1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * 12 * Transmit and frame generation functions. 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/skbuff.h> 18 #include <linux/etherdevice.h> 19 #include <linux/bitmap.h> 20 #include <linux/rcupdate.h> 21 #include <net/net_namespace.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <net/cfg80211.h> 24 #include <net/mac80211.h> 25 #include <asm/unaligned.h> 26 27 #include "ieee80211_i.h" 28 #include "driver-ops.h" 29 #include "led.h" 30 #include "mesh.h" 31 #include "wep.h" 32 #include "wpa.h" 33 #include "wme.h" 34 #include "rate.h" 35 36 #define IEEE80211_TX_OK 0 37 #define IEEE80211_TX_AGAIN 1 38 #define IEEE80211_TX_PENDING 2 39 40 /* misc utils */ 41 42 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr, 43 int next_frag_len) 44 { 45 int rate, mrate, erp, dur, i; 46 struct ieee80211_rate *txrate; 47 struct ieee80211_local *local = tx->local; 48 struct ieee80211_supported_band *sband; 49 struct ieee80211_hdr *hdr; 50 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 51 52 /* assume HW handles this */ 53 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS) 54 return 0; 55 56 /* uh huh? */ 57 if (WARN_ON_ONCE(info->control.rates[0].idx < 0)) 58 return 0; 59 60 sband = local->hw.wiphy->bands[tx->channel->band]; 61 txrate = &sband->bitrates[info->control.rates[0].idx]; 62 63 erp = txrate->flags & IEEE80211_RATE_ERP_G; 64 65 /* 66 * data and mgmt (except PS Poll): 67 * - during CFP: 32768 68 * - during contention period: 69 * if addr1 is group address: 0 70 * if more fragments = 0 and addr1 is individual address: time to 71 * transmit one ACK plus SIFS 72 * if more fragments = 1 and addr1 is individual address: time to 73 * transmit next fragment plus 2 x ACK plus 3 x SIFS 74 * 75 * IEEE 802.11, 9.6: 76 * - control response frame (CTS or ACK) shall be transmitted using the 77 * same rate as the immediately previous frame in the frame exchange 78 * sequence, if this rate belongs to the PHY mandatory rates, or else 79 * at the highest possible rate belonging to the PHY rates in the 80 * BSSBasicRateSet 81 */ 82 hdr = (struct ieee80211_hdr *)tx->skb->data; 83 if (ieee80211_is_ctl(hdr->frame_control)) { 84 /* TODO: These control frames are not currently sent by 85 * mac80211, but should they be implemented, this function 86 * needs to be updated to support duration field calculation. 87 * 88 * RTS: time needed to transmit pending data/mgmt frame plus 89 * one CTS frame plus one ACK frame plus 3 x SIFS 90 * CTS: duration of immediately previous RTS minus time 91 * required to transmit CTS and its SIFS 92 * ACK: 0 if immediately previous directed data/mgmt had 93 * more=0, with more=1 duration in ACK frame is duration 94 * from previous frame minus time needed to transmit ACK 95 * and its SIFS 96 * PS Poll: BIT(15) | BIT(14) | aid 97 */ 98 return 0; 99 } 100 101 /* data/mgmt */ 102 if (0 /* FIX: data/mgmt during CFP */) 103 return cpu_to_le16(32768); 104 105 if (group_addr) /* Group address as the destination - no ACK */ 106 return 0; 107 108 /* Individual destination address: 109 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes) 110 * CTS and ACK frames shall be transmitted using the highest rate in 111 * basic rate set that is less than or equal to the rate of the 112 * immediately previous frame and that is using the same modulation 113 * (CCK or OFDM). If no basic rate set matches with these requirements, 114 * the highest mandatory rate of the PHY that is less than or equal to 115 * the rate of the previous frame is used. 116 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps 117 */ 118 rate = -1; 119 /* use lowest available if everything fails */ 120 mrate = sband->bitrates[0].bitrate; 121 for (i = 0; i < sband->n_bitrates; i++) { 122 struct ieee80211_rate *r = &sband->bitrates[i]; 123 124 if (r->bitrate > txrate->bitrate) 125 break; 126 127 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i)) 128 rate = r->bitrate; 129 130 switch (sband->band) { 131 case IEEE80211_BAND_2GHZ: { 132 u32 flag; 133 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 134 flag = IEEE80211_RATE_MANDATORY_G; 135 else 136 flag = IEEE80211_RATE_MANDATORY_B; 137 if (r->flags & flag) 138 mrate = r->bitrate; 139 break; 140 } 141 case IEEE80211_BAND_5GHZ: 142 if (r->flags & IEEE80211_RATE_MANDATORY_A) 143 mrate = r->bitrate; 144 break; 145 case IEEE80211_NUM_BANDS: 146 WARN_ON(1); 147 break; 148 } 149 } 150 if (rate == -1) { 151 /* No matching basic rate found; use highest suitable mandatory 152 * PHY rate */ 153 rate = mrate; 154 } 155 156 /* Time needed to transmit ACK 157 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up 158 * to closest integer */ 159 160 dur = ieee80211_frame_duration(local, 10, rate, erp, 161 tx->sdata->vif.bss_conf.use_short_preamble); 162 163 if (next_frag_len) { 164 /* Frame is fragmented: duration increases with time needed to 165 * transmit next fragment plus ACK and 2 x SIFS. */ 166 dur *= 2; /* ACK + SIFS */ 167 /* next fragment */ 168 dur += ieee80211_frame_duration(local, next_frag_len, 169 txrate->bitrate, erp, 170 tx->sdata->vif.bss_conf.use_short_preamble); 171 } 172 173 return cpu_to_le16(dur); 174 } 175 176 static int inline is_ieee80211_device(struct ieee80211_local *local, 177 struct net_device *dev) 178 { 179 return local == wdev_priv(dev->ieee80211_ptr); 180 } 181 182 /* tx handlers */ 183 184 static ieee80211_tx_result debug_noinline 185 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx) 186 { 187 188 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 189 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 190 u32 sta_flags; 191 192 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) 193 return TX_CONTINUE; 194 195 if (unlikely(test_bit(SCAN_OFF_CHANNEL, &tx->local->scanning)) && 196 !ieee80211_is_probe_req(hdr->frame_control) && 197 !ieee80211_is_nullfunc(hdr->frame_control)) 198 /* 199 * When software scanning only nullfunc frames (to notify 200 * the sleep state to the AP) and probe requests (for the 201 * active scan) are allowed, all other frames should not be 202 * sent and we should not get here, but if we do 203 * nonetheless, drop them to avoid sending them 204 * off-channel. See the link below and 205 * ieee80211_start_scan() for more. 206 * 207 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089 208 */ 209 return TX_DROP; 210 211 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 212 return TX_CONTINUE; 213 214 if (tx->flags & IEEE80211_TX_PS_BUFFERED) 215 return TX_CONTINUE; 216 217 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0; 218 219 if (likely(tx->flags & IEEE80211_TX_UNICAST)) { 220 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) && 221 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 222 ieee80211_is_data(hdr->frame_control))) { 223 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 224 printk(KERN_DEBUG "%s: dropped data frame to not " 225 "associated station %pM\n", 226 tx->dev->name, hdr->addr1); 227 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ 228 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc); 229 return TX_DROP; 230 } 231 } else { 232 if (unlikely(ieee80211_is_data(hdr->frame_control) && 233 tx->local->num_sta == 0 && 234 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) { 235 /* 236 * No associated STAs - no need to send multicast 237 * frames. 238 */ 239 return TX_DROP; 240 } 241 return TX_CONTINUE; 242 } 243 244 return TX_CONTINUE; 245 } 246 247 /* This function is called whenever the AP is about to exceed the maximum limit 248 * of buffered frames for power saving STAs. This situation should not really 249 * happen often during normal operation, so dropping the oldest buffered packet 250 * from each queue should be OK to make some room for new frames. */ 251 static void purge_old_ps_buffers(struct ieee80211_local *local) 252 { 253 int total = 0, purged = 0; 254 struct sk_buff *skb; 255 struct ieee80211_sub_if_data *sdata; 256 struct sta_info *sta; 257 258 /* 259 * virtual interfaces are protected by RCU 260 */ 261 rcu_read_lock(); 262 263 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 264 struct ieee80211_if_ap *ap; 265 if (sdata->vif.type != NL80211_IFTYPE_AP) 266 continue; 267 ap = &sdata->u.ap; 268 skb = skb_dequeue(&ap->ps_bc_buf); 269 if (skb) { 270 purged++; 271 dev_kfree_skb(skb); 272 } 273 total += skb_queue_len(&ap->ps_bc_buf); 274 } 275 276 list_for_each_entry_rcu(sta, &local->sta_list, list) { 277 skb = skb_dequeue(&sta->ps_tx_buf); 278 if (skb) { 279 purged++; 280 dev_kfree_skb(skb); 281 } 282 total += skb_queue_len(&sta->ps_tx_buf); 283 } 284 285 rcu_read_unlock(); 286 287 local->total_ps_buffered = total; 288 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 289 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n", 290 wiphy_name(local->hw.wiphy), purged); 291 #endif 292 } 293 294 static ieee80211_tx_result 295 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx) 296 { 297 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 298 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 299 300 /* 301 * broadcast/multicast frame 302 * 303 * If any of the associated stations is in power save mode, 304 * the frame is buffered to be sent after DTIM beacon frame. 305 * This is done either by the hardware or us. 306 */ 307 308 /* powersaving STAs only in AP/VLAN mode */ 309 if (!tx->sdata->bss) 310 return TX_CONTINUE; 311 312 /* no buffering for ordered frames */ 313 if (ieee80211_has_order(hdr->frame_control)) 314 return TX_CONTINUE; 315 316 /* no stations in PS mode */ 317 if (!atomic_read(&tx->sdata->bss->num_sta_ps)) 318 return TX_CONTINUE; 319 320 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM; 321 322 /* device releases frame after DTIM beacon */ 323 if (!(tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING)) 324 return TX_CONTINUE; 325 326 /* buffered in mac80211 */ 327 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) 328 purge_old_ps_buffers(tx->local); 329 330 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= AP_MAX_BC_BUFFER) { 331 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 332 if (net_ratelimit()) 333 printk(KERN_DEBUG "%s: BC TX buffer full - dropping the oldest frame\n", 334 tx->dev->name); 335 #endif 336 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf)); 337 } else 338 tx->local->total_ps_buffered++; 339 340 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb); 341 342 return TX_QUEUED; 343 } 344 345 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta, 346 struct sk_buff *skb) 347 { 348 if (!ieee80211_is_mgmt(fc)) 349 return 0; 350 351 if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP)) 352 return 0; 353 354 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) 355 skb->data)) 356 return 0; 357 358 return 1; 359 } 360 361 static ieee80211_tx_result 362 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx) 363 { 364 struct sta_info *sta = tx->sta; 365 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 366 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 367 u32 staflags; 368 369 if (unlikely(!sta || 370 ieee80211_is_probe_resp(hdr->frame_control) || 371 ieee80211_is_auth(hdr->frame_control) || 372 ieee80211_is_assoc_resp(hdr->frame_control) || 373 ieee80211_is_reassoc_resp(hdr->frame_control))) 374 return TX_CONTINUE; 375 376 staflags = get_sta_flags(sta); 377 378 if (unlikely((staflags & (WLAN_STA_PS_STA | WLAN_STA_PS_DRIVER)) && 379 !(info->flags & IEEE80211_TX_CTL_PSPOLL_RESPONSE))) { 380 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 381 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries " 382 "before %d)\n", 383 sta->sta.addr, sta->sta.aid, 384 skb_queue_len(&sta->ps_tx_buf)); 385 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 386 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) 387 purge_old_ps_buffers(tx->local); 388 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) { 389 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf); 390 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 391 if (net_ratelimit()) { 392 printk(KERN_DEBUG "%s: STA %pM TX " 393 "buffer full - dropping oldest frame\n", 394 tx->dev->name, sta->sta.addr); 395 } 396 #endif 397 dev_kfree_skb(old); 398 } else 399 tx->local->total_ps_buffered++; 400 401 /* 402 * Queue frame to be sent after STA wakes up/polls, 403 * but don't set the TIM bit if the driver is blocking 404 * wakeup or poll response transmissions anyway. 405 */ 406 if (skb_queue_empty(&sta->ps_tx_buf) && 407 !(staflags & WLAN_STA_PS_DRIVER)) 408 sta_info_set_tim_bit(sta); 409 410 info->control.jiffies = jiffies; 411 info->control.vif = &tx->sdata->vif; 412 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 413 skb_queue_tail(&sta->ps_tx_buf, tx->skb); 414 return TX_QUEUED; 415 } 416 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 417 else if (unlikely(staflags & WLAN_STA_PS_STA)) { 418 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll " 419 "set -> send frame\n", tx->dev->name, 420 sta->sta.addr); 421 } 422 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 423 424 return TX_CONTINUE; 425 } 426 427 static ieee80211_tx_result debug_noinline 428 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx) 429 { 430 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED)) 431 return TX_CONTINUE; 432 433 if (tx->flags & IEEE80211_TX_UNICAST) 434 return ieee80211_tx_h_unicast_ps_buf(tx); 435 else 436 return ieee80211_tx_h_multicast_ps_buf(tx); 437 } 438 439 static ieee80211_tx_result debug_noinline 440 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx) 441 { 442 struct ieee80211_key *key = NULL; 443 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 444 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 445 446 if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT)) 447 tx->key = NULL; 448 else if (tx->sta && (key = rcu_dereference(tx->sta->key))) 449 tx->key = key; 450 else if (ieee80211_is_mgmt(hdr->frame_control) && 451 (key = rcu_dereference(tx->sdata->default_mgmt_key))) 452 tx->key = key; 453 else if ((key = rcu_dereference(tx->sdata->default_key))) 454 tx->key = key; 455 else if (tx->sdata->drop_unencrypted && 456 (tx->skb->protocol != cpu_to_be16(ETH_P_PAE)) && 457 !(info->flags & IEEE80211_TX_CTL_INJECTED) && 458 (!ieee80211_is_robust_mgmt_frame(hdr) || 459 (ieee80211_is_action(hdr->frame_control) && 460 tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) { 461 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted); 462 return TX_DROP; 463 } else 464 tx->key = NULL; 465 466 if (tx->key) { 467 tx->key->tx_rx_count++; 468 /* TODO: add threshold stuff again */ 469 470 switch (tx->key->conf.alg) { 471 case ALG_WEP: 472 if (ieee80211_is_auth(hdr->frame_control)) 473 break; 474 case ALG_TKIP: 475 if (!ieee80211_is_data_present(hdr->frame_control)) 476 tx->key = NULL; 477 break; 478 case ALG_CCMP: 479 if (!ieee80211_is_data_present(hdr->frame_control) && 480 !ieee80211_use_mfp(hdr->frame_control, tx->sta, 481 tx->skb)) 482 tx->key = NULL; 483 break; 484 case ALG_AES_CMAC: 485 if (!ieee80211_is_mgmt(hdr->frame_control)) 486 tx->key = NULL; 487 break; 488 } 489 } 490 491 if (!tx->key || !(tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) 492 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 493 494 return TX_CONTINUE; 495 } 496 497 static ieee80211_tx_result debug_noinline 498 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx) 499 { 500 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 501 struct ieee80211_hdr *hdr = (void *)tx->skb->data; 502 struct ieee80211_supported_band *sband; 503 struct ieee80211_rate *rate; 504 int i, len; 505 bool inval = false, rts = false, short_preamble = false; 506 struct ieee80211_tx_rate_control txrc; 507 u32 sta_flags; 508 509 memset(&txrc, 0, sizeof(txrc)); 510 511 sband = tx->local->hw.wiphy->bands[tx->channel->band]; 512 513 len = min_t(int, tx->skb->len + FCS_LEN, 514 tx->local->hw.wiphy->frag_threshold); 515 516 /* set up the tx rate control struct we give the RC algo */ 517 txrc.hw = local_to_hw(tx->local); 518 txrc.sband = sband; 519 txrc.bss_conf = &tx->sdata->vif.bss_conf; 520 txrc.skb = tx->skb; 521 txrc.reported_rate.idx = -1; 522 txrc.max_rate_idx = tx->sdata->max_ratectrl_rateidx; 523 524 /* set up RTS protection if desired */ 525 if (len > tx->local->hw.wiphy->rts_threshold) { 526 txrc.rts = rts = true; 527 } 528 529 /* 530 * Use short preamble if the BSS can handle it, but not for 531 * management frames unless we know the receiver can handle 532 * that -- the management frame might be to a station that 533 * just wants a probe response. 534 */ 535 if (tx->sdata->vif.bss_conf.use_short_preamble && 536 (ieee80211_is_data(hdr->frame_control) || 537 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE)))) 538 txrc.short_preamble = short_preamble = true; 539 540 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0; 541 542 /* 543 * Lets not bother rate control if we're associated and cannot 544 * talk to the sta. This should not happen. 545 */ 546 if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) && 547 (sta_flags & WLAN_STA_ASSOC) && 548 !rate_usable_index_exists(sband, &tx->sta->sta), 549 "%s: Dropped data frame as no usable bitrate found while " 550 "scanning and associated. Target station: " 551 "%pM on %d GHz band\n", 552 tx->dev->name, hdr->addr1, 553 tx->channel->band ? 5 : 2)) 554 return TX_DROP; 555 556 /* 557 * If we're associated with the sta at this point we know we can at 558 * least send the frame at the lowest bit rate. 559 */ 560 rate_control_get_rate(tx->sdata, tx->sta, &txrc); 561 562 if (unlikely(info->control.rates[0].idx < 0)) 563 return TX_DROP; 564 565 if (txrc.reported_rate.idx < 0) 566 txrc.reported_rate = info->control.rates[0]; 567 568 if (tx->sta) 569 tx->sta->last_tx_rate = txrc.reported_rate; 570 571 if (unlikely(!info->control.rates[0].count)) 572 info->control.rates[0].count = 1; 573 574 if (WARN_ON_ONCE((info->control.rates[0].count > 1) && 575 (info->flags & IEEE80211_TX_CTL_NO_ACK))) 576 info->control.rates[0].count = 1; 577 578 if (is_multicast_ether_addr(hdr->addr1)) { 579 /* 580 * XXX: verify the rate is in the basic rateset 581 */ 582 return TX_CONTINUE; 583 } 584 585 /* 586 * set up the RTS/CTS rate as the fastest basic rate 587 * that is not faster than the data rate 588 * 589 * XXX: Should this check all retry rates? 590 */ 591 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) { 592 s8 baserate = 0; 593 594 rate = &sband->bitrates[info->control.rates[0].idx]; 595 596 for (i = 0; i < sband->n_bitrates; i++) { 597 /* must be a basic rate */ 598 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i))) 599 continue; 600 /* must not be faster than the data rate */ 601 if (sband->bitrates[i].bitrate > rate->bitrate) 602 continue; 603 /* maximum */ 604 if (sband->bitrates[baserate].bitrate < 605 sband->bitrates[i].bitrate) 606 baserate = i; 607 } 608 609 info->control.rts_cts_rate_idx = baserate; 610 } 611 612 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { 613 /* 614 * make sure there's no valid rate following 615 * an invalid one, just in case drivers don't 616 * take the API seriously to stop at -1. 617 */ 618 if (inval) { 619 info->control.rates[i].idx = -1; 620 continue; 621 } 622 if (info->control.rates[i].idx < 0) { 623 inval = true; 624 continue; 625 } 626 627 /* 628 * For now assume MCS is already set up correctly, this 629 * needs to be fixed. 630 */ 631 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) { 632 WARN_ON(info->control.rates[i].idx > 76); 633 continue; 634 } 635 636 /* set up RTS protection if desired */ 637 if (rts) 638 info->control.rates[i].flags |= 639 IEEE80211_TX_RC_USE_RTS_CTS; 640 641 /* RC is busted */ 642 if (WARN_ON_ONCE(info->control.rates[i].idx >= 643 sband->n_bitrates)) { 644 info->control.rates[i].idx = -1; 645 continue; 646 } 647 648 rate = &sband->bitrates[info->control.rates[i].idx]; 649 650 /* set up short preamble */ 651 if (short_preamble && 652 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE) 653 info->control.rates[i].flags |= 654 IEEE80211_TX_RC_USE_SHORT_PREAMBLE; 655 656 /* set up G protection */ 657 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot && 658 rate->flags & IEEE80211_RATE_ERP_G) 659 info->control.rates[i].flags |= 660 IEEE80211_TX_RC_USE_CTS_PROTECT; 661 } 662 663 return TX_CONTINUE; 664 } 665 666 static ieee80211_tx_result debug_noinline 667 ieee80211_tx_h_misc(struct ieee80211_tx_data *tx) 668 { 669 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 670 671 if (tx->sta) 672 info->control.sta = &tx->sta->sta; 673 674 return TX_CONTINUE; 675 } 676 677 static ieee80211_tx_result debug_noinline 678 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx) 679 { 680 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 681 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 682 u16 *seq; 683 u8 *qc; 684 int tid; 685 686 /* 687 * Packet injection may want to control the sequence 688 * number, if we have no matching interface then we 689 * neither assign one ourselves nor ask the driver to. 690 */ 691 if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR)) 692 return TX_CONTINUE; 693 694 if (unlikely(ieee80211_is_ctl(hdr->frame_control))) 695 return TX_CONTINUE; 696 697 if (ieee80211_hdrlen(hdr->frame_control) < 24) 698 return TX_CONTINUE; 699 700 /* 701 * Anything but QoS data that has a sequence number field 702 * (is long enough) gets a sequence number from the global 703 * counter. 704 */ 705 if (!ieee80211_is_data_qos(hdr->frame_control)) { 706 /* driver should assign sequence number */ 707 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; 708 /* for pure STA mode without beacons, we can do it */ 709 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number); 710 tx->sdata->sequence_number += 0x10; 711 return TX_CONTINUE; 712 } 713 714 /* 715 * This should be true for injected/management frames only, for 716 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ 717 * above since they are not QoS-data frames. 718 */ 719 if (!tx->sta) 720 return TX_CONTINUE; 721 722 /* include per-STA, per-TID sequence counter */ 723 724 qc = ieee80211_get_qos_ctl(hdr); 725 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 726 seq = &tx->sta->tid_seq[tid]; 727 728 hdr->seq_ctrl = cpu_to_le16(*seq); 729 730 /* Increase the sequence number. */ 731 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ; 732 733 return TX_CONTINUE; 734 } 735 736 static int ieee80211_fragment(struct ieee80211_local *local, 737 struct sk_buff *skb, int hdrlen, 738 int frag_threshold) 739 { 740 struct sk_buff *tail = skb, *tmp; 741 int per_fragm = frag_threshold - hdrlen - FCS_LEN; 742 int pos = hdrlen + per_fragm; 743 int rem = skb->len - hdrlen - per_fragm; 744 745 if (WARN_ON(rem < 0)) 746 return -EINVAL; 747 748 while (rem) { 749 int fraglen = per_fragm; 750 751 if (fraglen > rem) 752 fraglen = rem; 753 rem -= fraglen; 754 tmp = dev_alloc_skb(local->tx_headroom + 755 frag_threshold + 756 IEEE80211_ENCRYPT_HEADROOM + 757 IEEE80211_ENCRYPT_TAILROOM); 758 if (!tmp) 759 return -ENOMEM; 760 tail->next = tmp; 761 tail = tmp; 762 skb_reserve(tmp, local->tx_headroom + 763 IEEE80211_ENCRYPT_HEADROOM); 764 /* copy control information */ 765 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb)); 766 skb_copy_queue_mapping(tmp, skb); 767 tmp->priority = skb->priority; 768 tmp->dev = skb->dev; 769 770 /* copy header and data */ 771 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen); 772 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen); 773 774 pos += fraglen; 775 } 776 777 skb->len = hdrlen + per_fragm; 778 return 0; 779 } 780 781 static ieee80211_tx_result debug_noinline 782 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx) 783 { 784 struct sk_buff *skb = tx->skb; 785 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 786 struct ieee80211_hdr *hdr = (void *)skb->data; 787 int frag_threshold = tx->local->hw.wiphy->frag_threshold; 788 int hdrlen; 789 int fragnum; 790 791 if (!(tx->flags & IEEE80211_TX_FRAGMENTED)) 792 return TX_CONTINUE; 793 794 /* 795 * Warn when submitting a fragmented A-MPDU frame and drop it. 796 * This scenario is handled in ieee80211_tx_prepare but extra 797 * caution taken here as fragmented ampdu may cause Tx stop. 798 */ 799 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU)) 800 return TX_DROP; 801 802 hdrlen = ieee80211_hdrlen(hdr->frame_control); 803 804 /* internal error, why is TX_FRAGMENTED set? */ 805 if (WARN_ON(skb->len + FCS_LEN <= frag_threshold)) 806 return TX_DROP; 807 808 /* 809 * Now fragment the frame. This will allocate all the fragments and 810 * chain them (using skb as the first fragment) to skb->next. 811 * During transmission, we will remove the successfully transmitted 812 * fragments from this list. When the low-level driver rejects one 813 * of the fragments then we will simply pretend to accept the skb 814 * but store it away as pending. 815 */ 816 if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold)) 817 return TX_DROP; 818 819 /* update duration/seq/flags of fragments */ 820 fragnum = 0; 821 do { 822 int next_len; 823 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); 824 825 hdr = (void *)skb->data; 826 info = IEEE80211_SKB_CB(skb); 827 828 if (skb->next) { 829 hdr->frame_control |= morefrags; 830 next_len = skb->next->len; 831 /* 832 * No multi-rate retries for fragmented frames, that 833 * would completely throw off the NAV at other STAs. 834 */ 835 info->control.rates[1].idx = -1; 836 info->control.rates[2].idx = -1; 837 info->control.rates[3].idx = -1; 838 info->control.rates[4].idx = -1; 839 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5); 840 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE; 841 } else { 842 hdr->frame_control &= ~morefrags; 843 next_len = 0; 844 } 845 hdr->duration_id = ieee80211_duration(tx, 0, next_len); 846 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG); 847 fragnum++; 848 } while ((skb = skb->next)); 849 850 return TX_CONTINUE; 851 } 852 853 static ieee80211_tx_result debug_noinline 854 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx) 855 { 856 struct sk_buff *skb = tx->skb; 857 858 if (!tx->sta) 859 return TX_CONTINUE; 860 861 tx->sta->tx_packets++; 862 do { 863 tx->sta->tx_fragments++; 864 tx->sta->tx_bytes += skb->len; 865 } while ((skb = skb->next)); 866 867 return TX_CONTINUE; 868 } 869 870 static ieee80211_tx_result debug_noinline 871 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx) 872 { 873 if (!tx->key) 874 return TX_CONTINUE; 875 876 switch (tx->key->conf.alg) { 877 case ALG_WEP: 878 return ieee80211_crypto_wep_encrypt(tx); 879 case ALG_TKIP: 880 return ieee80211_crypto_tkip_encrypt(tx); 881 case ALG_CCMP: 882 return ieee80211_crypto_ccmp_encrypt(tx); 883 case ALG_AES_CMAC: 884 return ieee80211_crypto_aes_cmac_encrypt(tx); 885 } 886 887 /* not reached */ 888 WARN_ON(1); 889 return TX_DROP; 890 } 891 892 static ieee80211_tx_result debug_noinline 893 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx) 894 { 895 struct sk_buff *skb = tx->skb; 896 struct ieee80211_hdr *hdr; 897 int next_len; 898 bool group_addr; 899 900 do { 901 hdr = (void *) skb->data; 902 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) 903 break; /* must not overwrite AID */ 904 next_len = skb->next ? skb->next->len : 0; 905 group_addr = is_multicast_ether_addr(hdr->addr1); 906 907 hdr->duration_id = 908 ieee80211_duration(tx, group_addr, next_len); 909 } while ((skb = skb->next)); 910 911 return TX_CONTINUE; 912 } 913 914 /* actual transmit path */ 915 916 /* 917 * deal with packet injection down monitor interface 918 * with Radiotap Header -- only called for monitor mode interface 919 */ 920 static bool __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx, 921 struct sk_buff *skb) 922 { 923 /* 924 * this is the moment to interpret and discard the radiotap header that 925 * must be at the start of the packet injected in Monitor mode 926 * 927 * Need to take some care with endian-ness since radiotap 928 * args are little-endian 929 */ 930 931 struct ieee80211_radiotap_iterator iterator; 932 struct ieee80211_radiotap_header *rthdr = 933 (struct ieee80211_radiotap_header *) skb->data; 934 struct ieee80211_supported_band *sband; 935 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 936 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len); 937 938 sband = tx->local->hw.wiphy->bands[tx->channel->band]; 939 940 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 941 tx->flags &= ~IEEE80211_TX_FRAGMENTED; 942 943 /* 944 * for every radiotap entry that is present 945 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more 946 * entries present, or -EINVAL on error) 947 */ 948 949 while (!ret) { 950 ret = ieee80211_radiotap_iterator_next(&iterator); 951 952 if (ret) 953 continue; 954 955 /* see if this argument is something we can use */ 956 switch (iterator.this_arg_index) { 957 /* 958 * You must take care when dereferencing iterator.this_arg 959 * for multibyte types... the pointer is not aligned. Use 960 * get_unaligned((type *)iterator.this_arg) to dereference 961 * iterator.this_arg for type "type" safely on all arches. 962 */ 963 case IEEE80211_RADIOTAP_FLAGS: 964 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) { 965 /* 966 * this indicates that the skb we have been 967 * handed has the 32-bit FCS CRC at the end... 968 * we should react to that by snipping it off 969 * because it will be recomputed and added 970 * on transmission 971 */ 972 if (skb->len < (iterator.max_length + FCS_LEN)) 973 return false; 974 975 skb_trim(skb, skb->len - FCS_LEN); 976 } 977 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP) 978 info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT; 979 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG) 980 tx->flags |= IEEE80211_TX_FRAGMENTED; 981 break; 982 983 /* 984 * Please update the file 985 * Documentation/networking/mac80211-injection.txt 986 * when parsing new fields here. 987 */ 988 989 default: 990 break; 991 } 992 } 993 994 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */ 995 return false; 996 997 /* 998 * remove the radiotap header 999 * iterator->max_length was sanity-checked against 1000 * skb->len by iterator init 1001 */ 1002 skb_pull(skb, iterator.max_length); 1003 1004 return true; 1005 } 1006 1007 /* 1008 * initialises @tx 1009 */ 1010 static ieee80211_tx_result 1011 ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata, 1012 struct ieee80211_tx_data *tx, 1013 struct sk_buff *skb) 1014 { 1015 struct ieee80211_local *local = sdata->local; 1016 struct ieee80211_hdr *hdr; 1017 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1018 int hdrlen, tid; 1019 u8 *qc, *state; 1020 bool queued = false; 1021 1022 memset(tx, 0, sizeof(*tx)); 1023 tx->skb = skb; 1024 tx->dev = sdata->dev; /* use original interface */ 1025 tx->local = local; 1026 tx->sdata = sdata; 1027 tx->channel = local->hw.conf.channel; 1028 /* 1029 * Set this flag (used below to indicate "automatic fragmentation"), 1030 * it will be cleared/left by radiotap as desired. 1031 */ 1032 tx->flags |= IEEE80211_TX_FRAGMENTED; 1033 1034 /* process and remove the injection radiotap header */ 1035 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) { 1036 if (!__ieee80211_parse_tx_radiotap(tx, skb)) 1037 return TX_DROP; 1038 1039 /* 1040 * __ieee80211_parse_tx_radiotap has now removed 1041 * the radiotap header that was present and pre-filled 1042 * 'tx' with tx control information. 1043 */ 1044 } 1045 1046 /* 1047 * If this flag is set to true anywhere, and we get here, 1048 * we are doing the needed processing, so remove the flag 1049 * now. 1050 */ 1051 info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING; 1052 1053 hdr = (struct ieee80211_hdr *) skb->data; 1054 1055 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1056 tx->sta = rcu_dereference(sdata->u.vlan.sta); 1057 if (!tx->sta) 1058 tx->sta = sta_info_get(local, hdr->addr1); 1059 1060 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) && 1061 (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) { 1062 unsigned long flags; 1063 struct tid_ampdu_tx *tid_tx; 1064 1065 qc = ieee80211_get_qos_ctl(hdr); 1066 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 1067 1068 spin_lock_irqsave(&tx->sta->lock, flags); 1069 /* 1070 * XXX: This spinlock could be fairly expensive, but see the 1071 * comment in agg-tx.c:ieee80211_agg_tx_operational(). 1072 * One way to solve this would be to do something RCU-like 1073 * for managing the tid_tx struct and using atomic bitops 1074 * for the actual state -- by introducing an actual 1075 * 'operational' bit that would be possible. It would 1076 * require changing ieee80211_agg_tx_operational() to 1077 * set that bit, and changing the way tid_tx is managed 1078 * everywhere, including races between that bit and 1079 * tid_tx going away (tid_tx being added can be easily 1080 * committed to memory before the 'operational' bit). 1081 */ 1082 tid_tx = tx->sta->ampdu_mlme.tid_tx[tid]; 1083 state = &tx->sta->ampdu_mlme.tid_state_tx[tid]; 1084 if (*state == HT_AGG_STATE_OPERATIONAL) { 1085 info->flags |= IEEE80211_TX_CTL_AMPDU; 1086 } else if (*state != HT_AGG_STATE_IDLE) { 1087 /* in progress */ 1088 queued = true; 1089 info->control.vif = &sdata->vif; 1090 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 1091 __skb_queue_tail(&tid_tx->pending, skb); 1092 } 1093 spin_unlock_irqrestore(&tx->sta->lock, flags); 1094 1095 if (unlikely(queued)) 1096 return TX_QUEUED; 1097 } 1098 1099 if (is_multicast_ether_addr(hdr->addr1)) { 1100 tx->flags &= ~IEEE80211_TX_UNICAST; 1101 info->flags |= IEEE80211_TX_CTL_NO_ACK; 1102 } else { 1103 tx->flags |= IEEE80211_TX_UNICAST; 1104 if (unlikely(local->wifi_wme_noack_test)) 1105 info->flags |= IEEE80211_TX_CTL_NO_ACK; 1106 else 1107 info->flags &= ~IEEE80211_TX_CTL_NO_ACK; 1108 } 1109 1110 if (tx->flags & IEEE80211_TX_FRAGMENTED) { 1111 if ((tx->flags & IEEE80211_TX_UNICAST) && 1112 skb->len + FCS_LEN > local->hw.wiphy->frag_threshold && 1113 !(info->flags & IEEE80211_TX_CTL_AMPDU)) 1114 tx->flags |= IEEE80211_TX_FRAGMENTED; 1115 else 1116 tx->flags &= ~IEEE80211_TX_FRAGMENTED; 1117 } 1118 1119 if (!tx->sta) 1120 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1121 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT)) 1122 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1123 1124 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1125 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) { 1126 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)]; 1127 tx->ethertype = (pos[0] << 8) | pos[1]; 1128 } 1129 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT; 1130 1131 return TX_CONTINUE; 1132 } 1133 1134 static int __ieee80211_tx(struct ieee80211_local *local, 1135 struct sk_buff **skbp, 1136 struct sta_info *sta, 1137 bool txpending) 1138 { 1139 struct sk_buff *skb = *skbp, *next; 1140 struct ieee80211_tx_info *info; 1141 struct ieee80211_sub_if_data *sdata; 1142 unsigned long flags; 1143 int ret, len; 1144 bool fragm = false; 1145 1146 while (skb) { 1147 int q = skb_get_queue_mapping(skb); 1148 1149 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 1150 ret = IEEE80211_TX_OK; 1151 if (local->queue_stop_reasons[q] || 1152 (!txpending && !skb_queue_empty(&local->pending[q]))) 1153 ret = IEEE80211_TX_PENDING; 1154 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 1155 if (ret != IEEE80211_TX_OK) 1156 return ret; 1157 1158 info = IEEE80211_SKB_CB(skb); 1159 1160 if (fragm) 1161 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT | 1162 IEEE80211_TX_CTL_FIRST_FRAGMENT); 1163 1164 next = skb->next; 1165 len = skb->len; 1166 1167 if (next) 1168 info->flags |= IEEE80211_TX_CTL_MORE_FRAMES; 1169 1170 sdata = vif_to_sdata(info->control.vif); 1171 1172 switch (sdata->vif.type) { 1173 case NL80211_IFTYPE_MONITOR: 1174 info->control.vif = NULL; 1175 break; 1176 case NL80211_IFTYPE_AP_VLAN: 1177 info->control.vif = &container_of(sdata->bss, 1178 struct ieee80211_sub_if_data, u.ap)->vif; 1179 break; 1180 default: 1181 /* keep */ 1182 break; 1183 } 1184 1185 ret = drv_tx(local, skb); 1186 if (WARN_ON(ret != NETDEV_TX_OK && skb->len != len)) { 1187 dev_kfree_skb(skb); 1188 ret = NETDEV_TX_OK; 1189 } 1190 if (ret != NETDEV_TX_OK) { 1191 info->control.vif = &sdata->vif; 1192 return IEEE80211_TX_AGAIN; 1193 } 1194 1195 *skbp = skb = next; 1196 ieee80211_led_tx(local, 1); 1197 fragm = true; 1198 } 1199 1200 return IEEE80211_TX_OK; 1201 } 1202 1203 /* 1204 * Invoke TX handlers, return 0 on success and non-zero if the 1205 * frame was dropped or queued. 1206 */ 1207 static int invoke_tx_handlers(struct ieee80211_tx_data *tx) 1208 { 1209 struct sk_buff *skb = tx->skb; 1210 ieee80211_tx_result res = TX_DROP; 1211 1212 #define CALL_TXH(txh) \ 1213 do { \ 1214 res = txh(tx); \ 1215 if (res != TX_CONTINUE) \ 1216 goto txh_done; \ 1217 } while (0) 1218 1219 CALL_TXH(ieee80211_tx_h_check_assoc); 1220 CALL_TXH(ieee80211_tx_h_ps_buf); 1221 CALL_TXH(ieee80211_tx_h_select_key); 1222 CALL_TXH(ieee80211_tx_h_michael_mic_add); 1223 if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL)) 1224 CALL_TXH(ieee80211_tx_h_rate_ctrl); 1225 CALL_TXH(ieee80211_tx_h_misc); 1226 CALL_TXH(ieee80211_tx_h_sequence); 1227 CALL_TXH(ieee80211_tx_h_fragment); 1228 /* handlers after fragment must be aware of tx info fragmentation! */ 1229 CALL_TXH(ieee80211_tx_h_stats); 1230 CALL_TXH(ieee80211_tx_h_encrypt); 1231 CALL_TXH(ieee80211_tx_h_calculate_duration); 1232 #undef CALL_TXH 1233 1234 txh_done: 1235 if (unlikely(res == TX_DROP)) { 1236 I802_DEBUG_INC(tx->local->tx_handlers_drop); 1237 while (skb) { 1238 struct sk_buff *next; 1239 1240 next = skb->next; 1241 dev_kfree_skb(skb); 1242 skb = next; 1243 } 1244 return -1; 1245 } else if (unlikely(res == TX_QUEUED)) { 1246 I802_DEBUG_INC(tx->local->tx_handlers_queued); 1247 return -1; 1248 } 1249 1250 return 0; 1251 } 1252 1253 static void ieee80211_tx(struct ieee80211_sub_if_data *sdata, 1254 struct sk_buff *skb, bool txpending) 1255 { 1256 struct ieee80211_local *local = sdata->local; 1257 struct ieee80211_tx_data tx; 1258 ieee80211_tx_result res_prepare; 1259 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1260 struct sk_buff *next; 1261 unsigned long flags; 1262 int ret, retries; 1263 u16 queue; 1264 1265 queue = skb_get_queue_mapping(skb); 1266 1267 if (unlikely(skb->len < 10)) { 1268 dev_kfree_skb(skb); 1269 return; 1270 } 1271 1272 rcu_read_lock(); 1273 1274 /* initialises tx */ 1275 res_prepare = ieee80211_tx_prepare(sdata, &tx, skb); 1276 1277 if (unlikely(res_prepare == TX_DROP)) { 1278 dev_kfree_skb(skb); 1279 rcu_read_unlock(); 1280 return; 1281 } else if (unlikely(res_prepare == TX_QUEUED)) { 1282 rcu_read_unlock(); 1283 return; 1284 } 1285 1286 tx.channel = local->hw.conf.channel; 1287 info->band = tx.channel->band; 1288 1289 if (invoke_tx_handlers(&tx)) 1290 goto out; 1291 1292 retries = 0; 1293 retry: 1294 ret = __ieee80211_tx(local, &tx.skb, tx.sta, txpending); 1295 switch (ret) { 1296 case IEEE80211_TX_OK: 1297 break; 1298 case IEEE80211_TX_AGAIN: 1299 /* 1300 * Since there are no fragmented frames on A-MPDU 1301 * queues, there's no reason for a driver to reject 1302 * a frame there, warn and drop it. 1303 */ 1304 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU)) 1305 goto drop; 1306 /* fall through */ 1307 case IEEE80211_TX_PENDING: 1308 skb = tx.skb; 1309 1310 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 1311 1312 if (local->queue_stop_reasons[queue] || 1313 !skb_queue_empty(&local->pending[queue])) { 1314 /* 1315 * if queue is stopped, queue up frames for later 1316 * transmission from the tasklet 1317 */ 1318 do { 1319 next = skb->next; 1320 skb->next = NULL; 1321 if (unlikely(txpending)) 1322 __skb_queue_head(&local->pending[queue], 1323 skb); 1324 else 1325 __skb_queue_tail(&local->pending[queue], 1326 skb); 1327 } while ((skb = next)); 1328 1329 spin_unlock_irqrestore(&local->queue_stop_reason_lock, 1330 flags); 1331 } else { 1332 /* 1333 * otherwise retry, but this is a race condition or 1334 * a driver bug (which we warn about if it persists) 1335 */ 1336 spin_unlock_irqrestore(&local->queue_stop_reason_lock, 1337 flags); 1338 1339 retries++; 1340 if (WARN(retries > 10, "tx refused but queue active\n")) 1341 goto drop; 1342 goto retry; 1343 } 1344 } 1345 out: 1346 rcu_read_unlock(); 1347 return; 1348 1349 drop: 1350 rcu_read_unlock(); 1351 1352 skb = tx.skb; 1353 while (skb) { 1354 next = skb->next; 1355 dev_kfree_skb(skb); 1356 skb = next; 1357 } 1358 } 1359 1360 /* device xmit handlers */ 1361 1362 static int ieee80211_skb_resize(struct ieee80211_local *local, 1363 struct sk_buff *skb, 1364 int head_need, bool may_encrypt) 1365 { 1366 int tail_need = 0; 1367 1368 /* 1369 * This could be optimised, devices that do full hardware 1370 * crypto (including TKIP MMIC) need no tailroom... But we 1371 * have no drivers for such devices currently. 1372 */ 1373 if (may_encrypt) { 1374 tail_need = IEEE80211_ENCRYPT_TAILROOM; 1375 tail_need -= skb_tailroom(skb); 1376 tail_need = max_t(int, tail_need, 0); 1377 } 1378 1379 if (head_need || tail_need) { 1380 /* Sorry. Can't account for this any more */ 1381 skb_orphan(skb); 1382 } 1383 1384 if (skb_header_cloned(skb)) 1385 I802_DEBUG_INC(local->tx_expand_skb_head_cloned); 1386 else 1387 I802_DEBUG_INC(local->tx_expand_skb_head); 1388 1389 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) { 1390 printk(KERN_DEBUG "%s: failed to reallocate TX buffer\n", 1391 wiphy_name(local->hw.wiphy)); 1392 return -ENOMEM; 1393 } 1394 1395 /* update truesize too */ 1396 skb->truesize += head_need + tail_need; 1397 1398 return 0; 1399 } 1400 1401 static bool need_dynamic_ps(struct ieee80211_local *local) 1402 { 1403 /* driver doesn't support power save */ 1404 if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS)) 1405 return false; 1406 1407 /* hardware does dynamic power save */ 1408 if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS) 1409 return false; 1410 1411 /* dynamic power save disabled */ 1412 if (local->hw.conf.dynamic_ps_timeout <= 0) 1413 return false; 1414 1415 /* we are scanning, don't enable power save */ 1416 if (local->scanning) 1417 return false; 1418 1419 if (!local->ps_sdata) 1420 return false; 1421 1422 /* No point if we're going to suspend */ 1423 if (local->quiescing) 1424 return false; 1425 1426 return true; 1427 } 1428 1429 static void ieee80211_xmit(struct ieee80211_sub_if_data *sdata, 1430 struct sk_buff *skb) 1431 { 1432 struct ieee80211_local *local = sdata->local; 1433 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1434 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1435 struct ieee80211_sub_if_data *tmp_sdata; 1436 int headroom; 1437 bool may_encrypt; 1438 1439 if (need_dynamic_ps(local)) { 1440 if (local->hw.conf.flags & IEEE80211_CONF_PS) { 1441 ieee80211_stop_queues_by_reason(&local->hw, 1442 IEEE80211_QUEUE_STOP_REASON_PS); 1443 ieee80211_queue_work(&local->hw, 1444 &local->dynamic_ps_disable_work); 1445 } 1446 1447 mod_timer(&local->dynamic_ps_timer, jiffies + 1448 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 1449 } 1450 1451 rcu_read_lock(); 1452 1453 if (unlikely(sdata->vif.type == NL80211_IFTYPE_MONITOR)) { 1454 int hdrlen; 1455 u16 len_rthdr; 1456 1457 info->flags |= IEEE80211_TX_CTL_INJECTED; 1458 1459 len_rthdr = ieee80211_get_radiotap_len(skb->data); 1460 hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr); 1461 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1462 1463 /* check the header is complete in the frame */ 1464 if (likely(skb->len >= len_rthdr + hdrlen)) { 1465 /* 1466 * We process outgoing injected frames that have a 1467 * local address we handle as though they are our 1468 * own frames. 1469 * This code here isn't entirely correct, the local 1470 * MAC address is not necessarily enough to find 1471 * the interface to use; for that proper VLAN/WDS 1472 * support we will need a different mechanism. 1473 */ 1474 1475 list_for_each_entry_rcu(tmp_sdata, &local->interfaces, 1476 list) { 1477 if (!netif_running(tmp_sdata->dev)) 1478 continue; 1479 if (tmp_sdata->vif.type != NL80211_IFTYPE_AP) 1480 continue; 1481 if (compare_ether_addr(tmp_sdata->dev->dev_addr, 1482 hdr->addr2) == 0) { 1483 sdata = tmp_sdata; 1484 break; 1485 } 1486 } 1487 } 1488 } 1489 1490 may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT); 1491 1492 headroom = local->tx_headroom; 1493 if (may_encrypt) 1494 headroom += IEEE80211_ENCRYPT_HEADROOM; 1495 headroom -= skb_headroom(skb); 1496 headroom = max_t(int, 0, headroom); 1497 1498 if (ieee80211_skb_resize(local, skb, headroom, may_encrypt)) { 1499 dev_kfree_skb(skb); 1500 rcu_read_unlock(); 1501 return; 1502 } 1503 1504 info->control.vif = &sdata->vif; 1505 1506 if (ieee80211_vif_is_mesh(&sdata->vif) && 1507 ieee80211_is_data(hdr->frame_control) && 1508 !is_multicast_ether_addr(hdr->addr1)) 1509 if (mesh_nexthop_lookup(skb, sdata)) { 1510 /* skb queued: don't free */ 1511 rcu_read_unlock(); 1512 return; 1513 } 1514 1515 ieee80211_set_qos_hdr(local, skb); 1516 ieee80211_tx(sdata, skb, false); 1517 rcu_read_unlock(); 1518 } 1519 1520 netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb, 1521 struct net_device *dev) 1522 { 1523 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 1524 struct ieee80211_channel *chan = local->hw.conf.channel; 1525 struct ieee80211_radiotap_header *prthdr = 1526 (struct ieee80211_radiotap_header *)skb->data; 1527 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1528 u16 len_rthdr; 1529 1530 /* 1531 * Frame injection is not allowed if beaconing is not allowed 1532 * or if we need radar detection. Beaconing is usually not allowed when 1533 * the mode or operation (Adhoc, AP, Mesh) does not support DFS. 1534 * Passive scan is also used in world regulatory domains where 1535 * your country is not known and as such it should be treated as 1536 * NO TX unless the channel is explicitly allowed in which case 1537 * your current regulatory domain would not have the passive scan 1538 * flag. 1539 * 1540 * Since AP mode uses monitor interfaces to inject/TX management 1541 * frames we can make AP mode the exception to this rule once it 1542 * supports radar detection as its implementation can deal with 1543 * radar detection by itself. We can do that later by adding a 1544 * monitor flag interfaces used for AP support. 1545 */ 1546 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR | 1547 IEEE80211_CHAN_PASSIVE_SCAN))) 1548 goto fail; 1549 1550 /* check for not even having the fixed radiotap header part */ 1551 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header))) 1552 goto fail; /* too short to be possibly valid */ 1553 1554 /* is it a header version we can trust to find length from? */ 1555 if (unlikely(prthdr->it_version)) 1556 goto fail; /* only version 0 is supported */ 1557 1558 /* then there must be a radiotap header with a length we can use */ 1559 len_rthdr = ieee80211_get_radiotap_len(skb->data); 1560 1561 /* does the skb contain enough to deliver on the alleged length? */ 1562 if (unlikely(skb->len < len_rthdr)) 1563 goto fail; /* skb too short for claimed rt header extent */ 1564 1565 /* 1566 * fix up the pointers accounting for the radiotap 1567 * header still being in there. We are being given 1568 * a precooked IEEE80211 header so no need for 1569 * normal processing 1570 */ 1571 skb_set_mac_header(skb, len_rthdr); 1572 /* 1573 * these are just fixed to the end of the rt area since we 1574 * don't have any better information and at this point, nobody cares 1575 */ 1576 skb_set_network_header(skb, len_rthdr); 1577 skb_set_transport_header(skb, len_rthdr); 1578 1579 memset(info, 0, sizeof(*info)); 1580 1581 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; 1582 1583 /* pass the radiotap header up to xmit */ 1584 ieee80211_xmit(IEEE80211_DEV_TO_SUB_IF(dev), skb); 1585 return NETDEV_TX_OK; 1586 1587 fail: 1588 dev_kfree_skb(skb); 1589 return NETDEV_TX_OK; /* meaning, we dealt with the skb */ 1590 } 1591 1592 /** 1593 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type 1594 * subinterfaces (wlan#, WDS, and VLAN interfaces) 1595 * @skb: packet to be sent 1596 * @dev: incoming interface 1597 * 1598 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will 1599 * not be freed, and caller is responsible for either retrying later or freeing 1600 * skb). 1601 * 1602 * This function takes in an Ethernet header and encapsulates it with suitable 1603 * IEEE 802.11 header based on which interface the packet is coming in. The 1604 * encapsulated packet will then be passed to master interface, wlan#.11, for 1605 * transmission (through low-level driver). 1606 */ 1607 netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb, 1608 struct net_device *dev) 1609 { 1610 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); 1611 struct ieee80211_local *local = sdata->local; 1612 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1613 int ret = NETDEV_TX_BUSY, head_need; 1614 u16 ethertype, hdrlen, meshhdrlen = 0; 1615 __le16 fc; 1616 struct ieee80211_hdr hdr; 1617 struct ieee80211s_hdr mesh_hdr; 1618 const u8 *encaps_data; 1619 int encaps_len, skip_header_bytes; 1620 int nh_pos, h_pos; 1621 struct sta_info *sta = NULL; 1622 u32 sta_flags = 0; 1623 1624 if (unlikely(skb->len < ETH_HLEN)) { 1625 ret = NETDEV_TX_OK; 1626 goto fail; 1627 } 1628 1629 nh_pos = skb_network_header(skb) - skb->data; 1630 h_pos = skb_transport_header(skb) - skb->data; 1631 1632 /* convert Ethernet header to proper 802.11 header (based on 1633 * operation mode) */ 1634 ethertype = (skb->data[12] << 8) | skb->data[13]; 1635 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 1636 1637 switch (sdata->vif.type) { 1638 case NL80211_IFTYPE_AP_VLAN: 1639 rcu_read_lock(); 1640 sta = rcu_dereference(sdata->u.vlan.sta); 1641 if (sta) { 1642 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); 1643 /* RA TA DA SA */ 1644 memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN); 1645 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); 1646 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1647 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1648 hdrlen = 30; 1649 sta_flags = get_sta_flags(sta); 1650 } 1651 rcu_read_unlock(); 1652 if (sta) 1653 break; 1654 /* fall through */ 1655 case NL80211_IFTYPE_AP: 1656 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 1657 /* DA BSSID SA */ 1658 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1659 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); 1660 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 1661 hdrlen = 24; 1662 break; 1663 case NL80211_IFTYPE_WDS: 1664 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); 1665 /* RA TA DA SA */ 1666 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN); 1667 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); 1668 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1669 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1670 hdrlen = 30; 1671 break; 1672 #ifdef CONFIG_MAC80211_MESH 1673 case NL80211_IFTYPE_MESH_POINT: 1674 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) { 1675 /* Do not send frames with mesh_ttl == 0 */ 1676 sdata->u.mesh.mshstats.dropped_frames_ttl++; 1677 ret = NETDEV_TX_OK; 1678 goto fail; 1679 } 1680 1681 if (compare_ether_addr(dev->dev_addr, 1682 skb->data + ETH_ALEN) == 0) { 1683 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, 1684 skb->data, skb->data + ETH_ALEN); 1685 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr, 1686 sdata, NULL, NULL, NULL); 1687 } else { 1688 /* packet from other interface */ 1689 struct mesh_path *mppath; 1690 int is_mesh_mcast = 1; 1691 const u8 *mesh_da; 1692 1693 rcu_read_lock(); 1694 if (is_multicast_ether_addr(skb->data)) 1695 /* DA TA mSA AE:SA */ 1696 mesh_da = skb->data; 1697 else { 1698 static const u8 bcast[ETH_ALEN] = 1699 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 1700 1701 mppath = mpp_path_lookup(skb->data, sdata); 1702 if (mppath) { 1703 /* RA TA mDA mSA AE:DA SA */ 1704 mesh_da = mppath->mpp; 1705 is_mesh_mcast = 0; 1706 } else { 1707 /* DA TA mSA AE:SA */ 1708 mesh_da = bcast; 1709 } 1710 } 1711 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, 1712 mesh_da, dev->dev_addr); 1713 rcu_read_unlock(); 1714 if (is_mesh_mcast) 1715 meshhdrlen = 1716 ieee80211_new_mesh_header(&mesh_hdr, 1717 sdata, 1718 skb->data + ETH_ALEN, 1719 NULL, 1720 NULL); 1721 else 1722 meshhdrlen = 1723 ieee80211_new_mesh_header(&mesh_hdr, 1724 sdata, 1725 NULL, 1726 skb->data, 1727 skb->data + ETH_ALEN); 1728 1729 } 1730 break; 1731 #endif 1732 case NL80211_IFTYPE_STATION: 1733 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN); 1734 if (sdata->u.mgd.use_4addr && ethertype != ETH_P_PAE) { 1735 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); 1736 /* RA TA DA SA */ 1737 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); 1738 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1739 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1740 hdrlen = 30; 1741 } else { 1742 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 1743 /* BSSID SA DA */ 1744 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 1745 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1746 hdrlen = 24; 1747 } 1748 break; 1749 case NL80211_IFTYPE_ADHOC: 1750 /* DA SA BSSID */ 1751 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1752 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 1753 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN); 1754 hdrlen = 24; 1755 break; 1756 default: 1757 ret = NETDEV_TX_OK; 1758 goto fail; 1759 } 1760 1761 /* 1762 * There's no need to try to look up the destination 1763 * if it is a multicast address (which can only happen 1764 * in AP mode) 1765 */ 1766 if (!is_multicast_ether_addr(hdr.addr1)) { 1767 rcu_read_lock(); 1768 sta = sta_info_get(local, hdr.addr1); 1769 /* XXX: in the future, use sdata to look up the sta */ 1770 if (sta && sta->sdata == sdata) 1771 sta_flags = get_sta_flags(sta); 1772 rcu_read_unlock(); 1773 } 1774 1775 /* receiver and we are QoS enabled, use a QoS type frame */ 1776 if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) { 1777 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 1778 hdrlen += 2; 1779 } 1780 1781 /* 1782 * Drop unicast frames to unauthorised stations unless they are 1783 * EAPOL frames from the local station. 1784 */ 1785 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1786 unlikely(!is_multicast_ether_addr(hdr.addr1) && 1787 !(sta_flags & WLAN_STA_AUTHORIZED) && 1788 !(ethertype == ETH_P_PAE && 1789 compare_ether_addr(dev->dev_addr, 1790 skb->data + ETH_ALEN) == 0))) { 1791 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 1792 if (net_ratelimit()) 1793 printk(KERN_DEBUG "%s: dropped frame to %pM" 1794 " (unauthorized port)\n", dev->name, 1795 hdr.addr1); 1796 #endif 1797 1798 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port); 1799 1800 ret = NETDEV_TX_OK; 1801 goto fail; 1802 } 1803 1804 hdr.frame_control = fc; 1805 hdr.duration_id = 0; 1806 hdr.seq_ctrl = 0; 1807 1808 skip_header_bytes = ETH_HLEN; 1809 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 1810 encaps_data = bridge_tunnel_header; 1811 encaps_len = sizeof(bridge_tunnel_header); 1812 skip_header_bytes -= 2; 1813 } else if (ethertype >= 0x600) { 1814 encaps_data = rfc1042_header; 1815 encaps_len = sizeof(rfc1042_header); 1816 skip_header_bytes -= 2; 1817 } else { 1818 encaps_data = NULL; 1819 encaps_len = 0; 1820 } 1821 1822 skb_pull(skb, skip_header_bytes); 1823 nh_pos -= skip_header_bytes; 1824 h_pos -= skip_header_bytes; 1825 1826 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb); 1827 1828 /* 1829 * So we need to modify the skb header and hence need a copy of 1830 * that. The head_need variable above doesn't, so far, include 1831 * the needed header space that we don't need right away. If we 1832 * can, then we don't reallocate right now but only after the 1833 * frame arrives at the master device (if it does...) 1834 * 1835 * If we cannot, however, then we will reallocate to include all 1836 * the ever needed space. Also, if we need to reallocate it anyway, 1837 * make it big enough for everything we may ever need. 1838 */ 1839 1840 if (head_need > 0 || skb_cloned(skb)) { 1841 head_need += IEEE80211_ENCRYPT_HEADROOM; 1842 head_need += local->tx_headroom; 1843 head_need = max_t(int, 0, head_need); 1844 if (ieee80211_skb_resize(local, skb, head_need, true)) 1845 goto fail; 1846 } 1847 1848 if (encaps_data) { 1849 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 1850 nh_pos += encaps_len; 1851 h_pos += encaps_len; 1852 } 1853 1854 if (meshhdrlen > 0) { 1855 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen); 1856 nh_pos += meshhdrlen; 1857 h_pos += meshhdrlen; 1858 } 1859 1860 if (ieee80211_is_data_qos(fc)) { 1861 __le16 *qos_control; 1862 1863 qos_control = (__le16*) skb_push(skb, 2); 1864 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2); 1865 /* 1866 * Maybe we could actually set some fields here, for now just 1867 * initialise to zero to indicate no special operation. 1868 */ 1869 *qos_control = 0; 1870 } else 1871 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 1872 1873 nh_pos += hdrlen; 1874 h_pos += hdrlen; 1875 1876 dev->stats.tx_packets++; 1877 dev->stats.tx_bytes += skb->len; 1878 1879 /* Update skb pointers to various headers since this modified frame 1880 * is going to go through Linux networking code that may potentially 1881 * need things like pointer to IP header. */ 1882 skb_set_mac_header(skb, 0); 1883 skb_set_network_header(skb, nh_pos); 1884 skb_set_transport_header(skb, h_pos); 1885 1886 memset(info, 0, sizeof(*info)); 1887 1888 dev->trans_start = jiffies; 1889 ieee80211_xmit(sdata, skb); 1890 1891 return NETDEV_TX_OK; 1892 1893 fail: 1894 if (ret == NETDEV_TX_OK) 1895 dev_kfree_skb(skb); 1896 1897 return ret; 1898 } 1899 1900 1901 /* 1902 * ieee80211_clear_tx_pending may not be called in a context where 1903 * it is possible that it packets could come in again. 1904 */ 1905 void ieee80211_clear_tx_pending(struct ieee80211_local *local) 1906 { 1907 int i; 1908 1909 for (i = 0; i < local->hw.queues; i++) 1910 skb_queue_purge(&local->pending[i]); 1911 } 1912 1913 static bool ieee80211_tx_pending_skb(struct ieee80211_local *local, 1914 struct sk_buff *skb) 1915 { 1916 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1917 struct ieee80211_sub_if_data *sdata; 1918 struct sta_info *sta; 1919 struct ieee80211_hdr *hdr; 1920 int ret; 1921 bool result = true; 1922 1923 sdata = vif_to_sdata(info->control.vif); 1924 1925 if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) { 1926 ieee80211_tx(sdata, skb, true); 1927 } else { 1928 hdr = (struct ieee80211_hdr *)skb->data; 1929 sta = sta_info_get(local, hdr->addr1); 1930 1931 ret = __ieee80211_tx(local, &skb, sta, true); 1932 if (ret != IEEE80211_TX_OK) 1933 result = false; 1934 } 1935 1936 return result; 1937 } 1938 1939 /* 1940 * Transmit all pending packets. Called from tasklet. 1941 */ 1942 void ieee80211_tx_pending(unsigned long data) 1943 { 1944 struct ieee80211_local *local = (struct ieee80211_local *)data; 1945 unsigned long flags; 1946 int i; 1947 bool txok; 1948 1949 rcu_read_lock(); 1950 1951 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 1952 for (i = 0; i < local->hw.queues; i++) { 1953 /* 1954 * If queue is stopped by something other than due to pending 1955 * frames, or we have no pending frames, proceed to next queue. 1956 */ 1957 if (local->queue_stop_reasons[i] || 1958 skb_queue_empty(&local->pending[i])) 1959 continue; 1960 1961 while (!skb_queue_empty(&local->pending[i])) { 1962 struct sk_buff *skb = __skb_dequeue(&local->pending[i]); 1963 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1964 struct ieee80211_sub_if_data *sdata; 1965 1966 if (WARN_ON(!info->control.vif)) { 1967 kfree_skb(skb); 1968 continue; 1969 } 1970 1971 sdata = vif_to_sdata(info->control.vif); 1972 spin_unlock_irqrestore(&local->queue_stop_reason_lock, 1973 flags); 1974 1975 txok = ieee80211_tx_pending_skb(local, skb); 1976 if (!txok) 1977 __skb_queue_head(&local->pending[i], skb); 1978 spin_lock_irqsave(&local->queue_stop_reason_lock, 1979 flags); 1980 if (!txok) 1981 break; 1982 } 1983 } 1984 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 1985 1986 rcu_read_unlock(); 1987 } 1988 1989 /* functions for drivers to get certain frames */ 1990 1991 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss, 1992 struct sk_buff *skb, 1993 struct beacon_data *beacon) 1994 { 1995 u8 *pos, *tim; 1996 int aid0 = 0; 1997 int i, have_bits = 0, n1, n2; 1998 1999 /* Generate bitmap for TIM only if there are any STAs in power save 2000 * mode. */ 2001 if (atomic_read(&bss->num_sta_ps) > 0) 2002 /* in the hope that this is faster than 2003 * checking byte-for-byte */ 2004 have_bits = !bitmap_empty((unsigned long*)bss->tim, 2005 IEEE80211_MAX_AID+1); 2006 2007 if (bss->dtim_count == 0) 2008 bss->dtim_count = beacon->dtim_period - 1; 2009 else 2010 bss->dtim_count--; 2011 2012 tim = pos = (u8 *) skb_put(skb, 6); 2013 *pos++ = WLAN_EID_TIM; 2014 *pos++ = 4; 2015 *pos++ = bss->dtim_count; 2016 *pos++ = beacon->dtim_period; 2017 2018 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf)) 2019 aid0 = 1; 2020 2021 if (have_bits) { 2022 /* Find largest even number N1 so that bits numbered 1 through 2023 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits 2024 * (N2 + 1) x 8 through 2007 are 0. */ 2025 n1 = 0; 2026 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) { 2027 if (bss->tim[i]) { 2028 n1 = i & 0xfe; 2029 break; 2030 } 2031 } 2032 n2 = n1; 2033 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) { 2034 if (bss->tim[i]) { 2035 n2 = i; 2036 break; 2037 } 2038 } 2039 2040 /* Bitmap control */ 2041 *pos++ = n1 | aid0; 2042 /* Part Virt Bitmap */ 2043 memcpy(pos, bss->tim + n1, n2 - n1 + 1); 2044 2045 tim[1] = n2 - n1 + 4; 2046 skb_put(skb, n2 - n1); 2047 } else { 2048 *pos++ = aid0; /* Bitmap control */ 2049 *pos++ = 0; /* Part Virt Bitmap */ 2050 } 2051 } 2052 2053 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw, 2054 struct ieee80211_vif *vif, 2055 u16 *tim_offset, u16 *tim_length) 2056 { 2057 struct ieee80211_local *local = hw_to_local(hw); 2058 struct sk_buff *skb = NULL; 2059 struct ieee80211_tx_info *info; 2060 struct ieee80211_sub_if_data *sdata = NULL; 2061 struct ieee80211_if_ap *ap = NULL; 2062 struct beacon_data *beacon; 2063 struct ieee80211_supported_band *sband; 2064 enum ieee80211_band band = local->hw.conf.channel->band; 2065 2066 sband = local->hw.wiphy->bands[band]; 2067 2068 rcu_read_lock(); 2069 2070 sdata = vif_to_sdata(vif); 2071 2072 if (tim_offset) 2073 *tim_offset = 0; 2074 if (tim_length) 2075 *tim_length = 0; 2076 2077 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2078 ap = &sdata->u.ap; 2079 beacon = rcu_dereference(ap->beacon); 2080 if (ap && beacon) { 2081 /* 2082 * headroom, head length, 2083 * tail length and maximum TIM length 2084 */ 2085 skb = dev_alloc_skb(local->tx_headroom + 2086 beacon->head_len + 2087 beacon->tail_len + 256); 2088 if (!skb) 2089 goto out; 2090 2091 skb_reserve(skb, local->tx_headroom); 2092 memcpy(skb_put(skb, beacon->head_len), beacon->head, 2093 beacon->head_len); 2094 2095 /* 2096 * Not very nice, but we want to allow the driver to call 2097 * ieee80211_beacon_get() as a response to the set_tim() 2098 * callback. That, however, is already invoked under the 2099 * sta_lock to guarantee consistent and race-free update 2100 * of the tim bitmap in mac80211 and the driver. 2101 */ 2102 if (local->tim_in_locked_section) { 2103 ieee80211_beacon_add_tim(ap, skb, beacon); 2104 } else { 2105 unsigned long flags; 2106 2107 spin_lock_irqsave(&local->sta_lock, flags); 2108 ieee80211_beacon_add_tim(ap, skb, beacon); 2109 spin_unlock_irqrestore(&local->sta_lock, flags); 2110 } 2111 2112 if (tim_offset) 2113 *tim_offset = beacon->head_len; 2114 if (tim_length) 2115 *tim_length = skb->len - beacon->head_len; 2116 2117 if (beacon->tail) 2118 memcpy(skb_put(skb, beacon->tail_len), 2119 beacon->tail, beacon->tail_len); 2120 } else 2121 goto out; 2122 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 2123 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 2124 struct ieee80211_hdr *hdr; 2125 struct sk_buff *presp = rcu_dereference(ifibss->presp); 2126 2127 if (!presp) 2128 goto out; 2129 2130 skb = skb_copy(presp, GFP_ATOMIC); 2131 if (!skb) 2132 goto out; 2133 2134 hdr = (struct ieee80211_hdr *) skb->data; 2135 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2136 IEEE80211_STYPE_BEACON); 2137 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 2138 struct ieee80211_mgmt *mgmt; 2139 u8 *pos; 2140 2141 /* headroom, head length, tail length and maximum TIM length */ 2142 skb = dev_alloc_skb(local->tx_headroom + 400); 2143 if (!skb) 2144 goto out; 2145 2146 skb_reserve(skb, local->hw.extra_tx_headroom); 2147 mgmt = (struct ieee80211_mgmt *) 2148 skb_put(skb, 24 + sizeof(mgmt->u.beacon)); 2149 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon)); 2150 mgmt->frame_control = 2151 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); 2152 memset(mgmt->da, 0xff, ETH_ALEN); 2153 memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN); 2154 memcpy(mgmt->bssid, sdata->dev->dev_addr, ETH_ALEN); 2155 mgmt->u.beacon.beacon_int = 2156 cpu_to_le16(sdata->vif.bss_conf.beacon_int); 2157 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */ 2158 2159 pos = skb_put(skb, 2); 2160 *pos++ = WLAN_EID_SSID; 2161 *pos++ = 0x0; 2162 2163 mesh_mgmt_ies_add(skb, sdata); 2164 } else { 2165 WARN_ON(1); 2166 goto out; 2167 } 2168 2169 info = IEEE80211_SKB_CB(skb); 2170 2171 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 2172 info->band = band; 2173 /* 2174 * XXX: For now, always use the lowest rate 2175 */ 2176 info->control.rates[0].idx = 0; 2177 info->control.rates[0].count = 1; 2178 info->control.rates[1].idx = -1; 2179 info->control.rates[2].idx = -1; 2180 info->control.rates[3].idx = -1; 2181 info->control.rates[4].idx = -1; 2182 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5); 2183 2184 info->control.vif = vif; 2185 2186 info->flags |= IEEE80211_TX_CTL_NO_ACK; 2187 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 2188 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; 2189 out: 2190 rcu_read_unlock(); 2191 return skb; 2192 } 2193 EXPORT_SYMBOL(ieee80211_beacon_get_tim); 2194 2195 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2196 const void *frame, size_t frame_len, 2197 const struct ieee80211_tx_info *frame_txctl, 2198 struct ieee80211_rts *rts) 2199 { 2200 const struct ieee80211_hdr *hdr = frame; 2201 2202 rts->frame_control = 2203 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS); 2204 rts->duration = ieee80211_rts_duration(hw, vif, frame_len, 2205 frame_txctl); 2206 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra)); 2207 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta)); 2208 } 2209 EXPORT_SYMBOL(ieee80211_rts_get); 2210 2211 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2212 const void *frame, size_t frame_len, 2213 const struct ieee80211_tx_info *frame_txctl, 2214 struct ieee80211_cts *cts) 2215 { 2216 const struct ieee80211_hdr *hdr = frame; 2217 2218 cts->frame_control = 2219 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS); 2220 cts->duration = ieee80211_ctstoself_duration(hw, vif, 2221 frame_len, frame_txctl); 2222 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra)); 2223 } 2224 EXPORT_SYMBOL(ieee80211_ctstoself_get); 2225 2226 struct sk_buff * 2227 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, 2228 struct ieee80211_vif *vif) 2229 { 2230 struct ieee80211_local *local = hw_to_local(hw); 2231 struct sk_buff *skb = NULL; 2232 struct sta_info *sta; 2233 struct ieee80211_tx_data tx; 2234 struct ieee80211_sub_if_data *sdata; 2235 struct ieee80211_if_ap *bss = NULL; 2236 struct beacon_data *beacon; 2237 struct ieee80211_tx_info *info; 2238 2239 sdata = vif_to_sdata(vif); 2240 bss = &sdata->u.ap; 2241 2242 rcu_read_lock(); 2243 beacon = rcu_dereference(bss->beacon); 2244 2245 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head) 2246 goto out; 2247 2248 if (bss->dtim_count != 0) 2249 goto out; /* send buffered bc/mc only after DTIM beacon */ 2250 2251 while (1) { 2252 skb = skb_dequeue(&bss->ps_bc_buf); 2253 if (!skb) 2254 goto out; 2255 local->total_ps_buffered--; 2256 2257 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) { 2258 struct ieee80211_hdr *hdr = 2259 (struct ieee80211_hdr *) skb->data; 2260 /* more buffered multicast/broadcast frames ==> set 2261 * MoreData flag in IEEE 802.11 header to inform PS 2262 * STAs */ 2263 hdr->frame_control |= 2264 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 2265 } 2266 2267 if (!ieee80211_tx_prepare(sdata, &tx, skb)) 2268 break; 2269 dev_kfree_skb_any(skb); 2270 } 2271 2272 info = IEEE80211_SKB_CB(skb); 2273 2274 sta = tx.sta; 2275 tx.flags |= IEEE80211_TX_PS_BUFFERED; 2276 tx.channel = local->hw.conf.channel; 2277 info->band = tx.channel->band; 2278 2279 if (invoke_tx_handlers(&tx)) 2280 skb = NULL; 2281 out: 2282 rcu_read_unlock(); 2283 2284 return skb; 2285 } 2286 EXPORT_SYMBOL(ieee80211_get_buffered_bc); 2287 2288 void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) 2289 { 2290 skb_set_mac_header(skb, 0); 2291 skb_set_network_header(skb, 0); 2292 skb_set_transport_header(skb, 0); 2293 2294 /* send all internal mgmt frames on VO */ 2295 skb_set_queue_mapping(skb, 0); 2296 2297 /* 2298 * The other path calling ieee80211_xmit is from the tasklet, 2299 * and while we can handle concurrent transmissions locking 2300 * requirements are that we do not come into tx with bhs on. 2301 */ 2302 local_bh_disable(); 2303 ieee80211_xmit(sdata, skb); 2304 local_bh_enable(); 2305 } 2306