1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * 12 * Transmit and frame generation functions. 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/skbuff.h> 18 #include <linux/etherdevice.h> 19 #include <linux/bitmap.h> 20 #include <linux/rcupdate.h> 21 #include <net/net_namespace.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <net/cfg80211.h> 24 #include <net/mac80211.h> 25 #include <asm/unaligned.h> 26 27 #include "ieee80211_i.h" 28 #include "led.h" 29 #include "mesh.h" 30 #include "wep.h" 31 #include "wpa.h" 32 #include "wme.h" 33 #include "rate.h" 34 35 #define IEEE80211_TX_OK 0 36 #define IEEE80211_TX_AGAIN 1 37 #define IEEE80211_TX_FRAG_AGAIN 2 38 39 /* misc utils */ 40 41 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr, 42 int next_frag_len) 43 { 44 int rate, mrate, erp, dur, i; 45 struct ieee80211_rate *txrate; 46 struct ieee80211_local *local = tx->local; 47 struct ieee80211_supported_band *sband; 48 struct ieee80211_hdr *hdr; 49 50 sband = local->hw.wiphy->bands[tx->channel->band]; 51 txrate = &sband->bitrates[tx->rate_idx]; 52 53 erp = 0; 54 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 55 erp = txrate->flags & IEEE80211_RATE_ERP_G; 56 57 /* 58 * data and mgmt (except PS Poll): 59 * - during CFP: 32768 60 * - during contention period: 61 * if addr1 is group address: 0 62 * if more fragments = 0 and addr1 is individual address: time to 63 * transmit one ACK plus SIFS 64 * if more fragments = 1 and addr1 is individual address: time to 65 * transmit next fragment plus 2 x ACK plus 3 x SIFS 66 * 67 * IEEE 802.11, 9.6: 68 * - control response frame (CTS or ACK) shall be transmitted using the 69 * same rate as the immediately previous frame in the frame exchange 70 * sequence, if this rate belongs to the PHY mandatory rates, or else 71 * at the highest possible rate belonging to the PHY rates in the 72 * BSSBasicRateSet 73 */ 74 hdr = (struct ieee80211_hdr *)tx->skb->data; 75 if (ieee80211_is_ctl(hdr->frame_control)) { 76 /* TODO: These control frames are not currently sent by 77 * mac80211, but should they be implemented, this function 78 * needs to be updated to support duration field calculation. 79 * 80 * RTS: time needed to transmit pending data/mgmt frame plus 81 * one CTS frame plus one ACK frame plus 3 x SIFS 82 * CTS: duration of immediately previous RTS minus time 83 * required to transmit CTS and its SIFS 84 * ACK: 0 if immediately previous directed data/mgmt had 85 * more=0, with more=1 duration in ACK frame is duration 86 * from previous frame minus time needed to transmit ACK 87 * and its SIFS 88 * PS Poll: BIT(15) | BIT(14) | aid 89 */ 90 return 0; 91 } 92 93 /* data/mgmt */ 94 if (0 /* FIX: data/mgmt during CFP */) 95 return cpu_to_le16(32768); 96 97 if (group_addr) /* Group address as the destination - no ACK */ 98 return 0; 99 100 /* Individual destination address: 101 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes) 102 * CTS and ACK frames shall be transmitted using the highest rate in 103 * basic rate set that is less than or equal to the rate of the 104 * immediately previous frame and that is using the same modulation 105 * (CCK or OFDM). If no basic rate set matches with these requirements, 106 * the highest mandatory rate of the PHY that is less than or equal to 107 * the rate of the previous frame is used. 108 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps 109 */ 110 rate = -1; 111 /* use lowest available if everything fails */ 112 mrate = sband->bitrates[0].bitrate; 113 for (i = 0; i < sband->n_bitrates; i++) { 114 struct ieee80211_rate *r = &sband->bitrates[i]; 115 116 if (r->bitrate > txrate->bitrate) 117 break; 118 119 if (tx->sdata->bss_conf.basic_rates & BIT(i)) 120 rate = r->bitrate; 121 122 switch (sband->band) { 123 case IEEE80211_BAND_2GHZ: { 124 u32 flag; 125 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 126 flag = IEEE80211_RATE_MANDATORY_G; 127 else 128 flag = IEEE80211_RATE_MANDATORY_B; 129 if (r->flags & flag) 130 mrate = r->bitrate; 131 break; 132 } 133 case IEEE80211_BAND_5GHZ: 134 if (r->flags & IEEE80211_RATE_MANDATORY_A) 135 mrate = r->bitrate; 136 break; 137 case IEEE80211_NUM_BANDS: 138 WARN_ON(1); 139 break; 140 } 141 } 142 if (rate == -1) { 143 /* No matching basic rate found; use highest suitable mandatory 144 * PHY rate */ 145 rate = mrate; 146 } 147 148 /* Time needed to transmit ACK 149 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up 150 * to closest integer */ 151 152 dur = ieee80211_frame_duration(local, 10, rate, erp, 153 tx->sdata->bss_conf.use_short_preamble); 154 155 if (next_frag_len) { 156 /* Frame is fragmented: duration increases with time needed to 157 * transmit next fragment plus ACK and 2 x SIFS. */ 158 dur *= 2; /* ACK + SIFS */ 159 /* next fragment */ 160 dur += ieee80211_frame_duration(local, next_frag_len, 161 txrate->bitrate, erp, 162 tx->sdata->bss_conf.use_short_preamble); 163 } 164 165 return cpu_to_le16(dur); 166 } 167 168 static int inline is_ieee80211_device(struct ieee80211_local *local, 169 struct net_device *dev) 170 { 171 return local == wdev_priv(dev->ieee80211_ptr); 172 } 173 174 /* tx handlers */ 175 176 static ieee80211_tx_result debug_noinline 177 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx) 178 { 179 180 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 181 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 182 u32 sta_flags; 183 184 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) 185 return TX_CONTINUE; 186 187 if (unlikely(tx->local->sw_scanning) && 188 !ieee80211_is_probe_req(hdr->frame_control)) 189 return TX_DROP; 190 191 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 192 return TX_CONTINUE; 193 194 if (tx->flags & IEEE80211_TX_PS_BUFFERED) 195 return TX_CONTINUE; 196 197 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0; 198 199 if (likely(tx->flags & IEEE80211_TX_UNICAST)) { 200 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) && 201 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 202 ieee80211_is_data(hdr->frame_control))) { 203 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 204 DECLARE_MAC_BUF(mac); 205 printk(KERN_DEBUG "%s: dropped data frame to not " 206 "associated station %s\n", 207 tx->dev->name, print_mac(mac, hdr->addr1)); 208 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ 209 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc); 210 return TX_DROP; 211 } 212 } else { 213 if (unlikely(ieee80211_is_data(hdr->frame_control) && 214 tx->local->num_sta == 0 && 215 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) { 216 /* 217 * No associated STAs - no need to send multicast 218 * frames. 219 */ 220 return TX_DROP; 221 } 222 return TX_CONTINUE; 223 } 224 225 return TX_CONTINUE; 226 } 227 228 /* This function is called whenever the AP is about to exceed the maximum limit 229 * of buffered frames for power saving STAs. This situation should not really 230 * happen often during normal operation, so dropping the oldest buffered packet 231 * from each queue should be OK to make some room for new frames. */ 232 static void purge_old_ps_buffers(struct ieee80211_local *local) 233 { 234 int total = 0, purged = 0; 235 struct sk_buff *skb; 236 struct ieee80211_sub_if_data *sdata; 237 struct sta_info *sta; 238 239 /* 240 * virtual interfaces are protected by RCU 241 */ 242 rcu_read_lock(); 243 244 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 245 struct ieee80211_if_ap *ap; 246 if (sdata->vif.type != NL80211_IFTYPE_AP) 247 continue; 248 ap = &sdata->u.ap; 249 skb = skb_dequeue(&ap->ps_bc_buf); 250 if (skb) { 251 purged++; 252 dev_kfree_skb(skb); 253 } 254 total += skb_queue_len(&ap->ps_bc_buf); 255 } 256 257 list_for_each_entry_rcu(sta, &local->sta_list, list) { 258 skb = skb_dequeue(&sta->ps_tx_buf); 259 if (skb) { 260 purged++; 261 dev_kfree_skb(skb); 262 } 263 total += skb_queue_len(&sta->ps_tx_buf); 264 } 265 266 rcu_read_unlock(); 267 268 local->total_ps_buffered = total; 269 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 270 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n", 271 wiphy_name(local->hw.wiphy), purged); 272 #endif 273 } 274 275 static ieee80211_tx_result 276 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx) 277 { 278 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 279 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 280 281 /* 282 * broadcast/multicast frame 283 * 284 * If any of the associated stations is in power save mode, 285 * the frame is buffered to be sent after DTIM beacon frame. 286 * This is done either by the hardware or us. 287 */ 288 289 /* powersaving STAs only in AP/VLAN mode */ 290 if (!tx->sdata->bss) 291 return TX_CONTINUE; 292 293 /* no buffering for ordered frames */ 294 if (ieee80211_has_order(hdr->frame_control)) 295 return TX_CONTINUE; 296 297 /* no stations in PS mode */ 298 if (!atomic_read(&tx->sdata->bss->num_sta_ps)) 299 return TX_CONTINUE; 300 301 /* buffered in mac80211 */ 302 if (tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING) { 303 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) 304 purge_old_ps_buffers(tx->local); 305 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= 306 AP_MAX_BC_BUFFER) { 307 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 308 if (net_ratelimit()) { 309 printk(KERN_DEBUG "%s: BC TX buffer full - " 310 "dropping the oldest frame\n", 311 tx->dev->name); 312 } 313 #endif 314 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf)); 315 } else 316 tx->local->total_ps_buffered++; 317 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb); 318 return TX_QUEUED; 319 } 320 321 /* buffered in hardware */ 322 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM; 323 324 return TX_CONTINUE; 325 } 326 327 static ieee80211_tx_result 328 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx) 329 { 330 struct sta_info *sta = tx->sta; 331 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 332 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 333 u32 staflags; 334 DECLARE_MAC_BUF(mac); 335 336 if (unlikely(!sta || ieee80211_is_probe_resp(hdr->frame_control))) 337 return TX_CONTINUE; 338 339 staflags = get_sta_flags(sta); 340 341 if (unlikely((staflags & WLAN_STA_PS) && 342 !(staflags & WLAN_STA_PSPOLL))) { 343 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 344 printk(KERN_DEBUG "STA %s aid %d: PS buffer (entries " 345 "before %d)\n", 346 print_mac(mac, sta->sta.addr), sta->sta.aid, 347 skb_queue_len(&sta->ps_tx_buf)); 348 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 349 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) 350 purge_old_ps_buffers(tx->local); 351 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) { 352 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf); 353 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 354 if (net_ratelimit()) { 355 printk(KERN_DEBUG "%s: STA %s TX " 356 "buffer full - dropping oldest frame\n", 357 tx->dev->name, print_mac(mac, sta->sta.addr)); 358 } 359 #endif 360 dev_kfree_skb(old); 361 } else 362 tx->local->total_ps_buffered++; 363 364 /* Queue frame to be sent after STA sends an PS Poll frame */ 365 if (skb_queue_empty(&sta->ps_tx_buf)) 366 sta_info_set_tim_bit(sta); 367 368 info->control.jiffies = jiffies; 369 skb_queue_tail(&sta->ps_tx_buf, tx->skb); 370 return TX_QUEUED; 371 } 372 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 373 else if (unlikely(test_sta_flags(sta, WLAN_STA_PS))) { 374 printk(KERN_DEBUG "%s: STA %s in PS mode, but pspoll " 375 "set -> send frame\n", tx->dev->name, 376 print_mac(mac, sta->sta.addr)); 377 } 378 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 379 clear_sta_flags(sta, WLAN_STA_PSPOLL); 380 381 return TX_CONTINUE; 382 } 383 384 static ieee80211_tx_result debug_noinline 385 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx) 386 { 387 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED)) 388 return TX_CONTINUE; 389 390 if (tx->flags & IEEE80211_TX_UNICAST) 391 return ieee80211_tx_h_unicast_ps_buf(tx); 392 else 393 return ieee80211_tx_h_multicast_ps_buf(tx); 394 } 395 396 static ieee80211_tx_result debug_noinline 397 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx) 398 { 399 struct ieee80211_key *key; 400 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 401 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 402 403 if (unlikely(tx->skb->do_not_encrypt)) 404 tx->key = NULL; 405 else if (tx->sta && (key = rcu_dereference(tx->sta->key))) 406 tx->key = key; 407 else if ((key = rcu_dereference(tx->sdata->default_key))) 408 tx->key = key; 409 else if (tx->sdata->drop_unencrypted && 410 (tx->skb->protocol != cpu_to_be16(ETH_P_PAE)) && 411 !(info->flags & IEEE80211_TX_CTL_INJECTED)) { 412 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted); 413 return TX_DROP; 414 } else 415 tx->key = NULL; 416 417 if (tx->key) { 418 tx->key->tx_rx_count++; 419 /* TODO: add threshold stuff again */ 420 421 switch (tx->key->conf.alg) { 422 case ALG_WEP: 423 if (ieee80211_is_auth(hdr->frame_control)) 424 break; 425 case ALG_TKIP: 426 case ALG_CCMP: 427 if (!ieee80211_is_data_present(hdr->frame_control)) 428 tx->key = NULL; 429 break; 430 } 431 } 432 433 if (!tx->key || !(tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) 434 tx->skb->do_not_encrypt = 1; 435 436 return TX_CONTINUE; 437 } 438 439 static ieee80211_tx_result debug_noinline 440 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx) 441 { 442 struct rate_selection rsel; 443 struct ieee80211_supported_band *sband; 444 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 445 446 sband = tx->local->hw.wiphy->bands[tx->channel->band]; 447 448 if (likely(tx->rate_idx < 0)) { 449 rate_control_get_rate(tx->sdata, sband, tx->sta, 450 tx->skb, &rsel); 451 if (tx->sta) 452 tx->sta->last_txrate_idx = rsel.rate_idx; 453 tx->rate_idx = rsel.rate_idx; 454 if (unlikely(rsel.probe_idx >= 0)) { 455 info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE; 456 tx->flags |= IEEE80211_TX_PROBE_LAST_FRAG; 457 info->control.retries[0].rate_idx = tx->rate_idx; 458 info->control.retries[0].limit = tx->local->hw.max_altrate_tries; 459 tx->rate_idx = rsel.probe_idx; 460 } else if (info->control.retries[0].limit == 0) 461 info->control.retries[0].rate_idx = -1; 462 463 if (unlikely(tx->rate_idx < 0)) 464 return TX_DROP; 465 } else 466 info->control.retries[0].rate_idx = -1; 467 468 if (tx->sdata->bss_conf.use_cts_prot && 469 (tx->flags & IEEE80211_TX_FRAGMENTED) && (rsel.nonerp_idx >= 0)) { 470 tx->last_frag_rate_idx = tx->rate_idx; 471 if (rsel.probe_idx >= 0) 472 tx->flags &= ~IEEE80211_TX_PROBE_LAST_FRAG; 473 else 474 tx->flags |= IEEE80211_TX_PROBE_LAST_FRAG; 475 tx->rate_idx = rsel.nonerp_idx; 476 info->tx_rate_idx = rsel.nonerp_idx; 477 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE; 478 } else { 479 tx->last_frag_rate_idx = tx->rate_idx; 480 info->tx_rate_idx = tx->rate_idx; 481 } 482 info->tx_rate_idx = tx->rate_idx; 483 484 return TX_CONTINUE; 485 } 486 487 static ieee80211_tx_result debug_noinline 488 ieee80211_tx_h_misc(struct ieee80211_tx_data *tx) 489 { 490 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 491 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 492 struct ieee80211_supported_band *sband; 493 494 sband = tx->local->hw.wiphy->bands[tx->channel->band]; 495 496 if (tx->sta) 497 info->control.sta = &tx->sta->sta; 498 499 if (!info->control.retry_limit) { 500 if (!is_multicast_ether_addr(hdr->addr1)) { 501 int len = min_t(int, tx->skb->len + FCS_LEN, 502 tx->local->fragmentation_threshold); 503 if (len > tx->local->rts_threshold 504 && tx->local->rts_threshold < 505 IEEE80211_MAX_RTS_THRESHOLD) { 506 info->flags |= IEEE80211_TX_CTL_USE_RTS_CTS; 507 info->flags |= 508 IEEE80211_TX_CTL_LONG_RETRY_LIMIT; 509 info->control.retry_limit = 510 tx->local->long_retry_limit; 511 } else { 512 info->control.retry_limit = 513 tx->local->short_retry_limit; 514 } 515 } else { 516 info->control.retry_limit = 1; 517 } 518 } 519 520 if (tx->flags & IEEE80211_TX_FRAGMENTED) { 521 /* Do not use multiple retry rates when sending fragmented 522 * frames. 523 * TODO: The last fragment could still use multiple retry 524 * rates. */ 525 info->control.retries[0].rate_idx = -1; 526 } 527 528 /* Use CTS protection for unicast frames sent using extended rates if 529 * there are associated non-ERP stations and RTS/CTS is not configured 530 * for the frame. */ 531 if ((tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) && 532 (sband->bitrates[tx->rate_idx].flags & IEEE80211_RATE_ERP_G) && 533 (tx->flags & IEEE80211_TX_UNICAST) && 534 tx->sdata->bss_conf.use_cts_prot && 535 !(info->flags & IEEE80211_TX_CTL_USE_RTS_CTS)) 536 info->flags |= IEEE80211_TX_CTL_USE_CTS_PROTECT; 537 538 /* Transmit data frames using short preambles if the driver supports 539 * short preambles at the selected rate and short preambles are 540 * available on the network at the current point in time. */ 541 if (ieee80211_is_data(hdr->frame_control) && 542 (sband->bitrates[tx->rate_idx].flags & IEEE80211_RATE_SHORT_PREAMBLE) && 543 tx->sdata->bss_conf.use_short_preamble && 544 (!tx->sta || test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE))) { 545 info->flags |= IEEE80211_TX_CTL_SHORT_PREAMBLE; 546 } 547 548 if ((info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) || 549 (info->flags & IEEE80211_TX_CTL_USE_CTS_PROTECT)) { 550 struct ieee80211_rate *rate; 551 s8 baserate = -1; 552 int idx; 553 554 /* Do not use multiple retry rates when using RTS/CTS */ 555 info->control.retries[0].rate_idx = -1; 556 557 /* Use min(data rate, max base rate) as CTS/RTS rate */ 558 rate = &sband->bitrates[tx->rate_idx]; 559 560 for (idx = 0; idx < sband->n_bitrates; idx++) { 561 if (sband->bitrates[idx].bitrate > rate->bitrate) 562 continue; 563 if (tx->sdata->bss_conf.basic_rates & BIT(idx) && 564 (baserate < 0 || 565 (sband->bitrates[baserate].bitrate 566 < sband->bitrates[idx].bitrate))) 567 baserate = idx; 568 } 569 570 if (baserate >= 0) 571 info->control.rts_cts_rate_idx = baserate; 572 else 573 info->control.rts_cts_rate_idx = 0; 574 } 575 576 if (tx->sta) 577 info->control.sta = &tx->sta->sta; 578 579 return TX_CONTINUE; 580 } 581 582 static ieee80211_tx_result debug_noinline 583 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx) 584 { 585 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 586 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 587 u16 *seq; 588 u8 *qc; 589 int tid; 590 591 /* 592 * Packet injection may want to control the sequence 593 * number, if we have no matching interface then we 594 * neither assign one ourselves nor ask the driver to. 595 */ 596 if (unlikely(!info->control.vif)) 597 return TX_CONTINUE; 598 599 if (unlikely(ieee80211_is_ctl(hdr->frame_control))) 600 return TX_CONTINUE; 601 602 if (ieee80211_hdrlen(hdr->frame_control) < 24) 603 return TX_CONTINUE; 604 605 if (!ieee80211_is_data_qos(hdr->frame_control)) { 606 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; 607 return TX_CONTINUE; 608 } 609 610 /* 611 * This should be true for injected/management frames only, for 612 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ 613 * above since they are not QoS-data frames. 614 */ 615 if (!tx->sta) 616 return TX_CONTINUE; 617 618 /* include per-STA, per-TID sequence counter */ 619 620 qc = ieee80211_get_qos_ctl(hdr); 621 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 622 seq = &tx->sta->tid_seq[tid]; 623 624 hdr->seq_ctrl = cpu_to_le16(*seq); 625 626 /* Increase the sequence number. */ 627 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ; 628 629 return TX_CONTINUE; 630 } 631 632 static ieee80211_tx_result debug_noinline 633 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx) 634 { 635 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 636 size_t hdrlen, per_fragm, num_fragm, payload_len, left; 637 struct sk_buff **frags, *first, *frag; 638 int i; 639 u16 seq; 640 u8 *pos; 641 int frag_threshold = tx->local->fragmentation_threshold; 642 643 if (!(tx->flags & IEEE80211_TX_FRAGMENTED)) 644 return TX_CONTINUE; 645 646 /* 647 * Warn when submitting a fragmented A-MPDU frame and drop it. 648 * This scenario is handled in __ieee80211_tx_prepare but extra 649 * caution taken here as fragmented ampdu may cause Tx stop. 650 */ 651 if (WARN_ON(tx->flags & IEEE80211_TX_CTL_AMPDU || 652 skb_get_queue_mapping(tx->skb) >= 653 ieee80211_num_regular_queues(&tx->local->hw))) 654 return TX_DROP; 655 656 first = tx->skb; 657 658 hdrlen = ieee80211_hdrlen(hdr->frame_control); 659 payload_len = first->len - hdrlen; 660 per_fragm = frag_threshold - hdrlen - FCS_LEN; 661 num_fragm = DIV_ROUND_UP(payload_len, per_fragm); 662 663 frags = kzalloc(num_fragm * sizeof(struct sk_buff *), GFP_ATOMIC); 664 if (!frags) 665 goto fail; 666 667 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); 668 seq = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ; 669 pos = first->data + hdrlen + per_fragm; 670 left = payload_len - per_fragm; 671 for (i = 0; i < num_fragm - 1; i++) { 672 struct ieee80211_hdr *fhdr; 673 size_t copylen; 674 675 if (left <= 0) 676 goto fail; 677 678 /* reserve enough extra head and tail room for possible 679 * encryption */ 680 frag = frags[i] = 681 dev_alloc_skb(tx->local->tx_headroom + 682 frag_threshold + 683 IEEE80211_ENCRYPT_HEADROOM + 684 IEEE80211_ENCRYPT_TAILROOM); 685 if (!frag) 686 goto fail; 687 /* Make sure that all fragments use the same priority so 688 * that they end up using the same TX queue */ 689 frag->priority = first->priority; 690 skb_reserve(frag, tx->local->tx_headroom + 691 IEEE80211_ENCRYPT_HEADROOM); 692 fhdr = (struct ieee80211_hdr *) skb_put(frag, hdrlen); 693 memcpy(fhdr, first->data, hdrlen); 694 if (i == num_fragm - 2) 695 fhdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREFRAGS); 696 fhdr->seq_ctrl = cpu_to_le16(seq | ((i + 1) & IEEE80211_SCTL_FRAG)); 697 copylen = left > per_fragm ? per_fragm : left; 698 memcpy(skb_put(frag, copylen), pos, copylen); 699 memcpy(frag->cb, first->cb, sizeof(frag->cb)); 700 skb_copy_queue_mapping(frag, first); 701 frag->do_not_encrypt = first->do_not_encrypt; 702 703 pos += copylen; 704 left -= copylen; 705 } 706 skb_trim(first, hdrlen + per_fragm); 707 708 tx->num_extra_frag = num_fragm - 1; 709 tx->extra_frag = frags; 710 711 return TX_CONTINUE; 712 713 fail: 714 if (frags) { 715 for (i = 0; i < num_fragm - 1; i++) 716 if (frags[i]) 717 dev_kfree_skb(frags[i]); 718 kfree(frags); 719 } 720 I802_DEBUG_INC(tx->local->tx_handlers_drop_fragment); 721 return TX_DROP; 722 } 723 724 static ieee80211_tx_result debug_noinline 725 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx) 726 { 727 if (!tx->key) 728 return TX_CONTINUE; 729 730 switch (tx->key->conf.alg) { 731 case ALG_WEP: 732 return ieee80211_crypto_wep_encrypt(tx); 733 case ALG_TKIP: 734 return ieee80211_crypto_tkip_encrypt(tx); 735 case ALG_CCMP: 736 return ieee80211_crypto_ccmp_encrypt(tx); 737 } 738 739 /* not reached */ 740 WARN_ON(1); 741 return TX_DROP; 742 } 743 744 static ieee80211_tx_result debug_noinline 745 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx) 746 { 747 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 748 int next_len, i; 749 int group_addr = is_multicast_ether_addr(hdr->addr1); 750 751 if (!(tx->flags & IEEE80211_TX_FRAGMENTED)) { 752 hdr->duration_id = ieee80211_duration(tx, group_addr, 0); 753 return TX_CONTINUE; 754 } 755 756 hdr->duration_id = ieee80211_duration(tx, group_addr, 757 tx->extra_frag[0]->len); 758 759 for (i = 0; i < tx->num_extra_frag; i++) { 760 if (i + 1 < tx->num_extra_frag) { 761 next_len = tx->extra_frag[i + 1]->len; 762 } else { 763 next_len = 0; 764 tx->rate_idx = tx->last_frag_rate_idx; 765 } 766 767 hdr = (struct ieee80211_hdr *)tx->extra_frag[i]->data; 768 hdr->duration_id = ieee80211_duration(tx, 0, next_len); 769 } 770 771 return TX_CONTINUE; 772 } 773 774 static ieee80211_tx_result debug_noinline 775 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx) 776 { 777 int i; 778 779 if (!tx->sta) 780 return TX_CONTINUE; 781 782 tx->sta->tx_packets++; 783 tx->sta->tx_fragments++; 784 tx->sta->tx_bytes += tx->skb->len; 785 if (tx->extra_frag) { 786 tx->sta->tx_fragments += tx->num_extra_frag; 787 for (i = 0; i < tx->num_extra_frag; i++) 788 tx->sta->tx_bytes += tx->extra_frag[i]->len; 789 } 790 791 return TX_CONTINUE; 792 } 793 794 795 /* actual transmit path */ 796 797 /* 798 * deal with packet injection down monitor interface 799 * with Radiotap Header -- only called for monitor mode interface 800 */ 801 static ieee80211_tx_result 802 __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx, 803 struct sk_buff *skb) 804 { 805 /* 806 * this is the moment to interpret and discard the radiotap header that 807 * must be at the start of the packet injected in Monitor mode 808 * 809 * Need to take some care with endian-ness since radiotap 810 * args are little-endian 811 */ 812 813 struct ieee80211_radiotap_iterator iterator; 814 struct ieee80211_radiotap_header *rthdr = 815 (struct ieee80211_radiotap_header *) skb->data; 816 struct ieee80211_supported_band *sband; 817 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len); 818 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 819 820 sband = tx->local->hw.wiphy->bands[tx->channel->band]; 821 822 skb->do_not_encrypt = 1; 823 tx->flags &= ~IEEE80211_TX_FRAGMENTED; 824 825 /* 826 * for every radiotap entry that is present 827 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more 828 * entries present, or -EINVAL on error) 829 */ 830 831 while (!ret) { 832 int i, target_rate; 833 834 ret = ieee80211_radiotap_iterator_next(&iterator); 835 836 if (ret) 837 continue; 838 839 /* see if this argument is something we can use */ 840 switch (iterator.this_arg_index) { 841 /* 842 * You must take care when dereferencing iterator.this_arg 843 * for multibyte types... the pointer is not aligned. Use 844 * get_unaligned((type *)iterator.this_arg) to dereference 845 * iterator.this_arg for type "type" safely on all arches. 846 */ 847 case IEEE80211_RADIOTAP_RATE: 848 /* 849 * radiotap rate u8 is in 500kbps units eg, 0x02=1Mbps 850 * ieee80211 rate int is in 100kbps units eg, 0x0a=1Mbps 851 */ 852 target_rate = (*iterator.this_arg) * 5; 853 for (i = 0; i < sband->n_bitrates; i++) { 854 struct ieee80211_rate *r; 855 856 r = &sband->bitrates[i]; 857 858 if (r->bitrate == target_rate) { 859 tx->rate_idx = i; 860 break; 861 } 862 } 863 break; 864 865 case IEEE80211_RADIOTAP_ANTENNA: 866 /* 867 * radiotap uses 0 for 1st ant, mac80211 is 1 for 868 * 1st ant 869 */ 870 info->antenna_sel_tx = (*iterator.this_arg) + 1; 871 break; 872 873 #if 0 874 case IEEE80211_RADIOTAP_DBM_TX_POWER: 875 control->power_level = *iterator.this_arg; 876 break; 877 #endif 878 879 case IEEE80211_RADIOTAP_FLAGS: 880 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) { 881 /* 882 * this indicates that the skb we have been 883 * handed has the 32-bit FCS CRC at the end... 884 * we should react to that by snipping it off 885 * because it will be recomputed and added 886 * on transmission 887 */ 888 if (skb->len < (iterator.max_length + FCS_LEN)) 889 return TX_DROP; 890 891 skb_trim(skb, skb->len - FCS_LEN); 892 } 893 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP) 894 tx->skb->do_not_encrypt = 0; 895 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG) 896 tx->flags |= IEEE80211_TX_FRAGMENTED; 897 break; 898 899 /* 900 * Please update the file 901 * Documentation/networking/mac80211-injection.txt 902 * when parsing new fields here. 903 */ 904 905 default: 906 break; 907 } 908 } 909 910 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */ 911 return TX_DROP; 912 913 /* 914 * remove the radiotap header 915 * iterator->max_length was sanity-checked against 916 * skb->len by iterator init 917 */ 918 skb_pull(skb, iterator.max_length); 919 920 return TX_CONTINUE; 921 } 922 923 /* 924 * initialises @tx 925 */ 926 static ieee80211_tx_result 927 __ieee80211_tx_prepare(struct ieee80211_tx_data *tx, 928 struct sk_buff *skb, 929 struct net_device *dev) 930 { 931 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 932 struct ieee80211_hdr *hdr; 933 struct ieee80211_sub_if_data *sdata; 934 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 935 936 int hdrlen; 937 938 memset(tx, 0, sizeof(*tx)); 939 tx->skb = skb; 940 tx->dev = dev; /* use original interface */ 941 tx->local = local; 942 tx->sdata = IEEE80211_DEV_TO_SUB_IF(dev); 943 tx->channel = local->hw.conf.channel; 944 tx->rate_idx = -1; 945 tx->last_frag_rate_idx = -1; 946 /* 947 * Set this flag (used below to indicate "automatic fragmentation"), 948 * it will be cleared/left by radiotap as desired. 949 */ 950 tx->flags |= IEEE80211_TX_FRAGMENTED; 951 952 /* process and remove the injection radiotap header */ 953 sdata = IEEE80211_DEV_TO_SUB_IF(dev); 954 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) { 955 if (__ieee80211_parse_tx_radiotap(tx, skb) == TX_DROP) 956 return TX_DROP; 957 958 /* 959 * __ieee80211_parse_tx_radiotap has now removed 960 * the radiotap header that was present and pre-filled 961 * 'tx' with tx control information. 962 */ 963 } 964 965 hdr = (struct ieee80211_hdr *) skb->data; 966 967 tx->sta = sta_info_get(local, hdr->addr1); 968 969 if (is_multicast_ether_addr(hdr->addr1)) { 970 tx->flags &= ~IEEE80211_TX_UNICAST; 971 info->flags |= IEEE80211_TX_CTL_NO_ACK; 972 } else { 973 tx->flags |= IEEE80211_TX_UNICAST; 974 info->flags &= ~IEEE80211_TX_CTL_NO_ACK; 975 } 976 977 if (tx->flags & IEEE80211_TX_FRAGMENTED) { 978 if ((tx->flags & IEEE80211_TX_UNICAST) && 979 skb->len + FCS_LEN > local->fragmentation_threshold && 980 !local->ops->set_frag_threshold && 981 !(info->flags & IEEE80211_TX_CTL_AMPDU)) 982 tx->flags |= IEEE80211_TX_FRAGMENTED; 983 else 984 tx->flags &= ~IEEE80211_TX_FRAGMENTED; 985 } 986 987 if (!tx->sta) 988 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 989 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT)) 990 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 991 992 hdrlen = ieee80211_hdrlen(hdr->frame_control); 993 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) { 994 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)]; 995 tx->ethertype = (pos[0] << 8) | pos[1]; 996 } 997 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT; 998 999 return TX_CONTINUE; 1000 } 1001 1002 /* 1003 * NB: @tx is uninitialised when passed in here 1004 */ 1005 static int ieee80211_tx_prepare(struct ieee80211_local *local, 1006 struct ieee80211_tx_data *tx, 1007 struct sk_buff *skb) 1008 { 1009 struct net_device *dev; 1010 1011 dev = dev_get_by_index(&init_net, skb->iif); 1012 if (unlikely(dev && !is_ieee80211_device(local, dev))) { 1013 dev_put(dev); 1014 dev = NULL; 1015 } 1016 if (unlikely(!dev)) 1017 return -ENODEV; 1018 /* initialises tx with control */ 1019 __ieee80211_tx_prepare(tx, skb, dev); 1020 dev_put(dev); 1021 return 0; 1022 } 1023 1024 static int __ieee80211_tx(struct ieee80211_local *local, struct sk_buff *skb, 1025 struct ieee80211_tx_data *tx) 1026 { 1027 struct ieee80211_tx_info *info; 1028 int ret, i; 1029 1030 if (skb) { 1031 if (netif_subqueue_stopped(local->mdev, skb)) 1032 return IEEE80211_TX_AGAIN; 1033 info = IEEE80211_SKB_CB(skb); 1034 1035 ret = local->ops->tx(local_to_hw(local), skb); 1036 if (ret) 1037 return IEEE80211_TX_AGAIN; 1038 local->mdev->trans_start = jiffies; 1039 ieee80211_led_tx(local, 1); 1040 } 1041 if (tx->extra_frag) { 1042 for (i = 0; i < tx->num_extra_frag; i++) { 1043 if (!tx->extra_frag[i]) 1044 continue; 1045 info = IEEE80211_SKB_CB(tx->extra_frag[i]); 1046 info->flags &= ~(IEEE80211_TX_CTL_USE_RTS_CTS | 1047 IEEE80211_TX_CTL_USE_CTS_PROTECT | 1048 IEEE80211_TX_CTL_CLEAR_PS_FILT | 1049 IEEE80211_TX_CTL_FIRST_FRAGMENT); 1050 if (netif_subqueue_stopped(local->mdev, 1051 tx->extra_frag[i])) 1052 return IEEE80211_TX_FRAG_AGAIN; 1053 if (i == tx->num_extra_frag) { 1054 info->tx_rate_idx = tx->last_frag_rate_idx; 1055 1056 if (tx->flags & IEEE80211_TX_PROBE_LAST_FRAG) 1057 info->flags |= 1058 IEEE80211_TX_CTL_RATE_CTRL_PROBE; 1059 else 1060 info->flags &= 1061 ~IEEE80211_TX_CTL_RATE_CTRL_PROBE; 1062 } 1063 1064 ret = local->ops->tx(local_to_hw(local), 1065 tx->extra_frag[i]); 1066 if (ret) 1067 return IEEE80211_TX_FRAG_AGAIN; 1068 local->mdev->trans_start = jiffies; 1069 ieee80211_led_tx(local, 1); 1070 tx->extra_frag[i] = NULL; 1071 } 1072 kfree(tx->extra_frag); 1073 tx->extra_frag = NULL; 1074 } 1075 return IEEE80211_TX_OK; 1076 } 1077 1078 /* 1079 * Invoke TX handlers, return 0 on success and non-zero if the 1080 * frame was dropped or queued. 1081 */ 1082 static int invoke_tx_handlers(struct ieee80211_tx_data *tx) 1083 { 1084 struct sk_buff *skb = tx->skb; 1085 ieee80211_tx_result res = TX_DROP; 1086 int i; 1087 1088 #define CALL_TXH(txh) \ 1089 res = txh(tx); \ 1090 if (res != TX_CONTINUE) \ 1091 goto txh_done; 1092 1093 CALL_TXH(ieee80211_tx_h_check_assoc) 1094 CALL_TXH(ieee80211_tx_h_ps_buf) 1095 CALL_TXH(ieee80211_tx_h_select_key) 1096 CALL_TXH(ieee80211_tx_h_michael_mic_add) 1097 CALL_TXH(ieee80211_tx_h_rate_ctrl) 1098 CALL_TXH(ieee80211_tx_h_misc) 1099 CALL_TXH(ieee80211_tx_h_sequence) 1100 CALL_TXH(ieee80211_tx_h_fragment) 1101 /* handlers after fragment must be aware of tx info fragmentation! */ 1102 CALL_TXH(ieee80211_tx_h_encrypt) 1103 CALL_TXH(ieee80211_tx_h_calculate_duration) 1104 CALL_TXH(ieee80211_tx_h_stats) 1105 #undef CALL_TXH 1106 1107 txh_done: 1108 if (unlikely(res == TX_DROP)) { 1109 I802_DEBUG_INC(tx->local->tx_handlers_drop); 1110 dev_kfree_skb(skb); 1111 for (i = 0; i < tx->num_extra_frag; i++) 1112 if (tx->extra_frag[i]) 1113 dev_kfree_skb(tx->extra_frag[i]); 1114 kfree(tx->extra_frag); 1115 return -1; 1116 } else if (unlikely(res == TX_QUEUED)) { 1117 I802_DEBUG_INC(tx->local->tx_handlers_queued); 1118 return -1; 1119 } 1120 1121 return 0; 1122 } 1123 1124 static int ieee80211_tx(struct net_device *dev, struct sk_buff *skb) 1125 { 1126 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 1127 struct sta_info *sta; 1128 struct ieee80211_tx_data tx; 1129 ieee80211_tx_result res_prepare; 1130 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1131 int ret, i; 1132 u16 queue; 1133 1134 queue = skb_get_queue_mapping(skb); 1135 1136 WARN_ON(test_bit(queue, local->queues_pending)); 1137 1138 if (unlikely(skb->len < 10)) { 1139 dev_kfree_skb(skb); 1140 return 0; 1141 } 1142 1143 rcu_read_lock(); 1144 1145 /* initialises tx */ 1146 res_prepare = __ieee80211_tx_prepare(&tx, skb, dev); 1147 1148 if (res_prepare == TX_DROP) { 1149 dev_kfree_skb(skb); 1150 rcu_read_unlock(); 1151 return 0; 1152 } 1153 1154 sta = tx.sta; 1155 tx.channel = local->hw.conf.channel; 1156 info->band = tx.channel->band; 1157 1158 if (invoke_tx_handlers(&tx)) 1159 goto out; 1160 1161 retry: 1162 ret = __ieee80211_tx(local, skb, &tx); 1163 if (ret) { 1164 struct ieee80211_tx_stored_packet *store; 1165 1166 /* 1167 * Since there are no fragmented frames on A-MPDU 1168 * queues, there's no reason for a driver to reject 1169 * a frame there, warn and drop it. 1170 */ 1171 if (WARN_ON(queue >= ieee80211_num_regular_queues(&local->hw))) 1172 goto drop; 1173 1174 store = &local->pending_packet[queue]; 1175 1176 if (ret == IEEE80211_TX_FRAG_AGAIN) 1177 skb = NULL; 1178 1179 set_bit(queue, local->queues_pending); 1180 smp_mb(); 1181 /* 1182 * When the driver gets out of buffers during sending of 1183 * fragments and calls ieee80211_stop_queue, the netif 1184 * subqueue is stopped. There is, however, a small window 1185 * in which the PENDING bit is not yet set. If a buffer 1186 * gets available in that window (i.e. driver calls 1187 * ieee80211_wake_queue), we would end up with ieee80211_tx 1188 * called with the PENDING bit still set. Prevent this by 1189 * continuing transmitting here when that situation is 1190 * possible to have happened. 1191 */ 1192 if (!__netif_subqueue_stopped(local->mdev, queue)) { 1193 clear_bit(queue, local->queues_pending); 1194 goto retry; 1195 } 1196 store->skb = skb; 1197 store->extra_frag = tx.extra_frag; 1198 store->num_extra_frag = tx.num_extra_frag; 1199 store->last_frag_rate_idx = tx.last_frag_rate_idx; 1200 store->last_frag_rate_ctrl_probe = 1201 !!(tx.flags & IEEE80211_TX_PROBE_LAST_FRAG); 1202 } 1203 out: 1204 rcu_read_unlock(); 1205 return 0; 1206 1207 drop: 1208 if (skb) 1209 dev_kfree_skb(skb); 1210 for (i = 0; i < tx.num_extra_frag; i++) 1211 if (tx.extra_frag[i]) 1212 dev_kfree_skb(tx.extra_frag[i]); 1213 kfree(tx.extra_frag); 1214 rcu_read_unlock(); 1215 return 0; 1216 } 1217 1218 /* device xmit handlers */ 1219 1220 static int ieee80211_skb_resize(struct ieee80211_local *local, 1221 struct sk_buff *skb, 1222 int head_need, bool may_encrypt) 1223 { 1224 int tail_need = 0; 1225 1226 /* 1227 * This could be optimised, devices that do full hardware 1228 * crypto (including TKIP MMIC) need no tailroom... But we 1229 * have no drivers for such devices currently. 1230 */ 1231 if (may_encrypt) { 1232 tail_need = IEEE80211_ENCRYPT_TAILROOM; 1233 tail_need -= skb_tailroom(skb); 1234 tail_need = max_t(int, tail_need, 0); 1235 } 1236 1237 if (head_need || tail_need) { 1238 /* Sorry. Can't account for this any more */ 1239 skb_orphan(skb); 1240 } 1241 1242 if (skb_header_cloned(skb)) 1243 I802_DEBUG_INC(local->tx_expand_skb_head_cloned); 1244 else 1245 I802_DEBUG_INC(local->tx_expand_skb_head); 1246 1247 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) { 1248 printk(KERN_DEBUG "%s: failed to reallocate TX buffer\n", 1249 wiphy_name(local->hw.wiphy)); 1250 return -ENOMEM; 1251 } 1252 1253 /* update truesize too */ 1254 skb->truesize += head_need + tail_need; 1255 1256 return 0; 1257 } 1258 1259 int ieee80211_master_start_xmit(struct sk_buff *skb, struct net_device *dev) 1260 { 1261 struct ieee80211_master_priv *mpriv = netdev_priv(dev); 1262 struct ieee80211_local *local = mpriv->local; 1263 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1264 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1265 struct net_device *odev = NULL; 1266 struct ieee80211_sub_if_data *osdata; 1267 int headroom; 1268 bool may_encrypt; 1269 enum { 1270 NOT_MONITOR, 1271 FOUND_SDATA, 1272 UNKNOWN_ADDRESS, 1273 } monitor_iface = NOT_MONITOR; 1274 int ret; 1275 1276 if (skb->iif) 1277 odev = dev_get_by_index(&init_net, skb->iif); 1278 if (unlikely(odev && !is_ieee80211_device(local, odev))) { 1279 dev_put(odev); 1280 odev = NULL; 1281 } 1282 if (unlikely(!odev)) { 1283 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 1284 printk(KERN_DEBUG "%s: Discarded packet with nonexistent " 1285 "originating device\n", dev->name); 1286 #endif 1287 dev_kfree_skb(skb); 1288 return 0; 1289 } 1290 1291 memset(info, 0, sizeof(*info)); 1292 1293 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; 1294 1295 osdata = IEEE80211_DEV_TO_SUB_IF(odev); 1296 1297 if (ieee80211_vif_is_mesh(&osdata->vif) && 1298 ieee80211_is_data(hdr->frame_control)) { 1299 if (is_multicast_ether_addr(hdr->addr3)) 1300 memcpy(hdr->addr1, hdr->addr3, ETH_ALEN); 1301 else 1302 if (mesh_nexthop_lookup(skb, osdata)) 1303 return 0; 1304 if (memcmp(odev->dev_addr, hdr->addr4, ETH_ALEN) != 0) 1305 IEEE80211_IFSTA_MESH_CTR_INC(&osdata->u.mesh, 1306 fwded_frames); 1307 } else if (unlikely(osdata->vif.type == NL80211_IFTYPE_MONITOR)) { 1308 struct ieee80211_sub_if_data *sdata; 1309 int hdrlen; 1310 u16 len_rthdr; 1311 1312 info->flags |= IEEE80211_TX_CTL_INJECTED; 1313 monitor_iface = UNKNOWN_ADDRESS; 1314 1315 len_rthdr = ieee80211_get_radiotap_len(skb->data); 1316 hdr = (struct ieee80211_hdr *)skb->data + len_rthdr; 1317 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1318 1319 /* check the header is complete in the frame */ 1320 if (likely(skb->len >= len_rthdr + hdrlen)) { 1321 /* 1322 * We process outgoing injected frames that have a 1323 * local address we handle as though they are our 1324 * own frames. 1325 * This code here isn't entirely correct, the local 1326 * MAC address is not necessarily enough to find 1327 * the interface to use; for that proper VLAN/WDS 1328 * support we will need a different mechanism. 1329 */ 1330 1331 rcu_read_lock(); 1332 list_for_each_entry_rcu(sdata, &local->interfaces, 1333 list) { 1334 if (!netif_running(sdata->dev)) 1335 continue; 1336 if (compare_ether_addr(sdata->dev->dev_addr, 1337 hdr->addr2)) { 1338 dev_hold(sdata->dev); 1339 dev_put(odev); 1340 osdata = sdata; 1341 odev = osdata->dev; 1342 skb->iif = sdata->dev->ifindex; 1343 monitor_iface = FOUND_SDATA; 1344 break; 1345 } 1346 } 1347 rcu_read_unlock(); 1348 } 1349 } 1350 1351 may_encrypt = !skb->do_not_encrypt; 1352 1353 headroom = osdata->local->tx_headroom; 1354 if (may_encrypt) 1355 headroom += IEEE80211_ENCRYPT_HEADROOM; 1356 headroom -= skb_headroom(skb); 1357 headroom = max_t(int, 0, headroom); 1358 1359 if (ieee80211_skb_resize(osdata->local, skb, headroom, may_encrypt)) { 1360 dev_kfree_skb(skb); 1361 dev_put(odev); 1362 return 0; 1363 } 1364 1365 if (osdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1366 osdata = container_of(osdata->bss, 1367 struct ieee80211_sub_if_data, 1368 u.ap); 1369 if (likely(monitor_iface != UNKNOWN_ADDRESS)) 1370 info->control.vif = &osdata->vif; 1371 ret = ieee80211_tx(odev, skb); 1372 dev_put(odev); 1373 1374 return ret; 1375 } 1376 1377 int ieee80211_monitor_start_xmit(struct sk_buff *skb, 1378 struct net_device *dev) 1379 { 1380 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 1381 struct ieee80211_radiotap_header *prthdr = 1382 (struct ieee80211_radiotap_header *)skb->data; 1383 u16 len_rthdr; 1384 1385 /* check for not even having the fixed radiotap header part */ 1386 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header))) 1387 goto fail; /* too short to be possibly valid */ 1388 1389 /* is it a header version we can trust to find length from? */ 1390 if (unlikely(prthdr->it_version)) 1391 goto fail; /* only version 0 is supported */ 1392 1393 /* then there must be a radiotap header with a length we can use */ 1394 len_rthdr = ieee80211_get_radiotap_len(skb->data); 1395 1396 /* does the skb contain enough to deliver on the alleged length? */ 1397 if (unlikely(skb->len < len_rthdr)) 1398 goto fail; /* skb too short for claimed rt header extent */ 1399 1400 skb->dev = local->mdev; 1401 1402 /* needed because we set skb device to master */ 1403 skb->iif = dev->ifindex; 1404 1405 /* sometimes we do encrypt injected frames, will be fixed 1406 * up in radiotap parser if not wanted */ 1407 skb->do_not_encrypt = 0; 1408 1409 /* 1410 * fix up the pointers accounting for the radiotap 1411 * header still being in there. We are being given 1412 * a precooked IEEE80211 header so no need for 1413 * normal processing 1414 */ 1415 skb_set_mac_header(skb, len_rthdr); 1416 /* 1417 * these are just fixed to the end of the rt area since we 1418 * don't have any better information and at this point, nobody cares 1419 */ 1420 skb_set_network_header(skb, len_rthdr); 1421 skb_set_transport_header(skb, len_rthdr); 1422 1423 /* pass the radiotap header up to the next stage intact */ 1424 dev_queue_xmit(skb); 1425 return NETDEV_TX_OK; 1426 1427 fail: 1428 dev_kfree_skb(skb); 1429 return NETDEV_TX_OK; /* meaning, we dealt with the skb */ 1430 } 1431 1432 /** 1433 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type 1434 * subinterfaces (wlan#, WDS, and VLAN interfaces) 1435 * @skb: packet to be sent 1436 * @dev: incoming interface 1437 * 1438 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will 1439 * not be freed, and caller is responsible for either retrying later or freeing 1440 * skb). 1441 * 1442 * This function takes in an Ethernet header and encapsulates it with suitable 1443 * IEEE 802.11 header based on which interface the packet is coming in. The 1444 * encapsulated packet will then be passed to master interface, wlan#.11, for 1445 * transmission (through low-level driver). 1446 */ 1447 int ieee80211_subif_start_xmit(struct sk_buff *skb, 1448 struct net_device *dev) 1449 { 1450 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); 1451 struct ieee80211_local *local = sdata->local; 1452 int ret = 1, head_need; 1453 u16 ethertype, hdrlen, meshhdrlen = 0; 1454 __le16 fc; 1455 struct ieee80211_hdr hdr; 1456 struct ieee80211s_hdr mesh_hdr; 1457 const u8 *encaps_data; 1458 int encaps_len, skip_header_bytes; 1459 int nh_pos, h_pos; 1460 struct sta_info *sta; 1461 u32 sta_flags = 0; 1462 1463 if (unlikely(skb->len < ETH_HLEN)) { 1464 ret = 0; 1465 goto fail; 1466 } 1467 1468 nh_pos = skb_network_header(skb) - skb->data; 1469 h_pos = skb_transport_header(skb) - skb->data; 1470 1471 /* convert Ethernet header to proper 802.11 header (based on 1472 * operation mode) */ 1473 ethertype = (skb->data[12] << 8) | skb->data[13]; 1474 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 1475 1476 switch (sdata->vif.type) { 1477 case NL80211_IFTYPE_AP: 1478 case NL80211_IFTYPE_AP_VLAN: 1479 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 1480 /* DA BSSID SA */ 1481 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1482 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); 1483 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 1484 hdrlen = 24; 1485 break; 1486 case NL80211_IFTYPE_WDS: 1487 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); 1488 /* RA TA DA SA */ 1489 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN); 1490 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); 1491 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1492 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1493 hdrlen = 30; 1494 break; 1495 #ifdef CONFIG_MAC80211_MESH 1496 case NL80211_IFTYPE_MESH_POINT: 1497 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); 1498 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) { 1499 /* Do not send frames with mesh_ttl == 0 */ 1500 sdata->u.mesh.mshstats.dropped_frames_ttl++; 1501 ret = 0; 1502 goto fail; 1503 } 1504 memset(&mesh_hdr, 0, sizeof(mesh_hdr)); 1505 1506 if (compare_ether_addr(dev->dev_addr, 1507 skb->data + ETH_ALEN) == 0) { 1508 /* RA TA DA SA */ 1509 memset(hdr.addr1, 0, ETH_ALEN); 1510 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); 1511 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1512 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1513 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr, sdata); 1514 } else { 1515 /* packet from other interface */ 1516 struct mesh_path *mppath; 1517 1518 memset(hdr.addr1, 0, ETH_ALEN); 1519 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); 1520 memcpy(hdr.addr4, dev->dev_addr, ETH_ALEN); 1521 1522 if (is_multicast_ether_addr(skb->data)) 1523 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1524 else { 1525 rcu_read_lock(); 1526 mppath = mpp_path_lookup(skb->data, sdata); 1527 if (mppath) 1528 memcpy(hdr.addr3, mppath->mpp, ETH_ALEN); 1529 else 1530 memset(hdr.addr3, 0xff, ETH_ALEN); 1531 rcu_read_unlock(); 1532 } 1533 1534 mesh_hdr.flags |= MESH_FLAGS_AE_A5_A6; 1535 mesh_hdr.ttl = sdata->u.mesh.mshcfg.dot11MeshTTL; 1536 put_unaligned(cpu_to_le32(sdata->u.mesh.mesh_seqnum), &mesh_hdr.seqnum); 1537 memcpy(mesh_hdr.eaddr1, skb->data, ETH_ALEN); 1538 memcpy(mesh_hdr.eaddr2, skb->data + ETH_ALEN, ETH_ALEN); 1539 sdata->u.mesh.mesh_seqnum++; 1540 meshhdrlen = 18; 1541 } 1542 hdrlen = 30; 1543 break; 1544 #endif 1545 case NL80211_IFTYPE_STATION: 1546 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 1547 /* BSSID SA DA */ 1548 memcpy(hdr.addr1, sdata->u.sta.bssid, ETH_ALEN); 1549 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 1550 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1551 hdrlen = 24; 1552 break; 1553 case NL80211_IFTYPE_ADHOC: 1554 /* DA SA BSSID */ 1555 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1556 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 1557 memcpy(hdr.addr3, sdata->u.sta.bssid, ETH_ALEN); 1558 hdrlen = 24; 1559 break; 1560 default: 1561 ret = 0; 1562 goto fail; 1563 } 1564 1565 /* 1566 * There's no need to try to look up the destination 1567 * if it is a multicast address (which can only happen 1568 * in AP mode) 1569 */ 1570 if (!is_multicast_ether_addr(hdr.addr1)) { 1571 rcu_read_lock(); 1572 sta = sta_info_get(local, hdr.addr1); 1573 if (sta) 1574 sta_flags = get_sta_flags(sta); 1575 rcu_read_unlock(); 1576 } 1577 1578 /* receiver and we are QoS enabled, use a QoS type frame */ 1579 if (sta_flags & WLAN_STA_WME && 1580 ieee80211_num_regular_queues(&local->hw) >= 4) { 1581 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 1582 hdrlen += 2; 1583 } 1584 1585 /* 1586 * Drop unicast frames to unauthorised stations unless they are 1587 * EAPOL frames from the local station. 1588 */ 1589 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1590 unlikely(!is_multicast_ether_addr(hdr.addr1) && 1591 !(sta_flags & WLAN_STA_AUTHORIZED) && 1592 !(ethertype == ETH_P_PAE && 1593 compare_ether_addr(dev->dev_addr, 1594 skb->data + ETH_ALEN) == 0))) { 1595 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 1596 DECLARE_MAC_BUF(mac); 1597 1598 if (net_ratelimit()) 1599 printk(KERN_DEBUG "%s: dropped frame to %s" 1600 " (unauthorized port)\n", dev->name, 1601 print_mac(mac, hdr.addr1)); 1602 #endif 1603 1604 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port); 1605 1606 ret = 0; 1607 goto fail; 1608 } 1609 1610 hdr.frame_control = fc; 1611 hdr.duration_id = 0; 1612 hdr.seq_ctrl = 0; 1613 1614 skip_header_bytes = ETH_HLEN; 1615 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 1616 encaps_data = bridge_tunnel_header; 1617 encaps_len = sizeof(bridge_tunnel_header); 1618 skip_header_bytes -= 2; 1619 } else if (ethertype >= 0x600) { 1620 encaps_data = rfc1042_header; 1621 encaps_len = sizeof(rfc1042_header); 1622 skip_header_bytes -= 2; 1623 } else { 1624 encaps_data = NULL; 1625 encaps_len = 0; 1626 } 1627 1628 skb_pull(skb, skip_header_bytes); 1629 nh_pos -= skip_header_bytes; 1630 h_pos -= skip_header_bytes; 1631 1632 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb); 1633 1634 /* 1635 * So we need to modify the skb header and hence need a copy of 1636 * that. The head_need variable above doesn't, so far, include 1637 * the needed header space that we don't need right away. If we 1638 * can, then we don't reallocate right now but only after the 1639 * frame arrives at the master device (if it does...) 1640 * 1641 * If we cannot, however, then we will reallocate to include all 1642 * the ever needed space. Also, if we need to reallocate it anyway, 1643 * make it big enough for everything we may ever need. 1644 */ 1645 1646 if (head_need > 0 || skb_cloned(skb)) { 1647 head_need += IEEE80211_ENCRYPT_HEADROOM; 1648 head_need += local->tx_headroom; 1649 head_need = max_t(int, 0, head_need); 1650 if (ieee80211_skb_resize(local, skb, head_need, true)) 1651 goto fail; 1652 } 1653 1654 if (encaps_data) { 1655 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 1656 nh_pos += encaps_len; 1657 h_pos += encaps_len; 1658 } 1659 1660 if (meshhdrlen > 0) { 1661 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen); 1662 nh_pos += meshhdrlen; 1663 h_pos += meshhdrlen; 1664 } 1665 1666 if (ieee80211_is_data_qos(fc)) { 1667 __le16 *qos_control; 1668 1669 qos_control = (__le16*) skb_push(skb, 2); 1670 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2); 1671 /* 1672 * Maybe we could actually set some fields here, for now just 1673 * initialise to zero to indicate no special operation. 1674 */ 1675 *qos_control = 0; 1676 } else 1677 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 1678 1679 nh_pos += hdrlen; 1680 h_pos += hdrlen; 1681 1682 skb->iif = dev->ifindex; 1683 1684 skb->dev = local->mdev; 1685 dev->stats.tx_packets++; 1686 dev->stats.tx_bytes += skb->len; 1687 1688 /* Update skb pointers to various headers since this modified frame 1689 * is going to go through Linux networking code that may potentially 1690 * need things like pointer to IP header. */ 1691 skb_set_mac_header(skb, 0); 1692 skb_set_network_header(skb, nh_pos); 1693 skb_set_transport_header(skb, h_pos); 1694 1695 dev->trans_start = jiffies; 1696 dev_queue_xmit(skb); 1697 1698 return 0; 1699 1700 fail: 1701 if (!ret) 1702 dev_kfree_skb(skb); 1703 1704 return ret; 1705 } 1706 1707 1708 /* 1709 * ieee80211_clear_tx_pending may not be called in a context where 1710 * it is possible that it packets could come in again. 1711 */ 1712 void ieee80211_clear_tx_pending(struct ieee80211_local *local) 1713 { 1714 int i, j; 1715 struct ieee80211_tx_stored_packet *store; 1716 1717 for (i = 0; i < ieee80211_num_regular_queues(&local->hw); i++) { 1718 if (!test_bit(i, local->queues_pending)) 1719 continue; 1720 store = &local->pending_packet[i]; 1721 kfree_skb(store->skb); 1722 for (j = 0; j < store->num_extra_frag; j++) 1723 kfree_skb(store->extra_frag[j]); 1724 kfree(store->extra_frag); 1725 clear_bit(i, local->queues_pending); 1726 } 1727 } 1728 1729 /* 1730 * Transmit all pending packets. Called from tasklet, locks master device 1731 * TX lock so that no new packets can come in. 1732 */ 1733 void ieee80211_tx_pending(unsigned long data) 1734 { 1735 struct ieee80211_local *local = (struct ieee80211_local *)data; 1736 struct net_device *dev = local->mdev; 1737 struct ieee80211_tx_stored_packet *store; 1738 struct ieee80211_tx_data tx; 1739 int i, ret; 1740 1741 netif_tx_lock_bh(dev); 1742 for (i = 0; i < ieee80211_num_regular_queues(&local->hw); i++) { 1743 /* Check that this queue is ok */ 1744 if (__netif_subqueue_stopped(local->mdev, i) && 1745 !test_bit(i, local->queues_pending_run)) 1746 continue; 1747 1748 if (!test_bit(i, local->queues_pending)) { 1749 clear_bit(i, local->queues_pending_run); 1750 ieee80211_wake_queue(&local->hw, i); 1751 continue; 1752 } 1753 1754 clear_bit(i, local->queues_pending_run); 1755 netif_start_subqueue(local->mdev, i); 1756 1757 store = &local->pending_packet[i]; 1758 tx.extra_frag = store->extra_frag; 1759 tx.num_extra_frag = store->num_extra_frag; 1760 tx.last_frag_rate_idx = store->last_frag_rate_idx; 1761 tx.flags = 0; 1762 if (store->last_frag_rate_ctrl_probe) 1763 tx.flags |= IEEE80211_TX_PROBE_LAST_FRAG; 1764 ret = __ieee80211_tx(local, store->skb, &tx); 1765 if (ret) { 1766 if (ret == IEEE80211_TX_FRAG_AGAIN) 1767 store->skb = NULL; 1768 } else { 1769 clear_bit(i, local->queues_pending); 1770 ieee80211_wake_queue(&local->hw, i); 1771 } 1772 } 1773 netif_tx_unlock_bh(dev); 1774 } 1775 1776 /* functions for drivers to get certain frames */ 1777 1778 static void ieee80211_beacon_add_tim(struct ieee80211_local *local, 1779 struct ieee80211_if_ap *bss, 1780 struct sk_buff *skb, 1781 struct beacon_data *beacon) 1782 { 1783 u8 *pos, *tim; 1784 int aid0 = 0; 1785 int i, have_bits = 0, n1, n2; 1786 1787 /* Generate bitmap for TIM only if there are any STAs in power save 1788 * mode. */ 1789 if (atomic_read(&bss->num_sta_ps) > 0) 1790 /* in the hope that this is faster than 1791 * checking byte-for-byte */ 1792 have_bits = !bitmap_empty((unsigned long*)bss->tim, 1793 IEEE80211_MAX_AID+1); 1794 1795 if (bss->dtim_count == 0) 1796 bss->dtim_count = beacon->dtim_period - 1; 1797 else 1798 bss->dtim_count--; 1799 1800 tim = pos = (u8 *) skb_put(skb, 6); 1801 *pos++ = WLAN_EID_TIM; 1802 *pos++ = 4; 1803 *pos++ = bss->dtim_count; 1804 *pos++ = beacon->dtim_period; 1805 1806 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf)) 1807 aid0 = 1; 1808 1809 if (have_bits) { 1810 /* Find largest even number N1 so that bits numbered 1 through 1811 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits 1812 * (N2 + 1) x 8 through 2007 are 0. */ 1813 n1 = 0; 1814 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) { 1815 if (bss->tim[i]) { 1816 n1 = i & 0xfe; 1817 break; 1818 } 1819 } 1820 n2 = n1; 1821 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) { 1822 if (bss->tim[i]) { 1823 n2 = i; 1824 break; 1825 } 1826 } 1827 1828 /* Bitmap control */ 1829 *pos++ = n1 | aid0; 1830 /* Part Virt Bitmap */ 1831 memcpy(pos, bss->tim + n1, n2 - n1 + 1); 1832 1833 tim[1] = n2 - n1 + 4; 1834 skb_put(skb, n2 - n1); 1835 } else { 1836 *pos++ = aid0; /* Bitmap control */ 1837 *pos++ = 0; /* Part Virt Bitmap */ 1838 } 1839 } 1840 1841 struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw, 1842 struct ieee80211_vif *vif) 1843 { 1844 struct ieee80211_local *local = hw_to_local(hw); 1845 struct sk_buff *skb = NULL; 1846 struct ieee80211_tx_info *info; 1847 struct net_device *bdev; 1848 struct ieee80211_sub_if_data *sdata = NULL; 1849 struct ieee80211_if_ap *ap = NULL; 1850 struct ieee80211_if_sta *ifsta = NULL; 1851 struct rate_selection rsel; 1852 struct beacon_data *beacon; 1853 struct ieee80211_supported_band *sband; 1854 enum ieee80211_band band = local->hw.conf.channel->band; 1855 1856 sband = local->hw.wiphy->bands[band]; 1857 1858 rcu_read_lock(); 1859 1860 sdata = vif_to_sdata(vif); 1861 bdev = sdata->dev; 1862 1863 if (sdata->vif.type == NL80211_IFTYPE_AP) { 1864 ap = &sdata->u.ap; 1865 beacon = rcu_dereference(ap->beacon); 1866 if (ap && beacon) { 1867 /* 1868 * headroom, head length, 1869 * tail length and maximum TIM length 1870 */ 1871 skb = dev_alloc_skb(local->tx_headroom + 1872 beacon->head_len + 1873 beacon->tail_len + 256); 1874 if (!skb) 1875 goto out; 1876 1877 skb_reserve(skb, local->tx_headroom); 1878 memcpy(skb_put(skb, beacon->head_len), beacon->head, 1879 beacon->head_len); 1880 1881 /* 1882 * Not very nice, but we want to allow the driver to call 1883 * ieee80211_beacon_get() as a response to the set_tim() 1884 * callback. That, however, is already invoked under the 1885 * sta_lock to guarantee consistent and race-free update 1886 * of the tim bitmap in mac80211 and the driver. 1887 */ 1888 if (local->tim_in_locked_section) { 1889 ieee80211_beacon_add_tim(local, ap, skb, beacon); 1890 } else { 1891 unsigned long flags; 1892 1893 spin_lock_irqsave(&local->sta_lock, flags); 1894 ieee80211_beacon_add_tim(local, ap, skb, beacon); 1895 spin_unlock_irqrestore(&local->sta_lock, flags); 1896 } 1897 1898 if (beacon->tail) 1899 memcpy(skb_put(skb, beacon->tail_len), 1900 beacon->tail, beacon->tail_len); 1901 } else 1902 goto out; 1903 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1904 struct ieee80211_hdr *hdr; 1905 ifsta = &sdata->u.sta; 1906 1907 if (!ifsta->probe_resp) 1908 goto out; 1909 1910 skb = skb_copy(ifsta->probe_resp, GFP_ATOMIC); 1911 if (!skb) 1912 goto out; 1913 1914 hdr = (struct ieee80211_hdr *) skb->data; 1915 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1916 IEEE80211_STYPE_BEACON); 1917 1918 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 1919 struct ieee80211_mgmt *mgmt; 1920 u8 *pos; 1921 1922 /* headroom, head length, tail length and maximum TIM length */ 1923 skb = dev_alloc_skb(local->tx_headroom + 400); 1924 if (!skb) 1925 goto out; 1926 1927 skb_reserve(skb, local->hw.extra_tx_headroom); 1928 mgmt = (struct ieee80211_mgmt *) 1929 skb_put(skb, 24 + sizeof(mgmt->u.beacon)); 1930 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon)); 1931 mgmt->frame_control = 1932 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); 1933 memset(mgmt->da, 0xff, ETH_ALEN); 1934 memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN); 1935 /* BSSID is left zeroed, wildcard value */ 1936 mgmt->u.beacon.beacon_int = 1937 cpu_to_le16(local->hw.conf.beacon_int); 1938 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */ 1939 1940 pos = skb_put(skb, 2); 1941 *pos++ = WLAN_EID_SSID; 1942 *pos++ = 0x0; 1943 1944 mesh_mgmt_ies_add(skb, sdata); 1945 } else { 1946 WARN_ON(1); 1947 goto out; 1948 } 1949 1950 info = IEEE80211_SKB_CB(skb); 1951 1952 skb->do_not_encrypt = 1; 1953 1954 info->band = band; 1955 rate_control_get_rate(sdata, sband, NULL, skb, &rsel); 1956 1957 if (unlikely(rsel.rate_idx < 0)) { 1958 if (net_ratelimit()) { 1959 printk(KERN_DEBUG "%s: ieee80211_beacon_get: " 1960 "no rate found\n", 1961 wiphy_name(local->hw.wiphy)); 1962 } 1963 dev_kfree_skb_any(skb); 1964 skb = NULL; 1965 goto out; 1966 } 1967 1968 info->control.vif = vif; 1969 info->tx_rate_idx = rsel.rate_idx; 1970 1971 info->flags |= IEEE80211_TX_CTL_NO_ACK; 1972 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1973 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; 1974 if (sdata->bss_conf.use_short_preamble && 1975 sband->bitrates[rsel.rate_idx].flags & IEEE80211_RATE_SHORT_PREAMBLE) 1976 info->flags |= IEEE80211_TX_CTL_SHORT_PREAMBLE; 1977 1978 info->antenna_sel_tx = local->hw.conf.antenna_sel_tx; 1979 info->control.retry_limit = 1; 1980 1981 out: 1982 rcu_read_unlock(); 1983 return skb; 1984 } 1985 EXPORT_SYMBOL(ieee80211_beacon_get); 1986 1987 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1988 const void *frame, size_t frame_len, 1989 const struct ieee80211_tx_info *frame_txctl, 1990 struct ieee80211_rts *rts) 1991 { 1992 const struct ieee80211_hdr *hdr = frame; 1993 1994 rts->frame_control = 1995 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS); 1996 rts->duration = ieee80211_rts_duration(hw, vif, frame_len, 1997 frame_txctl); 1998 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra)); 1999 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta)); 2000 } 2001 EXPORT_SYMBOL(ieee80211_rts_get); 2002 2003 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2004 const void *frame, size_t frame_len, 2005 const struct ieee80211_tx_info *frame_txctl, 2006 struct ieee80211_cts *cts) 2007 { 2008 const struct ieee80211_hdr *hdr = frame; 2009 2010 cts->frame_control = 2011 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS); 2012 cts->duration = ieee80211_ctstoself_duration(hw, vif, 2013 frame_len, frame_txctl); 2014 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra)); 2015 } 2016 EXPORT_SYMBOL(ieee80211_ctstoself_get); 2017 2018 struct sk_buff * 2019 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, 2020 struct ieee80211_vif *vif) 2021 { 2022 struct ieee80211_local *local = hw_to_local(hw); 2023 struct sk_buff *skb = NULL; 2024 struct sta_info *sta; 2025 struct ieee80211_tx_data tx; 2026 struct net_device *bdev; 2027 struct ieee80211_sub_if_data *sdata; 2028 struct ieee80211_if_ap *bss = NULL; 2029 struct beacon_data *beacon; 2030 struct ieee80211_tx_info *info; 2031 2032 sdata = vif_to_sdata(vif); 2033 bdev = sdata->dev; 2034 bss = &sdata->u.ap; 2035 2036 if (!bss) 2037 return NULL; 2038 2039 rcu_read_lock(); 2040 beacon = rcu_dereference(bss->beacon); 2041 2042 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head) 2043 goto out; 2044 2045 if (bss->dtim_count != 0) 2046 goto out; /* send buffered bc/mc only after DTIM beacon */ 2047 2048 while (1) { 2049 skb = skb_dequeue(&bss->ps_bc_buf); 2050 if (!skb) 2051 goto out; 2052 local->total_ps_buffered--; 2053 2054 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) { 2055 struct ieee80211_hdr *hdr = 2056 (struct ieee80211_hdr *) skb->data; 2057 /* more buffered multicast/broadcast frames ==> set 2058 * MoreData flag in IEEE 802.11 header to inform PS 2059 * STAs */ 2060 hdr->frame_control |= 2061 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 2062 } 2063 2064 if (!ieee80211_tx_prepare(local, &tx, skb)) 2065 break; 2066 dev_kfree_skb_any(skb); 2067 } 2068 2069 info = IEEE80211_SKB_CB(skb); 2070 2071 sta = tx.sta; 2072 tx.flags |= IEEE80211_TX_PS_BUFFERED; 2073 tx.channel = local->hw.conf.channel; 2074 info->band = tx.channel->band; 2075 2076 if (invoke_tx_handlers(&tx)) 2077 skb = NULL; 2078 out: 2079 rcu_read_unlock(); 2080 2081 return skb; 2082 } 2083 EXPORT_SYMBOL(ieee80211_get_buffered_bc); 2084