1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * 12 * Transmit and frame generation functions. 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/skbuff.h> 18 #include <linux/etherdevice.h> 19 #include <linux/bitmap.h> 20 #include <linux/rcupdate.h> 21 #include <net/net_namespace.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <net/cfg80211.h> 24 #include <net/mac80211.h> 25 #include <asm/unaligned.h> 26 27 #include "ieee80211_i.h" 28 #include "driver-ops.h" 29 #include "led.h" 30 #include "mesh.h" 31 #include "wep.h" 32 #include "wpa.h" 33 #include "wme.h" 34 #include "rate.h" 35 36 #define IEEE80211_TX_OK 0 37 #define IEEE80211_TX_AGAIN 1 38 #define IEEE80211_TX_PENDING 2 39 40 /* misc utils */ 41 42 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr, 43 int next_frag_len) 44 { 45 int rate, mrate, erp, dur, i; 46 struct ieee80211_rate *txrate; 47 struct ieee80211_local *local = tx->local; 48 struct ieee80211_supported_band *sband; 49 struct ieee80211_hdr *hdr; 50 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 51 52 /* assume HW handles this */ 53 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS) 54 return 0; 55 56 /* uh huh? */ 57 if (WARN_ON_ONCE(info->control.rates[0].idx < 0)) 58 return 0; 59 60 sband = local->hw.wiphy->bands[tx->channel->band]; 61 txrate = &sband->bitrates[info->control.rates[0].idx]; 62 63 erp = txrate->flags & IEEE80211_RATE_ERP_G; 64 65 /* 66 * data and mgmt (except PS Poll): 67 * - during CFP: 32768 68 * - during contention period: 69 * if addr1 is group address: 0 70 * if more fragments = 0 and addr1 is individual address: time to 71 * transmit one ACK plus SIFS 72 * if more fragments = 1 and addr1 is individual address: time to 73 * transmit next fragment plus 2 x ACK plus 3 x SIFS 74 * 75 * IEEE 802.11, 9.6: 76 * - control response frame (CTS or ACK) shall be transmitted using the 77 * same rate as the immediately previous frame in the frame exchange 78 * sequence, if this rate belongs to the PHY mandatory rates, or else 79 * at the highest possible rate belonging to the PHY rates in the 80 * BSSBasicRateSet 81 */ 82 hdr = (struct ieee80211_hdr *)tx->skb->data; 83 if (ieee80211_is_ctl(hdr->frame_control)) { 84 /* TODO: These control frames are not currently sent by 85 * mac80211, but should they be implemented, this function 86 * needs to be updated to support duration field calculation. 87 * 88 * RTS: time needed to transmit pending data/mgmt frame plus 89 * one CTS frame plus one ACK frame plus 3 x SIFS 90 * CTS: duration of immediately previous RTS minus time 91 * required to transmit CTS and its SIFS 92 * ACK: 0 if immediately previous directed data/mgmt had 93 * more=0, with more=1 duration in ACK frame is duration 94 * from previous frame minus time needed to transmit ACK 95 * and its SIFS 96 * PS Poll: BIT(15) | BIT(14) | aid 97 */ 98 return 0; 99 } 100 101 /* data/mgmt */ 102 if (0 /* FIX: data/mgmt during CFP */) 103 return cpu_to_le16(32768); 104 105 if (group_addr) /* Group address as the destination - no ACK */ 106 return 0; 107 108 /* Individual destination address: 109 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes) 110 * CTS and ACK frames shall be transmitted using the highest rate in 111 * basic rate set that is less than or equal to the rate of the 112 * immediately previous frame and that is using the same modulation 113 * (CCK or OFDM). If no basic rate set matches with these requirements, 114 * the highest mandatory rate of the PHY that is less than or equal to 115 * the rate of the previous frame is used. 116 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps 117 */ 118 rate = -1; 119 /* use lowest available if everything fails */ 120 mrate = sband->bitrates[0].bitrate; 121 for (i = 0; i < sband->n_bitrates; i++) { 122 struct ieee80211_rate *r = &sband->bitrates[i]; 123 124 if (r->bitrate > txrate->bitrate) 125 break; 126 127 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i)) 128 rate = r->bitrate; 129 130 switch (sband->band) { 131 case IEEE80211_BAND_2GHZ: { 132 u32 flag; 133 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 134 flag = IEEE80211_RATE_MANDATORY_G; 135 else 136 flag = IEEE80211_RATE_MANDATORY_B; 137 if (r->flags & flag) 138 mrate = r->bitrate; 139 break; 140 } 141 case IEEE80211_BAND_5GHZ: 142 if (r->flags & IEEE80211_RATE_MANDATORY_A) 143 mrate = r->bitrate; 144 break; 145 case IEEE80211_NUM_BANDS: 146 WARN_ON(1); 147 break; 148 } 149 } 150 if (rate == -1) { 151 /* No matching basic rate found; use highest suitable mandatory 152 * PHY rate */ 153 rate = mrate; 154 } 155 156 /* Time needed to transmit ACK 157 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up 158 * to closest integer */ 159 160 dur = ieee80211_frame_duration(local, 10, rate, erp, 161 tx->sdata->vif.bss_conf.use_short_preamble); 162 163 if (next_frag_len) { 164 /* Frame is fragmented: duration increases with time needed to 165 * transmit next fragment plus ACK and 2 x SIFS. */ 166 dur *= 2; /* ACK + SIFS */ 167 /* next fragment */ 168 dur += ieee80211_frame_duration(local, next_frag_len, 169 txrate->bitrate, erp, 170 tx->sdata->vif.bss_conf.use_short_preamble); 171 } 172 173 return cpu_to_le16(dur); 174 } 175 176 static int inline is_ieee80211_device(struct ieee80211_local *local, 177 struct net_device *dev) 178 { 179 return local == wdev_priv(dev->ieee80211_ptr); 180 } 181 182 /* tx handlers */ 183 static ieee80211_tx_result debug_noinline 184 ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx) 185 { 186 struct ieee80211_local *local = tx->local; 187 struct ieee80211_if_managed *ifmgd; 188 189 /* driver doesn't support power save */ 190 if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS)) 191 return TX_CONTINUE; 192 193 /* hardware does dynamic power save */ 194 if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS) 195 return TX_CONTINUE; 196 197 /* dynamic power save disabled */ 198 if (local->hw.conf.dynamic_ps_timeout <= 0) 199 return TX_CONTINUE; 200 201 /* we are scanning, don't enable power save */ 202 if (local->scanning) 203 return TX_CONTINUE; 204 205 if (!local->ps_sdata) 206 return TX_CONTINUE; 207 208 /* No point if we're going to suspend */ 209 if (local->quiescing) 210 return TX_CONTINUE; 211 212 /* dynamic ps is supported only in managed mode */ 213 if (tx->sdata->vif.type != NL80211_IFTYPE_STATION) 214 return TX_CONTINUE; 215 216 ifmgd = &tx->sdata->u.mgd; 217 218 /* 219 * Don't wakeup from power save if u-apsd is enabled, voip ac has 220 * u-apsd enabled and the frame is in voip class. This effectively 221 * means that even if all access categories have u-apsd enabled, in 222 * practise u-apsd is only used with the voip ac. This is a 223 * workaround for the case when received voip class packets do not 224 * have correct qos tag for some reason, due the network or the 225 * peer application. 226 * 227 * Note: local->uapsd_queues access is racy here. If the value is 228 * changed via debugfs, user needs to reassociate manually to have 229 * everything in sync. 230 */ 231 if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED) 232 && (local->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO) 233 && skb_get_queue_mapping(tx->skb) == 0) 234 return TX_CONTINUE; 235 236 if (local->hw.conf.flags & IEEE80211_CONF_PS) { 237 ieee80211_stop_queues_by_reason(&local->hw, 238 IEEE80211_QUEUE_STOP_REASON_PS); 239 ieee80211_queue_work(&local->hw, 240 &local->dynamic_ps_disable_work); 241 } 242 243 mod_timer(&local->dynamic_ps_timer, jiffies + 244 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 245 246 return TX_CONTINUE; 247 } 248 249 static ieee80211_tx_result debug_noinline 250 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx) 251 { 252 253 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 254 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 255 u32 sta_flags; 256 257 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) 258 return TX_CONTINUE; 259 260 if (unlikely(test_bit(SCAN_OFF_CHANNEL, &tx->local->scanning)) && 261 !ieee80211_is_probe_req(hdr->frame_control) && 262 !ieee80211_is_nullfunc(hdr->frame_control)) 263 /* 264 * When software scanning only nullfunc frames (to notify 265 * the sleep state to the AP) and probe requests (for the 266 * active scan) are allowed, all other frames should not be 267 * sent and we should not get here, but if we do 268 * nonetheless, drop them to avoid sending them 269 * off-channel. See the link below and 270 * ieee80211_start_scan() for more. 271 * 272 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089 273 */ 274 return TX_DROP; 275 276 if (tx->sdata->vif.type == NL80211_IFTYPE_WDS) 277 return TX_CONTINUE; 278 279 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 280 return TX_CONTINUE; 281 282 if (tx->flags & IEEE80211_TX_PS_BUFFERED) 283 return TX_CONTINUE; 284 285 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0; 286 287 if (likely(tx->flags & IEEE80211_TX_UNICAST)) { 288 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) && 289 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 290 ieee80211_is_data(hdr->frame_control))) { 291 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 292 printk(KERN_DEBUG "%s: dropped data frame to not " 293 "associated station %pM\n", 294 tx->sdata->name, hdr->addr1); 295 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ 296 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc); 297 return TX_DROP; 298 } 299 } else { 300 if (unlikely(ieee80211_is_data(hdr->frame_control) && 301 tx->local->num_sta == 0 && 302 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) { 303 /* 304 * No associated STAs - no need to send multicast 305 * frames. 306 */ 307 return TX_DROP; 308 } 309 return TX_CONTINUE; 310 } 311 312 return TX_CONTINUE; 313 } 314 315 /* This function is called whenever the AP is about to exceed the maximum limit 316 * of buffered frames for power saving STAs. This situation should not really 317 * happen often during normal operation, so dropping the oldest buffered packet 318 * from each queue should be OK to make some room for new frames. */ 319 static void purge_old_ps_buffers(struct ieee80211_local *local) 320 { 321 int total = 0, purged = 0; 322 struct sk_buff *skb; 323 struct ieee80211_sub_if_data *sdata; 324 struct sta_info *sta; 325 326 /* 327 * virtual interfaces are protected by RCU 328 */ 329 rcu_read_lock(); 330 331 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 332 struct ieee80211_if_ap *ap; 333 if (sdata->vif.type != NL80211_IFTYPE_AP) 334 continue; 335 ap = &sdata->u.ap; 336 skb = skb_dequeue(&ap->ps_bc_buf); 337 if (skb) { 338 purged++; 339 dev_kfree_skb(skb); 340 } 341 total += skb_queue_len(&ap->ps_bc_buf); 342 } 343 344 list_for_each_entry_rcu(sta, &local->sta_list, list) { 345 skb = skb_dequeue(&sta->ps_tx_buf); 346 if (skb) { 347 purged++; 348 dev_kfree_skb(skb); 349 } 350 total += skb_queue_len(&sta->ps_tx_buf); 351 } 352 353 rcu_read_unlock(); 354 355 local->total_ps_buffered = total; 356 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 357 wiphy_debug(local->hw.wiphy, "PS buffers full - purged %d frames\n", 358 purged); 359 #endif 360 } 361 362 static ieee80211_tx_result 363 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx) 364 { 365 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 366 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 367 368 /* 369 * broadcast/multicast frame 370 * 371 * If any of the associated stations is in power save mode, 372 * the frame is buffered to be sent after DTIM beacon frame. 373 * This is done either by the hardware or us. 374 */ 375 376 /* powersaving STAs only in AP/VLAN mode */ 377 if (!tx->sdata->bss) 378 return TX_CONTINUE; 379 380 /* no buffering for ordered frames */ 381 if (ieee80211_has_order(hdr->frame_control)) 382 return TX_CONTINUE; 383 384 /* no stations in PS mode */ 385 if (!atomic_read(&tx->sdata->bss->num_sta_ps)) 386 return TX_CONTINUE; 387 388 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM; 389 390 /* device releases frame after DTIM beacon */ 391 if (!(tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING)) 392 return TX_CONTINUE; 393 394 /* buffered in mac80211 */ 395 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) 396 purge_old_ps_buffers(tx->local); 397 398 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= AP_MAX_BC_BUFFER) { 399 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 400 if (net_ratelimit()) 401 printk(KERN_DEBUG "%s: BC TX buffer full - dropping the oldest frame\n", 402 tx->sdata->name); 403 #endif 404 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf)); 405 } else 406 tx->local->total_ps_buffered++; 407 408 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb); 409 410 return TX_QUEUED; 411 } 412 413 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta, 414 struct sk_buff *skb) 415 { 416 if (!ieee80211_is_mgmt(fc)) 417 return 0; 418 419 if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP)) 420 return 0; 421 422 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) 423 skb->data)) 424 return 0; 425 426 return 1; 427 } 428 429 static ieee80211_tx_result 430 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx) 431 { 432 struct sta_info *sta = tx->sta; 433 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 434 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 435 struct ieee80211_local *local = tx->local; 436 u32 staflags; 437 438 if (unlikely(!sta || 439 ieee80211_is_probe_resp(hdr->frame_control) || 440 ieee80211_is_auth(hdr->frame_control) || 441 ieee80211_is_assoc_resp(hdr->frame_control) || 442 ieee80211_is_reassoc_resp(hdr->frame_control))) 443 return TX_CONTINUE; 444 445 staflags = get_sta_flags(sta); 446 447 if (unlikely((staflags & (WLAN_STA_PS_STA | WLAN_STA_PS_DRIVER)) && 448 !(info->flags & IEEE80211_TX_CTL_PSPOLL_RESPONSE))) { 449 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 450 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries " 451 "before %d)\n", 452 sta->sta.addr, sta->sta.aid, 453 skb_queue_len(&sta->ps_tx_buf)); 454 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 455 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) 456 purge_old_ps_buffers(tx->local); 457 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) { 458 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf); 459 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 460 if (net_ratelimit()) { 461 printk(KERN_DEBUG "%s: STA %pM TX " 462 "buffer full - dropping oldest frame\n", 463 tx->sdata->name, sta->sta.addr); 464 } 465 #endif 466 dev_kfree_skb(old); 467 } else 468 tx->local->total_ps_buffered++; 469 470 /* 471 * Queue frame to be sent after STA wakes up/polls, 472 * but don't set the TIM bit if the driver is blocking 473 * wakeup or poll response transmissions anyway. 474 */ 475 if (skb_queue_empty(&sta->ps_tx_buf) && 476 !(staflags & WLAN_STA_PS_DRIVER)) 477 sta_info_set_tim_bit(sta); 478 479 info->control.jiffies = jiffies; 480 info->control.vif = &tx->sdata->vif; 481 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 482 skb_queue_tail(&sta->ps_tx_buf, tx->skb); 483 484 if (!timer_pending(&local->sta_cleanup)) 485 mod_timer(&local->sta_cleanup, 486 round_jiffies(jiffies + 487 STA_INFO_CLEANUP_INTERVAL)); 488 489 return TX_QUEUED; 490 } 491 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 492 else if (unlikely(staflags & WLAN_STA_PS_STA)) { 493 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll " 494 "set -> send frame\n", tx->sdata->name, 495 sta->sta.addr); 496 } 497 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 498 499 return TX_CONTINUE; 500 } 501 502 static ieee80211_tx_result debug_noinline 503 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx) 504 { 505 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED)) 506 return TX_CONTINUE; 507 508 if (tx->flags & IEEE80211_TX_UNICAST) 509 return ieee80211_tx_h_unicast_ps_buf(tx); 510 else 511 return ieee80211_tx_h_multicast_ps_buf(tx); 512 } 513 514 static ieee80211_tx_result debug_noinline 515 ieee80211_tx_h_check_control_port_protocol(struct ieee80211_tx_data *tx) 516 { 517 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 518 519 if (unlikely(tx->sdata->control_port_protocol == tx->skb->protocol && 520 tx->sdata->control_port_no_encrypt)) 521 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 522 523 return TX_CONTINUE; 524 } 525 526 static ieee80211_tx_result debug_noinline 527 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx) 528 { 529 struct ieee80211_key *key = NULL; 530 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 531 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 532 533 if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT)) 534 tx->key = NULL; 535 else if (tx->sta && (key = rcu_dereference(tx->sta->ptk))) 536 tx->key = key; 537 else if (ieee80211_is_mgmt(hdr->frame_control) && 538 is_multicast_ether_addr(hdr->addr1) && 539 ieee80211_is_robust_mgmt_frame(hdr) && 540 (key = rcu_dereference(tx->sdata->default_mgmt_key))) 541 tx->key = key; 542 else if (is_multicast_ether_addr(hdr->addr1) && 543 (key = rcu_dereference(tx->sdata->default_multicast_key))) 544 tx->key = key; 545 else if (!is_multicast_ether_addr(hdr->addr1) && 546 (key = rcu_dereference(tx->sdata->default_unicast_key))) 547 tx->key = key; 548 else if (tx->sdata->drop_unencrypted && 549 (tx->skb->protocol != tx->sdata->control_port_protocol) && 550 !(info->flags & IEEE80211_TX_CTL_INJECTED) && 551 (!ieee80211_is_robust_mgmt_frame(hdr) || 552 (ieee80211_is_action(hdr->frame_control) && 553 tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) { 554 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted); 555 return TX_DROP; 556 } else 557 tx->key = NULL; 558 559 if (tx->key) { 560 bool skip_hw = false; 561 562 tx->key->tx_rx_count++; 563 /* TODO: add threshold stuff again */ 564 565 switch (tx->key->conf.cipher) { 566 case WLAN_CIPHER_SUITE_WEP40: 567 case WLAN_CIPHER_SUITE_WEP104: 568 if (ieee80211_is_auth(hdr->frame_control)) 569 break; 570 case WLAN_CIPHER_SUITE_TKIP: 571 if (!ieee80211_is_data_present(hdr->frame_control)) 572 tx->key = NULL; 573 break; 574 case WLAN_CIPHER_SUITE_CCMP: 575 if (!ieee80211_is_data_present(hdr->frame_control) && 576 !ieee80211_use_mfp(hdr->frame_control, tx->sta, 577 tx->skb)) 578 tx->key = NULL; 579 else 580 skip_hw = (tx->key->conf.flags & 581 IEEE80211_KEY_FLAG_SW_MGMT) && 582 ieee80211_is_mgmt(hdr->frame_control); 583 break; 584 case WLAN_CIPHER_SUITE_AES_CMAC: 585 if (!ieee80211_is_mgmt(hdr->frame_control)) 586 tx->key = NULL; 587 break; 588 } 589 590 if (!skip_hw && tx->key && 591 tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) 592 info->control.hw_key = &tx->key->conf; 593 } 594 595 return TX_CONTINUE; 596 } 597 598 static ieee80211_tx_result debug_noinline 599 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx) 600 { 601 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 602 struct ieee80211_hdr *hdr = (void *)tx->skb->data; 603 struct ieee80211_supported_band *sband; 604 struct ieee80211_rate *rate; 605 int i; 606 u32 len; 607 bool inval = false, rts = false, short_preamble = false; 608 struct ieee80211_tx_rate_control txrc; 609 u32 sta_flags; 610 611 memset(&txrc, 0, sizeof(txrc)); 612 613 sband = tx->local->hw.wiphy->bands[tx->channel->band]; 614 615 len = min_t(u32, tx->skb->len + FCS_LEN, 616 tx->local->hw.wiphy->frag_threshold); 617 618 /* set up the tx rate control struct we give the RC algo */ 619 txrc.hw = local_to_hw(tx->local); 620 txrc.sband = sband; 621 txrc.bss_conf = &tx->sdata->vif.bss_conf; 622 txrc.skb = tx->skb; 623 txrc.reported_rate.idx = -1; 624 txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[tx->channel->band]; 625 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1) 626 txrc.max_rate_idx = -1; 627 else 628 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1; 629 txrc.bss = (tx->sdata->vif.type == NL80211_IFTYPE_AP || 630 tx->sdata->vif.type == NL80211_IFTYPE_ADHOC); 631 632 /* set up RTS protection if desired */ 633 if (len > tx->local->hw.wiphy->rts_threshold) { 634 txrc.rts = rts = true; 635 } 636 637 /* 638 * Use short preamble if the BSS can handle it, but not for 639 * management frames unless we know the receiver can handle 640 * that -- the management frame might be to a station that 641 * just wants a probe response. 642 */ 643 if (tx->sdata->vif.bss_conf.use_short_preamble && 644 (ieee80211_is_data(hdr->frame_control) || 645 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE)))) 646 txrc.short_preamble = short_preamble = true; 647 648 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0; 649 650 /* 651 * Lets not bother rate control if we're associated and cannot 652 * talk to the sta. This should not happen. 653 */ 654 if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) && 655 (sta_flags & WLAN_STA_ASSOC) && 656 !rate_usable_index_exists(sband, &tx->sta->sta), 657 "%s: Dropped data frame as no usable bitrate found while " 658 "scanning and associated. Target station: " 659 "%pM on %d GHz band\n", 660 tx->sdata->name, hdr->addr1, 661 tx->channel->band ? 5 : 2)) 662 return TX_DROP; 663 664 /* 665 * If we're associated with the sta at this point we know we can at 666 * least send the frame at the lowest bit rate. 667 */ 668 rate_control_get_rate(tx->sdata, tx->sta, &txrc); 669 670 if (unlikely(info->control.rates[0].idx < 0)) 671 return TX_DROP; 672 673 if (txrc.reported_rate.idx < 0) { 674 txrc.reported_rate = info->control.rates[0]; 675 if (tx->sta && ieee80211_is_data(hdr->frame_control)) 676 tx->sta->last_tx_rate = txrc.reported_rate; 677 } else if (tx->sta) 678 tx->sta->last_tx_rate = txrc.reported_rate; 679 680 if (unlikely(!info->control.rates[0].count)) 681 info->control.rates[0].count = 1; 682 683 if (WARN_ON_ONCE((info->control.rates[0].count > 1) && 684 (info->flags & IEEE80211_TX_CTL_NO_ACK))) 685 info->control.rates[0].count = 1; 686 687 if (is_multicast_ether_addr(hdr->addr1)) { 688 /* 689 * XXX: verify the rate is in the basic rateset 690 */ 691 return TX_CONTINUE; 692 } 693 694 /* 695 * set up the RTS/CTS rate as the fastest basic rate 696 * that is not faster than the data rate 697 * 698 * XXX: Should this check all retry rates? 699 */ 700 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) { 701 s8 baserate = 0; 702 703 rate = &sband->bitrates[info->control.rates[0].idx]; 704 705 for (i = 0; i < sband->n_bitrates; i++) { 706 /* must be a basic rate */ 707 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i))) 708 continue; 709 /* must not be faster than the data rate */ 710 if (sband->bitrates[i].bitrate > rate->bitrate) 711 continue; 712 /* maximum */ 713 if (sband->bitrates[baserate].bitrate < 714 sband->bitrates[i].bitrate) 715 baserate = i; 716 } 717 718 info->control.rts_cts_rate_idx = baserate; 719 } 720 721 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { 722 /* 723 * make sure there's no valid rate following 724 * an invalid one, just in case drivers don't 725 * take the API seriously to stop at -1. 726 */ 727 if (inval) { 728 info->control.rates[i].idx = -1; 729 continue; 730 } 731 if (info->control.rates[i].idx < 0) { 732 inval = true; 733 continue; 734 } 735 736 /* 737 * For now assume MCS is already set up correctly, this 738 * needs to be fixed. 739 */ 740 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) { 741 WARN_ON(info->control.rates[i].idx > 76); 742 continue; 743 } 744 745 /* set up RTS protection if desired */ 746 if (rts) 747 info->control.rates[i].flags |= 748 IEEE80211_TX_RC_USE_RTS_CTS; 749 750 /* RC is busted */ 751 if (WARN_ON_ONCE(info->control.rates[i].idx >= 752 sband->n_bitrates)) { 753 info->control.rates[i].idx = -1; 754 continue; 755 } 756 757 rate = &sband->bitrates[info->control.rates[i].idx]; 758 759 /* set up short preamble */ 760 if (short_preamble && 761 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE) 762 info->control.rates[i].flags |= 763 IEEE80211_TX_RC_USE_SHORT_PREAMBLE; 764 765 /* set up G protection */ 766 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot && 767 rate->flags & IEEE80211_RATE_ERP_G) 768 info->control.rates[i].flags |= 769 IEEE80211_TX_RC_USE_CTS_PROTECT; 770 } 771 772 return TX_CONTINUE; 773 } 774 775 static ieee80211_tx_result debug_noinline 776 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx) 777 { 778 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 779 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 780 u16 *seq; 781 u8 *qc; 782 int tid; 783 784 /* 785 * Packet injection may want to control the sequence 786 * number, if we have no matching interface then we 787 * neither assign one ourselves nor ask the driver to. 788 */ 789 if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR)) 790 return TX_CONTINUE; 791 792 if (unlikely(ieee80211_is_ctl(hdr->frame_control))) 793 return TX_CONTINUE; 794 795 if (ieee80211_hdrlen(hdr->frame_control) < 24) 796 return TX_CONTINUE; 797 798 /* 799 * Anything but QoS data that has a sequence number field 800 * (is long enough) gets a sequence number from the global 801 * counter. 802 */ 803 if (!ieee80211_is_data_qos(hdr->frame_control)) { 804 /* driver should assign sequence number */ 805 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; 806 /* for pure STA mode without beacons, we can do it */ 807 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number); 808 tx->sdata->sequence_number += 0x10; 809 return TX_CONTINUE; 810 } 811 812 /* 813 * This should be true for injected/management frames only, for 814 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ 815 * above since they are not QoS-data frames. 816 */ 817 if (!tx->sta) 818 return TX_CONTINUE; 819 820 /* include per-STA, per-TID sequence counter */ 821 822 qc = ieee80211_get_qos_ctl(hdr); 823 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 824 seq = &tx->sta->tid_seq[tid]; 825 826 hdr->seq_ctrl = cpu_to_le16(*seq); 827 828 /* Increase the sequence number. */ 829 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ; 830 831 return TX_CONTINUE; 832 } 833 834 static int ieee80211_fragment(struct ieee80211_local *local, 835 struct sk_buff *skb, int hdrlen, 836 int frag_threshold) 837 { 838 struct sk_buff *tail = skb, *tmp; 839 int per_fragm = frag_threshold - hdrlen - FCS_LEN; 840 int pos = hdrlen + per_fragm; 841 int rem = skb->len - hdrlen - per_fragm; 842 843 if (WARN_ON(rem < 0)) 844 return -EINVAL; 845 846 while (rem) { 847 int fraglen = per_fragm; 848 849 if (fraglen > rem) 850 fraglen = rem; 851 rem -= fraglen; 852 tmp = dev_alloc_skb(local->tx_headroom + 853 frag_threshold + 854 IEEE80211_ENCRYPT_HEADROOM + 855 IEEE80211_ENCRYPT_TAILROOM); 856 if (!tmp) 857 return -ENOMEM; 858 tail->next = tmp; 859 tail = tmp; 860 skb_reserve(tmp, local->tx_headroom + 861 IEEE80211_ENCRYPT_HEADROOM); 862 /* copy control information */ 863 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb)); 864 skb_copy_queue_mapping(tmp, skb); 865 tmp->priority = skb->priority; 866 tmp->dev = skb->dev; 867 868 /* copy header and data */ 869 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen); 870 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen); 871 872 pos += fraglen; 873 } 874 875 skb->len = hdrlen + per_fragm; 876 return 0; 877 } 878 879 static ieee80211_tx_result debug_noinline 880 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx) 881 { 882 struct sk_buff *skb = tx->skb; 883 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 884 struct ieee80211_hdr *hdr = (void *)skb->data; 885 int frag_threshold = tx->local->hw.wiphy->frag_threshold; 886 int hdrlen; 887 int fragnum; 888 889 if (!(tx->flags & IEEE80211_TX_FRAGMENTED)) 890 return TX_CONTINUE; 891 892 /* 893 * Warn when submitting a fragmented A-MPDU frame and drop it. 894 * This scenario is handled in ieee80211_tx_prepare but extra 895 * caution taken here as fragmented ampdu may cause Tx stop. 896 */ 897 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU)) 898 return TX_DROP; 899 900 hdrlen = ieee80211_hdrlen(hdr->frame_control); 901 902 /* internal error, why is TX_FRAGMENTED set? */ 903 if (WARN_ON(skb->len + FCS_LEN <= frag_threshold)) 904 return TX_DROP; 905 906 /* 907 * Now fragment the frame. This will allocate all the fragments and 908 * chain them (using skb as the first fragment) to skb->next. 909 * During transmission, we will remove the successfully transmitted 910 * fragments from this list. When the low-level driver rejects one 911 * of the fragments then we will simply pretend to accept the skb 912 * but store it away as pending. 913 */ 914 if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold)) 915 return TX_DROP; 916 917 /* update duration/seq/flags of fragments */ 918 fragnum = 0; 919 do { 920 int next_len; 921 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); 922 923 hdr = (void *)skb->data; 924 info = IEEE80211_SKB_CB(skb); 925 926 if (skb->next) { 927 hdr->frame_control |= morefrags; 928 next_len = skb->next->len; 929 /* 930 * No multi-rate retries for fragmented frames, that 931 * would completely throw off the NAV at other STAs. 932 */ 933 info->control.rates[1].idx = -1; 934 info->control.rates[2].idx = -1; 935 info->control.rates[3].idx = -1; 936 info->control.rates[4].idx = -1; 937 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5); 938 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE; 939 } else { 940 hdr->frame_control &= ~morefrags; 941 next_len = 0; 942 } 943 hdr->duration_id = ieee80211_duration(tx, 0, next_len); 944 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG); 945 fragnum++; 946 } while ((skb = skb->next)); 947 948 return TX_CONTINUE; 949 } 950 951 static ieee80211_tx_result debug_noinline 952 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx) 953 { 954 struct sk_buff *skb = tx->skb; 955 956 if (!tx->sta) 957 return TX_CONTINUE; 958 959 tx->sta->tx_packets++; 960 do { 961 tx->sta->tx_fragments++; 962 tx->sta->tx_bytes += skb->len; 963 } while ((skb = skb->next)); 964 965 return TX_CONTINUE; 966 } 967 968 static ieee80211_tx_result debug_noinline 969 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx) 970 { 971 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 972 973 if (!tx->key) 974 return TX_CONTINUE; 975 976 switch (tx->key->conf.cipher) { 977 case WLAN_CIPHER_SUITE_WEP40: 978 case WLAN_CIPHER_SUITE_WEP104: 979 return ieee80211_crypto_wep_encrypt(tx); 980 case WLAN_CIPHER_SUITE_TKIP: 981 return ieee80211_crypto_tkip_encrypt(tx); 982 case WLAN_CIPHER_SUITE_CCMP: 983 return ieee80211_crypto_ccmp_encrypt(tx); 984 case WLAN_CIPHER_SUITE_AES_CMAC: 985 return ieee80211_crypto_aes_cmac_encrypt(tx); 986 default: 987 /* handle hw-only algorithm */ 988 if (info->control.hw_key) { 989 ieee80211_tx_set_protected(tx); 990 return TX_CONTINUE; 991 } 992 break; 993 994 } 995 996 return TX_DROP; 997 } 998 999 static ieee80211_tx_result debug_noinline 1000 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx) 1001 { 1002 struct sk_buff *skb = tx->skb; 1003 struct ieee80211_hdr *hdr; 1004 int next_len; 1005 bool group_addr; 1006 1007 do { 1008 hdr = (void *) skb->data; 1009 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) 1010 break; /* must not overwrite AID */ 1011 next_len = skb->next ? skb->next->len : 0; 1012 group_addr = is_multicast_ether_addr(hdr->addr1); 1013 1014 hdr->duration_id = 1015 ieee80211_duration(tx, group_addr, next_len); 1016 } while ((skb = skb->next)); 1017 1018 return TX_CONTINUE; 1019 } 1020 1021 /* actual transmit path */ 1022 1023 /* 1024 * deal with packet injection down monitor interface 1025 * with Radiotap Header -- only called for monitor mode interface 1026 */ 1027 static bool __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx, 1028 struct sk_buff *skb) 1029 { 1030 /* 1031 * this is the moment to interpret and discard the radiotap header that 1032 * must be at the start of the packet injected in Monitor mode 1033 * 1034 * Need to take some care with endian-ness since radiotap 1035 * args are little-endian 1036 */ 1037 1038 struct ieee80211_radiotap_iterator iterator; 1039 struct ieee80211_radiotap_header *rthdr = 1040 (struct ieee80211_radiotap_header *) skb->data; 1041 struct ieee80211_supported_band *sband; 1042 bool hw_frag; 1043 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1044 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len, 1045 NULL); 1046 1047 sband = tx->local->hw.wiphy->bands[tx->channel->band]; 1048 1049 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 1050 tx->flags &= ~IEEE80211_TX_FRAGMENTED; 1051 1052 /* packet is fragmented in HW if we have a non-NULL driver callback */ 1053 hw_frag = (tx->local->ops->set_frag_threshold != NULL); 1054 1055 /* 1056 * for every radiotap entry that is present 1057 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more 1058 * entries present, or -EINVAL on error) 1059 */ 1060 1061 while (!ret) { 1062 ret = ieee80211_radiotap_iterator_next(&iterator); 1063 1064 if (ret) 1065 continue; 1066 1067 /* see if this argument is something we can use */ 1068 switch (iterator.this_arg_index) { 1069 /* 1070 * You must take care when dereferencing iterator.this_arg 1071 * for multibyte types... the pointer is not aligned. Use 1072 * get_unaligned((type *)iterator.this_arg) to dereference 1073 * iterator.this_arg for type "type" safely on all arches. 1074 */ 1075 case IEEE80211_RADIOTAP_FLAGS: 1076 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) { 1077 /* 1078 * this indicates that the skb we have been 1079 * handed has the 32-bit FCS CRC at the end... 1080 * we should react to that by snipping it off 1081 * because it will be recomputed and added 1082 * on transmission 1083 */ 1084 if (skb->len < (iterator._max_length + FCS_LEN)) 1085 return false; 1086 1087 skb_trim(skb, skb->len - FCS_LEN); 1088 } 1089 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP) 1090 info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT; 1091 if ((*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG) && 1092 !hw_frag) 1093 tx->flags |= IEEE80211_TX_FRAGMENTED; 1094 break; 1095 1096 /* 1097 * Please update the file 1098 * Documentation/networking/mac80211-injection.txt 1099 * when parsing new fields here. 1100 */ 1101 1102 default: 1103 break; 1104 } 1105 } 1106 1107 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */ 1108 return false; 1109 1110 /* 1111 * remove the radiotap header 1112 * iterator->_max_length was sanity-checked against 1113 * skb->len by iterator init 1114 */ 1115 skb_pull(skb, iterator._max_length); 1116 1117 return true; 1118 } 1119 1120 static bool ieee80211_tx_prep_agg(struct ieee80211_tx_data *tx, 1121 struct sk_buff *skb, 1122 struct ieee80211_tx_info *info, 1123 struct tid_ampdu_tx *tid_tx, 1124 int tid) 1125 { 1126 bool queued = false; 1127 1128 if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) { 1129 info->flags |= IEEE80211_TX_CTL_AMPDU; 1130 } else if (test_bit(HT_AGG_STATE_WANT_START, &tid_tx->state)) { 1131 /* 1132 * nothing -- this aggregation session is being started 1133 * but that might still fail with the driver 1134 */ 1135 } else { 1136 spin_lock(&tx->sta->lock); 1137 /* 1138 * Need to re-check now, because we may get here 1139 * 1140 * 1) in the window during which the setup is actually 1141 * already done, but not marked yet because not all 1142 * packets are spliced over to the driver pending 1143 * queue yet -- if this happened we acquire the lock 1144 * either before or after the splice happens, but 1145 * need to recheck which of these cases happened. 1146 * 1147 * 2) during session teardown, if the OPERATIONAL bit 1148 * was cleared due to the teardown but the pointer 1149 * hasn't been assigned NULL yet (or we loaded it 1150 * before it was assigned) -- in this case it may 1151 * now be NULL which means we should just let the 1152 * packet pass through because splicing the frames 1153 * back is already done. 1154 */ 1155 tid_tx = tx->sta->ampdu_mlme.tid_tx[tid]; 1156 1157 if (!tid_tx) { 1158 /* do nothing, let packet pass through */ 1159 } else if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) { 1160 info->flags |= IEEE80211_TX_CTL_AMPDU; 1161 } else { 1162 queued = true; 1163 info->control.vif = &tx->sdata->vif; 1164 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 1165 __skb_queue_tail(&tid_tx->pending, skb); 1166 } 1167 spin_unlock(&tx->sta->lock); 1168 } 1169 1170 return queued; 1171 } 1172 1173 /* 1174 * initialises @tx 1175 */ 1176 static ieee80211_tx_result 1177 ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata, 1178 struct ieee80211_tx_data *tx, 1179 struct sk_buff *skb) 1180 { 1181 struct ieee80211_local *local = sdata->local; 1182 struct ieee80211_hdr *hdr; 1183 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1184 int hdrlen, tid; 1185 u8 *qc; 1186 1187 memset(tx, 0, sizeof(*tx)); 1188 tx->skb = skb; 1189 tx->local = local; 1190 tx->sdata = sdata; 1191 tx->channel = local->hw.conf.channel; 1192 /* 1193 * Set this flag (used below to indicate "automatic fragmentation"), 1194 * it will be cleared/left by radiotap as desired. 1195 * Only valid when fragmentation is done by the stack. 1196 */ 1197 if (!local->ops->set_frag_threshold) 1198 tx->flags |= IEEE80211_TX_FRAGMENTED; 1199 1200 /* process and remove the injection radiotap header */ 1201 if (unlikely(info->flags & IEEE80211_TX_INTFL_HAS_RADIOTAP)) { 1202 if (!__ieee80211_parse_tx_radiotap(tx, skb)) 1203 return TX_DROP; 1204 1205 /* 1206 * __ieee80211_parse_tx_radiotap has now removed 1207 * the radiotap header that was present and pre-filled 1208 * 'tx' with tx control information. 1209 */ 1210 info->flags &= ~IEEE80211_TX_INTFL_HAS_RADIOTAP; 1211 } 1212 1213 /* 1214 * If this flag is set to true anywhere, and we get here, 1215 * we are doing the needed processing, so remove the flag 1216 * now. 1217 */ 1218 info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING; 1219 1220 hdr = (struct ieee80211_hdr *) skb->data; 1221 1222 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 1223 tx->sta = rcu_dereference(sdata->u.vlan.sta); 1224 if (!tx->sta && sdata->dev->ieee80211_ptr->use_4addr) 1225 return TX_DROP; 1226 } else if (info->flags & IEEE80211_TX_CTL_INJECTED) { 1227 tx->sta = sta_info_get_bss(sdata, hdr->addr1); 1228 } 1229 if (!tx->sta) 1230 tx->sta = sta_info_get(sdata, hdr->addr1); 1231 1232 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) && 1233 (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) { 1234 struct tid_ampdu_tx *tid_tx; 1235 1236 qc = ieee80211_get_qos_ctl(hdr); 1237 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 1238 1239 tid_tx = rcu_dereference(tx->sta->ampdu_mlme.tid_tx[tid]); 1240 if (tid_tx) { 1241 bool queued; 1242 1243 queued = ieee80211_tx_prep_agg(tx, skb, info, 1244 tid_tx, tid); 1245 1246 if (unlikely(queued)) 1247 return TX_QUEUED; 1248 } 1249 } 1250 1251 if (is_multicast_ether_addr(hdr->addr1)) { 1252 tx->flags &= ~IEEE80211_TX_UNICAST; 1253 info->flags |= IEEE80211_TX_CTL_NO_ACK; 1254 } else { 1255 tx->flags |= IEEE80211_TX_UNICAST; 1256 if (unlikely(local->wifi_wme_noack_test)) 1257 info->flags |= IEEE80211_TX_CTL_NO_ACK; 1258 else 1259 info->flags &= ~IEEE80211_TX_CTL_NO_ACK; 1260 } 1261 1262 if (tx->flags & IEEE80211_TX_FRAGMENTED) { 1263 if ((tx->flags & IEEE80211_TX_UNICAST) && 1264 skb->len + FCS_LEN > local->hw.wiphy->frag_threshold && 1265 !(info->flags & IEEE80211_TX_CTL_AMPDU)) 1266 tx->flags |= IEEE80211_TX_FRAGMENTED; 1267 else 1268 tx->flags &= ~IEEE80211_TX_FRAGMENTED; 1269 } 1270 1271 if (!tx->sta) 1272 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1273 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT)) 1274 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1275 1276 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1277 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) { 1278 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)]; 1279 tx->ethertype = (pos[0] << 8) | pos[1]; 1280 } 1281 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT; 1282 1283 return TX_CONTINUE; 1284 } 1285 1286 static int __ieee80211_tx(struct ieee80211_local *local, 1287 struct sk_buff **skbp, 1288 struct sta_info *sta, 1289 bool txpending) 1290 { 1291 struct sk_buff *skb = *skbp, *next; 1292 struct ieee80211_tx_info *info; 1293 struct ieee80211_sub_if_data *sdata; 1294 unsigned long flags; 1295 int ret, len; 1296 bool fragm = false; 1297 1298 while (skb) { 1299 int q = skb_get_queue_mapping(skb); 1300 __le16 fc; 1301 1302 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 1303 ret = IEEE80211_TX_OK; 1304 if (local->queue_stop_reasons[q] || 1305 (!txpending && !skb_queue_empty(&local->pending[q]))) 1306 ret = IEEE80211_TX_PENDING; 1307 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 1308 if (ret != IEEE80211_TX_OK) 1309 return ret; 1310 1311 info = IEEE80211_SKB_CB(skb); 1312 1313 if (fragm) 1314 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT | 1315 IEEE80211_TX_CTL_FIRST_FRAGMENT); 1316 1317 next = skb->next; 1318 len = skb->len; 1319 1320 if (next) 1321 info->flags |= IEEE80211_TX_CTL_MORE_FRAMES; 1322 1323 sdata = vif_to_sdata(info->control.vif); 1324 1325 switch (sdata->vif.type) { 1326 case NL80211_IFTYPE_MONITOR: 1327 info->control.vif = NULL; 1328 break; 1329 case NL80211_IFTYPE_AP_VLAN: 1330 info->control.vif = &container_of(sdata->bss, 1331 struct ieee80211_sub_if_data, u.ap)->vif; 1332 break; 1333 default: 1334 /* keep */ 1335 break; 1336 } 1337 1338 if (sta && sta->uploaded) 1339 info->control.sta = &sta->sta; 1340 else 1341 info->control.sta = NULL; 1342 1343 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 1344 ret = drv_tx(local, skb); 1345 if (WARN_ON(ret != NETDEV_TX_OK && skb->len != len)) { 1346 dev_kfree_skb(skb); 1347 ret = NETDEV_TX_OK; 1348 } 1349 if (ret != NETDEV_TX_OK) { 1350 info->control.vif = &sdata->vif; 1351 return IEEE80211_TX_AGAIN; 1352 } 1353 1354 ieee80211_tpt_led_trig_tx(local, fc, len); 1355 *skbp = skb = next; 1356 ieee80211_led_tx(local, 1); 1357 fragm = true; 1358 } 1359 1360 return IEEE80211_TX_OK; 1361 } 1362 1363 /* 1364 * Invoke TX handlers, return 0 on success and non-zero if the 1365 * frame was dropped or queued. 1366 */ 1367 static int invoke_tx_handlers(struct ieee80211_tx_data *tx) 1368 { 1369 struct sk_buff *skb = tx->skb; 1370 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1371 ieee80211_tx_result res = TX_DROP; 1372 1373 #define CALL_TXH(txh) \ 1374 do { \ 1375 res = txh(tx); \ 1376 if (res != TX_CONTINUE) \ 1377 goto txh_done; \ 1378 } while (0) 1379 1380 CALL_TXH(ieee80211_tx_h_dynamic_ps); 1381 CALL_TXH(ieee80211_tx_h_check_assoc); 1382 CALL_TXH(ieee80211_tx_h_ps_buf); 1383 CALL_TXH(ieee80211_tx_h_check_control_port_protocol); 1384 CALL_TXH(ieee80211_tx_h_select_key); 1385 if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL)) 1386 CALL_TXH(ieee80211_tx_h_rate_ctrl); 1387 1388 if (unlikely(info->flags & IEEE80211_TX_INTFL_RETRANSMISSION)) 1389 goto txh_done; 1390 1391 CALL_TXH(ieee80211_tx_h_michael_mic_add); 1392 CALL_TXH(ieee80211_tx_h_sequence); 1393 CALL_TXH(ieee80211_tx_h_fragment); 1394 /* handlers after fragment must be aware of tx info fragmentation! */ 1395 CALL_TXH(ieee80211_tx_h_stats); 1396 CALL_TXH(ieee80211_tx_h_encrypt); 1397 CALL_TXH(ieee80211_tx_h_calculate_duration); 1398 #undef CALL_TXH 1399 1400 txh_done: 1401 if (unlikely(res == TX_DROP)) { 1402 I802_DEBUG_INC(tx->local->tx_handlers_drop); 1403 while (skb) { 1404 struct sk_buff *next; 1405 1406 next = skb->next; 1407 dev_kfree_skb(skb); 1408 skb = next; 1409 } 1410 return -1; 1411 } else if (unlikely(res == TX_QUEUED)) { 1412 I802_DEBUG_INC(tx->local->tx_handlers_queued); 1413 return -1; 1414 } 1415 1416 return 0; 1417 } 1418 1419 static void ieee80211_tx(struct ieee80211_sub_if_data *sdata, 1420 struct sk_buff *skb, bool txpending) 1421 { 1422 struct ieee80211_local *local = sdata->local; 1423 struct ieee80211_tx_data tx; 1424 ieee80211_tx_result res_prepare; 1425 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1426 struct sk_buff *next; 1427 unsigned long flags; 1428 int ret, retries; 1429 u16 queue; 1430 1431 queue = skb_get_queue_mapping(skb); 1432 1433 if (unlikely(skb->len < 10)) { 1434 dev_kfree_skb(skb); 1435 return; 1436 } 1437 1438 rcu_read_lock(); 1439 1440 /* initialises tx */ 1441 res_prepare = ieee80211_tx_prepare(sdata, &tx, skb); 1442 1443 if (unlikely(res_prepare == TX_DROP)) { 1444 dev_kfree_skb(skb); 1445 rcu_read_unlock(); 1446 return; 1447 } else if (unlikely(res_prepare == TX_QUEUED)) { 1448 rcu_read_unlock(); 1449 return; 1450 } 1451 1452 tx.channel = local->hw.conf.channel; 1453 info->band = tx.channel->band; 1454 1455 if (invoke_tx_handlers(&tx)) 1456 goto out; 1457 1458 retries = 0; 1459 retry: 1460 ret = __ieee80211_tx(local, &tx.skb, tx.sta, txpending); 1461 switch (ret) { 1462 case IEEE80211_TX_OK: 1463 break; 1464 case IEEE80211_TX_AGAIN: 1465 /* 1466 * Since there are no fragmented frames on A-MPDU 1467 * queues, there's no reason for a driver to reject 1468 * a frame there, warn and drop it. 1469 */ 1470 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU)) 1471 goto drop; 1472 /* fall through */ 1473 case IEEE80211_TX_PENDING: 1474 skb = tx.skb; 1475 1476 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 1477 1478 if (local->queue_stop_reasons[queue] || 1479 !skb_queue_empty(&local->pending[queue])) { 1480 /* 1481 * if queue is stopped, queue up frames for later 1482 * transmission from the tasklet 1483 */ 1484 do { 1485 next = skb->next; 1486 skb->next = NULL; 1487 if (unlikely(txpending)) 1488 __skb_queue_head(&local->pending[queue], 1489 skb); 1490 else 1491 __skb_queue_tail(&local->pending[queue], 1492 skb); 1493 } while ((skb = next)); 1494 1495 spin_unlock_irqrestore(&local->queue_stop_reason_lock, 1496 flags); 1497 } else { 1498 /* 1499 * otherwise retry, but this is a race condition or 1500 * a driver bug (which we warn about if it persists) 1501 */ 1502 spin_unlock_irqrestore(&local->queue_stop_reason_lock, 1503 flags); 1504 1505 retries++; 1506 if (WARN(retries > 10, "tx refused but queue active\n")) 1507 goto drop; 1508 goto retry; 1509 } 1510 } 1511 out: 1512 rcu_read_unlock(); 1513 return; 1514 1515 drop: 1516 rcu_read_unlock(); 1517 1518 skb = tx.skb; 1519 while (skb) { 1520 next = skb->next; 1521 dev_kfree_skb(skb); 1522 skb = next; 1523 } 1524 } 1525 1526 /* device xmit handlers */ 1527 1528 static int ieee80211_skb_resize(struct ieee80211_local *local, 1529 struct sk_buff *skb, 1530 int head_need, bool may_encrypt) 1531 { 1532 int tail_need = 0; 1533 1534 /* 1535 * This could be optimised, devices that do full hardware 1536 * crypto (including TKIP MMIC) need no tailroom... But we 1537 * have no drivers for such devices currently. 1538 */ 1539 if (may_encrypt) { 1540 tail_need = IEEE80211_ENCRYPT_TAILROOM; 1541 tail_need -= skb_tailroom(skb); 1542 tail_need = max_t(int, tail_need, 0); 1543 } 1544 1545 if (head_need || tail_need) { 1546 /* Sorry. Can't account for this any more */ 1547 skb_orphan(skb); 1548 } 1549 1550 if (skb_header_cloned(skb)) 1551 I802_DEBUG_INC(local->tx_expand_skb_head_cloned); 1552 else if (head_need || tail_need) 1553 I802_DEBUG_INC(local->tx_expand_skb_head); 1554 else 1555 return 0; 1556 1557 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) { 1558 wiphy_debug(local->hw.wiphy, 1559 "failed to reallocate TX buffer\n"); 1560 return -ENOMEM; 1561 } 1562 1563 /* update truesize too */ 1564 skb->truesize += head_need + tail_need; 1565 1566 return 0; 1567 } 1568 1569 static void ieee80211_xmit(struct ieee80211_sub_if_data *sdata, 1570 struct sk_buff *skb) 1571 { 1572 struct ieee80211_local *local = sdata->local; 1573 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1574 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1575 struct ieee80211_sub_if_data *tmp_sdata; 1576 int headroom; 1577 bool may_encrypt; 1578 1579 rcu_read_lock(); 1580 1581 if (unlikely(sdata->vif.type == NL80211_IFTYPE_MONITOR)) { 1582 int hdrlen; 1583 u16 len_rthdr; 1584 1585 info->flags |= IEEE80211_TX_CTL_INJECTED | 1586 IEEE80211_TX_INTFL_HAS_RADIOTAP; 1587 1588 len_rthdr = ieee80211_get_radiotap_len(skb->data); 1589 hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr); 1590 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1591 1592 /* check the header is complete in the frame */ 1593 if (likely(skb->len >= len_rthdr + hdrlen)) { 1594 /* 1595 * We process outgoing injected frames that have a 1596 * local address we handle as though they are our 1597 * own frames. 1598 * This code here isn't entirely correct, the local 1599 * MAC address is not necessarily enough to find 1600 * the interface to use; for that proper VLAN/WDS 1601 * support we will need a different mechanism. 1602 */ 1603 1604 list_for_each_entry_rcu(tmp_sdata, &local->interfaces, 1605 list) { 1606 if (!ieee80211_sdata_running(tmp_sdata)) 1607 continue; 1608 if (tmp_sdata->vif.type == 1609 NL80211_IFTYPE_MONITOR || 1610 tmp_sdata->vif.type == 1611 NL80211_IFTYPE_AP_VLAN || 1612 tmp_sdata->vif.type == 1613 NL80211_IFTYPE_WDS) 1614 continue; 1615 if (compare_ether_addr(tmp_sdata->vif.addr, 1616 hdr->addr2) == 0) { 1617 sdata = tmp_sdata; 1618 break; 1619 } 1620 } 1621 } 1622 } 1623 1624 may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT); 1625 1626 headroom = local->tx_headroom; 1627 if (may_encrypt) 1628 headroom += IEEE80211_ENCRYPT_HEADROOM; 1629 headroom -= skb_headroom(skb); 1630 headroom = max_t(int, 0, headroom); 1631 1632 if (ieee80211_skb_resize(local, skb, headroom, may_encrypt)) { 1633 dev_kfree_skb(skb); 1634 rcu_read_unlock(); 1635 return; 1636 } 1637 1638 hdr = (struct ieee80211_hdr *) skb->data; 1639 info->control.vif = &sdata->vif; 1640 1641 if (ieee80211_vif_is_mesh(&sdata->vif) && 1642 ieee80211_is_data(hdr->frame_control) && 1643 !is_multicast_ether_addr(hdr->addr1)) 1644 if (mesh_nexthop_lookup(skb, sdata)) { 1645 /* skb queued: don't free */ 1646 rcu_read_unlock(); 1647 return; 1648 } 1649 1650 ieee80211_set_qos_hdr(local, skb); 1651 ieee80211_tx(sdata, skb, false); 1652 rcu_read_unlock(); 1653 } 1654 1655 netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb, 1656 struct net_device *dev) 1657 { 1658 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 1659 struct ieee80211_channel *chan = local->hw.conf.channel; 1660 struct ieee80211_radiotap_header *prthdr = 1661 (struct ieee80211_radiotap_header *)skb->data; 1662 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1663 u16 len_rthdr; 1664 1665 /* 1666 * Frame injection is not allowed if beaconing is not allowed 1667 * or if we need radar detection. Beaconing is usually not allowed when 1668 * the mode or operation (Adhoc, AP, Mesh) does not support DFS. 1669 * Passive scan is also used in world regulatory domains where 1670 * your country is not known and as such it should be treated as 1671 * NO TX unless the channel is explicitly allowed in which case 1672 * your current regulatory domain would not have the passive scan 1673 * flag. 1674 * 1675 * Since AP mode uses monitor interfaces to inject/TX management 1676 * frames we can make AP mode the exception to this rule once it 1677 * supports radar detection as its implementation can deal with 1678 * radar detection by itself. We can do that later by adding a 1679 * monitor flag interfaces used for AP support. 1680 */ 1681 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR | 1682 IEEE80211_CHAN_PASSIVE_SCAN))) 1683 goto fail; 1684 1685 /* check for not even having the fixed radiotap header part */ 1686 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header))) 1687 goto fail; /* too short to be possibly valid */ 1688 1689 /* is it a header version we can trust to find length from? */ 1690 if (unlikely(prthdr->it_version)) 1691 goto fail; /* only version 0 is supported */ 1692 1693 /* then there must be a radiotap header with a length we can use */ 1694 len_rthdr = ieee80211_get_radiotap_len(skb->data); 1695 1696 /* does the skb contain enough to deliver on the alleged length? */ 1697 if (unlikely(skb->len < len_rthdr)) 1698 goto fail; /* skb too short for claimed rt header extent */ 1699 1700 /* 1701 * fix up the pointers accounting for the radiotap 1702 * header still being in there. We are being given 1703 * a precooked IEEE80211 header so no need for 1704 * normal processing 1705 */ 1706 skb_set_mac_header(skb, len_rthdr); 1707 /* 1708 * these are just fixed to the end of the rt area since we 1709 * don't have any better information and at this point, nobody cares 1710 */ 1711 skb_set_network_header(skb, len_rthdr); 1712 skb_set_transport_header(skb, len_rthdr); 1713 1714 memset(info, 0, sizeof(*info)); 1715 1716 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; 1717 1718 /* pass the radiotap header up to xmit */ 1719 ieee80211_xmit(IEEE80211_DEV_TO_SUB_IF(dev), skb); 1720 return NETDEV_TX_OK; 1721 1722 fail: 1723 dev_kfree_skb(skb); 1724 return NETDEV_TX_OK; /* meaning, we dealt with the skb */ 1725 } 1726 1727 /** 1728 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type 1729 * subinterfaces (wlan#, WDS, and VLAN interfaces) 1730 * @skb: packet to be sent 1731 * @dev: incoming interface 1732 * 1733 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will 1734 * not be freed, and caller is responsible for either retrying later or freeing 1735 * skb). 1736 * 1737 * This function takes in an Ethernet header and encapsulates it with suitable 1738 * IEEE 802.11 header based on which interface the packet is coming in. The 1739 * encapsulated packet will then be passed to master interface, wlan#.11, for 1740 * transmission (through low-level driver). 1741 */ 1742 netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb, 1743 struct net_device *dev) 1744 { 1745 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); 1746 struct ieee80211_local *local = sdata->local; 1747 struct ieee80211_tx_info *info; 1748 int ret = NETDEV_TX_BUSY, head_need; 1749 u16 ethertype, hdrlen, meshhdrlen = 0; 1750 __le16 fc; 1751 struct ieee80211_hdr hdr; 1752 struct ieee80211s_hdr mesh_hdr __maybe_unused; 1753 struct mesh_path *mppath = NULL; 1754 const u8 *encaps_data; 1755 int encaps_len, skip_header_bytes; 1756 int nh_pos, h_pos; 1757 struct sta_info *sta = NULL; 1758 u32 sta_flags = 0; 1759 struct sk_buff *tmp_skb; 1760 1761 if (unlikely(skb->len < ETH_HLEN)) { 1762 ret = NETDEV_TX_OK; 1763 goto fail; 1764 } 1765 1766 /* convert Ethernet header to proper 802.11 header (based on 1767 * operation mode) */ 1768 ethertype = (skb->data[12] << 8) | skb->data[13]; 1769 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 1770 1771 switch (sdata->vif.type) { 1772 case NL80211_IFTYPE_AP_VLAN: 1773 rcu_read_lock(); 1774 sta = rcu_dereference(sdata->u.vlan.sta); 1775 if (sta) { 1776 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); 1777 /* RA TA DA SA */ 1778 memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN); 1779 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); 1780 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1781 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1782 hdrlen = 30; 1783 sta_flags = get_sta_flags(sta); 1784 } 1785 rcu_read_unlock(); 1786 if (sta) 1787 break; 1788 /* fall through */ 1789 case NL80211_IFTYPE_AP: 1790 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 1791 /* DA BSSID SA */ 1792 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1793 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); 1794 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 1795 hdrlen = 24; 1796 break; 1797 case NL80211_IFTYPE_WDS: 1798 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); 1799 /* RA TA DA SA */ 1800 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN); 1801 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); 1802 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1803 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1804 hdrlen = 30; 1805 break; 1806 #ifdef CONFIG_MAC80211_MESH 1807 case NL80211_IFTYPE_MESH_POINT: 1808 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) { 1809 /* Do not send frames with mesh_ttl == 0 */ 1810 sdata->u.mesh.mshstats.dropped_frames_ttl++; 1811 ret = NETDEV_TX_OK; 1812 goto fail; 1813 } 1814 if (!is_multicast_ether_addr(skb->data)) 1815 mppath = mpp_path_lookup(skb->data, sdata); 1816 1817 /* 1818 * Do not use address extension, if it is a packet from 1819 * the same interface and the destination is not being 1820 * proxied by any other mest point. 1821 */ 1822 if (compare_ether_addr(sdata->vif.addr, 1823 skb->data + ETH_ALEN) == 0 && 1824 (!mppath || !compare_ether_addr(mppath->mpp, skb->data))) { 1825 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, 1826 skb->data, skb->data + ETH_ALEN); 1827 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr, 1828 sdata, NULL, NULL); 1829 } else { 1830 /* packet from other interface */ 1831 int is_mesh_mcast = 1; 1832 const u8 *mesh_da; 1833 1834 rcu_read_lock(); 1835 if (is_multicast_ether_addr(skb->data)) 1836 /* DA TA mSA AE:SA */ 1837 mesh_da = skb->data; 1838 else { 1839 static const u8 bcast[ETH_ALEN] = 1840 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 1841 if (mppath) { 1842 /* RA TA mDA mSA AE:DA SA */ 1843 mesh_da = mppath->mpp; 1844 is_mesh_mcast = 0; 1845 } else { 1846 /* DA TA mSA AE:SA */ 1847 mesh_da = bcast; 1848 } 1849 } 1850 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, 1851 mesh_da, sdata->vif.addr); 1852 rcu_read_unlock(); 1853 if (is_mesh_mcast) 1854 meshhdrlen = 1855 ieee80211_new_mesh_header(&mesh_hdr, 1856 sdata, 1857 skb->data + ETH_ALEN, 1858 NULL); 1859 else 1860 meshhdrlen = 1861 ieee80211_new_mesh_header(&mesh_hdr, 1862 sdata, 1863 skb->data, 1864 skb->data + ETH_ALEN); 1865 1866 } 1867 break; 1868 #endif 1869 case NL80211_IFTYPE_STATION: 1870 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN); 1871 if (sdata->u.mgd.use_4addr && 1872 cpu_to_be16(ethertype) != sdata->control_port_protocol) { 1873 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); 1874 /* RA TA DA SA */ 1875 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); 1876 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1877 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1878 hdrlen = 30; 1879 } else { 1880 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 1881 /* BSSID SA DA */ 1882 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 1883 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1884 hdrlen = 24; 1885 } 1886 break; 1887 case NL80211_IFTYPE_ADHOC: 1888 /* DA SA BSSID */ 1889 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1890 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 1891 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN); 1892 hdrlen = 24; 1893 break; 1894 default: 1895 ret = NETDEV_TX_OK; 1896 goto fail; 1897 } 1898 1899 /* 1900 * There's no need to try to look up the destination 1901 * if it is a multicast address (which can only happen 1902 * in AP mode) 1903 */ 1904 if (!is_multicast_ether_addr(hdr.addr1)) { 1905 rcu_read_lock(); 1906 sta = sta_info_get(sdata, hdr.addr1); 1907 if (sta) 1908 sta_flags = get_sta_flags(sta); 1909 rcu_read_unlock(); 1910 } 1911 1912 /* receiver and we are QoS enabled, use a QoS type frame */ 1913 if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) { 1914 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 1915 hdrlen += 2; 1916 } 1917 1918 /* 1919 * Drop unicast frames to unauthorised stations unless they are 1920 * EAPOL frames from the local station. 1921 */ 1922 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1923 unlikely(!is_multicast_ether_addr(hdr.addr1) && 1924 !(sta_flags & WLAN_STA_AUTHORIZED) && 1925 !(cpu_to_be16(ethertype) == sdata->control_port_protocol && 1926 compare_ether_addr(sdata->vif.addr, 1927 skb->data + ETH_ALEN) == 0))) { 1928 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 1929 if (net_ratelimit()) 1930 printk(KERN_DEBUG "%s: dropped frame to %pM" 1931 " (unauthorized port)\n", dev->name, 1932 hdr.addr1); 1933 #endif 1934 1935 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port); 1936 1937 ret = NETDEV_TX_OK; 1938 goto fail; 1939 } 1940 1941 /* 1942 * If the skb is shared we need to obtain our own copy. 1943 */ 1944 if (skb_shared(skb)) { 1945 tmp_skb = skb; 1946 skb = skb_clone(skb, GFP_ATOMIC); 1947 kfree_skb(tmp_skb); 1948 1949 if (!skb) { 1950 ret = NETDEV_TX_OK; 1951 goto fail; 1952 } 1953 } 1954 1955 hdr.frame_control = fc; 1956 hdr.duration_id = 0; 1957 hdr.seq_ctrl = 0; 1958 1959 skip_header_bytes = ETH_HLEN; 1960 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 1961 encaps_data = bridge_tunnel_header; 1962 encaps_len = sizeof(bridge_tunnel_header); 1963 skip_header_bytes -= 2; 1964 } else if (ethertype >= 0x600) { 1965 encaps_data = rfc1042_header; 1966 encaps_len = sizeof(rfc1042_header); 1967 skip_header_bytes -= 2; 1968 } else { 1969 encaps_data = NULL; 1970 encaps_len = 0; 1971 } 1972 1973 nh_pos = skb_network_header(skb) - skb->data; 1974 h_pos = skb_transport_header(skb) - skb->data; 1975 1976 skb_pull(skb, skip_header_bytes); 1977 nh_pos -= skip_header_bytes; 1978 h_pos -= skip_header_bytes; 1979 1980 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb); 1981 1982 /* 1983 * So we need to modify the skb header and hence need a copy of 1984 * that. The head_need variable above doesn't, so far, include 1985 * the needed header space that we don't need right away. If we 1986 * can, then we don't reallocate right now but only after the 1987 * frame arrives at the master device (if it does...) 1988 * 1989 * If we cannot, however, then we will reallocate to include all 1990 * the ever needed space. Also, if we need to reallocate it anyway, 1991 * make it big enough for everything we may ever need. 1992 */ 1993 1994 if (head_need > 0 || skb_cloned(skb)) { 1995 head_need += IEEE80211_ENCRYPT_HEADROOM; 1996 head_need += local->tx_headroom; 1997 head_need = max_t(int, 0, head_need); 1998 if (ieee80211_skb_resize(local, skb, head_need, true)) 1999 goto fail; 2000 } 2001 2002 if (encaps_data) { 2003 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 2004 nh_pos += encaps_len; 2005 h_pos += encaps_len; 2006 } 2007 2008 #ifdef CONFIG_MAC80211_MESH 2009 if (meshhdrlen > 0) { 2010 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen); 2011 nh_pos += meshhdrlen; 2012 h_pos += meshhdrlen; 2013 } 2014 #endif 2015 2016 if (ieee80211_is_data_qos(fc)) { 2017 __le16 *qos_control; 2018 2019 qos_control = (__le16*) skb_push(skb, 2); 2020 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2); 2021 /* 2022 * Maybe we could actually set some fields here, for now just 2023 * initialise to zero to indicate no special operation. 2024 */ 2025 *qos_control = 0; 2026 } else 2027 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 2028 2029 nh_pos += hdrlen; 2030 h_pos += hdrlen; 2031 2032 dev->stats.tx_packets++; 2033 dev->stats.tx_bytes += skb->len; 2034 2035 /* Update skb pointers to various headers since this modified frame 2036 * is going to go through Linux networking code that may potentially 2037 * need things like pointer to IP header. */ 2038 skb_set_mac_header(skb, 0); 2039 skb_set_network_header(skb, nh_pos); 2040 skb_set_transport_header(skb, h_pos); 2041 2042 info = IEEE80211_SKB_CB(skb); 2043 memset(info, 0, sizeof(*info)); 2044 2045 dev->trans_start = jiffies; 2046 ieee80211_xmit(sdata, skb); 2047 2048 return NETDEV_TX_OK; 2049 2050 fail: 2051 if (ret == NETDEV_TX_OK) 2052 dev_kfree_skb(skb); 2053 2054 return ret; 2055 } 2056 2057 2058 /* 2059 * ieee80211_clear_tx_pending may not be called in a context where 2060 * it is possible that it packets could come in again. 2061 */ 2062 void ieee80211_clear_tx_pending(struct ieee80211_local *local) 2063 { 2064 int i; 2065 2066 for (i = 0; i < local->hw.queues; i++) 2067 skb_queue_purge(&local->pending[i]); 2068 } 2069 2070 static bool ieee80211_tx_pending_skb(struct ieee80211_local *local, 2071 struct sk_buff *skb) 2072 { 2073 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2074 struct ieee80211_sub_if_data *sdata; 2075 struct sta_info *sta; 2076 struct ieee80211_hdr *hdr; 2077 int ret; 2078 bool result = true; 2079 2080 sdata = vif_to_sdata(info->control.vif); 2081 2082 if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) { 2083 ieee80211_tx(sdata, skb, true); 2084 } else { 2085 hdr = (struct ieee80211_hdr *)skb->data; 2086 sta = sta_info_get(sdata, hdr->addr1); 2087 2088 ret = __ieee80211_tx(local, &skb, sta, true); 2089 if (ret != IEEE80211_TX_OK) 2090 result = false; 2091 } 2092 2093 return result; 2094 } 2095 2096 /* 2097 * Transmit all pending packets. Called from tasklet. 2098 */ 2099 void ieee80211_tx_pending(unsigned long data) 2100 { 2101 struct ieee80211_local *local = (struct ieee80211_local *)data; 2102 struct ieee80211_sub_if_data *sdata; 2103 unsigned long flags; 2104 int i; 2105 bool txok; 2106 2107 rcu_read_lock(); 2108 2109 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 2110 for (i = 0; i < local->hw.queues; i++) { 2111 /* 2112 * If queue is stopped by something other than due to pending 2113 * frames, or we have no pending frames, proceed to next queue. 2114 */ 2115 if (local->queue_stop_reasons[i] || 2116 skb_queue_empty(&local->pending[i])) 2117 continue; 2118 2119 while (!skb_queue_empty(&local->pending[i])) { 2120 struct sk_buff *skb = __skb_dequeue(&local->pending[i]); 2121 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2122 2123 if (WARN_ON(!info->control.vif)) { 2124 kfree_skb(skb); 2125 continue; 2126 } 2127 2128 spin_unlock_irqrestore(&local->queue_stop_reason_lock, 2129 flags); 2130 2131 txok = ieee80211_tx_pending_skb(local, skb); 2132 if (!txok) 2133 __skb_queue_head(&local->pending[i], skb); 2134 spin_lock_irqsave(&local->queue_stop_reason_lock, 2135 flags); 2136 if (!txok) 2137 break; 2138 } 2139 2140 if (skb_queue_empty(&local->pending[i])) 2141 list_for_each_entry_rcu(sdata, &local->interfaces, list) 2142 netif_wake_subqueue(sdata->dev, i); 2143 } 2144 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 2145 2146 rcu_read_unlock(); 2147 } 2148 2149 /* functions for drivers to get certain frames */ 2150 2151 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss, 2152 struct sk_buff *skb, 2153 struct beacon_data *beacon) 2154 { 2155 u8 *pos, *tim; 2156 int aid0 = 0; 2157 int i, have_bits = 0, n1, n2; 2158 2159 /* Generate bitmap for TIM only if there are any STAs in power save 2160 * mode. */ 2161 if (atomic_read(&bss->num_sta_ps) > 0) 2162 /* in the hope that this is faster than 2163 * checking byte-for-byte */ 2164 have_bits = !bitmap_empty((unsigned long*)bss->tim, 2165 IEEE80211_MAX_AID+1); 2166 2167 if (bss->dtim_count == 0) 2168 bss->dtim_count = beacon->dtim_period - 1; 2169 else 2170 bss->dtim_count--; 2171 2172 tim = pos = (u8 *) skb_put(skb, 6); 2173 *pos++ = WLAN_EID_TIM; 2174 *pos++ = 4; 2175 *pos++ = bss->dtim_count; 2176 *pos++ = beacon->dtim_period; 2177 2178 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf)) 2179 aid0 = 1; 2180 2181 if (have_bits) { 2182 /* Find largest even number N1 so that bits numbered 1 through 2183 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits 2184 * (N2 + 1) x 8 through 2007 are 0. */ 2185 n1 = 0; 2186 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) { 2187 if (bss->tim[i]) { 2188 n1 = i & 0xfe; 2189 break; 2190 } 2191 } 2192 n2 = n1; 2193 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) { 2194 if (bss->tim[i]) { 2195 n2 = i; 2196 break; 2197 } 2198 } 2199 2200 /* Bitmap control */ 2201 *pos++ = n1 | aid0; 2202 /* Part Virt Bitmap */ 2203 memcpy(pos, bss->tim + n1, n2 - n1 + 1); 2204 2205 tim[1] = n2 - n1 + 4; 2206 skb_put(skb, n2 - n1); 2207 } else { 2208 *pos++ = aid0; /* Bitmap control */ 2209 *pos++ = 0; /* Part Virt Bitmap */ 2210 } 2211 } 2212 2213 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw, 2214 struct ieee80211_vif *vif, 2215 u16 *tim_offset, u16 *tim_length) 2216 { 2217 struct ieee80211_local *local = hw_to_local(hw); 2218 struct sk_buff *skb = NULL; 2219 struct ieee80211_tx_info *info; 2220 struct ieee80211_sub_if_data *sdata = NULL; 2221 struct ieee80211_if_ap *ap = NULL; 2222 struct beacon_data *beacon; 2223 struct ieee80211_supported_band *sband; 2224 enum ieee80211_band band = local->hw.conf.channel->band; 2225 struct ieee80211_tx_rate_control txrc; 2226 2227 sband = local->hw.wiphy->bands[band]; 2228 2229 rcu_read_lock(); 2230 2231 sdata = vif_to_sdata(vif); 2232 2233 if (tim_offset) 2234 *tim_offset = 0; 2235 if (tim_length) 2236 *tim_length = 0; 2237 2238 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2239 ap = &sdata->u.ap; 2240 beacon = rcu_dereference(ap->beacon); 2241 if (ap && beacon) { 2242 /* 2243 * headroom, head length, 2244 * tail length and maximum TIM length 2245 */ 2246 skb = dev_alloc_skb(local->tx_headroom + 2247 beacon->head_len + 2248 beacon->tail_len + 256); 2249 if (!skb) 2250 goto out; 2251 2252 skb_reserve(skb, local->tx_headroom); 2253 memcpy(skb_put(skb, beacon->head_len), beacon->head, 2254 beacon->head_len); 2255 2256 /* 2257 * Not very nice, but we want to allow the driver to call 2258 * ieee80211_beacon_get() as a response to the set_tim() 2259 * callback. That, however, is already invoked under the 2260 * sta_lock to guarantee consistent and race-free update 2261 * of the tim bitmap in mac80211 and the driver. 2262 */ 2263 if (local->tim_in_locked_section) { 2264 ieee80211_beacon_add_tim(ap, skb, beacon); 2265 } else { 2266 unsigned long flags; 2267 2268 spin_lock_irqsave(&local->sta_lock, flags); 2269 ieee80211_beacon_add_tim(ap, skb, beacon); 2270 spin_unlock_irqrestore(&local->sta_lock, flags); 2271 } 2272 2273 if (tim_offset) 2274 *tim_offset = beacon->head_len; 2275 if (tim_length) 2276 *tim_length = skb->len - beacon->head_len; 2277 2278 if (beacon->tail) 2279 memcpy(skb_put(skb, beacon->tail_len), 2280 beacon->tail, beacon->tail_len); 2281 } else 2282 goto out; 2283 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 2284 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 2285 struct ieee80211_hdr *hdr; 2286 struct sk_buff *presp = rcu_dereference(ifibss->presp); 2287 2288 if (!presp) 2289 goto out; 2290 2291 skb = skb_copy(presp, GFP_ATOMIC); 2292 if (!skb) 2293 goto out; 2294 2295 hdr = (struct ieee80211_hdr *) skb->data; 2296 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2297 IEEE80211_STYPE_BEACON); 2298 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 2299 struct ieee80211_mgmt *mgmt; 2300 u8 *pos; 2301 2302 /* headroom, head length, tail length and maximum TIM length */ 2303 skb = dev_alloc_skb(local->tx_headroom + 400 + 2304 sdata->u.mesh.vendor_ie_len); 2305 if (!skb) 2306 goto out; 2307 2308 skb_reserve(skb, local->hw.extra_tx_headroom); 2309 mgmt = (struct ieee80211_mgmt *) 2310 skb_put(skb, 24 + sizeof(mgmt->u.beacon)); 2311 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon)); 2312 mgmt->frame_control = 2313 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); 2314 memset(mgmt->da, 0xff, ETH_ALEN); 2315 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 2316 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 2317 mgmt->u.beacon.beacon_int = 2318 cpu_to_le16(sdata->vif.bss_conf.beacon_int); 2319 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */ 2320 2321 pos = skb_put(skb, 2); 2322 *pos++ = WLAN_EID_SSID; 2323 *pos++ = 0x0; 2324 2325 mesh_mgmt_ies_add(skb, sdata); 2326 } else { 2327 WARN_ON(1); 2328 goto out; 2329 } 2330 2331 info = IEEE80211_SKB_CB(skb); 2332 2333 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 2334 info->flags |= IEEE80211_TX_CTL_NO_ACK; 2335 info->band = band; 2336 2337 memset(&txrc, 0, sizeof(txrc)); 2338 txrc.hw = hw; 2339 txrc.sband = sband; 2340 txrc.bss_conf = &sdata->vif.bss_conf; 2341 txrc.skb = skb; 2342 txrc.reported_rate.idx = -1; 2343 txrc.rate_idx_mask = sdata->rc_rateidx_mask[band]; 2344 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1) 2345 txrc.max_rate_idx = -1; 2346 else 2347 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1; 2348 txrc.bss = true; 2349 rate_control_get_rate(sdata, NULL, &txrc); 2350 2351 info->control.vif = vif; 2352 2353 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT | 2354 IEEE80211_TX_CTL_ASSIGN_SEQ | 2355 IEEE80211_TX_CTL_FIRST_FRAGMENT; 2356 out: 2357 rcu_read_unlock(); 2358 return skb; 2359 } 2360 EXPORT_SYMBOL(ieee80211_beacon_get_tim); 2361 2362 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw, 2363 struct ieee80211_vif *vif) 2364 { 2365 struct ieee80211_sub_if_data *sdata; 2366 struct ieee80211_if_managed *ifmgd; 2367 struct ieee80211_pspoll *pspoll; 2368 struct ieee80211_local *local; 2369 struct sk_buff *skb; 2370 2371 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2372 return NULL; 2373 2374 sdata = vif_to_sdata(vif); 2375 ifmgd = &sdata->u.mgd; 2376 local = sdata->local; 2377 2378 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll)); 2379 if (!skb) { 2380 printk(KERN_DEBUG "%s: failed to allocate buffer for " 2381 "pspoll template\n", sdata->name); 2382 return NULL; 2383 } 2384 skb_reserve(skb, local->hw.extra_tx_headroom); 2385 2386 pspoll = (struct ieee80211_pspoll *) skb_put(skb, sizeof(*pspoll)); 2387 memset(pspoll, 0, sizeof(*pspoll)); 2388 pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | 2389 IEEE80211_STYPE_PSPOLL); 2390 pspoll->aid = cpu_to_le16(ifmgd->aid); 2391 2392 /* aid in PS-Poll has its two MSBs each set to 1 */ 2393 pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14); 2394 2395 memcpy(pspoll->bssid, ifmgd->bssid, ETH_ALEN); 2396 memcpy(pspoll->ta, vif->addr, ETH_ALEN); 2397 2398 return skb; 2399 } 2400 EXPORT_SYMBOL(ieee80211_pspoll_get); 2401 2402 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw, 2403 struct ieee80211_vif *vif) 2404 { 2405 struct ieee80211_hdr_3addr *nullfunc; 2406 struct ieee80211_sub_if_data *sdata; 2407 struct ieee80211_if_managed *ifmgd; 2408 struct ieee80211_local *local; 2409 struct sk_buff *skb; 2410 2411 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2412 return NULL; 2413 2414 sdata = vif_to_sdata(vif); 2415 ifmgd = &sdata->u.mgd; 2416 local = sdata->local; 2417 2418 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*nullfunc)); 2419 if (!skb) { 2420 printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc " 2421 "template\n", sdata->name); 2422 return NULL; 2423 } 2424 skb_reserve(skb, local->hw.extra_tx_headroom); 2425 2426 nullfunc = (struct ieee80211_hdr_3addr *) skb_put(skb, 2427 sizeof(*nullfunc)); 2428 memset(nullfunc, 0, sizeof(*nullfunc)); 2429 nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA | 2430 IEEE80211_STYPE_NULLFUNC | 2431 IEEE80211_FCTL_TODS); 2432 memcpy(nullfunc->addr1, ifmgd->bssid, ETH_ALEN); 2433 memcpy(nullfunc->addr2, vif->addr, ETH_ALEN); 2434 memcpy(nullfunc->addr3, ifmgd->bssid, ETH_ALEN); 2435 2436 return skb; 2437 } 2438 EXPORT_SYMBOL(ieee80211_nullfunc_get); 2439 2440 struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw, 2441 struct ieee80211_vif *vif, 2442 const u8 *ssid, size_t ssid_len, 2443 const u8 *ie, size_t ie_len) 2444 { 2445 struct ieee80211_sub_if_data *sdata; 2446 struct ieee80211_local *local; 2447 struct ieee80211_hdr_3addr *hdr; 2448 struct sk_buff *skb; 2449 size_t ie_ssid_len; 2450 u8 *pos; 2451 2452 sdata = vif_to_sdata(vif); 2453 local = sdata->local; 2454 ie_ssid_len = 2 + ssid_len; 2455 2456 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*hdr) + 2457 ie_ssid_len + ie_len); 2458 if (!skb) { 2459 printk(KERN_DEBUG "%s: failed to allocate buffer for probe " 2460 "request template\n", sdata->name); 2461 return NULL; 2462 } 2463 2464 skb_reserve(skb, local->hw.extra_tx_headroom); 2465 2466 hdr = (struct ieee80211_hdr_3addr *) skb_put(skb, sizeof(*hdr)); 2467 memset(hdr, 0, sizeof(*hdr)); 2468 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2469 IEEE80211_STYPE_PROBE_REQ); 2470 memset(hdr->addr1, 0xff, ETH_ALEN); 2471 memcpy(hdr->addr2, vif->addr, ETH_ALEN); 2472 memset(hdr->addr3, 0xff, ETH_ALEN); 2473 2474 pos = skb_put(skb, ie_ssid_len); 2475 *pos++ = WLAN_EID_SSID; 2476 *pos++ = ssid_len; 2477 if (ssid) 2478 memcpy(pos, ssid, ssid_len); 2479 pos += ssid_len; 2480 2481 if (ie) { 2482 pos = skb_put(skb, ie_len); 2483 memcpy(pos, ie, ie_len); 2484 } 2485 2486 return skb; 2487 } 2488 EXPORT_SYMBOL(ieee80211_probereq_get); 2489 2490 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2491 const void *frame, size_t frame_len, 2492 const struct ieee80211_tx_info *frame_txctl, 2493 struct ieee80211_rts *rts) 2494 { 2495 const struct ieee80211_hdr *hdr = frame; 2496 2497 rts->frame_control = 2498 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS); 2499 rts->duration = ieee80211_rts_duration(hw, vif, frame_len, 2500 frame_txctl); 2501 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra)); 2502 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta)); 2503 } 2504 EXPORT_SYMBOL(ieee80211_rts_get); 2505 2506 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2507 const void *frame, size_t frame_len, 2508 const struct ieee80211_tx_info *frame_txctl, 2509 struct ieee80211_cts *cts) 2510 { 2511 const struct ieee80211_hdr *hdr = frame; 2512 2513 cts->frame_control = 2514 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS); 2515 cts->duration = ieee80211_ctstoself_duration(hw, vif, 2516 frame_len, frame_txctl); 2517 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra)); 2518 } 2519 EXPORT_SYMBOL(ieee80211_ctstoself_get); 2520 2521 struct sk_buff * 2522 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, 2523 struct ieee80211_vif *vif) 2524 { 2525 struct ieee80211_local *local = hw_to_local(hw); 2526 struct sk_buff *skb = NULL; 2527 struct sta_info *sta; 2528 struct ieee80211_tx_data tx; 2529 struct ieee80211_sub_if_data *sdata; 2530 struct ieee80211_if_ap *bss = NULL; 2531 struct beacon_data *beacon; 2532 struct ieee80211_tx_info *info; 2533 2534 sdata = vif_to_sdata(vif); 2535 bss = &sdata->u.ap; 2536 2537 rcu_read_lock(); 2538 beacon = rcu_dereference(bss->beacon); 2539 2540 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head) 2541 goto out; 2542 2543 if (bss->dtim_count != 0) 2544 goto out; /* send buffered bc/mc only after DTIM beacon */ 2545 2546 while (1) { 2547 skb = skb_dequeue(&bss->ps_bc_buf); 2548 if (!skb) 2549 goto out; 2550 local->total_ps_buffered--; 2551 2552 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) { 2553 struct ieee80211_hdr *hdr = 2554 (struct ieee80211_hdr *) skb->data; 2555 /* more buffered multicast/broadcast frames ==> set 2556 * MoreData flag in IEEE 802.11 header to inform PS 2557 * STAs */ 2558 hdr->frame_control |= 2559 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 2560 } 2561 2562 if (!ieee80211_tx_prepare(sdata, &tx, skb)) 2563 break; 2564 dev_kfree_skb_any(skb); 2565 } 2566 2567 info = IEEE80211_SKB_CB(skb); 2568 2569 sta = tx.sta; 2570 tx.flags |= IEEE80211_TX_PS_BUFFERED; 2571 tx.channel = local->hw.conf.channel; 2572 info->band = tx.channel->band; 2573 2574 if (invoke_tx_handlers(&tx)) 2575 skb = NULL; 2576 out: 2577 rcu_read_unlock(); 2578 2579 return skb; 2580 } 2581 EXPORT_SYMBOL(ieee80211_get_buffered_bc); 2582 2583 void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) 2584 { 2585 skb_set_mac_header(skb, 0); 2586 skb_set_network_header(skb, 0); 2587 skb_set_transport_header(skb, 0); 2588 2589 /* send all internal mgmt frames on VO */ 2590 skb_set_queue_mapping(skb, 0); 2591 2592 /* 2593 * The other path calling ieee80211_xmit is from the tasklet, 2594 * and while we can handle concurrent transmissions locking 2595 * requirements are that we do not come into tx with bhs on. 2596 */ 2597 local_bh_disable(); 2598 ieee80211_xmit(sdata, skb); 2599 local_bh_enable(); 2600 } 2601