vif)) 2724 changed |= BSS_CHANGED_IDLE; 2725 2726 switch (sdata->vif.type) { 2727 case NL80211_IFTYPE_STATION: 2728 if (!ieee80211_vif_is_mld(&sdata->vif)) { 2729 changed |= BSS_CHANGED_ASSOC | 2730 BSS_CHANGED_ARP_FILTER | 2731 BSS_CHANGED_PS; 2732 2733 /* Re-send beacon info report to the driver */ 2734 if (sdata->deflink.u.mgd.have_beacon) 2735 changed |= BSS_CHANGED_BEACON_INFO; 2736 2737 if (sdata->vif.bss_conf.max_idle_period || 2738 sdata->vif.bss_conf.protected_keep_alive) 2739 changed |= BSS_CHANGED_KEEP_ALIVE; 2740 2741 if (sdata->vif.bss_conf.eht_puncturing) 2742 changed |= BSS_CHANGED_EHT_PUNCTURING; 2743 2744 ieee80211_bss_info_change_notify(sdata, 2745 changed); 2746 } else if (!WARN_ON(!link)) { 2747 ieee80211_link_info_change_notify(sdata, link, 2748 changed); 2749 changed = BSS_CHANGED_ASSOC | 2750 BSS_CHANGED_IDLE | 2751 BSS_CHANGED_PS | 2752 BSS_CHANGED_ARP_FILTER; 2753 ieee80211_vif_cfg_change_notify(sdata, changed); 2754 } 2755 break; 2756 case NL80211_IFTYPE_OCB: 2757 changed |= BSS_CHANGED_OCB; 2758 ieee80211_bss_info_change_notify(sdata, changed); 2759 break; 2760 case NL80211_IFTYPE_ADHOC: 2761 changed |= BSS_CHANGED_IBSS; 2762 fallthrough; 2763 case NL80211_IFTYPE_AP: 2764 changed |= BSS_CHANGED_P2P_PS; 2765 2766 if (ieee80211_vif_is_mld(&sdata->vif)) 2767 ieee80211_vif_cfg_change_notify(sdata, 2768 BSS_CHANGED_SSID); 2769 else 2770 changed |= BSS_CHANGED_SSID; 2771 2772 if (sdata->vif.bss_conf.ftm_responder == 1 && 2773 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2774 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2775 changed |= BSS_CHANGED_FTM_RESPONDER; 2776 2777 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2778 changed |= BSS_CHANGED_AP_PROBE_RESP; 2779 2780 if (ieee80211_vif_is_mld(&sdata->vif)) { 2781 ieee80211_reconfig_ap_links(local, 2782 sdata, 2783 changed); 2784 break; 2785 } 2786 2787 if (rcu_access_pointer(sdata->deflink.u.ap.beacon)) 2788 drv_start_ap(local, sdata, 2789 sdata->deflink.conf); 2790 } 2791 fallthrough; 2792 case NL80211_IFTYPE_MESH_POINT: 2793 if (sdata->vif.bss_conf.enable_beacon) { 2794 changed |= BSS_CHANGED_BEACON | 2795 BSS_CHANGED_BEACON_ENABLED; 2796 ieee80211_bss_info_change_notify(sdata, changed); 2797 } 2798 break; 2799 case NL80211_IFTYPE_NAN: 2800 res = ieee80211_reconfig_nan(sdata); 2801 if (res < 0) { 2802 sdata_unlock(sdata); 2803 ieee80211_handle_reconfig_failure(local); 2804 return res; 2805 } 2806 break; 2807 case NL80211_IFTYPE_AP_VLAN: 2808 case NL80211_IFTYPE_MONITOR: 2809 case NL80211_IFTYPE_P2P_DEVICE: 2810 /* nothing to do */ 2811 break; 2812 case NL80211_IFTYPE_UNSPECIFIED: 2813 case NUM_NL80211_IFTYPES: 2814 case NL80211_IFTYPE_P2P_CLIENT: 2815 case NL80211_IFTYPE_P2P_GO: 2816 case NL80211_IFTYPE_WDS: 2817 WARN_ON(1); 2818 break; 2819 } 2820 sdata_unlock(sdata); 2821 2822 if (active_links) 2823 ieee80211_set_active_links(&sdata->vif, active_links); 2824 } 2825 2826 ieee80211_recalc_ps(local); 2827 2828 /* 2829 * The sta might be in psm against the ap (e.g. because 2830 * this was the state before a hw restart), so we 2831 * explicitly send a null packet in order to make sure 2832 * it'll sync against the ap (and get out of psm). 2833 */ 2834 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2835 list_for_each_entry(sdata, &local->interfaces, list) { 2836 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2837 continue; 2838 if (!sdata->u.mgd.associated) 2839 continue; 2840 2841 ieee80211_send_nullfunc(local, sdata, false); 2842 } 2843 } 2844 2845 /* APs are now beaconing, add back stations */ 2846 list_for_each_entry(sdata, &local->interfaces, list) { 2847 if (!ieee80211_sdata_running(sdata)) 2848 continue; 2849 2850 sdata_lock(sdata); 2851 switch (sdata->vif.type) { 2852 case NL80211_IFTYPE_AP_VLAN: 2853 case NL80211_IFTYPE_AP: 2854 ieee80211_reconfig_stations(sdata); 2855 break; 2856 default: 2857 break; 2858 } 2859 sdata_unlock(sdata); 2860 } 2861 2862 /* add back keys */ 2863 list_for_each_entry(sdata, &local->interfaces, list) 2864 ieee80211_reenable_keys(sdata); 2865 2866 /* Reconfigure sched scan if it was interrupted by FW restart */ 2867 mutex_lock(&local->mtx); 2868 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2869 lockdep_is_held(&local->mtx)); 2870 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2871 lockdep_is_held(&local->mtx)); 2872 if (sched_scan_sdata && sched_scan_req) 2873 /* 2874 * Sched scan stopped, but we don't want to report it. Instead, 2875 * we're trying to reschedule. However, if more than one scan 2876 * plan was set, we cannot reschedule since we don't know which 2877 * scan plan was currently running (and some scan plans may have 2878 * already finished). 2879 */ 2880 if (sched_scan_req->n_scan_plans > 1 || 2881 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2882 sched_scan_req)) { 2883 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2884 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2885 sched_scan_stopped = true; 2886 } 2887 mutex_unlock(&local->mtx); 2888 2889 if (sched_scan_stopped) 2890 cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0); 2891 2892 wake_up: 2893 2894 if (local->monitors == local->open_count && local->monitors > 0) 2895 ieee80211_add_virtual_monitor(local); 2896 2897 /* 2898 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2899 * sessions can be established after a resume. 2900 * 2901 * Also tear down aggregation sessions since reconfiguring 2902 * them in a hardware restart scenario is not easily done 2903 * right now, and the hardware will have lost information 2904 * about the sessions, but we and the AP still think they 2905 * are active. This is really a workaround though. 2906 */ 2907 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2908 mutex_lock(&local->sta_mtx); 2909 2910 list_for_each_entry(sta, &local->sta_list, list) { 2911 if (!local->resuming) 2912 ieee80211_sta_tear_down_BA_sessions( 2913 sta, AGG_STOP_LOCAL_REQUEST); 2914 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2915 } 2916 2917 mutex_unlock(&local->sta_mtx); 2918 } 2919 2920 /* 2921 * If this is for hw restart things are still running. 2922 * We may want to change that later, however. 2923 */ 2924 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2925 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2926 2927 if (local->in_reconfig) { 2928 in_reconfig = local->in_reconfig; 2929 local->in_reconfig = false; 2930 barrier(); 2931 2932 /* Restart deferred ROCs */ 2933 mutex_lock(&local->mtx); 2934 ieee80211_start_next_roc(local); 2935 mutex_unlock(&local->mtx); 2936 2937 /* Requeue all works */ 2938 list_for_each_entry(sdata, &local->interfaces, list) 2939 wiphy_work_queue(local->hw.wiphy, &sdata->work); 2940 } 2941 2942 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2943 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2944 false); 2945 2946 if (in_reconfig) { 2947 list_for_each_entry(sdata, &local->interfaces, list) { 2948 if (!ieee80211_sdata_running(sdata)) 2949 continue; 2950 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2951 ieee80211_sta_restart(sdata); 2952 } 2953 } 2954 2955 if (!suspended) 2956 return 0; 2957 2958 #ifdef CONFIG_PM 2959 /* first set suspended false, then resuming */ 2960 local->suspended = false; 2961 mb(); 2962 local->resuming = false; 2963 2964 ieee80211_flush_completed_scan(local, false); 2965 2966 if (local->open_count && !reconfig_due_to_wowlan) 2967 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2968 2969 list_for_each_entry(sdata, &local->interfaces, list) { 2970 if (!ieee80211_sdata_running(sdata)) 2971 continue; 2972 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2973 ieee80211_sta_restart(sdata); 2974 } 2975 2976 mod_timer(&local->sta_cleanup, jiffies + 1); 2977 #else 2978 WARN_ON(1); 2979 #endif 2980 2981 return 0; 2982 } 2983 2984 static void ieee80211_reconfig_disconnect(struct ieee80211_vif *vif, u8 flag) 2985 { 2986 struct ieee80211_sub_if_data *sdata; 2987 struct ieee80211_local *local; 2988 struct ieee80211_key *key; 2989 2990 if (WARN_ON(!vif)) 2991 return; 2992 2993 sdata = vif_to_sdata(vif); 2994 local = sdata->local; 2995 2996 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_RESUME && 2997 !local->resuming)) 2998 return; 2999 3000 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_HW_RESTART && 3001 !local->in_reconfig)) 3002 return; 3003 3004 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 3005 return; 3006 3007 sdata->flags |= flag; 3008 3009 mutex_lock(&local->key_mtx); 3010 list_for_each_entry(key, &sdata->key_list, list) 3011 key->flags |= KEY_FLAG_TAINTED; 3012 mutex_unlock(&local->key_mtx); 3013 } 3014 3015 void ieee80211_hw_restart_disconnect(struct ieee80211_vif *vif) 3016 { 3017 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_HW_RESTART); 3018 } 3019 EXPORT_SYMBOL_GPL(ieee80211_hw_restart_disconnect); 3020 3021 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 3022 { 3023 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_RESUME); 3024 } 3025 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 3026 3027 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata, 3028 struct ieee80211_link_data *link) 3029 { 3030 struct ieee80211_local *local = sdata->local; 3031 struct ieee80211_chanctx_conf *chanctx_conf; 3032 struct ieee80211_chanctx *chanctx; 3033 3034 mutex_lock(&local->chanctx_mtx); 3035 3036 chanctx_conf = rcu_dereference_protected(link->conf->chanctx_conf, 3037 lockdep_is_held(&local->chanctx_mtx)); 3038 3039 /* 3040 * This function can be called from a work, thus it may be possible 3041 * that the chanctx_conf is removed (due to a disconnection, for 3042 * example). 3043 * So nothing should be done in such case. 3044 */ 3045 if (!chanctx_conf) 3046 goto unlock; 3047 3048 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 3049 ieee80211_recalc_smps_chanctx(local, chanctx); 3050 unlock: 3051 mutex_unlock(&local->chanctx_mtx); 3052 } 3053 3054 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata, 3055 int link_id) 3056 { 3057 struct ieee80211_local *local = sdata->local; 3058 struct ieee80211_chanctx_conf *chanctx_conf; 3059 struct ieee80211_chanctx *chanctx; 3060 int i; 3061 3062 mutex_lock(&local->chanctx_mtx); 3063 3064 for (i = 0; i < ARRAY_SIZE(sdata->vif.link_conf); i++) { 3065 struct ieee80211_bss_conf *bss_conf; 3066 3067 if (link_id >= 0 && link_id != i) 3068 continue; 3069 3070 rcu_read_lock(); 3071 bss_conf = rcu_dereference(sdata->vif.link_conf[i]); 3072 if (!bss_conf) { 3073 rcu_read_unlock(); 3074 continue; 3075 } 3076 3077 chanctx_conf = rcu_dereference_protected(bss_conf->chanctx_conf, 3078 lockdep_is_held(&local->chanctx_mtx)); 3079 /* 3080 * Since we hold the chanctx_mtx (checked above) 3081 * we can take the chanctx_conf pointer out of the 3082 * RCU critical section, it cannot go away without 3083 * the mutex. Just the way we reached it could - in 3084 * theory - go away, but we don't really care and 3085 * it really shouldn't happen anyway. 3086 */ 3087 rcu_read_unlock(); 3088 3089 if (!chanctx_conf) 3090 goto unlock; 3091 3092 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, 3093 conf); 3094 ieee80211_recalc_chanctx_min_def(local, chanctx, NULL); 3095 } 3096 unlock: 3097 mutex_unlock(&local->chanctx_mtx); 3098 } 3099 3100 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 3101 { 3102 size_t pos = offset; 3103 3104 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 3105 pos += 2 + ies[pos + 1]; 3106 3107 return pos; 3108 } 3109 3110 u8 *ieee80211_ie_build_s1g_cap(u8 *pos, struct ieee80211_sta_s1g_cap *s1g_cap) 3111 { 3112 *pos++ = WLAN_EID_S1G_CAPABILITIES; 3113 *pos++ = sizeof(struct ieee80211_s1g_cap); 3114 memset(pos, 0, sizeof(struct ieee80211_s1g_cap)); 3115 3116 memcpy(pos, &s1g_cap->cap, sizeof(s1g_cap->cap)); 3117 pos += sizeof(s1g_cap->cap); 3118 3119 memcpy(pos, &s1g_cap->nss_mcs, sizeof(s1g_cap->nss_mcs)); 3120 pos += sizeof(s1g_cap->nss_mcs); 3121 3122 return pos; 3123 } 3124 3125 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 3126 u16 cap) 3127 { 3128 __le16 tmp; 3129 3130 *pos++ = WLAN_EID_HT_CAPABILITY; 3131 *pos++ = sizeof(struct ieee80211_ht_cap); 3132 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 3133 3134 /* capability flags */ 3135 tmp = cpu_to_le16(cap); 3136 memcpy(pos, &tmp, sizeof(u16)); 3137 pos += sizeof(u16); 3138 3139 /* AMPDU parameters */ 3140 *pos++ = ht_cap->ampdu_factor | 3141 (ht_cap->ampdu_density << 3142 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 3143 3144 /* MCS set */ 3145 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 3146 pos += sizeof(ht_cap->mcs); 3147 3148 /* extended capabilities */ 3149 pos += sizeof(__le16); 3150 3151 /* BF capabilities */ 3152 pos += sizeof(__le32); 3153 3154 /* antenna selection */ 3155 pos += sizeof(u8); 3156 3157 return pos; 3158 } 3159 3160 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 3161 u32 cap) 3162 { 3163 __le32 tmp; 3164 3165 *pos++ = WLAN_EID_VHT_CAPABILITY; 3166 *pos++ = sizeof(struct ieee80211_vht_cap); 3167 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 3168 3169 /* capability flags */ 3170 tmp = cpu_to_le32(cap); 3171 memcpy(pos, &tmp, sizeof(u32)); 3172 pos += sizeof(u32); 3173 3174 /* VHT MCS set */ 3175 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 3176 pos += sizeof(vht_cap->vht_mcs); 3177 3178 return pos; 3179 } 3180 3181 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 3182 { 3183 const struct ieee80211_sta_he_cap *he_cap; 3184 struct ieee80211_supported_band *sband; 3185 u8 n; 3186 3187 sband = ieee80211_get_sband(sdata); 3188 if (!sband) 3189 return 0; 3190 3191 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 3192 if (!he_cap) 3193 return 0; 3194 3195 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 3196 return 2 + 1 + 3197 sizeof(he_cap->he_cap_elem) + n + 3198 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 3199 he_cap->he_cap_elem.phy_cap_info); 3200 } 3201 3202 u8 *ieee80211_ie_build_he_cap(ieee80211_conn_flags_t disable_flags, u8 *pos, 3203 const struct ieee80211_sta_he_cap *he_cap, 3204 u8 *end) 3205 { 3206 struct ieee80211_he_cap_elem elem; 3207 u8 n; 3208 u8 ie_len; 3209 u8 *orig_pos = pos; 3210 3211 /* Make sure we have place for the IE */ 3212 /* 3213 * TODO: the 1 added is because this temporarily is under the EXTENSION 3214 * IE. Get rid of it when it moves. 3215 */ 3216 if (!he_cap) 3217 return orig_pos; 3218 3219 /* modify on stack first to calculate 'n' and 'ie_len' correctly */ 3220 elem = he_cap->he_cap_elem; 3221 3222 if (disable_flags & IEEE80211_CONN_DISABLE_40MHZ) 3223 elem.phy_cap_info[0] &= 3224 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | 3225 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G); 3226 3227 if (disable_flags & IEEE80211_CONN_DISABLE_160MHZ) 3228 elem.phy_cap_info[0] &= 3229 ~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 3230 3231 if (disable_flags & IEEE80211_CONN_DISABLE_80P80MHZ) 3232 elem.phy_cap_info[0] &= 3233 ~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 3234 3235 n = ieee80211_he_mcs_nss_size(&elem); 3236 ie_len = 2 + 1 + 3237 sizeof(he_cap->he_cap_elem) + n + 3238 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 3239 he_cap->he_cap_elem.phy_cap_info); 3240 3241 if ((end - pos) < ie_len) 3242 return orig_pos; 3243 3244 *pos++ = WLAN_EID_EXTENSION; 3245 pos++; /* We'll set the size later below */ 3246 *pos++ = WLAN_EID_EXT_HE_CAPABILITY; 3247 3248 /* Fixed data */ 3249 memcpy(pos, &elem, sizeof(elem)); 3250 pos += sizeof(elem); 3251 3252 memcpy(pos, &he_cap->he_mcs_nss_supp, n); 3253 pos += n; 3254 3255 /* Check if PPE Threshold should be present */ 3256 if ((he_cap->he_cap_elem.phy_cap_info[6] & 3257 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 3258 goto end; 3259 3260 /* 3261 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 3262 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 3263 */ 3264 n = hweight8(he_cap->ppe_thres[0] & 3265 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 3266 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 3267 IEEE80211_PPE_THRES_NSS_POS)); 3268 3269 /* 3270 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 3271 * total size. 3272 */ 3273 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 3274 n = DIV_ROUND_UP(n, 8); 3275 3276 /* Copy PPE Thresholds */ 3277 memcpy(pos, &he_cap->ppe_thres, n); 3278 pos += n; 3279 3280 end: 3281 orig_pos[1] = (pos - orig_pos) - 2; 3282 return pos; 3283 } 3284 3285 void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata, 3286 enum ieee80211_smps_mode smps_mode, 3287 struct sk_buff *skb) 3288 { 3289 struct ieee80211_supported_band *sband; 3290 const struct ieee80211_sband_iftype_data *iftd; 3291 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3292 u8 *pos; 3293 u16 cap; 3294 3295 if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy, 3296 BIT(NL80211_BAND_6GHZ), 3297 IEEE80211_CHAN_NO_HE)) 3298 return; 3299 3300 sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3301 3302 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 3303 if (!iftd) 3304 return; 3305 3306 /* Check for device HE 6 GHz capability before adding element */ 3307 if (!iftd->he_6ghz_capa.capa) 3308 return; 3309 3310 cap = le16_to_cpu(iftd->he_6ghz_capa.capa); 3311 cap &= ~IEEE80211_HE_6GHZ_CAP_SM_PS; 3312 3313 switch (smps_mode) { 3314 case IEEE80211_SMPS_AUTOMATIC: 3315 case IEEE80211_SMPS_NUM_MODES: 3316 WARN_ON(1); 3317 fallthrough; 3318 case IEEE80211_SMPS_OFF: 3319 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 3320 IEEE80211_HE_6GHZ_CAP_SM_PS); 3321 break; 3322 case IEEE80211_SMPS_STATIC: 3323 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 3324 IEEE80211_HE_6GHZ_CAP_SM_PS); 3325 break; 3326 case IEEE80211_SMPS_DYNAMIC: 3327 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 3328 IEEE80211_HE_6GHZ_CAP_SM_PS); 3329 break; 3330 } 3331 3332 pos = skb_put(skb, 2 + 1 + sizeof(cap)); 3333 ieee80211_write_he_6ghz_cap(pos, cpu_to_le16(cap), 3334 pos + 2 + 1 + sizeof(cap)); 3335 } 3336 3337 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 3338 const struct cfg80211_chan_def *chandef, 3339 u16 prot_mode, bool rifs_mode) 3340 { 3341 struct ieee80211_ht_operation *ht_oper; 3342 /* Build HT Information */ 3343 *pos++ = WLAN_EID_HT_OPERATION; 3344 *pos++ = sizeof(struct ieee80211_ht_operation); 3345 ht_oper = (struct ieee80211_ht_operation *)pos; 3346 ht_oper->primary_chan = ieee80211_frequency_to_channel( 3347 chandef->chan->center_freq); 3348 switch (chandef->width) { 3349 case NL80211_CHAN_WIDTH_160: 3350 case NL80211_CHAN_WIDTH_80P80: 3351 case NL80211_CHAN_WIDTH_80: 3352 case NL80211_CHAN_WIDTH_40: 3353 if (chandef->center_freq1 > chandef->chan->center_freq) 3354 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3355 else 3356 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3357 break; 3358 case NL80211_CHAN_WIDTH_320: 3359 /* HT information element should not be included on 6GHz */ 3360 WARN_ON(1); 3361 return pos; 3362 default: 3363 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 3364 break; 3365 } 3366 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 3367 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 3368 chandef->width != NL80211_CHAN_WIDTH_20) 3369 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 3370 3371 if (rifs_mode) 3372 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 3373 3374 ht_oper->operation_mode = cpu_to_le16(prot_mode); 3375 ht_oper->stbc_param = 0x0000; 3376 3377 /* It seems that Basic MCS set and Supported MCS set 3378 are identical for the first 10 bytes */ 3379 memset(&ht_oper->basic_set, 0, 16); 3380 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 3381 3382 return pos + sizeof(struct ieee80211_ht_operation); 3383 } 3384 3385 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 3386 const struct cfg80211_chan_def *chandef) 3387 { 3388 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 3389 *pos++ = 3; /* IE length */ 3390 /* New channel width */ 3391 switch (chandef->width) { 3392 case NL80211_CHAN_WIDTH_80: 3393 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 3394 break; 3395 case NL80211_CHAN_WIDTH_160: 3396 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 3397 break; 3398 case NL80211_CHAN_WIDTH_80P80: 3399 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 3400 break; 3401 case NL80211_CHAN_WIDTH_320: 3402 /* The behavior is not defined for 320 MHz channels */ 3403 WARN_ON(1); 3404 fallthrough; 3405 default: 3406 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 3407 } 3408 3409 /* new center frequency segment 0 */ 3410 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 3411 /* new center frequency segment 1 */ 3412 if (chandef->center_freq2) 3413 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 3414 else 3415 *pos++ = 0; 3416 } 3417 3418 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 3419 const struct cfg80211_chan_def *chandef) 3420 { 3421 struct ieee80211_vht_operation *vht_oper; 3422 3423 *pos++ = WLAN_EID_VHT_OPERATION; 3424 *pos++ = sizeof(struct ieee80211_vht_operation); 3425 vht_oper = (struct ieee80211_vht_operation *)pos; 3426 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 3427 chandef->center_freq1); 3428 if (chandef->center_freq2) 3429 vht_oper->center_freq_seg1_idx = 3430 ieee80211_frequency_to_channel(chandef->center_freq2); 3431 else 3432 vht_oper->center_freq_seg1_idx = 0x00; 3433 3434 switch (chandef->width) { 3435 case NL80211_CHAN_WIDTH_160: 3436 /* 3437 * Convert 160 MHz channel width to new style as interop 3438 * workaround. 3439 */ 3440 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3441 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 3442 if (chandef->chan->center_freq < chandef->center_freq1) 3443 vht_oper->center_freq_seg0_idx -= 8; 3444 else 3445 vht_oper->center_freq_seg0_idx += 8; 3446 break; 3447 case NL80211_CHAN_WIDTH_80P80: 3448 /* 3449 * Convert 80+80 MHz channel width to new style as interop 3450 * workaround. 3451 */ 3452 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3453 break; 3454 case NL80211_CHAN_WIDTH_80: 3455 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3456 break; 3457 case NL80211_CHAN_WIDTH_320: 3458 /* VHT information element should not be included on 6GHz */ 3459 WARN_ON(1); 3460 return pos; 3461 default: 3462 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 3463 break; 3464 } 3465 3466 /* don't require special VHT peer rates */ 3467 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 3468 3469 return pos + sizeof(struct ieee80211_vht_operation); 3470 } 3471 3472 u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef) 3473 { 3474 struct ieee80211_he_operation *he_oper; 3475 struct ieee80211_he_6ghz_oper *he_6ghz_op; 3476 u32 he_oper_params; 3477 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 3478 3479 if (chandef->chan->band == NL80211_BAND_6GHZ) 3480 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 3481 3482 *pos++ = WLAN_EID_EXTENSION; 3483 *pos++ = ie_len; 3484 *pos++ = WLAN_EID_EXT_HE_OPERATION; 3485 3486 he_oper_params = 0; 3487 he_oper_params |= u32_encode_bits(1023, /* disabled */ 3488 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 3489 he_oper_params |= u32_encode_bits(1, 3490 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 3491 he_oper_params |= u32_encode_bits(1, 3492 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 3493 if (chandef->chan->band == NL80211_BAND_6GHZ) 3494 he_oper_params |= u32_encode_bits(1, 3495 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 3496 3497 he_oper = (struct ieee80211_he_operation *)pos; 3498 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 3499 3500 /* don't require special HE peer rates */ 3501 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 3502 pos += sizeof(struct ieee80211_he_operation); 3503 3504 if (chandef->chan->band != NL80211_BAND_6GHZ) 3505 goto out; 3506 3507 /* TODO add VHT operational */ 3508 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 3509 he_6ghz_op->minrate = 6; /* 6 Mbps */ 3510 he_6ghz_op->primary = 3511 ieee80211_frequency_to_channel(chandef->chan->center_freq); 3512 he_6ghz_op->ccfs0 = 3513 ieee80211_frequency_to_channel(chandef->center_freq1); 3514 if (chandef->center_freq2) 3515 he_6ghz_op->ccfs1 = 3516 ieee80211_frequency_to_channel(chandef->center_freq2); 3517 else 3518 he_6ghz_op->ccfs1 = 0; 3519 3520 switch (chandef->width) { 3521 case NL80211_CHAN_WIDTH_320: 3522 /* 3523 * TODO: mesh operation is not defined over 6GHz 320 MHz 3524 * channels. 3525 */ 3526 WARN_ON(1); 3527 break; 3528 case NL80211_CHAN_WIDTH_160: 3529 /* Convert 160 MHz channel width to new style as interop 3530 * workaround. 3531 */ 3532 he_6ghz_op->control = 3533 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3534 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 3535 if (chandef->chan->center_freq < chandef->center_freq1) 3536 he_6ghz_op->ccfs0 -= 8; 3537 else 3538 he_6ghz_op->ccfs0 += 8; 3539 fallthrough; 3540 case NL80211_CHAN_WIDTH_80P80: 3541 he_6ghz_op->control = 3542 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3543 break; 3544 case NL80211_CHAN_WIDTH_80: 3545 he_6ghz_op->control = 3546 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 3547 break; 3548 case NL80211_CHAN_WIDTH_40: 3549 he_6ghz_op->control = 3550 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 3551 break; 3552 default: 3553 he_6ghz_op->control = 3554 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 3555 break; 3556 } 3557 3558 pos += sizeof(struct ieee80211_he_6ghz_oper); 3559 3560 out: 3561 return pos; 3562 } 3563 3564 u8 *ieee80211_ie_build_eht_oper(u8 *pos, struct cfg80211_chan_def *chandef, 3565 const struct ieee80211_sta_eht_cap *eht_cap) 3566 3567 { 3568 const struct ieee80211_eht_mcs_nss_supp_20mhz_only *eht_mcs_nss = 3569 &eht_cap->eht_mcs_nss_supp.only_20mhz; 3570 struct ieee80211_eht_operation *eht_oper; 3571 struct ieee80211_eht_operation_info *eht_oper_info; 3572 u8 eht_oper_len = offsetof(struct ieee80211_eht_operation, optional); 3573 u8 eht_oper_info_len = 3574 offsetof(struct ieee80211_eht_operation_info, optional); 3575 u8 chan_width = 0; 3576 3577 *pos++ = WLAN_EID_EXTENSION; 3578 *pos++ = 1 + eht_oper_len + eht_oper_info_len; 3579 *pos++ = WLAN_EID_EXT_EHT_OPERATION; 3580 3581 eht_oper = (struct ieee80211_eht_operation *)pos; 3582 3583 memcpy(&eht_oper->basic_mcs_nss, eht_mcs_nss, sizeof(*eht_mcs_nss)); 3584 eht_oper->params |= IEEE80211_EHT_OPER_INFO_PRESENT; 3585 pos += eht_oper_len; 3586 3587 eht_oper_info = 3588 (struct ieee80211_eht_operation_info *)eht_oper->optional; 3589 3590 eht_oper_info->ccfs0 = 3591 ieee80211_frequency_to_channel(chandef->center_freq1); 3592 if (chandef->center_freq2) 3593 eht_oper_info->ccfs1 = 3594 ieee80211_frequency_to_channel(chandef->center_freq2); 3595 else 3596 eht_oper_info->ccfs1 = 0; 3597 3598 switch (chandef->width) { 3599 case NL80211_CHAN_WIDTH_320: 3600 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ; 3601 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 3602 if (chandef->chan->center_freq < chandef->center_freq1) 3603 eht_oper_info->ccfs0 -= 16; 3604 else 3605 eht_oper_info->ccfs0 += 16; 3606 break; 3607 case NL80211_CHAN_WIDTH_160: 3608 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 3609 if (chandef->chan->center_freq < chandef->center_freq1) 3610 eht_oper_info->ccfs0 -= 8; 3611 else 3612 eht_oper_info->ccfs0 += 8; 3613 fallthrough; 3614 case NL80211_CHAN_WIDTH_80P80: 3615 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ; 3616 break; 3617 case NL80211_CHAN_WIDTH_80: 3618 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ; 3619 break; 3620 case NL80211_CHAN_WIDTH_40: 3621 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ; 3622 break; 3623 default: 3624 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ; 3625 break; 3626 } 3627 eht_oper_info->control = chan_width; 3628 pos += eht_oper_info_len; 3629 3630 /* TODO: eht_oper_info->optional */ 3631 3632 return pos; 3633 } 3634 3635 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 3636 struct cfg80211_chan_def *chandef) 3637 { 3638 enum nl80211_channel_type channel_type; 3639 3640 if (!ht_oper) 3641 return false; 3642 3643 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 3644 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 3645 channel_type = NL80211_CHAN_HT20; 3646 break; 3647 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 3648 channel_type = NL80211_CHAN_HT40PLUS; 3649 break; 3650 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 3651 channel_type = NL80211_CHAN_HT40MINUS; 3652 break; 3653 default: 3654 return false; 3655 } 3656 3657 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 3658 return true; 3659 } 3660 3661 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 3662 const struct ieee80211_vht_operation *oper, 3663 const struct ieee80211_ht_operation *htop, 3664 struct cfg80211_chan_def *chandef) 3665 { 3666 struct cfg80211_chan_def new = *chandef; 3667 int cf0, cf1; 3668 int ccfs0, ccfs1, ccfs2; 3669 int ccf0, ccf1; 3670 u32 vht_cap; 3671 bool support_80_80 = false; 3672 bool support_160 = false; 3673 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 3674 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 3675 u8 supp_chwidth = u32_get_bits(vht_cap_info, 3676 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 3677 3678 if (!oper || !htop) 3679 return false; 3680 3681 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 3682 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 3683 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 3684 support_80_80 = ((vht_cap & 3685 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 3686 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 3687 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 3688 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 3689 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 3690 ccfs0 = oper->center_freq_seg0_idx; 3691 ccfs1 = oper->center_freq_seg1_idx; 3692 ccfs2 = (le16_to_cpu(htop->operation_mode) & 3693 IEEE80211_HT_OP_MODE_CCFS2_MASK) 3694 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 3695 3696 ccf0 = ccfs0; 3697 3698 /* if not supported, parse as though we didn't understand it */ 3699 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 3700 ext_nss_bw_supp = 0; 3701 3702 /* 3703 * Cf. IEEE 802.11 Table 9-250 3704 * 3705 * We really just consider that because it's inefficient to connect 3706 * at a higher bandwidth than we'll actually be able to use. 3707 */ 3708 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 3709 default: 3710 case 0x00: 3711 ccf1 = 0; 3712 support_160 = false; 3713 support_80_80 = false; 3714 break; 3715 case 0x01: 3716 support_80_80 = false; 3717 fallthrough; 3718 case 0x02: 3719 case 0x03: 3720 ccf1 = ccfs2; 3721 break; 3722 case 0x10: 3723 ccf1 = ccfs1; 3724 break; 3725 case 0x11: 3726 case 0x12: 3727 if (!ccfs1) 3728 ccf1 = ccfs2; 3729 else 3730 ccf1 = ccfs1; 3731 break; 3732 case 0x13: 3733 case 0x20: 3734 case 0x23: 3735 ccf1 = ccfs1; 3736 break; 3737 } 3738 3739 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3740 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3741 3742 switch (oper->chan_width) { 3743 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3744 /* just use HT information directly */ 3745 break; 3746 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3747 new.width = NL80211_CHAN_WIDTH_80; 3748 new.center_freq1 = cf0; 3749 /* If needed, adjust based on the newer interop workaround. */ 3750 if (ccf1) { 3751 unsigned int diff; 3752 3753 diff = abs(ccf1 - ccf0); 3754 if ((diff == 8) && support_160) { 3755 new.width = NL80211_CHAN_WIDTH_160; 3756 new.center_freq1 = cf1; 3757 } else if ((diff > 8) && support_80_80) { 3758 new.width = NL80211_CHAN_WIDTH_80P80; 3759 new.center_freq2 = cf1; 3760 } 3761 } 3762 break; 3763 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3764 /* deprecated encoding */ 3765 new.width = NL80211_CHAN_WIDTH_160; 3766 new.center_freq1 = cf0; 3767 break; 3768 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3769 /* deprecated encoding */ 3770 new.width = NL80211_CHAN_WIDTH_80P80; 3771 new.center_freq1 = cf0; 3772 new.center_freq2 = cf1; 3773 break; 3774 default: 3775 return false; 3776 } 3777 3778 if (!cfg80211_chandef_valid(&new)) 3779 return false; 3780 3781 *chandef = new; 3782 return true; 3783 } 3784 3785 void ieee80211_chandef_eht_oper(const struct ieee80211_eht_operation *eht_oper, 3786 bool support_160, bool support_320, 3787 struct cfg80211_chan_def *chandef) 3788 { 3789 struct ieee80211_eht_operation_info *info = (void *)eht_oper->optional; 3790 3791 chandef->center_freq1 = 3792 ieee80211_channel_to_frequency(info->ccfs0, 3793 chandef->chan->band); 3794 3795 switch (u8_get_bits(info->control, 3796 IEEE80211_EHT_OPER_CHAN_WIDTH)) { 3797 case IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ: 3798 chandef->width = NL80211_CHAN_WIDTH_20; 3799 break; 3800 case IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ: 3801 chandef->width = NL80211_CHAN_WIDTH_40; 3802 break; 3803 case IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ: 3804 chandef->width = NL80211_CHAN_WIDTH_80; 3805 break; 3806 case IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ: 3807 if (support_160) { 3808 chandef->width = NL80211_CHAN_WIDTH_160; 3809 chandef->center_freq1 = 3810 ieee80211_channel_to_frequency(info->ccfs1, 3811 chandef->chan->band); 3812 } else { 3813 chandef->width = NL80211_CHAN_WIDTH_80; 3814 } 3815 break; 3816 case IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ: 3817 if (support_320) { 3818 chandef->width = NL80211_CHAN_WIDTH_320; 3819 chandef->center_freq1 = 3820 ieee80211_channel_to_frequency(info->ccfs1, 3821 chandef->chan->band); 3822 } else if (support_160) { 3823 chandef->width = NL80211_CHAN_WIDTH_160; 3824 } else { 3825 chandef->width = NL80211_CHAN_WIDTH_80; 3826 3827 if (chandef->center_freq1 > chandef->chan->center_freq) 3828 chandef->center_freq1 -= 40; 3829 else 3830 chandef->center_freq1 += 40; 3831 } 3832 break; 3833 } 3834 } 3835 3836 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata, 3837 const struct ieee80211_he_operation *he_oper, 3838 const struct ieee80211_eht_operation *eht_oper, 3839 struct cfg80211_chan_def *chandef) 3840 { 3841 struct ieee80211_local *local = sdata->local; 3842 struct ieee80211_supported_band *sband; 3843 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3844 const struct ieee80211_sta_he_cap *he_cap; 3845 const struct ieee80211_sta_eht_cap *eht_cap; 3846 struct cfg80211_chan_def he_chandef = *chandef; 3847 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3848 struct ieee80211_bss_conf *bss_conf = &sdata->vif.bss_conf; 3849 bool support_80_80, support_160, support_320; 3850 u8 he_phy_cap, eht_phy_cap; 3851 u32 freq; 3852 3853 if (chandef->chan->band != NL80211_BAND_6GHZ) 3854 return true; 3855 3856 sband = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3857 3858 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 3859 if (!he_cap) { 3860 sdata_info(sdata, "Missing iftype sband data/HE cap"); 3861 return false; 3862 } 3863 3864 he_phy_cap = he_cap->he_cap_elem.phy_cap_info[0]; 3865 support_160 = 3866 he_phy_cap & 3867 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 3868 support_80_80 = 3869 he_phy_cap & 3870 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 3871 3872 if (!he_oper) { 3873 sdata_info(sdata, 3874 "HE is not advertised on (on %d MHz), expect issues\n", 3875 chandef->chan->center_freq); 3876 return false; 3877 } 3878 3879 eht_cap = ieee80211_get_eht_iftype_cap(sband, iftype); 3880 if (!eht_cap) 3881 eht_oper = NULL; 3882 3883 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3884 3885 if (!he_6ghz_oper) { 3886 sdata_info(sdata, 3887 "HE 6GHz operation missing (on %d MHz), expect issues\n", 3888 chandef->chan->center_freq); 3889 return false; 3890 } 3891 3892 /* 3893 * The EHT operation IE does not contain the primary channel so the 3894 * primary channel frequency should be taken from the 6 GHz operation 3895 * information. 3896 */ 3897 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3898 NL80211_BAND_6GHZ); 3899 he_chandef.chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq); 3900 3901 switch (u8_get_bits(he_6ghz_oper->control, 3902 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) { 3903 case IEEE80211_6GHZ_CTRL_REG_LPI_AP: 3904 bss_conf->power_type = IEEE80211_REG_LPI_AP; 3905 break; 3906 case IEEE80211_6GHZ_CTRL_REG_SP_AP: 3907 bss_conf->power_type = IEEE80211_REG_SP_AP; 3908 break; 3909 default: 3910 bss_conf->power_type = IEEE80211_REG_UNSET_AP; 3911 break; 3912 } 3913 3914 if (!eht_oper || 3915 !(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) { 3916 switch (u8_get_bits(he_6ghz_oper->control, 3917 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3918 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3919 he_chandef.width = NL80211_CHAN_WIDTH_20; 3920 break; 3921 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3922 he_chandef.width = NL80211_CHAN_WIDTH_40; 3923 break; 3924 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3925 he_chandef.width = NL80211_CHAN_WIDTH_80; 3926 break; 3927 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3928 he_chandef.width = NL80211_CHAN_WIDTH_80; 3929 if (!he_6ghz_oper->ccfs1) 3930 break; 3931 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) { 3932 if (support_160) 3933 he_chandef.width = NL80211_CHAN_WIDTH_160; 3934 } else { 3935 if (support_80_80) 3936 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3937 } 3938 break; 3939 } 3940 3941 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3942 he_chandef.center_freq1 = 3943 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3944 NL80211_BAND_6GHZ); 3945 } else { 3946 he_chandef.center_freq1 = 3947 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3948 NL80211_BAND_6GHZ); 3949 if (support_80_80 || support_160) 3950 he_chandef.center_freq2 = 3951 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3952 NL80211_BAND_6GHZ); 3953 } 3954 } else { 3955 eht_phy_cap = eht_cap->eht_cap_elem.phy_cap_info[0]; 3956 support_320 = 3957 eht_phy_cap & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ; 3958 3959 ieee80211_chandef_eht_oper(eht_oper, support_160, 3960 support_320, &he_chandef); 3961 } 3962 3963 if (!cfg80211_chandef_valid(&he_chandef)) { 3964 sdata_info(sdata, 3965 "HE 6GHz operation resulted in invalid chandef: %d MHz/%d/%d MHz/%d MHz\n", 3966 he_chandef.chan ? he_chandef.chan->center_freq : 0, 3967 he_chandef.width, 3968 he_chandef.center_freq1, 3969 he_chandef.center_freq2); 3970 return false; 3971 } 3972 3973 *chandef = he_chandef; 3974 3975 return true; 3976 } 3977 3978 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, 3979 struct cfg80211_chan_def *chandef) 3980 { 3981 u32 oper_freq; 3982 3983 if (!oper) 3984 return false; 3985 3986 switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { 3987 case IEEE80211_S1G_CHANWIDTH_1MHZ: 3988 chandef->width = NL80211_CHAN_WIDTH_1; 3989 break; 3990 case IEEE80211_S1G_CHANWIDTH_2MHZ: 3991 chandef->width = NL80211_CHAN_WIDTH_2; 3992 break; 3993 case IEEE80211_S1G_CHANWIDTH_4MHZ: 3994 chandef->width = NL80211_CHAN_WIDTH_4; 3995 break; 3996 case IEEE80211_S1G_CHANWIDTH_8MHZ: 3997 chandef->width = NL80211_CHAN_WIDTH_8; 3998 break; 3999 case IEEE80211_S1G_CHANWIDTH_16MHZ: 4000 chandef->width = NL80211_CHAN_WIDTH_16; 4001 break; 4002 default: 4003 return false; 4004 } 4005 4006 oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch, 4007 NL80211_BAND_S1GHZ); 4008 chandef->center_freq1 = KHZ_TO_MHZ(oper_freq); 4009 chandef->freq1_offset = oper_freq % 1000; 4010 4011 return true; 4012 } 4013 4014 int ieee80211_parse_bitrates(enum nl80211_chan_width width, 4015 const struct ieee80211_supported_band *sband, 4016 const u8 *srates, int srates_len, u32 *rates) 4017 { 4018 u32 rate_flags = ieee80211_chanwidth_rate_flags(width); 4019 int shift = ieee80211_chanwidth_get_shift(width); 4020 struct ieee80211_rate *br; 4021 int brate, rate, i, j, count = 0; 4022 4023 *rates = 0; 4024 4025 for (i = 0; i < srates_len; i++) { 4026 rate = srates[i] & 0x7f; 4027 4028 for (j = 0; j < sband->n_bitrates; j++) { 4029 br = &sband->bitrates[j]; 4030 if ((rate_flags & br->flags) != rate_flags) 4031 continue; 4032 4033 brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5); 4034 if (brate == rate) { 4035 *rates |= BIT(j); 4036 count++; 4037 break; 4038 } 4039 } 4040 } 4041 return count; 4042 } 4043 4044 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, 4045 struct sk_buff *skb, bool need_basic, 4046 enum nl80211_band band) 4047 { 4048 struct ieee80211_local *local = sdata->local; 4049 struct ieee80211_supported_band *sband; 4050 int rate, shift; 4051 u8 i, rates, *pos; 4052 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 4053 u32 rate_flags; 4054 4055 shift = ieee80211_vif_get_shift(&sdata->vif); 4056 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 4057 sband = local->hw.wiphy->bands[band]; 4058 rates = 0; 4059 for (i = 0; i < sband->n_bitrates; i++) { 4060 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 4061 continue; 4062 rates++; 4063 } 4064 if (rates > 8) 4065 rates = 8; 4066 4067 if (skb_tailroom(skb) < rates + 2) 4068 return -ENOMEM; 4069 4070 pos = skb_put(skb, rates + 2); 4071 *pos++ = WLAN_EID_SUPP_RATES; 4072 *pos++ = rates; 4073 for (i = 0; i < rates; i++) { 4074 u8 basic = 0; 4075 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 4076 continue; 4077 4078 if (need_basic && basic_rates & BIT(i)) 4079 basic = 0x80; 4080 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 4081 5 * (1 << shift)); 4082 *pos++ = basic | (u8) rate; 4083 } 4084 4085 return 0; 4086 } 4087 4088 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, 4089 struct sk_buff *skb, bool need_basic, 4090 enum nl80211_band band) 4091 { 4092 struct ieee80211_local *local = sdata->local; 4093 struct ieee80211_supported_band *sband; 4094 int rate, shift; 4095 u8 i, exrates, *pos; 4096 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 4097 u32 rate_flags; 4098 4099 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 4100 shift = ieee80211_vif_get_shift(&sdata->vif); 4101 4102 sband = local->hw.wiphy->bands[band]; 4103 exrates = 0; 4104 for (i = 0; i < sband->n_bitrates; i++) { 4105 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 4106 continue; 4107 exrates++; 4108 } 4109 4110 if (exrates > 8) 4111 exrates -= 8; 4112 else 4113 exrates = 0; 4114 4115 if (skb_tailroom(skb) < exrates + 2) 4116 return -ENOMEM; 4117 4118 if (exrates) { 4119 pos = skb_put(skb, exrates + 2); 4120 *pos++ = WLAN_EID_EXT_SUPP_RATES; 4121 *pos++ = exrates; 4122 for (i = 8; i < sband->n_bitrates; i++) { 4123 u8 basic = 0; 4124 if ((rate_flags & sband->bitrates[i].flags) 4125 != rate_flags) 4126 continue; 4127 if (need_basic && basic_rates & BIT(i)) 4128 basic = 0x80; 4129 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 4130 5 * (1 << shift)); 4131 *pos++ = basic | (u8) rate; 4132 } 4133 } 4134 return 0; 4135 } 4136 4137 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 4138 { 4139 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 4140 4141 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) 4142 return 0; 4143 4144 return -ewma_beacon_signal_read(&sdata->deflink.u.mgd.ave_beacon_signal); 4145 } 4146 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 4147 4148 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 4149 { 4150 if (!mcs) 4151 return 1; 4152 4153 /* TODO: consider rx_highest */ 4154 4155 if (mcs->rx_mask[3]) 4156 return 4; 4157 if (mcs->rx_mask[2]) 4158 return 3; 4159 if (mcs->rx_mask[1]) 4160 return 2; 4161 return 1; 4162 } 4163 4164 /** 4165 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 4166 * @local: mac80211 hw info struct 4167 * @status: RX status 4168 * @mpdu_len: total MPDU length (including FCS) 4169 * @mpdu_offset: offset into MPDU to calculate timestamp at 4170 * 4171 * This function calculates the RX timestamp at the given MPDU offset, taking 4172 * into account what the RX timestamp was. An offset of 0 will just normalize 4173 * the timestamp to TSF at beginning of MPDU reception. 4174 */ 4175 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 4176 struct ieee80211_rx_status *status, 4177 unsigned int mpdu_len, 4178 unsigned int mpdu_offset) 4179 { 4180 u64 ts = status->mactime; 4181 struct rate_info ri; 4182 u16 rate; 4183 u8 n_ltf; 4184 4185 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 4186 return 0; 4187 4188 memset(&ri, 0, sizeof(ri)); 4189 4190 ri.bw = status->bw; 4191 4192 /* Fill cfg80211 rate info */ 4193 switch (status->encoding) { 4194 case RX_ENC_EHT: 4195 ri.flags |= RATE_INFO_FLAGS_EHT_MCS; 4196 ri.mcs = status->rate_idx; 4197 ri.nss = status->nss; 4198 ri.eht_ru_alloc = status->eht.ru; 4199 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4200 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4201 /* TODO/FIXME: is this right? handle other PPDUs */ 4202 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4203 mpdu_offset += 2; 4204 ts += 36; 4205 } 4206 break; 4207 case RX_ENC_HE: 4208 ri.flags |= RATE_INFO_FLAGS_HE_MCS; 4209 ri.mcs = status->rate_idx; 4210 ri.nss = status->nss; 4211 ri.he_ru_alloc = status->he_ru; 4212 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4213 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4214 4215 /* 4216 * See P802.11ax_D6.0, section 27.3.4 for 4217 * VHT PPDU format. 4218 */ 4219 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4220 mpdu_offset += 2; 4221 ts += 36; 4222 4223 /* 4224 * TODO: 4225 * For HE MU PPDU, add the HE-SIG-B. 4226 * For HE ER PPDU, add 8us for the HE-SIG-A. 4227 * For HE TB PPDU, add 4us for the HE-STF. 4228 * Add the HE-LTF durations - variable. 4229 */ 4230 } 4231 4232 break; 4233 case RX_ENC_HT: 4234 ri.mcs = status->rate_idx; 4235 ri.flags |= RATE_INFO_FLAGS_MCS; 4236 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4237 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4238 4239 /* 4240 * See P802.11REVmd_D3.0, section 19.3.2 for 4241 * HT PPDU format. 4242 */ 4243 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4244 mpdu_offset += 2; 4245 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 4246 ts += 24; 4247 else 4248 ts += 32; 4249 4250 /* 4251 * Add Data HT-LTFs per streams 4252 * TODO: add Extension HT-LTFs, 4us per LTF 4253 */ 4254 n_ltf = ((ri.mcs >> 3) & 3) + 1; 4255 n_ltf = n_ltf == 3 ? 4 : n_ltf; 4256 ts += n_ltf * 4; 4257 } 4258 4259 break; 4260 case RX_ENC_VHT: 4261 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 4262 ri.mcs = status->rate_idx; 4263 ri.nss = status->nss; 4264 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4265 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4266 4267 /* 4268 * See P802.11REVmd_D3.0, section 21.3.2 for 4269 * VHT PPDU format. 4270 */ 4271 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4272 mpdu_offset += 2; 4273 ts += 36; 4274 4275 /* 4276 * Add VHT-LTFs per streams 4277 */ 4278 n_ltf = (ri.nss != 1) && (ri.nss % 2) ? 4279 ri.nss + 1 : ri.nss; 4280 ts += 4 * n_ltf; 4281 } 4282 4283 break; 4284 default: 4285 WARN_ON(1); 4286 fallthrough; 4287 case RX_ENC_LEGACY: { 4288 struct ieee80211_supported_band *sband; 4289 int shift = 0; 4290 int bitrate; 4291 4292 switch (status->bw) { 4293 case RATE_INFO_BW_10: 4294 shift = 1; 4295 break; 4296 case RATE_INFO_BW_5: 4297 shift = 2; 4298 break; 4299 } 4300 4301 sband = local->hw.wiphy->bands[status->band]; 4302 bitrate = sband->bitrates[status->rate_idx].bitrate; 4303 ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift)); 4304 4305 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4306 if (status->band == NL80211_BAND_5GHZ) { 4307 ts += 20 << shift; 4308 mpdu_offset += 2; 4309 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 4310 ts += 96; 4311 } else { 4312 ts += 192; 4313 } 4314 } 4315 break; 4316 } 4317 } 4318 4319 rate = cfg80211_calculate_bitrate(&ri); 4320 if (WARN_ONCE(!rate, 4321 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 4322 (unsigned long long)status->flag, status->rate_idx, 4323 status->nss)) 4324 return 0; 4325 4326 /* rewind from end of MPDU */ 4327 if (status->flag & RX_FLAG_MACTIME_END) 4328 ts -= mpdu_len * 8 * 10 / rate; 4329 4330 ts += mpdu_offset * 8 * 10 / rate; 4331 4332 return ts; 4333 } 4334 4335 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) 4336 { 4337 struct ieee80211_sub_if_data *sdata; 4338 struct cfg80211_chan_def chandef; 4339 4340 /* for interface list, to avoid linking iflist_mtx and chanctx_mtx */ 4341 lockdep_assert_wiphy(local->hw.wiphy); 4342 4343 mutex_lock(&local->mtx); 4344 list_for_each_entry(sdata, &local->interfaces, list) { 4345 /* it might be waiting for the local->mtx, but then 4346 * by the time it gets it, sdata->wdev.cac_started 4347 * will no longer be true 4348 */ 4349 cancel_delayed_work(&sdata->deflink.dfs_cac_timer_work); 4350 4351 if (sdata->wdev.cac_started) { 4352 chandef = sdata->vif.bss_conf.chandef; 4353 ieee80211_link_release_channel(&sdata->deflink); 4354 cfg80211_cac_event(sdata->dev, 4355 &chandef, 4356 NL80211_RADAR_CAC_ABORTED, 4357 GFP_KERNEL); 4358 } 4359 } 4360 mutex_unlock(&local->mtx); 4361 } 4362 4363 void ieee80211_dfs_radar_detected_work(struct wiphy *wiphy, 4364 struct wiphy_work *work) 4365 { 4366 struct ieee80211_local *local = 4367 container_of(work, struct ieee80211_local, radar_detected_work); 4368 struct cfg80211_chan_def chandef = local->hw.conf.chandef; 4369 struct ieee80211_chanctx *ctx; 4370 int num_chanctx = 0; 4371 4372 mutex_lock(&local->chanctx_mtx); 4373 list_for_each_entry(ctx, &local->chanctx_list, list) { 4374 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 4375 continue; 4376 4377 num_chanctx++; 4378 chandef = ctx->conf.def; 4379 } 4380 mutex_unlock(&local->chanctx_mtx); 4381 4382 ieee80211_dfs_cac_cancel(local); 4383 4384 if (num_chanctx > 1) 4385 /* XXX: multi-channel is not supported yet */ 4386 WARN_ON(1); 4387 else 4388 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 4389 } 4390 4391 void ieee80211_radar_detected(struct ieee80211_hw *hw) 4392 { 4393 struct ieee80211_local *local = hw_to_local(hw); 4394 4395 trace_api_radar_detected(local); 4396 4397 wiphy_work_queue(hw->wiphy, &local->radar_detected_work); 4398 } 4399 EXPORT_SYMBOL(ieee80211_radar_detected); 4400 4401 ieee80211_conn_flags_t ieee80211_chandef_downgrade(struct cfg80211_chan_def *c) 4402 { 4403 ieee80211_conn_flags_t ret; 4404 int tmp; 4405 4406 switch (c->width) { 4407 case NL80211_CHAN_WIDTH_20: 4408 c->width = NL80211_CHAN_WIDTH_20_NOHT; 4409 ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT; 4410 break; 4411 case NL80211_CHAN_WIDTH_40: 4412 c->width = NL80211_CHAN_WIDTH_20; 4413 c->center_freq1 = c->chan->center_freq; 4414 ret = IEEE80211_CONN_DISABLE_40MHZ | 4415 IEEE80211_CONN_DISABLE_VHT; 4416 break; 4417 case NL80211_CHAN_WIDTH_80: 4418 tmp = (30 + c->chan->center_freq - c->center_freq1)/20; 4419 /* n_P40 */ 4420 tmp /= 2; 4421 /* freq_P40 */ 4422 c->center_freq1 = c->center_freq1 - 20 + 40 * tmp; 4423 c->width = NL80211_CHAN_WIDTH_40; 4424 ret = IEEE80211_CONN_DISABLE_VHT; 4425 break; 4426 case NL80211_CHAN_WIDTH_80P80: 4427 c->center_freq2 = 0; 4428 c->width = NL80211_CHAN_WIDTH_80; 4429 ret = IEEE80211_CONN_DISABLE_80P80MHZ | 4430 IEEE80211_CONN_DISABLE_160MHZ; 4431 break; 4432 case NL80211_CHAN_WIDTH_160: 4433 /* n_P20 */ 4434 tmp = (70 + c->chan->center_freq - c->center_freq1)/20; 4435 /* n_P80 */ 4436 tmp /= 4; 4437 c->center_freq1 = c->center_freq1 - 40 + 80 * tmp; 4438 c->width = NL80211_CHAN_WIDTH_80; 4439 ret = IEEE80211_CONN_DISABLE_80P80MHZ | 4440 IEEE80211_CONN_DISABLE_160MHZ; 4441 break; 4442 case NL80211_CHAN_WIDTH_320: 4443 /* n_P20 */ 4444 tmp = (150 + c->chan->center_freq - c->center_freq1) / 20; 4445 /* n_P160 */ 4446 tmp /= 8; 4447 c->center_freq1 = c->center_freq1 - 80 + 160 * tmp; 4448 c->width = NL80211_CHAN_WIDTH_160; 4449 ret = IEEE80211_CONN_DISABLE_320MHZ; 4450 break; 4451 default: 4452 case NL80211_CHAN_WIDTH_20_NOHT: 4453 WARN_ON_ONCE(1); 4454 c->width = NL80211_CHAN_WIDTH_20_NOHT; 4455 ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT; 4456 break; 4457 case NL80211_CHAN_WIDTH_1: 4458 case NL80211_CHAN_WIDTH_2: 4459 case NL80211_CHAN_WIDTH_4: 4460 case NL80211_CHAN_WIDTH_8: 4461 case NL80211_CHAN_WIDTH_16: 4462 case NL80211_CHAN_WIDTH_5: 4463 case NL80211_CHAN_WIDTH_10: 4464 WARN_ON_ONCE(1); 4465 /* keep c->width */ 4466 ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT; 4467 break; 4468 } 4469 4470 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 4471 4472 return ret; 4473 } 4474 4475 /* 4476 * Returns true if smps_mode_new is strictly more restrictive than 4477 * smps_mode_old. 4478 */ 4479 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 4480 enum ieee80211_smps_mode smps_mode_new) 4481 { 4482 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 4483 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 4484 return false; 4485 4486 switch (smps_mode_old) { 4487 case IEEE80211_SMPS_STATIC: 4488 return false; 4489 case IEEE80211_SMPS_DYNAMIC: 4490 return smps_mode_new == IEEE80211_SMPS_STATIC; 4491 case IEEE80211_SMPS_OFF: 4492 return smps_mode_new != IEEE80211_SMPS_OFF; 4493 default: 4494 WARN_ON(1); 4495 } 4496 4497 return false; 4498 } 4499 4500 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 4501 struct cfg80211_csa_settings *csa_settings) 4502 { 4503 struct sk_buff *skb; 4504 struct ieee80211_mgmt *mgmt; 4505 struct ieee80211_local *local = sdata->local; 4506 int freq; 4507 int hdr_len = offsetofend(struct ieee80211_mgmt, 4508 u.action.u.chan_switch); 4509 u8 *pos; 4510 4511 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 4512 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 4513 return -EOPNOTSUPP; 4514 4515 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 4516 5 + /* channel switch announcement element */ 4517 3 + /* secondary channel offset element */ 4518 5 + /* wide bandwidth channel switch announcement */ 4519 8); /* mesh channel switch parameters element */ 4520 if (!skb) 4521 return -ENOMEM; 4522 4523 skb_reserve(skb, local->tx_headroom); 4524 mgmt = skb_put_zero(skb, hdr_len); 4525 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 4526 IEEE80211_STYPE_ACTION); 4527 4528 eth_broadcast_addr(mgmt->da); 4529 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 4530 if (ieee80211_vif_is_mesh(&sdata->vif)) { 4531 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 4532 } else { 4533 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 4534 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 4535 } 4536 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 4537 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 4538 pos = skb_put(skb, 5); 4539 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 4540 *pos++ = 3; /* IE length */ 4541 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 4542 freq = csa_settings->chandef.chan->center_freq; 4543 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 4544 *pos++ = csa_settings->count; /* count */ 4545 4546 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 4547 enum nl80211_channel_type ch_type; 4548 4549 skb_put(skb, 3); 4550 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 4551 *pos++ = 1; /* IE length */ 4552 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 4553 if (ch_type == NL80211_CHAN_HT40PLUS) 4554 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 4555 else 4556 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 4557 } 4558 4559 if (ieee80211_vif_is_mesh(&sdata->vif)) { 4560 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 4561 4562 skb_put(skb, 8); 4563 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 4564 *pos++ = 6; /* IE length */ 4565 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 4566 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 4567 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 4568 *pos++ |= csa_settings->block_tx ? 4569 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 4570 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 4571 pos += 2; 4572 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 4573 pos += 2; 4574 } 4575 4576 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 4577 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 4578 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 4579 skb_put(skb, 5); 4580 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 4581 } 4582 4583 ieee80211_tx_skb(sdata, skb); 4584 return 0; 4585 } 4586 4587 static bool 4588 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 4589 { 4590 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 4591 int skip; 4592 4593 if (end > 0) 4594 return false; 4595 4596 /* One shot NOA */ 4597 if (data->count[i] == 1) 4598 return false; 4599 4600 if (data->desc[i].interval == 0) 4601 return false; 4602 4603 /* End time is in the past, check for repetitions */ 4604 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 4605 if (data->count[i] < 255) { 4606 if (data->count[i] <= skip) { 4607 data->count[i] = 0; 4608 return false; 4609 } 4610 4611 data->count[i] -= skip; 4612 } 4613 4614 data->desc[i].start += skip * data->desc[i].interval; 4615 4616 return true; 4617 } 4618 4619 static bool 4620 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 4621 s32 *offset) 4622 { 4623 bool ret = false; 4624 int i; 4625 4626 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4627 s32 cur; 4628 4629 if (!data->count[i]) 4630 continue; 4631 4632 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 4633 ret = true; 4634 4635 cur = data->desc[i].start - tsf; 4636 if (cur > *offset) 4637 continue; 4638 4639 cur = data->desc[i].start + data->desc[i].duration - tsf; 4640 if (cur > *offset) 4641 *offset = cur; 4642 } 4643 4644 return ret; 4645 } 4646 4647 static u32 4648 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 4649 { 4650 s32 offset = 0; 4651 int tries = 0; 4652 /* 4653 * arbitrary limit, used to avoid infinite loops when combined NoA 4654 * descriptors cover the full time period. 4655 */ 4656 int max_tries = 5; 4657 4658 ieee80211_extend_absent_time(data, tsf, &offset); 4659 do { 4660 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 4661 break; 4662 4663 tries++; 4664 } while (tries < max_tries); 4665 4666 return offset; 4667 } 4668 4669 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 4670 { 4671 u32 next_offset = BIT(31) - 1; 4672 int i; 4673 4674 data->absent = 0; 4675 data->has_next_tsf = false; 4676 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4677 s32 start; 4678 4679 if (!data->count[i]) 4680 continue; 4681 4682 ieee80211_extend_noa_desc(data, tsf, i); 4683 start = data->desc[i].start - tsf; 4684 if (start <= 0) 4685 data->absent |= BIT(i); 4686 4687 if (next_offset > start) 4688 next_offset = start; 4689 4690 data->has_next_tsf = true; 4691 } 4692 4693 if (data->absent) 4694 next_offset = ieee80211_get_noa_absent_time(data, tsf); 4695 4696 data->next_tsf = tsf + next_offset; 4697 } 4698 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 4699 4700 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 4701 struct ieee80211_noa_data *data, u32 tsf) 4702 { 4703 int ret = 0; 4704 int i; 4705 4706 memset(data, 0, sizeof(*data)); 4707 4708 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4709 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 4710 4711 if (!desc->count || !desc->duration) 4712 continue; 4713 4714 data->count[i] = desc->count; 4715 data->desc[i].start = le32_to_cpu(desc->start_time); 4716 data->desc[i].duration = le32_to_cpu(desc->duration); 4717 data->desc[i].interval = le32_to_cpu(desc->interval); 4718 4719 if (data->count[i] > 1 && 4720 data->desc[i].interval < data->desc[i].duration) 4721 continue; 4722 4723 ieee80211_extend_noa_desc(data, tsf, i); 4724 ret++; 4725 } 4726 4727 if (ret) 4728 ieee80211_update_p2p_noa(data, tsf); 4729 4730 return ret; 4731 } 4732 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 4733 4734 void ieee80211_recalc_dtim(struct ieee80211_local *local, 4735 struct ieee80211_sub_if_data *sdata) 4736 { 4737 u64 tsf = drv_get_tsf(local, sdata); 4738 u64 dtim_count = 0; 4739 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 4740 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 4741 struct ps_data *ps; 4742 u8 bcns_from_dtim; 4743 4744 if (tsf == -1ULL || !beacon_int || !dtim_period) 4745 return; 4746 4747 if (sdata->vif.type == NL80211_IFTYPE_AP || 4748 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 4749 if (!sdata->bss) 4750 return; 4751 4752 ps = &sdata->bss->ps; 4753 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 4754 ps = &sdata->u.mesh.ps; 4755 } else { 4756 return; 4757 } 4758 4759 /* 4760 * actually finds last dtim_count, mac80211 will update in 4761 * __beacon_add_tim(). 4762 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 4763 */ 4764 do_div(tsf, beacon_int); 4765 bcns_from_dtim = do_div(tsf, dtim_period); 4766 /* just had a DTIM */ 4767 if (!bcns_from_dtim) 4768 dtim_count = 0; 4769 else 4770 dtim_count = dtim_period - bcns_from_dtim; 4771 4772 ps->dtim_count = dtim_count; 4773 } 4774 4775 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 4776 struct ieee80211_chanctx *ctx) 4777 { 4778 struct ieee80211_link_data *link; 4779 u8 radar_detect = 0; 4780 4781 lockdep_assert_held(&local->chanctx_mtx); 4782 4783 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 4784 return 0; 4785 4786 list_for_each_entry(link, &ctx->reserved_links, reserved_chanctx_list) 4787 if (link->reserved_radar_required) 4788 radar_detect |= BIT(link->reserved_chandef.width); 4789 4790 /* 4791 * An in-place reservation context should not have any assigned vifs 4792 * until it replaces the other context. 4793 */ 4794 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 4795 !list_empty(&ctx->assigned_links)); 4796 4797 list_for_each_entry(link, &ctx->assigned_links, assigned_chanctx_list) { 4798 if (!link->radar_required) 4799 continue; 4800 4801 radar_detect |= 4802 BIT(link->conf->chandef.width); 4803 } 4804 4805 return radar_detect; 4806 } 4807 4808 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 4809 const struct cfg80211_chan_def *chandef, 4810 enum ieee80211_chanctx_mode chanmode, 4811 u8 radar_detect) 4812 { 4813 struct ieee80211_local *local = sdata->local; 4814 struct ieee80211_sub_if_data *sdata_iter; 4815 enum nl80211_iftype iftype = sdata->wdev.iftype; 4816 struct ieee80211_chanctx *ctx; 4817 int total = 1; 4818 struct iface_combination_params params = { 4819 .radar_detect = radar_detect, 4820 }; 4821 4822 lockdep_assert_held(&local->chanctx_mtx); 4823 4824 if (WARN_ON(hweight32(radar_detect) > 1)) 4825 return -EINVAL; 4826 4827 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4828 !chandef->chan)) 4829 return -EINVAL; 4830 4831 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 4832 return -EINVAL; 4833 4834 if (sdata->vif.type == NL80211_IFTYPE_AP || 4835 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 4836 /* 4837 * always passing this is harmless, since it'll be the 4838 * same value that cfg80211 finds if it finds the same 4839 * interface ... and that's always allowed 4840 */ 4841 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 4842 } 4843 4844 /* Always allow software iftypes */ 4845 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 4846 if (radar_detect) 4847 return -EINVAL; 4848 return 0; 4849 } 4850 4851 if (chandef) 4852 params.num_different_channels = 1; 4853 4854 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 4855 params.iftype_num[iftype] = 1; 4856 4857 list_for_each_entry(ctx, &local->chanctx_list, list) { 4858 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4859 continue; 4860 params.radar_detect |= 4861 ieee80211_chanctx_radar_detect(local, ctx); 4862 if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) { 4863 params.num_different_channels++; 4864 continue; 4865 } 4866 if (chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4867 cfg80211_chandef_compatible(chandef, 4868 &ctx->conf.def)) 4869 continue; 4870 params.num_different_channels++; 4871 } 4872 4873 list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) { 4874 struct wireless_dev *wdev_iter; 4875 4876 wdev_iter = &sdata_iter->wdev; 4877 4878 if (sdata_iter == sdata || 4879 !ieee80211_sdata_running(sdata_iter) || 4880 cfg80211_iftype_allowed(local->hw.wiphy, 4881 wdev_iter->iftype, 0, 1)) 4882 continue; 4883 4884 params.iftype_num[wdev_iter->iftype]++; 4885 total++; 4886 } 4887 4888 if (total == 1 && !params.radar_detect) 4889 return 0; 4890 4891 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4892 } 4893 4894 static void 4895 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4896 void *data) 4897 { 4898 u32 *max_num_different_channels = data; 4899 4900 *max_num_different_channels = max(*max_num_different_channels, 4901 c->num_different_channels); 4902 } 4903 4904 int ieee80211_max_num_channels(struct ieee80211_local *local) 4905 { 4906 struct ieee80211_sub_if_data *sdata; 4907 struct ieee80211_chanctx *ctx; 4908 u32 max_num_different_channels = 1; 4909 int err; 4910 struct iface_combination_params params = {0}; 4911 4912 lockdep_assert_held(&local->chanctx_mtx); 4913 4914 list_for_each_entry(ctx, &local->chanctx_list, list) { 4915 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4916 continue; 4917 4918 params.num_different_channels++; 4919 4920 params.radar_detect |= 4921 ieee80211_chanctx_radar_detect(local, ctx); 4922 } 4923 4924 list_for_each_entry_rcu(sdata, &local->interfaces, list) 4925 params.iftype_num[sdata->wdev.iftype]++; 4926 4927 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4928 ieee80211_iter_max_chans, 4929 &max_num_different_channels); 4930 if (err < 0) 4931 return err; 4932 4933 return max_num_different_channels; 4934 } 4935 4936 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, 4937 struct ieee80211_sta_s1g_cap *caps, 4938 struct sk_buff *skb) 4939 { 4940 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 4941 struct ieee80211_s1g_cap s1g_capab; 4942 u8 *pos; 4943 int i; 4944 4945 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 4946 return; 4947 4948 if (!caps->s1g) 4949 return; 4950 4951 memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); 4952 memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); 4953 4954 /* override the capability info */ 4955 for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { 4956 u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; 4957 4958 s1g_capab.capab_info[i] &= ~mask; 4959 s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; 4960 } 4961 4962 /* then MCS and NSS set */ 4963 for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { 4964 u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; 4965 4966 s1g_capab.supp_mcs_nss[i] &= ~mask; 4967 s1g_capab.supp_mcs_nss[i] |= 4968 ifmgd->s1g_capa.supp_mcs_nss[i] & mask; 4969 } 4970 4971 pos = skb_put(skb, 2 + sizeof(s1g_capab)); 4972 *pos++ = WLAN_EID_S1G_CAPABILITIES; 4973 *pos++ = sizeof(s1g_capab); 4974 4975 memcpy(pos, &s1g_capab, sizeof(s1g_capab)); 4976 } 4977 4978 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, 4979 struct sk_buff *skb) 4980 { 4981 u8 *pos = skb_put(skb, 3); 4982 4983 *pos++ = WLAN_EID_AID_REQUEST; 4984 *pos++ = 1; 4985 *pos++ = 0; 4986 } 4987 4988 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 4989 { 4990 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 4991 *buf++ = 7; /* len */ 4992 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 4993 *buf++ = 0x50; 4994 *buf++ = 0xf2; 4995 *buf++ = 2; /* WME */ 4996 *buf++ = 0; /* WME info */ 4997 *buf++ = 1; /* WME ver */ 4998 *buf++ = qosinfo; /* U-APSD no in use */ 4999 5000 return buf; 5001 } 5002 5003 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 5004 unsigned long *frame_cnt, 5005 unsigned long *byte_cnt) 5006 { 5007 struct txq_info *txqi = to_txq_info(txq); 5008 u32 frag_cnt = 0, frag_bytes = 0; 5009 struct sk_buff *skb; 5010 5011 skb_queue_walk(&txqi->frags, skb) { 5012 frag_cnt++; 5013 frag_bytes += skb->len; 5014 } 5015 5016 if (frame_cnt) 5017 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 5018 5019 if (byte_cnt) 5020 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 5021 } 5022 EXPORT_SYMBOL(ieee80211_txq_get_depth); 5023 5024 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 5025 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 5026 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 5027 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 5028 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 5029 }; 5030 5031 u16 ieee80211_encode_usf(int listen_interval) 5032 { 5033 static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; 5034 u16 ui, usf = 0; 5035 5036 /* find greatest USF */ 5037 while (usf < IEEE80211_MAX_USF) { 5038 if (listen_interval % listen_int_usf[usf + 1]) 5039 break; 5040 usf += 1; 5041 } 5042 ui = listen_interval / listen_int_usf[usf]; 5043 5044 /* error if there is a remainder. Should've been checked by user */ 5045 WARN_ON_ONCE(ui > IEEE80211_MAX_UI); 5046 listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | 5047 FIELD_PREP(LISTEN_INT_UI, ui); 5048 5049 return (u16) listen_interval; 5050 } 5051 5052 u8 ieee80211_ie_len_eht_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 5053 { 5054 const struct ieee80211_sta_he_cap *he_cap; 5055 const struct ieee80211_sta_eht_cap *eht_cap; 5056 struct ieee80211_supported_band *sband; 5057 bool is_ap; 5058 u8 n; 5059 5060 sband = ieee80211_get_sband(sdata); 5061 if (!sband) 5062 return 0; 5063 5064 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 5065 eht_cap = ieee80211_get_eht_iftype_cap(sband, iftype); 5066 if (!he_cap || !eht_cap) 5067 return 0; 5068 5069 is_ap = iftype == NL80211_IFTYPE_AP || 5070 iftype == NL80211_IFTYPE_P2P_GO; 5071 5072 n = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 5073 &eht_cap->eht_cap_elem, 5074 is_ap); 5075 return 2 + 1 + 5076 sizeof(eht_cap->eht_cap_elem) + n + 5077 ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 5078 eht_cap->eht_cap_elem.phy_cap_info); 5079 return 0; 5080 } 5081 5082 u8 *ieee80211_ie_build_eht_cap(u8 *pos, 5083 const struct ieee80211_sta_he_cap *he_cap, 5084 const struct ieee80211_sta_eht_cap *eht_cap, 5085 u8 *end, 5086 bool for_ap) 5087 { 5088 u8 mcs_nss_len, ppet_len; 5089 u8 ie_len; 5090 u8 *orig_pos = pos; 5091 5092 /* Make sure we have place for the IE */ 5093 if (!he_cap || !eht_cap) 5094 return orig_pos; 5095 5096 mcs_nss_len = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 5097 &eht_cap->eht_cap_elem, 5098 for_ap); 5099 ppet_len = ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 5100 eht_cap->eht_cap_elem.phy_cap_info); 5101 5102 ie_len = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + mcs_nss_len + ppet_len; 5103 if ((end - pos) < ie_len) 5104 return orig_pos; 5105 5106 *pos++ = WLAN_EID_EXTENSION; 5107 *pos++ = ie_len - 2; 5108 *pos++ = WLAN_EID_EXT_EHT_CAPABILITY; 5109 5110 /* Fixed data */ 5111 memcpy(pos, &eht_cap->eht_cap_elem, sizeof(eht_cap->eht_cap_elem)); 5112 pos += sizeof(eht_cap->eht_cap_elem); 5113 5114 memcpy(pos, &eht_cap->eht_mcs_nss_supp, mcs_nss_len); 5115 pos += mcs_nss_len; 5116 5117 if (ppet_len) { 5118 memcpy(pos, &eht_cap->eht_ppe_thres, ppet_len); 5119 pos += ppet_len; 5120 } 5121 5122 return pos; 5123 } 5124 5125 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id) 5126 { 5127 unsigned int elem_len; 5128 5129 if (!len_pos) 5130 return; 5131 5132 elem_len = skb->data + skb->len - len_pos - 1; 5133 5134 while (elem_len > 255) { 5135 /* this one is 255 */ 5136 *len_pos = 255; 5137 /* remaining data gets smaller */ 5138 elem_len -= 255; 5139 /* make space for the fragment ID/len in SKB */ 5140 skb_put(skb, 2); 5141 /* shift back the remaining data to place fragment ID/len */ 5142 memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len); 5143 /* place the fragment ID */ 5144 len_pos += 255 + 1; 5145 *len_pos = frag_id; 5146 /* and point to fragment length to update later */ 5147 len_pos++; 5148 } 5149 5150 *len_pos = elem_len; 5151 } 5152