1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * 12 * Transmit and frame generation functions. 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/skbuff.h> 18 #include <linux/etherdevice.h> 19 #include <linux/bitmap.h> 20 #include <linux/rcupdate.h> 21 #include <net/net_namespace.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <net/cfg80211.h> 24 #include <net/mac80211.h> 25 #include <asm/unaligned.h> 26 27 #include "ieee80211_i.h" 28 #include "led.h" 29 #include "mesh.h" 30 #include "wep.h" 31 #include "wpa.h" 32 #include "wme.h" 33 #include "rate.h" 34 35 #define IEEE80211_TX_OK 0 36 #define IEEE80211_TX_AGAIN 1 37 #define IEEE80211_TX_PENDING 2 38 39 /* misc utils */ 40 41 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr, 42 int next_frag_len) 43 { 44 int rate, mrate, erp, dur, i; 45 struct ieee80211_rate *txrate; 46 struct ieee80211_local *local = tx->local; 47 struct ieee80211_supported_band *sband; 48 struct ieee80211_hdr *hdr; 49 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 50 51 /* assume HW handles this */ 52 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS) 53 return 0; 54 55 /* uh huh? */ 56 if (WARN_ON_ONCE(info->control.rates[0].idx < 0)) 57 return 0; 58 59 sband = local->hw.wiphy->bands[tx->channel->band]; 60 txrate = &sband->bitrates[info->control.rates[0].idx]; 61 62 erp = txrate->flags & IEEE80211_RATE_ERP_G; 63 64 /* 65 * data and mgmt (except PS Poll): 66 * - during CFP: 32768 67 * - during contention period: 68 * if addr1 is group address: 0 69 * if more fragments = 0 and addr1 is individual address: time to 70 * transmit one ACK plus SIFS 71 * if more fragments = 1 and addr1 is individual address: time to 72 * transmit next fragment plus 2 x ACK plus 3 x SIFS 73 * 74 * IEEE 802.11, 9.6: 75 * - control response frame (CTS or ACK) shall be transmitted using the 76 * same rate as the immediately previous frame in the frame exchange 77 * sequence, if this rate belongs to the PHY mandatory rates, or else 78 * at the highest possible rate belonging to the PHY rates in the 79 * BSSBasicRateSet 80 */ 81 hdr = (struct ieee80211_hdr *)tx->skb->data; 82 if (ieee80211_is_ctl(hdr->frame_control)) { 83 /* TODO: These control frames are not currently sent by 84 * mac80211, but should they be implemented, this function 85 * needs to be updated to support duration field calculation. 86 * 87 * RTS: time needed to transmit pending data/mgmt frame plus 88 * one CTS frame plus one ACK frame plus 3 x SIFS 89 * CTS: duration of immediately previous RTS minus time 90 * required to transmit CTS and its SIFS 91 * ACK: 0 if immediately previous directed data/mgmt had 92 * more=0, with more=1 duration in ACK frame is duration 93 * from previous frame minus time needed to transmit ACK 94 * and its SIFS 95 * PS Poll: BIT(15) | BIT(14) | aid 96 */ 97 return 0; 98 } 99 100 /* data/mgmt */ 101 if (0 /* FIX: data/mgmt during CFP */) 102 return cpu_to_le16(32768); 103 104 if (group_addr) /* Group address as the destination - no ACK */ 105 return 0; 106 107 /* Individual destination address: 108 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes) 109 * CTS and ACK frames shall be transmitted using the highest rate in 110 * basic rate set that is less than or equal to the rate of the 111 * immediately previous frame and that is using the same modulation 112 * (CCK or OFDM). If no basic rate set matches with these requirements, 113 * the highest mandatory rate of the PHY that is less than or equal to 114 * the rate of the previous frame is used. 115 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps 116 */ 117 rate = -1; 118 /* use lowest available if everything fails */ 119 mrate = sband->bitrates[0].bitrate; 120 for (i = 0; i < sband->n_bitrates; i++) { 121 struct ieee80211_rate *r = &sband->bitrates[i]; 122 123 if (r->bitrate > txrate->bitrate) 124 break; 125 126 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i)) 127 rate = r->bitrate; 128 129 switch (sband->band) { 130 case IEEE80211_BAND_2GHZ: { 131 u32 flag; 132 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 133 flag = IEEE80211_RATE_MANDATORY_G; 134 else 135 flag = IEEE80211_RATE_MANDATORY_B; 136 if (r->flags & flag) 137 mrate = r->bitrate; 138 break; 139 } 140 case IEEE80211_BAND_5GHZ: 141 if (r->flags & IEEE80211_RATE_MANDATORY_A) 142 mrate = r->bitrate; 143 break; 144 case IEEE80211_NUM_BANDS: 145 WARN_ON(1); 146 break; 147 } 148 } 149 if (rate == -1) { 150 /* No matching basic rate found; use highest suitable mandatory 151 * PHY rate */ 152 rate = mrate; 153 } 154 155 /* Time needed to transmit ACK 156 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up 157 * to closest integer */ 158 159 dur = ieee80211_frame_duration(local, 10, rate, erp, 160 tx->sdata->vif.bss_conf.use_short_preamble); 161 162 if (next_frag_len) { 163 /* Frame is fragmented: duration increases with time needed to 164 * transmit next fragment plus ACK and 2 x SIFS. */ 165 dur *= 2; /* ACK + SIFS */ 166 /* next fragment */ 167 dur += ieee80211_frame_duration(local, next_frag_len, 168 txrate->bitrate, erp, 169 tx->sdata->vif.bss_conf.use_short_preamble); 170 } 171 172 return cpu_to_le16(dur); 173 } 174 175 static int inline is_ieee80211_device(struct ieee80211_local *local, 176 struct net_device *dev) 177 { 178 return local == wdev_priv(dev->ieee80211_ptr); 179 } 180 181 /* tx handlers */ 182 183 static ieee80211_tx_result debug_noinline 184 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx) 185 { 186 187 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 188 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 189 u32 sta_flags; 190 191 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) 192 return TX_CONTINUE; 193 194 if (unlikely(tx->local->sw_scanning) && 195 !ieee80211_is_probe_req(hdr->frame_control) && 196 !ieee80211_is_nullfunc(hdr->frame_control)) 197 /* 198 * When software scanning only nullfunc frames (to notify 199 * the sleep state to the AP) and probe requests (for the 200 * active scan) are allowed, all other frames should not be 201 * sent and we should not get here, but if we do 202 * nonetheless, drop them to avoid sending them 203 * off-channel. See the link below and 204 * ieee80211_start_scan() for more. 205 * 206 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089 207 */ 208 return TX_DROP; 209 210 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 211 return TX_CONTINUE; 212 213 if (tx->flags & IEEE80211_TX_PS_BUFFERED) 214 return TX_CONTINUE; 215 216 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0; 217 218 if (likely(tx->flags & IEEE80211_TX_UNICAST)) { 219 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) && 220 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 221 ieee80211_is_data(hdr->frame_control))) { 222 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 223 printk(KERN_DEBUG "%s: dropped data frame to not " 224 "associated station %pM\n", 225 tx->dev->name, hdr->addr1); 226 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ 227 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc); 228 return TX_DROP; 229 } 230 } else { 231 if (unlikely(ieee80211_is_data(hdr->frame_control) && 232 tx->local->num_sta == 0 && 233 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) { 234 /* 235 * No associated STAs - no need to send multicast 236 * frames. 237 */ 238 return TX_DROP; 239 } 240 return TX_CONTINUE; 241 } 242 243 return TX_CONTINUE; 244 } 245 246 /* This function is called whenever the AP is about to exceed the maximum limit 247 * of buffered frames for power saving STAs. This situation should not really 248 * happen often during normal operation, so dropping the oldest buffered packet 249 * from each queue should be OK to make some room for new frames. */ 250 static void purge_old_ps_buffers(struct ieee80211_local *local) 251 { 252 int total = 0, purged = 0; 253 struct sk_buff *skb; 254 struct ieee80211_sub_if_data *sdata; 255 struct sta_info *sta; 256 257 /* 258 * virtual interfaces are protected by RCU 259 */ 260 rcu_read_lock(); 261 262 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 263 struct ieee80211_if_ap *ap; 264 if (sdata->vif.type != NL80211_IFTYPE_AP) 265 continue; 266 ap = &sdata->u.ap; 267 skb = skb_dequeue(&ap->ps_bc_buf); 268 if (skb) { 269 purged++; 270 dev_kfree_skb(skb); 271 } 272 total += skb_queue_len(&ap->ps_bc_buf); 273 } 274 275 list_for_each_entry_rcu(sta, &local->sta_list, list) { 276 skb = skb_dequeue(&sta->ps_tx_buf); 277 if (skb) { 278 purged++; 279 dev_kfree_skb(skb); 280 } 281 total += skb_queue_len(&sta->ps_tx_buf); 282 } 283 284 rcu_read_unlock(); 285 286 local->total_ps_buffered = total; 287 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 288 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n", 289 wiphy_name(local->hw.wiphy), purged); 290 #endif 291 } 292 293 static ieee80211_tx_result 294 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx) 295 { 296 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 297 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 298 299 /* 300 * broadcast/multicast frame 301 * 302 * If any of the associated stations is in power save mode, 303 * the frame is buffered to be sent after DTIM beacon frame. 304 * This is done either by the hardware or us. 305 */ 306 307 /* powersaving STAs only in AP/VLAN mode */ 308 if (!tx->sdata->bss) 309 return TX_CONTINUE; 310 311 /* no buffering for ordered frames */ 312 if (ieee80211_has_order(hdr->frame_control)) 313 return TX_CONTINUE; 314 315 /* no stations in PS mode */ 316 if (!atomic_read(&tx->sdata->bss->num_sta_ps)) 317 return TX_CONTINUE; 318 319 /* buffered in mac80211 */ 320 if (tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING) { 321 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) 322 purge_old_ps_buffers(tx->local); 323 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= 324 AP_MAX_BC_BUFFER) { 325 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 326 if (net_ratelimit()) { 327 printk(KERN_DEBUG "%s: BC TX buffer full - " 328 "dropping the oldest frame\n", 329 tx->dev->name); 330 } 331 #endif 332 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf)); 333 } else 334 tx->local->total_ps_buffered++; 335 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb); 336 return TX_QUEUED; 337 } 338 339 /* buffered in hardware */ 340 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM; 341 342 return TX_CONTINUE; 343 } 344 345 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta, 346 struct sk_buff *skb) 347 { 348 if (!ieee80211_is_mgmt(fc)) 349 return 0; 350 351 if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP)) 352 return 0; 353 354 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) 355 skb->data)) 356 return 0; 357 358 return 1; 359 } 360 361 static ieee80211_tx_result 362 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx) 363 { 364 struct sta_info *sta = tx->sta; 365 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 366 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 367 u32 staflags; 368 369 if (unlikely(!sta || ieee80211_is_probe_resp(hdr->frame_control))) 370 return TX_CONTINUE; 371 372 staflags = get_sta_flags(sta); 373 374 if (unlikely((staflags & WLAN_STA_PS) && 375 !(staflags & WLAN_STA_PSPOLL))) { 376 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 377 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries " 378 "before %d)\n", 379 sta->sta.addr, sta->sta.aid, 380 skb_queue_len(&sta->ps_tx_buf)); 381 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 382 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) 383 purge_old_ps_buffers(tx->local); 384 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) { 385 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf); 386 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 387 if (net_ratelimit()) { 388 printk(KERN_DEBUG "%s: STA %pM TX " 389 "buffer full - dropping oldest frame\n", 390 tx->dev->name, sta->sta.addr); 391 } 392 #endif 393 dev_kfree_skb(old); 394 } else 395 tx->local->total_ps_buffered++; 396 397 /* Queue frame to be sent after STA sends an PS Poll frame */ 398 if (skb_queue_empty(&sta->ps_tx_buf)) 399 sta_info_set_tim_bit(sta); 400 401 info->control.jiffies = jiffies; 402 skb_queue_tail(&sta->ps_tx_buf, tx->skb); 403 return TX_QUEUED; 404 } 405 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 406 else if (unlikely(test_sta_flags(sta, WLAN_STA_PS))) { 407 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll " 408 "set -> send frame\n", tx->dev->name, 409 sta->sta.addr); 410 } 411 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 412 clear_sta_flags(sta, WLAN_STA_PSPOLL); 413 414 return TX_CONTINUE; 415 } 416 417 static ieee80211_tx_result debug_noinline 418 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx) 419 { 420 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED)) 421 return TX_CONTINUE; 422 423 if (tx->flags & IEEE80211_TX_UNICAST) 424 return ieee80211_tx_h_unicast_ps_buf(tx); 425 else 426 return ieee80211_tx_h_multicast_ps_buf(tx); 427 } 428 429 static ieee80211_tx_result debug_noinline 430 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx) 431 { 432 struct ieee80211_key *key; 433 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 434 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 435 436 if (unlikely(tx->skb->do_not_encrypt)) 437 tx->key = NULL; 438 else if (tx->sta && (key = rcu_dereference(tx->sta->key))) 439 tx->key = key; 440 else if (ieee80211_is_mgmt(hdr->frame_control) && 441 (key = rcu_dereference(tx->sdata->default_mgmt_key))) 442 tx->key = key; 443 else if ((key = rcu_dereference(tx->sdata->default_key))) 444 tx->key = key; 445 else if (tx->sdata->drop_unencrypted && 446 (tx->skb->protocol != cpu_to_be16(ETH_P_PAE)) && 447 !(info->flags & IEEE80211_TX_CTL_INJECTED) && 448 (!ieee80211_is_robust_mgmt_frame(hdr) || 449 (ieee80211_is_action(hdr->frame_control) && 450 tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) { 451 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted); 452 return TX_DROP; 453 } else 454 tx->key = NULL; 455 456 if (tx->key) { 457 tx->key->tx_rx_count++; 458 /* TODO: add threshold stuff again */ 459 460 switch (tx->key->conf.alg) { 461 case ALG_WEP: 462 if (ieee80211_is_auth(hdr->frame_control)) 463 break; 464 case ALG_TKIP: 465 if (!ieee80211_is_data_present(hdr->frame_control)) 466 tx->key = NULL; 467 break; 468 case ALG_CCMP: 469 if (!ieee80211_is_data_present(hdr->frame_control) && 470 !ieee80211_use_mfp(hdr->frame_control, tx->sta, 471 tx->skb)) 472 tx->key = NULL; 473 break; 474 case ALG_AES_CMAC: 475 if (!ieee80211_is_mgmt(hdr->frame_control)) 476 tx->key = NULL; 477 break; 478 } 479 } 480 481 if (!tx->key || !(tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) 482 tx->skb->do_not_encrypt = 1; 483 484 return TX_CONTINUE; 485 } 486 487 static ieee80211_tx_result debug_noinline 488 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx) 489 { 490 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 491 struct ieee80211_hdr *hdr = (void *)tx->skb->data; 492 struct ieee80211_supported_band *sband; 493 struct ieee80211_rate *rate; 494 int i, len; 495 bool inval = false, rts = false, short_preamble = false; 496 struct ieee80211_tx_rate_control txrc; 497 498 memset(&txrc, 0, sizeof(txrc)); 499 500 sband = tx->local->hw.wiphy->bands[tx->channel->band]; 501 502 len = min_t(int, tx->skb->len + FCS_LEN, 503 tx->local->fragmentation_threshold); 504 505 /* set up the tx rate control struct we give the RC algo */ 506 txrc.hw = local_to_hw(tx->local); 507 txrc.sband = sband; 508 txrc.bss_conf = &tx->sdata->vif.bss_conf; 509 txrc.skb = tx->skb; 510 txrc.reported_rate.idx = -1; 511 txrc.max_rate_idx = tx->sdata->max_ratectrl_rateidx; 512 513 /* set up RTS protection if desired */ 514 if (tx->local->rts_threshold < IEEE80211_MAX_RTS_THRESHOLD && 515 len > tx->local->rts_threshold) { 516 txrc.rts = rts = true; 517 } 518 519 /* 520 * Use short preamble if the BSS can handle it, but not for 521 * management frames unless we know the receiver can handle 522 * that -- the management frame might be to a station that 523 * just wants a probe response. 524 */ 525 if (tx->sdata->vif.bss_conf.use_short_preamble && 526 (ieee80211_is_data(hdr->frame_control) || 527 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE)))) 528 txrc.short_preamble = short_preamble = true; 529 530 531 rate_control_get_rate(tx->sdata, tx->sta, &txrc); 532 533 if (unlikely(info->control.rates[0].idx < 0)) 534 return TX_DROP; 535 536 if (txrc.reported_rate.idx < 0) 537 txrc.reported_rate = info->control.rates[0]; 538 539 if (tx->sta) 540 tx->sta->last_tx_rate = txrc.reported_rate; 541 542 if (unlikely(!info->control.rates[0].count)) 543 info->control.rates[0].count = 1; 544 545 if (is_multicast_ether_addr(hdr->addr1)) { 546 /* 547 * XXX: verify the rate is in the basic rateset 548 */ 549 return TX_CONTINUE; 550 } 551 552 /* 553 * set up the RTS/CTS rate as the fastest basic rate 554 * that is not faster than the data rate 555 * 556 * XXX: Should this check all retry rates? 557 */ 558 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) { 559 s8 baserate = 0; 560 561 rate = &sband->bitrates[info->control.rates[0].idx]; 562 563 for (i = 0; i < sband->n_bitrates; i++) { 564 /* must be a basic rate */ 565 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i))) 566 continue; 567 /* must not be faster than the data rate */ 568 if (sband->bitrates[i].bitrate > rate->bitrate) 569 continue; 570 /* maximum */ 571 if (sband->bitrates[baserate].bitrate < 572 sband->bitrates[i].bitrate) 573 baserate = i; 574 } 575 576 info->control.rts_cts_rate_idx = baserate; 577 } 578 579 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { 580 /* 581 * make sure there's no valid rate following 582 * an invalid one, just in case drivers don't 583 * take the API seriously to stop at -1. 584 */ 585 if (inval) { 586 info->control.rates[i].idx = -1; 587 continue; 588 } 589 if (info->control.rates[i].idx < 0) { 590 inval = true; 591 continue; 592 } 593 594 /* 595 * For now assume MCS is already set up correctly, this 596 * needs to be fixed. 597 */ 598 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) { 599 WARN_ON(info->control.rates[i].idx > 76); 600 continue; 601 } 602 603 /* set up RTS protection if desired */ 604 if (rts) 605 info->control.rates[i].flags |= 606 IEEE80211_TX_RC_USE_RTS_CTS; 607 608 /* RC is busted */ 609 if (WARN_ON_ONCE(info->control.rates[i].idx >= 610 sband->n_bitrates)) { 611 info->control.rates[i].idx = -1; 612 continue; 613 } 614 615 rate = &sband->bitrates[info->control.rates[i].idx]; 616 617 /* set up short preamble */ 618 if (short_preamble && 619 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE) 620 info->control.rates[i].flags |= 621 IEEE80211_TX_RC_USE_SHORT_PREAMBLE; 622 623 /* set up G protection */ 624 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot && 625 rate->flags & IEEE80211_RATE_ERP_G) 626 info->control.rates[i].flags |= 627 IEEE80211_TX_RC_USE_CTS_PROTECT; 628 } 629 630 return TX_CONTINUE; 631 } 632 633 static ieee80211_tx_result debug_noinline 634 ieee80211_tx_h_misc(struct ieee80211_tx_data *tx) 635 { 636 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 637 638 if (tx->sta) 639 info->control.sta = &tx->sta->sta; 640 641 return TX_CONTINUE; 642 } 643 644 static ieee80211_tx_result debug_noinline 645 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx) 646 { 647 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 648 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 649 u16 *seq; 650 u8 *qc; 651 int tid; 652 653 /* 654 * Packet injection may want to control the sequence 655 * number, if we have no matching interface then we 656 * neither assign one ourselves nor ask the driver to. 657 */ 658 if (unlikely(!info->control.vif)) 659 return TX_CONTINUE; 660 661 if (unlikely(ieee80211_is_ctl(hdr->frame_control))) 662 return TX_CONTINUE; 663 664 if (ieee80211_hdrlen(hdr->frame_control) < 24) 665 return TX_CONTINUE; 666 667 /* 668 * Anything but QoS data that has a sequence number field 669 * (is long enough) gets a sequence number from the global 670 * counter. 671 */ 672 if (!ieee80211_is_data_qos(hdr->frame_control)) { 673 /* driver should assign sequence number */ 674 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; 675 /* for pure STA mode without beacons, we can do it */ 676 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number); 677 tx->sdata->sequence_number += 0x10; 678 tx->sdata->sequence_number &= IEEE80211_SCTL_SEQ; 679 return TX_CONTINUE; 680 } 681 682 /* 683 * This should be true for injected/management frames only, for 684 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ 685 * above since they are not QoS-data frames. 686 */ 687 if (!tx->sta) 688 return TX_CONTINUE; 689 690 /* include per-STA, per-TID sequence counter */ 691 692 qc = ieee80211_get_qos_ctl(hdr); 693 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 694 seq = &tx->sta->tid_seq[tid]; 695 696 hdr->seq_ctrl = cpu_to_le16(*seq); 697 698 /* Increase the sequence number. */ 699 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ; 700 701 return TX_CONTINUE; 702 } 703 704 static int ieee80211_fragment(struct ieee80211_local *local, 705 struct sk_buff *skb, int hdrlen, 706 int frag_threshold) 707 { 708 struct sk_buff *tail = skb, *tmp; 709 int per_fragm = frag_threshold - hdrlen - FCS_LEN; 710 int pos = hdrlen + per_fragm; 711 int rem = skb->len - hdrlen - per_fragm; 712 713 if (WARN_ON(rem < 0)) 714 return -EINVAL; 715 716 while (rem) { 717 int fraglen = per_fragm; 718 719 if (fraglen > rem) 720 fraglen = rem; 721 rem -= fraglen; 722 tmp = dev_alloc_skb(local->tx_headroom + 723 frag_threshold + 724 IEEE80211_ENCRYPT_HEADROOM + 725 IEEE80211_ENCRYPT_TAILROOM); 726 if (!tmp) 727 return -ENOMEM; 728 tail->next = tmp; 729 tail = tmp; 730 skb_reserve(tmp, local->tx_headroom + 731 IEEE80211_ENCRYPT_HEADROOM); 732 /* copy control information */ 733 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb)); 734 skb_copy_queue_mapping(tmp, skb); 735 tmp->priority = skb->priority; 736 tmp->do_not_encrypt = skb->do_not_encrypt; 737 tmp->dev = skb->dev; 738 tmp->iif = skb->iif; 739 740 /* copy header and data */ 741 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen); 742 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen); 743 744 pos += fraglen; 745 } 746 747 skb->len = hdrlen + per_fragm; 748 return 0; 749 } 750 751 static ieee80211_tx_result debug_noinline 752 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx) 753 { 754 struct sk_buff *skb = tx->skb; 755 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 756 struct ieee80211_hdr *hdr = (void *)skb->data; 757 int frag_threshold = tx->local->fragmentation_threshold; 758 int hdrlen; 759 int fragnum; 760 761 if (!(tx->flags & IEEE80211_TX_FRAGMENTED)) 762 return TX_CONTINUE; 763 764 /* 765 * Warn when submitting a fragmented A-MPDU frame and drop it. 766 * This scenario is handled in __ieee80211_tx_prepare but extra 767 * caution taken here as fragmented ampdu may cause Tx stop. 768 */ 769 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU)) 770 return TX_DROP; 771 772 hdrlen = ieee80211_hdrlen(hdr->frame_control); 773 774 /* internal error, why is TX_FRAGMENTED set? */ 775 if (WARN_ON(skb->len <= frag_threshold)) 776 return TX_DROP; 777 778 /* 779 * Now fragment the frame. This will allocate all the fragments and 780 * chain them (using skb as the first fragment) to skb->next. 781 * During transmission, we will remove the successfully transmitted 782 * fragments from this list. When the low-level driver rejects one 783 * of the fragments then we will simply pretend to accept the skb 784 * but store it away as pending. 785 */ 786 if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold)) 787 return TX_DROP; 788 789 /* update duration/seq/flags of fragments */ 790 fragnum = 0; 791 do { 792 int next_len; 793 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); 794 795 hdr = (void *)skb->data; 796 info = IEEE80211_SKB_CB(skb); 797 798 if (skb->next) { 799 hdr->frame_control |= morefrags; 800 next_len = skb->next->len; 801 /* 802 * No multi-rate retries for fragmented frames, that 803 * would completely throw off the NAV at other STAs. 804 */ 805 info->control.rates[1].idx = -1; 806 info->control.rates[2].idx = -1; 807 info->control.rates[3].idx = -1; 808 info->control.rates[4].idx = -1; 809 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5); 810 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE; 811 } else { 812 hdr->frame_control &= ~morefrags; 813 next_len = 0; 814 } 815 hdr->duration_id = ieee80211_duration(tx, 0, next_len); 816 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG); 817 fragnum++; 818 } while ((skb = skb->next)); 819 820 return TX_CONTINUE; 821 } 822 823 static ieee80211_tx_result debug_noinline 824 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx) 825 { 826 if (!tx->key) 827 return TX_CONTINUE; 828 829 switch (tx->key->conf.alg) { 830 case ALG_WEP: 831 return ieee80211_crypto_wep_encrypt(tx); 832 case ALG_TKIP: 833 return ieee80211_crypto_tkip_encrypt(tx); 834 case ALG_CCMP: 835 return ieee80211_crypto_ccmp_encrypt(tx); 836 case ALG_AES_CMAC: 837 return ieee80211_crypto_aes_cmac_encrypt(tx); 838 } 839 840 /* not reached */ 841 WARN_ON(1); 842 return TX_DROP; 843 } 844 845 static ieee80211_tx_result debug_noinline 846 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx) 847 { 848 struct sk_buff *skb = tx->skb; 849 struct ieee80211_hdr *hdr; 850 int next_len; 851 bool group_addr; 852 853 do { 854 hdr = (void *) skb->data; 855 next_len = skb->next ? skb->next->len : 0; 856 group_addr = is_multicast_ether_addr(hdr->addr1); 857 858 hdr->duration_id = 859 ieee80211_duration(tx, group_addr, next_len); 860 } while ((skb = skb->next)); 861 862 return TX_CONTINUE; 863 } 864 865 static ieee80211_tx_result debug_noinline 866 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx) 867 { 868 struct sk_buff *skb = tx->skb; 869 870 if (!tx->sta) 871 return TX_CONTINUE; 872 873 tx->sta->tx_packets++; 874 do { 875 tx->sta->tx_fragments++; 876 tx->sta->tx_bytes += skb->len; 877 } while ((skb = skb->next)); 878 879 return TX_CONTINUE; 880 } 881 882 /* actual transmit path */ 883 884 /* 885 * deal with packet injection down monitor interface 886 * with Radiotap Header -- only called for monitor mode interface 887 */ 888 static ieee80211_tx_result 889 __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx, 890 struct sk_buff *skb) 891 { 892 /* 893 * this is the moment to interpret and discard the radiotap header that 894 * must be at the start of the packet injected in Monitor mode 895 * 896 * Need to take some care with endian-ness since radiotap 897 * args are little-endian 898 */ 899 900 struct ieee80211_radiotap_iterator iterator; 901 struct ieee80211_radiotap_header *rthdr = 902 (struct ieee80211_radiotap_header *) skb->data; 903 struct ieee80211_supported_band *sband; 904 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len); 905 906 sband = tx->local->hw.wiphy->bands[tx->channel->band]; 907 908 skb->do_not_encrypt = 1; 909 tx->flags &= ~IEEE80211_TX_FRAGMENTED; 910 911 /* 912 * for every radiotap entry that is present 913 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more 914 * entries present, or -EINVAL on error) 915 */ 916 917 while (!ret) { 918 ret = ieee80211_radiotap_iterator_next(&iterator); 919 920 if (ret) 921 continue; 922 923 /* see if this argument is something we can use */ 924 switch (iterator.this_arg_index) { 925 /* 926 * You must take care when dereferencing iterator.this_arg 927 * for multibyte types... the pointer is not aligned. Use 928 * get_unaligned((type *)iterator.this_arg) to dereference 929 * iterator.this_arg for type "type" safely on all arches. 930 */ 931 case IEEE80211_RADIOTAP_FLAGS: 932 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) { 933 /* 934 * this indicates that the skb we have been 935 * handed has the 32-bit FCS CRC at the end... 936 * we should react to that by snipping it off 937 * because it will be recomputed and added 938 * on transmission 939 */ 940 if (skb->len < (iterator.max_length + FCS_LEN)) 941 return TX_DROP; 942 943 skb_trim(skb, skb->len - FCS_LEN); 944 } 945 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP) 946 tx->skb->do_not_encrypt = 0; 947 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG) 948 tx->flags |= IEEE80211_TX_FRAGMENTED; 949 break; 950 951 /* 952 * Please update the file 953 * Documentation/networking/mac80211-injection.txt 954 * when parsing new fields here. 955 */ 956 957 default: 958 break; 959 } 960 } 961 962 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */ 963 return TX_DROP; 964 965 /* 966 * remove the radiotap header 967 * iterator->max_length was sanity-checked against 968 * skb->len by iterator init 969 */ 970 skb_pull(skb, iterator.max_length); 971 972 return TX_CONTINUE; 973 } 974 975 /* 976 * initialises @tx 977 */ 978 static ieee80211_tx_result 979 __ieee80211_tx_prepare(struct ieee80211_tx_data *tx, 980 struct sk_buff *skb, 981 struct net_device *dev) 982 { 983 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 984 struct ieee80211_hdr *hdr; 985 struct ieee80211_sub_if_data *sdata; 986 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 987 int hdrlen, tid; 988 u8 *qc, *state; 989 bool queued = false; 990 991 memset(tx, 0, sizeof(*tx)); 992 tx->skb = skb; 993 tx->dev = dev; /* use original interface */ 994 tx->local = local; 995 tx->sdata = IEEE80211_DEV_TO_SUB_IF(dev); 996 tx->channel = local->hw.conf.channel; 997 /* 998 * Set this flag (used below to indicate "automatic fragmentation"), 999 * it will be cleared/left by radiotap as desired. 1000 */ 1001 tx->flags |= IEEE80211_TX_FRAGMENTED; 1002 1003 /* process and remove the injection radiotap header */ 1004 sdata = IEEE80211_DEV_TO_SUB_IF(dev); 1005 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) { 1006 if (__ieee80211_parse_tx_radiotap(tx, skb) == TX_DROP) 1007 return TX_DROP; 1008 1009 /* 1010 * __ieee80211_parse_tx_radiotap has now removed 1011 * the radiotap header that was present and pre-filled 1012 * 'tx' with tx control information. 1013 */ 1014 } 1015 1016 /* 1017 * If this flag is set to true anywhere, and we get here, 1018 * we are doing the needed processing, so remove the flag 1019 * now. 1020 */ 1021 info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING; 1022 1023 hdr = (struct ieee80211_hdr *) skb->data; 1024 1025 tx->sta = sta_info_get(local, hdr->addr1); 1026 1027 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) && 1028 (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) { 1029 unsigned long flags; 1030 struct tid_ampdu_tx *tid_tx; 1031 1032 qc = ieee80211_get_qos_ctl(hdr); 1033 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 1034 1035 spin_lock_irqsave(&tx->sta->lock, flags); 1036 /* 1037 * XXX: This spinlock could be fairly expensive, but see the 1038 * comment in agg-tx.c:ieee80211_agg_tx_operational(). 1039 * One way to solve this would be to do something RCU-like 1040 * for managing the tid_tx struct and using atomic bitops 1041 * for the actual state -- by introducing an actual 1042 * 'operational' bit that would be possible. It would 1043 * require changing ieee80211_agg_tx_operational() to 1044 * set that bit, and changing the way tid_tx is managed 1045 * everywhere, including races between that bit and 1046 * tid_tx going away (tid_tx being added can be easily 1047 * committed to memory before the 'operational' bit). 1048 */ 1049 tid_tx = tx->sta->ampdu_mlme.tid_tx[tid]; 1050 state = &tx->sta->ampdu_mlme.tid_state_tx[tid]; 1051 if (*state == HT_AGG_STATE_OPERATIONAL) { 1052 info->flags |= IEEE80211_TX_CTL_AMPDU; 1053 } else if (*state != HT_AGG_STATE_IDLE) { 1054 /* in progress */ 1055 queued = true; 1056 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 1057 __skb_queue_tail(&tid_tx->pending, skb); 1058 } 1059 spin_unlock_irqrestore(&tx->sta->lock, flags); 1060 1061 if (unlikely(queued)) 1062 return TX_QUEUED; 1063 } 1064 1065 if (is_multicast_ether_addr(hdr->addr1)) { 1066 tx->flags &= ~IEEE80211_TX_UNICAST; 1067 info->flags |= IEEE80211_TX_CTL_NO_ACK; 1068 } else { 1069 tx->flags |= IEEE80211_TX_UNICAST; 1070 info->flags &= ~IEEE80211_TX_CTL_NO_ACK; 1071 } 1072 1073 if (tx->flags & IEEE80211_TX_FRAGMENTED) { 1074 if ((tx->flags & IEEE80211_TX_UNICAST) && 1075 skb->len + FCS_LEN > local->fragmentation_threshold && 1076 !(info->flags & IEEE80211_TX_CTL_AMPDU)) 1077 tx->flags |= IEEE80211_TX_FRAGMENTED; 1078 else 1079 tx->flags &= ~IEEE80211_TX_FRAGMENTED; 1080 } 1081 1082 if (!tx->sta) 1083 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1084 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT)) 1085 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1086 1087 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1088 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) { 1089 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)]; 1090 tx->ethertype = (pos[0] << 8) | pos[1]; 1091 } 1092 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT; 1093 1094 return TX_CONTINUE; 1095 } 1096 1097 /* 1098 * NB: @tx is uninitialised when passed in here 1099 */ 1100 static int ieee80211_tx_prepare(struct ieee80211_local *local, 1101 struct ieee80211_tx_data *tx, 1102 struct sk_buff *skb) 1103 { 1104 struct net_device *dev; 1105 1106 dev = dev_get_by_index(&init_net, skb->iif); 1107 if (unlikely(dev && !is_ieee80211_device(local, dev))) { 1108 dev_put(dev); 1109 dev = NULL; 1110 } 1111 if (unlikely(!dev)) 1112 return -ENODEV; 1113 /* 1114 * initialises tx with control 1115 * 1116 * return value is safe to ignore here because this function 1117 * can only be invoked for multicast frames 1118 * 1119 * XXX: clean up 1120 */ 1121 __ieee80211_tx_prepare(tx, skb, dev); 1122 dev_put(dev); 1123 return 0; 1124 } 1125 1126 static int __ieee80211_tx(struct ieee80211_local *local, 1127 struct sk_buff **skbp, 1128 struct sta_info *sta) 1129 { 1130 struct sk_buff *skb = *skbp, *next; 1131 struct ieee80211_tx_info *info; 1132 int ret, len; 1133 bool fragm = false; 1134 1135 local->mdev->trans_start = jiffies; 1136 1137 while (skb) { 1138 if (ieee80211_queue_stopped(&local->hw, 1139 skb_get_queue_mapping(skb))) 1140 return IEEE80211_TX_PENDING; 1141 1142 info = IEEE80211_SKB_CB(skb); 1143 1144 if (fragm) 1145 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT | 1146 IEEE80211_TX_CTL_FIRST_FRAGMENT); 1147 1148 next = skb->next; 1149 len = skb->len; 1150 ret = local->ops->tx(local_to_hw(local), skb); 1151 if (WARN_ON(ret != NETDEV_TX_OK && skb->len != len)) { 1152 dev_kfree_skb(skb); 1153 ret = NETDEV_TX_OK; 1154 } 1155 if (ret != NETDEV_TX_OK) 1156 return IEEE80211_TX_AGAIN; 1157 *skbp = skb = next; 1158 ieee80211_led_tx(local, 1); 1159 fragm = true; 1160 } 1161 1162 return IEEE80211_TX_OK; 1163 } 1164 1165 /* 1166 * Invoke TX handlers, return 0 on success and non-zero if the 1167 * frame was dropped or queued. 1168 */ 1169 static int invoke_tx_handlers(struct ieee80211_tx_data *tx) 1170 { 1171 struct sk_buff *skb = tx->skb; 1172 ieee80211_tx_result res = TX_DROP; 1173 1174 #define CALL_TXH(txh) \ 1175 res = txh(tx); \ 1176 if (res != TX_CONTINUE) \ 1177 goto txh_done; 1178 1179 CALL_TXH(ieee80211_tx_h_check_assoc) 1180 CALL_TXH(ieee80211_tx_h_ps_buf) 1181 CALL_TXH(ieee80211_tx_h_select_key) 1182 CALL_TXH(ieee80211_tx_h_michael_mic_add) 1183 CALL_TXH(ieee80211_tx_h_rate_ctrl) 1184 CALL_TXH(ieee80211_tx_h_misc) 1185 CALL_TXH(ieee80211_tx_h_sequence) 1186 CALL_TXH(ieee80211_tx_h_fragment) 1187 /* handlers after fragment must be aware of tx info fragmentation! */ 1188 CALL_TXH(ieee80211_tx_h_encrypt) 1189 CALL_TXH(ieee80211_tx_h_calculate_duration) 1190 CALL_TXH(ieee80211_tx_h_stats) 1191 #undef CALL_TXH 1192 1193 txh_done: 1194 if (unlikely(res == TX_DROP)) { 1195 I802_DEBUG_INC(tx->local->tx_handlers_drop); 1196 while (skb) { 1197 struct sk_buff *next; 1198 1199 next = skb->next; 1200 dev_kfree_skb(skb); 1201 skb = next; 1202 } 1203 return -1; 1204 } else if (unlikely(res == TX_QUEUED)) { 1205 I802_DEBUG_INC(tx->local->tx_handlers_queued); 1206 return -1; 1207 } 1208 1209 return 0; 1210 } 1211 1212 static void ieee80211_tx(struct net_device *dev, struct sk_buff *skb, 1213 bool txpending) 1214 { 1215 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 1216 struct sta_info *sta; 1217 struct ieee80211_tx_data tx; 1218 ieee80211_tx_result res_prepare; 1219 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1220 struct sk_buff *next; 1221 unsigned long flags; 1222 int ret, retries; 1223 u16 queue; 1224 1225 queue = skb_get_queue_mapping(skb); 1226 1227 WARN_ON(!txpending && !skb_queue_empty(&local->pending[queue])); 1228 1229 if (unlikely(skb->len < 10)) { 1230 dev_kfree_skb(skb); 1231 return; 1232 } 1233 1234 rcu_read_lock(); 1235 1236 /* initialises tx */ 1237 res_prepare = __ieee80211_tx_prepare(&tx, skb, dev); 1238 1239 if (unlikely(res_prepare == TX_DROP)) { 1240 dev_kfree_skb(skb); 1241 rcu_read_unlock(); 1242 return; 1243 } else if (unlikely(res_prepare == TX_QUEUED)) { 1244 rcu_read_unlock(); 1245 return; 1246 } 1247 1248 sta = tx.sta; 1249 tx.channel = local->hw.conf.channel; 1250 info->band = tx.channel->band; 1251 1252 if (invoke_tx_handlers(&tx)) 1253 goto out; 1254 1255 retries = 0; 1256 retry: 1257 ret = __ieee80211_tx(local, &tx.skb, tx.sta); 1258 switch (ret) { 1259 case IEEE80211_TX_OK: 1260 break; 1261 case IEEE80211_TX_AGAIN: 1262 /* 1263 * Since there are no fragmented frames on A-MPDU 1264 * queues, there's no reason for a driver to reject 1265 * a frame there, warn and drop it. 1266 */ 1267 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU)) 1268 goto drop; 1269 /* fall through */ 1270 case IEEE80211_TX_PENDING: 1271 skb = tx.skb; 1272 1273 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 1274 1275 if (__netif_subqueue_stopped(local->mdev, queue)) { 1276 do { 1277 next = skb->next; 1278 skb->next = NULL; 1279 if (unlikely(txpending)) 1280 skb_queue_head(&local->pending[queue], 1281 skb); 1282 else 1283 skb_queue_tail(&local->pending[queue], 1284 skb); 1285 } while ((skb = next)); 1286 1287 /* 1288 * Make sure nobody will enable the queue on us 1289 * (without going through the tasklet) nor disable the 1290 * netdev queue underneath the pending handling code. 1291 */ 1292 __set_bit(IEEE80211_QUEUE_STOP_REASON_PENDING, 1293 &local->queue_stop_reasons[queue]); 1294 1295 spin_unlock_irqrestore(&local->queue_stop_reason_lock, 1296 flags); 1297 } else { 1298 spin_unlock_irqrestore(&local->queue_stop_reason_lock, 1299 flags); 1300 1301 retries++; 1302 if (WARN(retries > 10, "tx refused but queue active")) 1303 goto drop; 1304 goto retry; 1305 } 1306 } 1307 out: 1308 rcu_read_unlock(); 1309 return; 1310 1311 drop: 1312 rcu_read_unlock(); 1313 1314 skb = tx.skb; 1315 while (skb) { 1316 next = skb->next; 1317 dev_kfree_skb(skb); 1318 skb = next; 1319 } 1320 } 1321 1322 /* device xmit handlers */ 1323 1324 static int ieee80211_skb_resize(struct ieee80211_local *local, 1325 struct sk_buff *skb, 1326 int head_need, bool may_encrypt) 1327 { 1328 int tail_need = 0; 1329 1330 /* 1331 * This could be optimised, devices that do full hardware 1332 * crypto (including TKIP MMIC) need no tailroom... But we 1333 * have no drivers for such devices currently. 1334 */ 1335 if (may_encrypt) { 1336 tail_need = IEEE80211_ENCRYPT_TAILROOM; 1337 tail_need -= skb_tailroom(skb); 1338 tail_need = max_t(int, tail_need, 0); 1339 } 1340 1341 if (head_need || tail_need) { 1342 /* Sorry. Can't account for this any more */ 1343 skb_orphan(skb); 1344 } 1345 1346 if (skb_header_cloned(skb)) 1347 I802_DEBUG_INC(local->tx_expand_skb_head_cloned); 1348 else 1349 I802_DEBUG_INC(local->tx_expand_skb_head); 1350 1351 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) { 1352 printk(KERN_DEBUG "%s: failed to reallocate TX buffer\n", 1353 wiphy_name(local->hw.wiphy)); 1354 return -ENOMEM; 1355 } 1356 1357 /* update truesize too */ 1358 skb->truesize += head_need + tail_need; 1359 1360 return 0; 1361 } 1362 1363 int ieee80211_master_start_xmit(struct sk_buff *skb, struct net_device *dev) 1364 { 1365 struct ieee80211_master_priv *mpriv = netdev_priv(dev); 1366 struct ieee80211_local *local = mpriv->local; 1367 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1368 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1369 struct net_device *odev = NULL; 1370 struct ieee80211_sub_if_data *osdata; 1371 int headroom; 1372 bool may_encrypt; 1373 enum { 1374 NOT_MONITOR, 1375 FOUND_SDATA, 1376 UNKNOWN_ADDRESS, 1377 } monitor_iface = NOT_MONITOR; 1378 1379 if (skb->iif) 1380 odev = dev_get_by_index(&init_net, skb->iif); 1381 if (unlikely(odev && !is_ieee80211_device(local, odev))) { 1382 dev_put(odev); 1383 odev = NULL; 1384 } 1385 if (unlikely(!odev)) { 1386 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 1387 printk(KERN_DEBUG "%s: Discarded packet with nonexistent " 1388 "originating device\n", dev->name); 1389 #endif 1390 dev_kfree_skb(skb); 1391 return NETDEV_TX_OK; 1392 } 1393 1394 if ((local->hw.flags & IEEE80211_HW_PS_NULLFUNC_STACK) && 1395 local->hw.conf.dynamic_ps_timeout > 0) { 1396 if (local->hw.conf.flags & IEEE80211_CONF_PS) { 1397 ieee80211_stop_queues_by_reason(&local->hw, 1398 IEEE80211_QUEUE_STOP_REASON_PS); 1399 queue_work(local->hw.workqueue, 1400 &local->dynamic_ps_disable_work); 1401 } 1402 1403 mod_timer(&local->dynamic_ps_timer, jiffies + 1404 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 1405 } 1406 1407 memset(info, 0, sizeof(*info)); 1408 1409 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; 1410 1411 osdata = IEEE80211_DEV_TO_SUB_IF(odev); 1412 1413 if (ieee80211_vif_is_mesh(&osdata->vif) && 1414 ieee80211_is_data(hdr->frame_control)) { 1415 if (is_multicast_ether_addr(hdr->addr3)) 1416 memcpy(hdr->addr1, hdr->addr3, ETH_ALEN); 1417 else 1418 if (mesh_nexthop_lookup(skb, osdata)) { 1419 dev_put(odev); 1420 return NETDEV_TX_OK; 1421 } 1422 if (memcmp(odev->dev_addr, hdr->addr4, ETH_ALEN) != 0) 1423 IEEE80211_IFSTA_MESH_CTR_INC(&osdata->u.mesh, 1424 fwded_frames); 1425 } else if (unlikely(osdata->vif.type == NL80211_IFTYPE_MONITOR)) { 1426 struct ieee80211_sub_if_data *sdata; 1427 int hdrlen; 1428 u16 len_rthdr; 1429 1430 info->flags |= IEEE80211_TX_CTL_INJECTED; 1431 monitor_iface = UNKNOWN_ADDRESS; 1432 1433 len_rthdr = ieee80211_get_radiotap_len(skb->data); 1434 hdr = (struct ieee80211_hdr *)skb->data + len_rthdr; 1435 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1436 1437 /* check the header is complete in the frame */ 1438 if (likely(skb->len >= len_rthdr + hdrlen)) { 1439 /* 1440 * We process outgoing injected frames that have a 1441 * local address we handle as though they are our 1442 * own frames. 1443 * This code here isn't entirely correct, the local 1444 * MAC address is not necessarily enough to find 1445 * the interface to use; for that proper VLAN/WDS 1446 * support we will need a different mechanism. 1447 */ 1448 1449 rcu_read_lock(); 1450 list_for_each_entry_rcu(sdata, &local->interfaces, 1451 list) { 1452 if (!netif_running(sdata->dev)) 1453 continue; 1454 if (sdata->vif.type != NL80211_IFTYPE_AP) 1455 continue; 1456 if (compare_ether_addr(sdata->dev->dev_addr, 1457 hdr->addr2)) { 1458 dev_hold(sdata->dev); 1459 dev_put(odev); 1460 osdata = sdata; 1461 odev = osdata->dev; 1462 skb->iif = sdata->dev->ifindex; 1463 monitor_iface = FOUND_SDATA; 1464 break; 1465 } 1466 } 1467 rcu_read_unlock(); 1468 } 1469 } 1470 1471 may_encrypt = !skb->do_not_encrypt; 1472 1473 headroom = osdata->local->tx_headroom; 1474 if (may_encrypt) 1475 headroom += IEEE80211_ENCRYPT_HEADROOM; 1476 headroom -= skb_headroom(skb); 1477 headroom = max_t(int, 0, headroom); 1478 1479 if (ieee80211_skb_resize(osdata->local, skb, headroom, may_encrypt)) { 1480 dev_kfree_skb(skb); 1481 dev_put(odev); 1482 return NETDEV_TX_OK; 1483 } 1484 1485 if (osdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1486 osdata = container_of(osdata->bss, 1487 struct ieee80211_sub_if_data, 1488 u.ap); 1489 if (likely(monitor_iface != UNKNOWN_ADDRESS)) 1490 info->control.vif = &osdata->vif; 1491 1492 ieee80211_tx(odev, skb, false); 1493 dev_put(odev); 1494 1495 return NETDEV_TX_OK; 1496 } 1497 1498 int ieee80211_monitor_start_xmit(struct sk_buff *skb, 1499 struct net_device *dev) 1500 { 1501 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 1502 struct ieee80211_channel *chan = local->hw.conf.channel; 1503 struct ieee80211_radiotap_header *prthdr = 1504 (struct ieee80211_radiotap_header *)skb->data; 1505 u16 len_rthdr; 1506 1507 /* 1508 * Frame injection is not allowed if beaconing is not allowed 1509 * or if we need radar detection. Beaconing is usually not allowed when 1510 * the mode or operation (Adhoc, AP, Mesh) does not support DFS. 1511 * Passive scan is also used in world regulatory domains where 1512 * your country is not known and as such it should be treated as 1513 * NO TX unless the channel is explicitly allowed in which case 1514 * your current regulatory domain would not have the passive scan 1515 * flag. 1516 * 1517 * Since AP mode uses monitor interfaces to inject/TX management 1518 * frames we can make AP mode the exception to this rule once it 1519 * supports radar detection as its implementation can deal with 1520 * radar detection by itself. We can do that later by adding a 1521 * monitor flag interfaces used for AP support. 1522 */ 1523 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR | 1524 IEEE80211_CHAN_PASSIVE_SCAN))) 1525 goto fail; 1526 1527 /* check for not even having the fixed radiotap header part */ 1528 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header))) 1529 goto fail; /* too short to be possibly valid */ 1530 1531 /* is it a header version we can trust to find length from? */ 1532 if (unlikely(prthdr->it_version)) 1533 goto fail; /* only version 0 is supported */ 1534 1535 /* then there must be a radiotap header with a length we can use */ 1536 len_rthdr = ieee80211_get_radiotap_len(skb->data); 1537 1538 /* does the skb contain enough to deliver on the alleged length? */ 1539 if (unlikely(skb->len < len_rthdr)) 1540 goto fail; /* skb too short for claimed rt header extent */ 1541 1542 skb->dev = local->mdev; 1543 1544 /* needed because we set skb device to master */ 1545 skb->iif = dev->ifindex; 1546 1547 /* sometimes we do encrypt injected frames, will be fixed 1548 * up in radiotap parser if not wanted */ 1549 skb->do_not_encrypt = 0; 1550 1551 /* 1552 * fix up the pointers accounting for the radiotap 1553 * header still being in there. We are being given 1554 * a precooked IEEE80211 header so no need for 1555 * normal processing 1556 */ 1557 skb_set_mac_header(skb, len_rthdr); 1558 /* 1559 * these are just fixed to the end of the rt area since we 1560 * don't have any better information and at this point, nobody cares 1561 */ 1562 skb_set_network_header(skb, len_rthdr); 1563 skb_set_transport_header(skb, len_rthdr); 1564 1565 /* pass the radiotap header up to the next stage intact */ 1566 dev_queue_xmit(skb); 1567 return NETDEV_TX_OK; 1568 1569 fail: 1570 dev_kfree_skb(skb); 1571 return NETDEV_TX_OK; /* meaning, we dealt with the skb */ 1572 } 1573 1574 /** 1575 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type 1576 * subinterfaces (wlan#, WDS, and VLAN interfaces) 1577 * @skb: packet to be sent 1578 * @dev: incoming interface 1579 * 1580 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will 1581 * not be freed, and caller is responsible for either retrying later or freeing 1582 * skb). 1583 * 1584 * This function takes in an Ethernet header and encapsulates it with suitable 1585 * IEEE 802.11 header based on which interface the packet is coming in. The 1586 * encapsulated packet will then be passed to master interface, wlan#.11, for 1587 * transmission (through low-level driver). 1588 */ 1589 int ieee80211_subif_start_xmit(struct sk_buff *skb, 1590 struct net_device *dev) 1591 { 1592 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); 1593 struct ieee80211_local *local = sdata->local; 1594 int ret = 1, head_need; 1595 u16 ethertype, hdrlen, meshhdrlen = 0; 1596 __le16 fc; 1597 struct ieee80211_hdr hdr; 1598 struct ieee80211s_hdr mesh_hdr; 1599 const u8 *encaps_data; 1600 int encaps_len, skip_header_bytes; 1601 int nh_pos, h_pos; 1602 struct sta_info *sta; 1603 u32 sta_flags = 0; 1604 1605 if (unlikely(skb->len < ETH_HLEN)) { 1606 ret = 0; 1607 goto fail; 1608 } 1609 1610 nh_pos = skb_network_header(skb) - skb->data; 1611 h_pos = skb_transport_header(skb) - skb->data; 1612 1613 /* convert Ethernet header to proper 802.11 header (based on 1614 * operation mode) */ 1615 ethertype = (skb->data[12] << 8) | skb->data[13]; 1616 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 1617 1618 switch (sdata->vif.type) { 1619 case NL80211_IFTYPE_AP: 1620 case NL80211_IFTYPE_AP_VLAN: 1621 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 1622 /* DA BSSID SA */ 1623 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1624 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); 1625 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 1626 hdrlen = 24; 1627 break; 1628 case NL80211_IFTYPE_WDS: 1629 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); 1630 /* RA TA DA SA */ 1631 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN); 1632 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); 1633 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1634 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1635 hdrlen = 30; 1636 break; 1637 #ifdef CONFIG_MAC80211_MESH 1638 case NL80211_IFTYPE_MESH_POINT: 1639 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); 1640 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) { 1641 /* Do not send frames with mesh_ttl == 0 */ 1642 sdata->u.mesh.mshstats.dropped_frames_ttl++; 1643 ret = 0; 1644 goto fail; 1645 } 1646 memset(&mesh_hdr, 0, sizeof(mesh_hdr)); 1647 1648 if (compare_ether_addr(dev->dev_addr, 1649 skb->data + ETH_ALEN) == 0) { 1650 /* RA TA DA SA */ 1651 memset(hdr.addr1, 0, ETH_ALEN); 1652 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); 1653 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1654 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1655 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr, sdata); 1656 } else { 1657 /* packet from other interface */ 1658 struct mesh_path *mppath; 1659 1660 memset(hdr.addr1, 0, ETH_ALEN); 1661 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); 1662 memcpy(hdr.addr4, dev->dev_addr, ETH_ALEN); 1663 1664 if (is_multicast_ether_addr(skb->data)) 1665 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1666 else { 1667 rcu_read_lock(); 1668 mppath = mpp_path_lookup(skb->data, sdata); 1669 if (mppath) 1670 memcpy(hdr.addr3, mppath->mpp, ETH_ALEN); 1671 else 1672 memset(hdr.addr3, 0xff, ETH_ALEN); 1673 rcu_read_unlock(); 1674 } 1675 1676 mesh_hdr.flags |= MESH_FLAGS_AE_A5_A6; 1677 mesh_hdr.ttl = sdata->u.mesh.mshcfg.dot11MeshTTL; 1678 put_unaligned(cpu_to_le32(sdata->u.mesh.mesh_seqnum), &mesh_hdr.seqnum); 1679 memcpy(mesh_hdr.eaddr1, skb->data, ETH_ALEN); 1680 memcpy(mesh_hdr.eaddr2, skb->data + ETH_ALEN, ETH_ALEN); 1681 sdata->u.mesh.mesh_seqnum++; 1682 meshhdrlen = 18; 1683 } 1684 hdrlen = 30; 1685 break; 1686 #endif 1687 case NL80211_IFTYPE_STATION: 1688 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 1689 /* BSSID SA DA */ 1690 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN); 1691 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 1692 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1693 hdrlen = 24; 1694 break; 1695 case NL80211_IFTYPE_ADHOC: 1696 /* DA SA BSSID */ 1697 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1698 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 1699 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN); 1700 hdrlen = 24; 1701 break; 1702 default: 1703 ret = 0; 1704 goto fail; 1705 } 1706 1707 /* 1708 * There's no need to try to look up the destination 1709 * if it is a multicast address (which can only happen 1710 * in AP mode) 1711 */ 1712 if (!is_multicast_ether_addr(hdr.addr1)) { 1713 rcu_read_lock(); 1714 sta = sta_info_get(local, hdr.addr1); 1715 if (sta) 1716 sta_flags = get_sta_flags(sta); 1717 rcu_read_unlock(); 1718 } 1719 1720 /* receiver and we are QoS enabled, use a QoS type frame */ 1721 if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) { 1722 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 1723 hdrlen += 2; 1724 } 1725 1726 /* 1727 * Drop unicast frames to unauthorised stations unless they are 1728 * EAPOL frames from the local station. 1729 */ 1730 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1731 unlikely(!is_multicast_ether_addr(hdr.addr1) && 1732 !(sta_flags & WLAN_STA_AUTHORIZED) && 1733 !(ethertype == ETH_P_PAE && 1734 compare_ether_addr(dev->dev_addr, 1735 skb->data + ETH_ALEN) == 0))) { 1736 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 1737 if (net_ratelimit()) 1738 printk(KERN_DEBUG "%s: dropped frame to %pM" 1739 " (unauthorized port)\n", dev->name, 1740 hdr.addr1); 1741 #endif 1742 1743 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port); 1744 1745 ret = 0; 1746 goto fail; 1747 } 1748 1749 hdr.frame_control = fc; 1750 hdr.duration_id = 0; 1751 hdr.seq_ctrl = 0; 1752 1753 skip_header_bytes = ETH_HLEN; 1754 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 1755 encaps_data = bridge_tunnel_header; 1756 encaps_len = sizeof(bridge_tunnel_header); 1757 skip_header_bytes -= 2; 1758 } else if (ethertype >= 0x600) { 1759 encaps_data = rfc1042_header; 1760 encaps_len = sizeof(rfc1042_header); 1761 skip_header_bytes -= 2; 1762 } else { 1763 encaps_data = NULL; 1764 encaps_len = 0; 1765 } 1766 1767 skb_pull(skb, skip_header_bytes); 1768 nh_pos -= skip_header_bytes; 1769 h_pos -= skip_header_bytes; 1770 1771 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb); 1772 1773 /* 1774 * So we need to modify the skb header and hence need a copy of 1775 * that. The head_need variable above doesn't, so far, include 1776 * the needed header space that we don't need right away. If we 1777 * can, then we don't reallocate right now but only after the 1778 * frame arrives at the master device (if it does...) 1779 * 1780 * If we cannot, however, then we will reallocate to include all 1781 * the ever needed space. Also, if we need to reallocate it anyway, 1782 * make it big enough for everything we may ever need. 1783 */ 1784 1785 if (head_need > 0 || skb_cloned(skb)) { 1786 head_need += IEEE80211_ENCRYPT_HEADROOM; 1787 head_need += local->tx_headroom; 1788 head_need = max_t(int, 0, head_need); 1789 if (ieee80211_skb_resize(local, skb, head_need, true)) 1790 goto fail; 1791 } 1792 1793 if (encaps_data) { 1794 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 1795 nh_pos += encaps_len; 1796 h_pos += encaps_len; 1797 } 1798 1799 if (meshhdrlen > 0) { 1800 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen); 1801 nh_pos += meshhdrlen; 1802 h_pos += meshhdrlen; 1803 } 1804 1805 if (ieee80211_is_data_qos(fc)) { 1806 __le16 *qos_control; 1807 1808 qos_control = (__le16*) skb_push(skb, 2); 1809 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2); 1810 /* 1811 * Maybe we could actually set some fields here, for now just 1812 * initialise to zero to indicate no special operation. 1813 */ 1814 *qos_control = 0; 1815 } else 1816 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 1817 1818 nh_pos += hdrlen; 1819 h_pos += hdrlen; 1820 1821 skb->iif = dev->ifindex; 1822 1823 skb->dev = local->mdev; 1824 dev->stats.tx_packets++; 1825 dev->stats.tx_bytes += skb->len; 1826 1827 /* Update skb pointers to various headers since this modified frame 1828 * is going to go through Linux networking code that may potentially 1829 * need things like pointer to IP header. */ 1830 skb_set_mac_header(skb, 0); 1831 skb_set_network_header(skb, nh_pos); 1832 skb_set_transport_header(skb, h_pos); 1833 1834 dev->trans_start = jiffies; 1835 dev_queue_xmit(skb); 1836 1837 return 0; 1838 1839 fail: 1840 if (!ret) 1841 dev_kfree_skb(skb); 1842 1843 return ret; 1844 } 1845 1846 1847 /* 1848 * ieee80211_clear_tx_pending may not be called in a context where 1849 * it is possible that it packets could come in again. 1850 */ 1851 void ieee80211_clear_tx_pending(struct ieee80211_local *local) 1852 { 1853 int i; 1854 1855 for (i = 0; i < local->hw.queues; i++) 1856 skb_queue_purge(&local->pending[i]); 1857 } 1858 1859 static bool ieee80211_tx_pending_skb(struct ieee80211_local *local, 1860 struct sk_buff *skb) 1861 { 1862 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1863 struct ieee80211_sub_if_data *sdata; 1864 struct sta_info *sta; 1865 struct ieee80211_hdr *hdr; 1866 struct net_device *dev; 1867 int ret; 1868 bool result = true; 1869 1870 /* does interface still exist? */ 1871 dev = dev_get_by_index(&init_net, skb->iif); 1872 if (!dev) { 1873 dev_kfree_skb(skb); 1874 return true; 1875 } 1876 1877 /* validate info->control.vif against skb->iif */ 1878 sdata = IEEE80211_DEV_TO_SUB_IF(dev); 1879 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1880 sdata = container_of(sdata->bss, 1881 struct ieee80211_sub_if_data, 1882 u.ap); 1883 1884 if (unlikely(info->control.vif && info->control.vif != &sdata->vif)) { 1885 dev_kfree_skb(skb); 1886 result = true; 1887 goto out; 1888 } 1889 1890 if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) { 1891 ieee80211_tx(dev, skb, true); 1892 } else { 1893 hdr = (struct ieee80211_hdr *)skb->data; 1894 sta = sta_info_get(local, hdr->addr1); 1895 1896 ret = __ieee80211_tx(local, &skb, sta); 1897 if (ret != IEEE80211_TX_OK) 1898 result = false; 1899 } 1900 1901 out: 1902 dev_put(dev); 1903 1904 return result; 1905 } 1906 1907 /* 1908 * Transmit all pending packets. Called from tasklet, locks master device 1909 * TX lock so that no new packets can come in. 1910 */ 1911 void ieee80211_tx_pending(unsigned long data) 1912 { 1913 struct ieee80211_local *local = (struct ieee80211_local *)data; 1914 struct net_device *dev = local->mdev; 1915 unsigned long flags; 1916 int i; 1917 bool next; 1918 1919 rcu_read_lock(); 1920 netif_tx_lock_bh(dev); 1921 1922 for (i = 0; i < local->hw.queues; i++) { 1923 /* 1924 * If queue is stopped by something other than due to pending 1925 * frames, or we have no pending frames, proceed to next queue. 1926 */ 1927 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 1928 next = false; 1929 if (local->queue_stop_reasons[i] != 1930 BIT(IEEE80211_QUEUE_STOP_REASON_PENDING) || 1931 skb_queue_empty(&local->pending[i])) 1932 next = true; 1933 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 1934 1935 if (next) 1936 continue; 1937 1938 /* 1939 * start the queue now to allow processing our packets, 1940 * we're under the tx lock here anyway so nothing will 1941 * happen as a result of this 1942 */ 1943 netif_start_subqueue(local->mdev, i); 1944 1945 while (!skb_queue_empty(&local->pending[i])) { 1946 struct sk_buff *skb = skb_dequeue(&local->pending[i]); 1947 1948 if (!ieee80211_tx_pending_skb(local, skb)) { 1949 skb_queue_head(&local->pending[i], skb); 1950 break; 1951 } 1952 } 1953 1954 /* Start regular packet processing again. */ 1955 if (skb_queue_empty(&local->pending[i])) 1956 ieee80211_wake_queue_by_reason(&local->hw, i, 1957 IEEE80211_QUEUE_STOP_REASON_PENDING); 1958 } 1959 1960 netif_tx_unlock_bh(dev); 1961 rcu_read_unlock(); 1962 } 1963 1964 /* functions for drivers to get certain frames */ 1965 1966 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss, 1967 struct sk_buff *skb, 1968 struct beacon_data *beacon) 1969 { 1970 u8 *pos, *tim; 1971 int aid0 = 0; 1972 int i, have_bits = 0, n1, n2; 1973 1974 /* Generate bitmap for TIM only if there are any STAs in power save 1975 * mode. */ 1976 if (atomic_read(&bss->num_sta_ps) > 0) 1977 /* in the hope that this is faster than 1978 * checking byte-for-byte */ 1979 have_bits = !bitmap_empty((unsigned long*)bss->tim, 1980 IEEE80211_MAX_AID+1); 1981 1982 if (bss->dtim_count == 0) 1983 bss->dtim_count = beacon->dtim_period - 1; 1984 else 1985 bss->dtim_count--; 1986 1987 tim = pos = (u8 *) skb_put(skb, 6); 1988 *pos++ = WLAN_EID_TIM; 1989 *pos++ = 4; 1990 *pos++ = bss->dtim_count; 1991 *pos++ = beacon->dtim_period; 1992 1993 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf)) 1994 aid0 = 1; 1995 1996 if (have_bits) { 1997 /* Find largest even number N1 so that bits numbered 1 through 1998 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits 1999 * (N2 + 1) x 8 through 2007 are 0. */ 2000 n1 = 0; 2001 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) { 2002 if (bss->tim[i]) { 2003 n1 = i & 0xfe; 2004 break; 2005 } 2006 } 2007 n2 = n1; 2008 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) { 2009 if (bss->tim[i]) { 2010 n2 = i; 2011 break; 2012 } 2013 } 2014 2015 /* Bitmap control */ 2016 *pos++ = n1 | aid0; 2017 /* Part Virt Bitmap */ 2018 memcpy(pos, bss->tim + n1, n2 - n1 + 1); 2019 2020 tim[1] = n2 - n1 + 4; 2021 skb_put(skb, n2 - n1); 2022 } else { 2023 *pos++ = aid0; /* Bitmap control */ 2024 *pos++ = 0; /* Part Virt Bitmap */ 2025 } 2026 } 2027 2028 struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw, 2029 struct ieee80211_vif *vif) 2030 { 2031 struct ieee80211_local *local = hw_to_local(hw); 2032 struct sk_buff *skb = NULL; 2033 struct ieee80211_tx_info *info; 2034 struct ieee80211_sub_if_data *sdata = NULL; 2035 struct ieee80211_if_ap *ap = NULL; 2036 struct beacon_data *beacon; 2037 struct ieee80211_supported_band *sband; 2038 enum ieee80211_band band = local->hw.conf.channel->band; 2039 2040 sband = local->hw.wiphy->bands[band]; 2041 2042 rcu_read_lock(); 2043 2044 sdata = vif_to_sdata(vif); 2045 2046 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2047 ap = &sdata->u.ap; 2048 beacon = rcu_dereference(ap->beacon); 2049 if (ap && beacon) { 2050 /* 2051 * headroom, head length, 2052 * tail length and maximum TIM length 2053 */ 2054 skb = dev_alloc_skb(local->tx_headroom + 2055 beacon->head_len + 2056 beacon->tail_len + 256); 2057 if (!skb) 2058 goto out; 2059 2060 skb_reserve(skb, local->tx_headroom); 2061 memcpy(skb_put(skb, beacon->head_len), beacon->head, 2062 beacon->head_len); 2063 2064 /* 2065 * Not very nice, but we want to allow the driver to call 2066 * ieee80211_beacon_get() as a response to the set_tim() 2067 * callback. That, however, is already invoked under the 2068 * sta_lock to guarantee consistent and race-free update 2069 * of the tim bitmap in mac80211 and the driver. 2070 */ 2071 if (local->tim_in_locked_section) { 2072 ieee80211_beacon_add_tim(ap, skb, beacon); 2073 } else { 2074 unsigned long flags; 2075 2076 spin_lock_irqsave(&local->sta_lock, flags); 2077 ieee80211_beacon_add_tim(ap, skb, beacon); 2078 spin_unlock_irqrestore(&local->sta_lock, flags); 2079 } 2080 2081 if (beacon->tail) 2082 memcpy(skb_put(skb, beacon->tail_len), 2083 beacon->tail, beacon->tail_len); 2084 } else 2085 goto out; 2086 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 2087 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 2088 struct ieee80211_hdr *hdr; 2089 2090 if (!ifibss->probe_resp) 2091 goto out; 2092 2093 skb = skb_copy(ifibss->probe_resp, GFP_ATOMIC); 2094 if (!skb) 2095 goto out; 2096 2097 hdr = (struct ieee80211_hdr *) skb->data; 2098 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2099 IEEE80211_STYPE_BEACON); 2100 2101 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 2102 struct ieee80211_mgmt *mgmt; 2103 u8 *pos; 2104 2105 /* headroom, head length, tail length and maximum TIM length */ 2106 skb = dev_alloc_skb(local->tx_headroom + 400); 2107 if (!skb) 2108 goto out; 2109 2110 skb_reserve(skb, local->hw.extra_tx_headroom); 2111 mgmt = (struct ieee80211_mgmt *) 2112 skb_put(skb, 24 + sizeof(mgmt->u.beacon)); 2113 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon)); 2114 mgmt->frame_control = 2115 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); 2116 memset(mgmt->da, 0xff, ETH_ALEN); 2117 memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN); 2118 /* BSSID is left zeroed, wildcard value */ 2119 mgmt->u.beacon.beacon_int = 2120 cpu_to_le16(local->hw.conf.beacon_int); 2121 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */ 2122 2123 pos = skb_put(skb, 2); 2124 *pos++ = WLAN_EID_SSID; 2125 *pos++ = 0x0; 2126 2127 mesh_mgmt_ies_add(skb, sdata); 2128 } else { 2129 WARN_ON(1); 2130 goto out; 2131 } 2132 2133 info = IEEE80211_SKB_CB(skb); 2134 2135 skb->do_not_encrypt = 1; 2136 2137 info->band = band; 2138 /* 2139 * XXX: For now, always use the lowest rate 2140 */ 2141 info->control.rates[0].idx = 0; 2142 info->control.rates[0].count = 1; 2143 info->control.rates[1].idx = -1; 2144 info->control.rates[2].idx = -1; 2145 info->control.rates[3].idx = -1; 2146 info->control.rates[4].idx = -1; 2147 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5); 2148 2149 info->control.vif = vif; 2150 2151 info->flags |= IEEE80211_TX_CTL_NO_ACK; 2152 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 2153 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; 2154 out: 2155 rcu_read_unlock(); 2156 return skb; 2157 } 2158 EXPORT_SYMBOL(ieee80211_beacon_get); 2159 2160 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2161 const void *frame, size_t frame_len, 2162 const struct ieee80211_tx_info *frame_txctl, 2163 struct ieee80211_rts *rts) 2164 { 2165 const struct ieee80211_hdr *hdr = frame; 2166 2167 rts->frame_control = 2168 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS); 2169 rts->duration = ieee80211_rts_duration(hw, vif, frame_len, 2170 frame_txctl); 2171 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra)); 2172 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta)); 2173 } 2174 EXPORT_SYMBOL(ieee80211_rts_get); 2175 2176 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2177 const void *frame, size_t frame_len, 2178 const struct ieee80211_tx_info *frame_txctl, 2179 struct ieee80211_cts *cts) 2180 { 2181 const struct ieee80211_hdr *hdr = frame; 2182 2183 cts->frame_control = 2184 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS); 2185 cts->duration = ieee80211_ctstoself_duration(hw, vif, 2186 frame_len, frame_txctl); 2187 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra)); 2188 } 2189 EXPORT_SYMBOL(ieee80211_ctstoself_get); 2190 2191 struct sk_buff * 2192 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, 2193 struct ieee80211_vif *vif) 2194 { 2195 struct ieee80211_local *local = hw_to_local(hw); 2196 struct sk_buff *skb = NULL; 2197 struct sta_info *sta; 2198 struct ieee80211_tx_data tx; 2199 struct ieee80211_sub_if_data *sdata; 2200 struct ieee80211_if_ap *bss = NULL; 2201 struct beacon_data *beacon; 2202 struct ieee80211_tx_info *info; 2203 2204 sdata = vif_to_sdata(vif); 2205 bss = &sdata->u.ap; 2206 2207 if (!bss) 2208 return NULL; 2209 2210 rcu_read_lock(); 2211 beacon = rcu_dereference(bss->beacon); 2212 2213 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head) 2214 goto out; 2215 2216 if (bss->dtim_count != 0) 2217 goto out; /* send buffered bc/mc only after DTIM beacon */ 2218 2219 while (1) { 2220 skb = skb_dequeue(&bss->ps_bc_buf); 2221 if (!skb) 2222 goto out; 2223 local->total_ps_buffered--; 2224 2225 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) { 2226 struct ieee80211_hdr *hdr = 2227 (struct ieee80211_hdr *) skb->data; 2228 /* more buffered multicast/broadcast frames ==> set 2229 * MoreData flag in IEEE 802.11 header to inform PS 2230 * STAs */ 2231 hdr->frame_control |= 2232 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 2233 } 2234 2235 if (!ieee80211_tx_prepare(local, &tx, skb)) 2236 break; 2237 dev_kfree_skb_any(skb); 2238 } 2239 2240 info = IEEE80211_SKB_CB(skb); 2241 2242 sta = tx.sta; 2243 tx.flags |= IEEE80211_TX_PS_BUFFERED; 2244 tx.channel = local->hw.conf.channel; 2245 info->band = tx.channel->band; 2246 2247 if (invoke_tx_handlers(&tx)) 2248 skb = NULL; 2249 out: 2250 rcu_read_unlock(); 2251 2252 return skb; 2253 } 2254 EXPORT_SYMBOL(ieee80211_get_buffered_bc); 2255