1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * 12 * Transmit and frame generation functions. 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/skbuff.h> 18 #include <linux/etherdevice.h> 19 #include <linux/bitmap.h> 20 #include <linux/rcupdate.h> 21 #include <net/net_namespace.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <net/cfg80211.h> 24 #include <net/mac80211.h> 25 #include <asm/unaligned.h> 26 27 #include "ieee80211_i.h" 28 #include "driver-ops.h" 29 #include "led.h" 30 #include "mesh.h" 31 #include "wep.h" 32 #include "wpa.h" 33 #include "wme.h" 34 #include "rate.h" 35 36 /* misc utils */ 37 38 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr, 39 int next_frag_len) 40 { 41 int rate, mrate, erp, dur, i; 42 struct ieee80211_rate *txrate; 43 struct ieee80211_local *local = tx->local; 44 struct ieee80211_supported_band *sband; 45 struct ieee80211_hdr *hdr; 46 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 47 48 /* assume HW handles this */ 49 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS) 50 return 0; 51 52 /* uh huh? */ 53 if (WARN_ON_ONCE(info->control.rates[0].idx < 0)) 54 return 0; 55 56 sband = local->hw.wiphy->bands[tx->channel->band]; 57 txrate = &sband->bitrates[info->control.rates[0].idx]; 58 59 erp = txrate->flags & IEEE80211_RATE_ERP_G; 60 61 /* 62 * data and mgmt (except PS Poll): 63 * - during CFP: 32768 64 * - during contention period: 65 * if addr1 is group address: 0 66 * if more fragments = 0 and addr1 is individual address: time to 67 * transmit one ACK plus SIFS 68 * if more fragments = 1 and addr1 is individual address: time to 69 * transmit next fragment plus 2 x ACK plus 3 x SIFS 70 * 71 * IEEE 802.11, 9.6: 72 * - control response frame (CTS or ACK) shall be transmitted using the 73 * same rate as the immediately previous frame in the frame exchange 74 * sequence, if this rate belongs to the PHY mandatory rates, or else 75 * at the highest possible rate belonging to the PHY rates in the 76 * BSSBasicRateSet 77 */ 78 hdr = (struct ieee80211_hdr *)tx->skb->data; 79 if (ieee80211_is_ctl(hdr->frame_control)) { 80 /* TODO: These control frames are not currently sent by 81 * mac80211, but should they be implemented, this function 82 * needs to be updated to support duration field calculation. 83 * 84 * RTS: time needed to transmit pending data/mgmt frame plus 85 * one CTS frame plus one ACK frame plus 3 x SIFS 86 * CTS: duration of immediately previous RTS minus time 87 * required to transmit CTS and its SIFS 88 * ACK: 0 if immediately previous directed data/mgmt had 89 * more=0, with more=1 duration in ACK frame is duration 90 * from previous frame minus time needed to transmit ACK 91 * and its SIFS 92 * PS Poll: BIT(15) | BIT(14) | aid 93 */ 94 return 0; 95 } 96 97 /* data/mgmt */ 98 if (0 /* FIX: data/mgmt during CFP */) 99 return cpu_to_le16(32768); 100 101 if (group_addr) /* Group address as the destination - no ACK */ 102 return 0; 103 104 /* Individual destination address: 105 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes) 106 * CTS and ACK frames shall be transmitted using the highest rate in 107 * basic rate set that is less than or equal to the rate of the 108 * immediately previous frame and that is using the same modulation 109 * (CCK or OFDM). If no basic rate set matches with these requirements, 110 * the highest mandatory rate of the PHY that is less than or equal to 111 * the rate of the previous frame is used. 112 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps 113 */ 114 rate = -1; 115 /* use lowest available if everything fails */ 116 mrate = sband->bitrates[0].bitrate; 117 for (i = 0; i < sband->n_bitrates; i++) { 118 struct ieee80211_rate *r = &sband->bitrates[i]; 119 120 if (r->bitrate > txrate->bitrate) 121 break; 122 123 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i)) 124 rate = r->bitrate; 125 126 switch (sband->band) { 127 case IEEE80211_BAND_2GHZ: { 128 u32 flag; 129 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 130 flag = IEEE80211_RATE_MANDATORY_G; 131 else 132 flag = IEEE80211_RATE_MANDATORY_B; 133 if (r->flags & flag) 134 mrate = r->bitrate; 135 break; 136 } 137 case IEEE80211_BAND_5GHZ: 138 if (r->flags & IEEE80211_RATE_MANDATORY_A) 139 mrate = r->bitrate; 140 break; 141 case IEEE80211_NUM_BANDS: 142 WARN_ON(1); 143 break; 144 } 145 } 146 if (rate == -1) { 147 /* No matching basic rate found; use highest suitable mandatory 148 * PHY rate */ 149 rate = mrate; 150 } 151 152 /* Time needed to transmit ACK 153 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up 154 * to closest integer */ 155 156 dur = ieee80211_frame_duration(local, 10, rate, erp, 157 tx->sdata->vif.bss_conf.use_short_preamble); 158 159 if (next_frag_len) { 160 /* Frame is fragmented: duration increases with time needed to 161 * transmit next fragment plus ACK and 2 x SIFS. */ 162 dur *= 2; /* ACK + SIFS */ 163 /* next fragment */ 164 dur += ieee80211_frame_duration(local, next_frag_len, 165 txrate->bitrate, erp, 166 tx->sdata->vif.bss_conf.use_short_preamble); 167 } 168 169 return cpu_to_le16(dur); 170 } 171 172 static inline int is_ieee80211_device(struct ieee80211_local *local, 173 struct net_device *dev) 174 { 175 return local == wdev_priv(dev->ieee80211_ptr); 176 } 177 178 /* tx handlers */ 179 static ieee80211_tx_result debug_noinline 180 ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx) 181 { 182 struct ieee80211_local *local = tx->local; 183 struct ieee80211_if_managed *ifmgd; 184 185 /* driver doesn't support power save */ 186 if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS)) 187 return TX_CONTINUE; 188 189 /* hardware does dynamic power save */ 190 if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS) 191 return TX_CONTINUE; 192 193 /* dynamic power save disabled */ 194 if (local->hw.conf.dynamic_ps_timeout <= 0) 195 return TX_CONTINUE; 196 197 /* we are scanning, don't enable power save */ 198 if (local->scanning) 199 return TX_CONTINUE; 200 201 if (!local->ps_sdata) 202 return TX_CONTINUE; 203 204 /* No point if we're going to suspend */ 205 if (local->quiescing) 206 return TX_CONTINUE; 207 208 /* dynamic ps is supported only in managed mode */ 209 if (tx->sdata->vif.type != NL80211_IFTYPE_STATION) 210 return TX_CONTINUE; 211 212 ifmgd = &tx->sdata->u.mgd; 213 214 /* 215 * Don't wakeup from power save if u-apsd is enabled, voip ac has 216 * u-apsd enabled and the frame is in voip class. This effectively 217 * means that even if all access categories have u-apsd enabled, in 218 * practise u-apsd is only used with the voip ac. This is a 219 * workaround for the case when received voip class packets do not 220 * have correct qos tag for some reason, due the network or the 221 * peer application. 222 * 223 * Note: local->uapsd_queues access is racy here. If the value is 224 * changed via debugfs, user needs to reassociate manually to have 225 * everything in sync. 226 */ 227 if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED) 228 && (local->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO) 229 && skb_get_queue_mapping(tx->skb) == 0) 230 return TX_CONTINUE; 231 232 if (local->hw.conf.flags & IEEE80211_CONF_PS) { 233 ieee80211_stop_queues_by_reason(&local->hw, 234 IEEE80211_QUEUE_STOP_REASON_PS); 235 ifmgd->flags &= ~IEEE80211_STA_NULLFUNC_ACKED; 236 ieee80211_queue_work(&local->hw, 237 &local->dynamic_ps_disable_work); 238 } 239 240 /* Don't restart the timer if we're not disassociated */ 241 if (!ifmgd->associated) 242 return TX_CONTINUE; 243 244 mod_timer(&local->dynamic_ps_timer, jiffies + 245 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 246 247 return TX_CONTINUE; 248 } 249 250 static ieee80211_tx_result debug_noinline 251 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx) 252 { 253 254 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 255 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 256 u32 sta_flags; 257 258 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) 259 return TX_CONTINUE; 260 261 if (unlikely(test_bit(SCAN_SW_SCANNING, &tx->local->scanning)) && 262 test_bit(SDATA_STATE_OFFCHANNEL, &tx->sdata->state) && 263 !ieee80211_is_probe_req(hdr->frame_control) && 264 !ieee80211_is_nullfunc(hdr->frame_control)) 265 /* 266 * When software scanning only nullfunc frames (to notify 267 * the sleep state to the AP) and probe requests (for the 268 * active scan) are allowed, all other frames should not be 269 * sent and we should not get here, but if we do 270 * nonetheless, drop them to avoid sending them 271 * off-channel. See the link below and 272 * ieee80211_start_scan() for more. 273 * 274 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089 275 */ 276 return TX_DROP; 277 278 if (tx->sdata->vif.type == NL80211_IFTYPE_WDS) 279 return TX_CONTINUE; 280 281 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 282 return TX_CONTINUE; 283 284 if (tx->flags & IEEE80211_TX_PS_BUFFERED) 285 return TX_CONTINUE; 286 287 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0; 288 289 if (likely(tx->flags & IEEE80211_TX_UNICAST)) { 290 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) && 291 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 292 ieee80211_is_data(hdr->frame_control))) { 293 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 294 printk(KERN_DEBUG "%s: dropped data frame to not " 295 "associated station %pM\n", 296 tx->sdata->name, hdr->addr1); 297 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ 298 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc); 299 return TX_DROP; 300 } 301 } else { 302 if (unlikely(ieee80211_is_data(hdr->frame_control) && 303 tx->local->num_sta == 0 && 304 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) { 305 /* 306 * No associated STAs - no need to send multicast 307 * frames. 308 */ 309 return TX_DROP; 310 } 311 return TX_CONTINUE; 312 } 313 314 return TX_CONTINUE; 315 } 316 317 /* This function is called whenever the AP is about to exceed the maximum limit 318 * of buffered frames for power saving STAs. This situation should not really 319 * happen often during normal operation, so dropping the oldest buffered packet 320 * from each queue should be OK to make some room for new frames. */ 321 static void purge_old_ps_buffers(struct ieee80211_local *local) 322 { 323 int total = 0, purged = 0; 324 struct sk_buff *skb; 325 struct ieee80211_sub_if_data *sdata; 326 struct sta_info *sta; 327 328 /* 329 * virtual interfaces are protected by RCU 330 */ 331 rcu_read_lock(); 332 333 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 334 struct ieee80211_if_ap *ap; 335 if (sdata->vif.type != NL80211_IFTYPE_AP) 336 continue; 337 ap = &sdata->u.ap; 338 skb = skb_dequeue(&ap->ps_bc_buf); 339 if (skb) { 340 purged++; 341 dev_kfree_skb(skb); 342 } 343 total += skb_queue_len(&ap->ps_bc_buf); 344 } 345 346 list_for_each_entry_rcu(sta, &local->sta_list, list) { 347 skb = skb_dequeue(&sta->ps_tx_buf); 348 if (skb) { 349 purged++; 350 dev_kfree_skb(skb); 351 } 352 total += skb_queue_len(&sta->ps_tx_buf); 353 } 354 355 rcu_read_unlock(); 356 357 local->total_ps_buffered = total; 358 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 359 wiphy_debug(local->hw.wiphy, "PS buffers full - purged %d frames\n", 360 purged); 361 #endif 362 } 363 364 static ieee80211_tx_result 365 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx) 366 { 367 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 368 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 369 370 /* 371 * broadcast/multicast frame 372 * 373 * If any of the associated stations is in power save mode, 374 * the frame is buffered to be sent after DTIM beacon frame. 375 * This is done either by the hardware or us. 376 */ 377 378 /* powersaving STAs only in AP/VLAN mode */ 379 if (!tx->sdata->bss) 380 return TX_CONTINUE; 381 382 /* no buffering for ordered frames */ 383 if (ieee80211_has_order(hdr->frame_control)) 384 return TX_CONTINUE; 385 386 /* no stations in PS mode */ 387 if (!atomic_read(&tx->sdata->bss->num_sta_ps)) 388 return TX_CONTINUE; 389 390 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM; 391 392 /* device releases frame after DTIM beacon */ 393 if (!(tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING)) 394 return TX_CONTINUE; 395 396 /* buffered in mac80211 */ 397 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) 398 purge_old_ps_buffers(tx->local); 399 400 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= AP_MAX_BC_BUFFER) { 401 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 402 if (net_ratelimit()) 403 printk(KERN_DEBUG "%s: BC TX buffer full - dropping the oldest frame\n", 404 tx->sdata->name); 405 #endif 406 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf)); 407 } else 408 tx->local->total_ps_buffered++; 409 410 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb); 411 412 return TX_QUEUED; 413 } 414 415 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta, 416 struct sk_buff *skb) 417 { 418 if (!ieee80211_is_mgmt(fc)) 419 return 0; 420 421 if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP)) 422 return 0; 423 424 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) 425 skb->data)) 426 return 0; 427 428 return 1; 429 } 430 431 static ieee80211_tx_result 432 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx) 433 { 434 struct sta_info *sta = tx->sta; 435 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 436 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 437 struct ieee80211_local *local = tx->local; 438 u32 staflags; 439 440 if (unlikely(!sta || 441 ieee80211_is_probe_resp(hdr->frame_control) || 442 ieee80211_is_auth(hdr->frame_control) || 443 ieee80211_is_assoc_resp(hdr->frame_control) || 444 ieee80211_is_reassoc_resp(hdr->frame_control))) 445 return TX_CONTINUE; 446 447 staflags = get_sta_flags(sta); 448 449 if (unlikely((staflags & (WLAN_STA_PS_STA | WLAN_STA_PS_DRIVER)) && 450 !(info->flags & IEEE80211_TX_CTL_PSPOLL_RESPONSE))) { 451 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 452 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries " 453 "before %d)\n", 454 sta->sta.addr, sta->sta.aid, 455 skb_queue_len(&sta->ps_tx_buf)); 456 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 457 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) 458 purge_old_ps_buffers(tx->local); 459 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) { 460 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf); 461 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 462 if (net_ratelimit()) { 463 printk(KERN_DEBUG "%s: STA %pM TX " 464 "buffer full - dropping oldest frame\n", 465 tx->sdata->name, sta->sta.addr); 466 } 467 #endif 468 dev_kfree_skb(old); 469 } else 470 tx->local->total_ps_buffered++; 471 472 /* 473 * Queue frame to be sent after STA wakes up/polls, 474 * but don't set the TIM bit if the driver is blocking 475 * wakeup or poll response transmissions anyway. 476 */ 477 if (skb_queue_empty(&sta->ps_tx_buf) && 478 !(staflags & WLAN_STA_PS_DRIVER)) 479 sta_info_set_tim_bit(sta); 480 481 info->control.jiffies = jiffies; 482 info->control.vif = &tx->sdata->vif; 483 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 484 skb_queue_tail(&sta->ps_tx_buf, tx->skb); 485 486 if (!timer_pending(&local->sta_cleanup)) 487 mod_timer(&local->sta_cleanup, 488 round_jiffies(jiffies + 489 STA_INFO_CLEANUP_INTERVAL)); 490 491 return TX_QUEUED; 492 } 493 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 494 else if (unlikely(staflags & WLAN_STA_PS_STA)) { 495 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll " 496 "set -> send frame\n", tx->sdata->name, 497 sta->sta.addr); 498 } 499 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 500 501 return TX_CONTINUE; 502 } 503 504 static ieee80211_tx_result debug_noinline 505 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx) 506 { 507 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED)) 508 return TX_CONTINUE; 509 510 if (tx->flags & IEEE80211_TX_UNICAST) 511 return ieee80211_tx_h_unicast_ps_buf(tx); 512 else 513 return ieee80211_tx_h_multicast_ps_buf(tx); 514 } 515 516 static ieee80211_tx_result debug_noinline 517 ieee80211_tx_h_check_control_port_protocol(struct ieee80211_tx_data *tx) 518 { 519 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 520 521 if (unlikely(tx->sdata->control_port_protocol == tx->skb->protocol && 522 tx->sdata->control_port_no_encrypt)) 523 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 524 525 return TX_CONTINUE; 526 } 527 528 static ieee80211_tx_result debug_noinline 529 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx) 530 { 531 struct ieee80211_key *key = NULL; 532 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 533 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 534 535 if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT)) 536 tx->key = NULL; 537 else if (tx->sta && (key = rcu_dereference(tx->sta->ptk))) 538 tx->key = key; 539 else if (ieee80211_is_mgmt(hdr->frame_control) && 540 is_multicast_ether_addr(hdr->addr1) && 541 ieee80211_is_robust_mgmt_frame(hdr) && 542 (key = rcu_dereference(tx->sdata->default_mgmt_key))) 543 tx->key = key; 544 else if (is_multicast_ether_addr(hdr->addr1) && 545 (key = rcu_dereference(tx->sdata->default_multicast_key))) 546 tx->key = key; 547 else if (!is_multicast_ether_addr(hdr->addr1) && 548 (key = rcu_dereference(tx->sdata->default_unicast_key))) 549 tx->key = key; 550 else if (tx->sdata->drop_unencrypted && 551 (tx->skb->protocol != tx->sdata->control_port_protocol) && 552 !(info->flags & IEEE80211_TX_CTL_INJECTED) && 553 (!ieee80211_is_robust_mgmt_frame(hdr) || 554 (ieee80211_is_action(hdr->frame_control) && 555 tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) { 556 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted); 557 return TX_DROP; 558 } else 559 tx->key = NULL; 560 561 if (tx->key) { 562 bool skip_hw = false; 563 564 tx->key->tx_rx_count++; 565 /* TODO: add threshold stuff again */ 566 567 switch (tx->key->conf.cipher) { 568 case WLAN_CIPHER_SUITE_WEP40: 569 case WLAN_CIPHER_SUITE_WEP104: 570 if (ieee80211_is_auth(hdr->frame_control)) 571 break; 572 case WLAN_CIPHER_SUITE_TKIP: 573 if (!ieee80211_is_data_present(hdr->frame_control)) 574 tx->key = NULL; 575 break; 576 case WLAN_CIPHER_SUITE_CCMP: 577 if (!ieee80211_is_data_present(hdr->frame_control) && 578 !ieee80211_use_mfp(hdr->frame_control, tx->sta, 579 tx->skb)) 580 tx->key = NULL; 581 else 582 skip_hw = (tx->key->conf.flags & 583 IEEE80211_KEY_FLAG_SW_MGMT) && 584 ieee80211_is_mgmt(hdr->frame_control); 585 break; 586 case WLAN_CIPHER_SUITE_AES_CMAC: 587 if (!ieee80211_is_mgmt(hdr->frame_control)) 588 tx->key = NULL; 589 break; 590 } 591 592 if (!skip_hw && tx->key && 593 tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) 594 info->control.hw_key = &tx->key->conf; 595 } 596 597 return TX_CONTINUE; 598 } 599 600 static ieee80211_tx_result debug_noinline 601 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx) 602 { 603 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 604 struct ieee80211_hdr *hdr = (void *)tx->skb->data; 605 struct ieee80211_supported_band *sband; 606 struct ieee80211_rate *rate; 607 int i; 608 u32 len; 609 bool inval = false, rts = false, short_preamble = false; 610 struct ieee80211_tx_rate_control txrc; 611 u32 sta_flags; 612 613 memset(&txrc, 0, sizeof(txrc)); 614 615 sband = tx->local->hw.wiphy->bands[tx->channel->band]; 616 617 len = min_t(u32, tx->skb->len + FCS_LEN, 618 tx->local->hw.wiphy->frag_threshold); 619 620 /* set up the tx rate control struct we give the RC algo */ 621 txrc.hw = local_to_hw(tx->local); 622 txrc.sband = sband; 623 txrc.bss_conf = &tx->sdata->vif.bss_conf; 624 txrc.skb = tx->skb; 625 txrc.reported_rate.idx = -1; 626 txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[tx->channel->band]; 627 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1) 628 txrc.max_rate_idx = -1; 629 else 630 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1; 631 txrc.bss = (tx->sdata->vif.type == NL80211_IFTYPE_AP || 632 tx->sdata->vif.type == NL80211_IFTYPE_ADHOC); 633 634 /* set up RTS protection if desired */ 635 if (len > tx->local->hw.wiphy->rts_threshold) { 636 txrc.rts = rts = true; 637 } 638 639 /* 640 * Use short preamble if the BSS can handle it, but not for 641 * management frames unless we know the receiver can handle 642 * that -- the management frame might be to a station that 643 * just wants a probe response. 644 */ 645 if (tx->sdata->vif.bss_conf.use_short_preamble && 646 (ieee80211_is_data(hdr->frame_control) || 647 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE)))) 648 txrc.short_preamble = short_preamble = true; 649 650 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0; 651 652 /* 653 * Lets not bother rate control if we're associated and cannot 654 * talk to the sta. This should not happen. 655 */ 656 if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) && 657 (sta_flags & WLAN_STA_ASSOC) && 658 !rate_usable_index_exists(sband, &tx->sta->sta), 659 "%s: Dropped data frame as no usable bitrate found while " 660 "scanning and associated. Target station: " 661 "%pM on %d GHz band\n", 662 tx->sdata->name, hdr->addr1, 663 tx->channel->band ? 5 : 2)) 664 return TX_DROP; 665 666 /* 667 * If we're associated with the sta at this point we know we can at 668 * least send the frame at the lowest bit rate. 669 */ 670 rate_control_get_rate(tx->sdata, tx->sta, &txrc); 671 672 if (unlikely(info->control.rates[0].idx < 0)) 673 return TX_DROP; 674 675 if (txrc.reported_rate.idx < 0) { 676 txrc.reported_rate = info->control.rates[0]; 677 if (tx->sta && ieee80211_is_data(hdr->frame_control)) 678 tx->sta->last_tx_rate = txrc.reported_rate; 679 } else if (tx->sta) 680 tx->sta->last_tx_rate = txrc.reported_rate; 681 682 if (unlikely(!info->control.rates[0].count)) 683 info->control.rates[0].count = 1; 684 685 if (WARN_ON_ONCE((info->control.rates[0].count > 1) && 686 (info->flags & IEEE80211_TX_CTL_NO_ACK))) 687 info->control.rates[0].count = 1; 688 689 if (is_multicast_ether_addr(hdr->addr1)) { 690 /* 691 * XXX: verify the rate is in the basic rateset 692 */ 693 return TX_CONTINUE; 694 } 695 696 /* 697 * set up the RTS/CTS rate as the fastest basic rate 698 * that is not faster than the data rate 699 * 700 * XXX: Should this check all retry rates? 701 */ 702 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) { 703 s8 baserate = 0; 704 705 rate = &sband->bitrates[info->control.rates[0].idx]; 706 707 for (i = 0; i < sband->n_bitrates; i++) { 708 /* must be a basic rate */ 709 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i))) 710 continue; 711 /* must not be faster than the data rate */ 712 if (sband->bitrates[i].bitrate > rate->bitrate) 713 continue; 714 /* maximum */ 715 if (sband->bitrates[baserate].bitrate < 716 sband->bitrates[i].bitrate) 717 baserate = i; 718 } 719 720 info->control.rts_cts_rate_idx = baserate; 721 } 722 723 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { 724 /* 725 * make sure there's no valid rate following 726 * an invalid one, just in case drivers don't 727 * take the API seriously to stop at -1. 728 */ 729 if (inval) { 730 info->control.rates[i].idx = -1; 731 continue; 732 } 733 if (info->control.rates[i].idx < 0) { 734 inval = true; 735 continue; 736 } 737 738 /* 739 * For now assume MCS is already set up correctly, this 740 * needs to be fixed. 741 */ 742 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) { 743 WARN_ON(info->control.rates[i].idx > 76); 744 continue; 745 } 746 747 /* set up RTS protection if desired */ 748 if (rts) 749 info->control.rates[i].flags |= 750 IEEE80211_TX_RC_USE_RTS_CTS; 751 752 /* RC is busted */ 753 if (WARN_ON_ONCE(info->control.rates[i].idx >= 754 sband->n_bitrates)) { 755 info->control.rates[i].idx = -1; 756 continue; 757 } 758 759 rate = &sband->bitrates[info->control.rates[i].idx]; 760 761 /* set up short preamble */ 762 if (short_preamble && 763 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE) 764 info->control.rates[i].flags |= 765 IEEE80211_TX_RC_USE_SHORT_PREAMBLE; 766 767 /* set up G protection */ 768 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot && 769 rate->flags & IEEE80211_RATE_ERP_G) 770 info->control.rates[i].flags |= 771 IEEE80211_TX_RC_USE_CTS_PROTECT; 772 } 773 774 return TX_CONTINUE; 775 } 776 777 static ieee80211_tx_result debug_noinline 778 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx) 779 { 780 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 781 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 782 u16 *seq; 783 u8 *qc; 784 int tid; 785 786 /* 787 * Packet injection may want to control the sequence 788 * number, if we have no matching interface then we 789 * neither assign one ourselves nor ask the driver to. 790 */ 791 if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR)) 792 return TX_CONTINUE; 793 794 if (unlikely(ieee80211_is_ctl(hdr->frame_control))) 795 return TX_CONTINUE; 796 797 if (ieee80211_hdrlen(hdr->frame_control) < 24) 798 return TX_CONTINUE; 799 800 /* 801 * Anything but QoS data that has a sequence number field 802 * (is long enough) gets a sequence number from the global 803 * counter. 804 */ 805 if (!ieee80211_is_data_qos(hdr->frame_control)) { 806 /* driver should assign sequence number */ 807 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; 808 /* for pure STA mode without beacons, we can do it */ 809 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number); 810 tx->sdata->sequence_number += 0x10; 811 return TX_CONTINUE; 812 } 813 814 /* 815 * This should be true for injected/management frames only, for 816 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ 817 * above since they are not QoS-data frames. 818 */ 819 if (!tx->sta) 820 return TX_CONTINUE; 821 822 /* include per-STA, per-TID sequence counter */ 823 824 qc = ieee80211_get_qos_ctl(hdr); 825 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 826 seq = &tx->sta->tid_seq[tid]; 827 828 hdr->seq_ctrl = cpu_to_le16(*seq); 829 830 /* Increase the sequence number. */ 831 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ; 832 833 return TX_CONTINUE; 834 } 835 836 static int ieee80211_fragment(struct ieee80211_local *local, 837 struct sk_buff *skb, int hdrlen, 838 int frag_threshold) 839 { 840 struct sk_buff *tail = skb, *tmp; 841 int per_fragm = frag_threshold - hdrlen - FCS_LEN; 842 int pos = hdrlen + per_fragm; 843 int rem = skb->len - hdrlen - per_fragm; 844 845 if (WARN_ON(rem < 0)) 846 return -EINVAL; 847 848 while (rem) { 849 int fraglen = per_fragm; 850 851 if (fraglen > rem) 852 fraglen = rem; 853 rem -= fraglen; 854 tmp = dev_alloc_skb(local->tx_headroom + 855 frag_threshold + 856 IEEE80211_ENCRYPT_HEADROOM + 857 IEEE80211_ENCRYPT_TAILROOM); 858 if (!tmp) 859 return -ENOMEM; 860 tail->next = tmp; 861 tail = tmp; 862 skb_reserve(tmp, local->tx_headroom + 863 IEEE80211_ENCRYPT_HEADROOM); 864 /* copy control information */ 865 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb)); 866 skb_copy_queue_mapping(tmp, skb); 867 tmp->priority = skb->priority; 868 tmp->dev = skb->dev; 869 870 /* copy header and data */ 871 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen); 872 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen); 873 874 pos += fraglen; 875 } 876 877 skb->len = hdrlen + per_fragm; 878 return 0; 879 } 880 881 static ieee80211_tx_result debug_noinline 882 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx) 883 { 884 struct sk_buff *skb = tx->skb; 885 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 886 struct ieee80211_hdr *hdr = (void *)skb->data; 887 int frag_threshold = tx->local->hw.wiphy->frag_threshold; 888 int hdrlen; 889 int fragnum; 890 891 if (!(tx->flags & IEEE80211_TX_FRAGMENTED)) 892 return TX_CONTINUE; 893 894 /* 895 * Warn when submitting a fragmented A-MPDU frame and drop it. 896 * This scenario is handled in ieee80211_tx_prepare but extra 897 * caution taken here as fragmented ampdu may cause Tx stop. 898 */ 899 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU)) 900 return TX_DROP; 901 902 hdrlen = ieee80211_hdrlen(hdr->frame_control); 903 904 /* internal error, why is TX_FRAGMENTED set? */ 905 if (WARN_ON(skb->len + FCS_LEN <= frag_threshold)) 906 return TX_DROP; 907 908 /* 909 * Now fragment the frame. This will allocate all the fragments and 910 * chain them (using skb as the first fragment) to skb->next. 911 * During transmission, we will remove the successfully transmitted 912 * fragments from this list. When the low-level driver rejects one 913 * of the fragments then we will simply pretend to accept the skb 914 * but store it away as pending. 915 */ 916 if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold)) 917 return TX_DROP; 918 919 /* update duration/seq/flags of fragments */ 920 fragnum = 0; 921 do { 922 int next_len; 923 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); 924 925 hdr = (void *)skb->data; 926 info = IEEE80211_SKB_CB(skb); 927 928 if (skb->next) { 929 hdr->frame_control |= morefrags; 930 next_len = skb->next->len; 931 /* 932 * No multi-rate retries for fragmented frames, that 933 * would completely throw off the NAV at other STAs. 934 */ 935 info->control.rates[1].idx = -1; 936 info->control.rates[2].idx = -1; 937 info->control.rates[3].idx = -1; 938 info->control.rates[4].idx = -1; 939 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5); 940 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE; 941 } else { 942 hdr->frame_control &= ~morefrags; 943 next_len = 0; 944 } 945 hdr->duration_id = ieee80211_duration(tx, 0, next_len); 946 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG); 947 fragnum++; 948 } while ((skb = skb->next)); 949 950 return TX_CONTINUE; 951 } 952 953 static ieee80211_tx_result debug_noinline 954 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx) 955 { 956 struct sk_buff *skb = tx->skb; 957 958 if (!tx->sta) 959 return TX_CONTINUE; 960 961 tx->sta->tx_packets++; 962 do { 963 tx->sta->tx_fragments++; 964 tx->sta->tx_bytes += skb->len; 965 } while ((skb = skb->next)); 966 967 return TX_CONTINUE; 968 } 969 970 static ieee80211_tx_result debug_noinline 971 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx) 972 { 973 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 974 975 if (!tx->key) 976 return TX_CONTINUE; 977 978 switch (tx->key->conf.cipher) { 979 case WLAN_CIPHER_SUITE_WEP40: 980 case WLAN_CIPHER_SUITE_WEP104: 981 return ieee80211_crypto_wep_encrypt(tx); 982 case WLAN_CIPHER_SUITE_TKIP: 983 return ieee80211_crypto_tkip_encrypt(tx); 984 case WLAN_CIPHER_SUITE_CCMP: 985 return ieee80211_crypto_ccmp_encrypt(tx); 986 case WLAN_CIPHER_SUITE_AES_CMAC: 987 return ieee80211_crypto_aes_cmac_encrypt(tx); 988 default: 989 /* handle hw-only algorithm */ 990 if (info->control.hw_key) { 991 ieee80211_tx_set_protected(tx); 992 return TX_CONTINUE; 993 } 994 break; 995 996 } 997 998 return TX_DROP; 999 } 1000 1001 static ieee80211_tx_result debug_noinline 1002 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx) 1003 { 1004 struct sk_buff *skb = tx->skb; 1005 struct ieee80211_hdr *hdr; 1006 int next_len; 1007 bool group_addr; 1008 1009 do { 1010 hdr = (void *) skb->data; 1011 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) 1012 break; /* must not overwrite AID */ 1013 next_len = skb->next ? skb->next->len : 0; 1014 group_addr = is_multicast_ether_addr(hdr->addr1); 1015 1016 hdr->duration_id = 1017 ieee80211_duration(tx, group_addr, next_len); 1018 } while ((skb = skb->next)); 1019 1020 return TX_CONTINUE; 1021 } 1022 1023 /* actual transmit path */ 1024 1025 /* 1026 * deal with packet injection down monitor interface 1027 * with Radiotap Header -- only called for monitor mode interface 1028 */ 1029 static bool __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx, 1030 struct sk_buff *skb) 1031 { 1032 /* 1033 * this is the moment to interpret and discard the radiotap header that 1034 * must be at the start of the packet injected in Monitor mode 1035 * 1036 * Need to take some care with endian-ness since radiotap 1037 * args are little-endian 1038 */ 1039 1040 struct ieee80211_radiotap_iterator iterator; 1041 struct ieee80211_radiotap_header *rthdr = 1042 (struct ieee80211_radiotap_header *) skb->data; 1043 bool hw_frag; 1044 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1045 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len, 1046 NULL); 1047 1048 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 1049 tx->flags &= ~IEEE80211_TX_FRAGMENTED; 1050 1051 /* packet is fragmented in HW if we have a non-NULL driver callback */ 1052 hw_frag = (tx->local->ops->set_frag_threshold != NULL); 1053 1054 /* 1055 * for every radiotap entry that is present 1056 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more 1057 * entries present, or -EINVAL on error) 1058 */ 1059 1060 while (!ret) { 1061 ret = ieee80211_radiotap_iterator_next(&iterator); 1062 1063 if (ret) 1064 continue; 1065 1066 /* see if this argument is something we can use */ 1067 switch (iterator.this_arg_index) { 1068 /* 1069 * You must take care when dereferencing iterator.this_arg 1070 * for multibyte types... the pointer is not aligned. Use 1071 * get_unaligned((type *)iterator.this_arg) to dereference 1072 * iterator.this_arg for type "type" safely on all arches. 1073 */ 1074 case IEEE80211_RADIOTAP_FLAGS: 1075 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) { 1076 /* 1077 * this indicates that the skb we have been 1078 * handed has the 32-bit FCS CRC at the end... 1079 * we should react to that by snipping it off 1080 * because it will be recomputed and added 1081 * on transmission 1082 */ 1083 if (skb->len < (iterator._max_length + FCS_LEN)) 1084 return false; 1085 1086 skb_trim(skb, skb->len - FCS_LEN); 1087 } 1088 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP) 1089 info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT; 1090 if ((*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG) && 1091 !hw_frag) 1092 tx->flags |= IEEE80211_TX_FRAGMENTED; 1093 break; 1094 1095 /* 1096 * Please update the file 1097 * Documentation/networking/mac80211-injection.txt 1098 * when parsing new fields here. 1099 */ 1100 1101 default: 1102 break; 1103 } 1104 } 1105 1106 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */ 1107 return false; 1108 1109 /* 1110 * remove the radiotap header 1111 * iterator->_max_length was sanity-checked against 1112 * skb->len by iterator init 1113 */ 1114 skb_pull(skb, iterator._max_length); 1115 1116 return true; 1117 } 1118 1119 static bool ieee80211_tx_prep_agg(struct ieee80211_tx_data *tx, 1120 struct sk_buff *skb, 1121 struct ieee80211_tx_info *info, 1122 struct tid_ampdu_tx *tid_tx, 1123 int tid) 1124 { 1125 bool queued = false; 1126 1127 if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) { 1128 info->flags |= IEEE80211_TX_CTL_AMPDU; 1129 } else if (test_bit(HT_AGG_STATE_WANT_START, &tid_tx->state)) { 1130 /* 1131 * nothing -- this aggregation session is being started 1132 * but that might still fail with the driver 1133 */ 1134 } else { 1135 spin_lock(&tx->sta->lock); 1136 /* 1137 * Need to re-check now, because we may get here 1138 * 1139 * 1) in the window during which the setup is actually 1140 * already done, but not marked yet because not all 1141 * packets are spliced over to the driver pending 1142 * queue yet -- if this happened we acquire the lock 1143 * either before or after the splice happens, but 1144 * need to recheck which of these cases happened. 1145 * 1146 * 2) during session teardown, if the OPERATIONAL bit 1147 * was cleared due to the teardown but the pointer 1148 * hasn't been assigned NULL yet (or we loaded it 1149 * before it was assigned) -- in this case it may 1150 * now be NULL which means we should just let the 1151 * packet pass through because splicing the frames 1152 * back is already done. 1153 */ 1154 tid_tx = rcu_dereference_protected_tid_tx(tx->sta, tid); 1155 1156 if (!tid_tx) { 1157 /* do nothing, let packet pass through */ 1158 } else if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) { 1159 info->flags |= IEEE80211_TX_CTL_AMPDU; 1160 } else { 1161 queued = true; 1162 info->control.vif = &tx->sdata->vif; 1163 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 1164 __skb_queue_tail(&tid_tx->pending, skb); 1165 } 1166 spin_unlock(&tx->sta->lock); 1167 } 1168 1169 return queued; 1170 } 1171 1172 /* 1173 * initialises @tx 1174 */ 1175 static ieee80211_tx_result 1176 ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata, 1177 struct ieee80211_tx_data *tx, 1178 struct sk_buff *skb) 1179 { 1180 struct ieee80211_local *local = sdata->local; 1181 struct ieee80211_hdr *hdr; 1182 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1183 int hdrlen, tid; 1184 u8 *qc; 1185 1186 memset(tx, 0, sizeof(*tx)); 1187 tx->skb = skb; 1188 tx->local = local; 1189 tx->sdata = sdata; 1190 tx->channel = local->hw.conf.channel; 1191 /* 1192 * Set this flag (used below to indicate "automatic fragmentation"), 1193 * it will be cleared/left by radiotap as desired. 1194 * Only valid when fragmentation is done by the stack. 1195 */ 1196 if (!local->ops->set_frag_threshold) 1197 tx->flags |= IEEE80211_TX_FRAGMENTED; 1198 1199 /* process and remove the injection radiotap header */ 1200 if (unlikely(info->flags & IEEE80211_TX_INTFL_HAS_RADIOTAP)) { 1201 if (!__ieee80211_parse_tx_radiotap(tx, skb)) 1202 return TX_DROP; 1203 1204 /* 1205 * __ieee80211_parse_tx_radiotap has now removed 1206 * the radiotap header that was present and pre-filled 1207 * 'tx' with tx control information. 1208 */ 1209 info->flags &= ~IEEE80211_TX_INTFL_HAS_RADIOTAP; 1210 } 1211 1212 /* 1213 * If this flag is set to true anywhere, and we get here, 1214 * we are doing the needed processing, so remove the flag 1215 * now. 1216 */ 1217 info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING; 1218 1219 hdr = (struct ieee80211_hdr *) skb->data; 1220 1221 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 1222 tx->sta = rcu_dereference(sdata->u.vlan.sta); 1223 if (!tx->sta && sdata->dev->ieee80211_ptr->use_4addr) 1224 return TX_DROP; 1225 } else if (info->flags & IEEE80211_TX_CTL_INJECTED) { 1226 tx->sta = sta_info_get_bss(sdata, hdr->addr1); 1227 } 1228 if (!tx->sta) 1229 tx->sta = sta_info_get(sdata, hdr->addr1); 1230 1231 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) && 1232 (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) { 1233 struct tid_ampdu_tx *tid_tx; 1234 1235 qc = ieee80211_get_qos_ctl(hdr); 1236 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 1237 1238 tid_tx = rcu_dereference(tx->sta->ampdu_mlme.tid_tx[tid]); 1239 if (tid_tx) { 1240 bool queued; 1241 1242 queued = ieee80211_tx_prep_agg(tx, skb, info, 1243 tid_tx, tid); 1244 1245 if (unlikely(queued)) 1246 return TX_QUEUED; 1247 } 1248 } 1249 1250 if (is_multicast_ether_addr(hdr->addr1)) { 1251 tx->flags &= ~IEEE80211_TX_UNICAST; 1252 info->flags |= IEEE80211_TX_CTL_NO_ACK; 1253 } else { 1254 tx->flags |= IEEE80211_TX_UNICAST; 1255 if (unlikely(local->wifi_wme_noack_test)) 1256 info->flags |= IEEE80211_TX_CTL_NO_ACK; 1257 else 1258 info->flags &= ~IEEE80211_TX_CTL_NO_ACK; 1259 } 1260 1261 if (tx->flags & IEEE80211_TX_FRAGMENTED) { 1262 if ((tx->flags & IEEE80211_TX_UNICAST) && 1263 skb->len + FCS_LEN > local->hw.wiphy->frag_threshold && 1264 !(info->flags & IEEE80211_TX_CTL_AMPDU)) 1265 tx->flags |= IEEE80211_TX_FRAGMENTED; 1266 else 1267 tx->flags &= ~IEEE80211_TX_FRAGMENTED; 1268 } 1269 1270 if (!tx->sta) 1271 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1272 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT)) 1273 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1274 1275 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1276 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) { 1277 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)]; 1278 tx->ethertype = (pos[0] << 8) | pos[1]; 1279 } 1280 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT; 1281 1282 return TX_CONTINUE; 1283 } 1284 1285 /* 1286 * Returns false if the frame couldn't be transmitted but was queued instead. 1287 */ 1288 static bool __ieee80211_tx(struct ieee80211_local *local, struct sk_buff **skbp, 1289 struct sta_info *sta, bool txpending) 1290 { 1291 struct sk_buff *skb = *skbp, *next; 1292 struct ieee80211_tx_info *info; 1293 struct ieee80211_sub_if_data *sdata; 1294 unsigned long flags; 1295 int len; 1296 bool fragm = false; 1297 1298 while (skb) { 1299 int q = skb_get_queue_mapping(skb); 1300 __le16 fc; 1301 1302 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 1303 if (local->queue_stop_reasons[q] || 1304 (!txpending && !skb_queue_empty(&local->pending[q]))) { 1305 /* 1306 * Since queue is stopped, queue up frames for later 1307 * transmission from the tx-pending tasklet when the 1308 * queue is woken again. 1309 */ 1310 1311 do { 1312 next = skb->next; 1313 skb->next = NULL; 1314 /* 1315 * NB: If txpending is true, next must already 1316 * be NULL since we must've gone through this 1317 * loop before already; therefore we can just 1318 * queue the frame to the head without worrying 1319 * about reordering of fragments. 1320 */ 1321 if (unlikely(txpending)) 1322 __skb_queue_head(&local->pending[q], 1323 skb); 1324 else 1325 __skb_queue_tail(&local->pending[q], 1326 skb); 1327 } while ((skb = next)); 1328 1329 spin_unlock_irqrestore(&local->queue_stop_reason_lock, 1330 flags); 1331 return false; 1332 } 1333 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 1334 1335 info = IEEE80211_SKB_CB(skb); 1336 1337 if (fragm) 1338 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT | 1339 IEEE80211_TX_CTL_FIRST_FRAGMENT); 1340 1341 next = skb->next; 1342 len = skb->len; 1343 1344 if (next) 1345 info->flags |= IEEE80211_TX_CTL_MORE_FRAMES; 1346 1347 sdata = vif_to_sdata(info->control.vif); 1348 1349 switch (sdata->vif.type) { 1350 case NL80211_IFTYPE_MONITOR: 1351 info->control.vif = NULL; 1352 break; 1353 case NL80211_IFTYPE_AP_VLAN: 1354 info->control.vif = &container_of(sdata->bss, 1355 struct ieee80211_sub_if_data, u.ap)->vif; 1356 break; 1357 default: 1358 /* keep */ 1359 break; 1360 } 1361 1362 if (sta && sta->uploaded) 1363 info->control.sta = &sta->sta; 1364 else 1365 info->control.sta = NULL; 1366 1367 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 1368 drv_tx(local, skb); 1369 1370 ieee80211_tpt_led_trig_tx(local, fc, len); 1371 *skbp = skb = next; 1372 ieee80211_led_tx(local, 1); 1373 fragm = true; 1374 } 1375 1376 return true; 1377 } 1378 1379 /* 1380 * Invoke TX handlers, return 0 on success and non-zero if the 1381 * frame was dropped or queued. 1382 */ 1383 static int invoke_tx_handlers(struct ieee80211_tx_data *tx) 1384 { 1385 struct sk_buff *skb = tx->skb; 1386 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1387 ieee80211_tx_result res = TX_DROP; 1388 1389 #define CALL_TXH(txh) \ 1390 do { \ 1391 res = txh(tx); \ 1392 if (res != TX_CONTINUE) \ 1393 goto txh_done; \ 1394 } while (0) 1395 1396 CALL_TXH(ieee80211_tx_h_dynamic_ps); 1397 CALL_TXH(ieee80211_tx_h_check_assoc); 1398 CALL_TXH(ieee80211_tx_h_ps_buf); 1399 CALL_TXH(ieee80211_tx_h_check_control_port_protocol); 1400 CALL_TXH(ieee80211_tx_h_select_key); 1401 if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL)) 1402 CALL_TXH(ieee80211_tx_h_rate_ctrl); 1403 1404 if (unlikely(info->flags & IEEE80211_TX_INTFL_RETRANSMISSION)) 1405 goto txh_done; 1406 1407 CALL_TXH(ieee80211_tx_h_michael_mic_add); 1408 CALL_TXH(ieee80211_tx_h_sequence); 1409 CALL_TXH(ieee80211_tx_h_fragment); 1410 /* handlers after fragment must be aware of tx info fragmentation! */ 1411 CALL_TXH(ieee80211_tx_h_stats); 1412 CALL_TXH(ieee80211_tx_h_encrypt); 1413 if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL)) 1414 CALL_TXH(ieee80211_tx_h_calculate_duration); 1415 #undef CALL_TXH 1416 1417 txh_done: 1418 if (unlikely(res == TX_DROP)) { 1419 I802_DEBUG_INC(tx->local->tx_handlers_drop); 1420 while (skb) { 1421 struct sk_buff *next; 1422 1423 next = skb->next; 1424 dev_kfree_skb(skb); 1425 skb = next; 1426 } 1427 return -1; 1428 } else if (unlikely(res == TX_QUEUED)) { 1429 I802_DEBUG_INC(tx->local->tx_handlers_queued); 1430 return -1; 1431 } 1432 1433 return 0; 1434 } 1435 1436 /* 1437 * Returns false if the frame couldn't be transmitted but was queued instead. 1438 */ 1439 static bool ieee80211_tx(struct ieee80211_sub_if_data *sdata, 1440 struct sk_buff *skb, bool txpending) 1441 { 1442 struct ieee80211_local *local = sdata->local; 1443 struct ieee80211_tx_data tx; 1444 ieee80211_tx_result res_prepare; 1445 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1446 bool result = true; 1447 1448 if (unlikely(skb->len < 10)) { 1449 dev_kfree_skb(skb); 1450 return true; 1451 } 1452 1453 rcu_read_lock(); 1454 1455 /* initialises tx */ 1456 res_prepare = ieee80211_tx_prepare(sdata, &tx, skb); 1457 1458 if (unlikely(res_prepare == TX_DROP)) { 1459 dev_kfree_skb(skb); 1460 goto out; 1461 } else if (unlikely(res_prepare == TX_QUEUED)) { 1462 goto out; 1463 } 1464 1465 tx.channel = local->hw.conf.channel; 1466 info->band = tx.channel->band; 1467 1468 if (!invoke_tx_handlers(&tx)) 1469 result = __ieee80211_tx(local, &tx.skb, tx.sta, txpending); 1470 out: 1471 rcu_read_unlock(); 1472 return result; 1473 } 1474 1475 /* device xmit handlers */ 1476 1477 static int ieee80211_skb_resize(struct ieee80211_local *local, 1478 struct sk_buff *skb, 1479 int head_need, bool may_encrypt) 1480 { 1481 int tail_need = 0; 1482 1483 /* 1484 * This could be optimised, devices that do full hardware 1485 * crypto (including TKIP MMIC) need no tailroom... But we 1486 * have no drivers for such devices currently. 1487 */ 1488 if (may_encrypt) { 1489 tail_need = IEEE80211_ENCRYPT_TAILROOM; 1490 tail_need -= skb_tailroom(skb); 1491 tail_need = max_t(int, tail_need, 0); 1492 } 1493 1494 if (head_need || tail_need) { 1495 /* Sorry. Can't account for this any more */ 1496 skb_orphan(skb); 1497 } 1498 1499 if (skb_cloned(skb)) 1500 I802_DEBUG_INC(local->tx_expand_skb_head_cloned); 1501 else if (head_need || tail_need) 1502 I802_DEBUG_INC(local->tx_expand_skb_head); 1503 else 1504 return 0; 1505 1506 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) { 1507 wiphy_debug(local->hw.wiphy, 1508 "failed to reallocate TX buffer\n"); 1509 return -ENOMEM; 1510 } 1511 1512 /* update truesize too */ 1513 skb->truesize += head_need + tail_need; 1514 1515 return 0; 1516 } 1517 1518 static void ieee80211_xmit(struct ieee80211_sub_if_data *sdata, 1519 struct sk_buff *skb) 1520 { 1521 struct ieee80211_local *local = sdata->local; 1522 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1523 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1524 struct ieee80211_sub_if_data *tmp_sdata; 1525 int headroom; 1526 bool may_encrypt; 1527 1528 rcu_read_lock(); 1529 1530 if (unlikely(sdata->vif.type == NL80211_IFTYPE_MONITOR)) { 1531 int hdrlen; 1532 u16 len_rthdr; 1533 1534 info->flags |= IEEE80211_TX_CTL_INJECTED | 1535 IEEE80211_TX_INTFL_HAS_RADIOTAP; 1536 1537 len_rthdr = ieee80211_get_radiotap_len(skb->data); 1538 hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr); 1539 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1540 1541 /* check the header is complete in the frame */ 1542 if (likely(skb->len >= len_rthdr + hdrlen)) { 1543 /* 1544 * We process outgoing injected frames that have a 1545 * local address we handle as though they are our 1546 * own frames. 1547 * This code here isn't entirely correct, the local 1548 * MAC address is not necessarily enough to find 1549 * the interface to use; for that proper VLAN/WDS 1550 * support we will need a different mechanism. 1551 */ 1552 1553 list_for_each_entry_rcu(tmp_sdata, &local->interfaces, 1554 list) { 1555 if (!ieee80211_sdata_running(tmp_sdata)) 1556 continue; 1557 if (tmp_sdata->vif.type == 1558 NL80211_IFTYPE_MONITOR || 1559 tmp_sdata->vif.type == 1560 NL80211_IFTYPE_AP_VLAN || 1561 tmp_sdata->vif.type == 1562 NL80211_IFTYPE_WDS) 1563 continue; 1564 if (compare_ether_addr(tmp_sdata->vif.addr, 1565 hdr->addr2) == 0) { 1566 sdata = tmp_sdata; 1567 break; 1568 } 1569 } 1570 } 1571 } 1572 1573 may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT); 1574 1575 headroom = local->tx_headroom; 1576 if (may_encrypt) 1577 headroom += IEEE80211_ENCRYPT_HEADROOM; 1578 headroom -= skb_headroom(skb); 1579 headroom = max_t(int, 0, headroom); 1580 1581 if (ieee80211_skb_resize(local, skb, headroom, may_encrypt)) { 1582 dev_kfree_skb(skb); 1583 rcu_read_unlock(); 1584 return; 1585 } 1586 1587 hdr = (struct ieee80211_hdr *) skb->data; 1588 info->control.vif = &sdata->vif; 1589 1590 if (ieee80211_vif_is_mesh(&sdata->vif) && 1591 ieee80211_is_data(hdr->frame_control) && 1592 !is_multicast_ether_addr(hdr->addr1)) 1593 if (mesh_nexthop_lookup(skb, sdata)) { 1594 /* skb queued: don't free */ 1595 rcu_read_unlock(); 1596 return; 1597 } 1598 1599 ieee80211_set_qos_hdr(local, skb); 1600 ieee80211_tx(sdata, skb, false); 1601 rcu_read_unlock(); 1602 } 1603 1604 netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb, 1605 struct net_device *dev) 1606 { 1607 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 1608 struct ieee80211_channel *chan = local->hw.conf.channel; 1609 struct ieee80211_radiotap_header *prthdr = 1610 (struct ieee80211_radiotap_header *)skb->data; 1611 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1612 u16 len_rthdr; 1613 1614 /* 1615 * Frame injection is not allowed if beaconing is not allowed 1616 * or if we need radar detection. Beaconing is usually not allowed when 1617 * the mode or operation (Adhoc, AP, Mesh) does not support DFS. 1618 * Passive scan is also used in world regulatory domains where 1619 * your country is not known and as such it should be treated as 1620 * NO TX unless the channel is explicitly allowed in which case 1621 * your current regulatory domain would not have the passive scan 1622 * flag. 1623 * 1624 * Since AP mode uses monitor interfaces to inject/TX management 1625 * frames we can make AP mode the exception to this rule once it 1626 * supports radar detection as its implementation can deal with 1627 * radar detection by itself. We can do that later by adding a 1628 * monitor flag interfaces used for AP support. 1629 */ 1630 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR | 1631 IEEE80211_CHAN_PASSIVE_SCAN))) 1632 goto fail; 1633 1634 /* check for not even having the fixed radiotap header part */ 1635 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header))) 1636 goto fail; /* too short to be possibly valid */ 1637 1638 /* is it a header version we can trust to find length from? */ 1639 if (unlikely(prthdr->it_version)) 1640 goto fail; /* only version 0 is supported */ 1641 1642 /* then there must be a radiotap header with a length we can use */ 1643 len_rthdr = ieee80211_get_radiotap_len(skb->data); 1644 1645 /* does the skb contain enough to deliver on the alleged length? */ 1646 if (unlikely(skb->len < len_rthdr)) 1647 goto fail; /* skb too short for claimed rt header extent */ 1648 1649 /* 1650 * fix up the pointers accounting for the radiotap 1651 * header still being in there. We are being given 1652 * a precooked IEEE80211 header so no need for 1653 * normal processing 1654 */ 1655 skb_set_mac_header(skb, len_rthdr); 1656 /* 1657 * these are just fixed to the end of the rt area since we 1658 * don't have any better information and at this point, nobody cares 1659 */ 1660 skb_set_network_header(skb, len_rthdr); 1661 skb_set_transport_header(skb, len_rthdr); 1662 1663 memset(info, 0, sizeof(*info)); 1664 1665 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; 1666 1667 /* pass the radiotap header up to xmit */ 1668 ieee80211_xmit(IEEE80211_DEV_TO_SUB_IF(dev), skb); 1669 return NETDEV_TX_OK; 1670 1671 fail: 1672 dev_kfree_skb(skb); 1673 return NETDEV_TX_OK; /* meaning, we dealt with the skb */ 1674 } 1675 1676 /** 1677 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type 1678 * subinterfaces (wlan#, WDS, and VLAN interfaces) 1679 * @skb: packet to be sent 1680 * @dev: incoming interface 1681 * 1682 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will 1683 * not be freed, and caller is responsible for either retrying later or freeing 1684 * skb). 1685 * 1686 * This function takes in an Ethernet header and encapsulates it with suitable 1687 * IEEE 802.11 header based on which interface the packet is coming in. The 1688 * encapsulated packet will then be passed to master interface, wlan#.11, for 1689 * transmission (through low-level driver). 1690 */ 1691 netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb, 1692 struct net_device *dev) 1693 { 1694 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); 1695 struct ieee80211_local *local = sdata->local; 1696 struct ieee80211_tx_info *info; 1697 int ret = NETDEV_TX_BUSY, head_need; 1698 u16 ethertype, hdrlen, meshhdrlen = 0; 1699 __le16 fc; 1700 struct ieee80211_hdr hdr; 1701 struct ieee80211s_hdr mesh_hdr __maybe_unused; 1702 struct mesh_path __maybe_unused *mppath = NULL; 1703 const u8 *encaps_data; 1704 int encaps_len, skip_header_bytes; 1705 int nh_pos, h_pos; 1706 struct sta_info *sta = NULL; 1707 u32 sta_flags = 0; 1708 struct sk_buff *tmp_skb; 1709 1710 if (unlikely(skb->len < ETH_HLEN)) { 1711 ret = NETDEV_TX_OK; 1712 goto fail; 1713 } 1714 1715 /* convert Ethernet header to proper 802.11 header (based on 1716 * operation mode) */ 1717 ethertype = (skb->data[12] << 8) | skb->data[13]; 1718 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 1719 1720 switch (sdata->vif.type) { 1721 case NL80211_IFTYPE_AP_VLAN: 1722 rcu_read_lock(); 1723 sta = rcu_dereference(sdata->u.vlan.sta); 1724 if (sta) { 1725 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); 1726 /* RA TA DA SA */ 1727 memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN); 1728 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); 1729 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1730 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1731 hdrlen = 30; 1732 sta_flags = get_sta_flags(sta); 1733 } 1734 rcu_read_unlock(); 1735 if (sta) 1736 break; 1737 /* fall through */ 1738 case NL80211_IFTYPE_AP: 1739 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 1740 /* DA BSSID SA */ 1741 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1742 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); 1743 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 1744 hdrlen = 24; 1745 break; 1746 case NL80211_IFTYPE_WDS: 1747 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); 1748 /* RA TA DA SA */ 1749 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN); 1750 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); 1751 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1752 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1753 hdrlen = 30; 1754 break; 1755 #ifdef CONFIG_MAC80211_MESH 1756 case NL80211_IFTYPE_MESH_POINT: 1757 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) { 1758 /* Do not send frames with mesh_ttl == 0 */ 1759 sdata->u.mesh.mshstats.dropped_frames_ttl++; 1760 ret = NETDEV_TX_OK; 1761 goto fail; 1762 } 1763 rcu_read_lock(); 1764 if (!is_multicast_ether_addr(skb->data)) 1765 mppath = mpp_path_lookup(skb->data, sdata); 1766 1767 /* 1768 * Use address extension if it is a packet from 1769 * another interface or if we know the destination 1770 * is being proxied by a portal (i.e. portal address 1771 * differs from proxied address) 1772 */ 1773 if (compare_ether_addr(sdata->vif.addr, 1774 skb->data + ETH_ALEN) == 0 && 1775 !(mppath && compare_ether_addr(mppath->mpp, skb->data))) { 1776 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, 1777 skb->data, skb->data + ETH_ALEN); 1778 rcu_read_unlock(); 1779 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr, 1780 sdata, NULL, NULL); 1781 } else { 1782 int is_mesh_mcast = 1; 1783 const u8 *mesh_da; 1784 1785 if (is_multicast_ether_addr(skb->data)) 1786 /* DA TA mSA AE:SA */ 1787 mesh_da = skb->data; 1788 else { 1789 static const u8 bcast[ETH_ALEN] = 1790 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 1791 if (mppath) { 1792 /* RA TA mDA mSA AE:DA SA */ 1793 mesh_da = mppath->mpp; 1794 is_mesh_mcast = 0; 1795 } else { 1796 /* DA TA mSA AE:SA */ 1797 mesh_da = bcast; 1798 } 1799 } 1800 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, 1801 mesh_da, sdata->vif.addr); 1802 rcu_read_unlock(); 1803 if (is_mesh_mcast) 1804 meshhdrlen = 1805 ieee80211_new_mesh_header(&mesh_hdr, 1806 sdata, 1807 skb->data + ETH_ALEN, 1808 NULL); 1809 else 1810 meshhdrlen = 1811 ieee80211_new_mesh_header(&mesh_hdr, 1812 sdata, 1813 skb->data, 1814 skb->data + ETH_ALEN); 1815 1816 } 1817 break; 1818 #endif 1819 case NL80211_IFTYPE_STATION: 1820 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN); 1821 if (sdata->u.mgd.use_4addr && 1822 cpu_to_be16(ethertype) != sdata->control_port_protocol) { 1823 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); 1824 /* RA TA DA SA */ 1825 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); 1826 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1827 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1828 hdrlen = 30; 1829 } else { 1830 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 1831 /* BSSID SA DA */ 1832 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 1833 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1834 hdrlen = 24; 1835 } 1836 break; 1837 case NL80211_IFTYPE_ADHOC: 1838 /* DA SA BSSID */ 1839 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1840 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 1841 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN); 1842 hdrlen = 24; 1843 break; 1844 default: 1845 ret = NETDEV_TX_OK; 1846 goto fail; 1847 } 1848 1849 /* 1850 * There's no need to try to look up the destination 1851 * if it is a multicast address (which can only happen 1852 * in AP mode) 1853 */ 1854 if (!is_multicast_ether_addr(hdr.addr1)) { 1855 rcu_read_lock(); 1856 sta = sta_info_get(sdata, hdr.addr1); 1857 if (sta) 1858 sta_flags = get_sta_flags(sta); 1859 rcu_read_unlock(); 1860 } 1861 1862 /* receiver and we are QoS enabled, use a QoS type frame */ 1863 if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) { 1864 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 1865 hdrlen += 2; 1866 } 1867 1868 /* 1869 * Drop unicast frames to unauthorised stations unless they are 1870 * EAPOL frames from the local station. 1871 */ 1872 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1873 unlikely(!is_multicast_ether_addr(hdr.addr1) && 1874 !(sta_flags & WLAN_STA_AUTHORIZED) && 1875 !(cpu_to_be16(ethertype) == sdata->control_port_protocol && 1876 compare_ether_addr(sdata->vif.addr, 1877 skb->data + ETH_ALEN) == 0))) { 1878 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 1879 if (net_ratelimit()) 1880 printk(KERN_DEBUG "%s: dropped frame to %pM" 1881 " (unauthorized port)\n", dev->name, 1882 hdr.addr1); 1883 #endif 1884 1885 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port); 1886 1887 ret = NETDEV_TX_OK; 1888 goto fail; 1889 } 1890 1891 /* 1892 * If the skb is shared we need to obtain our own copy. 1893 */ 1894 if (skb_shared(skb)) { 1895 tmp_skb = skb; 1896 skb = skb_clone(skb, GFP_ATOMIC); 1897 kfree_skb(tmp_skb); 1898 1899 if (!skb) { 1900 ret = NETDEV_TX_OK; 1901 goto fail; 1902 } 1903 } 1904 1905 hdr.frame_control = fc; 1906 hdr.duration_id = 0; 1907 hdr.seq_ctrl = 0; 1908 1909 skip_header_bytes = ETH_HLEN; 1910 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 1911 encaps_data = bridge_tunnel_header; 1912 encaps_len = sizeof(bridge_tunnel_header); 1913 skip_header_bytes -= 2; 1914 } else if (ethertype >= 0x600) { 1915 encaps_data = rfc1042_header; 1916 encaps_len = sizeof(rfc1042_header); 1917 skip_header_bytes -= 2; 1918 } else { 1919 encaps_data = NULL; 1920 encaps_len = 0; 1921 } 1922 1923 nh_pos = skb_network_header(skb) - skb->data; 1924 h_pos = skb_transport_header(skb) - skb->data; 1925 1926 skb_pull(skb, skip_header_bytes); 1927 nh_pos -= skip_header_bytes; 1928 h_pos -= skip_header_bytes; 1929 1930 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb); 1931 1932 /* 1933 * So we need to modify the skb header and hence need a copy of 1934 * that. The head_need variable above doesn't, so far, include 1935 * the needed header space that we don't need right away. If we 1936 * can, then we don't reallocate right now but only after the 1937 * frame arrives at the master device (if it does...) 1938 * 1939 * If we cannot, however, then we will reallocate to include all 1940 * the ever needed space. Also, if we need to reallocate it anyway, 1941 * make it big enough for everything we may ever need. 1942 */ 1943 1944 if (head_need > 0 || skb_cloned(skb)) { 1945 head_need += IEEE80211_ENCRYPT_HEADROOM; 1946 head_need += local->tx_headroom; 1947 head_need = max_t(int, 0, head_need); 1948 if (ieee80211_skb_resize(local, skb, head_need, true)) 1949 goto fail; 1950 } 1951 1952 if (encaps_data) { 1953 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 1954 nh_pos += encaps_len; 1955 h_pos += encaps_len; 1956 } 1957 1958 #ifdef CONFIG_MAC80211_MESH 1959 if (meshhdrlen > 0) { 1960 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen); 1961 nh_pos += meshhdrlen; 1962 h_pos += meshhdrlen; 1963 } 1964 #endif 1965 1966 if (ieee80211_is_data_qos(fc)) { 1967 __le16 *qos_control; 1968 1969 qos_control = (__le16*) skb_push(skb, 2); 1970 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2); 1971 /* 1972 * Maybe we could actually set some fields here, for now just 1973 * initialise to zero to indicate no special operation. 1974 */ 1975 *qos_control = 0; 1976 } else 1977 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 1978 1979 nh_pos += hdrlen; 1980 h_pos += hdrlen; 1981 1982 dev->stats.tx_packets++; 1983 dev->stats.tx_bytes += skb->len; 1984 1985 /* Update skb pointers to various headers since this modified frame 1986 * is going to go through Linux networking code that may potentially 1987 * need things like pointer to IP header. */ 1988 skb_set_mac_header(skb, 0); 1989 skb_set_network_header(skb, nh_pos); 1990 skb_set_transport_header(skb, h_pos); 1991 1992 info = IEEE80211_SKB_CB(skb); 1993 memset(info, 0, sizeof(*info)); 1994 1995 dev->trans_start = jiffies; 1996 ieee80211_xmit(sdata, skb); 1997 1998 return NETDEV_TX_OK; 1999 2000 fail: 2001 if (ret == NETDEV_TX_OK) 2002 dev_kfree_skb(skb); 2003 2004 return ret; 2005 } 2006 2007 2008 /* 2009 * ieee80211_clear_tx_pending may not be called in a context where 2010 * it is possible that it packets could come in again. 2011 */ 2012 void ieee80211_clear_tx_pending(struct ieee80211_local *local) 2013 { 2014 int i; 2015 2016 for (i = 0; i < local->hw.queues; i++) 2017 skb_queue_purge(&local->pending[i]); 2018 } 2019 2020 /* 2021 * Returns false if the frame couldn't be transmitted but was queued instead, 2022 * which in this case means re-queued -- take as an indication to stop sending 2023 * more pending frames. 2024 */ 2025 static bool ieee80211_tx_pending_skb(struct ieee80211_local *local, 2026 struct sk_buff *skb) 2027 { 2028 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2029 struct ieee80211_sub_if_data *sdata; 2030 struct sta_info *sta; 2031 struct ieee80211_hdr *hdr; 2032 bool result; 2033 2034 sdata = vif_to_sdata(info->control.vif); 2035 2036 if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) { 2037 result = ieee80211_tx(sdata, skb, true); 2038 } else { 2039 hdr = (struct ieee80211_hdr *)skb->data; 2040 sta = sta_info_get(sdata, hdr->addr1); 2041 2042 result = __ieee80211_tx(local, &skb, sta, true); 2043 } 2044 2045 return result; 2046 } 2047 2048 /* 2049 * Transmit all pending packets. Called from tasklet. 2050 */ 2051 void ieee80211_tx_pending(unsigned long data) 2052 { 2053 struct ieee80211_local *local = (struct ieee80211_local *)data; 2054 struct ieee80211_sub_if_data *sdata; 2055 unsigned long flags; 2056 int i; 2057 bool txok; 2058 2059 rcu_read_lock(); 2060 2061 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 2062 for (i = 0; i < local->hw.queues; i++) { 2063 /* 2064 * If queue is stopped by something other than due to pending 2065 * frames, or we have no pending frames, proceed to next queue. 2066 */ 2067 if (local->queue_stop_reasons[i] || 2068 skb_queue_empty(&local->pending[i])) 2069 continue; 2070 2071 while (!skb_queue_empty(&local->pending[i])) { 2072 struct sk_buff *skb = __skb_dequeue(&local->pending[i]); 2073 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2074 2075 if (WARN_ON(!info->control.vif)) { 2076 kfree_skb(skb); 2077 continue; 2078 } 2079 2080 spin_unlock_irqrestore(&local->queue_stop_reason_lock, 2081 flags); 2082 2083 txok = ieee80211_tx_pending_skb(local, skb); 2084 spin_lock_irqsave(&local->queue_stop_reason_lock, 2085 flags); 2086 if (!txok) 2087 break; 2088 } 2089 2090 if (skb_queue_empty(&local->pending[i])) 2091 list_for_each_entry_rcu(sdata, &local->interfaces, list) 2092 netif_wake_subqueue(sdata->dev, i); 2093 } 2094 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 2095 2096 rcu_read_unlock(); 2097 } 2098 2099 /* functions for drivers to get certain frames */ 2100 2101 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss, 2102 struct sk_buff *skb, 2103 struct beacon_data *beacon) 2104 { 2105 u8 *pos, *tim; 2106 int aid0 = 0; 2107 int i, have_bits = 0, n1, n2; 2108 2109 /* Generate bitmap for TIM only if there are any STAs in power save 2110 * mode. */ 2111 if (atomic_read(&bss->num_sta_ps) > 0) 2112 /* in the hope that this is faster than 2113 * checking byte-for-byte */ 2114 have_bits = !bitmap_empty((unsigned long*)bss->tim, 2115 IEEE80211_MAX_AID+1); 2116 2117 if (bss->dtim_count == 0) 2118 bss->dtim_count = beacon->dtim_period - 1; 2119 else 2120 bss->dtim_count--; 2121 2122 tim = pos = (u8 *) skb_put(skb, 6); 2123 *pos++ = WLAN_EID_TIM; 2124 *pos++ = 4; 2125 *pos++ = bss->dtim_count; 2126 *pos++ = beacon->dtim_period; 2127 2128 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf)) 2129 aid0 = 1; 2130 2131 bss->dtim_bc_mc = aid0 == 1; 2132 2133 if (have_bits) { 2134 /* Find largest even number N1 so that bits numbered 1 through 2135 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits 2136 * (N2 + 1) x 8 through 2007 are 0. */ 2137 n1 = 0; 2138 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) { 2139 if (bss->tim[i]) { 2140 n1 = i & 0xfe; 2141 break; 2142 } 2143 } 2144 n2 = n1; 2145 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) { 2146 if (bss->tim[i]) { 2147 n2 = i; 2148 break; 2149 } 2150 } 2151 2152 /* Bitmap control */ 2153 *pos++ = n1 | aid0; 2154 /* Part Virt Bitmap */ 2155 memcpy(pos, bss->tim + n1, n2 - n1 + 1); 2156 2157 tim[1] = n2 - n1 + 4; 2158 skb_put(skb, n2 - n1); 2159 } else { 2160 *pos++ = aid0; /* Bitmap control */ 2161 *pos++ = 0; /* Part Virt Bitmap */ 2162 } 2163 } 2164 2165 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw, 2166 struct ieee80211_vif *vif, 2167 u16 *tim_offset, u16 *tim_length) 2168 { 2169 struct ieee80211_local *local = hw_to_local(hw); 2170 struct sk_buff *skb = NULL; 2171 struct ieee80211_tx_info *info; 2172 struct ieee80211_sub_if_data *sdata = NULL; 2173 struct ieee80211_if_ap *ap = NULL; 2174 struct beacon_data *beacon; 2175 struct ieee80211_supported_band *sband; 2176 enum ieee80211_band band = local->hw.conf.channel->band; 2177 struct ieee80211_tx_rate_control txrc; 2178 2179 sband = local->hw.wiphy->bands[band]; 2180 2181 rcu_read_lock(); 2182 2183 sdata = vif_to_sdata(vif); 2184 2185 if (!ieee80211_sdata_running(sdata)) 2186 goto out; 2187 2188 if (tim_offset) 2189 *tim_offset = 0; 2190 if (tim_length) 2191 *tim_length = 0; 2192 2193 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2194 ap = &sdata->u.ap; 2195 beacon = rcu_dereference(ap->beacon); 2196 if (beacon) { 2197 /* 2198 * headroom, head length, 2199 * tail length and maximum TIM length 2200 */ 2201 skb = dev_alloc_skb(local->tx_headroom + 2202 beacon->head_len + 2203 beacon->tail_len + 256); 2204 if (!skb) 2205 goto out; 2206 2207 skb_reserve(skb, local->tx_headroom); 2208 memcpy(skb_put(skb, beacon->head_len), beacon->head, 2209 beacon->head_len); 2210 2211 /* 2212 * Not very nice, but we want to allow the driver to call 2213 * ieee80211_beacon_get() as a response to the set_tim() 2214 * callback. That, however, is already invoked under the 2215 * sta_lock to guarantee consistent and race-free update 2216 * of the tim bitmap in mac80211 and the driver. 2217 */ 2218 if (local->tim_in_locked_section) { 2219 ieee80211_beacon_add_tim(ap, skb, beacon); 2220 } else { 2221 unsigned long flags; 2222 2223 spin_lock_irqsave(&local->sta_lock, flags); 2224 ieee80211_beacon_add_tim(ap, skb, beacon); 2225 spin_unlock_irqrestore(&local->sta_lock, flags); 2226 } 2227 2228 if (tim_offset) 2229 *tim_offset = beacon->head_len; 2230 if (tim_length) 2231 *tim_length = skb->len - beacon->head_len; 2232 2233 if (beacon->tail) 2234 memcpy(skb_put(skb, beacon->tail_len), 2235 beacon->tail, beacon->tail_len); 2236 } else 2237 goto out; 2238 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 2239 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 2240 struct ieee80211_hdr *hdr; 2241 struct sk_buff *presp = rcu_dereference(ifibss->presp); 2242 2243 if (!presp) 2244 goto out; 2245 2246 skb = skb_copy(presp, GFP_ATOMIC); 2247 if (!skb) 2248 goto out; 2249 2250 hdr = (struct ieee80211_hdr *) skb->data; 2251 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2252 IEEE80211_STYPE_BEACON); 2253 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 2254 struct ieee80211_mgmt *mgmt; 2255 u8 *pos; 2256 2257 #ifdef CONFIG_MAC80211_MESH 2258 if (!sdata->u.mesh.mesh_id_len) 2259 goto out; 2260 #endif 2261 2262 /* headroom, head length, tail length and maximum TIM length */ 2263 skb = dev_alloc_skb(local->tx_headroom + 400 + 2264 sdata->u.mesh.ie_len); 2265 if (!skb) 2266 goto out; 2267 2268 skb_reserve(skb, local->hw.extra_tx_headroom); 2269 mgmt = (struct ieee80211_mgmt *) 2270 skb_put(skb, 24 + sizeof(mgmt->u.beacon)); 2271 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon)); 2272 mgmt->frame_control = 2273 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); 2274 memset(mgmt->da, 0xff, ETH_ALEN); 2275 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 2276 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 2277 mgmt->u.beacon.beacon_int = 2278 cpu_to_le16(sdata->vif.bss_conf.beacon_int); 2279 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */ 2280 2281 pos = skb_put(skb, 2); 2282 *pos++ = WLAN_EID_SSID; 2283 *pos++ = 0x0; 2284 2285 mesh_mgmt_ies_add(skb, sdata); 2286 } else { 2287 WARN_ON(1); 2288 goto out; 2289 } 2290 2291 info = IEEE80211_SKB_CB(skb); 2292 2293 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 2294 info->flags |= IEEE80211_TX_CTL_NO_ACK; 2295 info->band = band; 2296 2297 memset(&txrc, 0, sizeof(txrc)); 2298 txrc.hw = hw; 2299 txrc.sband = sband; 2300 txrc.bss_conf = &sdata->vif.bss_conf; 2301 txrc.skb = skb; 2302 txrc.reported_rate.idx = -1; 2303 txrc.rate_idx_mask = sdata->rc_rateidx_mask[band]; 2304 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1) 2305 txrc.max_rate_idx = -1; 2306 else 2307 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1; 2308 txrc.bss = true; 2309 rate_control_get_rate(sdata, NULL, &txrc); 2310 2311 info->control.vif = vif; 2312 2313 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT | 2314 IEEE80211_TX_CTL_ASSIGN_SEQ | 2315 IEEE80211_TX_CTL_FIRST_FRAGMENT; 2316 out: 2317 rcu_read_unlock(); 2318 return skb; 2319 } 2320 EXPORT_SYMBOL(ieee80211_beacon_get_tim); 2321 2322 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw, 2323 struct ieee80211_vif *vif) 2324 { 2325 struct ieee80211_sub_if_data *sdata; 2326 struct ieee80211_if_managed *ifmgd; 2327 struct ieee80211_pspoll *pspoll; 2328 struct ieee80211_local *local; 2329 struct sk_buff *skb; 2330 2331 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2332 return NULL; 2333 2334 sdata = vif_to_sdata(vif); 2335 ifmgd = &sdata->u.mgd; 2336 local = sdata->local; 2337 2338 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll)); 2339 if (!skb) { 2340 printk(KERN_DEBUG "%s: failed to allocate buffer for " 2341 "pspoll template\n", sdata->name); 2342 return NULL; 2343 } 2344 skb_reserve(skb, local->hw.extra_tx_headroom); 2345 2346 pspoll = (struct ieee80211_pspoll *) skb_put(skb, sizeof(*pspoll)); 2347 memset(pspoll, 0, sizeof(*pspoll)); 2348 pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | 2349 IEEE80211_STYPE_PSPOLL); 2350 pspoll->aid = cpu_to_le16(ifmgd->aid); 2351 2352 /* aid in PS-Poll has its two MSBs each set to 1 */ 2353 pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14); 2354 2355 memcpy(pspoll->bssid, ifmgd->bssid, ETH_ALEN); 2356 memcpy(pspoll->ta, vif->addr, ETH_ALEN); 2357 2358 return skb; 2359 } 2360 EXPORT_SYMBOL(ieee80211_pspoll_get); 2361 2362 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw, 2363 struct ieee80211_vif *vif) 2364 { 2365 struct ieee80211_hdr_3addr *nullfunc; 2366 struct ieee80211_sub_if_data *sdata; 2367 struct ieee80211_if_managed *ifmgd; 2368 struct ieee80211_local *local; 2369 struct sk_buff *skb; 2370 2371 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2372 return NULL; 2373 2374 sdata = vif_to_sdata(vif); 2375 ifmgd = &sdata->u.mgd; 2376 local = sdata->local; 2377 2378 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*nullfunc)); 2379 if (!skb) { 2380 printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc " 2381 "template\n", sdata->name); 2382 return NULL; 2383 } 2384 skb_reserve(skb, local->hw.extra_tx_headroom); 2385 2386 nullfunc = (struct ieee80211_hdr_3addr *) skb_put(skb, 2387 sizeof(*nullfunc)); 2388 memset(nullfunc, 0, sizeof(*nullfunc)); 2389 nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA | 2390 IEEE80211_STYPE_NULLFUNC | 2391 IEEE80211_FCTL_TODS); 2392 memcpy(nullfunc->addr1, ifmgd->bssid, ETH_ALEN); 2393 memcpy(nullfunc->addr2, vif->addr, ETH_ALEN); 2394 memcpy(nullfunc->addr3, ifmgd->bssid, ETH_ALEN); 2395 2396 return skb; 2397 } 2398 EXPORT_SYMBOL(ieee80211_nullfunc_get); 2399 2400 struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw, 2401 struct ieee80211_vif *vif, 2402 const u8 *ssid, size_t ssid_len, 2403 const u8 *ie, size_t ie_len) 2404 { 2405 struct ieee80211_sub_if_data *sdata; 2406 struct ieee80211_local *local; 2407 struct ieee80211_hdr_3addr *hdr; 2408 struct sk_buff *skb; 2409 size_t ie_ssid_len; 2410 u8 *pos; 2411 2412 sdata = vif_to_sdata(vif); 2413 local = sdata->local; 2414 ie_ssid_len = 2 + ssid_len; 2415 2416 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*hdr) + 2417 ie_ssid_len + ie_len); 2418 if (!skb) { 2419 printk(KERN_DEBUG "%s: failed to allocate buffer for probe " 2420 "request template\n", sdata->name); 2421 return NULL; 2422 } 2423 2424 skb_reserve(skb, local->hw.extra_tx_headroom); 2425 2426 hdr = (struct ieee80211_hdr_3addr *) skb_put(skb, sizeof(*hdr)); 2427 memset(hdr, 0, sizeof(*hdr)); 2428 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2429 IEEE80211_STYPE_PROBE_REQ); 2430 memset(hdr->addr1, 0xff, ETH_ALEN); 2431 memcpy(hdr->addr2, vif->addr, ETH_ALEN); 2432 memset(hdr->addr3, 0xff, ETH_ALEN); 2433 2434 pos = skb_put(skb, ie_ssid_len); 2435 *pos++ = WLAN_EID_SSID; 2436 *pos++ = ssid_len; 2437 if (ssid) 2438 memcpy(pos, ssid, ssid_len); 2439 pos += ssid_len; 2440 2441 if (ie) { 2442 pos = skb_put(skb, ie_len); 2443 memcpy(pos, ie, ie_len); 2444 } 2445 2446 return skb; 2447 } 2448 EXPORT_SYMBOL(ieee80211_probereq_get); 2449 2450 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2451 const void *frame, size_t frame_len, 2452 const struct ieee80211_tx_info *frame_txctl, 2453 struct ieee80211_rts *rts) 2454 { 2455 const struct ieee80211_hdr *hdr = frame; 2456 2457 rts->frame_control = 2458 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS); 2459 rts->duration = ieee80211_rts_duration(hw, vif, frame_len, 2460 frame_txctl); 2461 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra)); 2462 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta)); 2463 } 2464 EXPORT_SYMBOL(ieee80211_rts_get); 2465 2466 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2467 const void *frame, size_t frame_len, 2468 const struct ieee80211_tx_info *frame_txctl, 2469 struct ieee80211_cts *cts) 2470 { 2471 const struct ieee80211_hdr *hdr = frame; 2472 2473 cts->frame_control = 2474 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS); 2475 cts->duration = ieee80211_ctstoself_duration(hw, vif, 2476 frame_len, frame_txctl); 2477 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra)); 2478 } 2479 EXPORT_SYMBOL(ieee80211_ctstoself_get); 2480 2481 struct sk_buff * 2482 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, 2483 struct ieee80211_vif *vif) 2484 { 2485 struct ieee80211_local *local = hw_to_local(hw); 2486 struct sk_buff *skb = NULL; 2487 struct ieee80211_tx_data tx; 2488 struct ieee80211_sub_if_data *sdata; 2489 struct ieee80211_if_ap *bss = NULL; 2490 struct beacon_data *beacon; 2491 struct ieee80211_tx_info *info; 2492 2493 sdata = vif_to_sdata(vif); 2494 bss = &sdata->u.ap; 2495 2496 rcu_read_lock(); 2497 beacon = rcu_dereference(bss->beacon); 2498 2499 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head) 2500 goto out; 2501 2502 if (bss->dtim_count != 0 || !bss->dtim_bc_mc) 2503 goto out; /* send buffered bc/mc only after DTIM beacon */ 2504 2505 while (1) { 2506 skb = skb_dequeue(&bss->ps_bc_buf); 2507 if (!skb) 2508 goto out; 2509 local->total_ps_buffered--; 2510 2511 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) { 2512 struct ieee80211_hdr *hdr = 2513 (struct ieee80211_hdr *) skb->data; 2514 /* more buffered multicast/broadcast frames ==> set 2515 * MoreData flag in IEEE 802.11 header to inform PS 2516 * STAs */ 2517 hdr->frame_control |= 2518 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 2519 } 2520 2521 if (!ieee80211_tx_prepare(sdata, &tx, skb)) 2522 break; 2523 dev_kfree_skb_any(skb); 2524 } 2525 2526 info = IEEE80211_SKB_CB(skb); 2527 2528 tx.flags |= IEEE80211_TX_PS_BUFFERED; 2529 tx.channel = local->hw.conf.channel; 2530 info->band = tx.channel->band; 2531 2532 if (invoke_tx_handlers(&tx)) 2533 skb = NULL; 2534 out: 2535 rcu_read_unlock(); 2536 2537 return skb; 2538 } 2539 EXPORT_SYMBOL(ieee80211_get_buffered_bc); 2540 2541 void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) 2542 { 2543 skb_set_mac_header(skb, 0); 2544 skb_set_network_header(skb, 0); 2545 skb_set_transport_header(skb, 0); 2546 2547 /* Send all internal mgmt frames on VO. Accordingly set TID to 7. */ 2548 skb_set_queue_mapping(skb, IEEE80211_AC_VO); 2549 skb->priority = 7; 2550 2551 /* 2552 * The other path calling ieee80211_xmit is from the tasklet, 2553 * and while we can handle concurrent transmissions locking 2554 * requirements are that we do not come into tx with bhs on. 2555 */ 2556 local_bh_disable(); 2557 ieee80211_xmit(sdata, skb); 2558 local_bh_enable(); 2559 } 2560