1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * 12 * Transmit and frame generation functions. 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/skbuff.h> 18 #include <linux/etherdevice.h> 19 #include <linux/bitmap.h> 20 #include <linux/rcupdate.h> 21 #include <net/net_namespace.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <net/cfg80211.h> 24 #include <net/mac80211.h> 25 #include <asm/unaligned.h> 26 27 #include "ieee80211_i.h" 28 #include "led.h" 29 #include "mesh.h" 30 #include "wep.h" 31 #include "wpa.h" 32 #include "wme.h" 33 #include "rate.h" 34 35 #define IEEE80211_TX_OK 0 36 #define IEEE80211_TX_AGAIN 1 37 #define IEEE80211_TX_FRAG_AGAIN 2 38 39 /* misc utils */ 40 41 #ifdef CONFIG_MAC80211_LOWTX_FRAME_DUMP 42 static void ieee80211_dump_frame(const char *ifname, const char *title, 43 const struct sk_buff *skb) 44 { 45 const struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 46 unsigned int hdrlen; 47 DECLARE_MAC_BUF(mac); 48 49 printk(KERN_DEBUG "%s: %s (len=%d)", ifname, title, skb->len); 50 if (skb->len < 4) { 51 printk("\n"); 52 return; 53 } 54 55 hdrlen = ieee80211_hdrlen(hdr->frame_control); 56 if (hdrlen > skb->len) 57 hdrlen = skb->len; 58 if (hdrlen >= 4) 59 printk(" FC=0x%04x DUR=0x%04x", 60 le16_to_cpu(hdr->frame_control), le16_to_cpu(hdr->duration_id)); 61 if (hdrlen >= 10) 62 printk(" A1=%s", print_mac(mac, hdr->addr1)); 63 if (hdrlen >= 16) 64 printk(" A2=%s", print_mac(mac, hdr->addr2)); 65 if (hdrlen >= 24) 66 printk(" A3=%s", print_mac(mac, hdr->addr3)); 67 if (hdrlen >= 30) 68 printk(" A4=%s", print_mac(mac, hdr->addr4)); 69 printk("\n"); 70 } 71 #else /* CONFIG_MAC80211_LOWTX_FRAME_DUMP */ 72 static inline void ieee80211_dump_frame(const char *ifname, const char *title, 73 struct sk_buff *skb) 74 { 75 } 76 #endif /* CONFIG_MAC80211_LOWTX_FRAME_DUMP */ 77 78 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr, 79 int next_frag_len) 80 { 81 int rate, mrate, erp, dur, i; 82 struct ieee80211_rate *txrate; 83 struct ieee80211_local *local = tx->local; 84 struct ieee80211_supported_band *sband; 85 86 sband = local->hw.wiphy->bands[tx->channel->band]; 87 txrate = &sband->bitrates[tx->rate_idx]; 88 89 erp = 0; 90 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 91 erp = txrate->flags & IEEE80211_RATE_ERP_G; 92 93 /* 94 * data and mgmt (except PS Poll): 95 * - during CFP: 32768 96 * - during contention period: 97 * if addr1 is group address: 0 98 * if more fragments = 0 and addr1 is individual address: time to 99 * transmit one ACK plus SIFS 100 * if more fragments = 1 and addr1 is individual address: time to 101 * transmit next fragment plus 2 x ACK plus 3 x SIFS 102 * 103 * IEEE 802.11, 9.6: 104 * - control response frame (CTS or ACK) shall be transmitted using the 105 * same rate as the immediately previous frame in the frame exchange 106 * sequence, if this rate belongs to the PHY mandatory rates, or else 107 * at the highest possible rate belonging to the PHY rates in the 108 * BSSBasicRateSet 109 */ 110 111 if ((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) { 112 /* TODO: These control frames are not currently sent by 113 * 80211.o, but should they be implemented, this function 114 * needs to be updated to support duration field calculation. 115 * 116 * RTS: time needed to transmit pending data/mgmt frame plus 117 * one CTS frame plus one ACK frame plus 3 x SIFS 118 * CTS: duration of immediately previous RTS minus time 119 * required to transmit CTS and its SIFS 120 * ACK: 0 if immediately previous directed data/mgmt had 121 * more=0, with more=1 duration in ACK frame is duration 122 * from previous frame minus time needed to transmit ACK 123 * and its SIFS 124 * PS Poll: BIT(15) | BIT(14) | aid 125 */ 126 return 0; 127 } 128 129 /* data/mgmt */ 130 if (0 /* FIX: data/mgmt during CFP */) 131 return cpu_to_le16(32768); 132 133 if (group_addr) /* Group address as the destination - no ACK */ 134 return 0; 135 136 /* Individual destination address: 137 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes) 138 * CTS and ACK frames shall be transmitted using the highest rate in 139 * basic rate set that is less than or equal to the rate of the 140 * immediately previous frame and that is using the same modulation 141 * (CCK or OFDM). If no basic rate set matches with these requirements, 142 * the highest mandatory rate of the PHY that is less than or equal to 143 * the rate of the previous frame is used. 144 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps 145 */ 146 rate = -1; 147 /* use lowest available if everything fails */ 148 mrate = sband->bitrates[0].bitrate; 149 for (i = 0; i < sband->n_bitrates; i++) { 150 struct ieee80211_rate *r = &sband->bitrates[i]; 151 152 if (r->bitrate > txrate->bitrate) 153 break; 154 155 if (tx->sdata->basic_rates & BIT(i)) 156 rate = r->bitrate; 157 158 switch (sband->band) { 159 case IEEE80211_BAND_2GHZ: { 160 u32 flag; 161 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 162 flag = IEEE80211_RATE_MANDATORY_G; 163 else 164 flag = IEEE80211_RATE_MANDATORY_B; 165 if (r->flags & flag) 166 mrate = r->bitrate; 167 break; 168 } 169 case IEEE80211_BAND_5GHZ: 170 if (r->flags & IEEE80211_RATE_MANDATORY_A) 171 mrate = r->bitrate; 172 break; 173 case IEEE80211_NUM_BANDS: 174 WARN_ON(1); 175 break; 176 } 177 } 178 if (rate == -1) { 179 /* No matching basic rate found; use highest suitable mandatory 180 * PHY rate */ 181 rate = mrate; 182 } 183 184 /* Time needed to transmit ACK 185 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up 186 * to closest integer */ 187 188 dur = ieee80211_frame_duration(local, 10, rate, erp, 189 tx->sdata->bss_conf.use_short_preamble); 190 191 if (next_frag_len) { 192 /* Frame is fragmented: duration increases with time needed to 193 * transmit next fragment plus ACK and 2 x SIFS. */ 194 dur *= 2; /* ACK + SIFS */ 195 /* next fragment */ 196 dur += ieee80211_frame_duration(local, next_frag_len, 197 txrate->bitrate, erp, 198 tx->sdata->bss_conf.use_short_preamble); 199 } 200 201 return cpu_to_le16(dur); 202 } 203 204 static int inline is_ieee80211_device(struct net_device *dev, 205 struct net_device *master) 206 { 207 return (wdev_priv(dev->ieee80211_ptr) == 208 wdev_priv(master->ieee80211_ptr)); 209 } 210 211 /* tx handlers */ 212 213 static ieee80211_tx_result debug_noinline 214 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx) 215 { 216 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 217 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 218 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ 219 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 220 u32 sta_flags; 221 222 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) 223 return TX_CONTINUE; 224 225 if (unlikely(tx->local->sta_sw_scanning) && 226 ((tx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT || 227 (tx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PROBE_REQ)) 228 return TX_DROP; 229 230 if (tx->sdata->vif.type == IEEE80211_IF_TYPE_MESH_POINT) 231 return TX_CONTINUE; 232 233 if (tx->flags & IEEE80211_TX_PS_BUFFERED) 234 return TX_CONTINUE; 235 236 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0; 237 238 if (likely(tx->flags & IEEE80211_TX_UNICAST)) { 239 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) && 240 tx->sdata->vif.type != IEEE80211_IF_TYPE_IBSS && 241 (tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)) { 242 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 243 DECLARE_MAC_BUF(mac); 244 printk(KERN_DEBUG "%s: dropped data frame to not " 245 "associated station %s\n", 246 tx->dev->name, print_mac(mac, hdr->addr1)); 247 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ 248 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc); 249 return TX_DROP; 250 } 251 } else { 252 if (unlikely((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA && 253 tx->local->num_sta == 0 && 254 tx->sdata->vif.type != IEEE80211_IF_TYPE_IBSS)) { 255 /* 256 * No associated STAs - no need to send multicast 257 * frames. 258 */ 259 return TX_DROP; 260 } 261 return TX_CONTINUE; 262 } 263 264 return TX_CONTINUE; 265 } 266 267 /* This function is called whenever the AP is about to exceed the maximum limit 268 * of buffered frames for power saving STAs. This situation should not really 269 * happen often during normal operation, so dropping the oldest buffered packet 270 * from each queue should be OK to make some room for new frames. */ 271 static void purge_old_ps_buffers(struct ieee80211_local *local) 272 { 273 int total = 0, purged = 0; 274 struct sk_buff *skb; 275 struct ieee80211_sub_if_data *sdata; 276 struct sta_info *sta; 277 278 /* 279 * virtual interfaces are protected by RCU 280 */ 281 rcu_read_lock(); 282 283 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 284 struct ieee80211_if_ap *ap; 285 if (sdata->vif.type != IEEE80211_IF_TYPE_AP) 286 continue; 287 ap = &sdata->u.ap; 288 skb = skb_dequeue(&ap->ps_bc_buf); 289 if (skb) { 290 purged++; 291 dev_kfree_skb(skb); 292 } 293 total += skb_queue_len(&ap->ps_bc_buf); 294 } 295 296 list_for_each_entry_rcu(sta, &local->sta_list, list) { 297 skb = skb_dequeue(&sta->ps_tx_buf); 298 if (skb) { 299 purged++; 300 dev_kfree_skb(skb); 301 } 302 total += skb_queue_len(&sta->ps_tx_buf); 303 } 304 305 rcu_read_unlock(); 306 307 local->total_ps_buffered = total; 308 #ifdef MAC80211_VERBOSE_PS_DEBUG 309 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n", 310 wiphy_name(local->hw.wiphy), purged); 311 #endif 312 } 313 314 static ieee80211_tx_result 315 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx) 316 { 317 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 318 319 /* 320 * broadcast/multicast frame 321 * 322 * If any of the associated stations is in power save mode, 323 * the frame is buffered to be sent after DTIM beacon frame. 324 * This is done either by the hardware or us. 325 */ 326 327 /* powersaving STAs only in AP/VLAN mode */ 328 if (!tx->sdata->bss) 329 return TX_CONTINUE; 330 331 /* no buffering for ordered frames */ 332 if (tx->fc & IEEE80211_FCTL_ORDER) 333 return TX_CONTINUE; 334 335 /* no stations in PS mode */ 336 if (!atomic_read(&tx->sdata->bss->num_sta_ps)) 337 return TX_CONTINUE; 338 339 /* buffered in mac80211 */ 340 if (tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING) { 341 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) 342 purge_old_ps_buffers(tx->local); 343 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= 344 AP_MAX_BC_BUFFER) { 345 #ifdef MAC80211_VERBOSE_PS_DEBUG 346 if (net_ratelimit()) { 347 printk(KERN_DEBUG "%s: BC TX buffer full - " 348 "dropping the oldest frame\n", 349 tx->dev->name); 350 } 351 #endif 352 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf)); 353 } else 354 tx->local->total_ps_buffered++; 355 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb); 356 return TX_QUEUED; 357 } 358 359 /* buffered in hardware */ 360 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM; 361 362 return TX_CONTINUE; 363 } 364 365 static ieee80211_tx_result 366 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx) 367 { 368 struct sta_info *sta = tx->sta; 369 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 370 u32 staflags; 371 DECLARE_MAC_BUF(mac); 372 373 if (unlikely(!sta || 374 ((tx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && 375 (tx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP))) 376 return TX_CONTINUE; 377 378 staflags = get_sta_flags(sta); 379 380 if (unlikely((staflags & WLAN_STA_PS) && 381 !(staflags & WLAN_STA_PSPOLL))) { 382 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 383 printk(KERN_DEBUG "STA %s aid %d: PS buffer (entries " 384 "before %d)\n", 385 print_mac(mac, sta->addr), sta->aid, 386 skb_queue_len(&sta->ps_tx_buf)); 387 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 388 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) 389 purge_old_ps_buffers(tx->local); 390 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) { 391 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf); 392 #ifdef MAC80211_VERBOSE_PS_DEBUG 393 if (net_ratelimit()) { 394 printk(KERN_DEBUG "%s: STA %s TX " 395 "buffer full - dropping oldest frame\n", 396 tx->dev->name, print_mac(mac, sta->addr)); 397 } 398 #endif 399 dev_kfree_skb(old); 400 } else 401 tx->local->total_ps_buffered++; 402 403 /* Queue frame to be sent after STA sends an PS Poll frame */ 404 if (skb_queue_empty(&sta->ps_tx_buf)) 405 sta_info_set_tim_bit(sta); 406 407 info->control.jiffies = jiffies; 408 skb_queue_tail(&sta->ps_tx_buf, tx->skb); 409 return TX_QUEUED; 410 } 411 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 412 else if (unlikely(test_sta_flags(sta, WLAN_STA_PS))) { 413 printk(KERN_DEBUG "%s: STA %s in PS mode, but pspoll " 414 "set -> send frame\n", tx->dev->name, 415 print_mac(mac, sta->addr)); 416 } 417 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 418 clear_sta_flags(sta, WLAN_STA_PSPOLL); 419 420 return TX_CONTINUE; 421 } 422 423 static ieee80211_tx_result debug_noinline 424 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx) 425 { 426 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED)) 427 return TX_CONTINUE; 428 429 if (tx->flags & IEEE80211_TX_UNICAST) 430 return ieee80211_tx_h_unicast_ps_buf(tx); 431 else 432 return ieee80211_tx_h_multicast_ps_buf(tx); 433 } 434 435 static ieee80211_tx_result debug_noinline 436 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx) 437 { 438 struct ieee80211_key *key; 439 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 440 u16 fc = tx->fc; 441 442 if (unlikely(info->flags & IEEE80211_TX_CTL_DO_NOT_ENCRYPT)) 443 tx->key = NULL; 444 else if (tx->sta && (key = rcu_dereference(tx->sta->key))) 445 tx->key = key; 446 else if ((key = rcu_dereference(tx->sdata->default_key))) 447 tx->key = key; 448 else if (tx->sdata->drop_unencrypted && 449 !(info->flags & IEEE80211_TX_CTL_EAPOL_FRAME) && 450 !(info->flags & IEEE80211_TX_CTL_INJECTED)) { 451 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted); 452 return TX_DROP; 453 } else 454 tx->key = NULL; 455 456 if (tx->key) { 457 u16 ftype, stype; 458 459 tx->key->tx_rx_count++; 460 /* TODO: add threshold stuff again */ 461 462 switch (tx->key->conf.alg) { 463 case ALG_WEP: 464 ftype = fc & IEEE80211_FCTL_FTYPE; 465 stype = fc & IEEE80211_FCTL_STYPE; 466 467 if (ftype == IEEE80211_FTYPE_MGMT && 468 stype == IEEE80211_STYPE_AUTH) 469 break; 470 case ALG_TKIP: 471 case ALG_CCMP: 472 if (!WLAN_FC_DATA_PRESENT(fc)) 473 tx->key = NULL; 474 break; 475 } 476 } 477 478 if (!tx->key || !(tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) 479 info->flags |= IEEE80211_TX_CTL_DO_NOT_ENCRYPT; 480 481 return TX_CONTINUE; 482 } 483 484 static ieee80211_tx_result debug_noinline 485 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx) 486 { 487 struct rate_selection rsel; 488 struct ieee80211_supported_band *sband; 489 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 490 491 sband = tx->local->hw.wiphy->bands[tx->channel->band]; 492 493 if (likely(tx->rate_idx < 0)) { 494 rate_control_get_rate(tx->dev, sband, tx->skb, &rsel); 495 tx->rate_idx = rsel.rate_idx; 496 if (unlikely(rsel.probe_idx >= 0)) { 497 info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE; 498 tx->flags |= IEEE80211_TX_PROBE_LAST_FRAG; 499 info->control.alt_retry_rate_idx = tx->rate_idx; 500 tx->rate_idx = rsel.probe_idx; 501 } else 502 info->control.alt_retry_rate_idx = -1; 503 504 if (unlikely(tx->rate_idx < 0)) 505 return TX_DROP; 506 } else 507 info->control.alt_retry_rate_idx = -1; 508 509 if (tx->sdata->bss_conf.use_cts_prot && 510 (tx->flags & IEEE80211_TX_FRAGMENTED) && (rsel.nonerp_idx >= 0)) { 511 tx->last_frag_rate_idx = tx->rate_idx; 512 if (rsel.probe_idx >= 0) 513 tx->flags &= ~IEEE80211_TX_PROBE_LAST_FRAG; 514 else 515 tx->flags |= IEEE80211_TX_PROBE_LAST_FRAG; 516 tx->rate_idx = rsel.nonerp_idx; 517 info->tx_rate_idx = rsel.nonerp_idx; 518 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE; 519 } else { 520 tx->last_frag_rate_idx = tx->rate_idx; 521 info->tx_rate_idx = tx->rate_idx; 522 } 523 info->tx_rate_idx = tx->rate_idx; 524 525 return TX_CONTINUE; 526 } 527 528 static ieee80211_tx_result debug_noinline 529 ieee80211_tx_h_misc(struct ieee80211_tx_data *tx) 530 { 531 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 532 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 533 struct ieee80211_supported_band *sband; 534 535 sband = tx->local->hw.wiphy->bands[tx->channel->band]; 536 537 if (tx->sta) 538 info->control.aid = tx->sta->aid; 539 540 if (!info->control.retry_limit) { 541 if (!is_multicast_ether_addr(hdr->addr1)) { 542 int len = min_t(int, tx->skb->len + FCS_LEN, 543 tx->local->fragmentation_threshold); 544 if (len > tx->local->rts_threshold 545 && tx->local->rts_threshold < 546 IEEE80211_MAX_RTS_THRESHOLD) { 547 info->flags |= IEEE80211_TX_CTL_USE_RTS_CTS; 548 info->flags |= 549 IEEE80211_TX_CTL_LONG_RETRY_LIMIT; 550 info->control.retry_limit = 551 tx->local->long_retry_limit; 552 } else { 553 info->control.retry_limit = 554 tx->local->short_retry_limit; 555 } 556 } else { 557 info->control.retry_limit = 1; 558 } 559 } 560 561 if (tx->flags & IEEE80211_TX_FRAGMENTED) { 562 /* Do not use multiple retry rates when sending fragmented 563 * frames. 564 * TODO: The last fragment could still use multiple retry 565 * rates. */ 566 info->control.alt_retry_rate_idx = -1; 567 } 568 569 /* Use CTS protection for unicast frames sent using extended rates if 570 * there are associated non-ERP stations and RTS/CTS is not configured 571 * for the frame. */ 572 if ((tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) && 573 (sband->bitrates[tx->rate_idx].flags & IEEE80211_RATE_ERP_G) && 574 (tx->flags & IEEE80211_TX_UNICAST) && 575 tx->sdata->bss_conf.use_cts_prot && 576 !(info->flags & IEEE80211_TX_CTL_USE_RTS_CTS)) 577 info->flags |= IEEE80211_TX_CTL_USE_CTS_PROTECT; 578 579 /* Transmit data frames using short preambles if the driver supports 580 * short preambles at the selected rate and short preambles are 581 * available on the network at the current point in time. */ 582 if (ieee80211_is_data(hdr->frame_control) && 583 (sband->bitrates[tx->rate_idx].flags & IEEE80211_RATE_SHORT_PREAMBLE) && 584 tx->sdata->bss_conf.use_short_preamble && 585 (!tx->sta || test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE))) { 586 info->flags |= IEEE80211_TX_CTL_SHORT_PREAMBLE; 587 } 588 589 if ((info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) || 590 (info->flags & IEEE80211_TX_CTL_USE_CTS_PROTECT)) { 591 struct ieee80211_rate *rate; 592 s8 baserate = -1; 593 int idx; 594 595 /* Do not use multiple retry rates when using RTS/CTS */ 596 info->control.alt_retry_rate_idx = -1; 597 598 /* Use min(data rate, max base rate) as CTS/RTS rate */ 599 rate = &sband->bitrates[tx->rate_idx]; 600 601 for (idx = 0; idx < sband->n_bitrates; idx++) { 602 if (sband->bitrates[idx].bitrate > rate->bitrate) 603 continue; 604 if (tx->sdata->basic_rates & BIT(idx) && 605 (baserate < 0 || 606 (sband->bitrates[baserate].bitrate 607 < sband->bitrates[idx].bitrate))) 608 baserate = idx; 609 } 610 611 if (baserate >= 0) 612 info->control.rts_cts_rate_idx = baserate; 613 else 614 info->control.rts_cts_rate_idx = 0; 615 } 616 617 if (tx->sta) 618 info->control.aid = tx->sta->aid; 619 620 return TX_CONTINUE; 621 } 622 623 static ieee80211_tx_result debug_noinline 624 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx) 625 { 626 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 627 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 628 u16 *seq; 629 u8 *qc; 630 int tid; 631 632 /* only for injected frames */ 633 if (unlikely(ieee80211_is_ctl(hdr->frame_control))) 634 return TX_CONTINUE; 635 636 if (ieee80211_hdrlen(hdr->frame_control) < 24) 637 return TX_CONTINUE; 638 639 if (!ieee80211_is_data_qos(hdr->frame_control)) { 640 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; 641 return TX_CONTINUE; 642 } 643 644 /* 645 * This should be true for injected/management frames only, for 646 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ 647 * above since they are not QoS-data frames. 648 */ 649 if (!tx->sta) 650 return TX_CONTINUE; 651 652 /* include per-STA, per-TID sequence counter */ 653 654 qc = ieee80211_get_qos_ctl(hdr); 655 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 656 seq = &tx->sta->tid_seq[tid]; 657 658 hdr->seq_ctrl = cpu_to_le16(*seq); 659 660 /* Increase the sequence number. */ 661 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ; 662 663 return TX_CONTINUE; 664 } 665 666 static ieee80211_tx_result debug_noinline 667 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx) 668 { 669 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 670 size_t hdrlen, per_fragm, num_fragm, payload_len, left; 671 struct sk_buff **frags, *first, *frag; 672 int i; 673 u16 seq; 674 u8 *pos; 675 int frag_threshold = tx->local->fragmentation_threshold; 676 677 if (!(tx->flags & IEEE80211_TX_FRAGMENTED)) 678 return TX_CONTINUE; 679 680 /* 681 * Warn when submitting a fragmented A-MPDU frame and drop it. 682 * This scenario is handled in __ieee80211_tx_prepare but extra 683 * caution taken here as fragmented ampdu may cause Tx stop. 684 */ 685 if (WARN_ON(tx->flags & IEEE80211_TX_CTL_AMPDU || 686 skb_get_queue_mapping(tx->skb) >= 687 ieee80211_num_regular_queues(&tx->local->hw))) 688 return TX_DROP; 689 690 first = tx->skb; 691 692 hdrlen = ieee80211_hdrlen(hdr->frame_control); 693 payload_len = first->len - hdrlen; 694 per_fragm = frag_threshold - hdrlen - FCS_LEN; 695 num_fragm = DIV_ROUND_UP(payload_len, per_fragm); 696 697 frags = kzalloc(num_fragm * sizeof(struct sk_buff *), GFP_ATOMIC); 698 if (!frags) 699 goto fail; 700 701 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); 702 seq = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ; 703 pos = first->data + hdrlen + per_fragm; 704 left = payload_len - per_fragm; 705 for (i = 0; i < num_fragm - 1; i++) { 706 struct ieee80211_hdr *fhdr; 707 size_t copylen; 708 709 if (left <= 0) 710 goto fail; 711 712 /* reserve enough extra head and tail room for possible 713 * encryption */ 714 frag = frags[i] = 715 dev_alloc_skb(tx->local->tx_headroom + 716 frag_threshold + 717 IEEE80211_ENCRYPT_HEADROOM + 718 IEEE80211_ENCRYPT_TAILROOM); 719 if (!frag) 720 goto fail; 721 /* Make sure that all fragments use the same priority so 722 * that they end up using the same TX queue */ 723 frag->priority = first->priority; 724 skb_reserve(frag, tx->local->tx_headroom + 725 IEEE80211_ENCRYPT_HEADROOM); 726 fhdr = (struct ieee80211_hdr *) skb_put(frag, hdrlen); 727 memcpy(fhdr, first->data, hdrlen); 728 if (i == num_fragm - 2) 729 fhdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREFRAGS); 730 fhdr->seq_ctrl = cpu_to_le16(seq | ((i + 1) & IEEE80211_SCTL_FRAG)); 731 copylen = left > per_fragm ? per_fragm : left; 732 memcpy(skb_put(frag, copylen), pos, copylen); 733 memcpy(frag->cb, first->cb, sizeof(frag->cb)); 734 skb_copy_queue_mapping(frag, first); 735 736 pos += copylen; 737 left -= copylen; 738 } 739 skb_trim(first, hdrlen + per_fragm); 740 741 tx->num_extra_frag = num_fragm - 1; 742 tx->extra_frag = frags; 743 744 return TX_CONTINUE; 745 746 fail: 747 if (frags) { 748 for (i = 0; i < num_fragm - 1; i++) 749 if (frags[i]) 750 dev_kfree_skb(frags[i]); 751 kfree(frags); 752 } 753 I802_DEBUG_INC(tx->local->tx_handlers_drop_fragment); 754 return TX_DROP; 755 } 756 757 static ieee80211_tx_result debug_noinline 758 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx) 759 { 760 if (!tx->key) 761 return TX_CONTINUE; 762 763 switch (tx->key->conf.alg) { 764 case ALG_WEP: 765 return ieee80211_crypto_wep_encrypt(tx); 766 case ALG_TKIP: 767 return ieee80211_crypto_tkip_encrypt(tx); 768 case ALG_CCMP: 769 return ieee80211_crypto_ccmp_encrypt(tx); 770 } 771 772 /* not reached */ 773 WARN_ON(1); 774 return TX_DROP; 775 } 776 777 static ieee80211_tx_result debug_noinline 778 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx) 779 { 780 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 781 int next_len, i; 782 int group_addr = is_multicast_ether_addr(hdr->addr1); 783 784 if (!(tx->flags & IEEE80211_TX_FRAGMENTED)) { 785 hdr->duration_id = ieee80211_duration(tx, group_addr, 0); 786 return TX_CONTINUE; 787 } 788 789 hdr->duration_id = ieee80211_duration(tx, group_addr, 790 tx->extra_frag[0]->len); 791 792 for (i = 0; i < tx->num_extra_frag; i++) { 793 if (i + 1 < tx->num_extra_frag) { 794 next_len = tx->extra_frag[i + 1]->len; 795 } else { 796 next_len = 0; 797 tx->rate_idx = tx->last_frag_rate_idx; 798 } 799 800 hdr = (struct ieee80211_hdr *)tx->extra_frag[i]->data; 801 hdr->duration_id = ieee80211_duration(tx, 0, next_len); 802 } 803 804 return TX_CONTINUE; 805 } 806 807 static ieee80211_tx_result debug_noinline 808 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx) 809 { 810 int i; 811 812 if (!tx->sta) 813 return TX_CONTINUE; 814 815 tx->sta->tx_packets++; 816 tx->sta->tx_fragments++; 817 tx->sta->tx_bytes += tx->skb->len; 818 if (tx->extra_frag) { 819 tx->sta->tx_fragments += tx->num_extra_frag; 820 for (i = 0; i < tx->num_extra_frag; i++) 821 tx->sta->tx_bytes += tx->extra_frag[i]->len; 822 } 823 824 return TX_CONTINUE; 825 } 826 827 828 /* actual transmit path */ 829 830 /* 831 * deal with packet injection down monitor interface 832 * with Radiotap Header -- only called for monitor mode interface 833 */ 834 static ieee80211_tx_result 835 __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx, 836 struct sk_buff *skb) 837 { 838 /* 839 * this is the moment to interpret and discard the radiotap header that 840 * must be at the start of the packet injected in Monitor mode 841 * 842 * Need to take some care with endian-ness since radiotap 843 * args are little-endian 844 */ 845 846 struct ieee80211_radiotap_iterator iterator; 847 struct ieee80211_radiotap_header *rthdr = 848 (struct ieee80211_radiotap_header *) skb->data; 849 struct ieee80211_supported_band *sband; 850 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len); 851 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 852 853 sband = tx->local->hw.wiphy->bands[tx->channel->band]; 854 855 info->flags |= IEEE80211_TX_CTL_DO_NOT_ENCRYPT; 856 info->flags |= IEEE80211_TX_CTL_INJECTED; 857 tx->flags &= ~IEEE80211_TX_FRAGMENTED; 858 859 /* 860 * for every radiotap entry that is present 861 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more 862 * entries present, or -EINVAL on error) 863 */ 864 865 while (!ret) { 866 int i, target_rate; 867 868 ret = ieee80211_radiotap_iterator_next(&iterator); 869 870 if (ret) 871 continue; 872 873 /* see if this argument is something we can use */ 874 switch (iterator.this_arg_index) { 875 /* 876 * You must take care when dereferencing iterator.this_arg 877 * for multibyte types... the pointer is not aligned. Use 878 * get_unaligned((type *)iterator.this_arg) to dereference 879 * iterator.this_arg for type "type" safely on all arches. 880 */ 881 case IEEE80211_RADIOTAP_RATE: 882 /* 883 * radiotap rate u8 is in 500kbps units eg, 0x02=1Mbps 884 * ieee80211 rate int is in 100kbps units eg, 0x0a=1Mbps 885 */ 886 target_rate = (*iterator.this_arg) * 5; 887 for (i = 0; i < sband->n_bitrates; i++) { 888 struct ieee80211_rate *r; 889 890 r = &sband->bitrates[i]; 891 892 if (r->bitrate == target_rate) { 893 tx->rate_idx = i; 894 break; 895 } 896 } 897 break; 898 899 case IEEE80211_RADIOTAP_ANTENNA: 900 /* 901 * radiotap uses 0 for 1st ant, mac80211 is 1 for 902 * 1st ant 903 */ 904 info->antenna_sel_tx = (*iterator.this_arg) + 1; 905 break; 906 907 #if 0 908 case IEEE80211_RADIOTAP_DBM_TX_POWER: 909 control->power_level = *iterator.this_arg; 910 break; 911 #endif 912 913 case IEEE80211_RADIOTAP_FLAGS: 914 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) { 915 /* 916 * this indicates that the skb we have been 917 * handed has the 32-bit FCS CRC at the end... 918 * we should react to that by snipping it off 919 * because it will be recomputed and added 920 * on transmission 921 */ 922 if (skb->len < (iterator.max_length + FCS_LEN)) 923 return TX_DROP; 924 925 skb_trim(skb, skb->len - FCS_LEN); 926 } 927 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP) 928 info->flags &= 929 ~IEEE80211_TX_CTL_DO_NOT_ENCRYPT; 930 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG) 931 tx->flags |= IEEE80211_TX_FRAGMENTED; 932 break; 933 934 /* 935 * Please update the file 936 * Documentation/networking/mac80211-injection.txt 937 * when parsing new fields here. 938 */ 939 940 default: 941 break; 942 } 943 } 944 945 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */ 946 return TX_DROP; 947 948 /* 949 * remove the radiotap header 950 * iterator->max_length was sanity-checked against 951 * skb->len by iterator init 952 */ 953 skb_pull(skb, iterator.max_length); 954 955 return TX_CONTINUE; 956 } 957 958 /* 959 * initialises @tx 960 */ 961 static ieee80211_tx_result 962 __ieee80211_tx_prepare(struct ieee80211_tx_data *tx, 963 struct sk_buff *skb, 964 struct net_device *dev) 965 { 966 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 967 struct ieee80211_hdr *hdr; 968 struct ieee80211_sub_if_data *sdata; 969 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 970 971 int hdrlen; 972 973 memset(tx, 0, sizeof(*tx)); 974 tx->skb = skb; 975 tx->dev = dev; /* use original interface */ 976 tx->local = local; 977 tx->sdata = IEEE80211_DEV_TO_SUB_IF(dev); 978 tx->channel = local->hw.conf.channel; 979 tx->rate_idx = -1; 980 tx->last_frag_rate_idx = -1; 981 /* 982 * Set this flag (used below to indicate "automatic fragmentation"), 983 * it will be cleared/left by radiotap as desired. 984 */ 985 tx->flags |= IEEE80211_TX_FRAGMENTED; 986 987 /* process and remove the injection radiotap header */ 988 sdata = IEEE80211_DEV_TO_SUB_IF(dev); 989 if (unlikely(sdata->vif.type == IEEE80211_IF_TYPE_MNTR)) { 990 if (__ieee80211_parse_tx_radiotap(tx, skb) == TX_DROP) 991 return TX_DROP; 992 993 /* 994 * __ieee80211_parse_tx_radiotap has now removed 995 * the radiotap header that was present and pre-filled 996 * 'tx' with tx control information. 997 */ 998 } 999 1000 hdr = (struct ieee80211_hdr *) skb->data; 1001 1002 tx->sta = sta_info_get(local, hdr->addr1); 1003 tx->fc = le16_to_cpu(hdr->frame_control); 1004 1005 if (is_multicast_ether_addr(hdr->addr1)) { 1006 tx->flags &= ~IEEE80211_TX_UNICAST; 1007 info->flags |= IEEE80211_TX_CTL_NO_ACK; 1008 } else { 1009 tx->flags |= IEEE80211_TX_UNICAST; 1010 info->flags &= ~IEEE80211_TX_CTL_NO_ACK; 1011 } 1012 1013 if (tx->flags & IEEE80211_TX_FRAGMENTED) { 1014 if ((tx->flags & IEEE80211_TX_UNICAST) && 1015 skb->len + FCS_LEN > local->fragmentation_threshold && 1016 !local->ops->set_frag_threshold && 1017 !(info->flags & IEEE80211_TX_CTL_AMPDU)) 1018 tx->flags |= IEEE80211_TX_FRAGMENTED; 1019 else 1020 tx->flags &= ~IEEE80211_TX_FRAGMENTED; 1021 } 1022 1023 if (!tx->sta) 1024 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1025 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT)) 1026 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1027 1028 hdrlen = ieee80211_get_hdrlen(tx->fc); 1029 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) { 1030 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)]; 1031 tx->ethertype = (pos[0] << 8) | pos[1]; 1032 } 1033 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT; 1034 1035 return TX_CONTINUE; 1036 } 1037 1038 /* 1039 * NB: @tx is uninitialised when passed in here 1040 */ 1041 static int ieee80211_tx_prepare(struct ieee80211_tx_data *tx, 1042 struct sk_buff *skb, 1043 struct net_device *mdev) 1044 { 1045 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1046 struct net_device *dev; 1047 1048 dev = dev_get_by_index(&init_net, info->control.ifindex); 1049 if (unlikely(dev && !is_ieee80211_device(dev, mdev))) { 1050 dev_put(dev); 1051 dev = NULL; 1052 } 1053 if (unlikely(!dev)) 1054 return -ENODEV; 1055 /* initialises tx with control */ 1056 __ieee80211_tx_prepare(tx, skb, dev); 1057 dev_put(dev); 1058 return 0; 1059 } 1060 1061 static int __ieee80211_tx(struct ieee80211_local *local, struct sk_buff *skb, 1062 struct ieee80211_tx_data *tx) 1063 { 1064 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1065 int ret, i; 1066 1067 if (netif_subqueue_stopped(local->mdev, skb)) 1068 return IEEE80211_TX_AGAIN; 1069 1070 if (skb) { 1071 ieee80211_dump_frame(wiphy_name(local->hw.wiphy), 1072 "TX to low-level driver", skb); 1073 ret = local->ops->tx(local_to_hw(local), skb); 1074 if (ret) 1075 return IEEE80211_TX_AGAIN; 1076 local->mdev->trans_start = jiffies; 1077 ieee80211_led_tx(local, 1); 1078 } 1079 if (tx->extra_frag) { 1080 for (i = 0; i < tx->num_extra_frag; i++) { 1081 if (!tx->extra_frag[i]) 1082 continue; 1083 info = IEEE80211_SKB_CB(tx->extra_frag[i]); 1084 info->flags &= ~(IEEE80211_TX_CTL_USE_RTS_CTS | 1085 IEEE80211_TX_CTL_USE_CTS_PROTECT | 1086 IEEE80211_TX_CTL_CLEAR_PS_FILT | 1087 IEEE80211_TX_CTL_FIRST_FRAGMENT); 1088 if (netif_subqueue_stopped(local->mdev, 1089 tx->extra_frag[i])) 1090 return IEEE80211_TX_FRAG_AGAIN; 1091 if (i == tx->num_extra_frag) { 1092 info->tx_rate_idx = tx->last_frag_rate_idx; 1093 1094 if (tx->flags & IEEE80211_TX_PROBE_LAST_FRAG) 1095 info->flags |= 1096 IEEE80211_TX_CTL_RATE_CTRL_PROBE; 1097 else 1098 info->flags &= 1099 ~IEEE80211_TX_CTL_RATE_CTRL_PROBE; 1100 } 1101 1102 ieee80211_dump_frame(wiphy_name(local->hw.wiphy), 1103 "TX to low-level driver", 1104 tx->extra_frag[i]); 1105 ret = local->ops->tx(local_to_hw(local), 1106 tx->extra_frag[i]); 1107 if (ret) 1108 return IEEE80211_TX_FRAG_AGAIN; 1109 local->mdev->trans_start = jiffies; 1110 ieee80211_led_tx(local, 1); 1111 tx->extra_frag[i] = NULL; 1112 } 1113 kfree(tx->extra_frag); 1114 tx->extra_frag = NULL; 1115 } 1116 return IEEE80211_TX_OK; 1117 } 1118 1119 /* 1120 * Invoke TX handlers, return 0 on success and non-zero if the 1121 * frame was dropped or queued. 1122 */ 1123 static int invoke_tx_handlers(struct ieee80211_tx_data *tx) 1124 { 1125 struct sk_buff *skb = tx->skb; 1126 ieee80211_tx_result res = TX_DROP; 1127 int i; 1128 1129 #define CALL_TXH(txh) \ 1130 res = txh(tx); \ 1131 if (res != TX_CONTINUE) \ 1132 goto txh_done; 1133 1134 CALL_TXH(ieee80211_tx_h_check_assoc) 1135 CALL_TXH(ieee80211_tx_h_ps_buf) 1136 CALL_TXH(ieee80211_tx_h_select_key) 1137 CALL_TXH(ieee80211_tx_h_michael_mic_add) 1138 CALL_TXH(ieee80211_tx_h_rate_ctrl) 1139 CALL_TXH(ieee80211_tx_h_misc) 1140 CALL_TXH(ieee80211_tx_h_sequence) 1141 CALL_TXH(ieee80211_tx_h_fragment) 1142 /* handlers after fragment must be aware of tx info fragmentation! */ 1143 CALL_TXH(ieee80211_tx_h_encrypt) 1144 CALL_TXH(ieee80211_tx_h_calculate_duration) 1145 CALL_TXH(ieee80211_tx_h_stats) 1146 #undef CALL_TXH 1147 1148 txh_done: 1149 if (unlikely(res == TX_DROP)) { 1150 I802_DEBUG_INC(tx->local->tx_handlers_drop); 1151 dev_kfree_skb(skb); 1152 for (i = 0; i < tx->num_extra_frag; i++) 1153 if (tx->extra_frag[i]) 1154 dev_kfree_skb(tx->extra_frag[i]); 1155 kfree(tx->extra_frag); 1156 return -1; 1157 } else if (unlikely(res == TX_QUEUED)) { 1158 I802_DEBUG_INC(tx->local->tx_handlers_queued); 1159 return -1; 1160 } 1161 1162 return 0; 1163 } 1164 1165 static int ieee80211_tx(struct net_device *dev, struct sk_buff *skb) 1166 { 1167 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 1168 struct sta_info *sta; 1169 struct ieee80211_tx_data tx; 1170 ieee80211_tx_result res_prepare; 1171 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1172 int ret, i; 1173 u16 queue; 1174 1175 queue = skb_get_queue_mapping(skb); 1176 1177 WARN_ON(test_bit(queue, local->queues_pending)); 1178 1179 if (unlikely(skb->len < 10)) { 1180 dev_kfree_skb(skb); 1181 return 0; 1182 } 1183 1184 rcu_read_lock(); 1185 1186 /* initialises tx */ 1187 res_prepare = __ieee80211_tx_prepare(&tx, skb, dev); 1188 1189 if (res_prepare == TX_DROP) { 1190 dev_kfree_skb(skb); 1191 rcu_read_unlock(); 1192 return 0; 1193 } 1194 1195 sta = tx.sta; 1196 tx.channel = local->hw.conf.channel; 1197 info->band = tx.channel->band; 1198 1199 if (invoke_tx_handlers(&tx)) 1200 goto out; 1201 1202 retry: 1203 ret = __ieee80211_tx(local, skb, &tx); 1204 if (ret) { 1205 struct ieee80211_tx_stored_packet *store; 1206 1207 /* 1208 * Since there are no fragmented frames on A-MPDU 1209 * queues, there's no reason for a driver to reject 1210 * a frame there, warn and drop it. 1211 */ 1212 if (WARN_ON(queue >= ieee80211_num_regular_queues(&local->hw))) 1213 goto drop; 1214 1215 store = &local->pending_packet[queue]; 1216 1217 if (ret == IEEE80211_TX_FRAG_AGAIN) 1218 skb = NULL; 1219 set_bit(queue, local->queues_pending); 1220 smp_mb(); 1221 /* 1222 * When the driver gets out of buffers during sending of 1223 * fragments and calls ieee80211_stop_queue, the netif 1224 * subqueue is stopped. There is, however, a small window 1225 * in which the PENDING bit is not yet set. If a buffer 1226 * gets available in that window (i.e. driver calls 1227 * ieee80211_wake_queue), we would end up with ieee80211_tx 1228 * called with the PENDING bit still set. Prevent this by 1229 * continuing transmitting here when that situation is 1230 * possible to have happened. 1231 */ 1232 if (!__netif_subqueue_stopped(local->mdev, queue)) { 1233 clear_bit(queue, local->queues_pending); 1234 goto retry; 1235 } 1236 store->skb = skb; 1237 store->extra_frag = tx.extra_frag; 1238 store->num_extra_frag = tx.num_extra_frag; 1239 store->last_frag_rate_idx = tx.last_frag_rate_idx; 1240 store->last_frag_rate_ctrl_probe = 1241 !!(tx.flags & IEEE80211_TX_PROBE_LAST_FRAG); 1242 } 1243 out: 1244 rcu_read_unlock(); 1245 return 0; 1246 1247 drop: 1248 if (skb) 1249 dev_kfree_skb(skb); 1250 for (i = 0; i < tx.num_extra_frag; i++) 1251 if (tx.extra_frag[i]) 1252 dev_kfree_skb(tx.extra_frag[i]); 1253 kfree(tx.extra_frag); 1254 rcu_read_unlock(); 1255 return 0; 1256 } 1257 1258 /* device xmit handlers */ 1259 1260 static int ieee80211_skb_resize(struct ieee80211_local *local, 1261 struct sk_buff *skb, 1262 int head_need, bool may_encrypt) 1263 { 1264 int tail_need = 0; 1265 1266 /* 1267 * This could be optimised, devices that do full hardware 1268 * crypto (including TKIP MMIC) need no tailroom... But we 1269 * have no drivers for such devices currently. 1270 */ 1271 if (may_encrypt) { 1272 tail_need = IEEE80211_ENCRYPT_TAILROOM; 1273 tail_need -= skb_tailroom(skb); 1274 tail_need = max_t(int, tail_need, 0); 1275 } 1276 1277 if (head_need || tail_need) { 1278 /* Sorry. Can't account for this any more */ 1279 skb_orphan(skb); 1280 } 1281 1282 if (skb_header_cloned(skb)) 1283 I802_DEBUG_INC(local->tx_expand_skb_head_cloned); 1284 else 1285 I802_DEBUG_INC(local->tx_expand_skb_head); 1286 1287 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) { 1288 printk(KERN_DEBUG "%s: failed to reallocate TX buffer\n", 1289 wiphy_name(local->hw.wiphy)); 1290 return -ENOMEM; 1291 } 1292 1293 /* update truesize too */ 1294 skb->truesize += head_need + tail_need; 1295 1296 return 0; 1297 } 1298 1299 int ieee80211_master_start_xmit(struct sk_buff *skb, 1300 struct net_device *dev) 1301 { 1302 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1303 struct net_device *odev = NULL; 1304 struct ieee80211_sub_if_data *osdata; 1305 int headroom; 1306 bool may_encrypt; 1307 int ret; 1308 1309 if (info->control.ifindex) 1310 odev = dev_get_by_index(&init_net, info->control.ifindex); 1311 if (unlikely(odev && !is_ieee80211_device(odev, dev))) { 1312 dev_put(odev); 1313 odev = NULL; 1314 } 1315 if (unlikely(!odev)) { 1316 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 1317 printk(KERN_DEBUG "%s: Discarded packet with nonexistent " 1318 "originating device\n", dev->name); 1319 #endif 1320 dev_kfree_skb(skb); 1321 return 0; 1322 } 1323 1324 osdata = IEEE80211_DEV_TO_SUB_IF(odev); 1325 1326 may_encrypt = !(info->flags & IEEE80211_TX_CTL_DO_NOT_ENCRYPT); 1327 1328 headroom = osdata->local->tx_headroom; 1329 if (may_encrypt) 1330 headroom += IEEE80211_ENCRYPT_HEADROOM; 1331 headroom -= skb_headroom(skb); 1332 headroom = max_t(int, 0, headroom); 1333 1334 if (ieee80211_skb_resize(osdata->local, skb, headroom, may_encrypt)) { 1335 dev_kfree_skb(skb); 1336 dev_put(odev); 1337 return 0; 1338 } 1339 1340 info->control.vif = &osdata->vif; 1341 ret = ieee80211_tx(odev, skb); 1342 dev_put(odev); 1343 1344 return ret; 1345 } 1346 1347 int ieee80211_monitor_start_xmit(struct sk_buff *skb, 1348 struct net_device *dev) 1349 { 1350 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 1351 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1352 struct ieee80211_radiotap_header *prthdr = 1353 (struct ieee80211_radiotap_header *)skb->data; 1354 u16 len_rthdr; 1355 1356 /* check for not even having the fixed radiotap header part */ 1357 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header))) 1358 goto fail; /* too short to be possibly valid */ 1359 1360 /* is it a header version we can trust to find length from? */ 1361 if (unlikely(prthdr->it_version)) 1362 goto fail; /* only version 0 is supported */ 1363 1364 /* then there must be a radiotap header with a length we can use */ 1365 len_rthdr = ieee80211_get_radiotap_len(skb->data); 1366 1367 /* does the skb contain enough to deliver on the alleged length? */ 1368 if (unlikely(skb->len < len_rthdr)) 1369 goto fail; /* skb too short for claimed rt header extent */ 1370 1371 skb->dev = local->mdev; 1372 1373 /* needed because we set skb device to master */ 1374 info->control.ifindex = dev->ifindex; 1375 1376 info->flags |= IEEE80211_TX_CTL_DO_NOT_ENCRYPT; 1377 /* Interfaces should always request a status report */ 1378 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; 1379 1380 /* 1381 * fix up the pointers accounting for the radiotap 1382 * header still being in there. We are being given 1383 * a precooked IEEE80211 header so no need for 1384 * normal processing 1385 */ 1386 skb_set_mac_header(skb, len_rthdr); 1387 /* 1388 * these are just fixed to the end of the rt area since we 1389 * don't have any better information and at this point, nobody cares 1390 */ 1391 skb_set_network_header(skb, len_rthdr); 1392 skb_set_transport_header(skb, len_rthdr); 1393 1394 /* pass the radiotap header up to the next stage intact */ 1395 dev_queue_xmit(skb); 1396 return NETDEV_TX_OK; 1397 1398 fail: 1399 dev_kfree_skb(skb); 1400 return NETDEV_TX_OK; /* meaning, we dealt with the skb */ 1401 } 1402 1403 /** 1404 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type 1405 * subinterfaces (wlan#, WDS, and VLAN interfaces) 1406 * @skb: packet to be sent 1407 * @dev: incoming interface 1408 * 1409 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will 1410 * not be freed, and caller is responsible for either retrying later or freeing 1411 * skb). 1412 * 1413 * This function takes in an Ethernet header and encapsulates it with suitable 1414 * IEEE 802.11 header based on which interface the packet is coming in. The 1415 * encapsulated packet will then be passed to master interface, wlan#.11, for 1416 * transmission (through low-level driver). 1417 */ 1418 int ieee80211_subif_start_xmit(struct sk_buff *skb, 1419 struct net_device *dev) 1420 { 1421 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 1422 struct ieee80211_tx_info *info; 1423 struct ieee80211_sub_if_data *sdata; 1424 int ret = 1, head_need; 1425 u16 ethertype, hdrlen, meshhdrlen = 0; 1426 __le16 fc; 1427 struct ieee80211_hdr hdr; 1428 struct ieee80211s_hdr mesh_hdr; 1429 const u8 *encaps_data; 1430 int encaps_len, skip_header_bytes; 1431 int nh_pos, h_pos; 1432 struct sta_info *sta; 1433 u32 sta_flags = 0; 1434 1435 sdata = IEEE80211_DEV_TO_SUB_IF(dev); 1436 if (unlikely(skb->len < ETH_HLEN)) { 1437 ret = 0; 1438 goto fail; 1439 } 1440 1441 nh_pos = skb_network_header(skb) - skb->data; 1442 h_pos = skb_transport_header(skb) - skb->data; 1443 1444 /* convert Ethernet header to proper 802.11 header (based on 1445 * operation mode) */ 1446 ethertype = (skb->data[12] << 8) | skb->data[13]; 1447 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 1448 1449 switch (sdata->vif.type) { 1450 case IEEE80211_IF_TYPE_AP: 1451 case IEEE80211_IF_TYPE_VLAN: 1452 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 1453 /* DA BSSID SA */ 1454 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1455 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); 1456 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 1457 hdrlen = 24; 1458 break; 1459 case IEEE80211_IF_TYPE_WDS: 1460 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); 1461 /* RA TA DA SA */ 1462 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN); 1463 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); 1464 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1465 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1466 hdrlen = 30; 1467 break; 1468 #ifdef CONFIG_MAC80211_MESH 1469 case IEEE80211_IF_TYPE_MESH_POINT: 1470 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); 1471 /* RA TA DA SA */ 1472 if (is_multicast_ether_addr(skb->data)) 1473 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1474 else if (mesh_nexthop_lookup(hdr.addr1, skb, dev)) 1475 return 0; 1476 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); 1477 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1478 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1479 if (skb->pkt_type == PACKET_OTHERHOST) { 1480 /* Forwarded frame, keep mesh ttl and seqnum */ 1481 struct ieee80211s_hdr *prev_meshhdr; 1482 prev_meshhdr = ((struct ieee80211s_hdr *)skb->cb); 1483 meshhdrlen = ieee80211_get_mesh_hdrlen(prev_meshhdr); 1484 memcpy(&mesh_hdr, prev_meshhdr, meshhdrlen); 1485 sdata->u.sta.mshstats.fwded_frames++; 1486 } else { 1487 if (!sdata->u.sta.mshcfg.dot11MeshTTL) { 1488 /* Do not send frames with mesh_ttl == 0 */ 1489 sdata->u.sta.mshstats.dropped_frames_ttl++; 1490 ret = 0; 1491 goto fail; 1492 } 1493 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr, 1494 sdata); 1495 } 1496 hdrlen = 30; 1497 break; 1498 #endif 1499 case IEEE80211_IF_TYPE_STA: 1500 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 1501 /* BSSID SA DA */ 1502 memcpy(hdr.addr1, sdata->u.sta.bssid, ETH_ALEN); 1503 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 1504 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1505 hdrlen = 24; 1506 break; 1507 case IEEE80211_IF_TYPE_IBSS: 1508 /* DA SA BSSID */ 1509 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1510 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 1511 memcpy(hdr.addr3, sdata->u.sta.bssid, ETH_ALEN); 1512 hdrlen = 24; 1513 break; 1514 default: 1515 ret = 0; 1516 goto fail; 1517 } 1518 1519 /* 1520 * There's no need to try to look up the destination 1521 * if it is a multicast address (which can only happen 1522 * in AP mode) 1523 */ 1524 if (!is_multicast_ether_addr(hdr.addr1)) { 1525 rcu_read_lock(); 1526 sta = sta_info_get(local, hdr.addr1); 1527 if (sta) 1528 sta_flags = get_sta_flags(sta); 1529 rcu_read_unlock(); 1530 } 1531 1532 /* receiver and we are QoS enabled, use a QoS type frame */ 1533 if (sta_flags & WLAN_STA_WME && 1534 ieee80211_num_regular_queues(&local->hw) >= 4) { 1535 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 1536 hdrlen += 2; 1537 } 1538 1539 /* 1540 * Drop unicast frames to unauthorised stations unless they are 1541 * EAPOL frames from the local station. 1542 */ 1543 if (unlikely(!is_multicast_ether_addr(hdr.addr1) && 1544 !(sta_flags & WLAN_STA_AUTHORIZED) && 1545 !(ethertype == ETH_P_PAE && 1546 compare_ether_addr(dev->dev_addr, 1547 skb->data + ETH_ALEN) == 0))) { 1548 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 1549 DECLARE_MAC_BUF(mac); 1550 1551 if (net_ratelimit()) 1552 printk(KERN_DEBUG "%s: dropped frame to %s" 1553 " (unauthorized port)\n", dev->name, 1554 print_mac(mac, hdr.addr1)); 1555 #endif 1556 1557 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port); 1558 1559 ret = 0; 1560 goto fail; 1561 } 1562 1563 hdr.frame_control = fc; 1564 hdr.duration_id = 0; 1565 hdr.seq_ctrl = 0; 1566 1567 skip_header_bytes = ETH_HLEN; 1568 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 1569 encaps_data = bridge_tunnel_header; 1570 encaps_len = sizeof(bridge_tunnel_header); 1571 skip_header_bytes -= 2; 1572 } else if (ethertype >= 0x600) { 1573 encaps_data = rfc1042_header; 1574 encaps_len = sizeof(rfc1042_header); 1575 skip_header_bytes -= 2; 1576 } else { 1577 encaps_data = NULL; 1578 encaps_len = 0; 1579 } 1580 1581 skb_pull(skb, skip_header_bytes); 1582 nh_pos -= skip_header_bytes; 1583 h_pos -= skip_header_bytes; 1584 1585 /* TODO: implement support for fragments so that there is no need to 1586 * reallocate and copy payload; it might be enough to support one 1587 * extra fragment that would be copied in the beginning of the frame 1588 * data.. anyway, it would be nice to include this into skb structure 1589 * somehow 1590 * 1591 * There are few options for this: 1592 * use skb->cb as an extra space for 802.11 header 1593 * allocate new buffer if not enough headroom 1594 * make sure that there is enough headroom in every skb by increasing 1595 * build in headroom in __dev_alloc_skb() (linux/skbuff.h) and 1596 * alloc_skb() (net/core/skbuff.c) 1597 */ 1598 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb); 1599 1600 /* 1601 * So we need to modify the skb header and hence need a copy of 1602 * that. The head_need variable above doesn't, so far, include 1603 * the needed header space that we don't need right away. If we 1604 * can, then we don't reallocate right now but only after the 1605 * frame arrives at the master device (if it does...) 1606 * 1607 * If we cannot, however, then we will reallocate to include all 1608 * the ever needed space. Also, if we need to reallocate it anyway, 1609 * make it big enough for everything we may ever need. 1610 */ 1611 1612 if (head_need > 0 || skb_cloned(skb)) { 1613 head_need += IEEE80211_ENCRYPT_HEADROOM; 1614 head_need += local->tx_headroom; 1615 head_need = max_t(int, 0, head_need); 1616 if (ieee80211_skb_resize(local, skb, head_need, true)) 1617 goto fail; 1618 } 1619 1620 if (encaps_data) { 1621 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 1622 nh_pos += encaps_len; 1623 h_pos += encaps_len; 1624 } 1625 1626 if (meshhdrlen > 0) { 1627 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen); 1628 nh_pos += meshhdrlen; 1629 h_pos += meshhdrlen; 1630 } 1631 1632 if (ieee80211_is_data_qos(fc)) { 1633 __le16 *qos_control; 1634 1635 qos_control = (__le16*) skb_push(skb, 2); 1636 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2); 1637 /* 1638 * Maybe we could actually set some fields here, for now just 1639 * initialise to zero to indicate no special operation. 1640 */ 1641 *qos_control = 0; 1642 } else 1643 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 1644 1645 nh_pos += hdrlen; 1646 h_pos += hdrlen; 1647 1648 info = IEEE80211_SKB_CB(skb); 1649 memset(info, 0, sizeof(*info)); 1650 info->control.ifindex = dev->ifindex; 1651 if (ethertype == ETH_P_PAE) 1652 info->flags |= IEEE80211_TX_CTL_EAPOL_FRAME; 1653 1654 /* Interfaces should always request a status report */ 1655 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; 1656 1657 skb->dev = local->mdev; 1658 dev->stats.tx_packets++; 1659 dev->stats.tx_bytes += skb->len; 1660 1661 /* Update skb pointers to various headers since this modified frame 1662 * is going to go through Linux networking code that may potentially 1663 * need things like pointer to IP header. */ 1664 skb_set_mac_header(skb, 0); 1665 skb_set_network_header(skb, nh_pos); 1666 skb_set_transport_header(skb, h_pos); 1667 1668 dev->trans_start = jiffies; 1669 dev_queue_xmit(skb); 1670 1671 return 0; 1672 1673 fail: 1674 if (!ret) 1675 dev_kfree_skb(skb); 1676 1677 return ret; 1678 } 1679 1680 1681 /* 1682 * ieee80211_clear_tx_pending may not be called in a context where 1683 * it is possible that it packets could come in again. 1684 */ 1685 void ieee80211_clear_tx_pending(struct ieee80211_local *local) 1686 { 1687 int i, j; 1688 struct ieee80211_tx_stored_packet *store; 1689 1690 for (i = 0; i < ieee80211_num_regular_queues(&local->hw); i++) { 1691 if (!test_bit(i, local->queues_pending)) 1692 continue; 1693 store = &local->pending_packet[i]; 1694 kfree_skb(store->skb); 1695 for (j = 0; j < store->num_extra_frag; j++) 1696 kfree_skb(store->extra_frag[j]); 1697 kfree(store->extra_frag); 1698 clear_bit(i, local->queues_pending); 1699 } 1700 } 1701 1702 /* 1703 * Transmit all pending packets. Called from tasklet, locks master device 1704 * TX lock so that no new packets can come in. 1705 */ 1706 void ieee80211_tx_pending(unsigned long data) 1707 { 1708 struct ieee80211_local *local = (struct ieee80211_local *)data; 1709 struct net_device *dev = local->mdev; 1710 struct ieee80211_tx_stored_packet *store; 1711 struct ieee80211_tx_data tx; 1712 int i, ret; 1713 1714 netif_tx_lock_bh(dev); 1715 for (i = 0; i < ieee80211_num_regular_queues(&local->hw); i++) { 1716 /* Check that this queue is ok */ 1717 if (__netif_subqueue_stopped(local->mdev, i)) 1718 continue; 1719 1720 if (!test_bit(i, local->queues_pending)) { 1721 ieee80211_wake_queue(&local->hw, i); 1722 continue; 1723 } 1724 1725 store = &local->pending_packet[i]; 1726 tx.extra_frag = store->extra_frag; 1727 tx.num_extra_frag = store->num_extra_frag; 1728 tx.last_frag_rate_idx = store->last_frag_rate_idx; 1729 tx.flags = 0; 1730 if (store->last_frag_rate_ctrl_probe) 1731 tx.flags |= IEEE80211_TX_PROBE_LAST_FRAG; 1732 ret = __ieee80211_tx(local, store->skb, &tx); 1733 if (ret) { 1734 if (ret == IEEE80211_TX_FRAG_AGAIN) 1735 store->skb = NULL; 1736 } else { 1737 clear_bit(i, local->queues_pending); 1738 ieee80211_wake_queue(&local->hw, i); 1739 } 1740 } 1741 netif_tx_unlock_bh(dev); 1742 } 1743 1744 /* functions for drivers to get certain frames */ 1745 1746 static void ieee80211_beacon_add_tim(struct ieee80211_local *local, 1747 struct ieee80211_if_ap *bss, 1748 struct sk_buff *skb, 1749 struct beacon_data *beacon) 1750 { 1751 u8 *pos, *tim; 1752 int aid0 = 0; 1753 int i, have_bits = 0, n1, n2; 1754 1755 /* Generate bitmap for TIM only if there are any STAs in power save 1756 * mode. */ 1757 if (atomic_read(&bss->num_sta_ps) > 0) 1758 /* in the hope that this is faster than 1759 * checking byte-for-byte */ 1760 have_bits = !bitmap_empty((unsigned long*)bss->tim, 1761 IEEE80211_MAX_AID+1); 1762 1763 if (bss->dtim_count == 0) 1764 bss->dtim_count = beacon->dtim_period - 1; 1765 else 1766 bss->dtim_count--; 1767 1768 tim = pos = (u8 *) skb_put(skb, 6); 1769 *pos++ = WLAN_EID_TIM; 1770 *pos++ = 4; 1771 *pos++ = bss->dtim_count; 1772 *pos++ = beacon->dtim_period; 1773 1774 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf)) 1775 aid0 = 1; 1776 1777 if (have_bits) { 1778 /* Find largest even number N1 so that bits numbered 1 through 1779 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits 1780 * (N2 + 1) x 8 through 2007 are 0. */ 1781 n1 = 0; 1782 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) { 1783 if (bss->tim[i]) { 1784 n1 = i & 0xfe; 1785 break; 1786 } 1787 } 1788 n2 = n1; 1789 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) { 1790 if (bss->tim[i]) { 1791 n2 = i; 1792 break; 1793 } 1794 } 1795 1796 /* Bitmap control */ 1797 *pos++ = n1 | aid0; 1798 /* Part Virt Bitmap */ 1799 memcpy(pos, bss->tim + n1, n2 - n1 + 1); 1800 1801 tim[1] = n2 - n1 + 4; 1802 skb_put(skb, n2 - n1); 1803 } else { 1804 *pos++ = aid0; /* Bitmap control */ 1805 *pos++ = 0; /* Part Virt Bitmap */ 1806 } 1807 } 1808 1809 struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw, 1810 struct ieee80211_vif *vif) 1811 { 1812 struct ieee80211_local *local = hw_to_local(hw); 1813 struct sk_buff *skb = NULL; 1814 struct ieee80211_tx_info *info; 1815 struct net_device *bdev; 1816 struct ieee80211_sub_if_data *sdata = NULL; 1817 struct ieee80211_if_ap *ap = NULL; 1818 struct ieee80211_if_sta *ifsta = NULL; 1819 struct rate_selection rsel; 1820 struct beacon_data *beacon; 1821 struct ieee80211_supported_band *sband; 1822 struct ieee80211_mgmt *mgmt; 1823 int *num_beacons; 1824 enum ieee80211_band band = local->hw.conf.channel->band; 1825 u8 *pos; 1826 1827 sband = local->hw.wiphy->bands[band]; 1828 1829 rcu_read_lock(); 1830 1831 sdata = vif_to_sdata(vif); 1832 bdev = sdata->dev; 1833 1834 if (sdata->vif.type == IEEE80211_IF_TYPE_AP) { 1835 ap = &sdata->u.ap; 1836 beacon = rcu_dereference(ap->beacon); 1837 if (ap && beacon) { 1838 /* 1839 * headroom, head length, 1840 * tail length and maximum TIM length 1841 */ 1842 skb = dev_alloc_skb(local->tx_headroom + 1843 beacon->head_len + 1844 beacon->tail_len + 256); 1845 if (!skb) 1846 goto out; 1847 1848 skb_reserve(skb, local->tx_headroom); 1849 memcpy(skb_put(skb, beacon->head_len), beacon->head, 1850 beacon->head_len); 1851 1852 /* 1853 * Not very nice, but we want to allow the driver to call 1854 * ieee80211_beacon_get() as a response to the set_tim() 1855 * callback. That, however, is already invoked under the 1856 * sta_lock to guarantee consistent and race-free update 1857 * of the tim bitmap in mac80211 and the driver. 1858 */ 1859 if (local->tim_in_locked_section) { 1860 ieee80211_beacon_add_tim(local, ap, skb, beacon); 1861 } else { 1862 unsigned long flags; 1863 1864 spin_lock_irqsave(&local->sta_lock, flags); 1865 ieee80211_beacon_add_tim(local, ap, skb, beacon); 1866 spin_unlock_irqrestore(&local->sta_lock, flags); 1867 } 1868 1869 if (beacon->tail) 1870 memcpy(skb_put(skb, beacon->tail_len), 1871 beacon->tail, beacon->tail_len); 1872 1873 num_beacons = &ap->num_beacons; 1874 } else 1875 goto out; 1876 } else if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) { 1877 struct ieee80211_hdr *hdr; 1878 ifsta = &sdata->u.sta; 1879 1880 if (!ifsta->probe_resp) 1881 goto out; 1882 1883 skb = skb_copy(ifsta->probe_resp, GFP_ATOMIC); 1884 if (!skb) 1885 goto out; 1886 1887 hdr = (struct ieee80211_hdr *) skb->data; 1888 hdr->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT, 1889 IEEE80211_STYPE_BEACON); 1890 1891 num_beacons = &ifsta->num_beacons; 1892 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 1893 /* headroom, head length, tail length and maximum TIM length */ 1894 skb = dev_alloc_skb(local->tx_headroom + 400); 1895 if (!skb) 1896 goto out; 1897 1898 skb_reserve(skb, local->hw.extra_tx_headroom); 1899 mgmt = (struct ieee80211_mgmt *) 1900 skb_put(skb, 24 + sizeof(mgmt->u.beacon)); 1901 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon)); 1902 mgmt->frame_control = 1903 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); 1904 memset(mgmt->da, 0xff, ETH_ALEN); 1905 memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN); 1906 /* BSSID is left zeroed, wildcard value */ 1907 mgmt->u.beacon.beacon_int = 1908 cpu_to_le16(local->hw.conf.beacon_int); 1909 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */ 1910 1911 pos = skb_put(skb, 2); 1912 *pos++ = WLAN_EID_SSID; 1913 *pos++ = 0x0; 1914 1915 mesh_mgmt_ies_add(skb, sdata->dev); 1916 1917 num_beacons = &sdata->u.sta.num_beacons; 1918 } else { 1919 WARN_ON(1); 1920 goto out; 1921 } 1922 1923 info = IEEE80211_SKB_CB(skb); 1924 1925 info->band = band; 1926 rate_control_get_rate(local->mdev, sband, skb, &rsel); 1927 1928 if (unlikely(rsel.rate_idx < 0)) { 1929 if (net_ratelimit()) { 1930 printk(KERN_DEBUG "%s: ieee80211_beacon_get: " 1931 "no rate found\n", 1932 wiphy_name(local->hw.wiphy)); 1933 } 1934 dev_kfree_skb(skb); 1935 skb = NULL; 1936 goto out; 1937 } 1938 1939 info->control.vif = vif; 1940 info->tx_rate_idx = rsel.rate_idx; 1941 1942 info->flags |= IEEE80211_TX_CTL_NO_ACK; 1943 info->flags |= IEEE80211_TX_CTL_DO_NOT_ENCRYPT; 1944 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1945 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; 1946 if (sdata->bss_conf.use_short_preamble && 1947 sband->bitrates[rsel.rate_idx].flags & IEEE80211_RATE_SHORT_PREAMBLE) 1948 info->flags |= IEEE80211_TX_CTL_SHORT_PREAMBLE; 1949 1950 info->antenna_sel_tx = local->hw.conf.antenna_sel_tx; 1951 info->control.retry_limit = 1; 1952 1953 (*num_beacons)++; 1954 out: 1955 rcu_read_unlock(); 1956 return skb; 1957 } 1958 EXPORT_SYMBOL(ieee80211_beacon_get); 1959 1960 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1961 const void *frame, size_t frame_len, 1962 const struct ieee80211_tx_info *frame_txctl, 1963 struct ieee80211_rts *rts) 1964 { 1965 const struct ieee80211_hdr *hdr = frame; 1966 1967 rts->frame_control = 1968 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS); 1969 rts->duration = ieee80211_rts_duration(hw, vif, frame_len, 1970 frame_txctl); 1971 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra)); 1972 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta)); 1973 } 1974 EXPORT_SYMBOL(ieee80211_rts_get); 1975 1976 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1977 const void *frame, size_t frame_len, 1978 const struct ieee80211_tx_info *frame_txctl, 1979 struct ieee80211_cts *cts) 1980 { 1981 const struct ieee80211_hdr *hdr = frame; 1982 1983 cts->frame_control = 1984 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS); 1985 cts->duration = ieee80211_ctstoself_duration(hw, vif, 1986 frame_len, frame_txctl); 1987 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra)); 1988 } 1989 EXPORT_SYMBOL(ieee80211_ctstoself_get); 1990 1991 struct sk_buff * 1992 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, 1993 struct ieee80211_vif *vif) 1994 { 1995 struct ieee80211_local *local = hw_to_local(hw); 1996 struct sk_buff *skb = NULL; 1997 struct sta_info *sta; 1998 struct ieee80211_tx_data tx; 1999 struct net_device *bdev; 2000 struct ieee80211_sub_if_data *sdata; 2001 struct ieee80211_if_ap *bss = NULL; 2002 struct beacon_data *beacon; 2003 struct ieee80211_tx_info *info; 2004 2005 sdata = vif_to_sdata(vif); 2006 bdev = sdata->dev; 2007 bss = &sdata->u.ap; 2008 2009 if (!bss) 2010 return NULL; 2011 2012 rcu_read_lock(); 2013 beacon = rcu_dereference(bss->beacon); 2014 2015 if (sdata->vif.type != IEEE80211_IF_TYPE_AP || !beacon || !beacon->head) 2016 goto out; 2017 2018 if (bss->dtim_count != 0) 2019 goto out; /* send buffered bc/mc only after DTIM beacon */ 2020 2021 while (1) { 2022 skb = skb_dequeue(&bss->ps_bc_buf); 2023 if (!skb) 2024 goto out; 2025 local->total_ps_buffered--; 2026 2027 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) { 2028 struct ieee80211_hdr *hdr = 2029 (struct ieee80211_hdr *) skb->data; 2030 /* more buffered multicast/broadcast frames ==> set 2031 * MoreData flag in IEEE 802.11 header to inform PS 2032 * STAs */ 2033 hdr->frame_control |= 2034 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 2035 } 2036 2037 if (!ieee80211_tx_prepare(&tx, skb, local->mdev)) 2038 break; 2039 dev_kfree_skb_any(skb); 2040 } 2041 2042 info = IEEE80211_SKB_CB(skb); 2043 2044 sta = tx.sta; 2045 tx.flags |= IEEE80211_TX_PS_BUFFERED; 2046 tx.channel = local->hw.conf.channel; 2047 info->band = tx.channel->band; 2048 2049 if (invoke_tx_handlers(&tx)) 2050 skb = NULL; 2051 out: 2052 rcu_read_unlock(); 2053 2054 return skb; 2055 } 2056 EXPORT_SYMBOL(ieee80211_get_buffered_bc); 2057