1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * 12 * Transmit and frame generation functions. 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/skbuff.h> 18 #include <linux/etherdevice.h> 19 #include <linux/bitmap.h> 20 #include <linux/rcupdate.h> 21 #include <net/net_namespace.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <net/cfg80211.h> 24 #include <net/mac80211.h> 25 #include <asm/unaligned.h> 26 27 #include "ieee80211_i.h" 28 #include "led.h" 29 #include "mesh.h" 30 #include "wep.h" 31 #include "wpa.h" 32 #include "wme.h" 33 #include "rate.h" 34 35 #define IEEE80211_TX_OK 0 36 #define IEEE80211_TX_AGAIN 1 37 #define IEEE80211_TX_FRAG_AGAIN 2 38 39 /* misc utils */ 40 41 static inline void ieee80211_include_sequence(struct ieee80211_sub_if_data *sdata, 42 struct ieee80211_hdr *hdr) 43 { 44 /* Set the sequence number for this frame. */ 45 hdr->seq_ctrl = cpu_to_le16(sdata->sequence); 46 47 /* Increase the sequence number. */ 48 sdata->sequence = (sdata->sequence + 0x10) & IEEE80211_SCTL_SEQ; 49 } 50 51 #ifdef CONFIG_MAC80211_LOWTX_FRAME_DUMP 52 static void ieee80211_dump_frame(const char *ifname, const char *title, 53 const struct sk_buff *skb) 54 { 55 const struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 56 u16 fc; 57 int hdrlen; 58 DECLARE_MAC_BUF(mac); 59 60 printk(KERN_DEBUG "%s: %s (len=%d)", ifname, title, skb->len); 61 if (skb->len < 4) { 62 printk("\n"); 63 return; 64 } 65 66 fc = le16_to_cpu(hdr->frame_control); 67 hdrlen = ieee80211_get_hdrlen(fc); 68 if (hdrlen > skb->len) 69 hdrlen = skb->len; 70 if (hdrlen >= 4) 71 printk(" FC=0x%04x DUR=0x%04x", 72 fc, le16_to_cpu(hdr->duration_id)); 73 if (hdrlen >= 10) 74 printk(" A1=%s", print_mac(mac, hdr->addr1)); 75 if (hdrlen >= 16) 76 printk(" A2=%s", print_mac(mac, hdr->addr2)); 77 if (hdrlen >= 24) 78 printk(" A3=%s", print_mac(mac, hdr->addr3)); 79 if (hdrlen >= 30) 80 printk(" A4=%s", print_mac(mac, hdr->addr4)); 81 printk("\n"); 82 } 83 #else /* CONFIG_MAC80211_LOWTX_FRAME_DUMP */ 84 static inline void ieee80211_dump_frame(const char *ifname, const char *title, 85 struct sk_buff *skb) 86 { 87 } 88 #endif /* CONFIG_MAC80211_LOWTX_FRAME_DUMP */ 89 90 static u16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr, 91 int next_frag_len) 92 { 93 int rate, mrate, erp, dur, i; 94 struct ieee80211_rate *txrate = tx->rate; 95 struct ieee80211_local *local = tx->local; 96 struct ieee80211_supported_band *sband; 97 98 sband = local->hw.wiphy->bands[local->hw.conf.channel->band]; 99 100 erp = 0; 101 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 102 erp = txrate->flags & IEEE80211_RATE_ERP_G; 103 104 /* 105 * data and mgmt (except PS Poll): 106 * - during CFP: 32768 107 * - during contention period: 108 * if addr1 is group address: 0 109 * if more fragments = 0 and addr1 is individual address: time to 110 * transmit one ACK plus SIFS 111 * if more fragments = 1 and addr1 is individual address: time to 112 * transmit next fragment plus 2 x ACK plus 3 x SIFS 113 * 114 * IEEE 802.11, 9.6: 115 * - control response frame (CTS or ACK) shall be transmitted using the 116 * same rate as the immediately previous frame in the frame exchange 117 * sequence, if this rate belongs to the PHY mandatory rates, or else 118 * at the highest possible rate belonging to the PHY rates in the 119 * BSSBasicRateSet 120 */ 121 122 if ((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) { 123 /* TODO: These control frames are not currently sent by 124 * 80211.o, but should they be implemented, this function 125 * needs to be updated to support duration field calculation. 126 * 127 * RTS: time needed to transmit pending data/mgmt frame plus 128 * one CTS frame plus one ACK frame plus 3 x SIFS 129 * CTS: duration of immediately previous RTS minus time 130 * required to transmit CTS and its SIFS 131 * ACK: 0 if immediately previous directed data/mgmt had 132 * more=0, with more=1 duration in ACK frame is duration 133 * from previous frame minus time needed to transmit ACK 134 * and its SIFS 135 * PS Poll: BIT(15) | BIT(14) | aid 136 */ 137 return 0; 138 } 139 140 /* data/mgmt */ 141 if (0 /* FIX: data/mgmt during CFP */) 142 return 32768; 143 144 if (group_addr) /* Group address as the destination - no ACK */ 145 return 0; 146 147 /* Individual destination address: 148 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes) 149 * CTS and ACK frames shall be transmitted using the highest rate in 150 * basic rate set that is less than or equal to the rate of the 151 * immediately previous frame and that is using the same modulation 152 * (CCK or OFDM). If no basic rate set matches with these requirements, 153 * the highest mandatory rate of the PHY that is less than or equal to 154 * the rate of the previous frame is used. 155 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps 156 */ 157 rate = -1; 158 /* use lowest available if everything fails */ 159 mrate = sband->bitrates[0].bitrate; 160 for (i = 0; i < sband->n_bitrates; i++) { 161 struct ieee80211_rate *r = &sband->bitrates[i]; 162 163 if (r->bitrate > txrate->bitrate) 164 break; 165 166 if (tx->sdata->basic_rates & BIT(i)) 167 rate = r->bitrate; 168 169 switch (sband->band) { 170 case IEEE80211_BAND_2GHZ: { 171 u32 flag; 172 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 173 flag = IEEE80211_RATE_MANDATORY_G; 174 else 175 flag = IEEE80211_RATE_MANDATORY_B; 176 if (r->flags & flag) 177 mrate = r->bitrate; 178 break; 179 } 180 case IEEE80211_BAND_5GHZ: 181 if (r->flags & IEEE80211_RATE_MANDATORY_A) 182 mrate = r->bitrate; 183 break; 184 case IEEE80211_NUM_BANDS: 185 WARN_ON(1); 186 break; 187 } 188 } 189 if (rate == -1) { 190 /* No matching basic rate found; use highest suitable mandatory 191 * PHY rate */ 192 rate = mrate; 193 } 194 195 /* Time needed to transmit ACK 196 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up 197 * to closest integer */ 198 199 dur = ieee80211_frame_duration(local, 10, rate, erp, 200 tx->sdata->bss_conf.use_short_preamble); 201 202 if (next_frag_len) { 203 /* Frame is fragmented: duration increases with time needed to 204 * transmit next fragment plus ACK and 2 x SIFS. */ 205 dur *= 2; /* ACK + SIFS */ 206 /* next fragment */ 207 dur += ieee80211_frame_duration(local, next_frag_len, 208 txrate->bitrate, erp, 209 tx->sdata->bss_conf.use_short_preamble); 210 } 211 212 return dur; 213 } 214 215 static inline int __ieee80211_queue_stopped(const struct ieee80211_local *local, 216 int queue) 217 { 218 return test_bit(IEEE80211_LINK_STATE_XOFF, &local->state[queue]); 219 } 220 221 static inline int __ieee80211_queue_pending(const struct ieee80211_local *local, 222 int queue) 223 { 224 return test_bit(IEEE80211_LINK_STATE_PENDING, &local->state[queue]); 225 } 226 227 static int inline is_ieee80211_device(struct net_device *dev, 228 struct net_device *master) 229 { 230 return (wdev_priv(dev->ieee80211_ptr) == 231 wdev_priv(master->ieee80211_ptr)); 232 } 233 234 /* tx handlers */ 235 236 static ieee80211_tx_result 237 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx) 238 { 239 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 240 struct sk_buff *skb = tx->skb; 241 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 242 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ 243 u32 sta_flags; 244 245 if (unlikely(tx->flags & IEEE80211_TX_INJECTED)) 246 return TX_CONTINUE; 247 248 if (unlikely(tx->local->sta_sw_scanning) && 249 ((tx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT || 250 (tx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PROBE_REQ)) 251 return TX_DROP; 252 253 if (tx->sdata->vif.type == IEEE80211_IF_TYPE_MESH_POINT) 254 return TX_CONTINUE; 255 256 if (tx->flags & IEEE80211_TX_PS_BUFFERED) 257 return TX_CONTINUE; 258 259 sta_flags = tx->sta ? tx->sta->flags : 0; 260 261 if (likely(tx->flags & IEEE80211_TX_UNICAST)) { 262 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) && 263 tx->sdata->vif.type != IEEE80211_IF_TYPE_IBSS && 264 (tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)) { 265 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 266 DECLARE_MAC_BUF(mac); 267 printk(KERN_DEBUG "%s: dropped data frame to not " 268 "associated station %s\n", 269 tx->dev->name, print_mac(mac, hdr->addr1)); 270 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ 271 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc); 272 return TX_DROP; 273 } 274 } else { 275 if (unlikely((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA && 276 tx->local->num_sta == 0 && 277 tx->sdata->vif.type != IEEE80211_IF_TYPE_IBSS)) { 278 /* 279 * No associated STAs - no need to send multicast 280 * frames. 281 */ 282 return TX_DROP; 283 } 284 return TX_CONTINUE; 285 } 286 287 return TX_CONTINUE; 288 } 289 290 static ieee80211_tx_result 291 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx) 292 { 293 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 294 295 if (ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control)) >= 24) 296 ieee80211_include_sequence(tx->sdata, hdr); 297 298 return TX_CONTINUE; 299 } 300 301 /* This function is called whenever the AP is about to exceed the maximum limit 302 * of buffered frames for power saving STAs. This situation should not really 303 * happen often during normal operation, so dropping the oldest buffered packet 304 * from each queue should be OK to make some room for new frames. */ 305 static void purge_old_ps_buffers(struct ieee80211_local *local) 306 { 307 int total = 0, purged = 0; 308 struct sk_buff *skb; 309 struct ieee80211_sub_if_data *sdata; 310 struct sta_info *sta; 311 312 /* 313 * virtual interfaces are protected by RCU 314 */ 315 rcu_read_lock(); 316 317 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 318 struct ieee80211_if_ap *ap; 319 if (sdata->dev == local->mdev || 320 sdata->vif.type != IEEE80211_IF_TYPE_AP) 321 continue; 322 ap = &sdata->u.ap; 323 skb = skb_dequeue(&ap->ps_bc_buf); 324 if (skb) { 325 purged++; 326 dev_kfree_skb(skb); 327 } 328 total += skb_queue_len(&ap->ps_bc_buf); 329 } 330 331 list_for_each_entry_rcu(sta, &local->sta_list, list) { 332 skb = skb_dequeue(&sta->ps_tx_buf); 333 if (skb) { 334 purged++; 335 dev_kfree_skb(skb); 336 } 337 total += skb_queue_len(&sta->ps_tx_buf); 338 } 339 340 rcu_read_unlock(); 341 342 local->total_ps_buffered = total; 343 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n", 344 wiphy_name(local->hw.wiphy), purged); 345 } 346 347 static ieee80211_tx_result 348 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx) 349 { 350 /* 351 * broadcast/multicast frame 352 * 353 * If any of the associated stations is in power save mode, 354 * the frame is buffered to be sent after DTIM beacon frame. 355 * This is done either by the hardware or us. 356 */ 357 358 /* not AP/IBSS or ordered frame */ 359 if (!tx->sdata->bss || (tx->fc & IEEE80211_FCTL_ORDER)) 360 return TX_CONTINUE; 361 362 /* no stations in PS mode */ 363 if (!atomic_read(&tx->sdata->bss->num_sta_ps)) 364 return TX_CONTINUE; 365 366 /* buffered in mac80211 */ 367 if (tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING) { 368 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) 369 purge_old_ps_buffers(tx->local); 370 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= 371 AP_MAX_BC_BUFFER) { 372 if (net_ratelimit()) { 373 printk(KERN_DEBUG "%s: BC TX buffer full - " 374 "dropping the oldest frame\n", 375 tx->dev->name); 376 } 377 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf)); 378 } else 379 tx->local->total_ps_buffered++; 380 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb); 381 return TX_QUEUED; 382 } 383 384 /* buffered in hardware */ 385 tx->control->flags |= IEEE80211_TXCTL_SEND_AFTER_DTIM; 386 387 return TX_CONTINUE; 388 } 389 390 static ieee80211_tx_result 391 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx) 392 { 393 struct sta_info *sta = tx->sta; 394 DECLARE_MAC_BUF(mac); 395 396 if (unlikely(!sta || 397 ((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && 398 (tx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP))) 399 return TX_CONTINUE; 400 401 if (unlikely((sta->flags & WLAN_STA_PS) && 402 !(sta->flags & WLAN_STA_PSPOLL))) { 403 struct ieee80211_tx_packet_data *pkt_data; 404 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 405 printk(KERN_DEBUG "STA %s aid %d: PS buffer (entries " 406 "before %d)\n", 407 print_mac(mac, sta->addr), sta->aid, 408 skb_queue_len(&sta->ps_tx_buf)); 409 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 410 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) 411 purge_old_ps_buffers(tx->local); 412 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) { 413 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf); 414 if (net_ratelimit()) { 415 printk(KERN_DEBUG "%s: STA %s TX " 416 "buffer full - dropping oldest frame\n", 417 tx->dev->name, print_mac(mac, sta->addr)); 418 } 419 dev_kfree_skb(old); 420 } else 421 tx->local->total_ps_buffered++; 422 423 /* Queue frame to be sent after STA sends an PS Poll frame */ 424 if (skb_queue_empty(&sta->ps_tx_buf)) 425 sta_info_set_tim_bit(sta); 426 427 pkt_data = (struct ieee80211_tx_packet_data *)tx->skb->cb; 428 pkt_data->jiffies = jiffies; 429 skb_queue_tail(&sta->ps_tx_buf, tx->skb); 430 return TX_QUEUED; 431 } 432 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 433 else if (unlikely(sta->flags & WLAN_STA_PS)) { 434 printk(KERN_DEBUG "%s: STA %s in PS mode, but pspoll " 435 "set -> send frame\n", tx->dev->name, 436 print_mac(mac, sta->addr)); 437 } 438 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 439 sta->flags &= ~WLAN_STA_PSPOLL; 440 441 return TX_CONTINUE; 442 } 443 444 static ieee80211_tx_result 445 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx) 446 { 447 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED)) 448 return TX_CONTINUE; 449 450 if (tx->flags & IEEE80211_TX_UNICAST) 451 return ieee80211_tx_h_unicast_ps_buf(tx); 452 else 453 return ieee80211_tx_h_multicast_ps_buf(tx); 454 } 455 456 static ieee80211_tx_result 457 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx) 458 { 459 struct ieee80211_key *key; 460 u16 fc = tx->fc; 461 462 if (unlikely(tx->control->flags & IEEE80211_TXCTL_DO_NOT_ENCRYPT)) 463 tx->key = NULL; 464 else if (tx->sta && (key = rcu_dereference(tx->sta->key))) 465 tx->key = key; 466 else if ((key = rcu_dereference(tx->sdata->default_key))) 467 tx->key = key; 468 else if (tx->sdata->drop_unencrypted && 469 !(tx->control->flags & IEEE80211_TXCTL_EAPOL_FRAME) && 470 !(tx->flags & IEEE80211_TX_INJECTED)) { 471 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted); 472 return TX_DROP; 473 } else 474 tx->key = NULL; 475 476 if (tx->key) { 477 u16 ftype, stype; 478 479 tx->key->tx_rx_count++; 480 /* TODO: add threshold stuff again */ 481 482 switch (tx->key->conf.alg) { 483 case ALG_WEP: 484 ftype = fc & IEEE80211_FCTL_FTYPE; 485 stype = fc & IEEE80211_FCTL_STYPE; 486 487 if (ftype == IEEE80211_FTYPE_MGMT && 488 stype == IEEE80211_STYPE_AUTH) 489 break; 490 case ALG_TKIP: 491 case ALG_CCMP: 492 if (!WLAN_FC_DATA_PRESENT(fc)) 493 tx->key = NULL; 494 break; 495 } 496 } 497 498 if (!tx->key || !(tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) 499 tx->control->flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT; 500 501 return TX_CONTINUE; 502 } 503 504 static ieee80211_tx_result 505 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx) 506 { 507 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data; 508 size_t hdrlen, per_fragm, num_fragm, payload_len, left; 509 struct sk_buff **frags, *first, *frag; 510 int i; 511 u16 seq; 512 u8 *pos; 513 int frag_threshold = tx->local->fragmentation_threshold; 514 515 if (!(tx->flags & IEEE80211_TX_FRAGMENTED)) 516 return TX_CONTINUE; 517 518 first = tx->skb; 519 520 hdrlen = ieee80211_get_hdrlen(tx->fc); 521 payload_len = first->len - hdrlen; 522 per_fragm = frag_threshold - hdrlen - FCS_LEN; 523 num_fragm = DIV_ROUND_UP(payload_len, per_fragm); 524 525 frags = kzalloc(num_fragm * sizeof(struct sk_buff *), GFP_ATOMIC); 526 if (!frags) 527 goto fail; 528 529 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); 530 seq = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ; 531 pos = first->data + hdrlen + per_fragm; 532 left = payload_len - per_fragm; 533 for (i = 0; i < num_fragm - 1; i++) { 534 struct ieee80211_hdr *fhdr; 535 size_t copylen; 536 537 if (left <= 0) 538 goto fail; 539 540 /* reserve enough extra head and tail room for possible 541 * encryption */ 542 frag = frags[i] = 543 dev_alloc_skb(tx->local->tx_headroom + 544 frag_threshold + 545 IEEE80211_ENCRYPT_HEADROOM + 546 IEEE80211_ENCRYPT_TAILROOM); 547 if (!frag) 548 goto fail; 549 /* Make sure that all fragments use the same priority so 550 * that they end up using the same TX queue */ 551 frag->priority = first->priority; 552 skb_reserve(frag, tx->local->tx_headroom + 553 IEEE80211_ENCRYPT_HEADROOM); 554 fhdr = (struct ieee80211_hdr *) skb_put(frag, hdrlen); 555 memcpy(fhdr, first->data, hdrlen); 556 if (i == num_fragm - 2) 557 fhdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREFRAGS); 558 fhdr->seq_ctrl = cpu_to_le16(seq | ((i + 1) & IEEE80211_SCTL_FRAG)); 559 copylen = left > per_fragm ? per_fragm : left; 560 memcpy(skb_put(frag, copylen), pos, copylen); 561 562 pos += copylen; 563 left -= copylen; 564 } 565 skb_trim(first, hdrlen + per_fragm); 566 567 tx->num_extra_frag = num_fragm - 1; 568 tx->extra_frag = frags; 569 570 return TX_CONTINUE; 571 572 fail: 573 printk(KERN_DEBUG "%s: failed to fragment frame\n", tx->dev->name); 574 if (frags) { 575 for (i = 0; i < num_fragm - 1; i++) 576 if (frags[i]) 577 dev_kfree_skb(frags[i]); 578 kfree(frags); 579 } 580 I802_DEBUG_INC(tx->local->tx_handlers_drop_fragment); 581 return TX_DROP; 582 } 583 584 static ieee80211_tx_result 585 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx) 586 { 587 if (!tx->key) 588 return TX_CONTINUE; 589 590 switch (tx->key->conf.alg) { 591 case ALG_WEP: 592 return ieee80211_crypto_wep_encrypt(tx); 593 case ALG_TKIP: 594 return ieee80211_crypto_tkip_encrypt(tx); 595 case ALG_CCMP: 596 return ieee80211_crypto_ccmp_encrypt(tx); 597 } 598 599 /* not reached */ 600 WARN_ON(1); 601 return TX_DROP; 602 } 603 604 static ieee80211_tx_result 605 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx) 606 { 607 struct rate_selection rsel; 608 struct ieee80211_supported_band *sband; 609 610 sband = tx->local->hw.wiphy->bands[tx->local->hw.conf.channel->band]; 611 612 if (likely(!tx->rate)) { 613 rate_control_get_rate(tx->dev, sband, tx->skb, &rsel); 614 tx->rate = rsel.rate; 615 if (unlikely(rsel.probe)) { 616 tx->control->flags |= 617 IEEE80211_TXCTL_RATE_CTRL_PROBE; 618 tx->flags |= IEEE80211_TX_PROBE_LAST_FRAG; 619 tx->control->alt_retry_rate = tx->rate; 620 tx->rate = rsel.probe; 621 } else 622 tx->control->alt_retry_rate = NULL; 623 624 if (!tx->rate) 625 return TX_DROP; 626 } else 627 tx->control->alt_retry_rate = NULL; 628 629 if (tx->sdata->bss_conf.use_cts_prot && 630 (tx->flags & IEEE80211_TX_FRAGMENTED) && rsel.nonerp) { 631 tx->last_frag_rate = tx->rate; 632 if (rsel.probe) 633 tx->flags &= ~IEEE80211_TX_PROBE_LAST_FRAG; 634 else 635 tx->flags |= IEEE80211_TX_PROBE_LAST_FRAG; 636 tx->rate = rsel.nonerp; 637 tx->control->tx_rate = rsel.nonerp; 638 tx->control->flags &= ~IEEE80211_TXCTL_RATE_CTRL_PROBE; 639 } else { 640 tx->last_frag_rate = tx->rate; 641 tx->control->tx_rate = tx->rate; 642 } 643 tx->control->tx_rate = tx->rate; 644 645 return TX_CONTINUE; 646 } 647 648 static ieee80211_tx_result 649 ieee80211_tx_h_misc(struct ieee80211_tx_data *tx) 650 { 651 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data; 652 u16 fc = le16_to_cpu(hdr->frame_control); 653 u16 dur; 654 struct ieee80211_tx_control *control = tx->control; 655 656 if (!control->retry_limit) { 657 if (!is_multicast_ether_addr(hdr->addr1)) { 658 if (tx->skb->len + FCS_LEN > tx->local->rts_threshold 659 && tx->local->rts_threshold < 660 IEEE80211_MAX_RTS_THRESHOLD) { 661 control->flags |= 662 IEEE80211_TXCTL_USE_RTS_CTS; 663 control->flags |= 664 IEEE80211_TXCTL_LONG_RETRY_LIMIT; 665 control->retry_limit = 666 tx->local->long_retry_limit; 667 } else { 668 control->retry_limit = 669 tx->local->short_retry_limit; 670 } 671 } else { 672 control->retry_limit = 1; 673 } 674 } 675 676 if (tx->flags & IEEE80211_TX_FRAGMENTED) { 677 /* Do not use multiple retry rates when sending fragmented 678 * frames. 679 * TODO: The last fragment could still use multiple retry 680 * rates. */ 681 control->alt_retry_rate = NULL; 682 } 683 684 /* Use CTS protection for unicast frames sent using extended rates if 685 * there are associated non-ERP stations and RTS/CTS is not configured 686 * for the frame. */ 687 if ((tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) && 688 (tx->rate->flags & IEEE80211_RATE_ERP_G) && 689 (tx->flags & IEEE80211_TX_UNICAST) && 690 tx->sdata->bss_conf.use_cts_prot && 691 !(control->flags & IEEE80211_TXCTL_USE_RTS_CTS)) 692 control->flags |= IEEE80211_TXCTL_USE_CTS_PROTECT; 693 694 /* Transmit data frames using short preambles if the driver supports 695 * short preambles at the selected rate and short preambles are 696 * available on the network at the current point in time. */ 697 if (((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA) && 698 (tx->rate->flags & IEEE80211_RATE_SHORT_PREAMBLE) && 699 tx->sdata->bss_conf.use_short_preamble && 700 (!tx->sta || (tx->sta->flags & WLAN_STA_SHORT_PREAMBLE))) { 701 tx->control->flags |= IEEE80211_TXCTL_SHORT_PREAMBLE; 702 } 703 704 /* Setup duration field for the first fragment of the frame. Duration 705 * for remaining fragments will be updated when they are being sent 706 * to low-level driver in ieee80211_tx(). */ 707 dur = ieee80211_duration(tx, is_multicast_ether_addr(hdr->addr1), 708 (tx->flags & IEEE80211_TX_FRAGMENTED) ? 709 tx->extra_frag[0]->len : 0); 710 hdr->duration_id = cpu_to_le16(dur); 711 712 if ((control->flags & IEEE80211_TXCTL_USE_RTS_CTS) || 713 (control->flags & IEEE80211_TXCTL_USE_CTS_PROTECT)) { 714 struct ieee80211_supported_band *sband; 715 struct ieee80211_rate *rate, *baserate; 716 int idx; 717 718 sband = tx->local->hw.wiphy->bands[ 719 tx->local->hw.conf.channel->band]; 720 721 /* Do not use multiple retry rates when using RTS/CTS */ 722 control->alt_retry_rate = NULL; 723 724 /* Use min(data rate, max base rate) as CTS/RTS rate */ 725 rate = tx->rate; 726 baserate = NULL; 727 728 for (idx = 0; idx < sband->n_bitrates; idx++) { 729 if (sband->bitrates[idx].bitrate > rate->bitrate) 730 continue; 731 if (tx->sdata->basic_rates & BIT(idx) && 732 (!baserate || 733 (baserate->bitrate < sband->bitrates[idx].bitrate))) 734 baserate = &sband->bitrates[idx]; 735 } 736 737 if (baserate) 738 control->rts_cts_rate = baserate; 739 else 740 control->rts_cts_rate = &sband->bitrates[0]; 741 } 742 743 if (tx->sta) { 744 control->aid = tx->sta->aid; 745 tx->sta->tx_packets++; 746 tx->sta->tx_fragments++; 747 tx->sta->tx_bytes += tx->skb->len; 748 if (tx->extra_frag) { 749 int i; 750 tx->sta->tx_fragments += tx->num_extra_frag; 751 for (i = 0; i < tx->num_extra_frag; i++) { 752 tx->sta->tx_bytes += 753 tx->extra_frag[i]->len; 754 } 755 } 756 } 757 758 return TX_CONTINUE; 759 } 760 761 static ieee80211_tx_result 762 ieee80211_tx_h_load_stats(struct ieee80211_tx_data *tx) 763 { 764 struct ieee80211_local *local = tx->local; 765 struct sk_buff *skb = tx->skb; 766 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 767 u32 load = 0, hdrtime; 768 struct ieee80211_rate *rate = tx->rate; 769 770 /* TODO: this could be part of tx_status handling, so that the number 771 * of retries would be known; TX rate should in that case be stored 772 * somewhere with the packet */ 773 774 /* Estimate total channel use caused by this frame */ 775 776 /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values, 777 * 1 usec = 1/8 * (1080 / 10) = 13.5 */ 778 779 if (tx->channel->band == IEEE80211_BAND_5GHZ || 780 (tx->channel->band == IEEE80211_BAND_2GHZ && 781 rate->flags & IEEE80211_RATE_ERP_G)) 782 hdrtime = CHAN_UTIL_HDR_SHORT; 783 else 784 hdrtime = CHAN_UTIL_HDR_LONG; 785 786 load = hdrtime; 787 if (!is_multicast_ether_addr(hdr->addr1)) 788 load += hdrtime; 789 790 if (tx->control->flags & IEEE80211_TXCTL_USE_RTS_CTS) 791 load += 2 * hdrtime; 792 else if (tx->control->flags & IEEE80211_TXCTL_USE_CTS_PROTECT) 793 load += hdrtime; 794 795 /* TODO: optimise again */ 796 load += skb->len * CHAN_UTIL_RATE_LCM / rate->bitrate; 797 798 if (tx->extra_frag) { 799 int i; 800 for (i = 0; i < tx->num_extra_frag; i++) { 801 load += 2 * hdrtime; 802 load += tx->extra_frag[i]->len * 803 tx->rate->bitrate; 804 } 805 } 806 807 /* Divide channel_use by 8 to avoid wrapping around the counter */ 808 load >>= CHAN_UTIL_SHIFT; 809 local->channel_use_raw += load; 810 if (tx->sta) 811 tx->sta->channel_use_raw += load; 812 tx->sdata->channel_use_raw += load; 813 814 return TX_CONTINUE; 815 } 816 817 818 typedef ieee80211_tx_result (*ieee80211_tx_handler)(struct ieee80211_tx_data *); 819 static ieee80211_tx_handler ieee80211_tx_handlers[] = 820 { 821 ieee80211_tx_h_check_assoc, 822 ieee80211_tx_h_sequence, 823 ieee80211_tx_h_ps_buf, 824 ieee80211_tx_h_select_key, 825 ieee80211_tx_h_michael_mic_add, 826 ieee80211_tx_h_fragment, 827 ieee80211_tx_h_encrypt, 828 ieee80211_tx_h_rate_ctrl, 829 ieee80211_tx_h_misc, 830 ieee80211_tx_h_load_stats, 831 NULL 832 }; 833 834 /* actual transmit path */ 835 836 /* 837 * deal with packet injection down monitor interface 838 * with Radiotap Header -- only called for monitor mode interface 839 */ 840 static ieee80211_tx_result 841 __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx, 842 struct sk_buff *skb) 843 { 844 /* 845 * this is the moment to interpret and discard the radiotap header that 846 * must be at the start of the packet injected in Monitor mode 847 * 848 * Need to take some care with endian-ness since radiotap 849 * args are little-endian 850 */ 851 852 struct ieee80211_radiotap_iterator iterator; 853 struct ieee80211_radiotap_header *rthdr = 854 (struct ieee80211_radiotap_header *) skb->data; 855 struct ieee80211_supported_band *sband; 856 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len); 857 struct ieee80211_tx_control *control = tx->control; 858 859 sband = tx->local->hw.wiphy->bands[tx->local->hw.conf.channel->band]; 860 861 control->flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT; 862 tx->flags |= IEEE80211_TX_INJECTED; 863 tx->flags &= ~IEEE80211_TX_FRAGMENTED; 864 865 /* 866 * for every radiotap entry that is present 867 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more 868 * entries present, or -EINVAL on error) 869 */ 870 871 while (!ret) { 872 int i, target_rate; 873 874 ret = ieee80211_radiotap_iterator_next(&iterator); 875 876 if (ret) 877 continue; 878 879 /* see if this argument is something we can use */ 880 switch (iterator.this_arg_index) { 881 /* 882 * You must take care when dereferencing iterator.this_arg 883 * for multibyte types... the pointer is not aligned. Use 884 * get_unaligned((type *)iterator.this_arg) to dereference 885 * iterator.this_arg for type "type" safely on all arches. 886 */ 887 case IEEE80211_RADIOTAP_RATE: 888 /* 889 * radiotap rate u8 is in 500kbps units eg, 0x02=1Mbps 890 * ieee80211 rate int is in 100kbps units eg, 0x0a=1Mbps 891 */ 892 target_rate = (*iterator.this_arg) * 5; 893 for (i = 0; i < sband->n_bitrates; i++) { 894 struct ieee80211_rate *r; 895 896 r = &sband->bitrates[i]; 897 898 if (r->bitrate == target_rate) { 899 tx->rate = r; 900 break; 901 } 902 } 903 break; 904 905 case IEEE80211_RADIOTAP_ANTENNA: 906 /* 907 * radiotap uses 0 for 1st ant, mac80211 is 1 for 908 * 1st ant 909 */ 910 control->antenna_sel_tx = (*iterator.this_arg) + 1; 911 break; 912 913 #if 0 914 case IEEE80211_RADIOTAP_DBM_TX_POWER: 915 control->power_level = *iterator.this_arg; 916 break; 917 #endif 918 919 case IEEE80211_RADIOTAP_FLAGS: 920 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) { 921 /* 922 * this indicates that the skb we have been 923 * handed has the 32-bit FCS CRC at the end... 924 * we should react to that by snipping it off 925 * because it will be recomputed and added 926 * on transmission 927 */ 928 if (skb->len < (iterator.max_length + FCS_LEN)) 929 return TX_DROP; 930 931 skb_trim(skb, skb->len - FCS_LEN); 932 } 933 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP) 934 control->flags &= 935 ~IEEE80211_TXCTL_DO_NOT_ENCRYPT; 936 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG) 937 tx->flags |= IEEE80211_TX_FRAGMENTED; 938 break; 939 940 /* 941 * Please update the file 942 * Documentation/networking/mac80211-injection.txt 943 * when parsing new fields here. 944 */ 945 946 default: 947 break; 948 } 949 } 950 951 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */ 952 return TX_DROP; 953 954 /* 955 * remove the radiotap header 956 * iterator->max_length was sanity-checked against 957 * skb->len by iterator init 958 */ 959 skb_pull(skb, iterator.max_length); 960 961 return TX_CONTINUE; 962 } 963 964 /* 965 * initialises @tx 966 */ 967 static ieee80211_tx_result 968 __ieee80211_tx_prepare(struct ieee80211_tx_data *tx, 969 struct sk_buff *skb, 970 struct net_device *dev, 971 struct ieee80211_tx_control *control) 972 { 973 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 974 struct ieee80211_hdr *hdr; 975 struct ieee80211_sub_if_data *sdata; 976 977 int hdrlen; 978 979 memset(tx, 0, sizeof(*tx)); 980 tx->skb = skb; 981 tx->dev = dev; /* use original interface */ 982 tx->local = local; 983 tx->sdata = IEEE80211_DEV_TO_SUB_IF(dev); 984 tx->control = control; 985 /* 986 * Set this flag (used below to indicate "automatic fragmentation"), 987 * it will be cleared/left by radiotap as desired. 988 */ 989 tx->flags |= IEEE80211_TX_FRAGMENTED; 990 991 /* process and remove the injection radiotap header */ 992 sdata = IEEE80211_DEV_TO_SUB_IF(dev); 993 if (unlikely(sdata->vif.type == IEEE80211_IF_TYPE_MNTR)) { 994 if (__ieee80211_parse_tx_radiotap(tx, skb) == TX_DROP) 995 return TX_DROP; 996 997 /* 998 * __ieee80211_parse_tx_radiotap has now removed 999 * the radiotap header that was present and pre-filled 1000 * 'tx' with tx control information. 1001 */ 1002 } 1003 1004 hdr = (struct ieee80211_hdr *) skb->data; 1005 1006 tx->sta = sta_info_get(local, hdr->addr1); 1007 tx->fc = le16_to_cpu(hdr->frame_control); 1008 1009 if (is_multicast_ether_addr(hdr->addr1)) { 1010 tx->flags &= ~IEEE80211_TX_UNICAST; 1011 control->flags |= IEEE80211_TXCTL_NO_ACK; 1012 } else { 1013 tx->flags |= IEEE80211_TX_UNICAST; 1014 control->flags &= ~IEEE80211_TXCTL_NO_ACK; 1015 } 1016 1017 if (tx->flags & IEEE80211_TX_FRAGMENTED) { 1018 if ((tx->flags & IEEE80211_TX_UNICAST) && 1019 skb->len + FCS_LEN > local->fragmentation_threshold && 1020 !local->ops->set_frag_threshold) 1021 tx->flags |= IEEE80211_TX_FRAGMENTED; 1022 else 1023 tx->flags &= ~IEEE80211_TX_FRAGMENTED; 1024 } 1025 1026 if (!tx->sta) 1027 control->flags |= IEEE80211_TXCTL_CLEAR_PS_FILT; 1028 else if (tx->sta->flags & WLAN_STA_CLEAR_PS_FILT) { 1029 control->flags |= IEEE80211_TXCTL_CLEAR_PS_FILT; 1030 tx->sta->flags &= ~WLAN_STA_CLEAR_PS_FILT; 1031 } 1032 1033 hdrlen = ieee80211_get_hdrlen(tx->fc); 1034 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) { 1035 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)]; 1036 tx->ethertype = (pos[0] << 8) | pos[1]; 1037 } 1038 control->flags |= IEEE80211_TXCTL_FIRST_FRAGMENT; 1039 1040 return TX_CONTINUE; 1041 } 1042 1043 /* 1044 * NB: @tx is uninitialised when passed in here 1045 */ 1046 static int ieee80211_tx_prepare(struct ieee80211_tx_data *tx, 1047 struct sk_buff *skb, 1048 struct net_device *mdev, 1049 struct ieee80211_tx_control *control) 1050 { 1051 struct ieee80211_tx_packet_data *pkt_data; 1052 struct net_device *dev; 1053 1054 pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; 1055 dev = dev_get_by_index(&init_net, pkt_data->ifindex); 1056 if (unlikely(dev && !is_ieee80211_device(dev, mdev))) { 1057 dev_put(dev); 1058 dev = NULL; 1059 } 1060 if (unlikely(!dev)) 1061 return -ENODEV; 1062 /* initialises tx with control */ 1063 __ieee80211_tx_prepare(tx, skb, dev, control); 1064 dev_put(dev); 1065 return 0; 1066 } 1067 1068 static int __ieee80211_tx(struct ieee80211_local *local, struct sk_buff *skb, 1069 struct ieee80211_tx_data *tx) 1070 { 1071 struct ieee80211_tx_control *control = tx->control; 1072 int ret, i; 1073 1074 if (!ieee80211_qdisc_installed(local->mdev) && 1075 __ieee80211_queue_stopped(local, 0)) { 1076 netif_stop_queue(local->mdev); 1077 return IEEE80211_TX_AGAIN; 1078 } 1079 if (skb) { 1080 ieee80211_dump_frame(wiphy_name(local->hw.wiphy), 1081 "TX to low-level driver", skb); 1082 ret = local->ops->tx(local_to_hw(local), skb, control); 1083 if (ret) 1084 return IEEE80211_TX_AGAIN; 1085 local->mdev->trans_start = jiffies; 1086 ieee80211_led_tx(local, 1); 1087 } 1088 if (tx->extra_frag) { 1089 control->flags &= ~(IEEE80211_TXCTL_USE_RTS_CTS | 1090 IEEE80211_TXCTL_USE_CTS_PROTECT | 1091 IEEE80211_TXCTL_CLEAR_PS_FILT | 1092 IEEE80211_TXCTL_FIRST_FRAGMENT); 1093 for (i = 0; i < tx->num_extra_frag; i++) { 1094 if (!tx->extra_frag[i]) 1095 continue; 1096 if (__ieee80211_queue_stopped(local, control->queue)) 1097 return IEEE80211_TX_FRAG_AGAIN; 1098 if (i == tx->num_extra_frag) { 1099 control->tx_rate = tx->last_frag_rate; 1100 1101 if (tx->flags & IEEE80211_TX_PROBE_LAST_FRAG) 1102 control->flags |= 1103 IEEE80211_TXCTL_RATE_CTRL_PROBE; 1104 else 1105 control->flags &= 1106 ~IEEE80211_TXCTL_RATE_CTRL_PROBE; 1107 } 1108 1109 ieee80211_dump_frame(wiphy_name(local->hw.wiphy), 1110 "TX to low-level driver", 1111 tx->extra_frag[i]); 1112 ret = local->ops->tx(local_to_hw(local), 1113 tx->extra_frag[i], 1114 control); 1115 if (ret) 1116 return IEEE80211_TX_FRAG_AGAIN; 1117 local->mdev->trans_start = jiffies; 1118 ieee80211_led_tx(local, 1); 1119 tx->extra_frag[i] = NULL; 1120 } 1121 kfree(tx->extra_frag); 1122 tx->extra_frag = NULL; 1123 } 1124 return IEEE80211_TX_OK; 1125 } 1126 1127 static int ieee80211_tx(struct net_device *dev, struct sk_buff *skb, 1128 struct ieee80211_tx_control *control) 1129 { 1130 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 1131 struct sta_info *sta; 1132 ieee80211_tx_handler *handler; 1133 struct ieee80211_tx_data tx; 1134 ieee80211_tx_result res = TX_DROP, res_prepare; 1135 int ret, i; 1136 1137 WARN_ON(__ieee80211_queue_pending(local, control->queue)); 1138 1139 if (unlikely(skb->len < 10)) { 1140 dev_kfree_skb(skb); 1141 return 0; 1142 } 1143 1144 rcu_read_lock(); 1145 1146 /* initialises tx */ 1147 res_prepare = __ieee80211_tx_prepare(&tx, skb, dev, control); 1148 1149 if (res_prepare == TX_DROP) { 1150 dev_kfree_skb(skb); 1151 rcu_read_unlock(); 1152 return 0; 1153 } 1154 1155 sta = tx.sta; 1156 tx.channel = local->hw.conf.channel; 1157 1158 for (handler = ieee80211_tx_handlers; *handler != NULL; 1159 handler++) { 1160 res = (*handler)(&tx); 1161 if (res != TX_CONTINUE) 1162 break; 1163 } 1164 1165 skb = tx.skb; /* handlers are allowed to change skb */ 1166 1167 if (unlikely(res == TX_DROP)) { 1168 I802_DEBUG_INC(local->tx_handlers_drop); 1169 goto drop; 1170 } 1171 1172 if (unlikely(res == TX_QUEUED)) { 1173 I802_DEBUG_INC(local->tx_handlers_queued); 1174 rcu_read_unlock(); 1175 return 0; 1176 } 1177 1178 if (tx.extra_frag) { 1179 for (i = 0; i < tx.num_extra_frag; i++) { 1180 int next_len, dur; 1181 struct ieee80211_hdr *hdr = 1182 (struct ieee80211_hdr *) 1183 tx.extra_frag[i]->data; 1184 1185 if (i + 1 < tx.num_extra_frag) { 1186 next_len = tx.extra_frag[i + 1]->len; 1187 } else { 1188 next_len = 0; 1189 tx.rate = tx.last_frag_rate; 1190 } 1191 dur = ieee80211_duration(&tx, 0, next_len); 1192 hdr->duration_id = cpu_to_le16(dur); 1193 } 1194 } 1195 1196 retry: 1197 ret = __ieee80211_tx(local, skb, &tx); 1198 if (ret) { 1199 struct ieee80211_tx_stored_packet *store = 1200 &local->pending_packet[control->queue]; 1201 1202 if (ret == IEEE80211_TX_FRAG_AGAIN) 1203 skb = NULL; 1204 set_bit(IEEE80211_LINK_STATE_PENDING, 1205 &local->state[control->queue]); 1206 smp_mb(); 1207 /* When the driver gets out of buffers during sending of 1208 * fragments and calls ieee80211_stop_queue, there is 1209 * a small window between IEEE80211_LINK_STATE_XOFF and 1210 * IEEE80211_LINK_STATE_PENDING flags are set. If a buffer 1211 * gets available in that window (i.e. driver calls 1212 * ieee80211_wake_queue), we would end up with ieee80211_tx 1213 * called with IEEE80211_LINK_STATE_PENDING. Prevent this by 1214 * continuing transmitting here when that situation is 1215 * possible to have happened. */ 1216 if (!__ieee80211_queue_stopped(local, control->queue)) { 1217 clear_bit(IEEE80211_LINK_STATE_PENDING, 1218 &local->state[control->queue]); 1219 goto retry; 1220 } 1221 memcpy(&store->control, control, 1222 sizeof(struct ieee80211_tx_control)); 1223 store->skb = skb; 1224 store->extra_frag = tx.extra_frag; 1225 store->num_extra_frag = tx.num_extra_frag; 1226 store->last_frag_rate = tx.last_frag_rate; 1227 store->last_frag_rate_ctrl_probe = 1228 !!(tx.flags & IEEE80211_TX_PROBE_LAST_FRAG); 1229 } 1230 rcu_read_unlock(); 1231 return 0; 1232 1233 drop: 1234 if (skb) 1235 dev_kfree_skb(skb); 1236 for (i = 0; i < tx.num_extra_frag; i++) 1237 if (tx.extra_frag[i]) 1238 dev_kfree_skb(tx.extra_frag[i]); 1239 kfree(tx.extra_frag); 1240 rcu_read_unlock(); 1241 return 0; 1242 } 1243 1244 /* device xmit handlers */ 1245 1246 int ieee80211_master_start_xmit(struct sk_buff *skb, 1247 struct net_device *dev) 1248 { 1249 struct ieee80211_tx_control control; 1250 struct ieee80211_tx_packet_data *pkt_data; 1251 struct net_device *odev = NULL; 1252 struct ieee80211_sub_if_data *osdata; 1253 int headroom; 1254 int ret; 1255 1256 /* 1257 * copy control out of the skb so other people can use skb->cb 1258 */ 1259 pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; 1260 memset(&control, 0, sizeof(struct ieee80211_tx_control)); 1261 1262 if (pkt_data->ifindex) 1263 odev = dev_get_by_index(&init_net, pkt_data->ifindex); 1264 if (unlikely(odev && !is_ieee80211_device(odev, dev))) { 1265 dev_put(odev); 1266 odev = NULL; 1267 } 1268 if (unlikely(!odev)) { 1269 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 1270 printk(KERN_DEBUG "%s: Discarded packet with nonexistent " 1271 "originating device\n", dev->name); 1272 #endif 1273 dev_kfree_skb(skb); 1274 return 0; 1275 } 1276 osdata = IEEE80211_DEV_TO_SUB_IF(odev); 1277 1278 headroom = osdata->local->tx_headroom + IEEE80211_ENCRYPT_HEADROOM; 1279 if (skb_headroom(skb) < headroom) { 1280 if (pskb_expand_head(skb, headroom, 0, GFP_ATOMIC)) { 1281 dev_kfree_skb(skb); 1282 dev_put(odev); 1283 return 0; 1284 } 1285 } 1286 1287 control.vif = &osdata->vif; 1288 control.type = osdata->vif.type; 1289 if (pkt_data->flags & IEEE80211_TXPD_REQ_TX_STATUS) 1290 control.flags |= IEEE80211_TXCTL_REQ_TX_STATUS; 1291 if (pkt_data->flags & IEEE80211_TXPD_DO_NOT_ENCRYPT) 1292 control.flags |= IEEE80211_TXCTL_DO_NOT_ENCRYPT; 1293 if (pkt_data->flags & IEEE80211_TXPD_REQUEUE) 1294 control.flags |= IEEE80211_TXCTL_REQUEUE; 1295 if (pkt_data->flags & IEEE80211_TXPD_EAPOL_FRAME) 1296 control.flags |= IEEE80211_TXCTL_EAPOL_FRAME; 1297 if (pkt_data->flags & IEEE80211_TXPD_AMPDU) 1298 control.flags |= IEEE80211_TXCTL_AMPDU; 1299 control.queue = pkt_data->queue; 1300 1301 ret = ieee80211_tx(odev, skb, &control); 1302 dev_put(odev); 1303 1304 return ret; 1305 } 1306 1307 int ieee80211_monitor_start_xmit(struct sk_buff *skb, 1308 struct net_device *dev) 1309 { 1310 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 1311 struct ieee80211_tx_packet_data *pkt_data; 1312 struct ieee80211_radiotap_header *prthdr = 1313 (struct ieee80211_radiotap_header *)skb->data; 1314 u16 len_rthdr; 1315 1316 /* check for not even having the fixed radiotap header part */ 1317 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header))) 1318 goto fail; /* too short to be possibly valid */ 1319 1320 /* is it a header version we can trust to find length from? */ 1321 if (unlikely(prthdr->it_version)) 1322 goto fail; /* only version 0 is supported */ 1323 1324 /* then there must be a radiotap header with a length we can use */ 1325 len_rthdr = ieee80211_get_radiotap_len(skb->data); 1326 1327 /* does the skb contain enough to deliver on the alleged length? */ 1328 if (unlikely(skb->len < len_rthdr)) 1329 goto fail; /* skb too short for claimed rt header extent */ 1330 1331 skb->dev = local->mdev; 1332 1333 pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; 1334 memset(pkt_data, 0, sizeof(*pkt_data)); 1335 /* needed because we set skb device to master */ 1336 pkt_data->ifindex = dev->ifindex; 1337 1338 pkt_data->flags |= IEEE80211_TXPD_DO_NOT_ENCRYPT; 1339 1340 /* 1341 * fix up the pointers accounting for the radiotap 1342 * header still being in there. We are being given 1343 * a precooked IEEE80211 header so no need for 1344 * normal processing 1345 */ 1346 skb_set_mac_header(skb, len_rthdr); 1347 /* 1348 * these are just fixed to the end of the rt area since we 1349 * don't have any better information and at this point, nobody cares 1350 */ 1351 skb_set_network_header(skb, len_rthdr); 1352 skb_set_transport_header(skb, len_rthdr); 1353 1354 /* pass the radiotap header up to the next stage intact */ 1355 dev_queue_xmit(skb); 1356 return NETDEV_TX_OK; 1357 1358 fail: 1359 dev_kfree_skb(skb); 1360 return NETDEV_TX_OK; /* meaning, we dealt with the skb */ 1361 } 1362 1363 /** 1364 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type 1365 * subinterfaces (wlan#, WDS, and VLAN interfaces) 1366 * @skb: packet to be sent 1367 * @dev: incoming interface 1368 * 1369 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will 1370 * not be freed, and caller is responsible for either retrying later or freeing 1371 * skb). 1372 * 1373 * This function takes in an Ethernet header and encapsulates it with suitable 1374 * IEEE 802.11 header based on which interface the packet is coming in. The 1375 * encapsulated packet will then be passed to master interface, wlan#.11, for 1376 * transmission (through low-level driver). 1377 */ 1378 int ieee80211_subif_start_xmit(struct sk_buff *skb, 1379 struct net_device *dev) 1380 { 1381 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 1382 struct ieee80211_tx_packet_data *pkt_data; 1383 struct ieee80211_sub_if_data *sdata; 1384 int ret = 1, head_need; 1385 u16 ethertype, hdrlen, meshhdrlen = 0, fc; 1386 struct ieee80211_hdr hdr; 1387 struct ieee80211s_hdr mesh_hdr; 1388 const u8 *encaps_data; 1389 int encaps_len, skip_header_bytes; 1390 int nh_pos, h_pos; 1391 struct sta_info *sta; 1392 u32 sta_flags = 0; 1393 1394 sdata = IEEE80211_DEV_TO_SUB_IF(dev); 1395 if (unlikely(skb->len < ETH_HLEN)) { 1396 printk(KERN_DEBUG "%s: short skb (len=%d)\n", 1397 dev->name, skb->len); 1398 ret = 0; 1399 goto fail; 1400 } 1401 1402 nh_pos = skb_network_header(skb) - skb->data; 1403 h_pos = skb_transport_header(skb) - skb->data; 1404 1405 /* convert Ethernet header to proper 802.11 header (based on 1406 * operation mode) */ 1407 ethertype = (skb->data[12] << 8) | skb->data[13]; 1408 fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA; 1409 1410 switch (sdata->vif.type) { 1411 case IEEE80211_IF_TYPE_AP: 1412 case IEEE80211_IF_TYPE_VLAN: 1413 fc |= IEEE80211_FCTL_FROMDS; 1414 /* DA BSSID SA */ 1415 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1416 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); 1417 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 1418 hdrlen = 24; 1419 break; 1420 case IEEE80211_IF_TYPE_WDS: 1421 fc |= IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS; 1422 /* RA TA DA SA */ 1423 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN); 1424 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); 1425 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1426 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1427 hdrlen = 30; 1428 break; 1429 #ifdef CONFIG_MAC80211_MESH 1430 case IEEE80211_IF_TYPE_MESH_POINT: 1431 fc |= IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS; 1432 /* RA TA DA SA */ 1433 if (is_multicast_ether_addr(skb->data)) 1434 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1435 else if (mesh_nexthop_lookup(hdr.addr1, skb, dev)) 1436 return 0; 1437 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); 1438 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1439 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1440 if (skb->pkt_type == PACKET_OTHERHOST) { 1441 /* Forwarded frame, keep mesh ttl and seqnum */ 1442 struct ieee80211s_hdr *prev_meshhdr; 1443 prev_meshhdr = ((struct ieee80211s_hdr *)skb->cb); 1444 meshhdrlen = ieee80211_get_mesh_hdrlen(prev_meshhdr); 1445 memcpy(&mesh_hdr, prev_meshhdr, meshhdrlen); 1446 sdata->u.sta.mshstats.fwded_frames++; 1447 } else { 1448 if (!sdata->u.sta.mshcfg.dot11MeshTTL) { 1449 /* Do not send frames with mesh_ttl == 0 */ 1450 sdata->u.sta.mshstats.dropped_frames_ttl++; 1451 ret = 0; 1452 goto fail; 1453 } 1454 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr, 1455 sdata); 1456 } 1457 hdrlen = 30; 1458 break; 1459 #endif 1460 case IEEE80211_IF_TYPE_STA: 1461 fc |= IEEE80211_FCTL_TODS; 1462 /* BSSID SA DA */ 1463 memcpy(hdr.addr1, sdata->u.sta.bssid, ETH_ALEN); 1464 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 1465 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1466 hdrlen = 24; 1467 break; 1468 case IEEE80211_IF_TYPE_IBSS: 1469 /* DA SA BSSID */ 1470 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1471 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 1472 memcpy(hdr.addr3, sdata->u.sta.bssid, ETH_ALEN); 1473 hdrlen = 24; 1474 break; 1475 default: 1476 ret = 0; 1477 goto fail; 1478 } 1479 1480 /* 1481 * There's no need to try to look up the destination 1482 * if it is a multicast address (which can only happen 1483 * in AP mode) 1484 */ 1485 if (!is_multicast_ether_addr(hdr.addr1)) { 1486 rcu_read_lock(); 1487 sta = sta_info_get(local, hdr.addr1); 1488 if (sta) 1489 sta_flags = sta->flags; 1490 rcu_read_unlock(); 1491 } 1492 1493 /* receiver is QoS enabled, use a QoS type frame */ 1494 if (sta_flags & WLAN_STA_WME) { 1495 fc |= IEEE80211_STYPE_QOS_DATA; 1496 hdrlen += 2; 1497 } 1498 1499 /* 1500 * Drop unicast frames to unauthorised stations unless they are 1501 * EAPOL frames from the local station. 1502 */ 1503 if (unlikely(!is_multicast_ether_addr(hdr.addr1) && 1504 !(sta_flags & WLAN_STA_AUTHORIZED) && 1505 !(ethertype == ETH_P_PAE && 1506 compare_ether_addr(dev->dev_addr, 1507 skb->data + ETH_ALEN) == 0))) { 1508 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 1509 DECLARE_MAC_BUF(mac); 1510 1511 if (net_ratelimit()) 1512 printk(KERN_DEBUG "%s: dropped frame to %s" 1513 " (unauthorized port)\n", dev->name, 1514 print_mac(mac, hdr.addr1)); 1515 #endif 1516 1517 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port); 1518 1519 ret = 0; 1520 goto fail; 1521 } 1522 1523 hdr.frame_control = cpu_to_le16(fc); 1524 hdr.duration_id = 0; 1525 hdr.seq_ctrl = 0; 1526 1527 skip_header_bytes = ETH_HLEN; 1528 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 1529 encaps_data = bridge_tunnel_header; 1530 encaps_len = sizeof(bridge_tunnel_header); 1531 skip_header_bytes -= 2; 1532 } else if (ethertype >= 0x600) { 1533 encaps_data = rfc1042_header; 1534 encaps_len = sizeof(rfc1042_header); 1535 skip_header_bytes -= 2; 1536 } else { 1537 encaps_data = NULL; 1538 encaps_len = 0; 1539 } 1540 1541 skb_pull(skb, skip_header_bytes); 1542 nh_pos -= skip_header_bytes; 1543 h_pos -= skip_header_bytes; 1544 1545 /* TODO: implement support for fragments so that there is no need to 1546 * reallocate and copy payload; it might be enough to support one 1547 * extra fragment that would be copied in the beginning of the frame 1548 * data.. anyway, it would be nice to include this into skb structure 1549 * somehow 1550 * 1551 * There are few options for this: 1552 * use skb->cb as an extra space for 802.11 header 1553 * allocate new buffer if not enough headroom 1554 * make sure that there is enough headroom in every skb by increasing 1555 * build in headroom in __dev_alloc_skb() (linux/skbuff.h) and 1556 * alloc_skb() (net/core/skbuff.c) 1557 */ 1558 head_need = hdrlen + encaps_len + meshhdrlen + local->tx_headroom; 1559 head_need -= skb_headroom(skb); 1560 1561 /* We are going to modify skb data, so make a copy of it if happens to 1562 * be cloned. This could happen, e.g., with Linux bridge code passing 1563 * us broadcast frames. */ 1564 1565 if (head_need > 0 || skb_cloned(skb)) { 1566 #if 0 1567 printk(KERN_DEBUG "%s: need to reallocate buffer for %d bytes " 1568 "of headroom\n", dev->name, head_need); 1569 #endif 1570 1571 if (skb_cloned(skb)) 1572 I802_DEBUG_INC(local->tx_expand_skb_head_cloned); 1573 else 1574 I802_DEBUG_INC(local->tx_expand_skb_head); 1575 /* Since we have to reallocate the buffer, make sure that there 1576 * is enough room for possible WEP IV/ICV and TKIP (8 bytes 1577 * before payload and 12 after). */ 1578 if (pskb_expand_head(skb, (head_need > 0 ? head_need + 8 : 8), 1579 12, GFP_ATOMIC)) { 1580 printk(KERN_DEBUG "%s: failed to reallocate TX buffer" 1581 "\n", dev->name); 1582 goto fail; 1583 } 1584 } 1585 1586 if (encaps_data) { 1587 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 1588 nh_pos += encaps_len; 1589 h_pos += encaps_len; 1590 } 1591 1592 if (meshhdrlen > 0) { 1593 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen); 1594 nh_pos += meshhdrlen; 1595 h_pos += meshhdrlen; 1596 } 1597 1598 if (fc & IEEE80211_STYPE_QOS_DATA) { 1599 __le16 *qos_control; 1600 1601 qos_control = (__le16*) skb_push(skb, 2); 1602 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2); 1603 /* 1604 * Maybe we could actually set some fields here, for now just 1605 * initialise to zero to indicate no special operation. 1606 */ 1607 *qos_control = 0; 1608 } else 1609 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 1610 1611 nh_pos += hdrlen; 1612 h_pos += hdrlen; 1613 1614 pkt_data = (struct ieee80211_tx_packet_data *)skb->cb; 1615 memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data)); 1616 pkt_data->ifindex = dev->ifindex; 1617 if (ethertype == ETH_P_PAE) 1618 pkt_data->flags |= IEEE80211_TXPD_EAPOL_FRAME; 1619 1620 skb->dev = local->mdev; 1621 dev->stats.tx_packets++; 1622 dev->stats.tx_bytes += skb->len; 1623 1624 /* Update skb pointers to various headers since this modified frame 1625 * is going to go through Linux networking code that may potentially 1626 * need things like pointer to IP header. */ 1627 skb_set_mac_header(skb, 0); 1628 skb_set_network_header(skb, nh_pos); 1629 skb_set_transport_header(skb, h_pos); 1630 1631 dev->trans_start = jiffies; 1632 dev_queue_xmit(skb); 1633 1634 return 0; 1635 1636 fail: 1637 if (!ret) 1638 dev_kfree_skb(skb); 1639 1640 return ret; 1641 } 1642 1643 /* helper functions for pending packets for when queues are stopped */ 1644 1645 void ieee80211_clear_tx_pending(struct ieee80211_local *local) 1646 { 1647 int i, j; 1648 struct ieee80211_tx_stored_packet *store; 1649 1650 for (i = 0; i < local->hw.queues; i++) { 1651 if (!__ieee80211_queue_pending(local, i)) 1652 continue; 1653 store = &local->pending_packet[i]; 1654 kfree_skb(store->skb); 1655 for (j = 0; j < store->num_extra_frag; j++) 1656 kfree_skb(store->extra_frag[j]); 1657 kfree(store->extra_frag); 1658 clear_bit(IEEE80211_LINK_STATE_PENDING, &local->state[i]); 1659 } 1660 } 1661 1662 void ieee80211_tx_pending(unsigned long data) 1663 { 1664 struct ieee80211_local *local = (struct ieee80211_local *)data; 1665 struct net_device *dev = local->mdev; 1666 struct ieee80211_tx_stored_packet *store; 1667 struct ieee80211_tx_data tx; 1668 int i, ret, reschedule = 0; 1669 1670 netif_tx_lock_bh(dev); 1671 for (i = 0; i < local->hw.queues; i++) { 1672 if (__ieee80211_queue_stopped(local, i)) 1673 continue; 1674 if (!__ieee80211_queue_pending(local, i)) { 1675 reschedule = 1; 1676 continue; 1677 } 1678 store = &local->pending_packet[i]; 1679 tx.control = &store->control; 1680 tx.extra_frag = store->extra_frag; 1681 tx.num_extra_frag = store->num_extra_frag; 1682 tx.last_frag_rate = store->last_frag_rate; 1683 tx.flags = 0; 1684 if (store->last_frag_rate_ctrl_probe) 1685 tx.flags |= IEEE80211_TX_PROBE_LAST_FRAG; 1686 ret = __ieee80211_tx(local, store->skb, &tx); 1687 if (ret) { 1688 if (ret == IEEE80211_TX_FRAG_AGAIN) 1689 store->skb = NULL; 1690 } else { 1691 clear_bit(IEEE80211_LINK_STATE_PENDING, 1692 &local->state[i]); 1693 reschedule = 1; 1694 } 1695 } 1696 netif_tx_unlock_bh(dev); 1697 if (reschedule) { 1698 if (!ieee80211_qdisc_installed(dev)) { 1699 if (!__ieee80211_queue_stopped(local, 0)) 1700 netif_wake_queue(dev); 1701 } else 1702 netif_schedule(dev); 1703 } 1704 } 1705 1706 /* functions for drivers to get certain frames */ 1707 1708 static void ieee80211_beacon_add_tim(struct ieee80211_local *local, 1709 struct ieee80211_if_ap *bss, 1710 struct sk_buff *skb, 1711 struct beacon_data *beacon) 1712 { 1713 u8 *pos, *tim; 1714 int aid0 = 0; 1715 int i, have_bits = 0, n1, n2; 1716 1717 /* Generate bitmap for TIM only if there are any STAs in power save 1718 * mode. */ 1719 if (atomic_read(&bss->num_sta_ps) > 0) 1720 /* in the hope that this is faster than 1721 * checking byte-for-byte */ 1722 have_bits = !bitmap_empty((unsigned long*)bss->tim, 1723 IEEE80211_MAX_AID+1); 1724 1725 if (bss->dtim_count == 0) 1726 bss->dtim_count = beacon->dtim_period - 1; 1727 else 1728 bss->dtim_count--; 1729 1730 tim = pos = (u8 *) skb_put(skb, 6); 1731 *pos++ = WLAN_EID_TIM; 1732 *pos++ = 4; 1733 *pos++ = bss->dtim_count; 1734 *pos++ = beacon->dtim_period; 1735 1736 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf)) 1737 aid0 = 1; 1738 1739 if (have_bits) { 1740 /* Find largest even number N1 so that bits numbered 1 through 1741 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits 1742 * (N2 + 1) x 8 through 2007 are 0. */ 1743 n1 = 0; 1744 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) { 1745 if (bss->tim[i]) { 1746 n1 = i & 0xfe; 1747 break; 1748 } 1749 } 1750 n2 = n1; 1751 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) { 1752 if (bss->tim[i]) { 1753 n2 = i; 1754 break; 1755 } 1756 } 1757 1758 /* Bitmap control */ 1759 *pos++ = n1 | aid0; 1760 /* Part Virt Bitmap */ 1761 memcpy(pos, bss->tim + n1, n2 - n1 + 1); 1762 1763 tim[1] = n2 - n1 + 4; 1764 skb_put(skb, n2 - n1); 1765 } else { 1766 *pos++ = aid0; /* Bitmap control */ 1767 *pos++ = 0; /* Part Virt Bitmap */ 1768 } 1769 } 1770 1771 struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw, 1772 struct ieee80211_vif *vif, 1773 struct ieee80211_tx_control *control) 1774 { 1775 struct ieee80211_local *local = hw_to_local(hw); 1776 struct sk_buff *skb; 1777 struct net_device *bdev; 1778 struct ieee80211_sub_if_data *sdata = NULL; 1779 struct ieee80211_if_ap *ap = NULL; 1780 struct rate_selection rsel; 1781 struct beacon_data *beacon; 1782 struct ieee80211_supported_band *sband; 1783 struct ieee80211_mgmt *mgmt; 1784 int *num_beacons; 1785 bool err = true; 1786 u8 *pos; 1787 1788 sband = local->hw.wiphy->bands[local->hw.conf.channel->band]; 1789 1790 rcu_read_lock(); 1791 1792 sdata = vif_to_sdata(vif); 1793 bdev = sdata->dev; 1794 1795 if (sdata->vif.type == IEEE80211_IF_TYPE_AP) { 1796 ap = &sdata->u.ap; 1797 beacon = rcu_dereference(ap->beacon); 1798 if (ap && beacon) { 1799 /* 1800 * headroom, head length, 1801 * tail length and maximum TIM length 1802 */ 1803 skb = dev_alloc_skb(local->tx_headroom + 1804 beacon->head_len + 1805 beacon->tail_len + 256); 1806 if (!skb) 1807 goto out; 1808 1809 skb_reserve(skb, local->tx_headroom); 1810 memcpy(skb_put(skb, beacon->head_len), beacon->head, 1811 beacon->head_len); 1812 1813 ieee80211_include_sequence(sdata, 1814 (struct ieee80211_hdr *)skb->data); 1815 1816 /* 1817 * Not very nice, but we want to allow the driver to call 1818 * ieee80211_beacon_get() as a response to the set_tim() 1819 * callback. That, however, is already invoked under the 1820 * sta_lock to guarantee consistent and race-free update 1821 * of the tim bitmap in mac80211 and the driver. 1822 */ 1823 if (local->tim_in_locked_section) { 1824 ieee80211_beacon_add_tim(local, ap, skb, beacon); 1825 } else { 1826 unsigned long flags; 1827 1828 spin_lock_irqsave(&local->sta_lock, flags); 1829 ieee80211_beacon_add_tim(local, ap, skb, beacon); 1830 spin_unlock_irqrestore(&local->sta_lock, flags); 1831 } 1832 1833 if (beacon->tail) 1834 memcpy(skb_put(skb, beacon->tail_len), 1835 beacon->tail, beacon->tail_len); 1836 1837 num_beacons = &ap->num_beacons; 1838 1839 err = false; 1840 } 1841 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 1842 /* headroom, head length, tail length and maximum TIM length */ 1843 skb = dev_alloc_skb(local->tx_headroom + 400); 1844 if (!skb) 1845 goto out; 1846 1847 skb_reserve(skb, local->hw.extra_tx_headroom); 1848 mgmt = (struct ieee80211_mgmt *) 1849 skb_put(skb, 24 + sizeof(mgmt->u.beacon)); 1850 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon)); 1851 mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT, 1852 IEEE80211_STYPE_BEACON); 1853 memset(mgmt->da, 0xff, ETH_ALEN); 1854 memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN); 1855 /* BSSID is left zeroed, wildcard value */ 1856 mgmt->u.beacon.beacon_int = 1857 cpu_to_le16(local->hw.conf.beacon_int); 1858 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */ 1859 1860 pos = skb_put(skb, 2); 1861 *pos++ = WLAN_EID_SSID; 1862 *pos++ = 0x0; 1863 1864 mesh_mgmt_ies_add(skb, sdata->dev); 1865 1866 num_beacons = &sdata->u.sta.num_beacons; 1867 1868 err = false; 1869 } 1870 1871 if (err) { 1872 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 1873 if (net_ratelimit()) 1874 printk(KERN_DEBUG "no beacon data avail for %s\n", 1875 bdev->name); 1876 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ 1877 skb = NULL; 1878 goto out; 1879 } 1880 1881 if (control) { 1882 rate_control_get_rate(local->mdev, sband, skb, &rsel); 1883 if (!rsel.rate) { 1884 if (net_ratelimit()) { 1885 printk(KERN_DEBUG "%s: ieee80211_beacon_get: " 1886 "no rate found\n", 1887 wiphy_name(local->hw.wiphy)); 1888 } 1889 dev_kfree_skb(skb); 1890 skb = NULL; 1891 goto out; 1892 } 1893 1894 control->vif = vif; 1895 control->tx_rate = rsel.rate; 1896 if (sdata->bss_conf.use_short_preamble && 1897 rsel.rate->flags & IEEE80211_RATE_SHORT_PREAMBLE) 1898 control->flags |= IEEE80211_TXCTL_SHORT_PREAMBLE; 1899 control->antenna_sel_tx = local->hw.conf.antenna_sel_tx; 1900 control->flags |= IEEE80211_TXCTL_NO_ACK; 1901 control->retry_limit = 1; 1902 control->flags |= IEEE80211_TXCTL_CLEAR_PS_FILT; 1903 } 1904 (*num_beacons)++; 1905 out: 1906 rcu_read_unlock(); 1907 return skb; 1908 } 1909 EXPORT_SYMBOL(ieee80211_beacon_get); 1910 1911 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1912 const void *frame, size_t frame_len, 1913 const struct ieee80211_tx_control *frame_txctl, 1914 struct ieee80211_rts *rts) 1915 { 1916 const struct ieee80211_hdr *hdr = frame; 1917 u16 fctl; 1918 1919 fctl = IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS; 1920 rts->frame_control = cpu_to_le16(fctl); 1921 rts->duration = ieee80211_rts_duration(hw, vif, frame_len, 1922 frame_txctl); 1923 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra)); 1924 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta)); 1925 } 1926 EXPORT_SYMBOL(ieee80211_rts_get); 1927 1928 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1929 const void *frame, size_t frame_len, 1930 const struct ieee80211_tx_control *frame_txctl, 1931 struct ieee80211_cts *cts) 1932 { 1933 const struct ieee80211_hdr *hdr = frame; 1934 u16 fctl; 1935 1936 fctl = IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS; 1937 cts->frame_control = cpu_to_le16(fctl); 1938 cts->duration = ieee80211_ctstoself_duration(hw, vif, 1939 frame_len, frame_txctl); 1940 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra)); 1941 } 1942 EXPORT_SYMBOL(ieee80211_ctstoself_get); 1943 1944 struct sk_buff * 1945 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, 1946 struct ieee80211_vif *vif, 1947 struct ieee80211_tx_control *control) 1948 { 1949 struct ieee80211_local *local = hw_to_local(hw); 1950 struct sk_buff *skb; 1951 struct sta_info *sta; 1952 ieee80211_tx_handler *handler; 1953 struct ieee80211_tx_data tx; 1954 ieee80211_tx_result res = TX_DROP; 1955 struct net_device *bdev; 1956 struct ieee80211_sub_if_data *sdata; 1957 struct ieee80211_if_ap *bss = NULL; 1958 struct beacon_data *beacon; 1959 1960 sdata = vif_to_sdata(vif); 1961 bdev = sdata->dev; 1962 1963 1964 if (!bss) 1965 return NULL; 1966 1967 rcu_read_lock(); 1968 beacon = rcu_dereference(bss->beacon); 1969 1970 if (sdata->vif.type != IEEE80211_IF_TYPE_AP || !beacon || 1971 !beacon->head) { 1972 rcu_read_unlock(); 1973 return NULL; 1974 } 1975 1976 if (bss->dtim_count != 0) 1977 return NULL; /* send buffered bc/mc only after DTIM beacon */ 1978 memset(control, 0, sizeof(*control)); 1979 while (1) { 1980 skb = skb_dequeue(&bss->ps_bc_buf); 1981 if (!skb) 1982 return NULL; 1983 local->total_ps_buffered--; 1984 1985 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) { 1986 struct ieee80211_hdr *hdr = 1987 (struct ieee80211_hdr *) skb->data; 1988 /* more buffered multicast/broadcast frames ==> set 1989 * MoreData flag in IEEE 802.11 header to inform PS 1990 * STAs */ 1991 hdr->frame_control |= 1992 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1993 } 1994 1995 if (!ieee80211_tx_prepare(&tx, skb, local->mdev, control)) 1996 break; 1997 dev_kfree_skb_any(skb); 1998 } 1999 sta = tx.sta; 2000 tx.flags |= IEEE80211_TX_PS_BUFFERED; 2001 tx.channel = local->hw.conf.channel; 2002 2003 for (handler = ieee80211_tx_handlers; *handler != NULL; handler++) { 2004 res = (*handler)(&tx); 2005 if (res == TX_DROP || res == TX_QUEUED) 2006 break; 2007 } 2008 skb = tx.skb; /* handlers are allowed to change skb */ 2009 2010 if (res == TX_DROP) { 2011 I802_DEBUG_INC(local->tx_handlers_drop); 2012 dev_kfree_skb(skb); 2013 skb = NULL; 2014 } else if (res == TX_QUEUED) { 2015 I802_DEBUG_INC(local->tx_handlers_queued); 2016 skb = NULL; 2017 } 2018 2019 rcu_read_unlock(); 2020 2021 return skb; 2022 } 2023 EXPORT_SYMBOL(ieee80211_get_buffered_bc); 2024